X Session Management Library

X Consortium Standard

Ralph Mor

X Session Management Library: X Consortium Standard
by Ralph Mor

X Version 11, Release 6.4

Version 1.0
Copyright © 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including without limitation the rightsto use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGSIN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

X Window System is atrademark of The Open Group.

Table of Contents

1. Overview of SESSION ManagemMENtcouuiiii e e e e e e e e e e eaen 1
2. The Session Management Librarycoooeiioiiiiiiin e e e e 2
3. Understanding SMIib's Dependence ON ICEccuuiiviiiiiiiiicci e e e e 3
4. Header Files and Library NGMEoiiiiiiiiiciie e e e e 4
5. Session Management Client (SmMC) FUNCLIONSuviiiiiiiiiicci e 5
Connecting to the SESSION MaNAJENcvvuiiie e e e e e eans 5

The Save Yourself Callbackooovvviiiiiii e 7

The DI CallDACKeieeieieeee e et e e e ees 8

The Save Complete Callbackcc.iiiiiiiiii e 8

The Shutdown Cancelled Callbackoouviiiiiiiiiiiiii e 8

Closing the CONNECLIONiiiicii e e e e e eaans 9
MOodifying CallDacksccuiiiiici e 9
Setting, Deleting, and Retrieving Session Management Properties.........cccovevvevevevnneennnn. 10
Interacting With the USErccueiii e e 11
Requesting @ Save YOoUrSElf ..o 11
Requesting a Save YOUrself PhaSe 2ccvuiiiiiiiii i 12
Completing @ Save YOUISEIToooiiii e e 12
Using Smc Informational FUNCLIONScccuuiiiiieiiie e 13
T (o g =10 | o Y 13

6. Session Management Server (SmS) FUNCLIONSiiiviiiiiic e 15
INitiaizing the LiBraryooeeeiii e e e 15

The Register Client Callbackcooeviiiiiiiiii e 17

The Interact Request Callbackcccviiiiiiiii e 18

The Interact Done Callbackcooouuiiiiiiiiiiii e 18

The Save Yourself Request Callbackcoevviiiiiiiiiiiicie e 19

The Save Yourself Phase 2 Request Callbackcovvvvieiiiiiiiiiiiicceen, 19

The Save Yourself Done Callbackooovviiiiiiiiiiiiiii e 19

The Connection Closed Callbackcooeviiiiiiiiiiii e 20

The Set Properties Callbackcooviiiiiiiii e 20

The Delete Properties Callbackcoovvviiiiiii i 20

The Get Properties Callbackccouiiiiiiiiii e 21
ReGIStENING the CHENtiii e e e eaes 21
Sending a Save Y oUrSElf MESSAgEu.ivvi i e e 22
Sending a Save Yourself Phase 2 MESSA0Ec.ueiviieiiiieeiie e ee e 22
Sending an INtEratt MESSAOE ...vvuuiiiiieei e e e e e e e e e e e e e e aeaas 23
Sending a Save COmMPIEtE MESSA0Ecvvueii i eiie et e e e e e e e e eaen 23
SENAING @ DIi€ MESSAGE .. .evuiiii i eiii et e e e e e e e 23
Cancelling @ SNULAOWNieeeee e e e e e e e e eanaeees 23
RELUrNING PrOPErtIES . .ovucii e e e e e e e eanas 23

0T T 1o = X = o 24
Cleaning Up After a Client DISCONNECEScvvuiiiiiieii e e e e e e 24
Using Sms Informational FUNCLIONSiiiiiiiiii e e e e 24
T (o g =1 | o Y 25

7. Session Management PrOPEITIESvuuuiii e e e e e e e 26
T == oo [I - U 29
9. Authentication Of ClIENESuiiiii e 30
10. Working in a Multi-Threaded EnVIrONMENtooeiiiiiiiiiiiiieeii e e e e e 31
11, ACKNOWIEAGEMENLSiiii i e e e e e e e e e e et e e e e e e e aaaas 32

Chapter 1. Overview of Session
Management

The purpose of the X Session Management Protocol (XSMP) is to provide a uniform mechanism for users to
save and restore their sessions. A session is agroup of clients, each of which has a particular state. The sessionis
controlled by a network service called the session manager. The session manager issues commands to its clients
on behalf of the user. These commands may cause clients to save their state or to terminate. It is expected that the
client will save its state in such away that the client can be restarted at a later time and resume its operation as if
it had never been terminated. A client's state might include information about the file currently being edited, the
current position of the insertion point within the file, or the start of an uncommitted transaction. The means by
which clients are restarted is unspecified by this protocol.

For purposes of this protocol, a client of the session manager is defined as a connection to the session manager.
A client istypically, though not necessarily, a process running an application program connected to an X display.
However, a client may be connected to more than one X display or not be connected to any X displaysat all.

Chapter 2. The Session Management
Library

The Session Management Library (SMlib) is a low-level "C" language interface to XSMP. It is expected that
higher level toolkits, such as Xt, will hide many of the details of session management from clients. Higher level
toolkits might also be developed for session managers to use, but no such effort is currently under way.

SMlib has two partsto it:
» One set of functions for clients that want to be part of a session
» One set of functions for session managers to call

Some applications will use both sets of functions and act as nested session managers. That is, they
will be both a session manager and a client of another session. An example is a mail program that
could start a text editor for editing the text of a mail message. The mail program is part of a regular
session and, at the same time, is also acting as a session manager to the editor.

Clients initialize by connecting to the session manager and abtaining a client-ID that uniquely
identifies them in the session. The session manager maintains a list of properties for each client
in the session. These properties describe the client's environment and, most importantly, describe
how the client can be restarted (via an SmRestartCommand). Clients are expected to save their state
in such a way as to allow multiple instantiations of themselves to be managed independently. For
example, clientsmay usetheir client-1D as part of afilenameinwhich to store the state for a particular
instantiation. The client-ID should be saved as part of the SmRestartCommand so that the client will
retain the same ID after it isrestarted.

Once the client initializes itself with the session manager, it must be ready to respond to messages
from the session manager. For example, it might be asked to save its state or to terminate. In the case
of ashutdown, the session manager might give each client achanceto interact with the user and cancel
the shutdown.

Chapter 3. Understanding SMlib's
Dependence on ICE

The X Session Management Protocol is layered on top of the Inter-Client Exchange (ICE) Protocol.
The ICE protocol is designed to multiplex severa protocols over a single connection. As a result,
working with SMlib requires alittle knowledge of how the ICE library works.

The ICE library utilizes callbacks to process messages. When a client detects that there is
data to read on an ICE connection, it should call the | ceProcessMessages function.
| cePr ocessMessages will read the message header and look at the major opcode in order to
determine which protocol the message was intended for. The appropriate protocol library will then be
triggered to unpack the message and hand it off to the client via a callback.

Themain point to beaware of isthat an application using SMIib must have some code that detectswhen
there is data to read on an I CE connection. This can be doneviaasel ect cal on the file descriptor
for the | CE connection, but more typically, Xt AppAddIl nput will be used to register a callback that
will invoke | cePr ocessMessages each timethereis datato read on the I CE connection.

