
University of Cambridge Computing Service

Specification of the Exim Mail Transfer Agent

by

Philip Hazel

University Computing Service
New Museums Site
Pembroke Street
Cambridge CB2 3QG
United Kingdom

phone: +44 1223 334600
fax: +44 1223 334679
email: ph10@cus.cam.ac.uk

Edition for Exim 3.00, May 1999

Copyright  University of Cambridge 1999

 Contents

1. Introduction 1
1.1 Web site and Mailing list 1
1.2 Availability 2
1.3 Limitations 2
1.4 Features 3
1.5 Support for IPv6 4
1.6 Calling interface 4
1.7 Terminology 5

2. Incorporated code 6

3. How Exim delivers mail 7
3.1 Philosophy 7
3.2 Message reception 7
3.3 Life of a message 8
3.4 Drivers 8
3.5 Delivery in detail 9
3.6 Temporary delivery failures 11

4. Building and installing Exim 12
4.1 Unpacking 12
4.2 Multiple machine architectures and operating systems 12
4.3 DBM libraries 12
4.4 Pre-building configuration 13
4.5 Use of tcpwrappers 13
4.6 Including support for IPv6 14
4.7 The building process 14
4.8 Overriding build-time options for Exim 14
4.9 OS-specific header files 16
4.10 Overriding build-time options for the monitor 16

 4.11 Installing commands and scripts 16
4.12 Installing info documentation 17
4.13 Setting up the spool directory 17
4.14 Testing 17
4.15 Switching Exim on 18
4.16 Exim on heavily loaded hosts 18
4.17 Stopping Exim on Solaris 2 18

5. The Exim command line 19
5.1 Setting options by program name 19
5.2 Trusted and admin users 19
5.3 Command line options 20

6. File and database lookups 32
6.1 Single-key lookup types 32
6.2 Query-style lookup types 33
6.3 Use of data lookups 33
6.4 Temporary errors in lookups 34
6.5 Partial matching in single-key lookups 34
6.6 Lookup caching 34
6.7 More about NIS+ 35
6.8 More about LDAP 35

7. The Exim configuration file 36
7.1 Configuration file format 36
7.2 Macros in the configuration file 37
7.3 Common option syntax 37

[i]

7.4 Integer 37
7.5 Octal integer 38
7.6 Fixed point number 38
7.7 Time interval 38
7.8 String 38
7.9 Expanded strings 39
7.10 User and group names 39

 7.11 String lists 39
7.12 Domain lists 39
7.13 Partial matching in domain lists 41
7.14 Address lists 41
7.15 Case of letters in address lists 43
7.16 Host lists 43
7.17 Use of RFC 1413 identification in host lists 45

8. Regular expressions 46
8.1 Testing regular expressions 46

9. String expansions 47
9.1 Testing string expansions 47
9.2 Expansion items 47
9.3 Expansion operators 49
9.4 Expansion conditions 51
9.5 Expansion variables 52
9.6 Expansion string examples 57

10. Embedded Perl 59

11. Main configuration 61

12. Driver specifications 95

13. Environment for running local transports 96
13.1 Uids and gids 96
13.2 Current and home directories 96
13.3 Expansion variables derived from the address 97

14. Generic options for transports 98

15. The appendfile transport 102
15.1 Private options for appendfile 102
15.2 Operational details for appending 110
15.3 Operational details for delivery to a new file 111

16. The autoreply transport 113
16.1 Private options for autoreply 113

17. The pipe transport 117
17.1 Returned status and data 117
17.2 How the command is run 117
17.3 Environment variables 118
17.4 Private options for pipe 118
17.5 Using an external local delivery agent 124

18. The smtp transport 125

19. Common generic options for directors and routers 130
19.1 Skipping directors and routers 135

20. Additional generic options for directors 137
20.1 Skipping directors 138

21. The aliasfile director 139
21.1 Alias file format 139
21.2 Types of alias item 139

[ii]

21.3 Duplicate addresses 141
21.4 Repeated alias expansion 141
21.5 Errors in alias files 142
21.6 Specifying transports for aliasfile 142
21.7 Aliasfile private options 142

22. The forwardfile director 147
22.1 Forward file items 147
22.2 Repeated forwarding expansion 149
22.3 Errors in forward files 149
22.4 Filter files 149
22.5 The home directory 149
22.6 Forwardfile private options 149

23. The localuser director 157

24. The smartuser director 158

25. Additional generic options for routers 159

26. The domainlist router 161
26.1 Routing rules 163
26.2 Host list format 164
26.3 Options format 164
26.4 Application of routing rules 164
26.5 Domainlist examples 165

27. The ipliteral router 168

28. The iplookup router 169

29. The lookuphost router 171

30. The queryprogram router 173

31. Retry configuration 175
31.1 Retry rules 175
31.2 Retry rule examples 177
31.3 Long-term failures 177

32. Address rewriting 179
32.1 Rewriting rules 179
32.2 Rewriting patterns 180
32.3 Rewriting replacements 181
32.4 Rewriting flags 181
32.5 Flags specifying which headers and envelope addresses to rewrite 182
32.6 The SMTP-time rewriting flag 182
32.7 Flags controlling the rewriting process 182
32.8 The additional relay checking flag 183
32.9 Rewriting examples 183

33. Customizing error and warning messages 184
33.1 Customizing error messages 184
33.2 Customizing warning messages 185

34. The default configuration file 186
34.1 Main configuration settings 186
34.2 Transport configuration settings 186
34.3 Director configuration settings 187
34.4 Router configuration settings 188
34.5 Default retry rule 188
34.6 Rewriting configuration 188

35. Multiple user mailboxes 189

[iii]

36. Using Exim to handle mailing lists 190
36.1 Syntax errors in mailing lists 190
36.2 NFS-mounted mailing lists 190
36.3 Re-expansion of mailing lists 191
36.4 Closed mailing lists 191

37. Virtual domains 192
37.1 All mail to a given host 192
37.2 Virtual domains not preserving envelopes 192
37.3 Virtual domains preserving envelopes 192

38. Intermittently connected hosts 194
38.1 Exim on the upstream host 194
38.2 Exim on the intermittently connected host 194
38.3 Handling many intermittently connected hosts 194

39. Verification of incoming mail 195
39.1 Host verification 195
39.2 Sender verification 195
39.3 Fixing bad senders 196
39.4 Header verification 197
39.5 Receiver verification 197

40. Other policy controls on incoming mail 198
40.1 Host checking using RBL 198
40.2 Other host checking 199
40.3 Sender checking 199
40.4 Control of relaying 199
40.5 Policy checking flowchart 201
40.6 Customizing prohibition messages 202

41. System-wide message filtering 205
41.1 The system message filter 205
41.2 Per-address filtering 206

42. SMTP processing 207
42.1 Outgoing SMTP over TCP/IP 207
42.2 Errors in outgoing SMTP 208
42.3 Variable Envelope Return Paths (VERP) 209
42.4 Incoming SMTP messages over TCP/IP 210
42.5 The VRFY, EXPN, and DEBUG commands 211
42.6 The ETRN command 211
42.7 Outgoing batched SMTP 211
42.8 Incoming batched SMTP 212

43. Message processing 214
43.1 Unqualified addresses 214
43.2 The UUCP From line 214
43.3 The Bcc: header 215
43.4 The Date: header 215
43.5 The Delivery-date: header 215
43.6 The Envelope-to: header 215
43.7 The From: header 215
43.8 The Message-id: header 215
43.9 The Received: header 215
43.10 The Return-path: header 216

 43.11 The Sender: header 216
43.12 The To: header 216
43.13 Adding and removing headers 216
43.14 Constructed addresses 216
43.15 Case of local parts 216

[iv]

43.16 Dots in local parts 217
43.17 Rewriting addresses 217

44. Automatic mail processing 218
44.1 System-wide automatic processing 218
44.2 Taking copies of mail 218
44.3 Automatic processing by users 219
44.4 Simplified vacation processing 219

45. Log files 220
45.1 Logging message reception 220
45.2 Logging deliveries 221
45.3 Deferred deliveries 222
45.4 Delivery failures 222
45.5 Completion 222
45.6 Other log entries 222
45.7 Log level 223
45.8 Message log 223

46. Day-to-day management 224
46.1 The panic log 224
46.2 The reject log 224
46.3 Log cycling 224
46.4 Statistics 224
46.5 What is Exim doing? 224
46.6 Changing the configuration 224
46.7 Watching the queue 225
46.8 Holding domains 225

47. Exim utilities 226
47.1 Querying Exim processes 226
47.2 Summarising the queue 226
47.3 Extracting log information 226
47.4 Cycling log files 227
47.5 Making DBM files 227
47.6 Individual retry times 227
47.7 Database maintenance 228
47.8 Mail statistics 229
47.9 Mailbox maintenance 231

48. The Exim monitor 232
48.1 Running the monitor 232
48.2 The stripcharts 232
48.3 Main action buttons 233
48.4 The log display 233
48.5 The queue display 234
48.6 The queue menu 234

49. Security considerations 236
49.1 Root privilege 236
49.2 Reading forward files 237
49.3 Delivering to local files 238
49.4 IPv4 source routing 238
49.5 The VRFY, EXPN, and ETRN commands in SMTP 238
49.6 Privileged users 238
49.7 Spool files 238
49.8 Use of argv[0] 238
49.9 Use of %f formatting 239
49.10 Embedded Exim path 239

 49.11 Use of sprintf() 239
49.12 Use of debug_printf() and log_write() 239

[v]

49.13 Use of strcat() and strcpy() 239

50. Format of spool files 240

51. Adding new drivers or lookup types 243

Index 245

[vi]

1. Introduction

If I have seen further it is by standing on the shoulders of giants. (Isaac Newton)

Exim is a mail transfer agent (MTA) for Unix systems connected to the Internet. Configuration files
currently exist for the following operating systems: AIX, BSDI, DGUX, Digital UNIX, FreeBSD, HI-
OSF (Hitachi), HP-UX, IRIX, Linux, MIPS RISCOS, NetBSD, OpenBSD, QNX, SCO, SCO SVR4.2
(aka UNIX-SV), SunOS4, Solaris (aka SunOS5), Ultrix, and Unixware. However, code is not available
for determining system load averages under Ultrix.

The terms and conditions for the use and distribution of Exim are contained in the file NOTICE. Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the file LICENCE.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, I could never have contemplated starting to write a new mailer. Many of
the ideas and user interfaces are taken from Smail 3, though the actual code of Exim is entirely new.

I am indebted to my colleague Piete Brooks for suggesting and implementing the scheme for building
Exim for multiple architectures and operating systems, for porting Exim to several different versions of
Unix, and for numerous suggestions when I was first developing it. Many other people, both in
Cambridge and around the world, have contributed to the development and the testing of Exim, and to
porting it to various operating systems. I am grateful to them all.

This edition of the Exim specification applies to version 3.00 of Exim. Substantive changes from the
2.10 edition are marked by bars in the right margin, except in the Texinfo version of the documen-
tation, because Texinfo doesn’t support change bars. Minor corrections and rewordings are not so
marked.

As the program is still developing, there may be features in later versions of the program that have not
yet made it into this document, which is updated only when the most significant digit of the fractional
part of the version number changes. However, all changes are noted briefly in the distributed file called
doc/ChangeLog, and specifications of new features that are not yet in this manual are placed in
doc/NewStuff.

1.1 Web site and Mailing list
There is a web site at http://www.exim.org by courtesy of Planet Online Ltd, who are situated in the
UK. The site is mirrored in the USA at http://www.us.exim.org by courtesy of Shore.Net. Planet
Online also run the following mailing lists:

exim-users@exim.org general discussion list
exim-users-digest@exim.org digest form of exim-users
exim-announce@exim.org moderated, low volume announcements list

Messages that are sent to the announcements list are automatically copied to the main list, and thence
to the digest list. You should therefore join only one list. Requests to be added to or deleted from the
mailing lists should be sent to exim-users-request@exim.org, exim-users-digest-request@exim.org,
or exim-announce-request@exim.org, respectively.

By courtesy of Martin Hamilton, there is an archive of the exim-users list in plain text form at
http://www.roads.lut.ac.uk/lists/exim-users/exim-users.archive and in HTML via Hypermail at
http://www.roads.lut.ac.uk/lists/exim-users/.

The list is also forwarded to http://www.egroups.com/list/exim-users, which is an archiving system
with searching capabilities.

[1] introduction (1)

1.2 Availability
The current release of Exim is always to be found in

ftp://ftp.cus.cam.ac.uk/pub/software/programs/exim/exim-n.nn.tar.gz

where n.nn is the highest such version number in the directory. When there is only a small amount of
change from one version to the next, a patch file may be provided, with a final component name of the
form

exim-patch-n.nn-m.mm.gz

For each released version, the log of changes is made separately available in the directory

ftp://ftp.cus.cam.ac.uk/pub/software/programs/exim/ChangeLogs

so that it is possible to find out what has changed without having to download the entire distribution.

The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files:

ftp://ftp.cus.cam.ac.uk/pub/software/programs/exim/exim-html-n.nn.tar.gz
 ftp://ftp.cus.cam.ac.uk/pub/software/programs/exim/exim-pdf-n.nn.tar.gz
 ftp://ftp.cus.cam.ac.uk/pub/software/programs/exim/exim-postscript-n.nn.tar.gz
 ftp://ftp.cus.cam.ac.uk/pub/software/programs/exim/exim-texinfo-n.nn.tar.gz

These tar files contain only the /doc directory, not the complete distribution.

An FAQ is available in two different formats from

ftp://ftp.cus.cam.ac.uk/pub/software/programs/exim/FAQ.txt.gz
 ftp://ftp.cus.cam.ac.uk/pub/software/programs/exim/FAQ.html.gz

The FAQ and other documentation is also available online at the web site.

There is a directory called

ftp://ftp.cus.cam.ac.uk/pub/software/programs/exim/Contrib/

which contains miscellaneous files contributed to the Exim community by Exim users, and there is
also a collection of contributed configuration examples in

ftp://ftp.cus.cam.ac.uk/pub/software/programs/exim/config.samples.tar.gz

There are a number of sites that maintain mirrors of the Exim ftp directory. Those that I know about
are listed in the file

ftp://ftp.cus.cam.ac.uk/pub/software/programs/exim/Mirrors

1.3 Limitations

• Exim is written in ANSI C. This should not be much of a limitation these days. However, to help
with systems that lack a true ANSI C library, Exim avoids making any use of the value returned
by the sprintf() function, which is one of the main incompatibilities. It has its own version of

 strerror() for use with SunOS4 and any other system that lacks this function, and a macro can be
defined to turn memmove() into bcopy() if necessary.

• Exim uses file names that are longer than fourteen characters.

• Exim is intended for use as an Internet mailer, and therefore handles addresses in RFC 822
domain format only. It cannot handle ‘bang paths’, though simple two-component bang paths can
be converted by a straightforward rewriting configuration.

• Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
qualified on arrival.

[2] introduction (1)

• The only external transport currently implemented is an SMTP transport over a TCP/IP network
(using sockets, including experimental support for IPv6). However, a pipe transport is available,
and there are facilities for writing messages to files and pipes, optionally in batched SMTP
format; these facilities can be used to send messages to some other transport mechanism such as

 UUCP, provided it can handle domain-style addresses. Batched SMTP input is also catered for.

1.4 Features
These are some of the main features of Exim:

• Exim follows the same general approach of decentralized control that Smail does. There is no
central process doing overall management of mail delivery. However, unlike Smail, the indepen-
dent delivery processes share data in the form of ‘hints’, which makes delivery more efficient in
some cases.

• Exim has flexible retry algorithms, applicable to directing and routing addresses as well as to
 delivery.

• Exim contains header and envelope rewriting facilities.

• Unqualified addresses are accepted only from specified hosts or networks.

• Exim can perform multiple deliveries down the same SMTP channel after deliveries have been
 delayed.

• Exim can be configured to do local deliveries immediately but to leave remote (SMTP) deliveries
until the message is picked up by a queue-runner process. This increases the likelihood of
multiple messages being sent down a single SMTP connection.

• Remote deliveries of the same message to different hosts can optionally be done in parallel.

• Incoming SMTP messages start delivery as soon as they are received, without waiting for the
SMTP call to close.

• Perl-compatible regular expressions are available in a number of configuration parameters.

• It is also possible to build Exim with an embedded Perl interpreter, allowing arbitrary Perl code
to be run in certain circumstances.

• Domain lists can include file lookups, making it possible to support very large numbers of local
 domains.

• Exim supports optional checking of incoming return path (sender) and receiver addresses as they
are received by SMTP.

• SMTP calls from specific machines, optionally from specific idents, can be locked out, and
incoming SMTP messages from specific senders can also be locked out. Exim also supports the
use of the Realtime Blocking List (RBL).

• Hosts that are permitted to relay mail through a machine to another external domain can be
controlled by IP number or IP network number. Relay control by recipient domain and sender
address is also available.

• Messages on the queue can be ‘frozen’ and ‘thawed’ by the administrator.

• Exim can handle a number of independent local domains on the same machine; each domain can
have its own alias files, etc. This facility is sometimes known as ‘virtual domains’.

• Exim stats a user ’s home directory before looking for a .forward file, in order to detect the case
of a missing NFS mount. Delivery is delayed if the directory is unavailable.

• Exim contains an optional built-in mail filtering facility. This can be configured to allow users to
provide personal filter files, and it is also possible for a system-wide filter file to be applied to
every message.

[3] introduction (1)

• Periodic warnings are automatically sent to messages’ senders when delivery is delayed – the
time between warnings is configurable. The warnings can be made conditional on the contents of
the message.

• A queue run can be manually started to deliver just a particular portion of the queue, or those
messages with a recipient whose address contains a given string. There is support for the ETRN

command in SMTP to interface to this.

• Exim can be configured to run as root all the time, except when performing local deliveries,
which it always does in a separate process under an appropriate uid and gid. Alternatively, it can
be configured to run as root only when needed; in particular, it need not run as root when
receiving incoming messages or when sending out messages over SMTP. See chapter 49 for a
discussion of security issues.

• I have tried to make the wording of delivery failure messages clearer and simpler, for the benefit
of those less-experienced people who are now using email. Alternative wording for these mess-
ages can be provided in a separate file.

• The Exim Monitor is an optional extra; it displays information about Exim’s processing in an X
 window, and an administrator can perform a number of control actions from the window

interface. However, all such actions are also available from the command line interface.

1.5 Support for IPv6

The current IP protocol is more strictly called IPv4. IPv6 is the next generation of IP protocol; it is
currently in an experimental state. A number of vendors have released IPv6 versions of their systems
and libraries.

If Exim is built with HAVE_IPV6 set, it uses the IPv6 API for TCP/IP input and output. IP addresses can
be given in IPv6 as well as IPv4 notation; incoming IPv4 calls use the embedded IPv6 address
notation. Currently, Exim cannot discover for itself the addresses of the host’s IPv6 interfaces (at least,
not on Solaris 2 – I don’t know the position on other systems) so the local_interfaces option must
always be used to list them explicitly, in order to prevent mail looping.

See the file README.IPV6 for general information about the current state of IPv6 support in Exim.

1.6 Calling interface

Like many MTAs, Exim has adopted the Sendmail interface so that it can be a straight replacement for
/usr/lib/sendmail. All the relevant Sendmail options are implemented, with two reservations. There are
also some additional options that are compatible with Smail 3, and some further options that are new
to Exim.

The -t option, for taking a list of recipients from a message’s headers, is documented (for Sendmail) as
suppressing delivery to any addresses on the command line. However, it appears that this is not the
case in practice. For this reason, Exim has an option called extract_addresses_remove_arguments
which controls its behaviour in this regard.

Sendmail uses the -bi option as a request to rebuild the alias file. As Exim does not have the concept
of a single alias file, it cannot mimic this behaviour. It can be configured to run a particular script
when this option is received; otherwise the option is ignored.

The runtime configuration is held in a single text file which is divided into a number of sections. The
entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A default
configuration file which is suitable for simple installations is provided in the distribution.

Control of messages on the queue can be done via certain privileged command line options. There is
also an optional monitor program called eximon, which displays current information in an X window,
and contains a menu interface to Exim’s command line administration options.

[4] introduction (1)

1.7 Terminology
The term local part, which is taken from RFC 822, is used to refer to that part of an email address that
precedes the @ sign. The part that follows the @ sign is called the domain or mail domain.

The word domain is sometimes used to mean all but the first component of a machine’s name. It is not
used in that sense here, where it normally refers to the part of an email address following the @ sign.

Local domains are mail domains for which the current host is responsible; in other words, it has
special knowledge of what to do with messages sent to such domains, and normally that means using
the local part of the address either to deliver the message on the local host or to transform the address
using an alias file or something similar. All other domains are remote domains, whose appearance
normally causes the message to be transmitted to some other host.

The distinction between local and remote domains is not always entirely clear-cut, since a host can
have special knowledge about routing for remote domains, and messages for local domains may under
some circumstances be passed to other hosts.

The terms local delivery and remote delivery are used to distinguish delivery to a file or a pipe on the
local machine from delivery by SMTP to some remote machine. The type of delivery does not
necessarily correspond to the type of address. Mail for a local domain may get passed on to some
other host, while mail for a remote domain might get delivered locally to a file or pipe for onward
transmission by some other means. However, these are special cases.

The term mailmaster is used to refer to the person in charge of maintaining the mail software on a
given computer. Commonly this will be the same person who fulfils the postmaster role, but this may
not always be the case.

The term queue is used to refer to the set of messages awaiting delivery, because this term is in
widespread use in the context of MTAs. However, in Exim’s case the reality is more like a pool than a
queue, because there is normally no ordering of waiting messages.

The term queue-runner is used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAs, and also relates to the
command runq, but in Exim the waiting messages are normally processed in an unpredictable order.

[5] introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

• Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE library, copyright  1999 University of Cambridge. The source is
distributed in the directory src/pcre.

• RFC 1413 callbacks are supported in the main Exim program using the libident library made
freely available by Peter Eriksson at ftp.lysator.liu.se. Some modifications have been made in
order to support IPv6. The source is distributed in the directory called src/libident.

• Support for the cdb (Constant DataBase) lookup method is provided by code contributed by
Nigel Metheringham of Planet Online Ltd. which contains the following statements:

Copyright  1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2 of the License, or (at your option) any later version.

This code implements Dan Bernstein’s Constant DataBase (cdb) spec. Information, the spec and sample code for cdb can be obtained from

 http://www.pobox.com/~djb/cdb.html. This implementation borrows some code from Dan Bernstein’s implementation (which has no license restrictions

applied to it).

The implementation is completely contained within the code of Exim. It does not link against an
external cdb library.

• The Exim Monitor program, which is an X-Window application, includes modified versions of
the Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the Massachusetts Institute of Technology, Cambridge, Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above

copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the names of

Digital or MIT not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL

DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

[6] incorporated code (2)

3. How Exim delivers mail

3.1 Philosophy
Exim is designed to work efficiently on systems that are permanently connected to the Internet and are
handling a general mix of mail. In such circumstances, most messages can be delivered immediately.
Consequently, Exim does not maintain independent queues of messages for specific domains or hosts,
though it does try to send several messages in a single SMTP connection after a host has been down,
and it also maintains per-host retry information.

3.2 Message reception
When Exim receives a message, it writes two files in its spool directory. The first contains the
envelope information, the current status of the message, and the headers, while the second contains the
body of the message.

The envelope information consists of the address of the message’s sender and the address(es) of the
recipient(s). This information is entirely separate from any addresses contained in the headers. The
status of the message includes a list of recipients who have already received the message. The format
of the first spool file is described in chapter 50.

Any header rewriting that is specified in the configuration (see chapter 32) is done once and for all at
the time the message is received. It is also possible to specify the addition or removal of certain
headers at the time the message is delivered (see chapters 14 and 19).

Every message handled by Exim is given a message id which is sixteen characters long. It is divided
into three parts, separated by hyphens. Each part is a sequence of letters and digits, representing a
number in base 62:

• The first six characters are the time the message was received, as a number in seconds – the
normal Unix way of representing a time of day. If the clock goes backwards (due to resetting) in
a process that is receiving more than one message, the later time is retained.

• After the first hyphen, the next six characters are the id of the process that received the message.

• The final two characters, after the second hyphen, are used to ensure uniqueness of the id. There
are two different formats:

(a) If the host_number option is not set, uniqueness is required only within the local host. This
portion of the id is ‘00’ except when a process receives more than one message in a single
second, when the number is incremented for each additional message.

(b) If the host_number option is set, uniqueness among a set of hosts is required. This portion
of the id is set to the base 62 encoding of

<sequence number> * 256 + <host number>

where <sequence number> is the count of messages received by the current process within
the current second. As the maximum value of the host number is 255, this allows for a
maximum value of 14 for the sequence number. If this limit is reached, a delay of one
second is imposed before reading the next message, in order to allow the clock to tick and
the sequence number to get reset.

The names of the two spool files consist of the message id, followed by -H for the file containing the
envelope and headers, and -D for the data file.

By default all these spool files are held in a single directory called input inside the general Exim spool
directory. Some operating systems do not perform very well if the number of files in a directory gets
very large; to improve performance in such cases there is an option that causes Exim to split up the
input files into 62 sub-directories whose names are single letters or digits.

[7] delivering mail (3)

Exim can be configured not to start a delivery process automatically when a message is received; this
can be unconditional, or depend on the number of incoming SMTP connections or the system load
(where available). In these situations, new messages wait on the queue until a queue-runner process
picks them up, but normally delivery is started as soon as a message is received.

3.3 Life of a message
A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originally created it. In cases
when delivery cannot proceed – for example, when a message can neither be delivered to its recipients
nor returned to its sender, the message is marked ‘frozen’ on the spool, and no more deliveries are
attempted.

An administrator can ‘thaw’ such messages when the problem has been corrected, and can also freeze
individual messages by hand if necessary. In addition, an administrator can force a delivery error,
causing an error message to be sent.

There is also an auto_thaw option, which can be used to cause Exim to retry frozen messages after a
certain time. When this is set, no message will remain on the queue for ever, because the delivery
timeout will eventually be reached. Delivery failure reports that reach this timeout are discarded.

As delivery proceeds, Exim writes timestamped information about each address to a per-message log
file; this includes any delivery error messages. This log is solely for the benefit of the administrator,
and is normally deleted with the spool files when processing of a message is complete. However, Exim
can be configured to retain it (a dangerous option, as the files can accumulate rapidly on a busy
system). Exim also writes delivery messages to its main log file, whose contents are described in
chapter 45.

All the information Exim itself needs to set up a delivery is kept in the first spool file with the headers.
When a successful delivery occurs, the address is immediately written at the end of a journal file,
whose name is the message id followed by -J. At the end of a delivery run, if there are some
addresses left to be tried again later, the first spool file is updated to indicate which these are, and the
journal file is then deleted. Updating the spool file is done by writing a new file and renaming it, to
minimize the possibility of data loss.

Should the system or the program crash after a successful delivery but before the spool file has been
updated, the journal is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.4 Drivers
The main delivery processing elements of Exim are called directors, routers, and transports, and
collectively these are known as drivers. Code for a number of them is provided, compile-time options
specify which ones are included in the binary, and runtime options specify which ones are actually
used.

A transport is a driver that transmits a copy of the message from Exim’s spool to some destination.
There are two kinds of transport: for a local transport, the destination is a file or a pipe on the local
host, while for a remote transport the destination is some other host. A message is passed to a specific
transport as a result of successful directing or routing. If a message has several recipients, it may be
passed to a number of different transports.

A director is a driver that operates on a local address, either determining how its delivery should
happen, or converting the address into one or more new addresses (for example, via an alias file). A
local address is one whose domain matches an entry in the list given in the local_domains option, or
has been determined to be local by a router – see below. The fact that an address is local does not
imply that the message has to be delivered locally; it can be directed either to a local or to a remote
transport.

[8] delivering mail (3)

A router is a driver that operates on an apparently remote address, that is an address whose domain
does not match anything in the list given in local_domains. When a router succeeds it can route an
address either to a local or to a remote transport, or it can change the domain, and pass the address on
to subsequent routers.

In exceptional cases, a router may determine that an address is local after all, and cause it to be passed
to the directors. This happens automatically if a host lookup expands an abbreviated domain into one
that is local. It can also be made to happen (optionally) if an MX record or other routing information
points to the local host, though by default this situation is treated as a configuration error. This is the
only case in which the directors are used to process an address that may not match anything in
local_domains. The diagram below illustrates the relationship between the three kinds of driver.

address

matches
local_domains?

transport
queues

yes

directors

no

routers

 local after all

 new address

Driver interactions

As new features have been added to Exim, the distinction between routers and directors has become
less clear-cut than it once was. However, since a typical configuration has a number of directors and
routers, checking the domain against local_domains once at the start does use fewer resources than
checking it for each of them.

3.5 Delivery in detail

When a message is to be delivered, the sequence of events is roughly as follows:

• If a system-wide filter file is specified, the message is passed to it. The filter may add recipients
to the message, replace the recipients, discard the message, cause a new message to be generated,
or cause the message delivery to fail. This facility is intended as a weapon against mail bombs
and unsolicited mail. The format of the filter file is the same as for user filter files, described in
the separate document entitled Exim’s User interface to mail filtering. Some additional features
are available in system filters – see chapter 41 for details. Note that a message is passed to the
system filter only once per delivery attempt, however many recipients it has. However, if there
are several delivery attempts because one or more addresses could not be immediately delivered,
the system filter is run each time. The filter condition first_delivery can be used to detect this.

• Each recipient address is parsed and a check is made to see if it is local, by comparing the
domain with the list in the local_domains option. This can contain wildcards and file lookups.

[9] delivering mail (3)

• If an address is local, it is passed to each configured director in turn until one is able to handle it.
If none can, the address is failed. Directors can be targeted at particular local domains, so several
local domains can be processed entirely independently of each other.

• A director that accepts an address may set up a local or a remote transport for it. The transport is
not run at this time; the address is placed on a queue for the particular transport, to be run later.

 Alternatively, the director may generate one or more new addresses (typically from alias, for-
ward, or filter files). New addresses are fed back into this process from the top, but in order to
avoid loops, a director ignores any address which has an identically-named ancestor that was
processed by itself.

• If an address is not local, it is passed to each configured router in turn until one is able to handle
it. If none can, the address is failed.

• A router that accepts an address may set up a transport for it, or may pass an altered address to
subsequent routers, or it may discover that the address is a local address after all. This typically
happens when a partial domain name is used and (for example) the DNS lookup is configured to
try to extend such names. In this case, the address is passed to the directors. Exim can also be
configured to do this for any domain whose lowest MX record or other routing information
points to the local host.

• Routers normally set up remote transports for messages that are to be delivered to other
machines. However, a router can pass a message to a local transport, and by this means such
messages can be routed to other transport mechanisms via pipes or files.

