Unreliable Guide To Hacking The
Linux Kernel

Paul Rusty Russell

rusty@rustcorp.com.au

Unreliable Guide To Hacking The Linux Kernel
by Paul Rusty Russell

Copyright © 2001 by Rusty Russell

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents

I 10T [UTox 1 To] o HO OSSPSR 1

2. TNE PIAYEIS......eieeeeee ettt bbb bbbt b bbb b e 3

2.0, USEI CONIEXL. ..ttt ettt ae e s e b e sae e saeesnneeneas 3

2.2. Hardware Interrupts (Hard IRQS).......cccceeiiiiiriieiiiesie e 4

2.3. Software Interrupt Context: Bottom Halves, Tasklets, softirgs................ 4

3. S0ME BASIC RUIES......ceeeceeece et re e 7

4. ioctls: Not writing @ New SYStem Call........cccooeeiieiiieiiseee e 9

5. ReCipes for DeAAIOCK.........ccui it 11

6. COMMON ROULINES......ciiiiiirieriesie sttt b bbbt b e enas 13

6.1.printk() include/linux/kernel.h 13
6.2.copy_[to/from]_user() / get_user() /put_user()

iNClude/asm/UacCesS.n e 13

6.3.kmalloc() /kfree() include/linux/slab.h 14

Vi

Chapter 1. Introduction

Welcome, gentle reader, to Rusty’s Unreliable Guide to Linux Kernel Hacking. This
document describes the common routines and general requirements for kernel code: its
goal is to serve as a primer for Linux kernel development for experienced C
programmers. | avoid implementation details: that's what the code is for, and | ignore
whole tracts of useful routines.

Before you read this, please understand that | never wanted to write this document,
being grossly under-qualified, but | always wanted to read it, and this was the only way.
| hope it will grow into a compendium of best practice, common starting points and
random information.

Chapter 1. Introduction

Chapter 2. The Players

At any time each of the CPUs in a system can be:

not associated with any process, serving a hardware interrupt;
not associated with any process, serving a softirqg, tasklet or bh;
running in kernel space, associated with a process;

running a process in user space.

There is a strict ordering between these: other than the last category (userspace) each
can only be pre-empted by those above. For example, while a softirq is running on a
CPU, no other softirg will pre-empt it, but a hardware interrupt can. However, any other
CPUs in the system execute independently.

We’'ll see a number of ways that the user context can block interrupts, to become truly
non-preemptable.

2.1. User Context

User context is when you are coming in from a system call or other trap: you can sleep,
and you own the CPU (except for interrupts) until you caledule() . In other
words, user context (unlike userspace) is not pre-emptable.

Note: You are always in user context on module load and unload, and on
operations on the block device layer.

Chapter 2. The Players

In user context, theurrent pointer (indicating the task we are currently executing) is
valid, andin_interrupt() (include/asm/hardirg.h) is false .

Caution

Beware that if you have interrupts or bottom halves disabled (see
below), in_interrupt() will return a false positive.

2.2. Hardware Interrupts (Hard IRQS)

Timer ticks, network cards and keyboard are examples of real hardware which produce
interrupts at any time. The kernel runs interrupt handlers, which services the hardware.
The kernel guarantees that this handler is never re-entered: if another interrupt arrives,
it is queued (or dropped). Because it disables interrupts, this handler has to be fast:
frequently it simply acknowledges the interrupt, marks a ‘software interrupt’ for
execution and exits.

You can tell you are in a hardware interrupt, becaunsieq() returns true.

Caution

Beware that this will return a false positive if interrupts are
disabled (see below).

2.3. Software Interrupt Context: Bottom Halves,
Tasklets, softirgs

Whenever a system call is about to return to userspace, or a hardware interrupt handler
exits, any ‘software interrupts’ which are marked pending (usually by hardware
interrupts) are runkernel/softirg.c).

Much of the real interrupt handling work is done here. Early in the transition to SMP,
there were only ‘bottom halves’ (BHs), which didn’t take advantage of multiple CPUs.
Shortly after we switched from wind-up computers made of match-sticks and snot, we
abandoned this limitation.

Chapter 2. The Players

include/linux/interrupt.h lists the different BH's. No matter how many CPUs
you have, no two BHs will run at the same time. This made the transition to SMP
simpler, but sucks hard for scalable performance. A very important bottom half is the
timer BH (include/linux/timer.h): you can register to have it call functions for
you in a given length of time.

2.3.43 introduced softirgs, and re-implemented the (now deprecated) BHs underneath
them. Softirgs are fully-SMP versions of BHs: they can run on as many CPUs at once
as required. This means they need to deal with any races in shared data using their own
locks. A bitmask is used to keep track of which are enabled, so the 32 available softirgs
should not be used up lightlyYés people will notice).

tasklets include/linux/interrupt.h) are like softirgs, except they are
dynamically-registrable (meaning you can have as many as you want), and they also
guarantee that any tasklet will only run on one CPU at any time, although different
tasklets can run simultaneously (unlike different BHs).

Caution

The name ‘tasklet’ is misleading: they have nothing to do with
‘tasks’, and probably more to do with some bad vodka Alexey
Kuznetsov had at the time.

You can tell you are in a softirq (or bottom half, or tasklet) usingitheoftirq()
macro (nclude/asm/softirg.h).