To further complicate things, knowing which file descriptors to call sel ect on requires
an understanding of how ICE connections are created. On the client side, a call must be
made to SntOpenConnection in order to open a connection with a session manager.
SntOpenConnect i on will internally makeacall intol ceQpenConnect i on whichwill, inturn,
determine if an ICE connection already exists between the client and session manager. Most likely,
a connection will not already exist and a new ICE connection will be created. The main point to be
aware of isthat, on the client side, it is not obvious when ICE connections get created or destroyed,
because connections are shared when possible. To deal with this, the ICE library lets the application
register watch proceduresthat will beinvoked each time an | CE connection is opened or closed. These
watch procedures could be used to add or remove I CE file descriptors from the list of descriptors to
cal sel ect on.

On the session manager side, things work a bit differently. The session manager has
complete control over the creation of ICE connections. The session manager has to first cal
| ceLi st enFor Connecti ons in order to start listening for connections from clients. Once a
connection attempt is detected, | ceAccept Connect i on must be called, and the session manager
can simply add the new | CE file descriptor to the list of descriptorsto call sel ect on.

For further information on the library functions related to ICE connections, see the “Inter-Client
Exchange Library” standard.

Chapter 4. Header Files and Library
Name

Applications (both session managers and clients) should include the header file <X11/ SM
SM i b. h>. This header file defines al of the SMlib data structures and function prototypes.
SM i b. h includesthe header file <X11/ SM SM h>, which defines all of the SMlib constants.

Because SMlib is dependent on ICE, applications should link against SMlib and ICElib by using “-
| SM-11CE".

Chapter 5. Session Management
Client (Smc) Functions

This section discusses how Session Management clients:

» Connect to the Session Manager
* Close the connection

» Modify callbacks

» Set, delete, and retrieve Session Manager properties

¢ Interact with the user

* Request a“Save Y ourself”

* Request a“Save Yourself Phase 2"
» Complete a“Save Y ourself”

* Use Smc informational functions

* Handle Errors

Connecting to the Session Manager

To open a connection with a session manager, use Smc QpenConnect i on

SncConn SntOpenConnecti on(network_i ds_list, context, xsnp_najor_rev,

Xsnp_mi nor _rev, mask,

cal | backs, previous_id, client_id ret,

error_length, error_string_ret);

network ids_|ist

cont ext

XsSnp_maj or _rev

XSnMp_m nor_rev

mask

cal | backs

previous_id
client_id_ret
error_length

error_string_ret

Specifies the network 1D(s) of the session manager.

A pointer to an opaque object or NULL. Used to determine if
an ICE connection can be shared (see below [6]).

The highest magjor version of the XSMP the application
supports.

The highest minor version of the XSMP the application
supports (for the specified xsnp_nmj or _rev).

A mask indicating which callbacks to register.

The callbacksto register. These callbacks are used to respond
to messages from the session manager.

The client 1D from the previous session.
The client 1D for the current session is returned.
Length of theerror _stri ng_r et argument passed in.

Returns a null-terminated error message, if any. The
error_string_ret argument points to user supplied
memory. No more than er r or _| engt h bytes are used.

Session Management
Client (Smc) Functions

The net wor k_i ds_1i st argument is a null-terminated string containing a list of network 1Ds
for the session manager, separated by commas. If net wor k_i ds_1i st isNULL, the value of the
SESSI ON_MANAGER environment variable will be used. Each network 1D has the following format:

tcp/ or
<host nanme>: <port nunber >

decnet/ or
<host nanme>: : <obj name>

| ocal /
<host name>: <pat h>

An attempt will be made to use the first network ID. If that fails, an attempt will be made using the
second network 1D, and so on.

After the connection is established, SmcOpenConnect i on registers the client with the session
manager. If the client isbeing restarted from aprevious session, pr evi ous_i d should contain anull
terminated string representing the client ID from the previous session. If the client isfirst joining the
session, pr evi ous_i d should be set to NULL. If pr evi ous_i d isspecified but is determined to
beinvalid by the session manager, SMlib will re-register the client with pr evi ous_i d set to NULL.

If SmcOpenConnect i on succeeds, it returns an opaque connection pointer of type SncConn
and the client_id_ret argument contains the client ID to be used for this session.
The client_id_ret should be freed with a call to free when no longer needed. On
failure, SnmcCOpenConnecti on returns NULL, and the reason for failure is returned in
error_string_ret.

Note that SMlib uses the | CE protocol to establish a connection with the session manager. If an ICE
connection already exists between the client and session manager, it might be possible for the same
| CE connection to be used for session management.

The context argument indicates how willing the client is to share the ICE connection with other
protocols. If context is NULL, then the caller is aways willing to share the connection. If context is
not NULL, then the caller is not willing to use a previously opened | CE connection that has a different
non-NULL context associated with it.

Asprevioudly discussed (section 3, “ Understanding SMlib's Dependenceon ICE"), the client will have
to keep track of when | CE connections are created or destroyed (using| ceAddConnect i onWat ch
and | ceRenpveConnect i onWat ch and will havetocal | cePr ocessMessages eachtimea
sel ect showsthat thereisdatato read on an | CE connection. For further information, seethe“ Inter-
Client Exchange Library” standard.

The callbacks argument contains a set of callbacks used to respond to session manager events. The
mask argument specifieswhich callbacksare set. All of the callbacks specified in thisversion of SMlib
are mandatory. The mask argument is necessary in order to maintain backwards compatibility in future
versions of the library.

The following values may be ORed together to obtain anask value:

SntSaveYour sel f ProcMask
SntDi ePr ocMask

SntSaveConpl et ePr ocMask

Snt Shut downCancel | edPr ocMask

For each callback, the client can register a pointer to client data. When SMIib invokes the callback,
it will pass the client data pointer.

typedef struct {

Session Management
Client (Smc) Functions

struct {
SntSaveYour sel f Proc cal | back;
SnPoi nter client_data;

} save_yoursel f;

struct {
SncDi eProc cal | back;
SnPoi nter client_data;
} die;

struct {
SntSaveConpl et eProc cal | back;
SnPoi nter client_data;

} save_conpl et e;

struct {
Snt Shut downCancel | edProc cal | back;
SnPoi nter client_data;

} shutdown_cancel | ed;

} SntCal | backs;

The Save Yourself Callback

The Save Y ourself callback is of type Snt SaveYour sel f Proc

typedef void (*SaveYourselfProc)(snc_conn, client_data, save_type,
shut down, interact_style, fast);

snt_conn The session management connection object.

client_data Client data specified when the callback was registered.
save_type Specifies the type of information that should be saved.

shut _down Specifiesif a shutdown is taking place.

interact_style The type of interaction allowed with the user.

f ast if True, then client should save its state as quickly as possible.