• When all the directing and routing is done, addresses that have been successfully handled are
passed to their assigned transports. When local transports are doing real local deliveries, they
handle only one address at a time, but if a local transport is being used as a pseudo-remote
transport (for example, to collect batched SMTP messages for transmission by some other means)
multiple addresses can be handled. Remote transports can always handle more than one address
at once, but can be configured not to do so, or to restrict multiple addresses to the same domain.

• Each local delivery runs in a separate process under a non-privileged uid, and they are run in
sequence. Exim can be configured so that remote deliveries run under a uid that is private to
Exim, instead of running as root. By default the remote deliveries run one at a time in the main
Exim process, but a configuration option is available to allow multiple remote deliveries for a
single message to be run simultaneously, each in its own sub-process.

• When it is doing a queue run, Exim checks its retry database to see if there has been a previous
temporary delivery failure for the address before running any local transport. If it finds one, it
does not attempt a new delivery until the retry time for the address is reached. However, this
happens only for delivery attempts that are part of a queue run, so local deliveries are always
attempted when delivery immediately follows message reception.

• Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
failures and no host has reached its retry time, no delivery is attempted, whether in a queue run
or not. See chapter 31 for details of retry strategies.

• If there were any errors, a message is returned to an appropriate address (the sender in the
common case), with details of the error for each failing address. Exim can be configured to send
copies of error messages to other addresses.

• If one or more addresses suffered a temporary failure, the message is left on the queue, to be
tried again later. Otherwise the spool files and message log are deleted, though the message log
can optionally be preserved if required.

Delivery is said to be deferred when the message remains on the queue for a subsequent delivery
attempt after a temporary failure. Such messages get processed again by queue-runner processes that
are periodically started, either by an Exim daemon or via cron.

[10] delivering mail (3)

Temporary failures may be detected during routing and directing as well as during the transport stage.
Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
31). These rules also specify when Exim should give up trying to deliver to the address, at which point
it generates a failure report.

When a delivery is not part of a queue run (typically an immediate delivery on receipt of a message),
the directors are always run for local addresses, and local deliveries are always attempted, even if retry
times are set for them. This makes for better behaviour if one particular message is causing problems
(for example, causing quota overflow, or provoking an error in a filter file). If such a delivery suffers a
temporary failure, the retry data gets updated as usual, for use by the next queue-runner process.

When a message cannot be delivered to some or all of its intended recipients, a delivery failure report
is generated. All the addresses that failed in a given delivery attempt are listed in a single failure
report. If a message has many recipients, it is possible for some addresses to fail in one delivery
attempt and others to fail subsequently, giving rise to more than one failure report for a single
message. The wording of delivery failure reports can be customized by the administrator. See chapter
33 for details.

Delivery failure messages contain an X-Failed-Recipients: header, listing all failed addresses, for the
benefit of programs that try to analyse such messages automatically.

A failure report is normally sent to the sender of the original message, as obtained from the message’s
envelope. For incoming SMTP messages, this is the address given in the MAIL command. However,
when an address is expanded via a forward or alias file, an alternative address can be specified for
delivery failures of the generated addresses. For a mailing list expansion (see chapter 36) it is common
to direct failure reports to the manager of the list.

If a failure report (either locally generated or received from a remote host) itself suffers a delivery
failure, the message is left on the queue, but is ‘frozen’, awaiting the attention of an administrator.
There are options which can be used to make Exim discard such failure reports, or to keep them for
only a short time.

3.6 Temporary delivery failures
There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Local deliveries may also be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota. Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

A machine that is connected to the Internet can normally deliver most mail straight away (the usual
figure for Cambridge is 98%). In its default configuration, Exim starts a delivery process whenever it
receives a message, and usually this completes the entire delivery. This is a lightweight approach,
avoiding the need for any centralized queue managing software. There are those who argue that a
central message manager would be able to batch up messages for the same host and send them in a
single SMTP call. I do not myself believe this would occur much in general, unless messages were
significantly delayed in order to create a batch.

However, if a host is unreachable for a period of time, a number of messages may be waiting for it by
the time it recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a
delivery to a remote host is deferred, Exim makes a note in its hints database, and whenever a
successful SMTP delivery has happened, it looks to see if any other messages are waiting for the same
host. If any are found, they are sent over the same SMTP connection, subject to a configuration limit
as to the maximum number in any one connection.

[11] delivering mail (3)

4. Building and installing Exim

4.1 Unpacking
Exim is distributed as a gzipped tar file which, when upacked, creates a directory with the name of the
current release (for example, exim-3.00) into which the following files are placed:

LICENCE the GNU General Public Licence
Makefile top-level make file
NOTICE conditions for the use of Exim
README list of files, directories and simple build instructions

Other files whose names begin with README may also be present. The following subdirectories are
created:

OS OS-specific files
doc documentation files
exim_monitor source files for the Exim monitor
scripts scripts used in the build process

 src remaining source files
util independent utilities

Some utilities are contained in the src directory, and are built with the Exim binary; those distributed
in the util directory are things like the log file analyser, which do not depend on any compile-time
configuration.

4.2 Multiple machine architectures and operating systems
The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, a build directory is created for each architecture and operating system.
Symbolic links to the sources are installed in this directory, which is where the actual building takes
place.

In most cases, Exim can discover the machine architecture and operating system for itself, but the
defaults can be overridden if necessary.

4.3 DBM libraries
Licensed versions of Unix normally contain a library of DBM functions operating via the ‘ndbm’
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they
contain as standard. In particular, some versions of Linux have no default DBM library, and different
distributors have chosen to bundle different libraries with their packaged versions. However, the more
recent releases seem to have standardised on the Berkeley DB library.

Different DBM libraries have different conventions for naming the files they use. When a program
opens a file called dbmfile, there are four possibilities:

(1) A traditional ndbm implementation, such as that supplied as part of Solaris 2, operates on two
files called dbmfile.dir and dbmfile.pag.

(2) The GNU library, gdbm, operates on a single file, but makes two different hard links to it with
names dbmfile.dir and dbmfile.pag.

(3) The Berkeley DB package, if called via its ndbm compatibility interface, operates on a single file
called dbmfile.db, but otherwise looks to the programmer exactly the same as the traditional
ndbm implementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file called dbmfile; the
programmer ’s interface is somewhat different to the traditional ndbm interface.

[12] building/installing (4)

Exim and its utilities can be compiled to use any of these interfaces. By default it assumes an interface
of type (1), though some operating system configuration files default to assuming (4). In order to use
the Berkeley DB package in native mode, it is necessary to set USE_DB in an appropriate configuration
file, and it may also be necessary to set DBMLIB, for example,

DBMLIB = -ldb

By avoiding the translation from one interface to another, some resources may be saved.

To complicate things further, there are now two very different versions of the Berkeley DB package.
Version 1.85 has been stable for quite some time, but the latest versions are numbered 2.x. Release 2
is very different internally and externally from the 1.85 release. Both versions of Berkeley DB can be
obtained from

http://www.sleepycat.com/

but maintenance of version 1.85 is being phased out, and it may not compile on some systems. There
is further discussion about the various DBM libraries in the file doc/dbm.discuss.txt.

4.4 Pre-building configuration
Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the name Local/Makefile. A template for this file is supplied as the file
src/EDITME, and it contains full descriptions of all the option settings therein.

Default values are supplied for all of them except for those that specify the locations of the runtime
configuration file and the directory for holding Exim binaries. These must be given, as Exim will not
build without them. There are a few parameters that can be specified either at build time or at run time
to enable the same binary to be used on a number of different machines. However, if the locations of
Exim’s spool directory and log file directory (if not within the spool directory) are fixed, it is
recommended that you specify them in Local/Makefile instead of at run time so that errors detected
early in Exim’s execution (such as a malformed configuration file) can be logged.

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITME must be edited appropriately for your installation and saved under the name
Local/eximon.conf. If you are happy with the default settings described in exim_monitor/EDITME,
then Local/eximon.conf can be empty, but it must exist.

This is all the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default or
by operating-system-specific configuration files, for example to change the name of the C compiler,
which defaults to gcc. See section 4.8 below for details of how to do this.

4.5 Use of tcpwrappers
Exim can be linked with the tcpwrappers library in order to check incoming SMTP calls using the
tcpwrappers control files. This may be a convenient alternative to Exim’s own checking facilities for
installations that are already making use of tcpwrappers for other purposes. To do this, you should set
USE_TCP_WRAPPERS in Local/Makefile, arrange for the file tcpd.h to be available at compile time, and
also ensure that the library libwrap.a is available at link time, typically by including ‘-lwrap’ in
EXTRALIBS. For example, if tcpwrappers is installed in /usr/local, you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-O -I/usr/local/include
EXTRALIBS=-L/usr/local/lib -lwrap

in Local/Makefile. The name to use in the tcpwrappers control files is ‘exim’. For example, the line

exim : LOCAL 192.168.0. .friendly.domain

in your /etc/hosts.allow file allows connections from the local host, from the subnet 192.168.0.0/24,
and from all hosts in *.friendly.domain. All other connections are denied. Consult the tcpwrappers
documentation for further details.

[13] building/installing (4)

4.6 Including support for IPv6
Exim contains experimental code for use on systems that have IPv6 support. The file README.IPV6
contains information on the current status of IPv6 in Exim. Setting HAVE_IPV6=YES in Local/Makefile
causes the IPv6 code to be included; it may also be necessary to set IPV6_INCLUDE and IPV6_LIBS.

4.7 The building process
Once Local/Makefile (and Local/eximon.conf, if required) have been created, run make at the top
level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 2.5.1, the directory build-
SunOS5-5.5.1-sparc is created. Symbolic links to relevant source files are installed in the build
directory.

If this is the first time make has been run, it calls a script which builds a make file inside the build
directory, using the configuration files from the Local directory. The new make file is then passed to
another instance of make which does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utilities, and
finally Exim itself. The command make makefile can be used to force a rebuild of the make file in the
build directory, should this ever be necessary.

If you have problems building Exim, check for any comments there may be in the README file
concerning your operating system, and also take a look at the FAQ, where some common problems are
covered.

4.8 Overriding build-time options for Exim
The main make file that is created at the beginning of the building process consists of the concat-
enation of a number of files which set configuration values, followed by a fixed set of make
instructions. If a value is set more than once, the last setting overrides any previous ones. This
provides a convenient way of overriding defaults. The files that are concatenated are, in order:

OS/Makefile-Default
 OS/Makefile-<ostype>

Local/Makefile
 Local/Makefile-<ostype>
 Local/Makefile-<archtype>
 Local/Makefile-<ostype>-<archtype>
 OS/Makefile-Base

where <ostype> is the operating system type and <archtype> is the architecture type. Local/Makefile
is required to exist, and the building process fails if it is absent. The other three Local files are
optional, and are often not needed.

The values used for <ostype> and <archtype> are obtained from scripts called scripts/os-type and
scripts/arch-type respectively. If either of the environment variables OSTYPE or ARCHTYPE is set, their
values are used, thereby providing a means of forcing particular settings. Otherwise, the scripts try
various ad hoc methods of determining these values. You can run these scripts directly from the shell
in order to find out what values are being used on your system.

OS/Makefile-Default contains comments about the variables that are set therein. Some (but not all)
are mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating system (OS/Makefile-<ostype>) to see what the default
values are.

If you need to change any of the values that are set in OS/Makefile-Default or in
OS/Makefile-<ostype>, or to add any new definitions, do so by putting the new values in an
appropriate Local file. For example, to specify that the C compiler is called cc rather than gcc when
compiling in the OSF1 operating system, and that it is to be to be called with the flag -std1, create a
file called Local/Makefile-OSF1 containing the lines

[14] building/installing (4)

 CC=cc
CFLAGS=-std1

This makes it easy to transfer your configuration settings to new versions of Exim simply by copying
the contents of the Local directory.

Exim contains support for doing LDAP, NIS, and NIS+ lookups, but not all systems have these
components installed, so the default is not to include the relevant code in the binary. All the different
kinds of file and database lookup that Exim supports are implemented as separate code modules which
are included only if the relevant compile-time options are set. In the case of LDAP, NIS, and NIS+,
the settings for Local/Makefile are:

LOOKUP_LDAP=yes
 LOOKUP_NIS=yes
 LOOKUP_NISPLUS=yes

In all cases the relevant include files and interface libraries need to be installed before compiling
Exim. When a lookup type is not included in the binary, attempts to configure Exim to use it cause
configuration errors.

Another optional lookup type is cdb, which is included in the binary only if

LOOKUP_CDB=yes

is set. In this case, the code is entirely contained within Exim, and no external include files or libraries
are required.

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXIM_PERL=perl.o

must be defined in Local/Makefile. Details of this facility are given in chapter 10.

The location of the X11 libraries is something that varies a lot between operating systems, and of
course there are different versions of X11 to cope with. The following three variables are set in
OS/Makefile-Default:

X11=/usr/X11R5
XINCLUDE=-I$(X11)/include

 XLFLAGS=-L$(X11)/lib

These are overridden in some of the operating-system configuration files. For example, in
OS/Makefile-SunOS5 there is

X11=/usr/openwin
XINCLUDE=-I$(X11)/include
XLFLAGS=-L$(X11)/lib -R$(X11)/lib

If you need to override the default setting for your operating system, place a definition of all three of
these variables into your Local/Makefile-<ostype> file.

If you need to add any extra libraries to the link steps, these can be put in a variable called EXTRALIBS,
which appears in all the link commands, but by default is not defined. There is also DBMLIB, which
appears in the link commands for binaries that use DBM functions (see also section 4.3). Finally, there
is EXTRALIBS_EXIMON, which appears only in the link step for the Exim monitor binary, and which can
be used, for example, to include additional X11 libraries.

Another variable which is not normally defined is STDERR_FILE. This defines a file to which debugging
output is written if the -df flag is set, and is of use when running Exim under inetd.

Yet another variable which should not normally be needed is ERRNO_QUOTA. Exim needs to know which
error the operating system gives when writing to a file fails because the user is over quota. POSIX
specifies an error called EDQUOT and this is present in the latest versions of all the systems Exim has
been ported to at the time of writing. However, it is not present in earlier versions of SunOS5, which

[15] building/installing (4)

use ENOSPC instead. The code of Exim defaults to using EDQUOT if it is defined, and ENOSPC otherwise.
You should set ERRNO_QUOTA only if your system uses some completely different error code.

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated non-
optional file (that is, Local/Makefile or Local/eximon.conf) before rebuilding.

4.9 OS-specific header files
The OS directory contains a number of files with names of the form os.h-<ostype>. These are system-
specific C header files that should not normally need to be changed. There is a list of macro settings
that are recognized in the file OS/os.configuring, which should be consulted if you are porting Exim
to a new operating system.

4.10 Overriding build-time options for the monitor
A similar process is used for overriding things when building the Exim monitor, where the files that
are involved are

OS/eximon.conf-Default
 OS/eximon.conf-<ostype>

Local/eximon.conf
 Local/eximon.conf-<ostype>
 Local/eximon.conf-<archtype>
 Local/eximon.conf-<ostype>-<archtype>

As with Exim itself, the final three files need not exist, and in this case the OS/eximon.conf-<ostype>
file is also optional. The default values in OS/eximon.conf-Default can be overridden dynamically by
setting environment variables of the same name, preceded by EXIMON_. For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of LOG_DEPTH at run time.

4.11 Installing commands and scripts
The script scripts/exim_install copies binaries and utility scripts into the directory whose name is
specified by the BIN_DIRECTORY setting in Local/Makefile. Files are copied only if they are newer than
any versions already in the binary directory, and old versions are renamed by adding the suffix .O to
their names.

The command make install runs the exim_install script with no arguments. It can be run indepen-
dently with arguments specifying which files are to be copied, from within a build directory. For
example,

(cd build-SunOS5-sparc; ../scripts/exim_install exim)

copies just the main binary file. The main exim binary is required to be owned by root and setuid, for
normal configurations. In some special cases (for example, if a host is doing no local deliveries) is is
possible to run Exim in other ways. If the binary is run by a root process, the effect is the same as if it
were setuid root. The install script tries to set root as the owner of the main binary, and to make it
setuid. It should therefore normally be run as root. If you want to see what the script will do before
running it for real, use the -n option (for which root is not needed):

(cd build-SunOS5-5.5.1-sparc; ../scripts/exim_install -n)

Exim’s runtime configuration file is named by the CONFIGURE_FILE setting in Local/Makefile. If this file
does not exist, then the default configuration file src/configure.default is copied there by the instal-
lation script. If a runtime configuration file already exists, it is left alone. The default configuration
uses the local host’s name as the only local domain, and is set up to do local deliveries into the shared
directory /var/mail, running as the local user. Aliases in /etc/aliases and .forward files in users’ home
directories are supported, but no NIS or NIS+ support is configured. Remote domains are routed using
the DNS, with delivery over SMTP.

[16] building/installing (4)

4.12 Installing info documentation
Not all systems use the GNU info system for documentation, and for this reason, the Texinfo source of
Exim’s documentation is not included in the main distribution. Instead it is available separately from
the ftp site (see section 1.2).

If you have defined INFO_DIRECTORY in Local/Makefile and the Texinfo source of the documentation is
found in the source tree, then running make install automatically builds the info files and installs
them.

4.13 Setting up the spool directory
When it starts up, Exim tries to create its spool directory if it does not exist. If a specific Exim uid and
gid are specified, these are used for the owner and group of the spool directory. Sub-directories are
automatically created in the spool directory as necessary.

4.14 Testing
Having installed Exim, you can check that the runtime configuration file is syntactically valid by
running the command

exim -bV

If there are any errors in the configuration file, Exim will output error messages. Otherwise it just
outputs the version number and build date. Some simple routing tests can be done by using the address
testing option. For example,

exim -v -bt <local username>

should verify that it recognizes a local mailbox, and

exim -v -bt <remote address>

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exim postmaster@your.domain
From: user@your.domain
To: postmaster@your.domain
Subject: Testing Exim

This is a test message.
 ^D

If you encounter problems, look at Exim’s log files (mainlog and paniclog) to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the -d option. The larger the number after -d (up to 9), the more information is output.
With -d2, for example, the sequence of directors or routers that process an address is output. If there’s
a message stuck on Exim’s spool, you can force a delivery with debugging turned on by a command
of the form

exim -d9 -M <message-id>

One specific problem that has shown up on some sites is the inability to do local deliveries into a
single shared mailbox directory that does not have the ‘sticky bit’ set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the ‘sticky bit’ on the directory, or by setting a
specific group for local deliveries and allowing that group to create files in the directory (see the
comments above the local_delivery transport in the default configuration file). Another approach is to
configure Exim not to use lock files, but just to rely on fcntl() locking instead. However, you should
do this only if all user agents also use fcntl() locking. For further discussion of locking issues, see
chapter 15.

[17] building/installing (4)

One thing that cannot be tested on a system that is already running a mailer is the receipt of incoming
SMTP mail on the standard SMTP port. However, the -oX option can be used to run an Exim daemon
that listens on some other port, or inetd can be used to do this.

Testing a new version on a system that is already running Exim can most easily be done by building a
binary with a different CONFIGURE_FILE setting. From within the runtime configuration, all other file and
directory names that Exim uses can be altered, in order to keep it entirely clear of the production
version.

4.15 Switching Exim on
Building and installing Exim does not of itself put it in general use. The name by which the system
message transfer agent is called by mail user agents is /usr/lib/sendmail, and it is necessary to make
this name point to the exim binary in order to get them to use it. This is normally done by renaming
any existing file and making /usr/lib/sendmail a symbolic link to the exim binary. It is then necessary
to stop and restart the mailer daemon, if one is running.

4.16 Exim on heavily loaded hosts
If you are running Exim on a heavily loaded host you should consider installing a current release of
bind (from http://www.isc.org) as caching nameserver, either locally or on a nearby host with fast
communications. You should also consider enabling Exim’s split_spool_directory if you expect to
have large numbers of messages awaiting delivery.

4.17 Stopping Exim on Solaris 2
The standard command for stopping the mailer daemon on Solaris 2 is

/etc/init.d/sendmail stop

If /usr/lib/sendmail has been turned into a symbolic link, this script fails to stop Exim because it uses
the command ps -e and greps the output for the text ‘sendmail’; this is not present because the actual
program name (that is, ‘exim’) is given by the ps command with these options. A fix that appears to
work on Solaris 2.5 and above is to change the script so that the ps command reads

ps -e -o pid,comm

which causes the name by which the daemon was started (that is, /usr/lib/sendmail) to be output.
However, this fails if the daemon has been restarted with SIGHUP because Exim restarts itself using the
real file name. A better solution is to replace the line that finds the process id with something like

pid=‘cat /var/spool/exim/exim-daemon.pid‘

to obtain the daemon’s pid directly from the file that Exim saves it in. See the description of the -bd
option for details of where Exim writes the daemon’s process id file.

[18] building/installing (4)

5. The Exim command line

Exim’s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name

If Exim is called under the name mailq, it behaves as if the option -bp were present before any other
options. This is for compatibility with some systems that contain a command of that name in one of
the standard libraries, symbolically linked to /usr/lib/sendmail.

If Exim is called under the name rsmtp it behaves as if the option -bS were present before any other
options, for compatibility with smail. The -bS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the name rmail it behaves as if the -i and -oee options were present before any
other options, for compatibility with smail. The name rmail is used as an interface by some UUCP
systems.

If Exim is called under the name runq it behaves as if the option -q were present before any other
options, for compatibility with smail. The -q option causes a single queue-runner process to be started.

If Exim is called under the name newaliases it behaves as if the option -bi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s alias file.
Exim does not have the concept of a single alias file, but can be configured to run a given command if
called with the -bi option.

5.2 Trusted and admin users

Some Exim options are available only to trusted users and others are available only to admin users.

• A trusted user is root or the Exim user (if defined) or any user listed in the trusted_users
configuration option, or any user for whom the currently set group is one of those listed in the

 trusted_groups configuration option.

Trusted users are permitted to use the -f option or a leading ‘From ’ line to specify the envelope
sender of a message that is passed to Exim through the local interface (see the -bm and -f
options below). They may also specify a host name, host address, interface address, protocol
name, and ident value. Thus they are able to insert messages into Exim’s queue locally that have
the characteristics of messages received from a remote host.

From: headers are not checked to see if Sender: is needed when the caller is trusted.

• An admin user is root or the Exim user (if defined) or any user that is a member of the Exim
group (if defined). The current group does not have to be the Exim group. Admin users are
permitted to operate on messages in the queue, for example, to force delivery failures. It is also
necessary to be an admin user in order to see the full information provided by the Exim monitor.

By default, the use of the -M, -q, and -R options to cause Exim to attempt delivery of messages
on its queue is restricted to admin users. However, this restriction can be relaxed by setting the

 prod_requires_admin option false (that is, specifying no_prod_requires_admin).

Similarly, the use of the -bp option to list all the messages in the queue is restricted to admin
users unless queue_list_requires_admin is set false.

[19] command line (5)

5.3 Command line options
The command options are described in alphabetical order below.

-- This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they
begin with hyphens.

-bd Run Exim as a daemon, awaiting incoming SMTP connections. This option can be used only
by an admin user. If either of the -d or -dm options are set, the daemon does not disconnect
from the controlling terminal. By default, Exim listens for incoming connections on all the

 host’s interfaces, but it can be restricted to specific interfaces by setting the local_interfaces
option in the configuration file. The standard SMTP port is used, but this can be varied by
means of the daemon_smtp_port configuration option or the -oX command line option. Most

 commonly, the -bd option is combined with the -q<time> option, to cause periodic queue runs
to happen as well.

The process id of a daemon that is both listening on the standard SMTP port and periodically
starting queue runners is written to a file called exim-daemon.pid in Exim’s spool directory.
If a non-standard port is used, the file name is exim-daemon.<port-number>.pid. If a daemon
is run with only one of -bd or -q<time>, then that option is added on to the end of the file
name, allowing sites that run two separate daemons to distinguish them.

It is possible to change the directory in which these pid files are written by changing the
setting of PID_FILE_PATH in Local/Makefile. The files are written while Exim is still running as
root. Further details are given in the comments in src/EDITME.

The SIGHUP signal can be used to cause the daemon to re-exec itself. This should be done
whenever Exim’s configuration file is changed, or a new version of Exim is installed. It is not
necessary to do this when other files (for example, alias files) are changed.

-bF <filename>
This option is the same as -bf except that it assumes that the filter being tested is a system

 filter. The additional commands that are available only in system filters are recognized.

-bf <filename>
Run Exim in filter testing mode; the file is the filter file to be tested, and a test message must
be supplied on the standard input. If there are no message-dependent tests in the filter, an
empty file can be supplied. If a system filter file is being tested, -bF should be used instead of

 -bf. If the test file does not begin with the special line

Exim filter

then it is taken to be a normal .forward file, and is tested for validity under that interpret-
ation. The result of this command, provided no errors are detected, is a list of the actions that
Exim would try to take if presented with the message for real. More details of filter testing
are given in the separate document entitled Exim’s User interface to mail filtering.

When testing a filter file, the envelope sender can be set by the -f option, or by a ‘From ’ line
at the start of the test message. Various parameters that would normally be taken from the
envelope recipient address of the message can be set by means of additional command line
options. These are:

-bfd <domain> default is the qualify domain
-bfl <local_part> default is the logged in user
-bfp <local_part_prefix> default is null
-bfs <local_part_suffix> default is null

The local part should always be set to the incoming address with any prefix or suffix stripped,
because that is how it appears when a message is actually being delivered.

-bh <IP address>
This option runs a fake SMTP session as if from the given IP address, using the standard
input and output. Comments as to what is going on are written to the standard error file.

[20] command line (5)

These include lines beginning with ‘LOG’ for anything that would have been logged. This
facility is for testing configuration options for blocking hosts and/or senders and for checking
on relaying control. Messages supplied during the testing session are discarded, and nothing is
written to any of the real log files. There may be pauses when DNS (and other) lookups are
taking place, and of course these may time out. The -oMi option can be used to specify a
specific IP interface if this is important.

-bi Sendmail interprets the -bi option as a request to rebuild its alias file. Exim does not have the
concept of a single alias file, and so it cannot mimic this behaviour. However, calls to
/usr/lib/sendmail -bi tend to appear in various scripts such as NIS make files, so the option
must be recognized.

If -bi is encountered, the command specified by the bi_command configuration option is run,
under the uid and gid of the caller of Exim. If the -oA option is used, its value is passed to
the command as an argument. The command set by bi_command may not contain arguments.
The command can use the exim_dbmbuild utility, or some other means, to rebuild alias files
if this is required. If the bi_command option is not set, then calling Exim with -bi is a no-op.

-bm Accept an incoming, locally-generated message on the current input, and deliver it to the
addresses given as the command arguments (except when -t is also given – see below). Each

 argument can be a comma-separated list of RFC 822 addresses. This is the default option, and
is assumed if no other conflicting option is present.

The format of the message must be as defined in RFC 822, except that, for compatibility with
sendmail and smail, a line in one of the forms

From sender Fri Jan 5 12:55 GMT 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to
appear at the start of the message. There appears to be no authoritative specification of the
format of this line. Exim recognizes it by matching against the regular expression defined by
the uucp_from_pattern option, which can be changed if necessary. The specified sender is
treated as if it were given as the argument to the -f option, but if a -f option is also present,
its argument is used in preference to the address taken from the message. The caller of Exim
must be a trusted user for the sender of a message to be set in this way.

-bp List the contents of the mail queue on the standard output. If the -bp option is followed by a
list of message ids, then just those messages are listed. By default, this option lists only those
messages submitted by the calling user unless the caller is an admin user. The queue_list_

 requires_admin option can be set false to allow any user to see the entire queue.

Each message on the queue is displayed as in the following example:

25m 2.9K 0t5C6f-0000c8-00 <alice@wonderland.fict.book>
 red.king@looking-glass.fict.book
 <other addresses>

The first line contains the length of time the message has been on the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. If the message is a delivery error message, the
sender address is empty, and appears as ‘<>’. If the message is frozen (attempts to deliver it
are suspended) then the text ‘*** frozen ***’ is displayed at the end of this line.

The recipients of the message (taken from the envelope, not the headers) are displayed on
subsequent lines. Those addresses to which the message has already been delivered are
marked with the letter D. If an original address gets expanded into several addresses via an
alias or forward file, the original is displayed with a D only when deliveries for all of its child
addresses are complete.

[21] command line (5)

-bpa This option operates like -bp, but in addition it shows delivered addresses that were generated
from the original top level address(es) in each message by alias or forwarding operations.
These addresses are flagged with ‘+D’ instead of just ‘D’.

-bpr This option operates like -bp, but the output is not sorted into chronological order of message
arrival. This can speed it up when there are lots of messages on the queue, and is particularly
useful if the output is going to be post-processed in a way that doesn’t need the sorting.

-bpra This option is a combination of -bpr and -bpa.

-bpru This option is a combination of -bpr and -bpu.

-bpu This option operates like -bp but shows only undelivered top-level addresses for each mess-
age displayed. Addresses generated by aliasing or forwarding are not shown, unless the
message was deferred after processing by a director with the one_time option set.

-bP If this option is given with no arguments, it causes the values of all Exim’s main configur-
ation options to be written to the standard output. The values of one or more specific options
can be requested by giving their names as arguments, for example:

exim -bP qualify_domain local_domains

If configure_file is given, the name of the runtime configuration file is output. If log_file_
path or pid_file_path are given, the names of the directories where log files and daemon pid
files are written are output, respectively. If these values are unset, log files are written in a
sub-directory of the spool directory called log, and pid files are written directly into the spool

 directory.

If one of the words director, router, or transport is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim -bP transport local_delivery

The generic driver options are output first, followed by the driver ’s private options. A list of
the names of drivers of a particular type can be obtained by using one of the words

 director_list, router_list, or transport_list, and a complete list of all drivers with their
option settings can be obtained by using directors, routers, or transports.

-brt This option is for testing retry rules, and it must be followed by up to three arguments. It
causes Exim to look for a retry rule that matches the values and to write it to the standard
output. For example:

exim -brt bach.comp.mus
Retry rule: *.comp.mus F,2h,15m; FG,4d,30m;

See chapter 31 for a description of Exim’s retry rules. The first argument, which is required,
can be a complete address in the form local_part@domain, or it can be just a domain name.
The second argument is an optional second domain name; if no retry rule is found for the first

 argument, the second is tried. This ties in with Exim’s behaviour when looking for retry rules
for remote hosts – if no rule is found that matches the host, one that matches the mail domain
is sought. The final argument is the name of a specific delivery error, as used in setting up
retry rules, for example ‘quota_3d’.

