The Z Shell Manual

Version 5.6.2
Updated September 14, 2018

Original documentation by Paul Falstad




This is a texinfo version of the documentation for the Z Shell, originally by Paul Falstad.
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided also that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.



Table of Contents

1 The Z Shell Manual .................... ... ... ............... 1
1.1 Producing documentation from zsh.texi ............. ... 1

2 Introduction.......... .. ... ... .. . 1
2.1 AULOT . oo 1
2.2 Availability . ... 1
2.3 Mailing Lists. . ..ot 2
2.4 The Zsh FAQ . ... 2
2.5 The Zsh Web Page. ... e 2
2.6 The Zsh Userguide. .......ooonuuiii e e 3
2.7 SE ALSO . it 3

3 Roadmap......... ... 3
3.1 When the shell starts ....... ... 3
3.2 Interactive Use. ... e 3
3.2. 1 CompPletion . . ...ttt 4

3.2.2 Extending the line editor......... ... 4

3.3 ODHIOMIS . . v ettt 4
3.4 Pattern Matching . ... ... i 4
3.5 General Comments ON SYNEAK .. ...ttt e e e 5
3.6 Programming . ........ ...ttt e 5

4 Invocation............... i 5
4.1 INVOCAEION . . oottt 5
4.2 Compatibiliby . . ..o 7
4.3 Restricted Shell. ... ... 7

5 Files. ... 8
5.1 Startup/Shutdown Files........ ... o 8
0.2 FleS . oottt 8

6 Shell Grammar ........... ... . ... ... 9
6.1 Simple Commands & Pipelines. ...... ... 9
6.2 Precommand Modifiers ....... ..ot 10
6.3 Complex COmMMAndS . ... ...ttt e e e 10
6.4 Alternate Forms For Complex Commands...............cooiiiiiiiiiiiiiieaan... 13
6.5 Reserved WoOrds . ... 14
6.6 ErTOrS . . 14
6.7  COMIMENTS .« o ottt ettt ettt e et e ettt e et e e e e e e 15
6.8  ALIASIIIE . ..ottt 15
6.8.1 Alias difficulties. . ... 15

6.9  QUOBIIE . o oot e 16

7 Redirection.......... .. ... . . . 17
7.1 Opening file descriptors USing parameters . .........c..eevirrte it ennineeennnnn.. 18
7.2 MUIBIOS . o ot 19

7.3 Redirections with no command. . ...... ... 20



8 Command Execution ........................ ... . ... .. ..., 21
9 Functions ............... . 21
9.1 Autoloading Functions. .. ....... ... e 21
9.2 Anonymous Functions ........... ... i 23
9.3 Special FUnctions . ... ... 23
9.3.1 HoOK FUNCHIONS . . ..o 24
9.3.2 Trap Functions . ... 25

10 Jobs & Signals............... . 26
10,0 0D . ottt 26
10.2  Signals . ..o 27
11 Arithmetic Evaluation....................................... 27
12 Conditional Expressions................ . ... 31
13 Prompt Expansion.................. ... . ... .. 34
13.1 Expansion of Prompt Sequences ....... ... i 34
13.2  Simple Prompt EScapes. . ... ... 34
13.2.1  Special CharaCters. . ... ..ot 34
13.2.2  Login information......... ... e 34
13.2.3  Shell State . ... e 35
13.2.4 Date and time . ... ... e 36
13.2.5 Visual effects ... ..o 36

13.3 Conditional Substrings in Prompts............c i 37
14 EXpansion ................ooiiiiiiiii 39
14.1 History EXpansion . ...... ... 39
T4 1.1 OVOIVIEW oottt e ettt et e e e e e e e 40
14.1.2  Event Designators ..........uuiiiiiiii e e 40
14.1.3  Word Designators. ... ...ttt e 41
14.1.4  MOIIErS . . .ot 41

14.2  Process SubStitUtion . . ...t 44
14.3 Parameter EXpansion . ...... ... 45
14.3.1 Parameter Expansion Flags........ ... i i 50
14.3.2  RULES . .ot 56
14.3.3  EXamples . . ... 58

14.4 Command Substitution .............o i 59
14.5  Arithmetic EXpansion ... .... ... 59
14.6 Brace EXpansion. ... ......ooouii i e 59
14.7 Filename EXPansion .. ... .......ouoeoeitnin i e 60
14.7.1 Dynamic named directories ........ ... 60
14.7.2  Static named directories .. ... e 62
14.7.3 ‘=" @XPANSION . . o o\ttt 62

LA T4 NOES . oottt 62

14.8  Filename Generation. ...........o.o.uuoiint it 62
14.8.1  GIOD OPErators . ..ottt ettt e e et e 63
14.8.2  ksh-like Glob Operators. ..........coiiiiii e 65
14.8.3 Precedence . ... ... 65

14.8.4 Globbing Flags . ... e 65



14.8.5 Approximate Matching .......... ..ot i 68
14.8.6 Recursive Globbing . .......... i 68
14.8.7 Glob Qualifiers .. ... i 69
15 Parameters............. i 74
15,1 DesCription . ..o e 74
15.2  Array Parameters. ... ... e 74
15.2.1  Array SUDSCIIDES .« ottt 76
15.2.2  Array Element ASSIgnment. ............ooiuiiiiiiii 7
15.2.3  Subscript Flags .. ..o 7
15.2.4  Subscript Parsing . ... e 79
15.3  Positional Parameters. ..........o i 80
15.4 Local Parameters. ... e 81
15.5 Parameters Set By The Shell ... 81
15.6 Parameters Used By The Shell.... ... ..o 86
16 OPptions. ... ... 96
16.1  Specifying Options. ... ..ottt e e 96
16.2  Description of Options. .. ... ... e 96
16.2.1  Changing Directories. . ... ...... .ttt e 96
16.2.2  Completion . . ...t 97
16.2.3 Expansion and Globbing . ... 99
16.2.4  HiStOTY o oo e 103
16.2.5 Initialisation. ........ ..o e 105
16.2.6  Input/Output .. ..ooiui 106
16.2.7  Job Control . ... 108
16.2.8  Promplting. ... ..o 109
16.2.9 Scripts and Functions. ..... ... e 109
16.2.10  Shell Emulation ....... ... 112
16.2.11  Shell State ...t 116
16.2.12  Zle .ot 117
16.3  Option AlASES. . ..ottt 118
16.4  Single Letter Options. ... ...t e 118
16.4.1  Default set .. ..o 118
16.4.2  sh/ksh emulation Set...........ouiuiuieiii i 120
16.4.3  AlSO NOTE . o o ettt e e 120
17 Shell Builtin Commands................................ ... 121
18 Zsh Line Editor............... ... ... ... ... ... 159
18.1  DeSCTIPtiON . . . ve et e 159
18.2 KOy Ia DS . o v vttt ettt et e 159
18.2.1 Reading Commands . .........ouuuiiinnii e 160
18.2.2 Local Keymaps ... ..ottt e 160
18.3 Zle BUuiltins. .. ..o e 160
18.4  Wid@ets . ..ot 169
18.5  User-Defined Widgets ... ..o e 169
18.5.1  Special Widgets .. ..ot 174
18.6  Standard WIdgets . ... .vv e e 175
18.6.1 MOVEIMENT . . ..ttt ettt e e 175
18.6.2 History Control. ... ... e 177

18.6.3 Modifying Text . ... ..o 181



18.6.4  ATrGUIMENES . . oottt ettt e e 185
18.6.5  Completion . . . ... e 185
18.6.6  Miscellaneous. . . ...t e 186
18.6.7 Text ObJeCts .ottt 191
18.7 Character Highlighting ...... ... 192
19 Completion Widgets ... 194
191 DeSCription . . oottt 194
19.2 Completion Special Parameters . ......... ... 195
19.3 Completion Builtin Commands ........ ... e 200
19.4 Completion Condition Codes .. ........ouinniiii e 205
19.5 Completion Matching Control ...... ... i i 206
19.6 Completion Widget Example ..... ... 209
20 Completion System ................ ... 209
20.1  DeSCTiptIOn . . o oo e 209
20.2 Initialization . ... e 210
20.2.1 Use of compinit. .. ... e 211
20.2.2  Autoloaded filles . .. ...t 212
20.2.3  FUNCHIONS. . o 214
20.3 Completion System Configuration. ......... ..., 216
20.3.1  OVeIVIEW . oottt 216
20.3.2  Standard Tags . .. .. ... 218
20.3.3 Standard Styles........oo 221
20.4 Control FUNCHIONS . . ..ot 244
20.5 Bindable Commands. ... ..... ...t e 250
20.6 Utility FUnctions . . ... e 252
20.7 Completion System Variables........ ... i 275
20.8 Completion Directories .. ..... ... e e 276
21 Completion Using compct]l ................................ 276
21.1 Types of compPletion .. .....vnt e 276
21,2 DeSCIiPtION . . o oo e 277
21.3 Command Flags . ... ..o e 277
21.4  Option Flags .. ... 278
21.4.1 Simple Flags. .. ..o 279
21.4.2 Flags with Arguments ....... ...t i 280
21.4.3  Control Flags. . ... 280
21.5  Alternative Completion ... ...t 283
21.6 Extended Completion. .. ..........iii i e 283
21.7  EXaADIE . oo 285
22 Zsh Modules..... ... ... . 285
22. 1 DeSCTIPtION . o o ot 285
22.2 The zsh/attr Module ....... ... 287
22.3 The zsh/cap Module. ... ... 287
22.4 The zsh/clone Module....... ... 288
22.5 The zsh/compctl Module ... . ... . 288
22.6 The zsh/complete Module ....... ... i 288
22.7  The zsh/complist Module......... ... . . i 288
22.7.1 Colored completion LStINgGs . .....oovvntin i 288

