
Linux Kernel Procfs Guide

Erik (J.A.K.) Mouw
Delft University of Technology

Faculty of Information Technology and Systems

J.A.K.Mouw@its.tudelft.nl
PO BOX 5031

2600 GA
Delft

The Netherlands

Linux Kernel Procfs Guide
by Erik (J.A.K.) Mouw

Copyright © 2001 by Erik Mouw

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later

version.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free

Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Revision History

Revision 1.0 May 30, 2001
Initial revision posted to linux-kernel
Revision 1.1 June 3, 2001
Revised after comments from linux-kernel

Table of Contents
Preface... i

1. Introduction ..1

2. Managing procfs entries..3

2.1. Creating a regular file..3
2.2. Creating a symlink..3
2.3. Creating a device...4
2.4. Creating a directory...4
2.5. Removing an entry..4

3. Communicating with userland...7

v

vi

Preface
This guide describes the use of the procfs file system from within the Linux kernel. The
idea to write this guide came up on the #kernelnewbies IRC channel (see
http://www.kernelnewbies.org/), when Jeff Garzik explained the use of procfs and
forwarded me a message Alexander Viro wrote to the linux-kernel mailing list. I agreed
to write it up nicely, so here it is.

I’d like to thank Jeff Garzik <jgarzik@mandrakesoft.com > and Alexander Viro
<viro@math.psu.edu > for their input, Tim Waugh <twaugh@redhat.com > for his
Selfdocbook (http://people.redhat.com/twaugh/docbook/selfdocbook/), and Marc
Joosen <marcj@historia.et.tudelft.nl > for proofreading.

This documentation was written while working on the LART computing board
(http://www.lart.tudelft.nl/), which is sponsored by the Mobile Multi-media
Communications (http://www.mmc.tudelft.nl/) and Ubiquitous Communications
(http://www.ubicom.tudelft.nl/) projects.

Erik

i

Preface

ii

Chapter 1. Introduction
The /proc file system (procfs) is a special file system in the linux kernel. It’s a virtual
file system: it is not associated with a block device but exists only in memory. The files
in the procfs are there to allow userland programs access to certain information from
the kernel (like process information in/proc/[0-9]+/), but also for debug purposes
(like /proc/ksyms).

This guide describes the use of the procfs file system from within the Linux kernel. It
starts by introducing all relevant functions to manage the files within the file system.
After that it shows how to communicate with userland, and some tips and tricks will be
pointed out. Finally a complete example will be shown.

Note that the files in/proc/sys are sysctl files: they don’t belong to procfs and are
governed by a completely different API described in the Kernel API book.

1

Chapter 1. Introduction

2

Chapter 2. Managing procfs entries
This chapter describes the functions that various kernel components use to populate the
procfs with files, symlinks, device nodes, and directories.

A minor note before we start: if you want to use any of the procfs functions, be sure to
include the correct header file! This should be one of the first lines in your code:

#include linux/proc_fs.h

2.1. Creating a regular file

struct proc_dir_entry* create_proc_entry (const char* name);
mode_t mode); struct proc_dir_entry* parent);

This function creates a regular file with the namename, file modemode in the
directoryparent . To create a file in the root of the procfs, useNULLasparent
parameter. When successful, the function will return a pointer to the freshly created
struct proc_dir_entry; otherwise it will returnNULL. describes how to do something
useful with regular files.

Note that it is specifically supported that you can pass a path that spans multiple
directories. For examplecreate_proc_entry ("drivers/via0/info") will
create thevia0 directory if necessary, with standard0755 permissions.

If you only want to be able to read the file, the functioncreate_proc_read_entry

described in may be used to create and initialise the procfs entry in one single call.

2.2. Creating a symlink

struct proc_dir_entry* proc_symlink (const char* name); struct
proc_dir_entry* parent); const char* dest);

3

Chapter 2. Managing procfs entries

This creates a symlink in the procfs directoryparent that points fromname to
dest . This translates in userland toln -s dest name .

2.3. Creating a device

struct proc_dir_entry* proc_mknod (const char* name); mode_t
mode); struct proc_dir_entry* parent); kdev_t rdev);

Creates a device filename with modemode in the procfs directoryparent . The
device file will work on the devicerdev , which can be generated by using theMKDEV

macro fromlinux/kdev_t.h . Themode parametermustcontainS_IFBLK or
S_IFCHR to create a device node. Compare with userlandmknod --mode= mode
name rdev .

2.4. Creating a directory

struct proc_dir_entry* proc_mkdir (const char* name); struct
proc_dir_entry* parent);

Create a directoryname in the procfs directoryparent .

2.5. Removing an entry

void remove_proc_entry (const char* name); struct
proc_dir_entry* parent);

4

Chapter 2. Managing procfs entries

Removes the entryname in the directoryparent from the procfs. Entries are
removed by theirname, not by the struct proc_dir_entry returned by the various create
functions. Note that this function doesn’t recursively remove entries.

Be sure to free thedata entry from the struct proc_dir_entry before
remove_proc_entry is called (that is: if there was somedata allocated, of course).
See for more information on using thedata entry.

5

Chapter 2. Managing procfs entries

6

Chapter 3. Communicating with
userland

Instead of reading (or writing) information directly from kernel memory, procfs works
with call back functionsfor files: functions that are called when a specific file is being
read or written. Such functions have to be initialised after the procfs file is created by
setting theread_proc and/orwrite_proc fields in the struct proc_dir_entry* that
the functioncreate_proc_entry returned:

struct proc_dir_entry* entry;

entry->read_proc = read_proc_foo;
entry->write_proc = write_proc_foo;

7

Chapter 3. Communicating with userland

8