-brw This option is for testing address rewriting rules, and it must be followed by a single
 argument, consisting of either a local part without a domain, or a complete address with a

fully qualified domain. Exim outputs how this address would be rewritten for each possible
place it might appear. See chapter 32 for further details.

-bS This option is used for batched SMTP input, where messages have been received from some
external source by an alternative transport mechanism. It causes Exim to accept one or more
messages by reading SMTP on the standard input, but to generate no responses. If any error is
encountered reports are written to the standard output and error streams, and Exim gives up
immediately.

[22] command line (5)

If the caller is trusted, then the senders in the MAIL commands are believed; otherwise the
sender is always the caller of Exim. Unqualified senders and receivers are not rejected (there
seems little point) but instead just get qualified. Sender addresses are verified if sender_verify
is set, unless sender_verify_batch is unset (which is the default). Receiver verification and
administrative rejection is not done, even if configured. HELO and EHLO act as RSET; VRFY,

 EXPN, ETRN, HELP, and DEBUG act as NOOP; QUIT quits. The return code is 0 if no error was
detected; it is 1 if one or more messages were accepted before the error was detected;
otherwise it is 2. More details of input using batched SMTP are given in section 42.8.

-bs This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. Some user agents use this
interface as a way of passing locally-generated messages to the MTA. The option can also be
used to run Exim from inetd, as an alternative to using a listening daemon, in which case the
standard input is the connected socket. Exim distinguishes between the two cases by
attempting to read the IP address of the peer connected to the standard input. If it is not a
socket, the call to getpeername() fails, and Exim assumes it is dealing with a local message.

If the caller of Exim is trusted, then the senders of messages are taken from the SMTP MAIL

commands. Otherwise the content of these commands is ignored and the sender is set up as
the calling user.

-bt Run in address testing mode, in which each argument is taken as an address to be tested. The
results are written to the standard output. If no arguments are given, Exim runs in an
interactive manner, prompting with a right angle bracket for addresses to be tested. Each
address is handled as if it were the recipient address of a message and passed to the
appropriate directors or routers (compare the -bv option); the result is written to the standard
output. The return code is 2 if any address failed outright; it is 1 if no address failed outright
but at least one could not be resolved for some reason. Return code 0 is given only when all
addresses succeed.

If any of the directors or routers in the configuration makes any tests on the sender address of
a message, then you should use the -f option to set an appropriate sender when running -bt
tests. Without it, the sender is assumed to be the calling user at the default qualifying domain.

-bV Write the current version number, compilation number, and compilation date of the exim
binary to the standard output.

-bv Verify the addresses that are given as the arguments to the command, and write the results to
the standard output. Verification differs from address testing (the -bt option) in that directors
and routers that have no_verify set are skipped, and if the address is accepted by a director or
router that has fail_verify set, verification fails. This is the same logic that is used when
verifying addresses of incoming messages (see chapter 39). The address is verified as a
recipient if -bv is used; to verify as for a sender address, -bvs should be used.

If the -v (or -d) option is not set, the output consists of a single line for each address, stating
whether it was verified or not, and giving a reason in the latter case. Otherwise, more details
are given of how the address has been handled, and in the case of aliases or forwarding, the
generated addresses are also considered.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at
least one could not be resolved for some reason. Return code 0 is given only when all
addresses succeed.

If any of the directors or routers in the configuration makes any tests on the sender address of
a message, then you should use the -f option to set an appropriate sender when running -bv
tests. Without it, the sender is assumed to be the calling user at the default qualifying domain.

-bvs This option acts like -bv, but verifies the address as a sender rather than a recipient address.
This affects any rewriting and qualification that might happen.

-C <filename>
Read the runtime configuration from the given file instead of from the default file specified by

[23] command line (5)

the CONFIGURE_FILE compile-time setting. When this option is used by an unprivileged caller
and the file name given is different from the compiled-in name, Exim gives up its root
privilege immediately, and runs with the real and effective uid and gid set to those of the

 caller, to avoid any security exposure. It does not do this if the caller is root or the exim user.
The facility is useful for ensuring that configuration files are syntactically correct, but cannot
be used for test deliveries, unless the caller is privileged, or unless it’s an exotic configuration
that does not require privilege. No check is made on the owner or group of the file specified
by this option.

-D<macro>=<value>
This option can be used to override macro definitions in the configuration file (see section
7.2). However, like -C, if it is used by an unprivileged caller, it causes Exim to give up its
root privilege. This option may be repeated up to 10 times on a command line.

-d<number>
Set a debug level, causing debugging information to be written to the standard error file.
White space between -d and the number is optional. If no number is given, 1 is assumed, and
the higher the number, the more output is produced. A value of zero turns debugging output

 off and is the default. A value of 9 gives the maximum amount of general information, 10
gives in addition details of the interpretation of filter files, and 11 or higher also turns on the
debugging option for DNS lookups.

-df If this option is set and STDERR_FILE was defined when Exim was built, debugging information
is written to the file defined by that variable instead of to the standard error file. This option
provides a way of obtaining debugging information when Exim is run from inetd.

-dm This option causes information about memory allocation and freeing operations to be written
to the standard error file.

-dropcr At least one MUA (dtmail) that calls an MTA via the command line is broken in that it
terminates each line with CRLF, instead of just LF, which is the usual Unix convention, and
although this bug has been admitted, it apparently won’t get fixed. There is also some UUCP
software which leaves CR at the ends of lines in messages. As a slight pander to these
programs, the -dropcr option causes Exim to drop all CR characters in an incoming non-
SMTP message.

-E This option specifies that an incoming message is a locally-generated delivery failure report.
It is used internally by Exim when handling delivery failures and is not intended for external
use. Its only effect is to stop Exim generating certain messages to the mailmaster, as
otherwise message cascades could occur in some situations. As part of the same option, a
message id may follow the characters -E. If it does, the log entry for the receipt of the new
message contains the id, following ‘R=’, as a cross-reference.

-ex There are a number of sendmail options starting with -oe which seem to be called by various
programs without the leading o in the option. For example, the vacation program uses -eq.
Exim treats all options of the form -ex as synonymous with the corresponding -oex options.

-F <string>
Set the sender ’s full name for use when a locally-generated message is being accepted. In the
absence of this option, the user ’s gecos entry from the password file is used. As users are
generally permitted to alter their gecos entries, no security considerations are involved. White
space between -F and the <string> is optional.

-f <address>
Set the address of the sender of a locally-generated message. This option can normally be
used only by root or the Exim user or by one of the configured trusted users. However,
anyone may use it when testing a filter file with -bf or when testing or verifying addresses
using the -bt or -bv options. In other cases, the sender of a local message is always set up as
the user who ran the exim command, and -f is ignored, with one exception. If the special
setting -f <> is used by an untrusted user, it does not affect the sender for the purposes of

[24] command line (5)

managing the Sender: and From: headers, but it does have the effect of causing any SMTP
transmissions to be sent out with

MAIL FROM:<>

and local deliveries to contain

Return-path: <>

when configured to contain Return-path: headers. The filtering code treats such a message as
an error message, and won’t generate messages as a result of reading it.

White space between -f and the <string> is optional. The sender of a locally-generated
message can also be set by an initial ‘From ’ line in the message – see the description of -bm
above, but if -f is also present, it overrides ‘From ’.

-h <number>
This option is accepted for compatibility with sendmail, but at present has no effect. (In
sendmail it overrides the ‘hop count’ obtained by counting Received: headers.)

-i This option, which has the same effect as -oi, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. I can find no documentation for this option in
Solaris 2.4 sendmail, but the mailx command in Solaris 2.4 uses it.

-M The arguments are interpreted as a list of message ids, and Exim runs a delivery attempt on
each message in turn. If any of the messages are frozen, they are automatically thawed before
the delivery attempt. Retry hints for any of the addresses are overridden – Exim tries to
deliver even if the normal retry time has not yet been reached. This option requires the caller
to be an admin user. However, there is an option called prod_requires_admin which can be
set false to relax this restriction (and also the same requirement for the -q and -R options).

-Mar <message id> <address> <address> ...
The first argument must be a message id, and the remaining ones must be email addresses.
Exim adds the addresses to the list of recipients of the message (‘ar ’ for ‘add recipients’).

 However, if the message is active (in the middle of a delivery attempt), its status is not
altered. This option can be used only by an admin user.

-MC <transport> <hostname> <sequence number> <message id>
This option is not intended for use by external callers. It is used internally by Exim to invoke
another instance of itself to deliver a waiting message using an existing SMTP channel, which
is passed as the standard input and output. Details are given in chapter 42. This must be the
final option, and the caller must be root or the Exim user in order to use it.

-MCQ <process id>
This option is not intended for use by external callers. It is used internally by Exim in
conjunction with -MC option to pass on the process id of the queue runner which initiated the
original delivery, if there was one.

-MCS This option is not intended for use by external callers. It is used internally by Exim in
conjunction with -MC option, and passes on the fact that the SMTP SIZE option should be
used on messages delivered down the existing channel.

-Mc The arguments are interpreted as a list of message ids, and Exim runs a delivery attempt on
each message in turn, but unlike the -M option, it does check for retry hints, and respects any
that are found. This option is not very useful to external callers (except for testing). It is
provided for internal use by Exim when it needs to re-invoke itself in order to regain root
privilege for a delivery (see chapter 49).

-Meb <message id>
This runs, under /bin/sh, the command defined in the shell variable VISUAL or, if that is not
defined, EDITOR or, if that is not defined, the command vi, on a copy of the spool file
containing the body of message (‘eb’ for ‘edit body’). If the editor exits normally, then the
result of editing replaces the spool file. The message is locked during this process, so no

[25] command line (5)

delivery attempts can occur. Note that the first line of the spool file is its own name; care
should be taken not to disturb this. The thinking behind providing this feature is that an
administrator who has had to mess around with the addresses to get a message delivered
might want to add some comment at the start of the message text. This option can be used
only by an admin user.

-Mes <message id> <address>
There must be exactly two arguments. The first argument must be a message id, and the
second one an email address. Exim changes the sender address in the message to the given
address, which must be a fully qualified address or ‘<>’ (‘es’ for ‘edit sender’). However, if
the message is active (in the middle of a delivery attempt), its status is not altered. This
option can be used only by an admin user.

-Mf The arguments are interpreted as a list of message ids, and each message is marked ‘frozen’.
This prevents any delivery attempts taking place until the message is ‘thawed’, either manu-
ally or as a result of the auto_thaw configuration option. However, if any of the messages are
active (in the middle of a delivery attempt), their status is not altered. This option can be used
only by an admin user.

-Mg The arguments are interpreted as a list of message ids, and Exim gives up trying to deliver
those messages. A delivery error message is sent, containing the text ‘cancelled by
administrator ’. However, if any of the messages are active, their status is not altered. This
option can be used only by an admin user.

-Mmad <message id>
Exim marks all the recipient addresses in the message as already delivered (‘mad’ for ‘mark
all delivered’). However, if the message is active (in the middle of a delivery attempt), its
status is not altered. This option can be used only by an admin user.

-Mmd <message id> <address> <address> ...
The first argument must be a message id, and the remaining ones must be email addresses.
Exim marks the given addresses as already delivered (‘md’ for ‘mark delivered’). However, if
the message is active (in the middle of a delivery attempt), its status is not altered. This
option can be used only by an admin user.

-Mrm The arguments are interpreted as a list of message ids, and each message is completely
removed from Exim’s queue, and forgotten. However, if any of the messages are active, their
status is not altered. This option can be used only by an admin user or by the user who
originally caused the message to be placed on the queue.

-Mt The arguments are interpreted as a list of message ids, and each message that was ‘frozen’ is
now ‘thawed’, so that delivery attempts can resume. However, if any of the messages are
active, their status is not altered. This option can be used only by an admin user.

-Mvb <message id>
The contents of the message body (-D) spool file are written to the standard output. This
option can be used only by an admin user.

-Mvh <message id>
The contents of the message headers (-H) spool file are written to the standard output. This
option can be used only by an admin user.

-Mvl <message id>
The contents of the message log spool file are written to the standard output. This option can
be used only by an admin user.

-m This is apparently a synonym for -om that is accepted by sendmail, so Exim treats it that
way too.

-N This is a debugging option that inhibits delivery of a message at the transport level. It implies
at least -d1. Exim goes through many of the motions of delivery – it just doesn’t actually
transport the message, but instead behaves as if it had successfully done so. However, it does

[26] command line (5)

not make any updates to the retry database, and the log entries for deliveries are flagged with
 ‘*>’ rather than ‘=>’. Only root or the exim user are allowed to use -N with -bd, -q, -R or

-M. In other words, an ordinary user can use it only when supplying an incoming message to
which it will apply.

-oA <file name>
This option is used by Sendmail in conjunction with -bi to specify an alternative alias file
name. Exim handles -bi differently; see the description above.

-oB <n> This is a debugging option which limits the maximum number of multiple SMTP deliveries
down one channel to <n>, overriding the value set in the smtp transport. If <n> is omitted,
the limit is set to 1 (no batching).

-odb This option applies to all modes in which Exim accepts incoming messages, including the
listening daemon. It requests ‘background’ delivery of such messages, which means that the
accepting process automatically starts another delivery process for each message received.
Exim does not wait for such processes to complete (it can take some time to perform SMTP
deliveries). This is the default action if none of the -od options are present.

-odf This option (compatible with smail) requests ‘foreground’ (synchronous) delivery when Exim
has accepted a locally-generated message. For the daemon it is exactly the same as -odb. For
a single message received on the standard input, if the protection regime permits it (see
chapter 49), Exim converts the reception process into a delivery process. In other cases, it
creates a new delivery process, and then waits for it to complete before proceeding.

-odi This option is synonymous with -odf. It is provided for compatibility with sendmail.

-odq This option applies to all modes in which Exim accepts incoming messages, including the
listening daemon. It specifies that the accepting process should not automatically start a
delivery attempt for each message received. Messages are placed on the queue, and remain
there until a subsequent queue-running process encounters them. The queue_only configur-
ation option has the same effect.

-odqr This option applies to all modes in which Exim accepts incoming messages, including the
listening daemon. It causes Exim to process local addresses when a message is received, but
not even to try routing remote addresses. Contrast with -odqs below, which does the routing,
but not the delivery. The remote addresses will be picked up by the next queue runner. The

 queue_remote configuration option has the same effect for specific domains.

-odqs This option is a hybrid between -odb and -odq. A delivery process is started for each
incoming message, the addresses are all processed, and local deliveries are done in the normal

 way. However, if any SMTP deliveries are required, they are not done at this time. Such
messages remain on the queue until a subsequent queue-running process encounters them.
Because routing was done, Exim knows which messages are waiting for which hosts, and so a
number of messages for the same host will get sent in a single SMTP connection. The
queue_smtp configuration option has the same effect for specific domains. See also the -qq
option.

-oee If an error is detected while a non-SMTP message is being received (for example, a mal-
formed address), the error is reported to the sender in a mail message. Provided the message
is successfully sent, Exim exits with a return code of zero. If not, the return code is 2 if the
error was that the message had no recipients, and 1 otherwise. This option is the default if
Exim is called as rmail.

-oem This is the same as -oee, except that Exim always exits with a non-zero return code, whether
or not the error message was successfully sent. This is the default option, unless Exim is
called as rmail.

-oep If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error file (stderr).

-oeq This option is supported for compatibility with sendmail, but has the same effect as -oep.

[27] command line (5)

-oew This option is supported for compatibility with sendmail, but has the same effect as -oem.

-oi This option, which has the same effect as -i, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. This is the default if Exim is called as rmail.

-oMa <host address>
This option sets the sender host address value, and can be used only by a trusted caller,
except in conjunction with the -bh option. A real incoming connection overrides the address
set by -oMa. The value is used in log entries and can appear in Received: headers. The
option is intended for use when handing to Exim messages received by other means, either
via the command line or by using the -bs option. If -oMt is set then -oMa should normally be
set as well.

-oMi <interface address>
This option sets the IP interface address value, and can be used only by a trusted caller,
except in conjunction with the -bh option. A real incoming connection overrides the address
set by -oMi. The option is intended for use when handing to Exim messages received by
other means, either via the command line or by using the -bs option.

-oMr <protocol name>
This option sets the received protocol value, and can be used only by a trusted caller, except
in conjunction with the -bh option. The value is used in log entries and can appear in
Received: headers. The option is intended for use when handing to Exim messages received
by other means. It applies only to non-SMTP and batched SMTP input.

-oMs <host name>
This option sets the sender host name value, and can be used only by a trusted caller, except
in conjunction with the -bh option. The value is used in log entries and can appear in
Received: headers. The option is intended for use when handing to Exim messages received
by other means.

-oMt <ident string>
This option sets the sender ident value, and can be used only by a trusted caller, except in
conjunction with the -bh option. The value is used in log entries and can appear in Received:
headers. The default setting for local callers is the login id of the calling process. This can be
overridden by supplying an empty argument. The option is intended for use when handing to
Exim messages received by other means.

-om In sendmail, this option means ‘me too’, indicating that the sender of a message should
receive a copy of the message if the sender appears in an alias expansion. Exim always does
this, so the option does nothing.

-or <time>
This option sets a timeout value for incoming non-SMTP messages. If it is not set, Exim will
wait forever for the standard input. The value can also be set using the accept_timeout
configuration variable. The format used for specifying times is described in section 7.7.

-ov This option has exactly the same effect as -v.

-oX <number>
This option is relevant only when the -bd option is also given. It overrides any setting of the
daemon_smtp_port option, and specifies an alternative TCP/IP port number for the listening
daemon. When used, the process number of the daemon is written to a file whose name is

 exim-daemon.<number>.pid in Exim’s spool directory or the directory specified by PID_FILE_

 PATH in Local/Makefile.

-pd This option applies when an embedded Perl interpreter is linked with Exim (see chapter 10).
It overrides the setting of the perl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

[28] command line (5)

-ps This option applies when an embedded Perl interpreter is linked with Exim (see chapter 10).
It overrides the setting of the perl_at_start option, forcing the starting of the interpreter to
occur as soon as Exim is started.

-q If the -q option is not followed by a time value, it requests a single queue run operation. This
option requires the caller to be an admin user. However, there is an option called

 prod_requires_admin which can be set false to relax this restriction (and also the same
requirement for the -M and R options).

Exim starts up a delivery process for each (inactive) message on the queue in turn, and waits
for it to finish before starting the next one. If the delivery process spawns other processes to
deliver other messages down passed SMTP connections, the queue runner waits for these to
finish before proceeding. When all the queued messages have been considered, the original
process terminates. In other words, a single pass is made over the waiting mail. Use -q with a
time (see below) if you want this to be repeated periodically.

Exim processes the waiting messages in an unpredictable order. It isn’t very random, but it is
likely to be different each time, which is all that matters. If one particular message screws up
a remote MTA, other messages to the same MTA have a chance of getting through if they get
tried first.

However, it is possible to cause the messages to be processed in lexical message id order,
which is essentially the order in which they arrived, and to start this operation at a particular
point by following the -q option with a starting message id. For example:

exim -q 0t5C6f-0000c8-00

This causes Exim to skip any messages whose ids are lexically less than the given id. A
second id can also be given to stop the queue run before the end. See also -R and the
queue_run_in_order option.

-q <time>
This version of the -q option (which again can be run only by an admin user) causes Exim to
run as a daemon, starting a queue-running process at intervals specified by the given time
value (whose format is described in section 7.7). This form of the -q option is commonly
combined with the -bd option, in which case a single daemon process handles both functions.
A common way of starting up a combined daemon at system boot time is to use a command
such as

/opt/exim/bin/exim -bd -q30m

Such a daemon listens for incoming SMTP calls, and also fires up a queue-runner process
every 30 minutes. The process id of such a daemon is written to a file called exim-
daemon.pid in Exim’s spool directory, unless the -oX option has been used, in which case the
file is called exim-daemon.<port-number>.pid. The location of the pid file can be changed by
defining PID_FILE_PATH in Local/Makefile. If a daemon is started without -bd then the -q
option used to start it is added to the pid file name.

-qf This option operates like -q, and may appear with or without a following time. The difference
is that a delivery attempt is forced for each non-frozen message, whereas with -q only those
non-frozen addresses that have passed their retry times are tried.

-qff This option operates like -qf and may appear with or without a following time. The difference
is that any frozen messages are automatically thawed, and delivery is attempted for them.

-qfl This option operates like -ql, and may appear with or without a following time. The differ-
ence is that a delivery attempt is forced for the local addresses in each non-frozen message,
whereas with -ql only those non-frozen local addresses that have passed their retry times are
tried.

-qffl This option operates like -qfl and may appear with or without a following time. The differ-
ence is that any frozen messages are automatically thawed, and delivery is attempted for any
local addresses in them.

[29] command line (5)

-ql This option operates like -q, and may appear with or without a following time. The difference
is that only local addresses (those with domains that match local_domains) are considered for

 delivery. Note that -ql cannot detect apparently remote addresses that actually turn out to be
local when their domains get fully qualified.

-qq... If any command line option starting with -q is specified with an additional q (for example,
 -qqf) then all the resulting queue runs are done in two stages. In the first stage, the queue is

scanned as if the queue_smtp_domains option matched every domain. This causes remote
addresses to be routed, but no transportation to be done. The database that remembers which
messages are waiting for specific hosts is updated, as if delivery to those hosts had been
deferred. After this is complete, a second, normal queue scan happens, and normal directing,
routing, and delivery takes place. Messages which are routed to the same host should mostly
be delivered down a single SMTP connection because of the hints that were set up during the
first queue scan. This option may be useful for hosts that are connected to the Internet

 intermittently.

-qR <string>
This option is synonymous with -R. It is provided for sendmail compatibility.

-qRf <string>
This option is synonymous with -Rf.

-R <string>
The white space between -R and the string is optional. This option is similar to -q with no
time value, except that, when scanning the messages on the queue, Exim processes only those
that are not frozen and have at least one undelivered address containing the given string,
which is checked in a case-independent way. However, once a message is selected, all its
addresses are processed. For the first message containing a matching address, Exim overrides
any retry information and forces a delivery attempt. This makes it straightforward to initiate
delivery of all messages to a given domain after a host has been down for some time. When
the SMTP command ETRN is permitted (see the smtp_etrn options), its default effect is to run
Exim with the -R option.

-Rf <string>
This option acts like -R, but forces a delivery for every matching non-frozen message, not
just the first one. White space is required between -Rf and the string.

-Rff <string>
This option acts like -Rf, but also thaws any frozen messages it encounters.

-r This is a documented (for sendmail) obsolete alternative name for -f.

-t When Exim is receiving a locally-generated, non-SMTP message on the current input, the -t
option causes the recipients of the message to be obtained from the To:, Cc:, and Bcc:
headers in the message instead of from the command arguments. The addresses are extracted
before any rewriting takes place.

If there are in fact any arguments, they specify addresses to which the message is not to be
delivered. That is, the argument addresses are removed from the recipients list obtained from
the headers. This is compatible with Smail 3 and in accordance with the documented behav-
iour of Sendmail. However, it has been reported that in some versions at least, Sendmail adds

 argument addresses to those obtained from the headers. Exim can be made to behave in this
way by setting the option extract_addresses_remove_arguments false.

If a Bcc: header is present, it is removed from the message unless there is no To: or Cc:
 header, in which case a Bcc: header with no data is created, in accordance with RFC 822.

-v This option has exactly the same effect as -d1; it causes Exim to be ‘verbose’ and produce
some output describing what it is doing on the standard error file. In particular, if an SMTP
connection is made, the SMTP dialogue is shown.

[30] command line (5)

-x AIX uses -x for a private purpose (‘mail from a local mail program has National Language
Support extended characters in the body of the mail item’). It sets -x when calling the MTA
from its mail command. Exim ignores this option.

[31] command line (5)

6. File and database lookups

Exim can be configured to look up data in files or databases in a number of different circumstances.
This chapter discusses some of the common features of the data lookup facilities; particular cases are
covered in more detail in subsequent chapters.

Two different styles of data lookup are implemented:

• The single-key style requires the specification of a file in which to look, and a single key to
search for.

• The query style accepts a generalized query, which may contain one or more keys.

The code for each lookup type is in a separate source file which is compiled and included in the binary
of Exim only if the corresponding compile-time option is set. The default settings in src/EDITME are:

LOOKUP_DBM=yes
 LOOKUP_LSEARCH=yes

which means that only linear searching and DBM lookups are included by default.

6.1 Single-key lookup types
The following single-key lookup types are implemented:

• lsearch: The given file is searched linearly for a line beginning with the single key, terminated by
a colon or white space or the end of the line. White space between the key and the colon is
permitted. The remainder of the line, with leading and trailing white space removed, is the data.
This can be continued onto subsequent lines by starting them with any amount of white space,
but only a single space character is included in the data at such a junction. If the data begins with
a colon, then the key must be terminated by a colon, for example:

baduser: :fail:

Empty lines and lines beginning with # are ignored, even if they occur in the middle of an item.
This is the traditional textual format of alias files.

• dbm: Calls to DBM library functions are used to extract data from the given DBM file by
looking up the record with the given key. The terminating binary zero is included in the key that
is passed to the DBM library.

• nis: The given file is the name of a NIS map, and a NIS lookup is done with the given key,
excluding the terminating binary zero. There is a variant called nis0 which does include the
terminating binary zero in the key. This is needed for Sun-style alias files. Exim does not
recognize NIS aliases; the full map names must be used.

• cdb: The given file is searched as a Constant DataBase file, using the key string without the
terminating binary zero. The cdb format is designed for indexed files that are read frequently and
never updated, except by total re-creation. As such, it is particulary suitable for large files
containing aliases or other indexed data referenced by an MTA. Information about cdb can be
found at

http://www.pobox.com/~djb/cdb.html

The cdb distribution is not needed in order to build Exim with cdb support, as the code for
reading cdb files is included directly in Exim itself. However, no means of building or testing cdb
files is provided with Exim because these are available within the cdb distribution.

If ‘*’ is added to a single-key lookup type (for example, lsearch*), then if the initial lookup fails, the
key ‘*’ is looked up in the file to provide a default value. See also the section on partial matching
below.

[32] file/database lookups (6)

Alternatively, if ‘*@’ is added to a single-key lookup type (for example dbm*@) then, if the initial
lookup fails and the key contains an @ character, a second lookup is done with everything before the
last @ replaced by *. This makes it possible to provide per-domain defaults in alias files that include
the domains in the keys. If the second lookup fails, then ‘*’ is looked up.

There has been some confusion about the way lsearch lookups work, in particular in a domain or host
list. An item in one of these lists may be a plain file name, or a file name preceded by a search type,
and these behave differently. For a plain file name, for example

local_domains = /etc/local-mail-domains

each line of the file is treated as if it appeared as an item in the list, and negated items, wild cards, and
regular expressions may be present. However, if an item is specified as an lsearch lookup, for example

local_domains = lsearch;/etc/local-mail-domains

then negated items, wild cards, and regular expressions may not be used, because lsearch is an
indexed lookup method which, when given a key (the domain in the above example), yields a data
value that corresponds to that key. The fact that the file is searched linearly does not make this kind of
search any different from the other single-key lookup types, and an lsearch file can always be directly
converted into one of the other types. Thus the keys in the file are literal strings and are not interpreted
in any way.

6.2 Query-style lookup types
The following query-style lookup types are implemented:

• nisplus: This does a NIS+ lookup using a query that may contain any number of keys, and which
can specify the name of the field to be returned. See section 6.7 below.

• ldap: This does an LDAP lookup using a query in the form of a URL. There is a variant called
ldapm which permits values from multiple entries to be returned. See section 6.8 below.

• dnsdb: This does a DNS search for a TXT record whose domain name is the supplied query. The
resulting data is the contents of the TXT record.

• testdb: This is a lookup type which is for use in debugging Exim. It is not likely to be useful in
normal operation.

6.3 Use of data lookups
There are three different types of configuration item in which data lookups can be specified:

(1) Any string that is to be expanded may contain explicit lookup requests. String expansions are
described in chapter 9.

(2) Lists of domains and other items can contain lookup requests as a way of avoiding excessively
long linear lists. See section 7.12 for a full description.

(3) Some drivers can be configured directly to look up data in files.

In a string expansion, all the parameters of the lookup are specified explicitly, while for the other types
there is always one implicit key involved. For example, the local_domains option contains a list of
local domains; when it is being searched there is some domain name that is an implicit key.

This is not a problem for single-key lookups; the relevant file name is specified, and the key is
implicit. For example, the list of local domains could be given as

local_domains = dbm;/local/domain/list

However, for query-style lookups the entire query has to be specified, and to do this, some means of
including the implicit key is required. The special expansion variable $key is provided for this
purpose. NIS+ could be used to look up local domains by a setting such as

local_domains = nisplus;[domain=$key],domains.org_dir

[33] file/database lookups (6)

In cases where drivers can be configured to do lookups, there are always three alternative configuration
options: file is used for single-key lookups, using an implicit key, and query or queries is specified for
query-style lookups. In these cases the query is an expanded string, and the implicit key that would be
used for file is always available as one of the normal expansion variables. The difference between
query and queries is that in the latter case the string is treated as a colon-separated list of queries that
are tried in order until one succeeds.

6.4 Temporary errors in lookups
Lookup functions can return temporary error codes if the lookup cannot be completed. (For example, a
NIS or LDAP database might be unavailable.) When this occurs in a transport, director, or router,
delivery of the message is deferred, as for any other temporary error. In other circumstances Exim may
assume the lookup has failed, or may give up altogether. It is not advisable to use a lookup that might
defer for critical options such as (to give an extreme example) local_domains.

6.5 Partial matching in single-key lookups
The normal operation of a single-key lookup is to search the file for an exact match with the given
key. However, in a number of situations where domains are being looked up, it is possible to request
partial matching. In this case, information in the file that has a key starting with ‘*.’ matches any
domain that ends with the components that follow the fullstop. For example, if a key in a DBM file is

*.dates.fict.book

then this matches 2001.dates.fict.book and 1984.dates.fict.book when partial matching is enabled. It
also matches dates.fict.book, if that key does not itself appear as a key in the file.

Partial matching is requested by adding the string ‘partial-’ to the front of the name of a search type,
for example, partial-dbm. The subject key is first looked up verbatim; if that fails, then ‘*.’ is added
at the start and it is looked up again. If that fails, then further lookups are tried with dot-separated
components removed from the start, one-by-one, and ‘*.’ added on the front, until there are fewer than
two non-* components left. For example, if subject key is 2250.dates.fict.book then the following
keys are looked up:

2250.dates.fict.book
*.2250.dates.fict.book
*.dates.fict.book
*.fict.book

As soon as one key in the sequence is successfully looked up, the lookup finishes.