22.7.2 Scrolling in completion listings. ... 290



22.7.3 Menu selection. ....... .. .. i 291
22.8 The zsh/computil Module ..... ... . . 293
22.9 The zsh/curses Module ....... ... 295

22.9.1 Builbin .. ..o 295

22.9.2 Parameters......... ... 298
22.10 The zsh/datetime Module ........ ... . . 298
22.11 The zsh/db/gdbm Module.......... ... i 299
22.12 The zsh/deltochar Module.......... ... i 300
22.13 The zsh/example Module. ... ... ... 300
22.14 The zsh/files Module ... ... . 301
22.15 The zsh/langinfo Module........ ... .. . i 303
22.16 The zsh/mapfile Module. ... ... ... . . i 303

22.16.1 Limitations. . ... ..ot 303
22.17 The zsh/mathfunc Module...... ... ... .. .. . . 304
22.18 The zsh/newuser Module..... ... ... .. . i 305
22.19 The zsh/parameter Module...... ... ... . 305
22.20 The zsh/pere Module. .. . ... i 308
22.21 The zsh/param/private Module........... ... . i 309
22.22 The zsh/regex Module. ... ... ... 311
22.23 The zsh/sched Module. ... ... ... . 311
22.24 The zsh/net/socket Module. ... ... ... i 312

22.24.1 Outbound Connections ............. ... i 312

22.24.2 Inbound Connections............. ... 312
22.25 The zsh/stat Module...... ... . 313
22.26 The zsh/system Module ..... ... .. . . 314

22.26.1 Builtins .. ... 315

22.26.2 Math Functions ......... . i 317

22.26.3 Parameters. ... ... ... 317
22.27 The zsh/net/tcp Module ...... ... .. 318

22.27.1 Outbound Connections ........... ... 318

22.27.2 Inbound Connections............. ... 319

22.27.3 Closing Connections . .. .......ouutiuttnt it 319

22.27.4 EXaMPIE . .o 319
22.28 The zsh/termcap Module........ ... . 320
22.29 The zsh/terminfo Module. ... ... ... . . 320
22.30 The zsh/zftp Module....... ... 320

22.30.1 Subcommands........ ... 321

22.30.2 Parameters. ... ... ... 324

22.30.3 Functions ............oiiiiiii 326

22.30.4 Problems....... ... 326
22.31 The zsh/zle Module ... ... .. 327
22.32  The zsh/zleparameter Module ......... ... ... . i i 327
22.33 The zsh/zprof Module. ... ... .. 327
22.34 The zsh/zpty Module. ... . ..o e 328
22.35 The zsh/zselect Module ....... ... 329
22.36  The zsh/zutil Module ...... ... .. 330

23 Calendar Function System................................. 334
23. 1 DeSCTiPtion . . oot e 335
23.2 File and Date Formats. ... ... 335

23.2.1 Calendar File Format.......... ... .. ... 335

23.2.2 Date Format......... .. .. 335

23.2.3 Relative Time Format .......... ... o 337

23.2.4  EXAIMPDIE. . oot e 338



23.3 User Functions . ... e 338
23.3.1 Calendar system functions . ......... ...t 339
23.3.2 Glob qualifiers. ... 343

23 4 S YIS e e 344

23.5  Utility functions. . ... 345

23,6  BUZS . oo 346

24 TCP Function System ..., 346

241 DeSCTIPEION . . o oottt 346

24.2 TCP User FUNCEIONS . . ..ottt et e e e e e e e 347
24.2.1 Basic I/O ..o 347
24.2.2  Session Management . . ... ...t e 349
24.2.3 Advanced I/O ... .o 350
24.2.4 ‘One-shot’ file transfer ........ ... i 352

24.3 TCP User-defined FUNCtions . ........ ..ot 352

24.4 TCP Utility Functions. ........ ..o e 353

24.5 TCP User Parameters .. ... ...ttt 354

24.6 TCP User-defined Parameters ........ ...t 356

24.7 TCP Utility Parameters ... .....oouuiii e 356

24.8 TCP EXamples . . ..ottt e 356

24.9 TOP BuUgS. oottt 357

25 Zftp Function System .......................... ... 357

25. 1 DeSCTiptiOn . . o oo 357

25.2 Installation. ... ........oooii i 357

253 FUNCHIONS .« oottt e 358
25.3.1 Opening a CONNECEION . . . ...ttt ettt e 358
25.3.2 Directory management . ... ... 358
25.3.3  Status COMMANAS . . ...ttt ettt et e e e 359
25.3.4 Retrieving filles .. ... ..o 360
25.3.5  Sending files . . ... 360
25.3.6 Closing the connection........ ... et 361
25.3.7  Session Management . . ... ...ttt 361
25.3.8  BOOKMATKS . . ... 362
25.3.9 Other functions. . ... 362

25.4 Miscellaneous Features .. ... ... e 363
25.4.1  Configuration. ... ..o e 363
25.4.2 Remote globbing. ... 364
25.4.3 Automatic and temporary reopening ... .........i.iiii i 365
25.4.4  CompPletion . ...ttt e 365

26 User Contributions............... ... ... ... ... ... ... ........ 365

26.1  DeSCTiption . . .o e 366

26.2  Utilties . oot 366
26.2.1 Accessing On-Line Help. ... ..o 366
26.2.2 Recompiling Functions. ........ ... 366
26.2.3 Keyboard Definition ......... ..o 368
26.2.4 Dumping Shell State. ... 368
26.2.5 Manipulating Hook Functions........... ... . i i, 369

26.3 Remembering Recent Directories............. oo i 371
26.3.1 Imstallation . ........ ... 371
26.3.2  US.t ittt e 371

26.3.3  OPTIONS . ot ettt e e 371



26.3.4  ConfigUration . ... ...ttt e e 372
26.3.5 Use with dynamic directory naming........... .. ... oo, 374
26.3.6 Details of directory handling......... ... ... o i 374

26.4 Abbreviated dynamic references to directories............ ... .ol 374
R R U 375
26.4.2 Configuration. . ... ...t 375
26.4.3 Complete example . ... ...t e 376

26.5 Gathering information from version control systems.................. ... .. ..... 377
26.5.1 Quickstart . ... ... 378
26.5.2  Configuration. ... ... e 379
26.5.3  Oddities . .ottt et e 385
26.5.4  QUILE SUPPOTT - . e ettt e 385
26.5.5 Function Descriptions (Public APT) ....... ... . o i 386
26.5.6 Variable Description .. .......couuuiii e 387
26.5.7 Hooks in ves_info . ... 387
26.5.8  EXAIIPIES . . o 390

26.6 Prompt Themes . ... .......ooiiiii e 392
26.6.1 Imstallation . ... ... ... e 392
26.6.2 Theme Selection . ........oi i e e 392
26.6.3  Utility Themes ... ... e 393
26.6.4 Writing Themes .. ..ot 393

26.7 ZLE FUnCHiOnS . . ..o e 394
26.7.1  Wad@etS « o oottt 394
26.7.2  Utility Functions ......... o 411
26.7.3  StYLeS . oot 412

26.8 Exception Handling . ... 414
26.9 MIME FUnCHIonS . . ..ottt e e 415
26.10 Mathematical Functions........ ... i e 420
26.11 User Configuration Functions......... ... i 423
26.12 Other FUNCHIONS . . . ...t e 424
26.12.1  DesCriptions . ... e 424
26.12.2  SEYleS o e 430
Concept Index ... ... . 431
Variables Index ............. . 437
Options Index. ... ... . . . 441
Functions Index.............. ... ... . . . . . 448
Editor Functions Index................ ... ... ... ... ... ... ..... 452

Style and Tag Index....... ... ... i, 455



1 The Z Shell Manual

This document has been produced from the texinfo file zsh.texi, included in the Doc sub-
directory of the Zsh distribution.