The session manager sends a “Save Yourself” message to a client either to checkpoint it or just
before termination so that it can save its state. The client responds with zero or more calls to
SntSet Properti es to update the properties indicating how to restart the client. When al the
properties have been set, the client calls Snc SaveYour sel f Done

Ifi nteract _styl eisSm nt eract St yl eNone the client must not interact with the user while
saving state. If i nt eract _styl e isSm nteract Styl eErrors the client may interact with
the user only if an error condition arises. If i nt eract _styl e isSm nt er act St yl eAny then
the client may interact with the user for any purpose. Because only one client can interact with the
user at atime, the client must call Scl nt er act Request and wait for an “ Interact” message from
the session manager. When the client is done interacting with the user, it calls Sntl nt er act Done
The client may only call Sntl nt er act Request after it receives a“Save Yourself” message and
beforeit calls Smc SaveYour sel f Done

If save_t ype is SnSavelocal the client must update the properties to reflect its current state.
Specifically, it should save enough information to restore the state as seen by the user of this client.
It should not affect the state as seen by other users. If save_t ype is SnSaved obal the user
wants the client to commit all of its datato permanent, globally accessible storage. If save_t ype is

Session Management
Client (Smc) Functions

SnSaveBot h the client should do both of these (it should first commit the data to permanent storage
before updating its properties).

Some examples are as follows:

« If aword processor were sent a “ Save Yourself” with atype of SnSavelocal it could create a
temporary file that included the current contents of the file, the location of the cursor, and other
aspects of the current editing session. It would then update its SmRestartCommand property with
enough information to find this temporary file.

« If aword processor were sent a“ Save Y ourself” with atype of SnSaved obal it would simply
save the currently edited file.

« If aword processor were sent a“ Save Yourself” with a type of SnSaveBot h it would first save
the currently edited file. It would then create atemporary file with information such as the current
position of the cursor and what fileisbeing edited. Finally, it would update its SmRestartCommand
property with enough information to find the temporary file.

Theshut down argument specifieswhether the systemisbeing shut down. Theinteractionisdifferent
depending on whether or not shutdown is set. If not shutting down, the client should saveits state and
wait for a“Save Complete” message. If shutting down, the client must save state and then prevent
interaction until it receives either a“Di€” or a“ Shutdown Cancelled.”

Thef ast argument specifiesthat the client should save its state as quickly as possible. For example,
if the session manager knows that power is about to fail, it would set f ast to Tr ue.

The Die Callback

The Die callback is of type SneDi ePr oc

typedef void (*SnctDi eProc)(snc_conn, client_data);
snc_conn The session management connection object.
client_data Client data specified when the callback was registered.

The session manager sends a “Die” message to a client when it wants it to die. The client should
respond by calling Snc Gl oseConnect i on. A session manager that behaves properly will send a
“Save Yourself” message before the “Die” message.

The Save Complete Callback

The Save Complete callback is of type Snt SaveConpl et ePr oc
typedef void (*SncSaveConpl eteProc)(snc_conn, client_data);
snt_conn The session management connection object.

client_data Client data specified when the callback was registered.

The Shutdown Cancelled Callback

The Shutdown Cancelled callback is of type St Shut downCancel | edPr oc
typedef void (*SntShutdownCancel | edProc) (snc_conn, client_data);
snt_conn The session management connection object.

client_data Client data specified when the callback was registered.

Session Management
Client (Smc) Functions

The session manager sends a * Shutdown Cancelled” message when the user cancelled the shutdown
during an interaction (see section 5.5, “Interacting With the User”). The client can now continue as
if the shutdown had never happened. If the client has not called SntSaveYour sel f Done yet, it
can either abort the save and then call SncSaveYour sel f Done with the success argument set to
Fal se or it can continue with the save and then call Snc SaveYour sel f Done withthesuccess
argument set to reflect the outcome of the save.

Closing the Connection

To close a connection with a session manager, use Snt Cl oseConnecti on

Sncd oseSt at us SncC oseConnecti on(snc_conn, count, reason_mnsgs);

snt_conn The session management connection object.
count The number of reasons for closing the connection.
reason_nsgs The reasons for closing the connection.

The reason_nsgs argument will most likely be NULL if resignation is expected by the client.
Otherwise, it contains a list of null-terminated Compound Text strings representing the reason for
termination. The session manager should display these reason messages to the user.

Note that SMlib used the ICE protocol to establish a connection with the session manager, and
various protocols other than session management may be active on the ICE connection. When
SncCl oseConnecti on is called, the ICE connection will be closed only if &l protocols have
been shutdown on the connection. Check the ICElib standard for | ceAddConnect i onWat ch and
| ceRenpveConnect i onWat ch to learn how to set up a callback to be invoked each time an ICE
connection is opened or closed. Typicaly this callback adds/removes the | CE file descriptor from the
list of active descriptorsto call sel ect on (or calls Xt AppAddl nput or Xt Rermovel nput).

SncCl oseConnect i on returns one of the following values:

» Sntd osedNow- the |CE connection was closed at thistime, the watch procedures were invoked,
and the connection was freed.

* SntC 0sedASAP - an 10 error had occurred on the connection, but SncCl oseConnect i on
is being caled within a nested | ceProcessMessages The watch procedures have
been invoked at this time, but the connection will be freed as soon as possible
(when the nesting level reaches zero and | ceProcessMessages returns a status of
| ceProcessMessagesConnecti onC osed

» SntConnect i onl nUse - the connection was not closed at thistime, because it is being used by
other active protocols.

Modifying Callbacks

To modify callbacks set up in SntOpenConnect i on use SntModi f yCal | backs

voi d SncModi fyCal | backs(snc_conn, nask, call backs);

snt_conn The session management connection object.
mask A mask indicating which callbacks to modify.
cal | backs The new callbacks.

When specifying a value for the mask argument, the following values may be ORed together:

SntSaveYour sel f ProcMask

Session Management
Client (Smc) Functions

SncDi ePr ocMask
Snt SaveConpl et ePr ocMask
Snt Shut downCancel | edPr ocMask

Setting, Deleting, and Retrieving Session
Management Properties

To set session management properties for this client, use Snc Set Pr operti es

voi d SntSet Properties(snc_conn, num props, props);

snt_conn The on management connection object.
num pr ops The number of properties.
props The list of propertiesto set.

The properties are specified as an array of property pointers. Previously set property values may be
over-written using the Snt Set Pr oper t i es function. Note that the session manager is not expected
to restore property values when the session is restarted. Because of this, clients should not try to use
the session manager as a database for storing application specific state.

For a description of session management properties and the SmProp structure, see section 7, “ Session
Management Properties.”

To delete properties previously set by the client, use SncDel et eProperti es

voi d SntDel et eProperties(snc_conn, num props, prop_nanes);

snt_conn The session management connection object.
num pr ops The number of properties.
prop_nanes Thelist of propertiesto set.

To get properties previoudly stored by the client, use SncGet Pr operti es

Stat us SncCGet Properties(snc_conn, prop_reply _proc, client_data);

snt_conn The session management connection object.

prop_reply_proc The callback to be invoked when the properties reply comes
back.

client_data This pointer to client data will be passed to the

SntPr opRepl yPr oc callback.
The return value of SncGet Properti es iszero for failure and a positive value for success.

Note that the library does not block until the properties reply comes back. Rather, a callback of type
SntPr opRepl yPr oc isinvoked when the datais ready.

typedef void (*SncPropReplyProc)(snc_conn, client_data, num props,
props);

snt_conn The session management connection object.

client_data This pointer to client data will be passed to the SntPr opRepl yPr oc
callback.

num pr ops The number of properties returned.