The minimum number of non-* components can be adjusted by including a number before the hyphen
in the search type. For example, partial3-lsearch specifies a minimum of three non-* components in
the key. If ‘partial0’ is used, the original key gets shortened right down to the null string, and the final
lookup is for ‘*’ on its own.

If the search type ends in ‘*’ or ‘*@’, then the search for an ultimate default happens after all partial
lookups have failed. If ‘partial0’ is specified, adding ‘*’ to the search type has no effect, because the
‘*’ key is already included in the sequence of partial lookups.

The use of ‘*’ in lookup partial matching differs from its use as a wildcard in domain lists and the
like. Partial matching works only in terms of dot-separated components; a key such as *fict.book in a
database file is useless, because the asterisk in a partial matching subject key is always followed by
a dot.

6.6 Lookup caching
Exim caches the most recent lookup result on a per-file basis for single-key lookup types, and keeps
the relevant files open. In some types of configuration this can lead to many files being kept open for
messages with many recipients. To avoid hitting the operating system limit on the number of simulta-
neously open files, Exim closes the least recently used file when it needs to open more files than its

[34] file/database lookups (6)

own internal limit, which can be changed via the lookup_open_max option. For query-style lookups,
a single data cache per lookup type is kept. The files are closed and the caches flushed at strategic
points during delivery – for example, after all directing and routing is complete.

6.7 More about NIS+
NIS+ queries consist of a NIS+ indexed name followed by an optional colon and field name. If this is
given, the result of a successful query is the contents of the named field; otherwise the result consists
of a concatenation of field-name=field-value pairs, separated by spaces. Empty values and values
containing spaces are quoted. For example, the query

[name=mg1456],passwd.org_dir

might return the string

name=mg1456 passwd="" uid=999 gid=999 gcos="Martin Guerre"
home=/home/mg1456 shell=/bin/bash shadow=""

(split over two lines here to fit on the page), whereas

[name=mg1456],passwd.org_dir:gcos

would just return

Martin Guerre

with no quotes. A NIS+ lookup fails if NIS+ returns more than one table entry for the given
indexed key.

6.8 More about LDAP
The include files and libraries needed to compile Exim with LDAP support can be obtained from

http://www.openldap.org

This code is a development of the original University of Michigan LDAP implementation. Other
LDAP implementations exist; there is one from Netscape, and Solaris 7 contains inbuilt LDAP
support. Unfortunately , though these are all compatible at the lookup function level, their error
handling is different. For this reason it is necessary to set a compile-time variable when building Exim
with LDAP, to indicate which LDAP library is in use. One of the following should appear in your
Local/Makefile:

LDAP_LIB_TYPE=UMICHIGAN
LDAP_LIB_TYPE=NETSCAPE
LDAP_LIB_TYPE=SOLARIS7

If LDAP_LIB_TYPE is not set, Exim uses a heuristic to guess which of the University of Michigan or
Netscape libraries is in use. It cannot distinguish the Solaris 7 library.

An LDAP query takes the form of a URL as defined in the Internet Draft draft-ietf-asid-
ldapv3-url-04.txt. For example, in the configuration of an aliasfile director one might have these
settings:

search_type = ldap
query = "ldap:///o=University%20of%20Cambridge,c=UK\

 ?mailbox?sub?(cn=$local_part)"

If an LDAP lookup finds an entry with no attributes, it behaves as if the entry did not exist.

The ldap lookup type generates an error if more than one entry matches the search filter, whereas
ldapm permits this case. It is possible for multiple values, separated by newlines, to be returned for
both ldap and ldapm, but in the former case you know that whatever values are returned all came
from a single entry in the directory.

[35] file/database lookups (6)

7. The Exim configuration file

Exim uses a single runtime configuration file which it reads when it is starting up. The name of the file
is compiled into the binary for security reasons, and is specified by the CONFIGURE_FILE compilation
option.

Some sites may wish to use the same Exim binary on different machines that share a file system, but
to use different configuration files on each machine. If CONFIGURE_FILE_USE_NODE is defined in
Local/Makefile, then Exim first looks for a file whose name is the configuration file name followed by
a dot and the machine’s node name, as obtained from the uname() function. If this file does not exist,
the standard name is tried.

In some esoteric situations different versions of Exim may be run under different effective uids and the
CONFIGURE_FILE_USE_EUID is defined to help with this. See the comments in src/EDITME for details.

The runtime configuration file must be owned by root or by the user that is specified at compile time
by the EXIM_UID option, and it must not be world-writeable or group-writeable, unless its group is the
one specified at compile time by the EXIM_GID option.

A one-off alternative configuration file can be specified by the -C command line option, but if this is
done, Exim immediately gives up its root privilege, unless called by root or the Exim user, so this
option is useful mainly for checking the syntax of configuration files before installing them. No owner
or group checks are done on a configuration file specified by -C.

A default configuration file, which will work correctly in simple situations, is provided in the file
src/configure.default. The installation process copies this into CONFIGURE_FILE if there is no previously-
existing configuration file.

If a syntax error is detected while reading the configuration file, Exim writes a message on the
standard error, and exists with a non-zero return code. The message is also written to the panic log.

7.1 Configuration file format
Exim’s configuration file is in six parts, which must appear in the correct order in the file, separated by
lines containing just the word ‘end’. These parts contain:

• Main configuration settings.

• Configuration settings for the transport drivers. Transports define mechanisms for copying mess-
ages to destinations.

• Configuration settings for the director drivers. Directors process local addresses, that is, those
with domains that match local_domains. These are typically (but not necessarily) delivered on
the local host.

• Configuration settings for the router drivers. Routers process remote addresses, that is, those with
domains that do not match local_domains.

• Retry rules, for use when a message cannot be immediately delivered.

• Address rewriting rules.

Blank lines in the file are ignored, and lines starting with a # character are treated as comments and
are also ignored. Note that a # character other than at the beginning of a line is not treated specially,
and does not introduce a comment. A convenient way to create a configuration file is to start from the
default, which is supplied in src/configure.default, and add, delete, or change settings as required.

The retry and rewriting rules have their own syntax which is described in chapters 31 and 32. The
earlier parts of the configuration file (whose setting are described in chapters 11 – 30) have some
syntactic items in common, and these are described in sections 7.3 onwards. Before that, the simple
macro facility is described.

[36] configuration file (7)

7.2 Macros in the configuration file
If a line in the main part of the configuration (that is, before the first ‘end’ line) begins with an upper-
case letter, it is taken as a macro definition, of the form

<name> = <rest of line>

The name must consist of letters, digits, and underscores, and need not all be in upper-case, though
that is recommended. The rest of the line is the replacement text, and has leading and trailing white
space removed. Quotes are not removed. If the line ends with a backslash character after trailing space
is removed, then the next line is concatenated with it, with the backslash character and any leading
space on the following line omitted. This continues for as long as lines end in backslash. Thus a
replacement text can never end with a backslash character, but this doesn’t seem to be a serious
limitation.

Once a macro is defined, all subsequent lines in the file are scanned for the macro name; if there are
several macros, the line is scanned for each in turn, in the order in which they are defined. The
replacement text is not re-scanned for the current macro, though it will be for subsequently defined
macros. For this reason, a macro name may not contain the name of a previously defined macro as a
substring. You could, for example, define

ABCD_XYZ = <<something>>
ABCD = <<something>>

but putting the definitions in the opposite order would provoke a configuration error.

As an example of macro usage, suppose you have lots of local domains, but they fall into three
different categories. You could set up

LOCAL1 = domain1:\
domain2

LOCAL2 = domain3:domain4
LOCAL3 = dbm;/list/of/other/domains

local_domains = LOCAL1:LOCAL2:LOCAL3

and then use the domains option on appropriate directors to handle each set of domains differently.
This avoids having to list each domain in more than one place.

7.3 Common option syntax
For the main set of options and for driver options, each setting is on a line by itself, and starts with a
name consisting of lower-case letters and underscores. Many options require a data value, and in these
cases the name must be followed by an equals sign (with optional white space) and then the value. For
example:

exim_user = exim

Options whose type is given as boolean are on/off switches that are not always followed by a data
value. If the option name is specified on its own, the switch is turned on; if it is preceded by ‘no_’ or
‘not_’ then the switch is turned off. However, boolean options may be followed by an equals sign and
one of the words ‘true’, ‘false’, ‘yes’, or ‘no’. For example:

sender_verify
no_smtp_verify
queue_only = true

The types of data that may be required by non-boolean options are described in the following sections.

7.4 Integer
If a numerical data item starts with the characters ‘0x’, the remainder of it is interpreted as a
hexadecimal number. Otherwise, it is treated as octal if it starts with the digit 0, and decimal if not. If

[37] configuration file (7)

an integer value is followed by the letter K, it is multiplied by 1024; if it is followed by the letter M, it
is multiplied by 1024x1024.

When the values of integer option settings are output, values which are an exact multiple of 1024 or
1024x1024 are printed using the letters K and M. The printing style is independent of the actual input
format that was used.

7.5 Octal integer
The value of an option specified as an octal integer is always interpreted in octal, whether or not it
starts with the digit zero. Such options are always output in octal.

7.6 Fixed point number
A fixed point number consists of a decimal integer, optionally followed by a decimal point and up to
three further digits.

7.7 Time interval
A time interval is specified as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

s seconds
m minutes
h hours
d days
w weeks

For example, ‘3h50m’ specifies 3 hours and 50 minutes. The values of time intervals are output in the
same format.

7.8 String
If a string data item does not start with a double-quote character, then it is taken as consisting of the
remainder of the line, starting at the first character after any white space, with trailing white space
characters removed, and with no interpretation of the characters therein.

If a string does start with a double-quote, then it continues to a closing double-quote, with the
backslash character being interpreted as an escape character. If a backslash occurs at the end of an
input line, the string is continued on the following line, with any leading white space being removed.
Because Exim removes comment lines (those beginning with #) at an early stage, they can appear in
the middle of a multi-line string.

The following two settings are equivalent:

trusted_users = "uucp:\
 mail"
trusted_users = uucp:mail

If a backslash occurs in the middle of a line in a quoted string, the following escapes are recognized:

\\ single backslash
\n newline
\r carriage return
\t tab

 \<octal digits> up to 3 octal digits specify one character
 \x<hex digits> up to 2 hexadecimal digits specify one character

If a backslash is followed by some other character, including a double-quote character, then that
character replaces the pair.

[38] configuration file (7)

7.9 Expanded strings
Some strings in the configuration file are subjected to string expansion, by which means various parts
of the string may be changed according to the circumstances. The input syntax for such strings is as
just described; the expansion process is described in chapter 9.

7.10 User and group names
User and group names are specified as strings, using the syntax described above, but the strings are
interpreted specially. In the main section of the configuration file, a user or group name must either
consist entirely of digits, or be a name that can be looked up using the getpwnam() or getgrnam()
function, as appropriate.

When a user or group is specified as an option for a driver, it may alternatively be a string that gets
expanded each time the user or group value is required. The presence of a $ character in the string
causes this action to happen. Each time the string is expanded, the result must either be a digit string,
or a name that can be looked up using getpwnam() or getgrnam(), as appropriate.

7.11 String lists
Some configuration settings accept a colon-separated list of strings. In these cases the entire list is
treated as a single string as far as the input syntax is concerned. The trusted_users setting in section
7.8 above is an example. If a colon is actually needed in an item in a string list, it can be entered as
two colons. This is unfortunately necessary for all colons appearing in IPv6 addresses.

Leading and trailing white space on each item in a string list is ignored. This makes it possible to
include items that start with a colon, and in particular, certain forms of IPv6 address. For example:

local_interfaces = "127.0.0.1 : ::::1"

See README.IPV6 for general information about IPv6 support in Exim.

7.12 Domain lists
Domain lists are colon-separated string lists containing a number of patterns that are to be matched
against a mail domain. For example, the local_domains option is a domain list which must match all
the domains that Exim is to treat as local.

Items in a domain list may be positive or negative. Negative items are indicated by a leading
exclamation mark, which may be followed by optional white space. The list is scanned from left to
right. If the domain matches a positive item, it is in the set of domains which the list defines; if it
matches a negative item, it is not in the set. If the end of the list is reached without the domain having
matched any of the patterns, it is accepted if the last item was a negative one, but not if it was a
positive one. For example,

relay_domains = !a.b.c : *.b.c

matches any domain ending in .b.c except for a.b.c. Domains that match neither a.b.c nor *.b.c are not
accepted, because the last item in the list is positive. However , if the setting were

relay_domains = !a.b.c

then all domains other than a.b.c would be accepted because the last item in the list is negative. In
effect, a list that ends with a negative item behaves as if it had ‘: *’ appended to it.

The following types of item may appear in domain lists:

• If an item in a domain list is a plain absolute file name (beginning with a slash character), then
each line of the file is read and processed as if it were an independent item in the list, except that
further plain file names are not allowed. This happens each time the list is searched. If a #
character appears anywhere in a line of the file, it and all following characters are ignored. Blank
lines are also ignored. Wild cards, negation, and regular expressions may be used in the lines of
the file, just as in the main list. For example, if

[39] configuration file (7)

local_domains = /etc/local-domains

then the file could contain lines like

^.*\d{3}\.mydomain\.com$

If a plain file name is preceded by an exclamation mark, the sense of any match within the file is
inverted. For example, if

hold_domains = !/etc/nohold-domains

and the file contains the lines

!a.b.c
*.b.c

then a.b.c is in the set of domains defined by hold_domains, whereas any domain matching
*.b.c is not.

• If a pattern consists of a single @ character, it matches the local host name, as set in the
primary_hostname option. This makes it possible to use the same configuration file on several

 different hosts that differ only in their names.

• If a pattern starts with an asterisk, then the remaining characters of the pattern are compared with
the terminating characters of the domain. The use of ‘*’ in domain lists differs from its use in
partial matching lookups. In a domain list, the character following the asterisk need not be a dot,
whereas partial matching works only in terms of dot-separated components. For example, a
domain list item such as *key.ex matches donkey.ex as well as cipher.key.ex.

• If a pattern starts with a circumflex character, then it is treated as a regular expression, and
matched against the domain using a regular expression matching function. The circumflex is
treated as part of the regular expression. References to descriptions of the syntax of regular
expressions are given in chapter 8, but note that if a backslash is required in the regular
expression, it must be given as two backslashes if the string is in quotes.

There are some cases where a domain list is the result of string expansion, for example the
domains option in routers and directors. In these cases you must escape any backslash and dollar
characters in regular expressions, to prevent them from being interpreted by the string expander,
and if the string is specified in quotes, the resulting backslashes must themselves also be escaped.

• If a pattern starts with the name of a single-key lookup type followed by a semicolon (for
example, ‘dbm;’ or ‘lsearch;’) then the remainder of the pattern must be a file name in a suitable
format for the lookup type. For example, for ‘lsearch;’ it must be an absolute path. The
appropriate type of lookup is done on the file using the domain name as the key. The data from
the lookup is available in some cases via the expansion variable $domain_data. Note that this is
not an ‘include’ facility when the lookup type is ‘lsearch’. The keys in the file are not interpreted

 specially, as they would be if they appeared as individual items in the domain list, or as lines in a
file referenced without a search type.

• Any of the single-key lookup type names may be preceded by ‘partial<n>-’, where the <n> is
optional, for example,

partial-dbm;/partial/domains

This causes partial matching logic to be invoked; a description of how this works is given in the
next section.

• Also, any of the single-key lookup types may be followed by an asterisk. This causes a default
lookup for a key consisting of a single asterisk to be done if the original lookup fails. This is not
a useful feature when using a domain list to select particular domains (because any domain
would match), but it might have value if the result of the lookup is being used via the
$domain_data expansion variable.

• If the pattern starts with the name of a query-style lookup type followed by a semicolon (for
example, ‘nisplus;’ or ‘ldap;’) then the remainder of the pattern must be an appropriate query for

[40] configuration file (7)

the lookup type, as described in chapter 6. The data returned by a successful query is available in
some cases via the expansion variable $domain_data.

The query is expanded before use, and the expansion substitution $key can be used to insert the
domain that is being tested into the query. There are cases where a domain list is the result of an
earlier string expansion, for example the domains option in routers and directors. In these cases
you must use \$key to delay the substitution of the variable until the second expansion, and a
double backslash is needed if the whole domain list is in quotes.

• If none of the above cases apply, a straight textual comparison is made between the pattern and
the domain.

Here is an example which uses several different kinds of pattern:

local_domains = "@@:\
 lib.unseen.edu:\

*.foundation.fict.book:\
^[1-2]\\d{3}\\.fict\\.book$:\

 dbm;/opt/data/penguin/book:\
 nis;domains.byname:\

nisplus;[name=$key,status=local],domains.org_dir"

Note the necessary doubling of the backslashes in the regular expression. There are obvious processing
trade-offs among the various matching modes. Using an asterisk is faster than a regular expression,
and listing a few names explicitly probably is too. The use of a file or database lookup is expensive,
but may be the only option if hundreds of names are required. Because the patterns are tested in order,
it makes sense to put the most commonly matched patterns earlier in the string.

7.13 Partial matching in domain lists
When one of the single-key lookup types is preceded by ‘partial-’ then matching proceeds as follows:
First the subject text is looked up verbatim; if that fails, ‘*.’ is added to the front of the subject and
another lookup is tried. If that fails, domains are chopped off and replaced by ‘*.’ until there are fewer
than two left. For example, if

*.neverwhere.tvs

is a key in single-key lookup file, then subdomains of neverwhere.tvs such as market.neverwhere.tvs
and downst.neverwhere.tvs match it, as does neverwhere.tvs itself, provided there isn’t a separate
entry for it in the file. A different minimum number of components can be imposed by supplying a
number after ‘partial’, for example, ‘partial3-dbm’.

7.14 Address lists
An address list is a string list in which each item is a pattern to be matched against a mail address. As
in the case of domain lists, the list is searched from left to right, any item may be preceded by an
exclamation mark to negate it, and a plain file name may appear as an entire item, causing each line of
the file to be read and treated as a separate pattern. Because local parts may legitimately contain #
characters, a comment in the file is recognized only if # is followed by white space or the end of the
line.

The following kinds of pattern may appear inline or as lines in an included file:

• If a pattern starts with ^ then a regular expression match is done against the complete address,
using the entire pattern as the regular expression.

• Otherwise, if there is no @ in the pattern, it is first matched against the domain part of the
subject address, the local part being ignored. This match is done exactly as for an entry in a
domain list, so, for example, the item may begin with * or it may be a (partial) lookup (see
section 7.12). If there is no match, and the pattern consists of a single lookup, then the entire
subject address is looked up in the file, with partial matching disabled. This means that an item
such as

[41] configuration file (7)

sender_reject_recipients = partial-dbm;/black/list

can reference a single file whose keys are a mixture of complete domains, partial domains, and
individual mail addresses. Note that this is not an ‘include’ facility when the lookup type is
‘lsearch’. The keys in the file are not interpreted specially, as they would be if they appeared as
individual items in the address list, or lines in a file given as a plain file name without a search
type.

• If the pattern starts with ‘@@<lookup-item>’ (for example, ‘@@lsearch;/some/file’), the address
that is being checked is split into a local part and a domain. The domain is looked up in the file.
If it is not found, there is no match. If it is found, the data that is looked up from the file is
treated as a colon-separated list of local part patterns, each of which is matched against the
subject local part in turn.

The lookup may be a partial one, and/or one involving a search for a default keyed by ‘*’. The
local part patterns that are looked up can be regular expressions or begin with ‘*’, or even be
further lookups. They may also be independently negated. For example, with

sender_reject_recipients = @@dbm;/etc/reject-by-domain

the data from which DBM file is built could contain lines like

baddomain.com: !postmaster : *

If a local part that actually begins with an exclamation mark is required, it has to be specified
using a regular expression. In lsearch files, an entry may be split over several lines by indenting
the second and subsequent lines, but the separating colon must still be included at line breaks.
White space surrounding the colons is ignored. For example:

aol.com: spammer1 : spammer2 : ^[0-9]+$:
spammer3 : spammer4

As in all colon-separated lists in Exim, a colon can be included in an item by doubling.

If the last item in the list starts with a right angle-bracket, then the remainder of the item is taken
as a new key to look up in order to obtain a continuation list of local parts. The new key can be
any sequence of characters. Thus one might have entries like

aol.com: spammer1 : spammer 2 : >*
xyz.com: spammer3 : >*
*: ^\d{8}$

in a file that was searched with @@dbm*, to specify a match for 8-digit local parts for all
domains, in addition to the specific local parts listed for each domain. Of course, using this
feature costs another lookup each time a chain is followed, but the effort needed to maintain the
data is reduced. It is possible to construct loops using this facility, and in order to catch them, the
chains may be no more than fifty items long.

• If none of the above cases apply, the local part of the subject address is compared with the local
part of the pattern, which may start with an asterisk. If the local parts match, then the domains
are compared in exactly the same way as entries in a domain list, except that a regular expression
is not permitted for a domain only. However, file lookups are permitted. For example:

sender_reject = "*@*.spamming.site:\
bozo@partial-lsearch;/list/of/dodgy/sites"

The domain may be given as a single @ character, as in a domain list, standing for the local host
name, leading to items of the form ‘user@@’. If a local part that actually begins with an
exclamation mark is required, it has to be specified using a regular expression, as otherwise the
exclamation mark is treated as a sign of negation.

[42] configuration file (7)

7.15 Case of letters in address lists
Domains in email addresses are always handled caselessly, but for local parts case may be significant
on some systems (see locally_caseless for how Exim deals with this when processing local addresses).
However, RFC 2505 (Anti-Spam Recommendations for SMTP MTAs) suggests that matching of
addresses to blocking lists should be done in a case-independent manner. Since most address lists in
Exim are used for this kind of control, Exim attempts to do this by default.

The domain portion of an address is always lowercased before matching it to an address list. The local
part is lowercased by default, and any string comparisons that take place are done caselessly. This
means that the data in the address list itself, in files included as plain file names, and in any file that is
looked up using the ‘@@’ mechanism, can be in any case. However, the keys in files that are looked
up by a search type other than lsearch (which works caselessly) must be in lower case, because these
lookups are not case-independent.

To allow for the possibility of caseful address list matching, if an item in the list is the string
‘+caseful’ then the original case of the local part is restored for any comparisons that follow, and
string comparisons are no longer case-independent. This does not affect the domain.

7.16 Host lists
Host lists are used to control what remote hosts are allowed to do (for example, use the local host as a
relay). A host list consists of host name and IP address patterns which define a set of hosts that the list
matches. Items in the list may be positive or negative. Negation is indicated by preceding an item with
an exclamation mark. A plain absolute file name (beginning with a slash) can be used to include items
from a file. Negation and included files operate exactly as for domain lists – see section 7.12 for
examples.

The following types of pattern may appear in a host list:

• If the entire item is ‘*’ it matches any host.

• If the item is in the form of an IP address, it is matched against the IP address of the subject
host. The presence of a colon is taken as an indication that it is an IPv6 address (when IPv6
support is compiled into Exim); such colons have to be doubled, because colon is the item
separator in the list.

• If the item is in the form of an IP address followed by a slash and a mask length (for example
131.111.0.0/16) then it is matched against the IP address of the subject host under the given
mask, which specifies the number of address bits that must match, starting from the most
significant end. Thus an entire network of hosts can be included (or excluded) by a single item.

IPv4 addresses are given in the normal ‘dotted-quad’ notation. IPv6 addresses are given in colon-
separated format, but the colons have to be doubled so as not to be taken as item separators. This
example shows both kinds of address:

receiver_unqualified_hosts = "123.123.0.0/16: \
5f03::1200::836f::::/48"

The doubling of colons in IPv6 addresses applies only when such addresses appear inline in a
host list. It is not required when indirecting via a file. For example,

receiver_unqualified_hosts = /opt/exim/unqualnets

could make use of a file containing

123.123.0.0/16
5f03:1200:836f::/48

to have exactly the same effect as the previous example.

If an IPv4 host calls an IPv6 host, the incoming address actually appears in the IPv6 host as
‘::ffff:<v4address>’. When such an address is tested against a host list, it is converted into a
traditional IPv4 address first.

[43] configuration file (7)

• If the item is of the form

net<number>-<search-type>;<search-data>

for example:

net24-dbm;/networks.db

then the IP address of the subject host is masked using <number> as the mask length; a textual
string is then constructed from the masked value, followed by the mask, and this is then used as
the key for the lookup. For example, if the host’ s IP address is 192.152.34.6 then the key that is
looked up for the above example is ‘192.152.34.0/24’.

• If the entire item is ‘@’ the primary host name is used as the the match item, and the following
applies:

• If the item is a plain domain name, then Exim calls gethostbyname() to find its IP address(es).
This typically causes a forward DNS lookup of the name. The result is compared with the IP
address of the subject host.

The remaining items are wildcarded patterns for matching against the host name. If the host name is
not already known, Exim calls gethostbyaddr() to obtain it from the IP address. This typically causes
a reverse DNS lookup to occur. If the lookup fails, Exim takes a hard line by default and access is not
permitted. If the list is an ‘accept’ list, Exim behaves as if the current host is not in the set defined by
the list, whereas if it is a ‘reject’ list, it behaves as if it is. For example,

host_reject = +allow_unknown:*.enemy.ex

rejects connections from any host whose name matches *.enemy.ex, but only if it can find a host name
from the incoming IP address.

To change this behaviour, the special item ‘+allow_unknown’ may appear in the list (at top level – it
is not recognized in an indirected file); if any subsequent items require a host name, and the reverse
DNS lookup fails, Exim permits the access, that is, its behaviour is the opposite to the default.

As a result of aliasing, hosts may have more than one name. When processing any of the following
items, all the host’s names are checked.

• If the item starts with ‘*’ then the remainder of the item must match the end of the host name.
For example, *.b.c matches all hosts whose names end in .b.c. This special simple form is
provided because this is a very common requirement. Other kinds of wildcarding require the use
of a regular expression.

• If the item starts with ‘^’ then it is taken to be a regular expression which is matched against the
host name. For example,

^(a|b)\.c\.d$

matches either of the two hosts a.c.d or b.c.d. If the option string in which this occurs is given in
quotes, then the backslash characters must be doubled, because they are significant in quoted
strings. The following two settings are exactly equivalent:

host_accept = ^(a|b)\.c\.d$
host_accept = "^(a|b)\\.c\\.d$"

• If the item is of the form

<search-type>;<filename or query>

for example

dbm;/host/accept/list

then the host name is looked up using the search type and file name or query (as appropriate). If
the lookup succeeds, the host matches the item. The actual data that is looked up is not used.

[44] configuration file (7)

7.17 Use of RFC 1413 identification in host lists
Any item in a host list (other than a plain file name or ‘+allow_unknown’) can optionally be
preceded by

<ident>@
or
!<ident>@

where <ident> is an RFC 1413 identification string. For example,

host_reject = !exim@my.mail.gate:111.111.111.111:!root@public.host

If an <ident> string is present, it must match the RFC 1413 identification sent by the remote host,
unless it is preceded by an exclamation mark, in which case it must not match. The remainder of the
item, following the @, may be either positive or negative.

[45] configuration file (7)

8. Regular expressions

Exim uses the PCRE regular expression library; this provides regular expression matching that is
compatible with Perl 5. The syntax and semantics of these regular expressions is discussed in many
Perl reference books, and also in Jeffrey Friedl’s Mastering Regular Expressions (O’Reilly, ISBN
1-56592-257-3).

The PCRE distribution files, which are included in the directory src/pcre in the Exim distribution,
contain a man page for PCRE which describes exactly what it supports, so no further description is
included here. The PCRE functions are called from Exim using the default option settings, except that
the PCRE_CASELESS option is set when the matching is required to be independent of the case of letters.

8.1 Testing regular expressions
A program called pcretest forms part of the PCRE distribution and is built with PCRE during the
process of building Exim. It is primarily intended for testing PCRE itself, but it can also be used for
experimenting with regular expressions. The binary can be found in the pcre sub-directory of the Exim
build directory. There is documentation of various options in src/pcre/README, but for simple
testing, none are needed. This is the output of a sample run of pcretest:

re> /^([^@]+)@.+\.(ac|edu)\.(?!kr)[a-z]{2}$/
data> x@y.ac.uk
0: x@y.ac.uk
1: x
2: ac
data> x@y.ac.kr

No match
data> x@y.edu.com

No match
data> x@y.edu.co
0: x@y.edu.co
1: x
2: edu

Input typed by the user is shown in bold face. After the ‘re>’ prompt, a regular expression enclosed in
delimiters is expected. If this compiles without error, ‘data>’ prompts are given for strings against
which the expression is matched. An empty data line causes a new regular expression to be read. If the
match is successful, the captured substring values (that is, what would be in the variables $0, $1, $2,
etc.) are shown. The above example tests for an email address whose domain ends with either ‘ac’ or
‘edu’ followed by a two-character top-level domain that is not ‘kr ’. The local part is captured in $1
and the ‘ac’ or ‘edu’ in $2.

[46] regular expressions (8)

9. String expansions

A number of configuration strings are expanded before use. Some of them are expanded every time
they are used; others are expanded only once.

Expanded strings are copied verbatim except when a dollar or backslash character is encountered. A
dollar specifies the start of a portion of the string which is interpreted and replaced as described below.

An uninterpreted dollar can be included in the string by putting a backslash in front of it – if the string
appears in quotes, two backslashes are required because the quotes themselves cause interpretation of
backslashes when the string is read in. A backslash can be used to prevent any special character being
treated specially in an expansion, including itself.

A backslash followed by one of the letters ‘n’, ‘r’, or ‘t’ is recognized as an escape sequence for the
character newline, carriage return, or tab, respectively. A backslash followed by up to three octal digits
is recognized as an octal encoding for a single character, while a backslash followed by ‘x’ and up to
two hexadecimal digits is a hexadecimal encoding. A backslash followed by any other character causes
that character to be added to the output string uninterpreted. These escape sequences are also
recognized in quoted strings; their interpretation in expansions is useful for unquoted strings and other
cases such as looked-up strings that are then expanded.

9.1 Testing string expansions
A program to test string expansions can be compiled by obeying the command

make test_expand

once Exim has been successfully compiled. This makes a binary called test_expand in the build
directory. When run, it reads lines from the standard input, runs them through the string expansion
code, and writes the results to the standard output. Since no message is being processed, variables such
as $local_part have no value, but the program can be used for checking out file and database lookups,
and the use of expansion operators such as substr and hash.

9.2 Expansion items
The following items are recognized in expanded strings. White space may be used between sub-items
that are keywords or substrings enclosed in braces inside an outer set of braces, to improve readability.

$<variable name> or ${<variable name>}

Substitute the contents of the named variable; the latter form can be used to separate the name
from subsequent alphanumeric characters. This form (using curly brackets) is available only for
variables; it does not apply to message headers. The names of the variables are given in section
9.5 below. If the name of a non-existent variable is given, the expansion fails.