1.1 Producing documentation from zsh.texi
The texinfo source may be converted into several formats:

The Info manual
The Info format allows searching for topics, commands, functions, etc. from the
many Indices. The command ‘makeinfo zsh.texi’ is used to produce the Info
documentation.

The printed manual
The command ‘texi2dvi zsh.texi’ will output zsh.dvi which can then be pro-
cessed with dvips and optionally gs (Ghostscript) to produce a nicely formatted
printed manual.

The HTML manual
An HTML version of this manual is available at the Zsh web site via:

http://zsh.sourceforge.net/Doc/.
(The HTML version is produced with texi2html, which may be obtained from
http://www.nongnu.org/texi2html/. The command is ‘texi2html --output .

—--ifinfo --split=chapter --node-files zsh.texi’. If necessary, upgrade to
version 1.78 of texi2html.)

For those who do not have the necessary tools to process texinfo, precompiled documentation
(PostScript, dvi, PDF, info and HTML formats) is available from the zsh archive site or its
mirrors, in the file zsh-doc.tar.gz. (See Section 2.2 [Availability], page 1, for a list of sites.)

2 Introduction

Zsh is a UNIX command interpreter (shell) usable as an interactive login shell and as a shell
script command processor. Of the standard shells, zsh most closely resembles ksh but includes
many enhancements. It does not provide compatibility with POSIX or other shells in its default
operating mode: see the section Section 4.2 [Compatibility], page 7.

Zsh has command line editing, builtin spelling correction, programmable command completion,
shell functions (with autoloading), a history mechanism, and a host of other features.

2.1 Author

Zsh was originally written by Paul Falstad <pf@zsh.org>. Zsh is now maintained by the
members of the zsh-workers mailing list <zsh-workers@zsh.org>. The development is cur-
rently coordinated by Peter Stephenson <pws@zsh.org>. The coordinator can be contacted at
<coordinator@zsh.org>, but matters relating to the code should generally go to the mailing
list.

2.2 Availability

Zsh is available from the following HTTP and anonymous FTP site.

ftp://ftp.zsh.org/pub/
https://www.zsh.org/pub/ )


http://zsh.sourceforge.net/Doc/
http://www.nongnu.org/texi2html/
ftp://ftp.zsh.org/pub/
https://www.zsh.org/pub/

Chapter 2: Introduction 2

The up-to-date source code is available via Git from Sourceforge. See
https://sourceforge.net/projects/zsh/ for details. A summary of instructions
for the archive can be found at http://zsh.sourceforge.net/.

2.3 Mailing Lists
Zsh has 3 mailing lists:

<zsh-announce@zsh.org>
Announcements about releases, major changes in the shell and the monthly posting
of the Zsh FAQ. (moderated)

<zsh-users@zsh.org>
User discussions.

<zsh-workers@zsh.org>
Hacking, development, bug reports and patches.

To subscribe or unsubscribe, send mail to the associated administrative address for the mailing
list.

<zsh-announce-subscribe@zsh.org>
<zsh-users—subscribe@zsh.org>
<zsh-workers—-subscribe@zsh.org>

<zsh-announce-unsubscribe@zsh.org>
<zsh-users-unsubscribe@zsh.org>
<zsh-workers—-unsubscribe@zsh.org>

YOU ONLY NEED TO JOIN ONE OF THE MAILING LISTS AS THEY ARE NESTED.
All submissions to zsh-announce are automatically forwarded to zsh-users. All submissions to
zsh-users are automatically forwarded to zsh-workers.

If you have problems subscribing/unsubscribing to any of the mailing lists, send mail
to <listmaster@zsh.org>. The mailing lists are maintained by Karsten Thygesen
<karthy@kom.auc.dk>.

The mailing lists are archived; the archives can be accessed via the administrative addresses
listed above. There is also a hypertext archive, maintained by Geoff Wing <gcw@zsh.org>,
available at https://www.zsh.org/mla/.

2.4 The Zsh FAQ

Zsh has a list of Frequently Asked Questions (FAQ), maintained by Peter Stephenson
<pws@zsh.org>. It is regularly posted to the newsgroup comp.unix.shell and the
zsh-announce mailing list.  The latest version can be found at any of the Zsh FTP
sites, or at http://www.zsh.org/FAQ/. The contact address for FAQ-related matters is
<fagmaster@zsh.org>.

2.5 The Zsh Web Page

Zsh has a web page which is located at https://www.zsh.org/. This is maintained by Karsten
Thygesen <karthy@zsh.org>, of SunSITE Denmark. The contact address for web-related mat-
ters is <webmaster@zsh.org>.


https://sourceforge.net/projects/zsh/
http://zsh.sourceforge.net/
https://www.zsh.org/mla/
http://www.zsh.org/FAQ/
https://www.zsh.org/

Chapter 3: Roadmap 3

2.6 The Zsh Userguide

A userguide is currently in preparation. It is intended to complement the manual, with expla-
nations and hints on issues where the manual can be cabbalistic, hierographic, or downright
mystifying (for example, the word ‘hierographic’ does not exist). It can be viewed in its current
state at http://zsh.sourceforge.net/Guide/. At the time of writing, chapters dealing with
startup files and their contents and the new completion system were essentially complete.

2.7 See Also

man page sh(1), man page csh(1), man page tcsh(1), man page rc(1), man page bash(1), man
page ksh(1)

IEEE Standard for information Technology - Portable Operating System Interface (POSIX) -
Part 2: Shell and Utilities, IEEE Inc, 1993, ISBN 1-55937-255-9.

3 Roadmap

The Zsh Manual, like the shell itself, is large and often complicated. This section of the manual
provides some pointers to areas of the shell that are likely to be of particular interest to new
users, and indicates where in the rest of the manual the documentation is to be found.

3.1 When the shell starts

When it starts, the shell reads commands from various files. These can be created or edited to
customize the shell. See Chapter 5 [Files], page 8.

If no personal initialization files exist for the current user, a function is run to help you
change some of the most common settings. It won’t appear if your administrator has dis-
abled the zsh/newuser module. The function is designed to be self-explanatory. You can run
it by hand with ‘autoload -Uz zsh-newuser-install; zsh-newuser-install -f’. See also
Section 26.11 [User Configuration Functions], page 423.

3.2 Interactive Use

Interaction with the shell uses the builtin Zsh Line Editor, ZLE. This is described in detail in
Chapter 18 [Zsh Line Editor], page 159.

The first decision a user must make is whether to use the Emacs or Vi editing mode as the
keys for editing are substantially different. Emacs editing mode is probably more natural for
beginners and can be selected explicitly with the command bindkey -e.

A history mechanism for retrieving previously typed lines (most simply with the Up or Down
arrow keys) is available; note that, unlike other shells, zsh will not save these lines when the shell
exits unless you set appropriate variables, and the number of history lines retained by default is
quite small (30 lines). See the description of the shell variables (referred to in the documentation
as parameters) HISTFILE, HISTSIZE and SAVEHIST in Section 15.6 [Parameters Used By The
Shell], page 86. Note that it’s currently only possible to read and write files saving history when
the shell is interactive, i.e. it does not work from scripts.

The shell now supports the UTF-8 character set (and also others if supported by the oper-
ating system). This is (mostly) handled transparently by the shell, but the degree of sup-
port in terminal emulators is variable. There is some discussion of this in the shell FAQ),
http://wuw.zsh.org/FAQ/. Note in particular that for combining characters to be handled
the option COMBINING_CHARS needs to be set. Because the shell is now more sensitive to the
definition of the character set, note that if you are upgrading from an older version of the shell


http://zsh.sourceforge.net/Guide/
http://www.zsh.org/FAQ/

Chapter 3: Roadmap 4

you should ensure that the appropriate variable, either LANG (to affect all aspects of the shell’s
operation) or LC_CTYPE (to affect only the handling of character sets) is set to an appropriate
value. This is true even if you are using a single-byte character set including extensions of
ASCII such as IS0-8859-1 or I80-8859-15. See the description of LC_CTYPE in Chapter 15
[Parameters], page 74.

3.2.1 Completion

Completion is a feature present in many shells. It allows the user to type only a part (usually
the prefix) of a word and have the shell fill in the rest. The completion system in zsh is
programmable. For example, the shell can be set to complete email addresses in arguments to
the mail command from your ~/.abook/addressbook; usernames, hostnames, and even remote
paths in arguments to scp, and so on. Anything that can be written in or glued together with
zsh can be the source of what the line editor offers as possible completions.

