The Linux 2.4 Parallel Port
Subsystem

Tim Waugh

twaugh@redhat.com

The Linux 2.4 Parallel Port Subsystem
by Tim Waugh

Copyright © 1999-2000 by Tim Waugh

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

Table of Contents

I B TS T] T [0 0 = USSR 1
1.1, The PrODIEMIS.....oiiiee bbb 1
1.2. TNE SOIULIONS.....eceiecieeee ettt et s enneeneas 2
2. Standard transfer MOUES..........cooiiiiiee s 5
G T {1 (o (U] PSPPI 7
I S g F= 1] g o [oo £ =T OO 7
3.2. Parports and their OVEITIORS.........covvieerieereeeeseeie e 7
3.3. IEEE 1284 transfer MOAES.........cccoviiieiirieneeeeseeie e 7
3.4. Pardevices and parport_driVELS.......cccccceecereeieeseeieseeseseesesee e sseesse e 8
3.5. The IEEE 1284.3 APL.......ooeeeeee ettt 9

Vi

Chapter 1. Design goals

1.1. The problems

The first parallel port support for Linux came with the line printer driyer, The
printer driver is a character special device, and (in Linux 2.0) had support for writing,
viawrite , and configuration and statistics reporting et

The printer driver could be used on any computer that had an IBM PC-compatible
parallel port. Because some architectures have parallel ports that aren’t really the same
as PC-style ports, other variants of the printer driver were written in order to support
Amiga and Atari parallel ports.

When the lomega Zip drive was released, and a driver written for it, a problem became
apparent. The Zip drive is a parallel port device that provides a parallel port of its
own---it is designed to sit between a computer and an attached printer, with the printer
plugged into the Zip drive, and the Zip drive plugged into the computer.

The problem was that, although printers and Zip drives were both supported, for any
given port only one could be used at a time. Only one of the two drivers could be
present in the kernel at once. This was because of the fact that both drivers wanted to
drive the same hardware---the parallel port. When the printer driver initialised, it would
call thecheck_region function to make sure that the 10 region associated with the
parallel port was free, and then it would cadtjuest_region to allocate it. The Zip

drive used the same mechanism. Whichever driver initialised first would gain exclusive
control of the parallel port.

The only way around this problem at the time was to make sure that both drivers were
available as loadable kernel modules. To use the printer, load the printer driver module;
then for the Zip drive, unload the printer driver module and load the Zip driver module.

The net effect was that printing a document that was stored on a Zip drive was a bit of
an ordeal, at least if the Zip drive and printer shared a parallel port. A better solution
was needed.

Zip drives are not the only devices that presented problems for Linux. There are other
devices with pass-through ports, for example parallel port CD-ROM drives. There are
also printers that report their status textually rather than using simple error pins:
sending a command to the printer can cause it to report the number of pages that it has
ever printed, or how much free memory it has, or whether it is running out of toner, and
so on. The printer driver didn’t originally offer any facility for reading back this

Chapter 1. Design goals

information (although Carsten Gross added nibble mode readback support for kernel
2.2).

The IEEE has issued a standards document called IEEE 1284, which documents
existing practice for parallel port communications in a variety of modes. Those modes
are: “compatibility”, reverse nibble, reverse byte, ECP and EPP. Newer devices often
use the more advanced modes of transfer (ECP and EPP). In Linux 2.0, the printer
driver only supported “compatibility mode” (i.e. normal printer protocol) and reverse
nibble mode.

1.2. The solutions

Theparport code in Linux 2.2 was designed to meet these problems of architectural
differences in parallel ports, of port-sharing between devices with pass-through ports,
and of lack of support for IEEE 1284 transfer modes.

There are two layers to thgarport subsystem, only one of which deals directly with

the hardware. The other layer deals with sharing and IEEE 1284 transfer modes. In this
way, parallel support for a particular architecture comes in the form of a module which
registers itself with the generic sharing layer.

The sharing model provided by tiparport subsystem is one of exclusive access. A
device driver, such as the printer driver, must askpdrport layer for access to the

port, and can only use the port once access has been granted. When it has finished a
“transaction”, it can tell the@arport layer that it may release the port for other device
drivers to use.

Devices with pass-through ports all manage to share a parallel port with other devices in
generally the same way. The device has a latch for each of the pins on its pass-through
port. The normal state of affairs is pass-through mode, with the device copying the
signal lines between its host port and its pass-through port. When the device sees a
special signal from the host port, it latches the pass-through port so that devices further
downstream don’t get confused by the pass-through device’s conversation with the host
parallel port: the device connected to the pass-through port (and any devices connected
in turn to it) are effectively cut off from the computer. When the pass-through device

has completed its transaction with the computer, it enables the pass-through port again.

This technique relies on certain “special signals” being invisible to devices that aren’t
watching for them. This tends to mean only changing the data signals and leaving the
control signals alone. IEEE 1284.3 documents a standard protocol for daisy-chaining

Chapter 1. Design goals
devices together with parallel ports.

Support for standard transfer modes are provided as operations that can be performed
on a port, along with operations for setting the data lines, or the control lines, or
reading the status lines. These operations appear to the device driver as function
pointers; more later.

Chapter 1. Design goals

Chapter 2. Standard transfer modes

The “standard” transfer modes in use over the parallel port are “defined” by a document
called IEEE 1284. It really just codifies existing practice and documents protocols (and
variations on protocols) that have been in common use for quite some time.

The original definitions of which pin did what were set out by Centronics Data
Computer Corporation, but only the printer-side interface signals were specified.

By the early 1980s, IBM's host-side implementation had become the most widely used.
New printers emerged that claimed Centronics compatibility, but although compatible
with Centronics they differed from one another in a number of ways.

