
Z8530 Programming Guide

Alan Cox
alan@redhat.com

Z8530 Programming Guide
by Alan Cox

Copyright © 2000 by Alan Cox

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later

version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free

Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents
1. Introduction ..1

2. Driver Modes..3

3. Using the Z85230 driver..5

4. Attaching Network Interfaces...7

5. Configuring And Activating The Port ..9

6. Network Layer Functions..11

7. Porting The Z8530 Driver...13

8. Known Bugs And Assumptions..15

9. Public Functions Provided..17

z8530_interrupt..17
z8530_sync_open...18
z8530_sync_close..19

v

vi

Chapter 1. Introduction
The Z85x30 family synchronous/asynchronous controller chips are used on a large
number of cheap network interface cards. The kernel provides a core interface layer
that is designed to make it easy to provide WAN services using this chip.

The current driver only support synchronous operation. Merging the asynchronous
driver support into this code to allow any Z85x30 device to be used as both a tty
interface and as a synchronous controller is a project for Linux post the 2.4 release

The support code handles most common card configurations and supports running both
Cisco HDLC and Synchronous PPP. With extra glue the frame relay and X.25 protocols
can also be used with this driver.

1

Chapter 1. Introduction

2

Chapter 2. Driver Modes
The Z85230 driver layer can drive Z8530, Z85C30 and Z85230 devices in three
different modes. Each mode can be applied to an individual channel on the chip (each
chip has two channels).

The PIO synchronous mode supports the most common Z8530 wiring. Here the chip is
interface to the I/O and interrupt facilities of the host machine but not to the DMA
subsystem. When running PIO the Z8530 has extremely tight timing requirements.
Doing high speeds, even with a Z85230 will be tricky. Typically you should expect to
achieve at best 9600 baud with a Z8C530 and 64Kbits with a Z85230.

The DMA mode supports the chip when it is configured to use dual DMA channels on
an ISA bus. The better cards tend to support this mode of operation for a single
channel. With DMA running the Z85230 tops out when it starts to hit ISA DMA
constraints at about 512Kbits. It is worth noting here that many PC machines hang or
crash when the chip is driven fast enough to hold the ISA bus solid.

Transmit DMA mode uses a single DMA channel. The DMA channel is used for
transmission as the transmit FIFO is smaller than the receive FIFO. it gives better
performance than pure PIO mode but is nowhere near as ideal as pure DMA mode.

3

Chapter 2. Driver Modes

4

Chapter 3. Using the Z85230 driver
The Z85230 driver provides the back end interface to your board. To configure a Z8530
interface you need to detect the board and to identify its ports and interrupt resources. It
is also your problem to verify the resources are available.

Having identified the chip you need to fill in a struct z8530_dev, which describes each
chip. This object must exist until you finally shutdown the board. Firstly zero the active
field. This ensures nothing goes off without you intending it. The irq field should be set
to the interrupt number of the chip. (Each chip has a single interrupt source rather than
each channel). You are responsible for allocating the interrupt line. The interrupt
handler should be set toz8530_interrupt . The device id should be set to the
z8530_dev structure pointer. Whether the interrupt can be shared or not is board
dependent, and up to you to initialise.

The structure holds two channel structures. Initialise chanA.ctrlio and chanA.dataio
with the address of the control and data ports. You can or this with
Z8530_PORT_SLEEP to indicate your interface needs the 5uS delay for chip settling
done in software. The PORT_SLEEP option is architecture specific. Other flags may
become available on future platforms, eg for MMIO. Initialise the chanA.irqs to
z8530_nop to start the chip up as disabled and discarding interrupt events. This ensures
that stray interrupts will be mopped up and not hang the bus. Set chanA.dev to point to
the device structure itself. The private and name field you may use as you wish. The
private field is unused by the Z85230 layer. The name is used for error reporting and it
may thus make sense to make it match the network name.

Repeat the same operation with the B channel if your chip has both channels wired to
something useful. This isn’t always the case. If it is not wired then the I/O values do not
matter, but you must initialise chanB.dev.