Zsh has two completion systems, an old, so called compctl completion (named after the builtin
command that serves as its complete and only user interface), and a new one, referred to as
compsys, organized as library of builtin and user-defined functions. The two systems differ in
their interface for specifying the completion behavior. The new system is more customizable and
is supplied with completions for many commonly used commands; it is therefore to be preferred.
The completion system must be enabled explicitly when the shell starts. For more information
see Chapter 20 [Completion System], page 209.

3.2.2 Extending the line editor

Apart from completion, the line editor is highly extensible by means of shell functions. Some
useful functions are provided with the shell; they provide facilities such as:

insert-composed-char
composing characters not found on the keyboard

match-words-by-style
configuring what the line editor considers a word when moving or deleting by word

history-beginning-search-backward-end, etc.
alternative ways of searching the shell history

replace-string, replace-pattern

functions for replacing strings or patterns globally in the command line
edit-command-line

edit the command line with an external editor.

See Section 26.7 [ZLE Functions], page 394, for descriptions of these.

3.3 Options

The shell has a large number of options for changing its behaviour. These cover all aspects of
the shell; browsing the full documentation is the only good way to become acquainted with the
many possibilities. See Chapter 16 [Options|, page 96.

3.4 Pattern Matching

The shell has a rich set of patterns which are available for file matching (described in the
documentation as ‘filename generation’ and also known for historical reasons as ‘globbing’) and
for use when programming. These are described in Section 14.8 [Filename Generation], page 62.

Of particular interest are the following patterns that are not commonly supported by other
systems of pattern matching:



Chapter 4: Invocation 5

*x for matching over multiple directories
| for matching either of two alternatives

-, the ability to exclude patterns from matching when the EXTENDED_GLOB option is
set

... glob qualifiers, included in parentheses at the end of the pattern, which select files
by type (such as directories) or attribute (such as size).

3.5 General Comments on Syntax

Although the syntax of zsh is in ways similar to the Korn shell, and therefore more remotely to
the original UNIX shell, the Bourne shell, its default behaviour does not entirely correspond to
those shells. General shell syntax is introduced in Chapter 6 [Shell Grammar]|, page 9.

One commonly encountered difference is that variables substituted onto the command line are
not split into words. See the description of the shell option SH_WORD_SPLIT in Section 14.3
[Parameter Expansion|, page 45. In zsh, you can either explicitly request the splitting (e.g.
${=fool}) or use an array when you want a variable to expand to more than one word. See
Section 15.2 [Array Parameters], page 74.

3.6 Programming

The most convenient way of adding enhancements to the shell is typically by writing a shell
function and arranging for it to be autoloaded. Functions are described in Chapter 9 [Functions],
page 21. Users changing from the C shell and its relatives should notice that aliases are less
used in zsh as they don’t perform argument substitution, only simple text replacement.

A few general functions, other than those for the line editor described above, are provided with
the shell and are described in Chapter 26 [User Contributions]|, page 365. Features include:

promptinit
a prompt theme system for changing prompts easily, see Section 26.6 [Prompt
Themes|, page 392,

zZsh-mime-setup
a MIME-handling system which dispatches commands according to the suffix of a
file as done by graphical file managers

zcalc a calculator
zargs a version of xargs that makes the find command redundant
zZmv a command for renaming files by means of shell patterns.

4 Invocation

4.1 Invocation

The following flags are interpreted by the shell when invoked to determine where the shell will
read commands from:

-c Take the first argument as a command to execute, rather than reading commands
from a script or standard input. If any further arguments are given, the first one is
assigned to $0, rather than being used as a positional parameter.



Chapter 4: Invocation 6

-i Force shell to be interactive. It is still possible to specify a script to execute.

-s Force shell to read commands from the standard input. If the —s flag is not present
and an argument is given, the first argument is taken to be the pathname of a script
to execute.

If there are any remaining arguments after option processing, and neither of the options -c or -s
was supplied, the first argument is taken as the file name of a script containing shell commands
to be executed. If the option PATH_SCRIPT is set, and the file name does not contain a directory
path (i.e. there is no ‘/’ in the name), first the current directory and then the command path
given by the variable PATH are searched for the script. If the option is not set or the file name
contains a ‘/’ it is used directly.

After the first one or two arguments have been appropriated as described above, the remaining
arguments are assigned to the positional parameters.

For further options, which are common to invocation and the set builtin, see Chapter 16 [Op-
tions], page 96.

The long option ‘--emulate’ followed (in a separate word) by an emulation mode may be passed
to the shell. The emulation modes are those described for the emulate builtin, see Chapter 17
[Shell Builtin Commands|, page 121. The ‘--emulate’ option must precede any other options
(which might otherwise be overridden), but following options are honoured, so may be used
to modify the requested emulation mode. Note that certain extra steps are taken to ensure a
smooth emulation when this option is used compared with the emulate command within the
shell: for example, variables that conflict with POSIX usage such as path are not defined within
the shell.

Options may be specified by name using the -o option. -o acts like a single-letter option, but
takes a following string as the option name. For example,

zsh -x -o shwordsplit scr

runs the script scr, setting the XTRACE option by the corresponding letter ‘-x’ and the
SH_WORD_SPLIT option by name. Options may be turned off by name by using +o instead of -o.
-o can be stacked up with preceding single-letter options, so for example ‘-xo shwordsplit’ or
‘-xoshwordsplit’ is equivalent to ‘-x -o shwordsplit’.

Options may also be specified by name in GNU long option style, ‘--option-name’. When this
is done, ‘=’ characters in the option name are permitted: they are translated into ‘_’, and thus
ignored. So, for example, ‘zsh --sh-word-split’ invokes zsh with the SH_WORD_SPLIT option
turned on. Like other option syntaxes, options can be turned off by replacing the initial ‘-’
with a ‘+’; thus ‘+-sh-word-split’ is equivalent to ‘--no-sh-word-split’. Unlike other option
syntaxes, GNU-style long options cannot be stacked with any other options, so for example
‘-x-shwordsplit’ is an error, rather than being treated like ‘-x --shwordsplit’.

¢

The special GNU-style option ‘--version’ is handled; it sends to standard output the shell’s
version information, then exits successfully. ‘~-help’ is also handled; it sends to standard output
a list of options that can be used when invoking the shell, then exits successfully.

Option processing may be finished, allowing following arguments that start with ‘=’ or ‘+’ to be
treated as normal arguments, in two ways. Firstly, a lone ‘=’ (or ‘+’) as an argument by itself
ends option processing. Secondly, a special option ‘-=’ (or ‘+-’), which may be specified on its
own (which is the standard POSIX usage) or may be stacked with preceding options (so ‘-x-’is
equivalent to ‘-x --"). Options are not permitted to be stacked after ‘--’ (so ‘-x-f’ is an error),
but note the GNU-style option form discussed above, where ‘~-shwordsplit’ is permitted and
does not end option processing.

Except when the sh/ksh emulation single-letter options are in effect, the option ‘-b’ (or ‘+b’)
ends option processing. ‘-b’ is like ‘-=’, except that further single-letter options can be stacked
after the ‘-b’ and will take effect as normal.



Chapter 4: Invocation 7

4.2 Compatibility

Zsh tries to emulate sh or ksh when it is invoked as sh or ksh respectively; more precisely, it
looks at the first letter of the name by which it was invoked, excluding any initial ‘r’ (assumed
to stand for ‘restricted’), and if that is ‘b’, ‘s’ or ‘k’ it will emulate sh or ksh. Furthermore, if
invoked as su (which happens on certain systems when the shell is executed by the su command),
the shell will try to find an alternative name from the SHELL environment variable and perform
emulation based on that.

In sh and ksh compatibility modes the following parameters are not special and not initialized
by the shell: ARGC, argv, cdpath, fignore, fpath, HISTCHARS, mailpath, MANPATH, manpath,
path, prompt, PROMPT, PROMPT2, PROMPT3, PROMPT4, psvar, status, watch.

The usual zsh startup/shutdown scripts are not executed. Login shells source /etc/profile
followed by $HOME/.profile. If the ENV environment variable is set on invocation, $ENV is
sourced after the profile scripts. The value of ENV is subjected to parameter expansion, command
substitution, and arithmetic expansion before being interpreted as a pathname. Note that the
PRIVILEGED option also affects the execution of startup files.