$header_<header name>: or $h_<header name>:

Substitute the contents of the named message header, for example

$header_reply-to:

This particular expansion is intended mainly for use in filter files. The header names follow the
syntax of RFC 822, which states that they may contain any printing characters except space and
colon. Consequently, curly brackets do not terminate header names, and should not be used to
enclose them as if they were variables. Attempting to do so causes a syntax error.

Upper-case and lower-case letters are synonymous in header names. If the following character is
white space, the terminating colon may be omitted. The white space is included in the expanded
string. If the message does not contain the given header, the expansion item is replaced by an
empty string. (See the def condition in section 9.4 for a means of testing for the existence of a

 header.) If there is more than one header with the same name, they are all concatenated to form

[47] string expansions (9)

the substitution string, with a newline character between each of them. However, if the length of
this string exceeds 64K, any further headers of the same name are ignored.

${<op>:<string>}

The string is first itself expanded, and then the operation specified by <op> is applied to it. A list
of operators is given in section 9.3 below. The string starts with the first character after the colon,
which may be leading white space.

${if <condition> {<string1>}{<string2>}}

If <condition> is true, <string1> is expanded and replaces the whole item; otherwise <string2> is
used. The second string need not be present; if it is not and the condition is not true, the item is
replaced with nothing. Alternatively, the word ‘fail’ may be present instead of the second string
(without any curly brackets). In this case, the expansion fails if the condition is not true. The
available conditions are described in section 9.4 below.

${lookup{<key>} <search type> {<file>} {<string1>} {<string2>}}

${lookup <search type> {<query>} {<string1>} {<string2>}}

These items specify data lookups in files and databases, as discussed in chapter 6. The first form
is used for single-key lookups, and the second is used for query-style lookups. The <key>, <file>,
and <query> strings are expanded before use.

If there is any white space in a lookup item which is part of a filter command, a rewrite rule, a
routing rule for the domainlist router, or any other place where white space is significant, the
lookup item must be enclosed in double quotes.

If the lookup succeeds, then <string1> is expanded and replaces the entire item. During its
expansion, a variable called $value is available, containing the data returned by the file lookup. If
the lookup fails, <string2> is expanded and replaces the entire item. It may be omitted, in which
case the replacement is null.

For single-key lookups, the string ‘partial-’ is permitted to precede the search type in order to do
partial matching, and * or *@ may follow a search type to request default lookups if the key does
not match (see sections 6.1 and 6.5).

If a partial search is used, the variables $1 and $2 contain the wild and non-wild parts of the key
during the expansion of the replacement text. They return to their previous values at the end of the
lookup item.

Instead of {<string2>} the word ‘fail’ can appear, and in this case, if the lookup fails, the entire
string expansion fails in a way that can be detected by the code in Exim which requested the
expansion. The consequences of this depend on the circumstances. In some cases it is no different
from any other expansion failure, but in others a different action may be taken. See for example
the new_address option of the smartuser director.

This example looks up the postmaster alias in the conventional alias file.

"${lookup {postmaster} lsearch {/etc/aliases} {$value}}"

This example uses NIS+ to look up the full name of the user corresponding to the local part of an
address, failing the expansion if it is not found.

"${lookup nisplus {[name=$local_part],passwd.org_dir:gcos} \
 {$value}fail}"

${lookup{<key:subkey>} <search type> {<file>} {<string1>} {<string2>}}

This searches for <key> in the file as described above for single-key lookups; if it succeeds, it
extracts from the data a subfield which is identified by the <subkey>. The data related to the main
key must be of the form:

<subkey1> = <value1> <subkey2> = <value2> ...

[48] string expansions (9)

where the equals signs are optional. If any of the values contain white space, they must be
enclosed in double quotes, and any values that are enclosed in double quotes are subject to escape
processing as described in section 7.8. For example, if a line in a linearly searched file contains

alice: uid=1984 gid=2001

then expanding the string

${lookup{alice:uid}lsearch{<file name>}{$value}}

yields the string ‘1984’. If the subkey is not found in <string1>, then <string2>, if present, is
expanded and replaces the entire item. Otherwise the replacement is null.

${extract{<key>} {<string>}}

The key and the string are first expanded. Then the subfield identified by the key is extracted from
the string, exactly as just described for lookup items with subkeys. If the key is not found in the
string, the item is replaced by nothing.

${extract{<number>} {<separators>} {<string>}}

This is distinguished from the above form of extract by having three rather than two arguments. It
extracts from the string the field whose number is given as the first argument. The first field is
numbered one. If the number is negative or greater than the number of fields in the string, the
result is empty; if it is zero the entire string is returned. The fields in the string are separated by
any one of the characters in the separator string. For example:

${extract{3}{:}{exim:x:42:99:& Mailer::/bin/bash}}

yields ‘42’. Two successive separators mean that the field between them is empty (for example,
the sixth field above). If the first argument is not numeric, the expansion fails.

${perl{<subroutine>}{<arg>}{<arg>}...}

This item is available only if Exim has been built to include an embedded Perl interpreter. The
subroutine name and the arguments are first separately expanded, and then the Perl subroutine is
called with those arguments. No arguments need be given; the maximum number permitted is

 eight.

The return value of the subroutine is inserted into the expanded string, unless the return value is
 undef. In that case, the expansion fails in the same way as an explicit ‘fail’ on a lookup item. If

the subroutine exits by calling Perl’s die function, the expansion fails with the error message that
was passed to die.

More details of the embedded Perl facility are given in chapter 10.

9.3 Expansion operators
The following operations can be performed on portions of an expanded string:

${domain:<string>}

The string is interpreted as an RFC 822 address and the domain is extracted from it. If the string
does not parse successfully, the result is empty.

${escape:<string>}

If the string contains any non-printing characters, they are converted to escape sequences starting
with a backslash. Whether characters with the most significant bit set (so-called ‘8-bit characters’)
count as printing or not is controlled by the print_topbitchars option.

[49] string expansions (9)

${expand:<string>}

The expand operator causes a string to be expanded for a second time. For example,

${expand:${lookup{$domain}dbm{/some/file}{$value}}}

first looks up a string in a file while expanding the operand for expand, and then re-expands what
it has found.

${hash_<n>_<m>:<string>}

The two items <n> and <m> are numbers. If <n> is greater than or equal to the length of the
string, the operator returns the string. Otherwise it computes a new string of length <n> by
applying a hashing function to the string. The new string consists of characters taken from the first

 <m> characters of the string

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQWRSTUVWXYZ0123456789

and if <m> is not present the value 26 is used, so that only lower case letters appear. These
 examples:

${hash_3:monty}
${hash_5:monty}
${hash_4_62:monty python}

yield

jmg
 monty

fbWx

respectively. The abbreviation h can be used instead of hash.

${lc:<string>}

This forces the letters in the string into lower-case, for example:

${lc:$local_part}

${uc:<string>}

This forces the letters in the string into upper-case.

${length_<number>:<string>}

The length operator can be used to extract the initial portion of a string. It is followed by an
underscore and the number of characters required. For example

${length_50:$message_body}

The result of this operator is either the first <number> characters or the whole string, whichever is
the shorter. The abbreviation l can be used instead of length.

${local_part:<string>}

The string is interpreted as an RFC 822 address and the local part is extracted from it. If the string
does not parse successfully, the result is empty.

${quote:<string>}

The quote operator puts its argument into double quotes if it contains anything other than letters,
digits, underscores, full stops (periods), and hyphens. Any occurrences of double quotes and
backslashes are escaped with a backslash. For example,

${quote:ab*cd}

becomes

"ab*cd"

[50] string expansions (9)

The place where this is useful is when the argument is a substitution from a variable or a message
 header.

${rxquote:<string>}

The rxquote operator inserts a backslash before any non-alphanumeric characters in its argument.
This is useful when substituting the values of variables or headers inside regular expressions.

${substr_<start>_<length>:<string>}

The substr operator can be used to extract more general substrings than length. It is followed by
an underscore and the starting offset, then a second underscore and the length required. For
example

${substr_3_2:$local_part}

If the starting offset is greater than the string length the result is the null string; if the length plus
starting offset is greater than the string length, the result is the right-hand part of the string,
starting from the given offset. The first character in the string has offset zero. The abbreviation s
can be used instead of substr.

The substr expansion operator can take negative offset values to count from the righthand end of
its operand. The last character is offset -1, the second-last is offset -2, and so on. Thus, for

 example,

${substr_-5_2:1234567}

yields ‘34’. If the absolute value of a negative offset is greater than the length of the string, the
substring starts at the beginning of the string, and the length is reduced by the amount of
overshoot. Thus, for example,

${substr_-5_2:12}

yields an empty string, but

${substr_-3_2:12}

yields ‘1’.

If the second number is omitted from substr, the remainder of the string is taken if the offset was
positive. If it was negative, all characters in the string preceding the offset point are taken. For
example, an offset of -1 and no length yields all but the last character of the string.

9.4 Expansion conditions
The following conditions are available for testing while expanding strings:

!<condition>

This negates the result of the condition.

<symbolic operator> {<string1>}{<string2>}

There are a number of symbolic operators for doing numeric comparisons. They are:

= equal
== equal
> greater
>= greater or equal
< less
<= less or equal

Note that the general negation operator provides for inequality testing. The two strings must take
the form of optionally signed decimal integers, optionally followed by one of the letters ‘K’ or
‘M’ (in either case), signifying multiplication by 1024 or 1024*1024, respectively.

[51] string expansions (9)

def:<variable name>

The def condition must be followed by the name of one of the expansion variables defined in
section 5. The condition is true if the named expansion variable does not contain the empty string,
for example

${if def:sender_ident {from $sender_ident}}

Note that the variable name is given without a leading $ character. If the variable does not exist,
the expansion fails.

def:header_<header name>: or def:h_<header name>:

This condition is true if a message is being processed and the named header exists in the message.
For example,

${if def:header_reply-to:{$h_reply-to:}{$h_from:}}

Note that no $ appears before header_ or h_ in the condition, and that header names must be
terminated by colons if white space does not follow.

exists {<file name>}

The substring is first expanded and then interpreted as an absolute path. The condition is true if
the named file (or directory) exists. The existence test is done by calling the stat() function.

eq {<string1>}{<string2>}

The two substrings are first expanded. The condition is true if the two resulting strings are
identical, including the case of letters.

match {<string1>}{<string2>}

The two substrings are first expanded. The second is then treated as a regular expression and
applied to the first. Because of the pre-expansion, if the regular expression contains dollar or
backslash characters, they must be escaped with backslashes. Care must also be taken if the
regular expression contains braces (curly brackets). A closing brace must be escaped so that it is
not taken as a premature termination of <string2>. It does no harm to escape opening braces, but
this is not strictly necessary. If the whole expansion string is in double quotes, further escaping of
backslashes is also required.

The condition is true if the regular expression match succeeds. At the start of an if expansion the
values of the numeric variable substitutions $1 etc. are remembered. Obeying a match condition
that succeeds causes them to be reset to the substrings of that condition and they will have these
values during the expansion of the success string. At the end of the if expansion, the previous
values are restored. After testing a combination of conditions using or, the subsequent values of
the numeric variables are those of the condition that succeeded.

or {{<cond1>}{<cond2>}...}

The sub-conditions are evaluated from left to right. The condition is true if any one of the sub-
conditions is true. When a true sub-condition is found, the following ones are parsed but not
evaluated. Thus if there are several ‘match’ sub-conditions the values of the numeric variables are
taken from the first one that succeeds.

and {{<cond1>}{<cond2>}...}

The sub-conditions are evaluated from left to right. The condition is true if all of the sub-
conditions are true. When a false sub-condition is found, the following ones are parsed but not
evaluated.

9.5 Expansion variables

The variable substitutions that are available for use in expansion strings are:

[52] string expansions (9)

$0, $1, etc: When a matches expansion condition succeeds, these variables contain the captured
substrings identified by the regular expression during subsequent processing of the success string of
the containing if expansion item. They may also be set externally by some other matching process
which precedes the expansion of the string. For example, the commands available in Exim filter
files include an if command with its own regular expression matching condition.

$address_file: When, as a result of aliasing or forwarding, a message is directed to a specific file, this
variable holds the name of the file when the transport is running. For example, using the default
configuration, if user r2d2 has a .forward file containing

/home/r2d2/savemail

then when the address_file transport is running, $address_file contains ‘/home/r2d2/savemail’. At
other times, the variable is empty.

$address_pipe: When, as a result of aliasing or forwarding, a message is directed to a pipe, this
variable holds the pipe command when the transport is running.

$caller_gid: The group id under which the process that called Exim was running. This is not the same
as the group id of the originator of a message (see $originator_gid). If Exim re-execs itself, this
variable in the new incarnation normally contains the Exim gid.

$caller_uid: The user id under which the process that called Exim was running. This is not the same
as the user id of the originator of a message (see $originator_uid). If Exim re-execs itself, this
variable in the new incarnation normally contains the Exim uid.

$compile_date: The date on which the Exim binary was compiled.

$compile_number: The building process for Exim keeps a count of the number of times it has been
compiled. This serves to distinguish different compilations of the same version of the program.

$domain: When an address is being directed, routed, or delivered on its own, this variable contains the
domain. In particular, it is set during user filtering, but not during system filtering, since a message
may have many recipients and the system filter is called just once.

For remote addresses, the domain that is being routed can change as routing proceeds, as a result of
router actions (see, for example, the domainlist router). However, the value of $domain remains as
the original domain. The current routing domain can often be accessed by ot her means.

When a remote or local delivery is taking place, if all the addresses that are being handled
simultaneously contain the same domain, it is placed in $domain. Otherwise this variable is empty.

 Transports should be restricted to handling only one domain at once if its value is required at
transport time – this is the default for local transports. For further details of the environment in
which local transports are run, see chapter 13.

Because configured address rewriting happens at the time a message is received, $domain normally
contains the value after rewriting. However, when a rewrite item is actually being processed (see
chapter 32) $domain contains the domain portion of the address that is being rewritten; it can be
used in the expansion of the replacement address, for example, to rewrite domains by file lookup.

When the smtp_etrn_command option is being expanded, $domain contains the complete argu-
ment of the ETRN command (see section 42.6).

$domain_data: When a director or a router has a setting of the domains generic option, and that
involves a file lookup, the data associated with the key in the file is available during the running of
the director or router as $domain_data. In all other situations, this variable expands to nothing.

$errmsg_recipient: This is set to the recipient address of an error message while Exim is creating it.
It is useful if a customized error message text file is in use (see chapter 33).

$home: A home directory may be set during a local delivery, either by the transport or by the director
that handled the address. When this is the case, $home contains its value and may be used in any
expanded options for the transport. The forwardfile director also makes use of $home. Full details
are given in chapter 22. When interpreting a user ’s filter file, Exim is normally configured so that

[53] string expansions (9)

$home contains the user ’s home directory. When running a filter test via the -bf option, $home is
set to the value of the environment variable HOME.

$host: When a local transport is run as a result of routing a remote address, this variable is available
to access the host name that the router defined. A router may set up many hosts; in this case $host
refers to the first one. It is expected that this usage will be mainly via the domainlist router, setting
up a single host for batched SMTP output, for example.

When used in a transport filter (see chapter 14) $host refers to the host involved in the current
connection.

$host_address: This variable is available only for use in transport filters (see chapter 14).

$interface_address: For a message received over a TCP/IP connection, this variable contains the
address of the IP interface that was used. See also the -oMi command line option.

$key: When a domain list is being searched, this variable contains the value of the key, so that it can
be inserted into strings for query-style lookups. See chapter 6 for details. In other circumstances this
variable is empty.

$local_part: When an address is being directed, routed, or delivered on its own, this variable contains
the local part. If a local part prefix or suffix has been recognized, it is not included in the value.
When a number of addresses are being delivered in a batch by a local or remote transport,
$local_part is not set.

When a message is being delivered to a pipe, file, or autoreply transport as a result of aliasing or
forwarding, $local_part is set to the local part of the parent address.

If an address is source-routed, that is, of the form

@a:c@d

then when its transport is running $local_part is set to ‘c@d’ and $domain is set to ‘a’.

Because configured address rewriting happens at the time a message is received, $local_part
normally contains the value after rewriting. However, when a rewrite item is actually being
processed (see chapter 32) $local_part contains the local part of the address that is being rewritten;
it can be used in the expansion of the replacement address, for example, to rewrite local parts by
file lookup.

$local_part_data: When a director or a router has a setting of the local_parts generic option, and that
involves a file lookup, the data associated with the key in the file is available during the running of
the director or router as $local_part_data. In all other situations, this variable expands to nothing.

$local_part_prefix: When an address is being directed or delivered locally, and a specific prefix for
the local part was recognized, it is available in this variable. Otherwise it is empty.

$local_part_suffix: When an address is being directed or delivered locally, and a specific suffix for the
local part was recognized, it is available in this variable. Otherwise it is empty.

$localhost_number: This contains the expanded value of the localhost_number option. The expan-
sion happens after the main options have been read.

$message_body: This variable contains the initial portion of a message’s body while it is being
delivered, and is intended mainly for use in filter files. The maximum number of characters of the
body that are used is set by the message_body_visible configuration option; the default is 500.
Newlines are converted into spaces to make it easier to search for phrases that might be split over a
line break.

$message_body_end: This variable contains the final portion of a message’s body while it is being
delivered. The format and maximum size are as for $message_body.

$message_body_size: When a message is being received or delivered, this variable contains the size
of the body in bytes. The count starts from the character after the blank line that separates the body
from the header. Newlines are included in the count. See also $message_size.

[54] string expansions (9)

$message_headers: This variable contains a concatenation of all the header lines when a message is
being processed. They are separated by newline characters.

$message_id: When a message is being received or delivered, this variable contains the unique
message id which is used by Exim to identify the message.

$message_precedence: When a message is being delivered, the value of any Precedence: header is
made available in this variable. If there is no such header, the value is the null string.

$message_size: When a message is being received or delivered, this variable contains its size in bytes.
The size includes those headers that were received with the message, but not those (such as

 Envelope-to:) that are added to individual deliveries. See also $message_body_size.

$n0 – $n9: These variables are counters that can be incremented by means of the add command in
filter files.

$original_domain: When a top-level address is being processed for delivery, this contains the same
value as $domain. However, if a ‘child’ address (for example, generated by an alias, forward, or
filter file) is being processed, this variable contains the domain of the original address. This differs
from $parent_domain when there is more than one level of aliasing or forwarding. When more
than one address is being delivered in a batch by a local or remote transport, $original_domain is
not set.

Address rewriting happens as a message is received. Once it has happened, the previous form of the
address is no longer accessible. It is the rewritten top-level address whose domain appears in this

 variable.

$original_local_part: When a top-level address is being processed for delivery, this contains the same
value as $local_part. However, if a ‘child’ address (for example, generated by an alias, forward, or
filter file) is being processed, this variable contains the local part of the original address. This

 differs from $parent_local_part when there is more than one level of aliasing or forwarding. When
more than one address is being delivered in a batch by a local or remote transport,
$original_local_part is not set.

Address rewriting happens as a message is received. Once it has happened, the previous form of the
address is no longer accessible. It is the rewritten top-level address whose local part appears in this
variable.

$originator_gid: The value of $caller_gid that was set when the message was received. For messages
received via the command line, this is the gid of the sending user. For messages received by SMTP
over TCP/IP, this is normally the gid of the Exim user.

$originator_uid: The value of $caller_uid that was set when the message was received. For messages
received via the command line, this is the uid of the sending user. For messages received by SMTP
over TCP/IP, this is normally the uid of the Exim user.

$parent_domain: This variable is empty, except when a ‘child’ address (generated by aliasing or
forwarding, for example) is being processed, in which case it contains the domain of the immedi-
ately preceding parent address.

$parent_local_part: This variable is empty, except when a ‘child’ address (generated by aliasing or
forwarding, for example) is being processed, in which case it contains the local part of the
immediately preceding parent address.

$pipe_addresses: This is not an expansion variable, but is mentioned here because the string
‘$pipe_addresses’ is handled specially in the command specification for the pipe transport and in
transport filters. It cannot be used in general expansion strings, and provokes an ‘unknown variable’
error if encountered.

$primary_hostname: The value set in the configuration file, or read by the uname() function.

$prohibition_reason: This variable is set only during the expansion of prohibition messages. See
section 40.6 for details.

[55] string expansions (9)

$qualify_domain: The value set for this option in the configuration file.

$qualify_recipient: The value set for this option in the configuration file, or if not set, the value of
 $qualify_domain.

$received_for: If there is only a single recipient address in an incoming message, then when the
Received: header line is being built, this variable contains that address. Otherwise it is empty.

$received_protocol: When a message is being processed, this variable contains the name of the
protocol by which it was received.

$recipients: This variable contains a list of envelope recipients for a message, but is recognized only
in the system filter file, to prevent exposure of Bcc recipients to ordinary users. A comma and a
space separate the addresses in the replacement text.

$recipients_count: When a message is being processed, this variable contains the number of envelope
recipients that came with the message. Duplicates are not excluded from the count.

$reply_address: When a message is being processed, this variable contains the contents of the Reply-
to: header if one exists, or otherwise the contents of the From: header.

$return_path: When a message is being delivered, this variable contains the return path – the sender
field that is sent as part of the envelope. In many cases, this has the same value as

 $sender_address, but if, for example, an incoming message to a mailing list has been expanded by
a director which specifies a specific address for delivery error messages, then $return_path
contains the new error address, while $sender_address contains the original sender address that
was received with the message.

$return_size_limit: This contains the value set in the return_size_limit option, rounded up to a
multiple of 1000. It is useful when a customized error message text file is in use (see chapter 33).

$route_option: A router may set up an arbitrary string to be passed to a transport via this variable.
 Currently, only the queryprogram router has the ability to do so.

$self_hostname: The generic router option self can be set to the values ‘local’ or ‘fail_soft’ (amongst
others). These cause the address to be passed over to the directors, as if its domain were a local
domain, or to be passed on to the next router, respectively. While subsequently directing or routing
(and doing any deliveries) $self_hostname is set to the name of the local host that the router
encountered. In other circumstances its contents are null.

$sender_address: When a message is being processed, this variable contains the sender ’s address that
was received in the message’s envelope. For delivery failure reports, the value of this variable is the
empty string.

$sender_address_domain: The domain portion of $sender_address.

$sender_address_local_part: The local part portion of $sender_address.

$sender_fullhost: When a message has been received from a remote host, this variable contains the
host name and IP address in a single string, which always ends with the IP address in square
brackets. The format of the rest of the string depends on whether the host issued a HELO or EHLO

SMTP command, and whether the host name was verified by looking up its IP address. (Looking up
the IP address can be forced by the host_lookup option, independent of verification.) A plain host
name at the start of the string is a verified host name; if this is not present, verification either failed
or was not requested. A host name in parentheses is the argument of a HELO or EHLO command. This
is omitted if it is identical to the verified host name or to the host’s IP address in square brackets.

$sender_helo_name: When a message has been received from a remote host that has issued a HELO or
EHLO command, the first item in the argument of that command is placed in this variable. It is also
set if HELO or EHLO is used when a message is received using SMTP locally via the -bs or -bS
options.

$sender_host_address: When a message has been received from a remote host, this variable contains
the host’s IP address.

[56] string expansions (9)

$sender_host_name: When a message has been received from a remote host, this variable contains
the host’s name as verified by looking up its IP address. If verification failed, or was not requested,
this variable contains the empty string.

$sender_ident: When a message has been received from a remote host, this variable contains the
identification received in response to an RFC 1413 request. When a message has been received

 locally, this variable contains the login name of the user that called Exim.

$sender_rcvhost: This is provided specifically for use in Received: headers. It starts with either the
verified host name (as obtained from a reverse DNS lookup) or, if there is no verified host name,
the IP address in square brackets. After that there may be text in parentheses. When the first item is
a verified host name, the first thing in the parentheses is the IP address in square brackets. There
may also be items of the form ‘helo=xxxx’ if HELO or EHLO was used and its argument was not
identical to the real host name or IP address, and ‘ident=xxxx’ if an RFC 1413 ident string is
available. If all three items are present in the parentheses, a newline and tab are inserted into the
string, to improve the formatting of the Received: header.

$sn0 – $sn9: These variables are copies of the values of the $n0 – $n9 accumulators that were current
at the end of the system filter file. This allows a system filter file to set values that can be tested in
users’ filter files. For example, a system filter could set a value indicating how likely it is that a
message is junk mail.

$spool_directory: The name of Exim’s spool directory.

$thisaddress: This variable is set only during the processing of the foranyaddress command in a filter
file. Its use is explained in the description of that command.

$tod_bsdinbox: The time of day and date, in the format required for BSD-style mailbox files, for
example: Thu Oct 17 17:14:09 1995.

$tod_full: A full version of the time and date, for example: Wed, 16 Oct 1995 09:51:40 +0100. The
timezone is always given as a numerical offset from GMT.

$tod_log: The time and date in the format used for writing Exim’s log files, for example: 1995-10-12
 15:32:29.

$value: This variable contains the result of an expansion lookup operation, as described above. Also, if
a domainlist router has a lookup pattern in a route item, $value contains the data that was looked
up during the expansion of the host list. If $value is used in other circumstances, its contents are
null.

$version_number: The version number of Exim.

$warnmsg_delay: This variable is set only during the creation of a message warning about a delivery
 delay. Details of its use are explained in section 33.2.

$warnmsg_recipients: This variable is set only during the creation of a message warning about a
delivery delay. Details of its use are explained in section 33.2.

9.6 Expansion string examples
Typical settings for defining a local mailbox to the appendfile transport are

file = /var/spool/mail/${local_part}
file = ${home}/inbox

As a more complicated example, the default setting for the Received: header is as follows:

[57] string expansions (9)

received_header_text = "Received: \
${if def:sender_rcvhost {from ${sender_rcvhost}\n\t}\
{${if def:sender_ident {from ${sender_ident} }}\
${if def:sender_helo_name {(helo=${sender_helo_name})\n\t}}}}\
by ${primary_hostname} \
${if def:received_protocol {with ${received_protocol}}} \
(Exim ${version_number} #${compile_number})\n\t\
id ${message_id}
${if def:received_for {\n\tfor $received_for}}"

[58] string expansions (9)

10. Embedded Perl

Exim can be built to include an embedded Perl interpreter. When this is done, Perl subroutines can be
called as part of the string expansion process. To make use of the Perl support, you need version 5.004
or later of Perl installed on your system. To include the embedded interpreter in the Exim binary,
include the line

EXIM_PERL = perl.o

in your Local/Makefile and then build Exim in the normal way.

Access to Perl subroutines is via a global configuration option called perl_startup and an expansion
string operator ${perl ...}. If there is no perl_startup option in the Exim configuration file then no
Perl interpreter is started and there is almost no overhead for Exim (since none of the Perl library will
be paged in unless used). If there is a perl_startup option then the associated value is taken to be Perl
code which is executed in a newly created Perl interpreter.

The value of perl_startup is not expanded in the Exim sense, so you do not need backslashes before
any characters to escape special meanings. The option should usually be something like

perl_startup = do ’/etc/exim.pl’

where /etc/exim.pl is Perl code which defines any subroutines you want to use from Exim. Exim can
be configured either to start up a Perl interpreter as soon as it is entered, or to wait until the first time
it is needed. Starting the interpreter at the beginning ensures that it is done while Exim still has its
setuid privilege, but can impose an unnecessary overhead if Perl is not in fact used in a particular run.
By default, the interpreter is started only when it is needed, but this can be changed in two ways:

• Setting perl_at_start (a boolean option) in the configuration requests a startup when Exim is
 entered.

• The command line option -ps also requests a startup when Exim is entered, overriding the setting
of perl_at_start.

There is also a command line option -pd (for delay) which suppresses the initial startup, even if
perl_at_start is set.

When the configuration file includes a perl_startup option you can make use of the string expansion
item to call the Perl subroutines that are defined by the perl_startup code. The operator is used in any
of the following forms:

${perl{foo}}
 ${perl{foo}{argument}}
${perl{foo}{argument1}{argument2} ... }

which calls the subroutine foo with the given arguments. A maximum of eight arguments may be
passed. Passing more than this results in an expansion failure with an error message of the form

Too many arguments passed to Perl subroutine "foo" (max is 8)

The return value of the subroutine is inserted into the expanded string, unless the return value is
undef. In that case, the expansion fails in the same way as an explicit ‘fail’ on an ${if ...} or
${lookup...} item. If the subroutine aborts by obeying Perl’s die function, then the expansion fails with
the error message that was passed to die.

Within any Perl code called from Exim, the function Exim::expand_string is available to call back
into Exim’s string expansion function. For example, the Perl code

my $lp = Exim::expand_string(’$local_part’);

makes the current Exim $local_part available in the Perl variable $lp. Note those are single quotes
and not double quotes to protect against $local_part being interpolated as a Perl variable.

[59] embedded Perl (10)

If the string expansion is forced to fail by a ‘fail’ item, the result of Exim::expand_string is undef. If
there is a syntax error in the expansion string, the Perl call from the original expansion string fails
with an appropriate error message, in the same way as if die were used.

[60] embedded Perl (10)

 11. Main configuration

The first part of the runtime configuration file contains the main configuration settings. Each setting
occupies one line of the file, except that string values can be continued onto multiple lines as described
in section 7.8. All macro definitions must be in this part of the file – they differ from options settings
by starting with an upper-case letter (see section 7.2). The available options are as follows:

accept_8bitmime

Type: boolean
Default: false

This option causes Exim to send 8BITMIME in its response to an SMTP EHLO command, and to accept
the BODY= parameter on MAIL commands. However, though Exim is 8-bit clean, it is not a protocol

 converter, and it takes no steps to do anything special with messages received by this route.
 Consequently, this option is turned off by default.

accept_timeout

Type: time
Default: 0s

This sets the timeout for accepting a non-SMTP message, that is, the maximum time that Exim
waits when reading a message on the standard input. If the value is zero, it will wait for ever. This
setting is overridden by the -or command option. The timeout for incoming SMTP messages is
controlled by smtp_receive_timeout.

always_bcc

Type: boolean
Default: false

Exim adds a To: header to messages whose recipients are given on the command line when there is
no To:, Cc:, or Bcc: in the message. In other cases of missing recipient headers, it just adds an
empty Bcc: header to make the message conform with RFC 822. Setting always_bcc causes it to
add an empty Bcc: in all cases. This can be helpful in conjunction with mailing list software that
passes recipient addresses on the command line.

auto_thaw

Type: time
Default: 0s

If this option is set to a non-zero time, a new delivery is attempted on frozen messages if this much
time has passed since the message was frozen.

bi_command

Type: string
Default: unset

This option supplies the name of a command that is run when Exim is called with the -bi option
(see chapter 5). The string value is just the command name, it is not a complete command line. If
an argument is required, it must come from the -oA command line option.

check_log_inodes

Type: integer
Default: 0

See check_spool_space below.