10

Session Management
Client (Smc) Functions

props Thelist of properties returned.

To free each property, use Snir eePr operty (see section 8, “Freeing Data’). To free the actual
array of pointers, usefr ee

Interacting With the User

After recelving a “Save Yoursdf” message with an interact_style of
Sm nteract Styl eErrors or Sml nt eract Styl eAny the client may choose to interact
with the user. Because only one client can interact with the user at a time, the client must call
Sntl nt er act Request and wait for an “Interact” message from the session manager.

Status Sntlnteract Request (snt_conn, di al og_t ype, i nteract _proc,
client _data);

snt_conn The session management connection object.
di al og_type The type of dialog the client wishesto present to the user.
i nteract_proc The callback to beinvoked when the “Interact” message arrivesfrom

the session manager.

client _data Thispointer to client datawill be passedtothe Sntl nt er act Proc
callback when the “Interact” message arrives.

Thereturn value of Sntl nt er act Request iszero for failure and a positive value for success.

Thedi al og_t ype argument specifies either SnDi al ogEr r or indicating that the client wants to
start an error dialog, or SmDi al ogNor mal meaning that the client wishes to start anonerror dialog.

Notethat if ashutdown isin progress, the user may have the option of cancelling the shutdown. If the
shutdown is cancelled, the clients that have not interacted yet with the user will receive a* Shutdown
Cancelled” message instead of the “Interact” message.

The Sncl nt er act Pr oc callback will be invoked when the “Interact” message arrives from the
Session manager.

typedef void (*SntlnteractProc)(snc_conn, client_data);
snt_conn The session management connection object.
client_data Client data specified when the callback was registered.

After interacting with the user (in response to an “Interact” message), you should call
Sntl nt er act Done

voi d Sntlnteract Done(snc_conn, cancel _shutdown);

snt_conn The session management connection object.
cancel _shut down If Tr ue, indicatesthat the user requeststhat the entire shutdown
be cancelled.

The cancel _shut down argument may only be Tr ue if the corresponding “Save Y ourself”
specified Tr ue for shutdown and Smi nt er act St yl eErrors or S nt er act St yl eAny for
thei nteract _style.

Requesting a Save Yourself

To request a checkpoint from the session manager, use SntRequest SaveYour sel f

11

Session Management
Client (Smc) Functions

voi d SntRequest SaveYour sel f (snc_conn, save_type, shut down,
interact_style, fast, global);

snc_conn The session management connection object.

save_type Specifies the type of information that should be saved.

shut down Specifiesif a shutdown is taking place.

i nteract _style The type of interaction allowed with the user.

f ast If Tr ue the client should save its state as quickly as possible.
gl obal Controls who gets the “Save Y ourself.”

The save_type, shutdown, i nteract styl e, and f ast arguments are discussed in more
detail in section 5.1.1, “ The Save Y ourself Callback.”

If gl obal issettoTr ue thentheresulting “ Save Y ourself” should be sent to al clientsin the session.
For example, avendor of aUninterruptible Power Supply (UPS) might include a Session Management
client that would monitor the status of the UPS and generate a fast shutdown if the power is about
to belost.

If global is set to Fal se then the “Save Yourself” should only be sent to the client that requested it.

Requesting a Save Yourself Phase 2

In response to a“ Save Y ourself”, the client may request to be informed when al the other clients are
quiescent so that it can save their state. To do so, use SncRequest SaveYour sel f Phase2

St at us SntRequest SaveYour sel f Phase2(snt_conn,
save_yoursel f_phase2 proc, client_data);

snt_conn The session management connection object.

save_t ype_phase2_proc The callback to be invoked when the “Save
Yourself Phase 2" message arrives from the

SESSI0N Manager.

client_data This pointer to client data will be passed to the
SntSaveYour sel f Phase2Proc callback
when the “Save Yourself Phase 2" message
arrives.

The return value of SncRequest SaveYour sel f Phase2 iszero for failure and a positive value
for success.

Thisrequest isneeded by clientsthat manage other clients (for example, window managers, workspace

managers, and so on). The manager must make sure that all of the clients that are being managed are
in anidle state so that their state can be saved.

Completing a Save Yourself

After saving state in response to a “Save Yoursalf” message, you should call
SncSaveYour sel f Done

voi d SntSaveYoursel f Done(snt_conn, success);

snt_conn The on management connection object.

12

Session Management
Client (Smc) Functions

success If Tr ue the “Save Yourself” operation was completed successfully.

Before calling Snc SaveYour sel f Done the client must have set each required property at least
once since the client registered with the session manager.

Using Smc Informational Functions

i nt SntProtocol Version(snc_conn);

SntPr ot ocol Ver si on returns the major version of the session management protocol associated
with this session.

i nt SntProtocol Revi sion(snt_conn);

SntPr ot ocol Revi si on returnsthe minor version of the session management protocol associated
with this session.

char *SntVendor (snt_conn);

SntVendor returns a string that provides some identification of the owner of the session manager.
The string should be freed withacall tof r ee

char *SntRel ease(snt_conn);

SntRel ease returns a string that provides the release number of the session manager. The string
should be freed with acall tof r ee

char *SntdientlD(snt_conn);

Sncd i ent | Dreturnsanull-terminated string for the client 1D associated with this connection. This
information was a so returned in Snt OpenConnect i on (it is provided here for convenience). Call
f r ee on this pointer when the client ID is no longer needed.

| ceConn SntGet | ceConnecti on(snt_conn);

SncCet | ceConnecti on returns the ICE connection object associated with this session
management connection object. The ICE connection object can be used to get some additional
information about the connection. Some of themore useful functionswhich can beused on thelceConn
arel ceConnecti onNunber ,l ceConnecti onStri ng,l ceLast Sent SequenceNunber ,
| ceLast Recei vedSequenceNumnber , and | cePi ng. For further information, see the “Inter-
Client Exchange Library” standard.

Error Handling

If the client receives an unexpected protocol error from the session manager, an error handler is
invoked by SMlib. A default error handler exists that simply prints the error message to st derr
and exits if the severity of the error is fatal. The client can change this error handler by calling the
SncSet Er r or Handl er function.

SntError Handl er SntSet Er r or Handl er (handl er) ;

The error handler. Y ou should pass NULL to restore the default handler.
SncSet Er r or Handl er returnsthe previous error handler.

The SntEr r or Handl er hasthe following type:

t ypedef voi d (*SncErrorHandl er) (snt_conn, swap,
of f endi ng_m nor _opcode, of f endi ng_sequence_num error_cl ass,
severity, val ues);

13

Session Management
Client (Smc) Functions

snc_conn

swap

of f endi ng_m nor _opcode

of f endi ng_sequence_num

error_cl ass

severity

val ues

The session management connection object.

A flag that indicates if the specified values
need byte swapping.

The minor opcode of the offending message.

The sequence number of the offending
message.

The error class of the offending message.

| ceCanCont i nue,
| ceFat al ToPr ot ocol , or
| ceFat al ToConnecti on

Any additional error values specific to the
minor opcode and class.

Note that this error handler is invoked for protocol related errors. To install an error handler to be
invoked when an 10O error occurs, use | ceSet | OEr r or Handl er For further information, see the

“Inter-Client Exchange Library” standard.