The following options are set if the shell is invoked as sh or ksh: NO_BAD_PATTERN,
NO_BANG_HIST, NO_BG_NICE, NO_EQUALS, NO_FUNCTION_ARGZERQO, GLOB_SUBST,
NO_GLOBAL_EXPORT, NO_HUP, INTERACTIVE_COMMENTS, KSH_ARRAYS, NO_MULTIOS,
NO_NOMATCH, NO_NOTIFY, POSIX_BUILTINS, NO_PROMPT_PERCENT, RM_STAR_SILENT,
SH_FILE_EXPANSION, SH_GLOB, SH_OPTION_LETTERS, SH_WORD_SPLIT. Additionally
the BSD_ECHO and IGNORE_BRACES options are set if zsh is invoked as sh. Also, the
KSH_OPTION_PRINT, LOCAL_OPTIONS, PROMPT_BANG, PROMPT_SUBST and SINGLE_LINE_ZLE
options are set if zsh is invoked as ksh.

4.3 Restricted Shell

When the basename of the command used to invoke zsh starts with the letter ‘r’ or the ‘-r’
command line option is supplied at invocation, the shell becomes restricted. Emulation mode is
determined after stripping the letter ‘r’ from the invocation name. The following are disabled
in restricted mode:

¢

e changing directories with the cd builtin

e changing or unsetting the EGID, EUID, GID, HISTFILE, HISTSIZE, IFS,
LD_AOUT_LIBRARY_PATH, LD_AOUT_PRELOAD, LD_LIBRARY_PATH, LD_PRELOAD,
MODULE_PATH, module_path, PATH, path, SHELL, UID and USERNAME parameters

e specifying command names containing /
e specifying command pathnames using hash
e redirecting output to files
e using the exec builtin command to replace the shell with another command
e using jobs -Z to overwrite the shell process’ argument and environment space
e using the ARGVO parameter to override argv[0] for external commands
e turning off restricted mode with set +r or unsetopt RESTRICTED
These restrictions are enforced after processing the startup files. The startup files should set

up PATH to point to a directory of commands which can be safely invoked in the restricted
environment. They may also add further restrictions by disabling selected builtins.

Restricted mode can also be activated any time by setting the RESTRICTED option. This imme-
diately enables all the restrictions described above even if the shell still has not processed all
startup files.



5 Files

5.1 Startup/Shutdown Files

Commands are first read from /etc/zshenv; this cannot be overridden. Subsequent behaviour
is modified by the RCS and GLOBAL_RCS options; the former affects all startup files, while the
second only affects global startup files (those shown here with an path starting with a /). If one
of the options is unset at any point, any subsequent startup file(s) of the corresponding type
will not be read. It is also possible for a file in $ZDOTDIR to re-enable GLOBAL_RCS. Both RCS
and GLOBAL_RCS are set by default.

Commands are then read from $ZDOTDIR/.zshenv. If the shell is a login shell, commands are
read from /etc/zprofile and then $ZDOTDIR/.zprofile. Then, if the shell is interactive,
commands are read from /etc/zshrc and then $ZDOTDIR/.zshrc. Finally, if the shell is a login
shell, /etc/zlogin and $ZDOTDIR/.zlogin are read.

When a login shell exits, the files $ZDOTDIR/.zlogout and then /etc/zlogout are read. This
happens with either an explicit exit via the exit or logout commands, or an implicit exit by
reading end-of-file from the terminal. However, if the shell terminates due to exec’ing another
process, the logout files are not read. These are also affected by the RCS and GLOBAL_RCS options.
Note also that the RCS option affects the saving of history files, i.e. if RCS is unset when the
shell exits, no history file will be saved.

If ZDOTDIR is unset, HOME is used instead. Files listed above as being in /etc may be in another
directory, depending on the installation.

As /etc/zshenv is run for all instances of zsh, it is important that it be kept as small as possible.
In particular, it is a good idea to put code that does not need to be run for every single shell
behind a test of the form ‘if [[ -o rcs ]]; then ...’ so that it will not be executed when
zsh is invoked with the ‘-f’ option.

5.2 Files

$ZDOTDIR/ .zshenv
$ZDOTDIR/.zprofile

$ZDOTDIR/ .zshrc

$ZDOTDIR/.zlogin

$ZDOTDIR/ .zlogout

${TMPPREFIX}* (default is /tmp/zsh*)
/etc/zshenv

/etc/zprofile

/etc/zshrc

/etc/zlogin

/etc/zlogout (installation-specific - /etc is the default)

Any of these files may be pre-compiled with the zcompile builtin command (Chapter 17 [Shell
Builtin Commands|, page 121). If a compiled file exists (named for the original file plus the
.zwc extension) and it is newer than the original file, the compiled file will be used instead.



6 Shell Grammar

6.1 Simple Commands & Pipelines

A simple command is a sequence of optional parameter assignments followed by blank-separated
words, with optional redirections interspersed. For a description of assignment, see the beginning
of Chapter 15 [Parameters|, page 74.

The first word is the command to be executed, and the remaining words, if any, are arguments to
the command. If a command name is given, the parameter assignments modify the environment
of the command when it is executed. The value of a simple command is its exit status, or 128
plus the signal number if terminated by a signal. For example,

echo foo
is a simple command with arguments.

A pipeline is either a simple command, or a sequence of two or more simple commands where
each command is separated from the next by ‘|’ or ‘|&. Where commands are separated by |’,
the standard output of the first command is connected to the standard input of the next. ‘&’
is shorthand for ‘2>&1 |’, which connects both the standard output and the standard error of
the command to the standard input of the next. The value of a pipeline is the value of the last
command, unless the pipeline is preceded by ‘!’ in which case the value is the logical inverse of
the value of the last command. For example,

echo foo | sed ’s/foo/bar/’

is a pipeline, where the output (‘foo’ plus a newline) of the first command will be passed to the
input of the second.

If a pipeline is preceded by ‘coproc’, it is executed as a coprocess; a two-way pipe is established
between it and the parent shell. The shell can read from or write to the coprocess by means of
the ‘>&p’” and ‘<&p’ redirection operators or with ‘print -p’ and ‘read -p’. A pipeline cannot
be preceded by both ‘coproc’ and ‘!’. If job control is active, the coprocess can be treated in
other than input and output as an ordinary background job.

A sublist is either a single pipeline, or a sequence of two or more pipelines separated by ‘&&’
or ‘| |’. If two pipelines are separated by ‘&&’, the second pipeline is executed only if the first
succeeds (returns a zero status). If two pipelines are separated by ‘||, the second is executed
only if the first fails (returns a nonzero status). Both operators have equal precedence and are
left associative. The value of the sublist is the value of the last pipeline executed. For example,

dmesg | grep panic && print yes
is a sublist consisting of two pipelines, the second just a simple command which will be executed

if and only if the grep command returns a zero status. If it does not, the value of the sublist is
that return status, else it is the status returned by the print (almost certainly zero).

A list is a sequence of zero or more sublists, in which each sublist is terminated by *;’, ‘&’, ‘&|’,
‘&'’ or a newline. This terminator may optionally be omitted from the last sublist in the list
when the list appears as a complex command inside ‘(...)” or ‘{...}’. When a sublist is terminated
by ¢;’ or newline, the shell waits for it to finish before executing the next sublist. If a sublist
is terminated by a ‘&’, ‘&|’, or ‘&!’, the shell executes the last pipeline in it in the background,
and does not wait for it to finish (note the difference from other shells which execute the whole
sublist in the background). A backgrounded pipeline returns a status of zero.

More generally, a list can be seen as a set of any shell commands whatsoever, including the
complex commands below; this is implied wherever the word ‘list’ appears in later descriptions.
For example, the commands in a shell function form a special sort of list.



Chapter 6: Shell Grammar 10

6.2 Precommand Modifiers

A simple command may be preceded by a precommand modifier, which will alter how the
command is interpreted. These modifiers are shell builtin commands with the exception of
nocorrect which is a reserved word.

- The command is executed with a ‘=’ prepended to its argv[0] string.

builtin  The command word is taken to be the name of a builtin command, rather than a
shell function or external command.

command [ -pvV ]
The command word is taken to be the name of an external command, rather than
a shell function or builtin. If the POSIX_BUILTINS option is set, builtins will also be
executed but certain special properties of them are suppressed. The -p flag causes
a default path to be searched instead of that in $path. With the -v flag, command
is similar to whence and with -V, it is equivalent to whence -v.

exec [ -cl] [ -a argv0 ]
The following command together with any arguments is run in place of the current
process, rather than as a sub-process. The shell does not fork and is replaced. The
shell does not invoke TRAPEXIT, nor does it source zlogout files. The options are
provided for compatibility with other shells.

The -c option clears the environment.

The -1 option is equivalent to the - precommand modifier, to treat the replacement
command as a login shell; the command is executed with a - prepended to its
argv [0] string. This flag has no effect if used together with the -a option.