If your board has DMA facilities then initialise the txdma and rxdma fields for the
relevant channels. You must also allocate the ISA DMA channels and do any necessary
board level initialisation to configure them. The low level driver will do the Z8530 and
DMA controller programming but not board specific magic.

Having initialised the device you can then callz8530_init . This will probe the chip
and reset it into a known state. An identification sequence is then run to identify the
chip type. If the checks fail to pass the function returns a non zero error code. Typically
this indicates that the port given is not valid. After this call the type field of the
z8530_dev structure is initialised to either Z8530, Z85C30 or Z85230 according to the
chip found.

Once you have called z8530_init you can also make use of the utility function

5

Chapter 3. Using the Z85230 driver

z8530_describe . This provides a consistent reporting format for the Z8530 devices,
and allows all the drivers to provide consistent reporting.

6

Chapter 4. Attaching Network
Interfaces

If you wish to use the network interface facilities of the driver, then you need to attach a
network device to each channel that is present and in use. In addition to use the
SyncPPP and Cisco HDLC you need to follow some additional plumbing rules. They
may seem complex but a look at the example hostess_sv11 driver should reassure you.

The network device used for each channel should be pointed to by the netdevice field of
each channel. The dev- priv field of the network device points to your private data - you
will need to be able to find your ppp device from this. In addition to use the sync ppp
layer the private data must start with a void * pointer to the syncppp structures.

The way most drivers approach this particular problem is to create a structure holding
the Z8530 device definition and put that and the syncppp pointer into the private field
of the network device. The network device fields of the channels then point back to the
network devices. The ppp_device can also be put in the private structure conveniently.

If you wish to use the synchronous ppp then you need to attach the syncppp layer to the
network device. You should do this before you register the network device. The
sppp_attach requires that the first void * pointer in your private data is pointing to an
empty struct ppp_device. The function fills in the initial data for the ppp/hdlc layer.

Before you register your network device you will also need to provide suitable handlers
for most of the network device callbacks. See the network device documentation for
more details on this.

7

Chapter 4. Attaching Network Interfaces

8

Chapter 5. Configuring And Activating
The Port

The Z85230 driver provides helper functions and tables to load the port registers on the
Z8530 chips. When programming the register settings for a channel be aware that the
documentation recommends initialisation orders. Strange things happen when these are
not followed.

z8530_channel_load takes an array of pairs of initialisation values in an array of u8
type. The first value is the Z8530 register number. Add 16 to indicate the alternate
register bank on the later chips. The array is terminated by a 255.

The driver provides a pair of public tables. The z8530_hdlc_kilostream table is for the
UK ’Kilostream’ service and also happens to cover most other end host configurations.
The z8530_hdlc_kilostream_85230 table is the same configuration using the
enhancements of the 85230 chip. The configuration loaded is standard NRZ encoded
synchronous data with HDLC bitstuffing. All of the timing is taken from the other end
of the link.

When writing your own tables be aware that the driver internally tracks register values.
It may need to reload values. You should therefore be sure to set registers 1-7, 9-11, 14
and 15 in all configurations. Where the register settings depend on DMA selection the
driver will update the bits itself when you open or close. Loading a new table with the
interface open is not recommended.

There are three standard configurations supported by the core code. In PIO mode the
interface is programmed up to use interrupt driven PIO. This places high demands on
the host processor to avoid latency. The driver is written to take account of latency
issues but it cannot avoid latencies caused by other drivers, notably IDE in PIO mode.
Because the drivers allocate buffers you must also prevent MTU changes while the port
is open.

Once the port is open it will call the rx_function of each channel whenever a completed
packet arrived. This is invoked from interrupt context and passes you the channel and a
network buffer (struct sk_buff) holding the data. The data includes the CRC bytes so
most users will want to trim the last two bytes before processing the data. This function
is very timing critical. When you wish to simply discard data the support code provides
the functionz8530_null_rx to discard the data.

To active PIO mode sending and receiving thez8530_sync_open is called. This
expects to be passed the network device and the channel. Typically this is called from
your network device open callback. On a failure a non zero error status is returned. The

9

Chapter 5. Configuring And Activating The Port

z8530_sync_close function shuts down a PIO channel. This must be done before the
channel is opened again and before the driver shuts down and unloads.