14

Chapter 6. Session Management
Server (Sms) Functions

This section discusses how Session Management servers.

Initialize the library

Register the client

Send a“ Save Y ourself” message

Send a“ Save Y ourself Phase 2" message
Send an “Interact” message

Send a“ Save Complete” message

» Send a“Die” message
» Cancel a shutdown
* Return properties

» Pingaclient

 Clean up after aclient disconnects

» Use Smsinformational functions

» Handleerrors

Initializing the Library

Snsl nitial i ze isthefirst SMlib function that should be called by a session manager. It provides
information about the session manager and registers a callback that will be invoked each time a new

client connects to the session manager.

Status Snslnitialize(vendor,
host based_aut h_proc,

vendor

rel ease

new client_proc

manager _dat a

host based_aut h_proc

error_length

error_string_ret

rel ease, new client_proc, manager dat a,
error_length, error_string ret);

A string specifying the session manager vendor.

A string specifying the session manager release
number.

Callback to be invoked each time a new client
connects to the session manager.

When the SmsNewC i ent Proc callback is
invoked, this pointer to manager data will be
passed.

Host based authentication callback.

Length of the error _string_ret argument
passed in.

Returns a null-terminated error message, if any.
Theerror_string_ret pointstouser supplied

15

Session Management
Server (Sms) Functions

memory. No morethaner r or _| engt h bytesare
used.

After the Snslnitialize function is called, the session manager should cal the
| ceLi st enFor Connect i ons function to listen for new connections. Afterwards, each time a
client connects, the session manager should call | ceAccept Connect i on

See section 9, “Authentication of Clients,” for more details on authentication (including host based
authentication). Also see the “Inter-Client Exchange Library” standard for further details on listening
for and accepting ICE connections.

Each time a new client connects to the session manager, the SnsNewCl i ent Pr oc calback is
invoked. The session manager obtains a new opague connection object that it should use for all future
interaction with the client. At this time, the session manager must also register a set of callbacks to
respond to the different messages that the client might send.

typedef Status (*SnsNewC i ent Proc) (sns_conn, nanager _data, mask ret,
cal | backs_ret, failure_reason ret);

sns_conn A new opaque connection object.

manager _dat a Manager data specified when the calback was
registered.

mask_r et On return, indicates which callbacks were set by the

Session manager.

cal | backs_ret On return, contains the callbacks registered by the
Session manager.

failure_reason_ret Failure reason returned.

If afailure occurs, the SmsNewCl i ent Pr oc should return a zero status as well as allocate and
return afaillurereason stringinf ai | ure_r eason_r et . SMlib will be responsible for freeing this
memory.

The session manager must register a set of callbacks to respond to client events. The nask_r et
argument specifies which callbacks are set. All of the callbacks specified in this version of SMlib are
mandatory. The mask_r et argument is necessary in order to maintain backwards compatibility in
future versions of the library.

The following values may be ORed together to obtain a mask value:

SmeRegi st er d i ent ProcMask

Snsl nt er act Request ProcMask

Smsl nt er act DonePr ocMask
SmeSaveYour sel f Request Pr ocMask
SneSaveYour sel f P2Request Pr ocMask
SnsSaveYour sel f DonePr ocMask
SnmsCl oseConnect i onProcMask
SneSet Properti esProcMask

SnsDel et eProperti esProcMask
SmeCet Properti esProcMask

For each callback, the session manager can register a pointer to manager data specific to that callback.
This pointer will be passed to the callback when it isinvoked by SMlib.

typedef struct {
struct {

16

Session Management
Server (Sms) Functions

SmeRegi ster i ent Proc cal | back
SnPoi nt er manager _dat a;
} register_client;

struct {
Snsl nt er act Request Proc cal | back
SnPoi nt er manager _dat a;

} interact_request;

struct {
Snsl nt er act DoneProc cal | back;
SnPoi nt er manager _dat a;

} interact_done;

struct {
SmeSaveYour sel f Request Proc cal | back
SnPoi nt er manager _dat a;

} save_yoursel f_request;

struct {
SnmeSaveYour sel f Phase2Request Proc cal | back
SnPoi nt er manager _dat a;

} save_yoursel f _phase2_request;

struct {
SnsSaveYour sel f DoneProc cal | back
SnPoi nt er manager _dat a;

} save_yoursel f _done;

struct {
SmsC oseConnecti onProc cal | back
SnPoi nt er manager _dat a;

} close_connecti on;

struct {
SneSet Properti esProc cal |l back
SnPoi nt er manager _dat a;

} set_properties;

struct {
SneDel et eProperti esProc call back
SnPoi nt er manager _dat a;

} delete properties;

struct {
SmeCet Properti esProc cal |l back
SnPoi nt er manager _dat a;

} get _properties;

} SnsCal | backs;

The Register Client Callback

The Register Client callback is the first callback that will be invoked after the client connects to the
session manager. Itstypeis SmsRegi st er Cl i ent Proc

typedef Status (*SnmsRegisterCientProc)(sns_conn, manager _dat a,
previous_id);

17

Session Management
Server (Sms) Functions

sns_conn The session management connection object.
nmanager _dat a Manager data specified when the callback was registered.
previous_id The client ID from the previous session.

Before any further interaction takes place with the client, the client must be registered with the session
manager.

If the client is being restarted from a previous session, pr evi ous_i d will contain anull-terminated
string representing the client ID from the previous session. Call f r ee onthepr evi ous_i d pointer
when it isno longer needed. If the client isfirst joining the session, pr evi ous_i d will be NULL.

If previ ous_i d isinvalid, the session manager should not register the client at this time. This
callback should return a status of zero, which will cause an error message to be sent to the client. The
client should re-register with previous id set to NULL.

Otherwise, the session manager should register the client with a unique client ID by
calling the SnsRegi sterCientReply function (to be discussed shortly), and the
SneRegi st er A i ent Pr oc callback should return a status of one.

The Interact Request Callback

The Interact Request callback is of type Snsl nt er act Request Pr oc

t ypedef void (*Snslnteract Request Proc) (sns_conn, manager _dat a,
di al og_type);

smeE_conn The session management connection object.

manager _dat a Manager data specified when the callback was registered.

di al og_type The type of dialog the client wishes to present to the user.

When a client receives a “Save Yourself” message with an interact_style of
Sm nteract Styl eErrors or Sm nt er act St yl eAny the client may choose to interact with
the user. Because only one client can interact with the user at atime, the client must request to interact
with the user. The session manager should keep a queue of all clients wishing to interact. It should
send an “Interact” message to one client at a time and wait for an “Interact Done” message before
continuing with the next client.

Thedi al og_t ype argument specifies either SnmDi al ogEr r or indicating that the client wants to
start an error dialog, or SDi al ogNor mal meaning that the client wishes to start anonerror dialog.

If ashutdown isin progress, the user may have the option of cancelling the shutdown. If the shutdown

iscancelled (specified inthe“ Interact Done” message), the session manager should send a* Shutdown
Cancelled” message to each client that requested to interact.