The -a option is used to specify explicitly the argv[0] string (the name of the
command as seen by the process itself) to be used by the replacement command
and is directly equivalent to setting a value for the ARGVO environment variable.

nocorrect
Spelling correction is not done on any of the words. This must appear before any
other precommand modifier, as it is interpreted immediately, before any parsing is
done. It has no effect in non-interactive shells.

noglob Filename generation (globbing) is not performed on any of the words.

6.3 Complex Commands
A complexr command in zsh is one of the following:

if list then list [ elif list then list | ... [ else list | fi
The if list is executed, and if it returns a zero exit status, the then list is executed.
Otherwise, the elif list is executed and if its status is zero, the then list is executed.
If each elif list returns nonzero status, the else list is executed.

for name ... [ in word ... | term do list done
where term is at least one newline or ;. Expand the list of words, and set the
parameter name to each of them in turn, executing list each time. If the in word
is omitted, use the positional parameters instead of the words.

More than one parameter name can appear before the list of words. If N names
are given, then on each execution of the loop the next N words are assigned to
the corresponding parameters. If there are more names than remaining words, the
remaining parameters are each set to the empty string. Execution of the loop ends
when there is no remaining word to assign to the first name. It is only possible for



Chapter 6: Shell Grammar 11

in to appear as the first name in the list, else it will be treated as marking the end
of the list.

for (( [exprl] ; [expr2] ; [expr3] )) do list done
The arithmetic expression exprl is evaluated first (see Chapter 11 [Arithmetic Eval-
uation|, page 27). The arithmetic expression expr2 is repeatedly evaluated until it
evaluates to zero and when non-zero, list is executed and the arithmetic expression
expr3 evaluated. If any expression is omitted, then it behaves as if it evaluated to
1.

while list do list done
Execute the do list as long as the while list returns a zero exit status.

until list do list done
Execute the do list as long as until list returns a nonzero exit status.

repeat word do list done
word is expanded and treated as an arithmetic expression, which must evaluate to
a number n. list is then executed n times.

The repeat syntax is disabled by default when the shell starts in a mode emulating
another shell. It can be enabled with the command ‘enable -r repeat’

case word in [ [(] pattern [ | pattern] ... ) Iist (;;|;&l;1) ] ... esac
Execute the list associated with the first pattern that matches word, if any. The form
of the patterns is the same as that used for filename generation. See Section 14.8
[Filename Generation]|, page 62.

Note further that, unless the SH_GLOB option is set, the whole pattern with alterna-
tives is treated by the shell as equivalent to a group of patterns within parentheses,
although white space may appear about the parentheses and the vertical bar and
will be stripped from the pattern at those points. White space may appear else-
where in the pattern; this is not stripped. If the SH_GLOB option is set, so that an
opening parenthesis can be unambiguously treated as part of the case syntax, the
expression is parsed into separate words and these are treated as strict alternatives
(as in other shells).

If the list that is executed is terminated with ;& rather than ;;, the following list
is also executed. The rule for the terminator of the following list ;;, ;& or ;| is
applied unless the esac is reached.

If the Iist that is executed is terminated with ;| the shell continues to scan the
patterns looking for the next match, executing the corresponding list, and applying
the rule for the corresponding terminator ;;, ;& or ;|. Note that word is not

re-expanded; all applicable patterns are tested with the same word.

select name [ in word ... term | do list done

where term is one or more newline or ; to terminate the words. Print the set of
words, each preceded by a number. If the in word is omitted, use the positional
parameters. The PROMPT3 prompt is printed and a line is read from the line editor if
the shell is interactive and that is active, or else standard input. If this line consists
of the number of one of the listed words, then the parameter name is set to the
word corresponding to this number. If this line is empty, the selection list is printed
again. Otherwise, the value of the parameter name is set to null. The contents of
the line read from standard input is saved in the parameter REPLY. list is executed
for each selection until a break or end-of-file is encountered.

( List ) Execute list in a subshell. Traps set by the trap builtin are reset to their default
values while executing list.



Chapter 6: Shell Grammar 12

{ Iist } Execute list.

{ try-list } always { always-list }
First execute try-list. Regardless of errors, or break, continue, or return com-
mands encountered within try-list, execute always-list. Execution then continues
from the result of the execution of try-list; in other words, any error, or break,
continue, or return command is treated in the normal way, as if always-list were
not present. The two chunks of code are referred to as the ‘try block’ and the ‘always
block’.

Optional newlines or semicolons may appear after the always; note, however, that
they may not appear between the preceding closing brace and the always.

An ‘error’ in this context is a condition such as a syntax error which causes the shell
to abort execution of the current function, script, or list. Syntax errors encountered
while the shell is parsing the code do not cause the always-list to be executed. For
example, an erroneously constructed if block in try-list would cause the shell
to abort during parsing, so that always-1list would not be executed, while an
erroneous substitution such as ${*foo*} would cause a run-time error, after which
always-list would be executed.

An error condition can be tested and reset with the special integer variable
TRY_BLOCK_ERROR. Outside an always-1list the value is irrelevant, but it is ini-
tialised to -1. Inside always-1list, the value is 1 if an error occurred in the try-
list, else 0. If TRY_BLOCK_ERROR is set to 0 during the always-list, the error
condition caused by the try-1list is reset, and shell execution continues normally
after the end of always-1list. Altering the value during the try-1list is not useful
(unless this forms part of an enclosing always block).

Regardless of TRY_BLOCK_ERROR, after the end of always-list the normal shell
status $7 is the value returned from try-list. This will be non-zero if there was
an error, even if TRY_BLOCK_ERROR was set to zero.

The following executes the given code, ignoring any errors it causes. This is an
alternative to the usual convention of protecting code by executing it in a subshell.

{
# code which may cause an error
} always {
# This code is executed regardless of the error.
(¢ TRY_BLOCK_ERROR = 0 ))
b

# The error condition has been reset.

An exit command (or a return command executed at the outermost function level
of a script) encountered in try-list does not cause the execution of always-list.
Instead, the shell exits immediately after any EXIT trap has been executed.

function word ... [ () | [ term | { Iist }

word ... () [ term | { list }

word ... () [ term | command
where term is one or more newline or ;. Define a function which is referenced by
any one of word. Normally, only one word is provided; multiple words are usually
only useful for setting traps. The body of the function is the list between the { and
}. See Chapter 9 [Functions], page 21.

If the option SH_GLOB is set for compatibility with other shells, then whitespace may
appear between the left and right parentheses when there is a single word; otherwise,
the parentheses will be treated as forming a globbing pattern in that case.



Chapter 6: Shell Grammar 13

In any of the forms above, a redirection may appear outside the function body, for
example

func() { ... } 2>&1
The redirection is stored with the function and applied whenever the function is

executed. Any variables in the redirection are expanded at the point the function
is executed, but outside the function scope.

time [ pipeline ]

[[ exp 1]

The pipeline is executed, and timing statistics are reported on the standard error in
the form specified by the TIMEFMT parameter. If pipeline is omitted, print statistics
about the shell process and its children.

Evaluates the conditional expression exp and return a zero exit status if it is true.
See Chapter 12 [Conditional Expressions], page 31, for a description of exp.

6.4 Alternate Forms For Complex Commands

Many of zsh’s complex commands have alternate forms. These are non-standard and are likely
not to be obvious even to seasoned shell programmers; they should not be used anywhere that
portability of shell code is a concern.

The short versions below only work if sublist is of the form ‘{ list }’ or if the SHORT_LOOPS
option is set. For the if, while and until commands, in both these cases the test part of the
loop must also be suitably delimited, such as by ‘[[ ... 117 or ‘(( ... ))’, else the end of the test
will not be recognized. For the for, repeat, case and select commands no such special form
for the arguments is necessary, but the other condition (the special form of sublist or use of the
SHORT_LOOPS option) still applies.

if list { list } [ elif list { list } ] ... [ else { list } |

An alternate form of if. The rules mean that
if [[ -o ignorebraces 1] {
print yes
}
works, but
if true { # Does not work!
print yes
}

does not, since the test is not suitably delimited.

if list sublist

A short form of the alternate if. The same limitations on the form of list apply as
for the previous form.

for name ... ( word ... ) sublist

A short form of for.

for name ... [ in word ... | term sublist

where term is at least one newline or ;. Another short form of for.

for (( [exprl] ; [expr2| ; [expr3])) sublist

A short form of the arithmetic for command.

foreach name ... ( word ... ) list end

Another form of for.

while list { list }

An alternative form of while. Note the limitations on the form of Ilist mentioned
above.