[61] main configuration (11)

check_log_space

Type: integer
Default: 0

See check_spool_space below.

check_spool_inodes

Type: integer
Default: 0

See check_spool_space below.

check_spool_space

Type: integer
Default: 0

The four check_... options allow for checking of disc resources before a message is accepted:
check_spool_space and check_spool_inodes check the spool partition if either value is greater than
zero, for example:

check_spool_space = 10M
check_spool_inodes = 100

The spool partition is the one which contains the directory defined by SPOOL_DIRECTORY in
 Local/Makefile.

check_log_space and check_log_inodes check the partition in which log files are written if either
is greater than zero. These should be set only if log_file_path is set to point to a different partition
to the spool directory.

If there is less space or fewer inodes than requested, Exim refuses to accept incoming mail. In the
case of SMTP input this is done by giving a 452 temporary error response to the MAIL command. If
ESMTP is in use and there was a SIZE parameter on the MAIL command, its value is added to the
check_spool_space value, and the check is performed even if check_spool_space is zero, unless
no_smtp_check_spool_space is set.

For non-SMTP input and for batched SMTP input, the test is done at start-up; on failure a message
is written to stderr and Exim exits with a non-zero code, as it obviously cannot send an error
message of any kind.

collapse_source_routes

Type: boolean
Default: false

If this option is set, then source-routed mail addresses are stripped down to their final components.

daemon_smtp_port

Type: string
Default: unset

This option specifies the numerical port number or the service name equivalent on which the
daemon is to listen for incoming SMTP calls. It is overridden by -oX on the command line. If this
option is not set, the service name ‘smtp’ is used.

daemon_smtp_service

Type: string
Default: unset

This option is a synonym for daemon_smtp_port.

[62] main configuration (11)

debug_level

Type: integer
Default: 0

This option sets the debug level, thus enabling it to be set when calling Exim from an MUA, but it
is overridden by the use of -d on the command line.

delay_warning

Type: time-list
Default: 24h

When a message is delayed, Exim sends a warning message to the sender at intervals specified by
this option. If it is set to a zero, no warnings are sent. The data is a colon-separated list of times
after which to send warning messages. Up to 10 times may be given. If a message has been on the
queue for longer than the last time, the last interval between the times is used to compute
subsequent warning times. For example, with

delay_warning = 4h:8h:24h

the first message is sent after 4 hours, the second after 8 hours, and subsequent ones every 16 hours
 thereafter. To stop warnings after a given time, set a huge subsequent time.

delay_warning_condition

Type: string
Default: unset

The string is expanded at the time a warning message might be sent. If the result of the expansion
is a forced failure, an empty string, or a string matching any of ‘0’, ‘no’ or ‘false’ (the comparison
being done caselessly) then the warning message is not sent. For example

delay_warning_condition = "\
${if match{$h_precedence:}{(?i)bulk|list|junk}{no}{yes}}"

suppresses the sending of warnings about messages that have ‘bulk’ or ‘list’ or ‘junk’ in a
 Precedence: header. Note that the colon to terminate the header name is necessary because } may

legally occur in header names.

deliver_load_max

Type: fixed-point
Default: unset

When this option is set, no message deliveries are ever done if the system load average is greater
than its value, except for deliveries forced with the -M option. If deliver_queue_load_max is not
set and the load gets this high during a queue run, the run is abandoned. There are some operating
systems for which Exim cannot determine the load average (see chapter 1); for these this option has
no effect.

deliver_queue_load_max

Type: fixed-point
Default: unset

If this option is set, its value is used to determine whether to abandon a queue run, instead of the
value of deliver_load_max.

delivery_date_remove

Type: boolean
Default: true

Exim’s transports have an option for adding a Delivery-date: header to a message when it is
delivered – in exactly the same way as Return-path: is handled. Delivery-date: records the actual
time of delivery. Such headers should not be present in incoming messages, and this option causes

[63] main configuration (11)

them to be removed, to avoid any problems that might occur when a delivered message is
subsequently sent on to some other recipient.

dns_again_means_nonexist

Type: domain-list
Default: unset

DNS lookups give a ‘try again’ response for the DNS error ‘non-Authoritive host found or
 SERVERFAIL’. This can cause Exim to keep trying to deliver a message, or to give repeated temporary

errors to incoming mail. Sometimes the effect is caused by a badly set up nameserver and may
persist for a long time. If a domain which exhibits this problem matches anything in dns_again_
means_nonexist then it is treated as if it did not exist. This option should be used with care.

dns_check_names

Type: boolean
Default: true

This option causes Exim to check domain names for illegal characters before handing them to the
DNS resolver, because some resolvers give temporary errors for bad names. If a domain name
contains any illegal characters, a ‘not found’ result is forced. The check is done by matching the
domain name against the regular expression specified by the dns_check_names_pattern option.

dns_check_names_pattern

Type: string
Default: see below

This option defines the regular expression that is used when the dns_check_names option is set.
The default value is

dns_check_names_pattern =
(?i)^(?>(?(1)\.|())[^\W_](?>[a-z0-9-]*[^\W_])?)+$

which permits only letters, digits, and hyphens in components, but they may not start or end with a
hyphen.

dns_retrans

Type: time
Default: 0s

The options dns_retrans and dns_retry can be used to set the retransmission and retry parameters
for DNS lookups. Values of zero (the defaults) leave the system default settings unchanged. The
first value is the time between retries, and the second is the number of retries. It isn’t totally clear
exactly how these settings affect the total time a DNS lookup may take. I haven’t found any
documentation about timeouts on DNS lookups; these parameter values are available in the external
resolver interface structure, but nowhere does it seem to describe how they are used or what you
might want to set in them.

dns_retry

Type: integer
Default: 0

See dns_retrans above.

envelope_to_remove

Type: boolean
Default: true

Exim’s transports have an option for adding an Envelope-to: header to a message when it is
delivered – in exactly the same way as Return-path: is handled. Envelope-to: records the original
recipient address in the envelope that caused the delivery. Such headers should not be present in

[64] main configuration (11)

incoming messages, and this option causes them to be removed, to avoid any problems that might
occur when a delivered message is subsequently sent on to some other recipient.

errmsg_text

Type: string
Default: unset

If errmsg_text is set, its contents are included in the default error message immediately after ‘This
message was created automatically by mail delivery software.’ It is not used if errmsg_file is set.

errmsg_file

Type: string
Default: unset

This option defines a template file containing paragraphs of text to be used for constructing the
message which is sent by Exim in the case of a delivery failure. Details of the file’s contents are
given in chapter 33. See also warnmsg_file.

errors_address

Type: string
Default: "postmaster"

The mail address to which Exim will send certain error reports. As the default is specified without a
domain, it will be sent to the domain specified by the qualify_recipient option. If this address is
specified with a domain, it must be a fully qualified domain.

errors_copy

Type: string-list
Default: unset

Setting this option causes Exim to send bcc copies of delivery failure reports that it generates to
other addresses. The value is a colon-separated list of items; each item consists of a pattern and an
address list, separated by white space. If the pattern matches the recipient of the delivery error
report, the message is copied to the addresses on the list. The items are scanned in order, and once
a matching one is found, no further items are examined. For example:

errors_copy = "spqr@mydomain postmaster@mydomain :\
rqps@mydomain mailmaster@mydomain,\

postmaster@mydomain"

Each pattern can be a single regular expression, indicated by starting it with a circumflex;
 alternatively, either portion (local part, domain) can start with an asterisk, or the domain can be in

any format that is acceptable as an item in a domain list, including a file lookup. A regular
expression is matched against the entire (fully qualified) recipient; non-regular expressions must
contain both a local part and domain, separated by @.

The address list is a string which is expanded, and must end up as a comma-separated list of
addresses. It is used to construct a Bcc: header which is added to the error message. The expansion
variables local_part and domain are set from the original recipient of the error message, and if
there was any wildcard matching, the expansion variables $0, $1, etc. are set in the normal way.

errors_reply_to

Type: string
Default: unset

Exim’s delivery error messages contain the header

From: Mail Delivery System <Mailer-Daemon@${qualify_domain}>

[65] main configuration (11)

(where string expansion notation is used to show a variable substitution). Experience shows that a
 large number of people reply to such messages. If the errors_reply_to option is set, a Reply-to:

header is added. The option must specify the complete header body.

exim_group

Type: string
Default: compile-time configured (can be unset)

This option sets the gid under which Exim runs when it gives up root privilege. It is used only
when exim_user is also set. Unless it consists entirely of digits, the string is looked up using

 getgrnam(), and failure causes a configuration error. See chapter 49 for a discussion of security
issues.

exim_path

Type: string
Default: see below

This option specifies the path name of the Exim binary, which is used when Exim needs to re-exec
itself. The default is set up to point to the file exim in the directory configured at compile time by
the BIN_DIRECTORY setting. It is necessary to change exim_path if Exim is run from some other

 place.

exim_user

Type: string
Default: compile-time configured (can be unset)

This option sets the uid under which Exim runs when it gives up root privilege. Unless it consists
entirely of digits, the string is looked up using getpwnam(), and failure causes a configuration

 error. If exim_group is not also supplied, the gid is taken from the result of getpwnam() if it is
used. If the resulting uid is the root uid, it has the effect of unsetting this option. See chapter 49 for
a discussion of security issues. Note that the ownership of the runtime configuration file is checked
against the compile-time setting of this parameter, not what is set here.

extract_addresses_remove_arguments

Type: boolean
Default: true

According to Sendmail documentation, if any addresses are present on the command line when the
-t option is used to build an envelope from a message’s headers, they are removed from the
recipients list. This is also how Smail behaves. However, it has been reported that some versions of
Sendmail in fact add the argument addresses to the recipients list. By default Exim follows the
documented behaviour, but if this option is set false it adds rather than removes argument addresses.

finduser_retries

Type: integer
Default: 0

On systems running NIS or other schemes in which user and group information is distributed from
a remote system, there can be times when getpwnam() and related functions fail, even when given
valid data, because things time out. Unfortunately these failures cannot be distinguished from
genuine ‘not found’ errors. If finduser_retries is set greater than zero, Exim will try that many
extra times to find a user or a group, waiting for one second between tries.

forbid_domain_literals

Type: boolean
Default: false

If this option is set, the RFC 822 domain literal format is not permitted in addresses.

[66] main configuration (11)

freeze_tell_mailmaster

Type: boolean
Default: false

On encountering certain errors, Exim freezes a message, which means that no further delivery
attempts take place until an administrator thaws it. If this option is set, a message is sent to

 errors_address every time a message is frozen, unless the message is itself a delivery error
message. (Without this exception there is the possibility of looping.) If several of the message’s
addresses cause freezing, only a single message is sent to the mail administrator. The reason(s) for
freezing will be found in the message log.

gecos_name

Type: string
Default: unset

Some operating systems, notably HP-UX, use the ‘gecos’ field in the system password file to hold
other information in addition to users’ real names. Exim looks up this field for use when it is
creating Sender: or From: headers. If either gecos_pattern or gecos_name are unset, the contents
of the field are used unchanged, except that, if an ampersand is encountered, it is replaced by the
user ’s login name with the first character forced to upper-case, since this is a convention that is
observed on many systems.

When these options are set, gecos_pattern is treated as a regular expression that is to be applied to
the field (again with & replaced by the login name), and if it matches, gecos_name is expanded and
used as the user ’s name. Numeric variables such as $1, $2, etc. can be used in the expansion to pick
up sub-fields that were matched by the pattern. In HP-UX, where the user ’s name terminates at the
first comma, the following can be used:

gecos_pattern = "([^,]*)"
gecos_name = $1

gecos_pattern

Type: string
Default: unset

See gecos_name above.

headers_check_syntax

Type: boolean
Default: false

This option causes Exim to check the syntax of all headers that can contain lists of addresses
 (Sender:, From:, Reply-to:, To:, Cc:, and Bcc:) on all incoming messages (both local and SMTP).

This is a syntax check only, to catch real junk such as

To: user@

Like the headers_sender_verify options, the rejection happens after the end of the data, but it is
also controlled by headers_checks_fail; if that is unset, the message is accepted and a warning is
written to the reject log.

If the message contains any headers starting with Resent- then it is that set of headers which is
 checked.

headers_checks_fail

Type: boolean
Default: true

If this option is true, failure of any header check (see below) causes the message to be rejected. If it
is false, a warning message is written to the reject log.

[67] main configuration (11)

headers_sender_verify

Type: boolean
Default: false

If this option is set with sender_verify, and the sending host matches sender_verify_hosts, Exim
insists on there being at least one verifyable address in one of the Sender:, Reply-to:, or From:
headers (which are checked in that order) on all incoming SMTP messages. If one cannot be found,
the message is rejected, unless headers_checks_fail is unset, in which case a warning entry is
written to the reject log.

If there are any headers whose names start with Resent-, then it is that set of headers which is
checked. If there is more than one instance of a particular header, all of them are checked.

Unfortunately, because it has to read the message before doing this check, the rejection happens
after the end of the data, and it is known that some mailers do not treat hard (5xx) errors correctly
at this point – they keep the message on their spools and try again later, but that is their problem,
though it does waste some resources.

headers_sender_verify_errmsg

Type: boolean
Default: false

This option acts like headers_sender_verify, except that it applies only to messages whose
envelope sender is ‘<>’, that is, delivery error messages whose sender cannot be verified at the time
the SMTP MAIL command is received.

helo_accept_junk_hosts

Type: host-list
Default: unset

Exim checks the syntax of HELO and EHLO commands for incoming SMTP mail, and gives an error
response for invalid data. Unfortunately, there are some SMTP clients that send syntactic junk.
They can be accommodated by setting this option.

helo_strict_syntax

Type: boolean
Default: false

Because so many systems have been found to use underscores in the names they send in the SMTP
HELO command, Exim by default permits them, though it is not in fact legal to use underscores in
domain names. If helo_strict_syntax is set, underscores are not permitted in HELO or EHLO

 commands.

helo_verify

Type: host-list
Default: unset

The RFCs mandate that a server must not reject a message because it doesn’t like the HELO or EHLO

command. However, some sites like to be stricter. If helo_verify is set, Exim checks each incoming
call from any host that matches it, and accepts the call only if:

• A HELO or EHLO command is received;

and

• The host name given in that command either:

(i) is an IP literal matching the calling address of the host (the RFCs specifically allow
this), or

(ii) matches the host name that Exim obtains by doing a reverse lookup of the calling host
address, or

[68] main configuration (11)

(iii) when looked up using gethostbyname() yields the calling host address.

If no HELO or EHLO is given, MAIL commands are rejected; if a bad HELO or EHLO is given, it is
rejected with a 550 error. Rejections are logged in the main and reject logs.

hold_domains

Type: domain-list
Default: unset

This option allows mail for particular domains to be held on the queue manually. The option is
overridden if a message delivery is forced with the -M or -qf options. Otherwise, if a domain
matches an item in hold_domains, no routing or delivery for that address is done, and it is deferred
every time the message is looked at.

This option is intended as a temporary operational measure for delaying the delivery of mail while
some problem is being sorted out, or some new configuration tested. It does not override Exim’s
message clearing away code, which removes messages from the queue if they have been there
longer than the longest retry time in any retry rule. If you want to hold messages for longer than the
normal retry times, insert a dummy retry rule with a long retry time.

host_accept_relay

Type: host-list
Default: unset

An MTA is said to relay a message if it receives it from some host and delivers it directly to
another host as a result of a remote address contained in it. Expanding a local address via an alias
or forward file and then passing the message to another host is not relay ing, but a re-direction as a
result of the ‘percent hack’ is.

Two kinds of relaying exist, which might be termed ‘incoming’ and ‘outgoing’. A host which is
acting as a gateway or an MX backup is concerned with incoming relaying from arbitrary hosts to a
specific set of domains. A host which is acting as a smart host for a number of clients is concerned
with outgoing relaying from those known clients to the Internet at large. Often the same host is
fulfilling both functions, but they are in principle entirely independent, and are therefore controlled
by separate Exim options.

Incoming relaying is controlled by restricting the domains to which an arbitrary host may send via
the local host; this is done by setting relay_domains. Outgoing relaying is controlled by restricting
the set of hosts which may send via the local host to an arbitrary domain, by setting
host_accept_relay.

A check for unwanted relaying is made on the domains of recipient addresses in messages received
from other hosts. If the ‘percent hack’ is in use, the test is applied to the domains of the
transformed addresses. The check is done at the time of the RCPT command in the SMTP dialogue.

If the domain in a recipient address matches local_domains or relay_domains, or if relay_
domains_include_local_mx is set and the domain has an MX record pointing to the local host, the
address is always accepted (at least as far as this check is concerned – a subsequent verification
check might fail it). This is the case of an incoming message to a local domain or an incoming
relay to a permitted domain.

Otherwise this is a case of outgoing relaying, and the address is accepted only if the host is
permitted to relay to arbitrary domains, as specified by host_accept_relay, and, if sender_address_
relay is set, the sender ’s address from the MAIL command matches it. In other words, both the host
and the sender address must be acceptable. However, some installations are prepared to accept
relaying on the basis of either the host or the sender address, and to permit this, relay_match_
host_or_sender can be set. As it is very easy to forge sender addresses, this option should be used
with caution.

Chapter 40 contains further discussion of relay control.

[69] main configuration (11)

host_lookup

Type: host-list
Default: unset

Exim does not look up the name of a calling host from its IP address unless it is required to
compare against some host list, or helo_verify is set, or the address matches this option (which
normally contains IP addresses rather than host names, since the presence of names in itself implies
a DNS lookup). The default configuration file contains

host_lookup = 0.0.0.0/0

which causes a lookup to happen for all hosts. If the expense of these lookups is felt to be too
great, the setting can be changed or removed. However, Exim always does a lookup if the domain
name quoted in a HELO or EHLO command is the local host’s own name or any of its local mail
domains.

host_reject

Type: host-list
Default: unset

If this option is set, incoming SMTP calls from the hosts listed (possibly also qualified by an RFC
1413 identification) are rejected as soon as the connection is made. See chapter 40 for more details.

host_reject_recipients

Type: host-list
Default: unset

If this option is set, all recipients in incoming SMTP calls from the hosts listed, possibly also
qualified by an RFC 1413 identification, are rejected. Chapter 40 contains details of this facility,
which differs from host_reject only in the point in the SMTP dialogue at which the rejection
occurs.

hosts_treat_as_local

Type: domain-list
Default: unset

If this option is set, any host names that match the domain list are treated as if they were the local
host when Exim is scanning host lists obtained from MX records, and also at other times when it is
checking whether a host to which a message has been routed is the local host. If it is required that
the matching host names also be treated as local domains for mail delivery, they must appear in
local_domains as well as in this option.

See also the allow_localhost option in the smtp transport. Both these options are needed in a setup
with different hosts for incoming and outgoing mail if the resulting system is used for MX backup.

ignore_errmsg_errors

Type: boolean
Default: false

If this option is set, failed addresses in error reports (that is, messages whose senders are ‘<>’) are
discarded (with a log entry). The default action is to freeze such messages for human attention.

ignore_errmsg_errors_after

Type: time
Default: 0s

This option, if it is set to a non-zero time, acts as a delayed version of ignore_errmsg_errors,
which must be unset for this option to take effect. If an error message is frozen because of delivery
failure, then once the given time has elapsed after the freezing took place, the message is unfrozen

[70] main configuration (11)

at the next queue run. If delivery fails again, the error message is discarded. This makes it possible
to keep failed error messages around for a shorter time than the normal maximum retry time.

ignore_fromline_hosts

Type: host-list
Default: unset

Some broken SMTP clients insist on sending a UUCP-like ‘From’ line before the headers of a
message. By default this is treated as the start of the message’s body, which means that any
following headers are not recognized as such. Exim can be made to ignore it by setting
ignore_fromline_hosts to match those hosts that insist on sending it. If the sender is actually a
local process rather than a remote host, and is using -bs to inject the messages, then ignore_
fromline_local can be set to deal with this case.

ignore_fromline_local

Type: boolean
Default: false

See ignore_fromline_hosts above.

keep_malformed

Type: time
Default: 4d

This option specifies the length of time to keep messages whose spool files have been corrupted in
some way. This should, of course, never happen. At the next attempt to deliver such a message, it
gets removed. The incident is logged.

kill_ip_options

Type: boolean
Default: true

IP packets can contain options which are source routing data that enables one host to pretend to be
 another. (Don’t confuse IP source routing with source-routed mail addresses, which are something

entirely different.) IP source routing is an obvious security risk, and many sites lock out such
packets in their routers. Also, some operating systems are able to disable IP source routing at the
kernel level.

If Exim receives an SMTP call with IP options set, it logs the options if log_ip_options is set.
Then, if refuse_ip_options is set, it drops the call; otherwise, if kill_ip_options is set, it unsets the
options on the outgoing socket and attempts to continue. To read the IP options, getsockopt() is
used. On some versions of SunOS 4.1 this causes system crashes. There is a patch that fixes this
problem, but it can be avoided by setting all three Exim options false.

local_domains

Type: domain-list
Default: see below

This specifies a list of domains which are recognized as ‘local’, that is, their delivery is handled in
a special way by this MTA using directors rather than routers. If this option is not set, it defaults to
the value of qualify_recipient.

The name of the local host is not by default recognized as a local mail domain; either it must be
included in local_domains, or the local_domains_include_host option must be set. If you want to
accept mail addressed to your host in RFC 822 domain literal format, then local_domains must
also include the appropriate ‘domains’, consisting of IP addresses enclosed in square brackets. The
local_domains_include_host_literals option can be set to add all IP addresses automatically.

It is possible to specify no local domains by specifying no data for this option, for example,

local_domains =

[71] main configuration (11)

If there are very many local domains, then they can be stored in a file and looked up whenever this
string is searched. See the discussion of domain lists in section 7.12.

local_domains_include_host

Type: boolean
Default: false

If this option is set, the value of primary_hostname is added to the value of local_domains, unless
it is already present. This makes it possible to use the same configuration file on a number of

 different hosts. The same effect can be obtained by including the conventional item ‘@’ (which
matches the primary host name) in local_domains.

local_domains_include_host_literals

Type: boolean
Default: false

If this option is set and local_interfaces is unset, the IP addresses of all the interfaces on the local
host, with the exception of 127.0.0.1 (and ::1 on IPv6 systems), are added to the value of

 local_domains, in domain literal format, that is, as strings enclosed in square brackets. If
local_interfaces is set, then only those addresses it contains (again excluding 127.0.0.1 and ::1) are
used.

local_interfaces

Type: string-list
Default: unset

The string must contain a list of IP addresses, in dotted-quad format for IPv4 addresses, or in
colon-separated format (with colons doubled) for IPv6 addresses. These are used for two different
purposes:

• When a daemon is started to listen for incoming SMTP calls, it listens only on the interfaces
identified here, that is, it calls bind() for these interfaces only. An error occurs if it is unable
to bind a listening socket to any interface.

• Only the IP addresses listed here are taken as the local host’s addresses when routing mail and
checking for mail loops.

If local_interfaces is unset, the daemon issues a generic listen() that accepts incoming calls from
any interface, and it also gets a complete list of available interfaces and treats them all as local
when routing mail. On most systems the default action is what is wanted. However, some systems
set up large numbers of virtual interfaces in order to provide many different virtual web servers. In
these cases local_interfaces can be used to restrict SMTP traffic to one or two interfaces only. See
also hosts_treat_as_local.

localhost_number

Type: string
Default: unset

Exim’s message ids are normally unique only within the local host. If uniqueness among a set of
hosts is required, then each host must set a different value for the localhost_number option. The
string is expanded immediately after reading the configuration file (so that a number can be
computed from the host name, for example) and the result of the expansion must be a number in
the range 0–255. This is available in subsequent string expansions via the variable

 $localhost_number. The final two characters of the message id, instead of just being a sequence
count of the number of messages received by one process in one second, are the base 62
encoding of

<sequence count> * 256 + <local host number>

[72] main configuration (11)

This reduces the possible range of the sequence count to 0 – 14. If the count ever reaches 14 in a
receiving process, a delay of one second is imposed to allow the clock to tick, thereby allowing the
count to be reset to zero.

locally_caseless

Type: boolean
Default: true

For most Unix systems it is desirable that local parts of local mail addresses be treated in a case-
independent manner, since most users expect that mail to OBailey and obailey, for example, will
end up in the same mailbox. By default, Exim lower-cases local local parts at the start of
processing them, on the assumption that account names in the password file are in lower-case.

For installations that want to draw case distinctions, this option is provided. When turned off, local
local parts are handled verbatim during delivery. If there are names containing upper case letters in
the password file, the most convenient way to provide for caseless mail delivery is to set up a
smartuser director as the first director, and to make it do a lowercased lookup of the local part, in
order to translate it to the correctly cased version, using the new_address option.

log_all_parents

Type: boolean
Default: false

This option applies to deliveries of local addresses, where the original envelope address may be
converted by (for example) an alias file into a ‘child’ address which might itself be an alias. Thus
in general there can be a chain of several addresses between the original one and the address to
which the actual delivery is made. By default Exim logs the final address, followed by the original
address in angle bracket.

Turning log_all_parents on causes all intermediate addresses between the original envelope address
and the final delivery address to be included in delivery log lines in parentheses after the first
address. Without this, intermediate addresses are not included, except that if the final delivery is to
a pipe or file or autoreply, the immediately preceding parent address is listed.

log_arguments

Type: boolean
Default: false

Setting this option causes Exim to write the arguments with which it was called to the main log.
This is a debugging feature, added to make it easy to find out with what arguments certain MUAs
call /usr/lib/sendmail. The logging does not happen if Exim has given up root privilege because it
was called with the -C or -D options.

log_file_path

Type: string
Default: compile-time configured (may be unset)

This option sets the path which is used to determine the names of Exim’s log files. The string is
expanded, so it can contain, for example, references to the host name. After expansion it must
contain the string ‘%s’ somewhere within it; this will be replaced with one of the strings ‘main’,
‘panic’, ‘process’, or ‘reject’ to form the final file name. For example,

log_file_path = /var/log/${primary_hostname}/exim_%slog

If this path string is fixed at your installation (contains no expansion variables) it is recommended
that you do not set this option in the configuration file, but instead supply the path using

 LOG_FILE_PATH in Local/Makefile so that it is available to Exim for logging errors detected early on
– in particular failure to read the configuration file.

If no specific path is set for the log files, they are written in a sub-directory called log in Exim’s
spool directory.

[73] main configuration (11)

log_ip_options

Type: boolean
Default: true

See kill_ip_options above.

log_level

Type: integer
Default: 5

This controls the amount of data written to the main log and to the individual message logs (see
section 45.7). The higher the number, the more is written. At present a value of 6 or higher causes
all possible messages to appear.

log_received_recipients

Type: boolean
Default: false

When this option is set, the recipients of a message are listed in the main log as soon as the
message is received. The list appears at the end of the log line that is written when a message is
received, preceded by the word ‘for’. The addresses are listed after they have been qualified, but
before any rewriting has taken place.

log_received_sender

Type: boolean
Default: false

If this option is set, the unrewritten original sender of a message is added to the end of the log line
that records the message’s arrival, after the word ‘from’ (before the recipients if

 log_received_recipients is also set).

log_refused_recipients

Type: boolean
Default: false

If this option is set, an entry is written in the main and reject logs for each recipient that is refused
for policy reasons. Otherwise cases where all recipients are to be refused just cause a single log
entry for the message.

log_rewrites

Type: boolean
Default: false

This option causes all address rewriting to get logged, as an aid to debugging rewriting rules.

log_smtp_confirmation

Type: boolean
Default: false

This option causes the response to the final ‘.’ in the SMTP dialog for outgoing messages to be
added to delivery log lines in the form ‘C="<text>"’. A number of MTAs (including Exim from
release 1.60) return an identifying string in this response, so logging this information allows
messages to be tracked more easily. This global option applies to all SMTP transports.

log_smtp_connections

Type: boolean
Default: false

This option turns on more verbose logging of incoming SMTP connections, at log level 4. This
does not apply to batch SMTP, but it does apply to SMTP connections from local processes that use

[74] main configuration (11)

the -bs option, including incoming calls using inetd. A log line is written whenever a connection is
established or closed. If a connection is dropped in the middle of a message, a log line is always
written, but otherwise nothing is written at the start and end of connections unless log_smtp_
connections is set.

log_smtp_syntax_errors

Type: boolean
Default: false

If this option is set, syntax errors in incoming SMTP commands are logged at level 4. An
unrecognized command is treated as a syntax error. For an external connection, the host identity is
given; for an internal connection using -bs the sender identification (normally the calling user) is
given.

log_subject

Type: boolean
Default: false

This option causes a message’s subject to be included in the arrival log line, in the form
 ‘T="<subject text>"’. T stands for ‘topic’ (S is already used for ‘size’).

lookup_open_max

Type: integer
Default: 25

This option limits the number of simultaneously open lookup files. Exim normally keeps files open
during directing and routing, since often the same file is required several times. This limit applies
only to those lookup types which use regular files, namely lsearch, dbm, and cdb. If the limit is
reached, Exim closes the least recently used file. Note that if you are using the NDBM library, it
actually opens two files for each logical DBM database, though it still counts as one for the
purposes of lookup_open_max. If you are getting ‘too many open files’ errors with NDBM, you
need to reduce the value of lookup_open_max.

max_user_name_length

Type: integer
Default: 0

Some operating systems are broken in that they truncate the argument to getpwnam() to eight
characters, instead of returning ‘no such user’. If this option is set greater than zero, any attempt to
call getpwnam() with an argument that is longer behaves as if getpwnam() failed.

message_body_visible

Type: integer
Default: 500

This option specifies how much of a message’s body is to be included in the message_body
expansion variable.

message_filter

Type: string
Default: unset

This option specifies a filter file which is applied to all messages before any routing or directing is
done. This is called the ‘system message filter’. If the filter generates any deliveries to files or
pipes, or any new mail messages, then the appropriate message_filter_..._transport option(s) must
be set, to define which transports are to be used. Details of this facility are given in chapter 41.