The Interact Done Callback

When the client is done interacting with the user, the Srs 1 nt er act DonePr oc callback will be
invoked.

t ypedef voi d (*Snsl nt eract DoneProc) (sns_conn, manager _dat a,
cancel _shut down) ;

sns_conn The session management connection object.

manager _dat a Manager data specified when the callback was registered.

18

Session Management
Server (Sms) Functions

cancel _shut down Specifies if the user requests that the entire shutdown be
cancelled.

Note that the shutdown can be cancelled only if the corresponding “Save Yourself” specified
True for shutdown and Smi nteract Styl eErrors or Smi nteract Styl eAny for the
i nteract _style.

The Save Yourself Request Callback

The Save Y ourself Request callback is of type Smms SaveYour sel f Request Proc

typedef void (*SaveYoursel fRequestProc)(sns_conn, manager _dat a,
save_type, shutdown, interact_style, fast, global);

sns_conn The session management connection object.

manager _dat a Manager data specified when the callback was registered.
save_type Specifies the type of information that should be saved.

shut down Specifiesif a shutdown is taking place.

i nteract_style The type of interaction allowed with the user.

f ast If Tr ue the client should save its state as quickly as possible.
gl obal Controls who gets the “Save Y ourself.”

The Save Yourself Request prompts the session manager to initiate a checkpoint or shutdown.
For information on the save_t ype, shut down, i nteract _styl e, andf ast arguments, see
section 6.3, “ Sending a Save Y ourself Message.”

If gl obal issetto Tr ue then the resulting “ Save Yourself” should be sent to al applications. If
gl obal issettoFal se thenthe”Save Yourself” should only be sent to the client that requested it.

The Save Yourself Phase 2 Request Callback

The Save Y ourself Phase 2 Request callback is of type
SneSaveYour sel f Phase2Request Pr oc

t ypedef voi d (*SmsSaveYour sel f Phase2Request Proc) (snms_conn,
manager _dat a) ;

sns_conn The session management connection object.
nmanager _dat a Manager data specified when the callback was registered.

This request is sent by clients that manage other clients (for example, window managers, workspace
managers, and so on). Such managers must make sure that all of the clients that are being managed
arein anidle state so that their state can be saved.

The Save Yourself Done Callback

When the client is done saving its state in response to a “Save Yourself” message, the
SmsSaveYour sel f DonePr oc will be invoked.

t ypedef voi d (*SaveYour sel f DonePr oc) (sns_conn, manager _dat a,
success);
sms_conn The session management connection object.

19

Session Management
Server (Sms) Functions

manager _dat a Manager data specified when the callback was registered.
success If Tr ue the Save Y ourself operation was completed successfully.

Before the “Save Yourself Done” was sent, the client must have set each required property at least
once since it registered with the session manager.

The Connection Closed Callback

If the client properly terminates (that is, it cals Sncd oseConnection, the
SnsC oseConnect i onPr oc callback isinvoked.

t ypedef void (*SnsC oseConnecti onProc) (sns_conn, manager _dat a,
count, reason_nsgs);

sms_conn The session management connection object.

manager _dat a Manager data specified when the callback was registered.
count The number of reason messages.

reason_nsgs The reasons for closing the connection.

The r eason_nsgs argument will most likely be NULL and the count argument zero (0) if
resignation is expected by the user. Otherwise, it contains a list of null-terminated Compound Text
strings representing the reason for termination. The session manager should display these reason
messages to the user.

Call SnFr eeReasons to free the reason messages. For further information, see section 8, “Freeing
Data’

The Set Properties Callback

When the client sets session management properties, the Sns Set Pr opert i esPr oc callback will
be invoked.

t ypedef voi d (*SnsSet PropertiesProc) (sns_conn, manager _dat a,
num props, props);

sns_conn The session management connection object.

manager _dat a Manager data specified when the callback was registered.
num_pr ops The number of properties.

props Thelist of propertiesto set.

The properties are specified as an array of property pointers. For a description of session management
properties and the SmProp structure, see section 7, “ Session Management Properties.”

Previously set property values may be over-written. Some properties have predefined semantics. The
session manager is required to store nonpredefined properties.

Tofreeeach property, use Snr eePr oper t y. For further information, see section 8, “ Freeing Data”
Y ou should free the actual array of pointerswith acall tof r ee

The Delete Properties Callback

When the client deletes session management properties, the SnsDel et ePr operti esProc
callback will be invoked.

20

Session Management
Server (Sms) Functions

typedef void (*SmsDel etePropertiesProc)(sns_conn, manager _dat a,
num props, prop_nanes);

sme_conn The session management connection object.

manager _dat a Manager data specified when the callback was registered.
num pr ops The number of properties.

prop_nanes Thelist of propertiesto delete.

The properties are specified as an array of strings. For a description of session management properties
and the SmProp structure, see section 7, “ Session Management Properties.”

The Get Properties Callback

The SmsGet Properti esProc callback isinvoked when the client wants to retrieve properties it
Set.

typedef void (*SmsCet PropertiesProc)(sns_conn, manager_data);
sns_conn The session management connection object.
manager _dat a Manager data specified when the callback was registered.

The session manager should respond by calling SnsRet ur nPr oper ti es. All of the properties set
for this client should be returned.

Registering the Client

To register a client (in response to a SnsRegisterdientProc calback), use
SnmeRegi sterd i ent Reply.

Status SnmsRegi sterCientRepl y(snms_conn, client_id);
sns_conn The session management connection object.
client_id A null-terminated string representing a unique client ID.

Thereturnvalueof SnsRegi st er i ent Repl y iszerofor failureand apositivevaluefor success.
Failurewill occur if SMlib can not allocate memory to hold acopy of theclient ID for it'sown internal
needs.

If anon-NULL pr evi ous_i d was specified when the client registered itself, cl i ent _i d should
beidentical to pr evi ous_i d.

Otherwise, cl i ent _i d should beaunique D freshly generated by the session manager. In addition,
the session manager should send a “Save Yourself” message with t ype = Local , shut down =
Fal se,i nteract-styl e =None,andf ast =Fal se immediately after registering the client.

Note that once a client ID has been assigned to the client, the client keeps this ID indefinitely. If the
client is terminated and restarted, it will be reassigned the same ID. It is desirable to be able to pass
client IDs around from machine to machine, from user to user, and from session manager to session
manager, while retaining the identity of the client. This, combined with the indefinite persistence of
client IDs, means that client IDs need to be globally unique.

Y ou should call the SmsGener at eCl i ent | Dfunction to generate aglobally unique client ID.
char *SnsCenerated ientlD(sns_conn);

sms_conn The session management connection object.

21

Session Management
Server (Sms) Functions

NULL will bereturned if the ID could not be generated. Otherwise, the return value of the function is
the client ID. It should be freed with acall to f r ee when no longer needed.

Sending a Save Yourself Message

To send a“Save Yourself” to aclient, use Sns SaveYour sel f.

voi d SnsSaveYoursel f(snms_conn, save_type, shutdown, interact_style,

fast);

sns_conn The session management connection object.

save_type Specifies the type of information that should be saved.

shut down Specifiesif ashutdown istaking place.

interact_style The type of interaction allowed with the user.

f ast If Tr ue the client should save its state as quickly as possible.