Chapter 6: Shell Grammar 14

until list { list }
An alternative form of until. Note the limitations on the form of Ilist mentioned
above.

repeat word sublist
This is a short form of repeat.

case word { | [(] pattern [ | pattern ] ... ) list (;;1;&l;1)] ... }
An alternative form of case.

select name | in word ... term ] sublist
where term is at least one newline or ;. A short form of select.

function word ... [ () | [ term | sublist
This is a short form of function.

6.5 Reserved Words

The following words are recognized as reserved words when used as the first word of a command
unless quoted or disabled using disable -r:

do done esac then elif else fi for case if while function repeat time until
select coproc nocorrect foreach end ! [[ { } declare export float integer local
readonly typeset

Additionally, ‘}’ is recognized in any position if neither the IGNORE_BRACES option nor the
IGNORE_CLOSE_BRACES option is set.

6.6 Errors

Certain errors are treated as fatal by the shell: in an interactive shell, they cause control to
return to the command line, and in a non-interactive shell they cause the shell to be aborted.
In older versions of zsh, a non-interactive shell running a script would not abort completely, but
would resume execution at the next command to be read from the script, skipping the remainder
of any functions or shell constructs such as loops or conditions; this somewhat illogical behaviour
can be recovered by setting the option CONTINUE_ON_ERROR.

Fatal errors found in non-interactive shells include:
e Failure to parse shell options passed when invoking the shell
e Failure to change options with the set builtin
e Parse errors of all sorts, including failures to parse mathematical expressions

e Failures to set or modify variable behaviour with typeset, local, declare, export,
integer, float

e Execution of incorrectly positioned loop control structures (continue, break)
e Attempts to use regular expression with no regular expression module available
e Disallowed operations when the RESTRICTED options is set

e Failure to create a pipe needed for a pipeline

e Failure to create a multio

e Failure to autoload a module needed for a declared shell feature

e Errors creating command or process substitutions

e Syntax errors in glob qualifiers

e File generation errors where not caught by the option BAD_PATTERN

e All bad patterns used for matching within case statements

e File generation failures where not caused by NO_MATCH or similar options



Chapter 6: Shell Grammar 15

e All file generation errors where the pattern was used to create a multio
e Memory errors where detected by the shell

e Invalid subscripts to shell variables

e Attempts to assign read-only variables

e Logical errors with variables such as assignment to the wrong type

e Use of invalid variable names

e Errors in variable substitution syntax

e Failure to convert characters in $’...° expressions

If the POSIX_BUILTINS option is set, more errors associated with shell builtin commands are
treated as fatal, as specified by the POSIX standard.

6.7 Comments

In non-interactive shells, or in interactive shells with the INTERACTIVE_COMMENTS option set,
a word beginning with the third character of the histchars parameter (‘# by default) causes
that word and all the following characters up to a newline to be ignored.

6.8 Aliasing

Every eligible word in the shell input is checked to see if there is an alias defined for it. If so,
it is replaced by the text of the alias if it is in command position (if it could be the first word
of a simple command), or if the alias is global. If the replacement text ends with a space, the
next word in the shell input is always eligible for purposes of alias expansion. An alias is defined
using the alias builtin; global aliases may be defined using the -g option to that builtin.

A word is defined as:
e Any plain string or glob pattern

e Any quoted string, using any quoting method (note that the quotes must be part of the
alias definition for this to be eligible)

e Any parameter reference or command substitution

e Any series of the foregoing, concatenated without whitespace or other tokens between them

e Any reserved word (case, do, else, etc.)

e With global aliasing, any command separator, any redirection operator, and ‘C’ or ‘)’ when
not part of a glob pattern

Alias expansion is done on the shell input before any other expansion except history expansion.
Therefore, if an alias is defined for the word foo, alias expansion may be avoided by quoting
part of the word, e.g. \foo. Any form of quoting works, although there is nothing to prevent
an alias being defined for the quoted form such as \foo as well.

When POSIX_ALTASES is set, only plain unquoted strings are eligible for aliasing. The alias
builtin does not reject ineligible aliases, but they are not expanded.

For use with completion, which would remove an initial backslash followed by a character that
isn’t special, it may be more convenient to quote the word by starting with a single quote, i.e.
’foo; completion will automatically add the trailing single quote.

6.8.1 Alias difficulties

Although aliases can be used in ways that bend normal shell syntax, not every string of non-
white-space characters can be used as an alias.

Any set of characters not listed as a word above is not a word, hence no attempt is made to
expand it as an alias, no matter how it is defined (i.e. via the builtin or the special parameter



Chapter 6: Shell Grammar 16

aliases described in Section 22.19 [The zsh/parameter Module|, page 305). However, as noted
in the case of POSIX_ALIASES above, the shell does not attempt to deduce whether the string
corresponds to a word at the time the alias is created.

For example, an expression containing an = at the start of a command line is an assignment and
cannot be expanded as an alias; a lone = is not an assignment but can only be set as an alias
using the parameter, as otherwise the = is taken part of the syntax of the builtin command.

It is not presently possible to alias the ¢ ((’ token that introduces arithmetic expressions, because
until a full statement has been parsed, it cannot be distinguished from two consecutive ‘ (’ tokens
introducing nested subshells. Also, if a separator such as && is aliased, \&& turns into the two
tokens \& and &, each of which may have been aliased separately. Similarly for \<<, \>|, etc.

There is a commonly encountered problem with aliases illustrated by the following code:
alias echobar=’echo bar’; echobar

This prints a message that the command echobar could not be found. This happens because
aliases are expanded when the code is read in; the entire line is read in one go, so that when
echobar is executed it is too late to expand the newly defined alias. This is often a problem in
shell scripts, functions, and code executed with ‘source’ or ‘.’. Consequently, use of functions
rather than aliases is recommended in non-interactive code.

Note also the unhelpful interaction of aliases and function definitions:

alias func=’noglob func’
func() {
echo Do something with $*

by

Because aliases are expanded in function definitions, this causes the following command to be
executed:

noglob func() {
echo Do something with $*

}

which defines noglob as well as func as functions with the body given. To avoid this, either
quote the name func or use the alternative function definition form ‘function func’. Ensuring
the alias is defined after the function works but is problematic if the code fragment might be
re-executed.

6.9 Quoting

A character may be quoted (that is, made to stand for itself) by preceding it with a ‘\’. ‘\’
followed by a newline is ignored.

A string enclosed between ‘$°’” and ‘*’ is processed the same way as the string arguments of the
print builtin, and the resulting string is considered to be entirely quoted. A literal ‘*’ character
can be included in the string by using the ‘\’’ escape.

All characters enclosed between a pair of single quotes (’?) that is not preceded by a ‘$’ are
quoted. A single quote cannot appear within single quotes unless the option RC_QUOTES is set,
in which case a pair of single quotes are turned into a single quote. For example,

print 233
outputs nothing apart from a newline if RC_QUOTES is not set, but one single quote if it is set.

Inside double quotes (""), parameter and command substitution occur, and ‘\’ quotes the char-
acters ‘\’, <7, " ‘$’ and the first character of $histchars (default ‘!’).



17

7 Redirection

If a command is followed by & and job control is not active, then the default standard input
for the command is the empty file /dev/null. Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking shell as modified by input/output
specifications.

The following may appear anywhere in a simple command or may precede or follow a complex
command. Expansion occurs before word or digit is used except as noted below. If the result
of substitution on word produces more than one filename, redirection occurs for each separate
filename in turn.

< word

<> word

> word

>| word
>1 word

>> word
>>| word

>>1 word

<<[-] word

<<< word

<& number
>& number

Open file word for reading as standard input.

Open file word for reading and writing as standard input. If the file does not exist
then it is created.

Open file word for writing as standard output. If the file does not exist then it is
created. If the file exists, and the CLOBBER option is unset, this causes an error;
otherwise, it is truncated to zero length.

Same as >, except that the file is truncated to zero length if it exists, even if CLOBBER
is unset.

Open file word for writing in append mode as standard output. If the file does not
exist, and the CLOBBER option is unset, this causes an error; otherwise, the file is
created.

Same as >>, except that the file is created if it does not exist, even if CLOBBER is
unset.

The shell input is read up to a line that is the same as word, or to an end-of-file.
No parameter expansion, command substitution or filename generation is performed
on word. The resulting document, called a here-document, becomes the standard
input.

If any character of word is quoted with single or double quotes or a ‘\’, no inter-
pretation is placed upon the characters of the document. Otherwise, parameter and
command substitution occurs, ‘\’ followed by a newline is removed, and ‘\’ must be
used to quote the characters ‘\’, ‘$’, *“” and the first character of word.

