
Bus-Independent Device
Accesses

Matthew Wilcox
matthew@wil.cx

Alan Cox
alan@redhat.com

Bus-Independent Device Accesses
by Matthew Wilcox

by Alan Cox

Copyright © 2001 by Matthew Wilcox

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later

version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free

Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents
1. Introduction ..1

2. Known Bugs And Assumptions..3

3. Memory Mapped IO ..5

3.1. Getting Access to the Device..5
3.2. Accessing the device...5
3.3. ISA legacy functions...6

4. Port Space Accesses...7

4.1. Port Space Explained..7
4.2. Accessing Port Space..7

5. Public Functions Provided..9

v

vi

Chapter 1. Introduction
Linux provides an API which abstracts performing IO across all busses and devices,
allowing device drivers to be written independently of bus type.

1

Chapter 1. Introduction

2

Chapter 2. Known Bugs And
Assumptions

None.

3

Chapter 2. Known Bugs And Assumptions

4

Chapter 3. Memory Mapped IO

3.1. Getting Access to the Device
The most widely supported form of IO is memory mapped IO. That is, a part of the
CPU’s address space is interpreted not as accesses to memory, but as accesses to a
device. Some architectures define devices to be at a fixed address, but most have some
method of discovering devices. The PCI bus walk is a good example of such a scheme.
This document does not cover how to receive such an address, but assumes you are
starting with one. Physical addresses are of type unsigned long.

This address should not be used directly. Instead, to get an address suitable for passing
to the accessor functions described below, you should callioremap . An address
suitable for accessing the device will be returned to you.

After you’ve finished using the device (say, in your module’s exit routine), call
iounmap in order to return the address space to the kernel. Most architectures allocate
new address space each time you callioremap , and they can run out unless you call
iounmap .

3.2. Accessing the device
The part of the interface most used by drivers is reading and writing memory-mapped
registers on the device. Linux provides interfaces to read and write 8-bit, 16-bit, 32-bit
and 64-bit quantities. Due to a historical accident, these are named byte, word, long and
quad accesses. Both read and write accesses are supported; there is no prefetch support
at this time.

The functions are namedreadb , readw , readl , readq , writeb , writew , writel

andwriteq .

Some devices (such as framebuffers) would like to use larger transfers than 8 bytes at a
time. For these devices, thememcpy_toio , memcpy_fromio andmemset_io

functions are provided. Do not use memset or memcpy on IO addresses; they are not
guaranteed to copy data in order.

The read and write functions are defined to be ordered. That is the compiler is not
permitted to reorder the I/O sequence. When the ordering can be compiler optimised,

5

Chapter 3. Memory Mapped IO

you can use __readb and friends to indicate the relaxed ordering. Use this with care.
Thermb provides a read memory barrier. Thewmbprovides a write memory barrier.

While the basic functions are defined to be synchronous with respect to each other and
ordered with respect to each other the busses the devices sit on may themselves have
asynchronocity. In paticular many authors are burned by the fact that PCI bus writes are
posted asynchronously. A driver author must issue a read from the same device to
ensure that writes have occurred in the specific cases the author cares. This kind of
property cannot be hidden from driver writers in the API.

3.3. ISA legacy functions
On older kernels (2.2 and earlier) the ISA bus could be read or written with these
functions and without ioremap being used. This is no longer true in Linux 2.4. A set of
equivalent functions exist for easy legacy driver porting. The functions available are
prefixed with ’isa_’ and areisa_readb , isa_writeb , isa_readw , isa_writew ,
isa_readl , isa_writel , isa_memcpy_fromio andisa_memcpy_toio

These functions should not be used in new drivers, and will eventually be going away.

6

Chapter 4. Port Space Accesses

4.1. Port Space Explained
Another form of IO commonly supported is Port Space. This is a range of addresses
separate to the normal memory address space. Access to these addresses is generally
not as fast as accesses to the memory mapped addresses, and it also has a potentially
smaller address space.

Unlike memory mapped IO, no preparation is required to access port space.

4.2. Accessing Port Space
Accesses to this space are provided through a set of functions which allow 8-bit, 16-bit
and 32-bit accesses; also known as byte, word and long. These functions areinb , inw ,
inl , outb , outw andoutl .

Some variants are provided for these functions. Some devices require that accesses to
their ports are slowed down. This functionality is provided by appending a_p to the
end of the function. There are also equivalents to memcpy. Theins andouts

functions copy bytes, words or longs to the given port.

7

Chapter 4. Port Space Accesses

8

Chapter 5. Public Functions Provided

9

Chapter 5. Public Functions Provided

10