The session manager sendsa* Save Y ourself” message to aclient either to checkpoint it or just before
termination sothat it can saveitsstate. The client respondswith zero or more* Set Properties’ messages
to update the propertiesindicating how to restart the client. When all the properties have been set, the
client sends a“ Save Y ourself Done” message.

Ifi nteract_styl eisSm nt eract St yl eNone the client must not interact with the user while
saving state. If i nt er act _styl eisSm nt er act St yl eEr r or s theclient may interact with the
user only if an error condition arises. If i nt er act _styl e isSm nt er act St yl eAny then the
client may interact with the user for any purpose. The client must send an “Interact Request” message
and wait for an “Interact” message from the session manager beforeit caninteract with the user. When
the client is done interacting with the user, it should send an “Interact Done” message. The “ Interact
Request” message can be sent any time after a*“ Save Y ourself” and before a* Save Y ourself Done.”

If save_t ype is SnSavelocal the client must update the properties to reflect its current state.
Specifically, it should save enough information to restore the state as seen by the user of this client.
It should not affect the state as seen by other users. If save_t ype is SmSaved obal the user
wants the client to commit all of its datato permanent, globally accessible storage. If save_t ype is
Sn5aveBot h the client should do both of these (it should first commit the data to permanent storage
before updating its properties).

Theshut down argument specifieswhether the session isbeing shut down. Theinteractionisdifferent
depending on whether or not shutdown is set. If not shutting down, then the client can save and resume
normal operation. If shutting down, the client must save and then must prevent interaction until it
receives either a“Die” or a“ Shutdown Cancelled,” because anything the user does after the save will
be lost.

Thef ast argument specifiesthat the client should save its state as quickly as possible. For example,
if the session manager knows that power is about to fail, it should set f ast to Tr ue.

Sending a Save Yourself Phase 2 Message

In order to send a“ Save Y ourself Phase 2" message to aclient, use SmsSaveYour sel f Phase?2
voi d SmsSaveYour sel f Phase2(sns_conn);
sns_conn The session management connection object.

The session manager sends this message to a client that has previously sent a “ Save Y ourself Phase
2 Request” message. This message informs the client that all other clients are in afixed state and this
client can save state that is associated with other clients.

22

Session Management
Server (Sms) Functions

Sending an Interact Message

To send an “Interact” messageto aclient, use Snsl nt er act .
voi d Snsl nteract(sns_conn);
sSne_conn The session management connection object.

The “Interact” message grants the client the privilege of interacting with the user. When the client is
done interacting with the user, it must send an “Interact Done” message to the session manager.

Sending a Save Complete Message

To send a*“ Save Complete” message to aclient, use Sms SaveConpl et e.
voi d SnmsSaveConpl et e(snms_conn);
sns_conn The session management connection object.

The session manager sends this message when it is done with a checkpoint. The client is then free
to change its state.

Sending a Die Message

To send a“Die’” messageto aclient, use SnsDi e.
voi d SnsDi e(sns_conn);
sns_conn The session management connection object.

Before the session manager terminates, it should wait for a“ Connection Closed” message from each
client that it sent a“Di€” message to, timing out appropriately.

Cancelling a Shutdown

To cancel ashutdown, use Sns Shut downCancel | ed.
voi d SmsShut downCancel | ed(sns_conn);
sns_conn The session management connection object.

The client can now continue as if the shutdown had never happened. If the client has not sent a“ Save
Yourself Done” message yet, it can either abort the save and send a “ Save Y ourself Done” with the
success argument set to Fal se or it can continue with the save and send a“ Save Y ourself Done” with
thesuccess argument set to reflect the outcome of the save.

Returning Properties

In response to a “Get Properties’ message, the session manager should call
SnmsRet ur nProperties.

voi d SnsRet urnProperties(sns_conn, num props, props);
sns_conn The session management connection object.

num pr ops The number of properties.

23

Session Management
Server (Sms) Functions

props Thelist of propertiesto return to the client.

The properties are returned as an array of property pointers. For a description of session management
properties and the SmProp structure, see section 7, “ Session Management Properties.”

Pinging a Client
To check that aclientistill alive, you should usethe | cePi ng function provided by the ICE library.
To do so, the ICE connection must be obtained using the SnsGet | ceConnect i on (see section

6.12, “Using Sms Informationa Functions”).

void I cePing(ice_conn, ping reply proc, client_data);

i ce_conn A valid ICE connection object.

pi ng_reply_proc The callback to invoke when the Ping reply arrives.

client_data This pointer will be passed to the | cePi ngRepl yProc
callback.

WhenthePing reply isready (if ever), thel cePi ngRepl yPr oc callback will beinvoked. A session
manager should have some sort of timeout period, after which it assumes the client has unexpectedly
died.

typedef void (*IcePi ngRepl yProc) (i ce_conn, client _data);
i ce_conn A valid I CE connection object.

client_data The client data specified inthecall to | cePi ng

Cleaning Up After a Client Disconnects

When the session manager receivesa“ Connection Closed” message or otherwise detectsthat the client
aborted the connection, it should call the Sns Cl eanUp function in order to free up the connection
object.

voi d SnmsCl eanUp(smnms_conn);

sns_conn The session management connection object.

Using Sms Informational Functions

i nt SnsProtocol Version(snms_conn);

SnsPr ot ocol Ver si on returns the major version of the session management protocol associated
with this session.

i nt SnsProtocol Revi si on(sns_conn);

SnsPr ot ocol Revi si on returnsthe minor version of the session management protocol associated
with this session.

char *Snsd ientl D(sms_conn);

Smsd i ent | Dreturnsanull-terminated string for the client 1D associated with this connection. Y ou
should call f r ee on this pointer when the client ID isno longer needed.

To obtain the host name of aclient, use SnsCl | ent Host Name. This host name will be needed to
restart the client.

24

Session Management
Server (Sms) Functions

char *Snsd i ent Host Nane(sns_conn);

The string returned is of the form pr ot ocol / host nane, where pr ot ocol is one of {t cp,
decnet, | ocal }. You should cal f r ee on the string returned when it is no longer needed.

| ceConn SnsGet | ceConnecti on(sns_conn);

SmsCet | ceConnecti on returns the ICE connection object associated with this session
management connection object. The ICE connection object can be used to get some additional
information about the connection. Some of themore useful functionswhich can be used onthelceConn
arel ceConnecti onNurber and| ceLast SequenceNunber . For further information, seethe
“Inter-Client Exchange Library” standard.

Error Handling

If the session manager receives an unexpected protocol error from aclient, an error handler isinvoked
by SMlib. A default error handler exists which simply prints the error message (it does not exit). The
session manager can change this error handler by calling Sns Set Er r or Handl er .

SnsErr or Handl er SnsSet Er r or Handl er (handl er) ;
The error handler. Y ou should pass NULL to restore the default handler.

Sns Set Er r or Handl er returns the previous error handler. The SnsEr r or Handl er has the
following type:

t ypedef voi d
of f endi ng_m nor _opcode,
severity, val ues);

(*SnsErrorHandl er) (sns_conn, swap,
of f endi ng_sequence_num error_cl ass,

sme_conn

swap

of f endi ng_m nor _opcode

of f endi ng_sequence_num

error_cl ass

severity

val ues

The session management connection object.