The ideal mode of operation is dual channel DMA mode. Here the kernel driver will
configure the board for DMA in both directions. The driver also handles ISA DMA
issues such as controller programming and the memory range limit for you. This mode
is activated by calling thez8530_sync_dma_open function. On failure a non zero
error value is returned. Once this mode is activated it can be shut down by calling the
z8530_sync_dma_close . You must call the close function matching the open mode
you used.

The final supported mode uses a single DMA channel to drive the transmit side. As the
Z85C30 has a larger FIFO on the receive channel this tends to increase the maximum
speed a little. This is activated by calling thez8530_sync_txdma_open . This
returns a non zero error code on failure. Thez8530_sync_txdma_close function
closes down the Z8530 interface from this mode.

10

Chapter 6. Network Layer Functions
The Z8530 layer provides functions to queue packets for transmission. The driver
internally buffers the frame currently being transmitted and one further frame (in order
to keep back to back transmission running). Any further buffering is up to the caller.

The functionz8530_queue_xmit takes a network buffer in sk_buff format and queues
it for transmission. The caller must provide the entire packet with the exception of the
bitstuffing and CRC. This is normally done by the caller via the syncppp interface
layer. It returns 0 if the buffer has been queued and non zero values for queue full. If
the function accepts the buffer it becomes property of the Z8530 layer and the caller
should not free it.

The functionz8530_get_stats returns a pointer to an internally maintained per
interface statistics block. This provides most of the interface code needed to implement
the network layer get_stats callback.

11

Chapter 6. Network Layer Functions

12

Chapter 7. Porting The Z8530 Driver
The Z8530 driver is written to be portable. In DMA mode it makes assumptions about
the use of ISA DMA. These are probably warranted in most cases as the Z85230 in
particular was designed to glue to PC type machines. The PIO mode makes no real
assumptions.

Should you need to retarget the Z8530 driver to another architecture the only code that
should need changing are the port I/O functions. At the moment these assume PC I/O
port accesses. This may not be appropriate for all platforms. Replacing
z8530_read_port andz8530_write_port is intended to be all that is required to
port this driver layer.

13

Chapter 7. Porting The Z8530 Driver

14

Chapter 8. Known Bugs And
Assumptions

Interrupt Locking

The locking in the driver is done via the global cli/sti lock. This makes for
relatively poor SMP performance. Switching this to use a per device spin lock
would probably materially improve performance.

Occasional Failures

We have reports of occasional failures when run for very long periods of time and
the driver starts to receive junk frames. At the moment the cause of this is not
clear.

15

Chapter 8. Known Bugs And Assumptions

16

Chapter 9. Public Functions Provided

z8530_interrupt

Name
z8530_interrupt — Handle an interrupt from a Z8530

Synopsis

void z8530_interrupt (int irq); void * dev_id); struct pt_regs
* regs);

Arguments

irq

Interrupt number

dev_id

The Z8530 device that is interrupting.

regs

unused

17

Chapter 9. Public Functions Provided

Description
A Z85[2]30 device has stuck its hand in the air for attention. We scan both the channels
on the chip for events and then call the channel specific call backs for each channel that
has events. We have to use callback functions because the two channels can be in
different modes.

Locking is done for the handlers. Note that locking is done at the chip level (the 5uS
delay issue is per chip not per channel). c-lock for both channels points to dev-lock

z8530_sync_open

Name
z8530_sync_open — Open a Z8530 channel for PIO

Synopsis

int z8530_sync_open (struct net_device * dev); struct
z8530_channel * c);

Arguments

dev

The network interface we are using

18

Chapter 9. Public Functions Provided

c

The Z8530 channel to open in synchronous PIO mode

Description
Switch a Z8530 into synchronous mode without DMA assist. We raise the RTS/DTR
and commence network operation.

z8530_sync_close

Name
z8530_sync_close — Close a PIO Z8530 channel

Synopsis

int z8530_sync_close (struct net_device * dev); struct
z8530_channel * c);

Arguments

19

Chapter 9. Public Functions Provided

20