Caution

Beware that this will return a false positive if a bh lock (see below)
is held.

Chapter 2. The Players

Chapter 3. Some Basic Rules

No memory protection

If you corrupt memory, whether in user context or interrupt context, the whole
machine will crash. Are you sure you can’t do what you want in userspace?

No floating point or MMX

The FPU context is not saved; even in user context the FPU state probably won’t
correspond with the current process: you would mess with some user process’
FPU state. If you really want to do this, you would have to explicitly save/restore
the full FPU state (and avoid context switches). It is generally a bad idea; use fixed
point arithmetic first.

A rigid stack limit

The kernel stack is about 6K in 2.2 (for most architectures: it's about 14K on the
Alpha), and shared with interrupts so you can’t use it all. Avoid deep recursion
and huge local arrays on the stack (allocate them dynamically instead).

The Linux kernel is portable

Let’s keep it that way. Your code should be 64-bit clean, and endian-independent.
You should also minimize CPU specific stuff, e.g. inline assembly should be
cleanly encapsulated and minimized to ease porting. Generally it should be
restricted to the architecture-dependent part of the kernel tree.

Chapter 3. Some Basic Rules

Chapter 4. ioctls: Not writing a new
system call

A system call generally looks like this

asmlinkage int sys_mycall(int arg)

{

return O;

}

First, in most cases you don’t want to create a new system call. You create a character
device and implement an appropriate ioctl for it. This is much more flexible than system
calls, doesn’t have to be entered in every architectimelsde/asm/unistd.h and
arch/kernel/entry.S file, and is much more likely to be accepted by Linus.

If all your routine does is read or write some parameter, consider implementing a
sysctl interface instead.

Inside the ioctl you're in user context to a process. When a error occurs you return a
negated errno (seeclude/linux/errno.h), otherwise you return O.

After you slept you should check if a signal occurred: the Unix/Linux way of handling
signals is to temporarily exit the system call with HERESTARTSYSerror. The system
call entry code will switch back to user context, process the signal handler and then
your system call will be restarted (unless the user disabled that). So you should be
prepared to process the restart, e.g. if you're in the middle of manipulating some data
structure.

if (signal_pending())
return -ERESTARTSYS;

If you're doing longer computations: first think userspace. If yeaily want to do it in
kernel you should regularly check if you need to give up the CPU (remember there is
cooperative multitasking per CPU). Idiom:

if (current-need_resched)
schedule(); /* Will sleep */

Chapter 4. ioctls: Not writing a new system call

A short note on interface design: the UNIX system call motto is "Provide mechanism
not policy".

10

Chapter 5. Recipes for Deadlock

You cannot call any routines which may sleep, unless:

You are in user context.
You do not own any spinlocks.

You have interrupts enabled (actually, Andi Kleen says that the scheduling code will
enable them for you, but that’s probably not what you wanted).

Note that some functions may sleep implicitly: common ones are the user space access
functions (*_user) and memory allocation functions without GFP_ATOMIC.

You will eventually lock up your box if you break these rules.

Really.

11

Chapter 5. Recipes for Deadlock

12

Chapter 6. Common Routines

6.1. printk() include/linux/kernel.h

printk() feeds kernel messages to the console, dmesg, and the syslog daemon. It is
useful for debugging and reporting errors, and can be used inside interrupt context, but
use with caution: a machine which has its console flooded with printk messages is
unusable. It uses a format string mostly compatible with ANSI C printf, and C string
concatenation to give it a first "priority" argument:

printk(KERN_INFO i = %u\n", i);

Seeinclude/linux/kernel.h ; for other KERN_ values; these are interpreted by
syslog as the level. Special case: for printing an IP address use

__u32 ipaddress;
printk(KERN_INFO "my ip: %d.%d.%d.%d\n", NIPQUAD(ipaddress));

printk() internally uses a 1K buffer and does not catch overruns. Make sure that will
be enough.

Note: You will know when you are a real kernel hacker when you start typoing
printf as printk in your user programs :)

Note: Another sidenote: the original Unix Version 6 sources had a comment on
top of its printf function: "Printf should not be used for chit-chat". You should follow
that advice.

6.2. copy_[to/from] user() [get_user() [/

13

Chapter 6. Common Routines
put_user() include/asm/uaccess.h

[SLEEPS]

put_user() andget user() are used to get and put single values (such as an int,
char, or long) from and to userspace. A pointer into userspace should never be simply
dereferenced: data should be copied using these routines. Both&EMoLT or 0.

copy_to_user() andcopy_from_user() are more general: they copy an arbitrary
amount of data to and from userspace.

Caution

Unlike put_user() and get_user() , they return the amount of
uncopied data (ie. O still means success).

[Yes, this moronic interface makes me cringe. Please submit a patch and become my
hero --RR.]

The functions may sleep implicitly. This should never be called outside user context (it
makes no sense), with interrupts disabled, or a spinlock held.

6.3. kmalloc() /kfree() include/linux/slab.h

[MAY SLEEP: SEE BELOW]

These routines are used to dynamically request pointer-aligned chunks of memory, like
malloc and free do in userspace, kotalloc() takes an extra flag word. Important
values:

GFP_KERNEL

14