Note that word itself does not undergo shell expansion. Backquotes in word do
not have their usual effect; instead they behave similarly to double quotes, except
that the backquotes themselves are passed through unchanged. (This information is
given for completeness and it is not recommended that backquotes be used.) Quotes
in the form $’...° have their standard effect of expanding backslashed references to
special characters.

If <<~ is used, then all leading tabs are stripped from word and from the document.
Perform shell expansion on word and pass the result to standard input. This is

known as a here-string. Compare the use of word in here-documents above, where
word does not undergo shell expansion.

The standard input/output is duplicated from file descriptor number (see man page
dup2(2)).



Chapter 7: Redirection 18

<& -

>& - Close the standard input/output.

<& p

>& p The input/output from/to the coprocess is moved to the standard input/output.
>& word

&> word (Except where ‘>& word’ matches one of the above syntaxes; ‘&>’ can always be
used to avoid this ambiguity.) Redirects both standard output and standard error
(file descriptor 2) in the manner of ‘> word’. Note that this does not have the same
effect as ‘> word 2>&1’ in the presence of multios (see the section below).

>&| word
>&! word
&> | word

&>! word Redirects both standard output and standard error (file descriptor 2) in the manner
of *>| word’.

>>& word
&>> word Redirects both standard output and standard error (file descriptor 2) in the manner
of >> word’.

>>&| word

>>&! word

&>>| word

&>>! word Redirects both standard output and standard error (file descriptor 2) in the manner
of >>| word’.

If one of the above is preceded by a digit, then the file descriptor referred to is that specified by
the digit instead of the default 0 or 1. The order in which redirections are specified is significant.
The shell evaluates each redirection in terms of the (file descriptor, file) association at the time
of evaluation. For example:

. 1>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with the file
associated with file descriptor 1 (that is, fname). If the order of redirections were reversed, file
descriptor 2 would be associated with the terminal (assuming file descriptor 1 had been) and
then file descriptor 1 would be associated with file fname.

The ‘& command separator described in Section 6.1 [Simple Commands & Pipelines|, page 9,
is a shorthand for ‘2>&1 |’.

The various forms of process substitution, ‘<(list)’, and ‘=(list)’ for input and ‘>(list)’ for
output, are often used together with redirection. For example, if word in an output redirection
is of the form ‘>(list)’ then the output is piped to the command represented by list. See
Section 14.2 [Process Substitution], page 44.

7.1 Opening file descriptors using parameters

When the shell is parsing arguments to a command, and the shell option IGNORE_BRACES is
not set, a different form of redirection is allowed: instead of a digit before the operator there
is a valid shell identifier enclosed in braces. The shell will open a new file descriptor that is
guaranteed to be at least 10 and set the parameter named by the identifier to the file descriptor
opened. No whitespace is allowed between the closing brace and the redirection character. For
example:

.. {myfd}>&1



Chapter 7: Redirection 19

This opens a new file descriptor that is a duplicate of file descriptor 1 and sets the parameter
myfd to the number of the file descriptor, which will be at least 10. The new file descriptor can
be written to using the syntax >&$myfd.

The syntax {varid}>&-, for example {myfd}>&-, may be used to close a file descriptor opened in
this fashion. Note that the parameter given by varid must previously be set to a file descriptor
in this case.

It is an error to open or close a file descriptor in this fashion when the parameter is readonly.
However, it is not an error to read or write a file descriptor using <&$param or >&$param if
param is readonly.

If the option CLOBBER is unset, it is an error to open a file descriptor using a parameter that
is already set to an open file descriptor previously allocated by this mechanism. Unsetting the
parameter before using it for allocating a file descriptor avoids the error.

Note that this mechanism merely allocates or closes a file descriptor; it does not perform any
redirections from or to it. It is usually convenient to allocate a file descriptor prior to use as an
argument to exec. The syntax does not in any case work when used around complex commands
such as parenthesised subshells or loops, where the opening brace is interpreted as part of a
command list to be executed in the current shell.

The following shows a typical sequence of allocation, use, and closing of a file descriptor:
integer myfd
exec {myfd}>~/logs/mylogfile.txt
print This is a log message. >&$myfd
exec {myfd}>&-

Note that the expansion of the variable in the expression >&$myfd occurs at the point the redi-
rection is opened. This is after the expansion of command arguments and after any redirections
to the left on the command line have been processed.

7.2 Multios

If the user tries to open a file descriptor for writing more than once, the shell opens the file
descriptor as a pipe to a process that copies its input to all the specified outputs, similar to tee,
provided the MULTIOS option is set, as it is by default. Thus:

date >foo >bar

writes the date to two files, named ‘foo’ and ‘bar’. Note that a pipe is an implicit redirection;
thus

date >foo | cat
writes the date to the file ‘foo’, and also pipes it to cat.

Note also that redirections are always expanded in order. This happens regardless of the setting
of the MULTIOS option, but with the option in effect there are additional consequences. For
example, the meaning of the expression >&1 will change after a previous redirection:

date >&1 >output

In the case above, the >&1 refers to the standard output at the start of the line; the result is
similar to the tee command. However, consider:

date >output >&1

As redirections are evaluated in order, when the >&1 is encountered the standard output is set
to the file output and another copy of the output is therefore sent to that file. This is unlikely
to be what is intended.

If the MULTIOS option is set, the word after a redirection operator is also subjected to filename
generation (globbing). Thus



Chapter 7: Redirection 20

T > %
will truncate all files in the current directory, assuming there’s at least one. (Without the
MULTIOS option, it would create an empty file called ‘*’.) Similarly, you can do

echo exit 0 >> x.sh

If the user tries to open a file descriptor for reading more than once, the shell opens the file
descriptor as a pipe to a process that copies all the specified inputs to its output in the order
specified, similar to cat, provided the MULTIOS option is set. Thus

sort <foo <fubar
or even
sort <f{oo,ubar}
is equivalent to ‘cat foo fubar | sort’.

Expansion of the redirection argument occurs at the point the redirection is opened, at the point
described above for the expansion of the variable in >&$myfd.

Note that a pipe is an implicit redirection; thus

cat bar | sort <foo
is equivalent to ‘cat bar foo | sort’ (note the order of the inputs).
If the MULTIOS option is unset, each redirection replaces the previous redirection for that file
descriptor. However, all files redirected to are actually opened, so

echo Hello > bar > baz
when MULTIOS is unset will truncate ‘bar’, and write ‘Hello’ into ‘baz’.
There is a problem when an output multio is attached to an external program. A simple example
shows this:

cat file >filel >file2

cat filel file2
Here, it is possible that the second ‘cat’ will not display the full contents of filel and file2
(i.e. the original contents of file repeated twice).
The reason for this is that the multios are spawned after the cat process is forked from the parent
shell, so the parent shell does not wait for the multios to finish writing data. This means the
command as shown can exit before filel and file2 are completely written. As a workaround,
it is possible to run the cat process as part of a job in the current shell:

{ cat file } >file >file2
Here, the {...} job will pause to wait for both files to be written.

7.3 Redirections with no command

When a simple command consists of one or more redirection operators and zero or more param-
eter assignments, but no command name, zsh can behave in several ways.
If the parameter NULLCMD is not set or the option CSH_NULLCMD is set, an error is caused. This
is the csh behavior and CSH_NULLCMD is set by default when emulating csh.
If the option SH_NULLCMD is set, the builtin ‘:’ is inserted as a command with the given redirec-
tions. This is the default when emulating sh or ksh.
Otherwise, if the parameter NULLCMD is set, its value will be used as a command with the given
redirections. If both NULLCMD and READNULLCMD are set, then the value of the latter will be used
instead of that of the former when the redirection is an input. The default for NULLCMD is ‘cat’
and for READNULLCMD is ‘more’. Thus

< file

shows the contents of file on standard output, with paging if that is a terminal. NULLCMD and
READNULLCMD may refer to shell functions.



21

8 Command Execution

If a command name contains no slashes, the shell attempts to locate it. If there exists a shell
function by that name, the function is invoked as described in Chapter 9 [Functions], page 21.
If there exists a shell builtin by that name, the builtin is invoked.

Otherwise, the shell searches each element of $path for a directory containing an executable
file by that name. If the search is unsuccessful, the shell prints an error message and returns a
nonzero exit status.

If execution fails because the file is not in executable format, and the file is not a directory, it is
assumed to be a shell script. /bin/sh is spawned to execute it. If the program is a file beginning
with ‘#!’) the remainder of the first line specifies an interpreter for the program. The shell will
execute the specified interpreter on operating systems that do not handle this executable format
in the kernel.

If no external command is found but a function command_not_found_handler exists the shell
executes this function with all command line argume