[75] main configuration (11)

message_filter_directory_transport

Type: string
Default: unset

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path ending in ‘/’, implying delivery of each message into a separate file
in some directory.

message_filter_directory2_transport

Type: string
Default: unset

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path ending in ‘//’. The reason for having both message_filter_directory
and message_filter_directory2 is to allow for the rare circumstance in which both maildir and non-
maildir format delivery is required.

message_filter_file_transport

Type: string
Default: unset

This sets the name of the transport driver that is to be used when the save command in a system
message filter results in a path not ending in ‘/’.

message_filter_group

Type: string
Default: unset

This option sets the gid under which the system message filter is run. The seteuid() or setresuid()
function must be available in the operating system for a temporary change to be possible. If the
filter generates any pipe, file, or reply addresses, the gid under which the filter is run is used when
delivering to them. Unless the string consists entirely of digits, it is looked up using getgrnam(),
and failure causes a configuration error. If the option is not set, and either message_filter_user is
unset or consists entirely of digits, the gid is not changed when running the filter. Otherwise the
group is taken from the result of getpwnam().

message_filter_pipe_transport

Type: string
Default: unset

This sets the name of the transport driver that is to be used when a pipe command is used in a
system message filter.

message_filter_reply_transport

Type: string
Default: unset

This sets the name of the transport driver that is to be used when a mail command is used in a
system message filter.

message_filter_user

Type: string
Default: unset

This option sets the uid under which the system message filter is run. The seteuid() or setresuid()
function must be available in the operating system for a temporary change to be possible. If the
filter generates any pipe, file, or reply addresses, the uid under which the filter is run is used when
delivering to them. Unless it consists entirely of digits, the string is looked up using getpwnam(),

[76] main configuration (11)

and failure causes a configuration error. If the option is not set, the uid is not changed from the
Exim user (or root if there is no Exim user) when running the system filter.

message_id_header_text

Type: string
Default: unset

If this variable is set, the string is expanded and used to augment the text of the Message-id:
header that Exim creates if an incoming message does not have one. The text of this header is
required by RFC 822 to take the form of an address. By default, Exim uses its internal message id
as the local part, and the primary host name as the domain. If this option is set, it is expanded and
provided the expansion does not yield an empty string, is is inserted into the header immediately
before the @, separated from the internal message id by a dot. Any characters that are illegal in an
address are automatically converted into hyphens. This means that constructions like ${tod_log} can
be used, as the spaces and colons will become hyphens.

message_size_limit

Type: integer
Default: 0

This option limits the maximum size of message that Exim will process. Zero means no limit. It
should be set somewhat larger than return_size_limit if the latter is non-zero. Incoming SMTP
messages are failed with a 552 error if the limit is exceeded; locally-generated messages either get a
stderr message or a delivery failure message to the sender, depending on the -oe setting, in the
normal way. Rejection of an oversized message is logged in both the main and the reject logs. See
also the generic transport option message_size_limit, which limits the size of message that an
individual transport can process.

message_size_limit_count_recipients

Type: boolean
Default: false

If this option is set, then the value of message_size_limit is a maximum for the size of a message
times the number of envelope recipients it has. For example, if message_size_limit is set to 10M,
then a message with 4 recipients can be no bigger than 2.5M, and a message with 100 recipients is
limited to around 100K.

never_users

Type: string-list
Default: unset

Local mail deliveries are run in processes that are setuid to the recipient. However, it is usually
desirable to lock out root from this, as a safety precaution. If a message is to be delivered locally as
any of the users on the never_users list, the process is run as ‘nobody’ instead (see nobody_user
below). A common example is

never_users = root:daemon:bin:exim

This option overrides the pipe_as_creator option of the pipe transport driver. If Exim is unable to
find a uid for ‘nobody’, it panics.

nobody_group

Type: string
Default: unset

This specifies the group to use when a process is to be run as ‘nobody’. If it is unset, the value of
the ‘nobody’ user ’s default group is used.

[77] main configuration (11)

nobody_user

Type: string
Default: unset

This specifies the user to use when a process is to be run as ‘nobody’. If it is unset, Exim looks up
the user ‘nobody’ using getpwnam(). If this fails, Exim panics, writing a message to the panic log
and exiting immediately.

percent_hack_domains

Type: domain-list
Default: unset

The ‘percent hack’ is the convention whereby a local part containing a percent sign is re-interpreted
as a remote address, with the percent replaced by @. This is sometimes called ‘source routing’,
though that term is also applied to RFC 822 addresses that begin with an @ character. If this option
is set, Exim implements the percent facility for those local domains listed, but no others. The option
can be set to ‘*’ to allow the percent hack for all local domains.

If options are set to control message relaying from incoming SMTP envelopes, they are also applied
to relaying that is requested via the ‘percent hack’. See section 40.4.

perl_at_start

Type: boolean
Default: false

This option is available only when Exim is built with an embedded Perl interpreter. See chapter 10
for details of its use.

perl_startup

Type: string
Default: unset

This option is available only when Exim is built with an embedded Perl interpreter. See chapter 10
for details of its use.

pid_file_path

Type: string
Default: compile-time configured (may be unset)

This option sets the path which is used to determine the name of the file to which the Exim daemon
writes its process id. The string is expanded, so it can contain, for example, references to the host
name. After expansion it must contain the string ‘%s’ somewhere within it; this will be replaced by
the null string or a non-standard port number to form the final file name. For example,

pid_file_path = /var/log/${primary_hostname}/exim%s.pid

If no specific path is set for the file, it is written in Exim’s spool directory.

preserve_message_logs

Type: boolean
Default: false

If this option is set, message log files are not deleted when messages are completed. Instead, they
are moved to a sub-directory of the spool directory called msglog.OLD, where they remain
available for statistical or debugging purposes. This is a dangerous option to set on systems with
any appreciable volume of mail. Use with care!

[78] main configuration (11)

primary_hostname

Type: string
Default: see below

This specifies the name of the current host. This is used in the HELO command for outgoing SMTP
messages, and as the default for qualify_domain. If it is not set, Exim calls uname() to find it. If
this fails, Exim panics and dies. If the name returned by uname() contains only one component,
Exim passes it to gethostbyname() in order to obtain the fully qualified version.

print_topbitchars

Type: boolean
Default: false

By default, Exim considers only those characters whose codes lie in the range 32–126 to be
printing characters. In a number of circumstances (for example, when writing log entries) non-
printing characters are converted into escape sequences, primarily to avoid messing up the layout. If
print_topbitchars is set, code values of 128 and above are also considered to be printing

 characters.

prod_requires_admin

Type: boolean
Default: true

The -M, -R, and -q command-line options require the caller to be an admin user unless
 prod_requires_admin is set false. See also queue_list_requires_admin.

prohibition_message

Type: string
Default: unset

This option adds a site-specific message to the error response that is sent when an SMTP command
fails for policy reasons, for example if the sending host is in a host reject list. Details of this facility
are given in chapter 40.

qualify_domain

Type: string
Default: see below

This specifies the domain name that is added to any sender addresses that do not have a domain
qualification. It also applies to recipient addresses if qualify_recipient is not set. Such addresses are
accepted by default only for locally-generated messages – messages from external sources must
always contain fully qualified addresses, unless the sending host matches one of the

 receiver_unqualified or sender_unqualified options. If qualify_domain is not set, it defaults to
the primary_hostname value.

qualify_recipient

Type: string
Default: see below

This specifies the domain name that is added to any recipient addresses that do not have a domain
qualification. Such addresses are accepted by default only for locally-generated messages – mess-
ages from external sources must always contain fully qualified addresses, unless the sending host
matches one of the receiver_unqualified or sender_unqualified options (see below). If

 qualify_recipient is not set, it defaults to the qualify_domain value.

[79] main configuration (11)

queue_list_requires_admin

Type: boolean
Default: true

The -bp command-line option requires the caller to be an admin user unless queue_list_requires_
admin is set false. Otherwise, only messages that the caller submitted are displayed. See also

 prod_requires_admin.

queue_only

Type: boolean
Default: false

If queue_only is set (which is equivalent to the -odq command line option), a delivery process is
not automatically started whenever a message has been received. Instead, the message waits on the
queue for the next queue run. Even if queue_only is false, incoming SMTP messages may not get
delivered immediately if a lot of them arrive at once – see the queue_only_load and
smtp_accept_queue options.

queue_only_file

Type: string
Default: unset

This option can be set to a colon-separated list of absolute path names, each one optionally
preceded by ‘remote’ or ‘smtp’. When it is receiving a message, Exim tests for the existence of
each listed path using a call to stat(), and if this succeeds, the corresponding queuing option is set.
If there is no prefix to the path, queue_only is set; ‘remote’ corresponds to queue_remote and
‘smtp’ to queue_smtp. So, for example,

queue_only_file = remote/some/file

causes Exim to behave as if queue_remote were set to ‘*’ whenever /some/file exists.

queue_only_load

Type: fixed-point
Default: unset

If the system load average is higher than this value, all incoming messages are queued, and no
automatic deliveries are started. If this happens during local or remote SMTP input, all subsequent
messages on the same connection are queued. Deliveries will subsequently be performed by queue
running processes, unless the load is higher than deliver_load_max. There are some operating
systems for which Exim cannot determine the load average (see chapter 1); for these this option has
no effect. See also smtp_accept_queue and smtp_load_reserve.

queue_remote_domains

Type: domain-list
Default: unset

This option lists domains for which local delivery is not immediately required. It is checked against
the domains supplied in the incoming addresses, before any widening is done (because that is part
of routing). The -odqr option is equivalent to setting queue_remote_domains to ‘*’. A delivery
process is started whenever a message is received, but only local addresses are handled, and only
local deliveries take place. All remote deliveries wait until the next queue run. See also
queue_smtp_domains, which is subtly different.

queue_run_in_order

Type: boolean
Default: false

If this option is set, queue runs happen in order of message arrival instead of in an arbitrary order.

[80] main configuration (11)

queue_run_max

Type: integer
Default: 5

This controls the maximum number of queue-running processes that an Exim daemon will run
 simultaneously. This does not mean that it starts them all at once, but rather that if the maximum

number are still running when the time comes to start another one, it refrains from starting it. This
can happen with very large queues and/or very sluggish deliveries. This option does not, however,
interlock with other processes, so additional queue-runners can be started by other means, or by
killing and restarting the daemon.

queue_smtp_domains

Type: domain-list
Default: unset

When this option is set, a delivery process is started whenever a message is received, directing and
routing is performed, and local deliveries take place. However, if any SMTP deliveries are required
for domains that match queue_smtp_domains, they are not immediately delivered, but instead the
message waits on the queue for the next queue run. Since routing of the mes sage has taken place,
Exim knows to which remote hosts it must be delivered, and so when the queue run happens,
multiple messages for the same host are delivered over a single SMTP connection. This option is
checked against the domains supplied in the incoming addresses, before any widening is done
(because that is part of routing). The -odqs command line option causes all SMTP deliveries to be
queued in this way, and is equivalent to setting queue_smtp_domains to ‘*’. See also
queue_remote_domains, which is subtly different.

rbl_domains

Type: string-list
Default: unset

This option is part of the support for Realtime Blocking Lists (RBL), details of which are given in
chapter 40. It can be set to a colon-separated list of DNS RBL domains in which to look up the
inverted IP address of a calling host. An RBL domain name may be followed by ‘/warn’ or ‘/reject’
to specify what is to be done if the host is found, for example:

rbl_domains = dul.maps.vix.com/warn : rbl.maps.vix.com/reject

If neither is present, the action is controlled by the setting of rbl_reject_recipients. When a lookup
succeeds, and the action is ‘reject’, mail from the host is blocked by refusing all recipients, except
those listed in recipients_reject_except. When the action is ‘warn’, the incident is just logged, and
a header may be added to the message (see rbl_warn_header). If a lookup times out or otherwise
fails to give a decisive answer, the address is not blocked (by that entry in the list). When blocking
occurs, an associated TXT record is looked up in the DNS, and if it exists, its contents are returned
as part of the 550 rejection message.

rbl_hosts

Type: host-list
Default: *

This option specifies the set of hosts for which RBL checking is to be performed when
rbl_domains is set. The default matches all hosts. The normal usage of this option is to specify
exceptions to RBL checking by means of negated items in the host list.

rbl_log_headers

Type: boolean
Default: false

[81] main configuration (11)

When this option is set, the headers of each message received from a host that matches an RBL
domain are written to the reject log. This can occur only if the recipients of the message are not
rejected, that is, if the RBL check is configured to warn only.

rbl_log_rcpt_count

Type: boolean
Default: false

When this option is set and rbl_reject_recipients is false, the number of RCPT commands for each
message received from a host that is in the RBL is written to the reject log. This may be greater
than the number of valid recipients in the message.

rbl_reject_recipients

Type: boolean
Default: true

This option controls the action taken when a remote host is found in an RBL domain that has
neither ‘/warn’ nor ‘/reject’ following it. The default value specifies rejection.

rbl_warn_header

Type: boolean
Default: true

When this option is set and a message from an RBL-matching host is not rejected, an X-RBL-
Warning: header is added. The header contains the contents of the DNS TXT record, if one was
found. Scanning of further RBL domains continues, which means that more than one X-RBL-
Warning: header may be added to a message.

received_header_text

Type: string
Default: see below

This string defines the contents of the Received: message header that is added to each message,
except for the timestamp, which is automatically added on at the end, preceded by a semicolon. The
string is expanded each time it is used, and the default is:

received_header_text = "Received: \
${if def:sender_rcvhost {from ${sender_rcvhost}\n\t}\
{${if def:sender_ident {from ${sender_ident} }}\
${if def:sender_helo_name {(helo=${sender_helo_name})\n\t}}}}\
by ${primary_hostname} \
${if def:received_protocol {with ${received_protocol}}} \
(Exim ${version_number} #${compile_number})\n\t\
id ${message_id}
${if def:received_for {\n\tfor $received_for}}"

The use of conditional expansions ensures that this works for both locally generated messages and
messages received from remote hosts, giving header lines such as the following:

Received: from scrooge.carol.book ([240.1.12.25] ident=root)
by marley.carol.book with smtp (Exim 1.90 #1)
id E0tS3Ga-0005C5-00
for cratchit@dickens.book; Mon, 25 Dec 1995 14:43:44 +0000

Received: by scrooge.carol.book with local (Exim 1.90 #1)
id E0tS3GW-0005C2-00; Mon, 25 Dec 1995 14:43:41 +0000

Note the automatic addition of the date and time in the required format.

[82] main configuration (11)

received_headers_max

Type: integer
Default: 30

When a message is to be delivered, the number of Received: headers is counted, and if it is greater
than this parameter, a mail loop is assumed to have occurred, the delivery is abandoned, and an
error message is generated. This applies to both local and remote deliveries. Earlier versions of
Exim did this test only for remote deliveries, but because local deliveries (as Exim sees them) may
in fact still cause a message to be transported to a remote host, it was changed.

receiver_try_verify

Type: boolean
Default: false

See receiver_verify.

receiver_unqualified_hosts

Type: host-list
Default: unset

This option lists those hosts from which Exim is prepared to accept unqualified receiver addresses.
The addresses are made fully qualified by the addition of the qualify_recipient value. Typically the
hosts are local ones, but if you want to imitate the behaviour of mailers that accept unqualified
addresses from anywhere, specify

receiver_unqualified_hosts = *

receiver_verify

Type: boolean
Default: false

When this option is set, the addresses of recipients received from a remote host are verified as they
are received, provided the sending host matches receiver_verify_hosts, the incoming address
matches receiver_verify_addresses, and the sender address matches receiver_verify_senders, if
either of the last two are set.

If an address is invalid, an incoming SMTP call gets an error response to the RCPT command. If an
address cannot immediately be verified, a temporary error code is given. The receiver_try_verify
option is less severe: it operates in the same way, except that an address is accepted if it cannot
immediately be verified. Verification failures are logged.

receiver_verify_addresses

Type: address-list
Default: unset

If set, this option restricts receiver verification to those addresses it matches. The option is inspected
only if receiver_verify or receiver_try_verify is set.

receiver_verify_hosts

Type: host-list
Default: *

See receiver_verify above.

receiver_verify_senders

Type: address-list
Default: unset

This option, if set, allows receiver verification to be conditional upon the sender. It is inspected only
if receiver_verify or receiver_try_verify is set.

[83] main configuration (11)

If the null sender is required in the list of addresses, then it must not be the last item, as a null last
item in a list is ignored. It is best placed at the start of the list. For example, to restrict receiver
verification to messages with null senders and senders in the .com and .org domains, you could

 have

receiver_verify
receiver_verify_senders = :*.com:*.org

If the null sender is the only entry required, then the list should consist of a single colon.

recipients_max

Type: integer
Default: 0

If this is set greater than zero, it specifies the maximum number of recipients for any message. This
applies to the original list of recipients supplied with the message. SMTP messages get a 452
response for all recipients over the limit; earlier recipients are delivered as normal. Non-SMTP
messages with too many recipients are failed, and no deliveries are done. Note that the RFCs
specify that an SMTP server should accept at least 100 RCPT commands in a single message.

recipients_max_reject

Type: boolean
Default: false

If this option is set true, then Exim rejects SMTP messages containing too many recipients by
giving 552 errors to the surplus RCPT commands, and a 554 error to the eventual DATA command.
Otherwise (the default) it gives a 452 error to the surplus RCPT commands and accepts the message
on behalf of the initial set of recipients. The remote server should then re-send the message for the
remaining recipients at a later time.

recipients_reject_except

Type: address-list
Default: unset

This option lists recipient addresses which are exceptions to any policy for recipient rejection, that
is, as a result of sender_reject_recipients, etc. This option is entirely independent of any checks
for unwanted message relaying. However, it does interact with the RBL options.

refuse_ip_options

Type: boolean
Default: true

See kill_ip_options above.

relay_domains

Type: domain-list
Default: unset

See host_accept_relay and related options above.

relay_domains_include_local_mx

Type: boolean
Default: false

This option permits any host to relay to any domain that has an MX record pointing at the local
host. It causes any domain with an MX record pointing at the local host to be treated as if it were
in relay_domains. See host_accept_relay above. Warning: Turning on this option opens your
server to the possibility of abuse in that anyone with access to a DNS zone can list your server in a
secondary MX record as a backup for their domain without your permission. This is not a huge
exposure because firstly, it requires the cooperation of a hostmaster to set up, and secondly, since

[84] main configuration (11)

their mail is passing through your server, they run the risk of your noticing and (for example)
throwing all their mail away.

relay_match_host_or_sender

Type: boolean
Default: false

By default, if relaying controls are specified on both the remote host and the sender address, a
message is accepted only if both conditions are met. If relay_match_host_or_sender is set, then
either condition is good enough. It does not make sense to set this option without setting

 sender_address_relay, since if that option is unset it matches all senders. Exim therefore diagnoses
a configuration error in this case. See sender_host_accept_relay for more details.

remote_max_parallel

Type: integer
Default: 1

This option controls parallel delivery to remote sites. If the value is less than 2, parallel delivery is
disabled, and Exim does all the remote deliveries for a message one by one, from a single delivery
process. Otherwise, if a message has to be delivered to more than one remote host, or if several
copies have to be sent to the same remote host, then up to remote_max_parallel deliveries are
done simultaneously, each in a separate process. If more than remote_max_parallel deliveries are
required, then the maximum number of processes are started, and as each one finishes, another is
begun. The order of starting processes is the same as if sequential delivery were being done, and
can be controlled by the remote_sort option. If parallel delivery takes place while running with
debugging turned on, the debugging output from each delivery process is tagged with its process id.

The overhead in doing this is a fork to set up a separate process for each delivery, and the
associated management of the subprocess (including getting back the result of the delivery attempt).
As well as the process overhead, there may be a small additional penalty paid for parallel delivery.
If a host is found to be down, this fact cannot be communicated to any deliveries that are running
in parallel, though it will be passed on to any that start afterwards. This is no worse than if there
were two separate messages being delivered simultaneously.

The option controls only the maximum number of parallel deliveries from one Exim process. Since
Exim has no central queue manager, there is no way of controlling the total number of simultaneous
deliveries if the configuration allows a delivery attempt as soon as a message is received. If you
want to control the total number of deliveries on the system, then you need to set the queue_only
option, which ensures that all incoming messages are simply added to the queue. Then set up an
Exim daemon to start queue runner processes at appropriate intervals (probably fairly often, for
example, every minute), and limit the total number of queue runners by setting the queue_run_
max parameter. As each queue runner delivers only one message at a time, the maximum number
of deliveries that can then take place at once is queue_run_max multiplied by

 remote_max_parallel.

If it is purely remote deliveries you want to control, then use queue_smtp instead of queue_only.
This has the added benefit of doing the SMTP routing before queuing, so that several messages for
the same host will eventually get delivered down the same connection.

remote_sort

Type: domain-list
Default: unset

When there are a number of remote deliveries for a message, they are sorted by domain into the
order given by this list. For example,

remote_sort = "*.cam.ac.uk:*.uk"

would attempt to deliver to all addresses in the cam.ac.uk domain first, then to those in the uk
domain, then to any others.

[85] main configuration (11)

retry_interval_max

Type: time
Default: 24h

Chapter 31 describes Exim’s mechanisms for controlling the intervals between delivery attempts for
messages that cannot be delivered straight away. This option sets an overall limit to the length of
time between retries.

return_path_remove

Type: boolean
Default: true

RFC 822 states that the Return-path: header is ‘added by the final transport system that delivers
the message to its recipient’ (section 4.3.1), which implies that this header should not be present in
incoming messages. If this option is true, Return-path: headers are removed from messages as
they are read. Exim’s transports have options for adding Return-path: headers at the time of

 delivery. They are normally used only for final local deliveries.

return_size_limit

Type: integer
Default: 100K

This option sets a limit in bytes on the size of messages that are returned to senders. If it is set to
zero there is no limit. If the body of any message that is to be included in an error report is greater
than the limit, it is truncated, and a comment pointing this out is added at the top. The actual cutoff
may be greater than the value given, owing to the use of buffering for transferring the message in
chunks. The idea is just to save bandwidth on those undeliverable 15-megabyte messages. If either
the global or generic transport message_size_limit is set, the value of return_size_limit should be
somewhat smaller.

rfc1413_hosts

Type: host-list
Default: *

RFC 1413 identification calls are made to any host which matches an item in the list. The items in
the host list should not themselves contain ident data.

rfc1413_query_timeout

Type: time
Default: 30s

This sets the timeout on RFC 1413 identification calls. If it is set to zero, no RFC 1413 calls are
ever made.

security

Type: string
Default: see below

When exim_user is set non-zero in the runtime configuration or an Exim uid is compiled into the
 binary, Exim gives up root privilege for some of the time. As there are trade-offs between increased

security and efficiency, this option is provided to control exactly how this is done. The option can
be set to one of the strings ‘seteuid’, ‘setuid’, or ‘setuid+seteuid’, provided that a uid for Exim is
defined. Otherwise it must be left unset. A full description of what these values mean is given in
chapter 49. The default for this option is unset if no special Exim uid is defined, otherwise it is
either ‘setuid+seteuid’ or ‘setuid’, depending on whether the seteuid() function is configured as
being available or not.

[86] main configuration (11)

sender_address_relay

Type: address-list
Default: unset

This option specifies a set of address patterns, one of which the sender of a message must match in
order for the message to be accepted for relaying. If it is not set, all sender addresses are permitted.
By default, this check operates in addition to any relaying checks on the sending host (see

 host_accept_relay above). However, if relay_match_host_or_sender is set, then either a host
match or a sender match is sufficient to allow the relaying to proceed. For this reason,

 sender_address_relay is required to be set if relay_match_host_or_sender is set.

The rewrite flag X (see section 32.8) provides a special-purpose facility we have a use for in
Cambridge. It adds additional checking to sender_address_relay. Whenever a sender address
passes the check, if there are any rewriting rules with the X flag set, the address is rewritten using
those rules, and if this makes any change to the address, the new address must verify successfully
for the relaying to be permitted.

sender_reject

Type: address-list
Default: unset

This option can be set in order to reject mail from certain senders. The check is done on the
sender ’s address as given in the MAIL command in SMTP, but not for local senders where the
logged-in user ’s address is going to override anyway.

If the sender ’s address is source-routed, it is the final component of the address that is checked. The
check is not done for batch SMTP input. If the check fails, a 550 return code is given to MAIL. This

 doesn’t always stop remote mailers from trying again. See sender_reject_recipients for an alterna-
tive. Typical examples of the use of this option might be:

sender_reject = "spamuser@some.domain:spam.domain"
sender_reject = partial-dbm;/etc/mail/blocked/senders

Note that this check operates on sender address domains independently of the sending host;
host_reject can be used to block all mail from particular hosts, while host_accept_relay, and
sender_address_relay can be used to prevent unwanted relaying.

sender_reject_recipients

Type: address-list
Default: unset

This operates in exactly the same way as sender_reject except that the rejection is given in the
form of a 550 error code to every RCPT command instead of rejecting MAIL. This seems to be the
only way of saying ‘no’ to some mailers. Note that this is not an option for rejecting specific
recipients. The way to do that is to set receiver_verify and arrange for those recipients to fail
verification.

sender_try_verify

Type: boolean
Default: false

See sender_verify.

sender_unqualified_hosts

Type: host-list
Default: unset

This option lists those hosts from which Exim is prepared to accept unqualified sender addresses.
The addresses are made fully qualified by the addition of qualify_domain. Typically the hosts are

[87] main configuration (11)

local ones, but if you want to imitate the behaviour of mailers that accept unqualified addresses
from anywhere, specify

sender_unqualified_hosts = *

sender_verify

Type: boolean
Default: false

If this option is true, envelope sender addresses on incoming SMTP messages are checked to ensure
that they are valid. Messages with invalid envelope senders are rejected with a permanent error
code if sender_verify_reject is set (the default). Otherwise a warning is logged. See section 39.2
for details of the rejection, which can happen at three different points in the SMTP dialogue. If a
sender cannot immediately be verified, a temporary error code is returned after reading the data (so
the headers can be logged). The sender_try_verify option is less severe: it operates in exactly the
same way as sender_verify except that if an address cannot immediately be verified, it is accepted
instead of being temporarily rejected.

sender_verify_batch

Type: boolean
Default: false

If this option is unset, then the sender_verify options are not applied to batched SMTP input.

sender_verify_hosts

Type: host-list
Default: *

If sender_verify or sender_try_verify is true, this option specifies a list of hosts and RFC 1413
identifications to which sender verification applies. The check caused by headers_sender_verify
also happens only for matching hosts. See chapter 39 for further details.

sender_verify_fixup

Type: boolean
Default: false

Experience shows that many messages are sent out onto the Internet with invalid sender addresses
in the envelopes (that is, in the MAIL command of the SMTP dialogue), but with valid addresses in
the Sender:, From:, or Reply-to: header fields. If sender_verify and sender_verify_reject are true
and this option is also true, an invalid envelope sender or one that cannot immediately be verified is
replaced by a valid value from the headers. If sender_verify_reject is false, the envelope sender is
not changed, but Exim writes a log entry giving the correction it would have made. See chapter 39
for details.

sender_verify_max_retry_rate

Type: integer
Default: 12

If this option is greater than zero, and the rate of temporary rejection of a specific incoming sender
address from a specific host, in units of rejections per hour, exceeds it, the temporary error is
converted into a permanent verification error. Temporary rejections most commonly occur when a
sender address cannot be verified because a DNS lookup fails to complete.

The intent of this option is to stop hosts hammering too frequently with temporarily failing sender
addresses. The default value of 12 means that a sender address that has a temporary verification
error more than once every 5 minutes will eventually get permanently rejected. Once permanent
rejection has been triggered, subsequent temporary failures all cause permanent errors, until there
has been an interval of at least 24 hours since the last failure. After 24 hours, the hint expires.

[88] main configuration (11)

sender_verify_reject

Type: boolean
Default: true

When this is set, a message is rejected if sender verification fails. If it is not set, a warning message
is written to the main and reject logs, and the message is accepted (unless some other error occurs).

smtp_accept_keepalive

Type: boolean
Default: true

This option controls the setting of the SO_KEEPALIVE option on incoming TCP/IP socket connections.
This causes the kernel periodically to send some OOB (out-of-band) data on idle connections. The
reason for doing this is that it has the beneficial effect of freeing up certain types of connection that
can get stuck when the remote host is disconnected without tidying up the TCP/IP call properly.

smtp_accept_max

Type: integer
Default: 20

This specifies the maximum number of simultaneous incoming SMTP calls that Exim will accept. It
applies only to the listening daemon; there is no control (in Exim) when incoming SMTP is being
handled by inetd. If the value is set to zero, no limit is applied. However, it is required to be non-
zero if smtp_accept_max_per_host or smtp_accept_queue is set.

smtp_accept_max_per_host

Type: integer
Default: 0

This option restricts the number of simultaneous IP connections from a single host (strictly, from a
single IP address) to the Exim daemon. The default value of zero imposes no limit. If this option is
set, it is required that smtp_accept_max be set non-zero.

smtp_accept_queue

Type: integer
Default: 0

If the number of simultaneous incoming SMTP calls handled via the listening daemon exceeds this
value, then messages received are simply placed on the queue, and no delivery processes are started

 automatically. A value of zero implies no limit, and clearly any non-zero value is useful only if it is
less than the smtp_accept_max value (unless that is zero). See also queue_only, queue_only_load,

 queue_smtp, and the various -od command line options.

smtp_accept_queue_per_connection

Type: integer
Default: 10

This option limits the number of delivery processes that Exim starts automatically when receiving
messages via SMTP, whether via the daemon or by the use of -bs or -bS. If the value of the option
is greater than zero, and the number of messages received in a single SMTP session exceeds this

 number, subsequent messages are placed on the spool, but no delivery process is started. This helps
to limit the number of Exim processes when a server restarts after downtime and there is a lot of
mail waiting for it on other systems. On large systems the default should probably be increased.

[89] main configuration (11)

smtp_accept_reserve

Type: integer
Default: 0

When smtp_accept_max is set greater than zero, this option specifies a number of SMTP connec-
tions that are reserved for connections from the hosts that are specified in smtp_reserve_hosts. The
value set in smtp_accept_max includes this reserve pool. For example, if smtp_accept_max is set
to 50 and smtp_accept_reserve is set to 5, then once there are 45 active connections, new ones are
accepted only from hosts listed in smtp_reserve_hosts.

smtp_banner

Type: string
Default: see below

This string, which is expanded every time it is used, is output as the initial positive response to an
SMTP connection. The default setting is:

smtp_banner = "${primary_hostname} ESMTP Exim ${version_number} \
#${compile_number} ${tod_full}"

Failure to expand the string causes a panic error. If you want to create a multiline response to the
initial SMTP connection, use ‘\n’ in the string at appropriate points, but not at the end. Note that
the 220 code is not included in this string. Exim adds it automatically (several times in the case of a
multiline response).

smtp_check_spool_space

Type: boolean
Default: true

When this option is set, if an incoming SMTP session encounters the SIZE option on a MAIL

command, it checks that there is enough space in the spool directory’s partition to accept a message
of that size, while still leaving free the amount specified by check_spool_space (even if that value
is zero). If there isn’t enough space, a temporary error code is returned.

smtp_connect_backlog

Type: integer
Default: 5

This specifies a maximum number of waiting SMTP connections. Exim passes this value to the
TCP/IP system when it sets up its listener. Once this number of connections are waiting for the

 daemon’s attention, subsequent connection attempts are refused at the TCP/IP level. At least, that is
what the manuals say. In Solaris 2.4 such connection attempts have been observed to time out. The
default value of 5 is a conservative one, suitable for older and smaller systems. For large systems is
it probably a good idea to increase this, possibly substantially (to 50, say). It also gives some
protection against denial-of-service attacks by SYN flooding.

smtp_etrn_command

Type: string
Default: unset

If this option is set, the given command is run whenever an SMTP ETRN command is received from
a host that is permitted to issue such commands (see smtp_etrn_hosts below). The string is split up
into separate arguments which are independently expanded. The expansion variable $domain is set
to the argument of the ETRN command, and no syntax checking is done on it. For example:

smtp_etrn_command = /etc/etrn_command $domain $sender_host_address

A new process is created to run the command, and Exim does not wait for it to complete.
 Consequently, its status cannot be checked. As Exim is normally running under its own uid when

receiving SMTP, it is not possible for it to change the uid before running the command.