A flag which indicates if the specified values
need byte swapping.

The minor opcode of the offending message.

The sequence number of the offending
message.

The error class of the offending message.

| ceCanConti nue,
| ceFat al ToPr ot ocol , or
| ceFat al ToConnecti on

Any additional error values specific to the
minor opcode and class.

Note that this error handler is invoked for protocol related errors. To install an error handler to be
invoked when an 10 error occurs, use| ceSet | OEr r or Handl er . For further information, see the
“Inter-Client Exchange Library” standard.

25

Chapter 7. Session Management
Properties

Each property is defined by the SmProp structure:

typedef struct {

char *name; /* nane of property */

char *type; /* type of property */

int numvals; /* nunber of values */
SnPropVal ue *vals; /* the list of values */
} SnProp;

typedef struct {

int length; /* the length of the value */
SnPoi nter value; /* the value */

} SnPropVal ue;

The X Session Management Protocol defines a list of predefined properties, several of which are
required to be set by the client. The following table specifies the predefined properties and indicates
which ones are required. Each property has atype associated with it.

A type of SMCARDS indicates that there is a single 1-byte value. A type of SMARRAY 8 indicates
that thereisasingle array of bytes. A type of SmLISTofARRAY 8 indicatesthat thereisalist of array

of bytes.

Name Type POSIX Type Required
SmCloneCommand OS-specific SmLISTofARRAY 8 Yes
SmCurrentDirectory OS-specific SMARRAY 8 No
SmDiscardCommand | OS-specific SmLISTofARRAY 8 No*
SmEnvironment OS-specific SmLISTofARRAY 8 No
SmProcessiD OS-specific SMARRAY 8 No
SmProgram OS-specific SMARRAY 8 Yes
SmRestartCommand | OS-specific SmLISTofARRAY 8 Yes
SmResignCommand | OS-specific SmLISTofARRAY 8 No
SmRestartStyleHint SmCARDS SmCARDS No
SmShutdownCommand | OS-specific SmLISTofARRAY 8 No
SmUserID SmARRAY 8 SmMARRAY 8 Yes

* Required if any state is stored in an external repository (for example, state file).
» SmCloneCommand

Thisislike the SmRestartCommand, except it restarts acopy of the application. The only difference
isthat the application does not supply itsclient ID at register time. On POSIX systems, this should
be of type SmLISTofARRAY 8.

* SmCurrentDirectory

On POSI X-based systems, this specifies the value of the current directory that needs to be set up
prior to starting the SmProgram and should of type SmMARRAY 8.

26

Session Management Properties

SmDiscardCommand

The discard command contains acommand that when delivered to the host that the client isrunning
on (determined from the connection), will causeit to discard any information about the current state.
If this command is not specified, the Session Manager will assume that &l of the client's state is
encoded in the SmRestartCommand. On POSIX systems, the type should be SmLISTofARRAY 8.

SmEnvironment

On POSIX based systems, thiswill be of type SmLISTofARRAY 8, wherethe ARRAY 8s alternate
between environment variable name and environment variable value.

SmProcessiD

This specifies an OS-specific identifier for the process. On POSIX systems, this should contain the
return value of get pi d turned into a Latin-1 (decimal) string.

SmProgram

Thisisthe name of the program that is running. On POSIX systems, this should be first parameter
passed to execve and should be of type SMARRAY 8.

SmRestartCommand

The restart command contains acommand that, when delivered to the host that the client isrunning
on (determined from the connection), will cause the client to restart in its current state. On POSI X -
based systems, thisis of type SmLISTofARRAY 8, and each of the elementsin the array represents
an element in the ar gv array. This restart command should ensure that the client restarts with the
specified client-ID.

SmResignCommand

A client that sets the SmRestartStyleHint to SmRest ar t Anyway uses this property to specify a
command that undoes the effect of the client and removes any saved state. As an example, consider
a user that runs xmodmap which registers with the Session Manager, sets SmRestartStyleHint to
SnmRest ar t Anyway, and then terminates. To allow the Session Manager (at the user's request) to
undo this, xmodmap would register aSmResignCommand that undoesthe effects of thexmodmap.

SmRestartStyleHint

If the SmRestartStyleHint is present, it will contain the style of restarting the client prefers. If this
styleis not specified, SmRest ar t | f Runni ng is assumed. The possible values are as follows:

Name Value
SnRest art | f Runni ng 0
SnRest ar t Anyway 1
SnRestart | nredi atel y 2
SnRest art Never 3

The SnRest art | f Runni ng styleisused in the usual case. The client should be restarted in the
next session if it was running at the end of the current session.

The SnRest ar t Anyway style is used to tell the Session Manager that the application should be
restarted in the next session even if it exits before the current session is terminated. It should be
noted that thisis only ahint and the Session Manager will follow the policies specified by its users
in determining what applications to restart.

A client that uses SnRestart Anyway should aso set the SmResignCommand and
SmShutdownCommand properties to commands that undo the state of the client after it exits.

27

Session Management Properties

The SmRestartimmediately style is like SmRestartAnyway, but, in addition, the client is meant to
run continuously. If theclient exits, the Session Manager should try to restart it in the current session.

SnmRest art Never style specifies that the client does not wish to be restarted in the next session.
SmShutdownCommand

This command is executed at shutdown time to clean up after a client that is no longer running
but retained its state by setting SmRestartStyleHint to SmRest ar t Anyway. The client must not
remove any saved state as the client is still part of the session. As an example, consider a client
that turns on a camera at start up time. This client then exits. At session shutdown, the user wants
the camera turned off. This client would set the SmRestartStyleHint to SmRest ar t Anyway and
would register a SmShutdownCommand that would turn off the camera.

SmUserlD

Specifies the user ID. On POSIX-based systems, this will contain the user's name (the pw_nane
member of struct passwd).

28

Chapter 8. Freeing Data

To free an individual property, use Snr eePr operty

voi d SnfreeProperty(prop);

prop The property tofree.

Tofreethereason stringsfrom the Sms Gl oseConnect i onPr oc callback, use SnFr eeReasons
voi d SnfreeReasons(count, reasons);

count The number of reason strings.

reasons Thelist of reason stringsto free.

29

Chapter 9. Authentication of Clients

As stated earlier, the session management protocol is layered on top of ICE. Authentication occurs
at two levelsin the | CE protocaol:

» Thefirst iswhen an ICE connection is opened.
» The second is when a Protocol Setup occurs on an |CE connection.
The authentication methods that are available are implementation-dependent (that is., dependent on

theICElib and SMlibimplementationsin use). For further information, seethe*Inter-Client Exchange
Library” standard.

30

Chapter 10. Working in a Multi-
Threaded Environment

To declare that multiple threads in an application will be using SMlib (or any other library layered
on top of ICElib), you should call | cel ni t Thr eads. For further information, see the “Inter-Client
Exchange Library” standard.

31

Chapter 11. Acknowledgements

Thanks to the following people for their participation in the X Session Management design: Jordan
Brown, Ellis Cohen, Donna Converse, Stephen Gildea, Vania Joloboff, Stuart Marks, Bob Scheifler,
Ralph Swick, and Mike Wexler.

32