As a result of this, when IEEE 1284 was published in 1994, all that it could really do
was document the various protocols that are used for printers (there are about six
variations on a theme).

In addition to the protocol used to talk to Centronics-compatible printers, IEEE 1284
defined other protocols that are used for unidirectional peripheral-to-host transfers
(reverse nibble and reverse byte) and for fast bidirectional transfers (ECP and EPP).

Chapter 2. Standard transfer modes

Chapter 3. Structure

3.1. Sharing core

At the core of theparport subsystem is the sharing mechanism (see
drivers/parport/share.c). This moduleparport , is responsible for keeping

track of which ports there are in the system, which device drivers might be interested in
new ports, and whether or not each port is available for use (or if not, which driver is
currently using it).

3.2. Parports and their overrides

The generiparport sharing code doesn't directly handle the parallel port hardware.
That is done instead by “low-leveparport drivers. The function of a low-level

parport driver is to detect parallel ports, register them with the sharing code, and
provide a list of access functions for each port.

The most basic access functions that must be provided are ones for examining the
status lines, for setting the control lines, and for setting the data lines. There are also
access functions for setting the direction of the data lines; normally they are in the
“forward” direction (that is, the computer drives them), but some ports allow switching
to “reverse” mode (driven by the peripheral). There is an access function for examining
the data lines once in reverse mode.

3.3. IEEE 1284 transfer modes

Stacked on top of the sharing mechanism, but still ingds@ort module, are

functions for transferring data. They are provided for the device drivers to use, and are
very much like library routines. Since these transfer functions are provided by the
genericparport core they must use the “lowest common denominator” set of access
functions: they can set the control lines, examine the status lines, and use the data lines.
With some parallel ports the data lines can only be set and not examined, and with

other ports accessing the data register causes control line activity; with these types of

Chapter 3. Structure

situations, the IEEE 1284 transfer functions make a best effort attempt to do the right
thing. In some cases, it is not physically possible to use particular IEEE 1284 transfer
modes.

The low-levelparport drivers also provide IEEE 1284 transfer functions, as names in
the access function list. The low-level driver can just name the generic IEEE 1284
transfer functions for this. Some parallel ports can do IEEE 1284 transfers in hardware;
for those ports, the low-level driver can provide functions to utilise that feature.

3.4. Pardevices and parport_drivers

When a parallel port device driver (suchlpg initialises it tells the sharing layer about
itself usingparport_register_driver . The information is put into a struct
parport_driver, which is put into a linked list. The information in a struct parport_driver
really just amounts to some function pointers to callbacks in the parallel port device
driver.

During its initialisation, a low-level port driver tells the sharing layer about all the ports
that it has found (usingarport_register_port), and the sharing layer creates a
struct parport for each of them. Each struct parport contains (among other things) a
pointer to a struct parport_operations, which is a list of function pointers for the various
operations that can be performed on a port. You can think of a struct parport as a
parallel port “object”, if “object-orientated” programming is your thing. The parport
structures are chained in a linked list, whose heaubitist (in

drivers/parport/share.c).

Once the port has been registered, the low-level port driver announces it. The
parport_announce_port function walks down the list of parallel port device drivers
(struct parport_drivers) calling tretach function of each (which may block).

Similarly, a low-level port driver can undo the effect of registering a port with the
parport_unregister_port function, and device drivers are notified using the
detach callback (which may not block).

Device drivers can undo the effect of registering themselves with the
parport_unregister_driver function.

3.5. The IEEE 1284.3 API

The ability to daisy-chain devices is very useful, but if every device does it in a

Chapter 3. Structure

different way it could lead to lots of complications for device driver writers.
Fortunately, the IEEE are standardising it in IEEE 1284.3, which covers daisy-chain
devices and port multiplexors.

At the time of writing, IEEE 1284.3 has not been published, but the draft specifies the
on-the-wire protocol for daisy-chaining and multiplexing, and also suggests a
programming interface for using it. That interface (or most of it) has been implemented
in theparport code in Linux.

At initialisation of the parallel port “bus”, daisy-chained devices are assigned addresses
starting from zero. There can only be four devices with daisy-chain addresses, plus one
device on the end that doesn’t know about daisy-chaining and thinks it's connected
directly to a computer.

Another way of connecting more parallel port devices is to use a multiplexor. The idea
is to have a device that is connected directly to a parallel port on a computer, but has a
number of parallel ports on the other side for other peripherals to connect to (two or
four ports are allowed). The multiplexor switches control to different ports under
software control---it is, in effect, a programmable printer switch.

Combining the ability of daisy-chaining five devices together with the ability to
multiplex one parallel port between four gives the potential to have twenty peripherals
connected to the same parallel port!

In addition, of course, a single computer can have multiple parallel ports. So, each
parallel port peripheral in the system can be identified with three numbers, or
co-ordinates: the parallel port, the multiplexed port, and the daisy-chain address.

Each device in the system is numbered at initialisationpdoport_daisy _init).
You can convert between this device number and its co-ordinates with
parport_device_num andparport_device_coords

#include parport.h

int parport_device_num (int parport); int mux); int daisy);

int parport_device_coords (int devnum); int * parport); int
*mux); int * daisy);

Chapter 3. Structure

10

Any parallel port peripheral will be connected directly or indirectly to a parallel port on
the system, but it won’t have a daisy-chain address if it does not know about
daisy-chaining, and it won’t be connected through a multiplexor port if there is no
multiplexor. The special co-ordinate valde is used to indicate these cases.

Two functions are provided for finding devices based on their IEEE 1284 Device ID:
parport_find_device andparport_find_class

#include parport.h

int parport_find_device (const char * mfg); const char * mdl); int
from);
int parport_find_class (parport_device_class);