[90] main configuration (11)

 You must disable smtp_etrn_serialize if you use this option to run something other than a call of
Exim with the -R option, because otherwise the serialization lock never gets removed.

smtp_etrn_hosts

Type: host-list
Default: unset

RFC 1985 describes an SMTP command called ETRN which is designed to overcome the security
problems of the TURN command (which has fallen into disuse). Exim recognizes ETRN if the calling
host matches an entry in smtp_etrn_hosts. The ETRN command is concerned with ‘releasing’
messages that are awaiting delivery to certain hosts. As Exim does not organize its message queue
by host, the only form of ETRN that is supported by default is the one where the text starts with the
‘#’ prefix, where the remainder of the text is specific to the SMTP server.

However, if the smtp_etrn_command option is set, the given command is run for every ETRN

command, whatever the form of the argument. In the absence of smtp_etrn_command, a valid
ETRN command causes a run of Exim with the -R option to happen, with the remainder of the ETRN

text (following the ‘#’) as its argument. For example,

ETRN #brigadoon

causes a delivery attempt on all messages with undelivered addresses containing the text
‘brigadoon’. Because a separate delivery process is run to do the delivery, there is no security risk
with ETRN.

smtp_etrn_serialize

Type: boolean
Default: true

When this option is set, it prevents the simultaneous execution of more than one queue run for the
same argument string as a result of an ETRN command. Exim implements serialization by means of a
hints database in which a record is written whenever a process is started by ETRN, and deleted when
a -R queue run completes. If you use smtp_etrn_command to do something other than run Exim
with the -R option, you must disable smtp_etrn_serialize because otherwise the hints will never
get deleted.

Obviously there is scope for hints records to get left lying around if there is a system or program
crash. To guard against this, Exim ignores any records that are more than six hours old, but you
should normally arrange to delete any files in the spool/db directory whose names begin with
serialize- after a reboot.

smtp_expn_hosts

Type: host-list
Default: unset

The SMTP EXPN command is supported only if the calling host matches smtp_expn_hosts. You
must add ‘localhost’ explicitly if you want calls to 127.0.0.1 to be able to use it. A single-level
expansion of the address is done, as if the address were being tested using the -bt option. If an
unqualified local part is given, it is qualified with qualify_domain. There is a generic option for
directors which permits them to be skipped when processing an EXPN command (compare with

 verification).

smtp_load_reserve

Type: fixed-point
Default: unset

If the system load average ever gets higher than this, incoming SMTP calls are accepted only from
those hosts that match an entry in smtp_reserve_hosts. There are some operating systems for
which Exim cannot determine the load average (see chapter 1); for these this option has no effect.

[91] main configuration (11)

smtp_receive_timeout

Type: time
Default: 5m

This sets a timeout value for SMTP reception. If a line of input (either an SMTP command or a
data line) is not received within this time, the SMTP connection is dropped and the message is
abandoned. For non-SMTP input, the reception timeout is controlled by accept_timeout.

smtp_reserve_hosts

Type: host-list
Default: unset

This option defines hosts for which SMTP connections are reserved; see smtp_accept_reserve and
 smtp_load_reserve above.

smtp_verify

Type: boolean
Default: false

If this option is true, the SMTP command VRFY is supported on incoming SMTP connections;
otherwise it is not.

split_spool_directory

Type: boolean
Default: false

If this option is set, it causes Exim to split its input directory into 62 subdirectories, each with a
single alphanumeric character as its name. The fifth character of the message id is used to allocate
messages to subdirectories; this is the least significant base-62 digit of the time of arrival of the
message.

Splitting up the spool in this way may provide better performance on systems where there are long
mail queues, by reducing the number of files in any one directory. The msglog directory is also split
up in a similar way to the input directory; however, if preserve_message_logs is set, all old msglog
files are still placed in the single directory msglog.OLD.

It is not necessary to take any special action for existing messages when changing
 split_spool_directory. Exim notices messages that are in the ‘wrong’ place, and continues to

process them. If the option is turned off after a period of being on, the subdirectories will
eventually empty and get deleted.

spool_directory

Type: string
Default: compile-time configured (may be unset)

This defines the directory in which Exim keeps its mail spool. The default value is taken from the
compile-time configuration setting, if there is one. If not, this option must be set. The string is
expanded, so it can contain, for example, a reference to ${primary_hostname}.

If the spool directory name is fixed on your installation, it is recommended that you set it at build
time rather than from this option, particularly if the log files are being written to the spool directory
(see log_file_path). Otherwise log files cannot be used for errors that are detected early on, such as
failures in the configuration file.

Even with a compiled-in path, however, this option makes it possible to run testing configurations
of Exim without using the standard spool.

[92] main configuration (11)

strip_excess_angle_brackets

Type: boolean
Default: false

If this option is set, then redundant pairs of angle brackets round ‘route-addr ’ items in addresses are
stripped. For example, <<xxx@a.b.c.d>> is treated as <xxx@a.b.c.d>. If this is in the envelope
and the message is passed on to another MTA, the excess angle brackets are not passed on. If this
option is not set, multiple pairs of angle brackets cause a syntax error.

strip_trailing_dot

Type: boolean
Default: false

If this option is set, a trailing dot at the end of a domain in an address is ignored. If this is in the
envelope and the message is passed on to another MTA, the dot is not passed on. If this option is
not set, a dot at the end of a domain causes a syntax error.

trusted_groups

Type: string-list
Default: unset

If this option is set, then any process that is running in one of the listed groups may pass a message
to Exim and specify the sender ’s address using the -f command line option, without Exim’s adding
a Sender: header. If neither trusted_groups nor trusted_users is set, then only root and the Exim
user can do this.

trusted_users

Type: string-list
Default: unset

If this option is set, then any process that is running as one of the listed users may pass a message
to Exim and specify the sender ’s address using the -f command line option, without Exim’s adding
a Sender: header. If neither trusted_users nor trusted_groups is set, then only root and the Exim
user can do this.

unknown_login

Type: string
Default: unset

This is a specialized feature for use in unusual configurations. By default, if the uid of the caller of
Exim cannot be looked up using getpwuid(), Exim gives up. The unknown_login option can be
used to set a login name to be used in this circumstance. It is expanded, so values like
user$caller_uid can be set. When unknown_login is used, the value of unknown_username is
used for the user ’s real name (gecos field), unless this has been set by the -F option.

unknown_username

Type: string
Default: unset

See unknown_login.

uucp_from_pattern

Type: string
Default: see below

Some applications that pass messages to an MTA via a command line interface use an initial line
starting with ‘From’ to pass the envelope sender. In particular, this is used by UUCP software.
Exim recognizes such a line by means of a regular expression that is set in uucp_from_pattern,
and when the pattern matches, the sender address is constructed by expanding the contents of

[93] main configuration (11)

 uucp_from_sender, provided that the caller of Exim is a trusted user. The default pattern
recognizes lines in the following two forms:

From ph10 Fri Jan 5 12:35 GMT 1996
From ph10 Fri, 7 Jan 97 14:00:00 GMT

The pattern can be seen by running ‘exim -bP uucp_from_pattern’. It checks only up to the hours
and minutes, and allows for a 2-digit or 4-digit year in the second case. The first word after ‘From’
is matched in the regular expression by a parenthesized subpattern. The default value for

 uucp_from_sender is ‘$1’, which therefore just uses this first word (‘ph10’ in the example above)
as the message’s sender. See also ignore_fromline_hosts.

uucp_from_sender

Type: string
Default: "$1"

See uucp_from_pattern above.

warnmsg_file

Type: string
Default: unset

This option defines a template file containing paragraphs of text to be used for constructing the
warning message which is sent by Exim when a message has been on the queue for a specified
amount of time, as specified by delay_warning. Details of the file’s contents are given in chapter
33. See also errmsg_file.

[94] main configuration (11)

12. Driver specifications

The second, third, and fourth parts of Exim’s configuration file specify which transport, director, and
router drivers are to be used. Directors and routers are similar, in that an address is passed to a list of
them in the order in which they are defined, whereas the order in which transports are specified is
immaterial, because a transport is invoked only after being passed an address by a director or a router.
Section 3.4 discusses how the different kinds of driver interact.

The format of the configuration data is the same for all three types of driver, and is as follows:

<driver instance name>:
 <option>

...
 <option>

There are two kinds of option: generic and private. The generic options are those that apply to all
drivers of the same type (that is, all directors, or all routers, or all transports). There is always at least
one generic option, called driver, which specifies which particular driver is being used. The private
options are particular to each driver, and none need appear.

The options may appear in any order, except that the driver option must precede any private options,
since these depend on the particular driver. For this reason, it is recommended that driver always be
the first option.

In earlier versions of Exim, commas were used between options, and the generic options had to
precede the private ones and be terminated by a semicolon. This has not been the case for some time,
and at release 3.00 the backwards-compatibility code for ignoring commas and semicolons was
removed.

Each instance of a driver is given an identifying name for reference in logging and elsewhere. The
name can be any sequence of letters, digits, and underscores (starting with a letter) and must be unique
among drivers of the same type. A router and a transport (for example) can each have the same name,
but no two router instances can have the same name. The name of a driver instance should not be
confused with the name of the underlying driver. The configuration lines

remote_smtp:
driver = smtp

create an instance of the smtp transport driver whose name is remote_smtp. The same driver code can
be used more than once, with different instance names and different option settings each time. A
second instance of the smtp transport, with different options, might be defined thus:

special_smtp:
driver = smtp
service = 1234
command_timeout = 10s

The names remote_smtp and special_smtp would be used to reference these driver instances from
directors or routers, and would appear in log lines.

Comment lines may appear in the middle of driver specifications. The full list of option settings for
any particular driver instance, including all the defaults, can be extracted by making use of the -bP
command line option (see chapter 5).

The next chapter describes the environment in which local deliveries are done, and how this is affected
by the configurations of the relevant directors, routers, and transports. Then there is a chapter
describing the generic options for transports, followed by descriptions of the available transport
drivers. Directors and routers have some generic options in common, and these are covered in chapter
19 before the descriptions of the generic options that are specific to each type of driver, and the drivers
themselves.

[95] driver specifications (12)

13. Environment for running local transports

Local transports handle deliveries to files and pipes. (The autoreply transport can be thought of as
similar to a pipe.) Whenever a local transport is run, Exim forks a subprocess for it. Before running
the transport code, it sets a specific uid and gid by calling setuid() and setgid(). It also sets a current
file directory; for some transports a home directory setting is also relevant. The pipe transport is the
only one which sets up environment variables; see section 17.3 for details.

The values used for the uid, gid, and the directories may come from several different places. In many
cases the director that handles the address associates settings with that address. However, values may
also be given in the transport’s own configuration, and these override anything that comes with the
address. The sections below contain a summary of the possible sources of the values, and how they
interact with each other.

13.1 Uids and gids
All local transports have the options group and user. If group is set, it overrides any group that may
be set in the address, even if user is not set. This makes it possible, for example, to run local mail
delivery under the uid of the recipient, but in a special group. For example:

group_delivery:
driver = appendfile
file = /var/spool/mail/${local_part}
group = mail

If user is set for a transport, its value overrides what is set in the address. If user is non-numeric and
group is not set, the gid associated with the user is used. If user is numeric, then group must be set.

The pipe transport contains the special option pipe_as_creator. If this is set and user is not set, the
uid of the process that called Exim to receive the message is used, and if group is not set, the
corresponding original gid is also used.

When the uid is taken from the transport’s configuration, the initgroups() function is called for the
groups associated with that uid if the initgroups option is set for the transport; pipe is the only
transport that has such an option.

When the uid is not specified by the transport, but is associated with the address by a director or
router, the option for calling initgroups() is taken from the director or router configuration. All
directors and routers have group, user, and initgroups options, which are used as follows:

For the aliasfile director they specify the uid and gid for local deliveries generated directly – that is,
deliveries to pipes or files. They have no effect on generated addresses that are processed
independently.

The forwardfile director ’s check_local_user option causes a password file lookup for the local part of
an address. The uid and gid obtained from this lookup are used for any directly generated local
deliveries, but they can be overridden by the group and user options of the director. As for aliasfile,
these values are not used for generated addresses that are processed independently.

The localuser director looks up local parts in the password file, and sets the uid and gid from that file
for local deliveries, but these values can be overridden by the director ’s options.

For the smartuser director and all the routers, the group, user, and initgroups options are used only
if the driver sets up a delivery to a local transport.

13.2 Current and home directories
The pipe transport has a home_directory option. If this is set, it overrides any home directory set by
the director for the address. The value of the home directory is set in the environment variable HOME

while running the pipe. It need not be set, in which case HOME is not defined.

[96] local transport environment (13)

The appendfile transport does not have a home_directory option. The only use for a home directory
in this transport is if the expansion variable $home is used in one of its options, in which case the
value set by the director is used.

The appendfile and pipe transports have a current_directory option. If this is set, it overrides any
current directory set by the director for the address. If neither the director nor the transport sets a
current directory, then Exim uses the value of the home directory, if set. Otherwise it sets the current
directory to ‘/’ before running a local transport.

The aliasfile, forwardfile, and localuser directors all have current_directory and home_directory
options, which are associated with any addresses they explicitly direct to a local transport.

For forwardfile, if home_directory is not set and there is a file_directory value, that is used instead.
If it too is not set, but check_local_user is set, the user ’s home directory is used. For localuser, if
home_directory is not set, the home directory is taken from the password file entry that this director
looks up. There are no defaults for current_directory in the directors, because it defaults to the value
of home_directory if it is not set at transport time.

The smartuser director and all the routers have no means of setting up home and current directory
strings; consequently any local transport that they use must specify them for itself if they are required.

13.3 Expansion variables derived from the address
Normally a local delivery is handling a single address, and in that case the variables such as $domain
and $local_part are set during local deliveries. However, in some circumstances more than one
address may be handled at once (for example, while writing batch SMTP for onward transmission by
some other means). In this case, the variables associated with the local part are never set, $domain is
set only if all the addresses have the same domain, and $original_domain is never set.

[97] local transport environment (13)

14. Generic options for transports

The generic options for transports are as follows:

body_only

Type: boolean
Default: false

If this option is set, the message’s headers are not transported. It is mutually exclusive with
 headers_only. If it is used with the appendfile or pipe transports, the settings of prefix and suffix

should be checked, since this option does not automatically suppress them.

debug_print

Type: string
Default: unset

If this option is set and debugging is enabled (see -d, -v, and debug_level), then the string is
expanded and included in the debugging output when the transport is run. This is to help with
checking out the values of variables and so on when debugging driver configurations. For example,
if a headers_add option is not working properly, debug_print could be used to output the
variables it references. A newline is added to the text if it does not end with one.

delivery_date_add

Type: boolean
Default: false

If this option is true, a Delivery-date: header is added to the message. This gives the actual time
the delivery was made. As this is not a standard header, Exim has a configuration option

 (delivery_date_remove) which requests its removal from incoming messages, so that delivered
messages can safely be resent to other recipients.

driver

Type: string
Default: unset

This specifies which of the available transport drivers is to be used. For example:

driver = smtp

There is no default, and this option must be set for every transport.

envelope_to_add

Type: boolean
Default: false

If this option is true, an Envelope-to: header is added to the message. This gives the original
address(es) in the incoming envelope that caused this delivery to happen. More than one address
may be present if batch or bsmtp is set on transports that support them, or if more than one
original address was aliased or forwarded to the same final address. As this is not a standard header,
Exim has a configuration option (envelope_to_remove) which requests its removal from incoming
messages, so that delivered messages can safely be resent to other recipients.

headers_add

Type: string
Default: unset

This option specifies a string of text which is expanded and added to the header portion of a
message as it is transported. If the result of the expansion is an empty string, or if the expansion is

[98] generic transport options (14)

forced to fail, no action is taken. Other expansion failures are treated as errors and cause the
delivery to be deferred. The expanded string should be in the form of one or more RFC 822 header
lines, separated by newlines (coded as ‘\n’ inside a quoted string), for example:

headers_add = "X-added: this is a header added at $tod_log\n\
X-added: this is another"

Exim does not check the syntax of these added headers. A newline is supplied at the end if one is
not present. The text is added at the end of any existing headers. If you include a blank line within
the string, you can subvert this facility into adding text at the start of the message’s body.

The name add_headers was formerly used for this option, and is retained as a synonym for
backward compatibility. Additional headers can also be specified by directors and routers. See
chapter 19 and section 43.13.

headers_only

Type: boolean
Default: false

If this option is set, the message’s body is not transported. It is mutually exclusive with body_only.
If it is used with the appendfile or pipe transports, the settings of prefix and suffix should be
checked, since this option does not automatically suppress them.

headers_remove

Type: string
Default: unset

This option consists of a colon-separated list of header names, not including the terminating colon,
for example:

headers_remove = "return-recipt-to:acknowledge-to"

Any existing headers matching those names are not included in any message that transmitted by the
transport. However, added headers may have these names. Thus it is possible to replace a header by
specifying it in remove_headers and supplying the replacement in add_headers.

The name remove_headers was formerly used for this option, and is retained as a synonym for
backward compatibility. Headers to be removed can also be specified by directors and routers. See
chapter 19 and section 43.13.

message_size_limit

Type: integer
Default: 0

This option controls the size of messages passed through the transport. If its value is greater than
zero and the size of a message message exceeds the limit, the address is failed. If there is any
chance that the resulting bounce message could be routed to the same transport, you should ensure
that return_size_limit is less than the transport’s message_size_limit, as otherwise the bounce
message will fail to get delivered.

return_path

Type: string
Default: unset

If this option is set, the string is expanded at transport time and replaces the existing return path
(envelope sender) value. The expansion can refer to the existing value via $return_path. If the
expansion is forced to fail, no replacement occurs; if it fails for another reason, Exim panics. This
option can be used to support VERP (Variable Envelope Return Paths) – see chapter 42.

[99] generic transport options (14)

return_path_add

Type: boolean
Default: false

If this option is true, a Return-path: header is added to the message. Although the return path is
normally available in the prefix line of BSD mailboxes, this is commonly not displayed by MUAs,
and so the user does not have easy access to it.

RFC 822 states that the Return-path: header is ‘added by the final transport system that delivers
the message to its recipient’ (section 4.3.1), which implies that this header should not be present in
incoming messages. Exim has a configuration option, return_path_remove, which requests
removal of this header from incoming messages, so that delivered messages can safely be resent to
other recipients.

shadow_condition

Type: string
Default: unset

See shadow_transport below.

shadow_transport

Type: string
Default: unset

This facility is somewhat experimental, and may change in future. A local transport may set the
shadow_transport option to the name of another, previously-defined, local transport. Shadow
remote transports are not supported.

Whenever a delivery to the main transport succeeds, and either shadow_condition is unset, or its
expansion does not result in a forced expansion failure or the empty string or one of the strings ‘0’
or ‘no’ or ‘false’, the message is also passed to the shadow transport. However, the result of the
shadow transport is discarded and does not affect the subsequent processing of the message. Only a
single level of shadowing is provided; the shadow_transport option is ignored on any transport
when it is running as a shadow. Options concerned with output from pipes are also ignored.

The log line for the successful delivery has an item added on the end, of the form

ST=<shadow transport name>

If the shadow transport did not succeed, the error message is put in parentheses afterwards.

Shadow transports can be used for a number of different purposes, including keeping more detailed
log information than Exim normally provides, and implementing automatic acknowledgement poli-
cies based on message headers that some sites insist on.

transport_filter

Type: string
Default: unset

This option sets up a filtering (in the Unix shell sense) process for messages at transport time. It
should not be confused with mail filtering as set up by individual users.

When the message is about to be written out, the command specified by transport_filter is started
up in a separate process, and the entire message, including the headers, is passed to it on its
standard input (this in fact is done from a third process, to avoid deadlock). This happens before
any SMTP-specific processing, such as turning ‘\n’ into ‘\r\n’ and escaping lines beginning with
a dot.

The filter ’s standard output is read and written to the message’s destination. The filter can perform
any transformations it likes, but of course should take care not to break RFC 822 syntax. A
demonstration Perl script is provided in util/transport-filter.pl; this makes a few arbitrary modifi-
cations just to show the possibilities.

[100] generic transport options (14)

A problem might arise if the filter increases the size of a message that is being sent down an SMTP
channel. If the receiving SMTP server has indicated support for the SIZE parameter, Exim will have
sent the size of the message at the start of the SMTP session. If what is actually sent is substantially
more, the server might reject the message. This can be worked round by setting the size_addition
option on the smtp transport, either to allow for additions to the message, or to disable the use of
SIZE altogether.

The value of the option is the command string for starting up the filter, which is run directly from
Exim, not under a shell. The string is parsed by Exim in the same way as a command string for the
pipe transport: Exim breaks it up into arguments and then expands each argument separately. The
special argument $pipe_addresses is replaced by a number of arguments, one for each address that
applies to this delivery. (This isn’t an ideal name for this feature here, but as it was already
implemented for the pipe transport, it seemed sensible not to change it.)

The expansion variables $host and $host_address are available when the transport is a remote one.
They are set only for the expansion of a transport filter command, as that is the only thing that is
expanded after a connection has been set up. For example:

transport_filter = "/some/directory/transport-filter.pl \
$host $host_address $sender_address $pipe_addresses"

The filter process is run under the same uid and gid as the normal delivery. For remote deliveries
this is the exim uid/gid if they are defined.

If a transport filter is set on an autoreply transport, the original message is passed through the filter
as it is being copied into the newly generated message, which happens if the return_message
option is set.

[101] generic transport options (14)

15. The appendfile transport

The appendfile transport delivers a message by appending it to a file in the local file system, or by
creating an entirely new file in a specified directory. Single files to which messages are appended can
be in the traditional Unix mailbox format, or optionally in the MBX format supported by the Pine
MUA and University of Washington IMAP daemon, inter alia. When each message is being delivered
as a separate file, ‘maildir’ format can optionally be used to give added protection against failures that
happen part-way through the delivery. A third form of separate-file delivery known as ‘mailstore’ is
also supported. For all file formats, Exim attempts to create as many levels of directory as necessary,
provided that create_directory is set.

The code for the optional formats is not included in the Exim binary by default. It is necessary to set
SUPPORT_MBX, SUPPORT_MAILDIR and/or SUPPORT_MAILSTORE in Local/Makefile to have the appropriate
code included.

Appendfile can be used by routers as a pseudo-remote transport for putting messages into files for
remote delivery by some means other than Exim, though it is more commonly used by directors for
local deliveries to users’ mailboxes. It is also used for delivering messages to files or directories whose
names are obtained directly from alias, forwarding, or filtering operations. In these cases, $local_part
contains the local part that was aliased or forwarded, while $address_file contains the name of the file
or directory.

As appendfile is a local transport, it is always run in a separate process, under a non-privileged uid
and gid, which are set by setuid(). In the common local delivery case, these are the uid and gid
belonging to the user to whom the mail is being delivered. The current directory is also normally set to
the user ’s home directory. See chapter 13 for a discussion of the local delivery environment.

If the transport fails for any reason, the message remains on the input queue so that there can be
another delivery attempt later. If there is an error while appending to a file (for example, quota
exceeded or partition filled), Exim attempts to reset the file’s length and last modification time back to
what they were before. Exim supports a local quota, for use when the system facility is unavailable or
cannot be used for some reason.

Before appending to a file, a number of security checks are made, and the file is locked. A detailed
description is given below, after the list of private options.

15.1 Private options for appendfile

allow_symlink

Type: boolean
Default: false

By default, appendfile will not deliver if the path name for the file is that of a symbolic link.
Setting this option relaxes that constraint, but there are security issues involved in the use of
symbolic links. Be sure you know what you are doing if you set this. Details of exactly what this
option affects are included in the discussion which follows this list of options.

batch

Type: string
Default: "none"

Normally, each address that is directed or routed to an appendfile transport is handled separately. In
special cases it may be desirable to handle several addresses at once, for example, when passing a
message with several addresses to a different mail regime (for example, UUCP), though this is
more often done using the pipe transport. If this option is set to the string ‘domain’, then all
addresses with the same domain that are directed or routed to the transport are handled in a single

 delivery. If it is set to ‘all’ then multiple domains are batched. The list of addresses is included in

[102] appendfile transport (15)

the Envelope-to: header if envelope_to_add is set (see below). The only difference between this
option and bsmtp is the inclusion of SMTP command lines in the output for bsmtp.

batch_max

Type: integer
Default: 100

This limits the number of addresses that can be handled in a batch, and applies to both the batch
and the bsmtp options.

bsmtp

Type: string
Default: "none"

This option is used to set up an appendfile transport as a pseudo-remote transport for delivering
messages into local files in batch SMTP format for onward transmission by some non-Exim means.
It is usually necessary to suppress the default settings of the prefix and suffix options when using
batch SMTP. The value of the option must be one of the strings ‘none’, ‘one’, ‘domain’, or ‘all’.
The first of these turns the feature off. A full description of the batch SMTP mechanism is given in
section 42.7. When bstmp is set, the batch option automatically takes the same value. See also the
use_crlf option.

bsmtp_helo

Type: boolean
Default: false

When this option is set, a HELO line is added to the output at the start of each message written in
batch SMTP format. Some software that reads batch SMTP is unhappy without this.

check_group

Type: boolean
Default: false

The group owner of the file is checked to see that it is the same as the group under which the
delivery process is running when this option is set. The default setting is unset because the default
file mode is 0600, which means that the group is irrelevant.

create_directory

Type: boolean
Default: true

When this option is true, Exim creates any missing superior directories for the file that it is about to
write. A created directory’ s mode is given by the directory_mode option.

create_file

Type: string
Default: "anywhere"

This option constrains the location of files that are created by this transport. It must be set to one of
the words ‘anywhere’, ‘inhome’, or ‘belowhome’. In the second and third cases, a home directory
must have been set up for the address by the director that handled it. This option isn’t useful when
an explicit file name is given for normal mailbox deliveries; it is intended for the case when file
names have been generated from user ’s .forward files, which are usually handled by an appendfile
transport called address_file. See also file_must_exist.

[103] appendfile transport (15)

current_directory

Type: string
Default: unset

If this option is set, it specifies the directory to make current when running the delivery process.
The string is expanded at the time the transport is run. See chapter 13 for details of the local
delivery environment.

directory

Type: string
Default: unset

This option is mutually exclusive with the file option. When it is set, the string is expanded, and the
message is delivered into a new file or files in or below the given directory, instead of being
appended to a single mailbox file. See section 15.3 for details of this form of delivery.

directory_mode

Type: octal integer
Default: 0700

If appendfile creates any directories as a result of the create_directory option, their mode is
specified by this option.

file

Type: string
Default: unset

This option need not be set when appendfile is being used to deliver to files whose names are
obtained from forwarding, filtering, or aliasing address expansions (by default under the instance
name address_file), as in those cases the file name is associated with the address. Otherwise, the
file option must be set unless the directory option is set. Either use_fcntl_lock or use_lockfile (or
both) must be set with file. If you are using more than one host to deliver over NFS into the same
mailboxes, you should always use lock files.

The string value is expanded for each delivery, and must yield an absolute path. If the expansion
contains a reference to the local_part variable, this is checked to ensure that it does not contain a
forward slash character – to prevent an unexpected change of directory. The most common settings
of this option are variations on one of these examples:

file = /var/spool/mail/${local_part}
file = /home/${local_part}/inbox
file = ${home}/inbox

In the first example, all deliveries are done into the same directory. If Exim is configured to use
lock files (see use_lockfile below) it must be able to create a file in the directory, so the ‘sticky’ bit
must be turned on for deliveries to be possible, or alternatively the group option can be used to run
the delivery under a group id which has write access to the directory.

If there is no file name, or the expansion fails, or a local part contains a forward slash character, a
delivery error occurs.

file_must_exist

Type: boolean
Default: false

If this option is true, the file specified by the file option must exist, and an error occurs if it does
not. Otherwise, it is created if it does not exist.

[104] appendfile transport (15)

from_hack

Type: boolean
Default: true

If this option is true, lines in the body of the message that start with the string ‘From ’ are modified
by adding a right angle-bracket at their start. This is necessary for traditional BSD-format
mailboxes, where such lines might otherwise indicate the start of a new message.

group

Type: string
Default: unset

If this option is set, it specifies the group under whose gid the delivery process is to be run, and, if
check_group is set, the group owner of an existing file to which the message is to be appended. If
the option is not set, a value associated with a user may be used (see below); otherwise a value
must have been associated with the address by the director which handled it. If the string contains
no $ characters, it is resolved when Exim starts up. Otherwise, the string is expanded at the time
the transport is run, and must yield either a digit string or a name which can be looked up using

 getgrnam().

The group option is commonly set for local deliveries on systems where the set of user mailboxes
is in a single directory owned by a group such as ‘mail’. Note that it should not be set on the
instance of appendfile that is used for deliveries to files specified by users in their forward files
(called address_file in the default configuration), because such deliveries should take place under
the individual users’ personal uids and gids.

lock_interval

Type: time
Default: 3s

This specifies the time to wait between attempts to lock the file. See below for details of locking.

lock_retries

Type: integer
Default: 10

This specifies the maximum number of attempts to lock the file. A value of zero is treated as 1. See
below for details of locking.

lockfile_mode

Type: octal integer
Default: 0600

This specifies the mode of the created lock file, when a lock file is being used (see use_lockfile).

lockfile_timeout

Type: time
Default: 30m

When a lock file is being used (see use_lockfile), if a lock file already exists and is older than this
value, it is assumed to have been left behind by accident, and Exim attempts to remove it.

maildir_format

Type: boolean
Default: false

If this option is set with the directory option, then the delivery is into a new file in the ‘maildir ’
format that is used by some other mail software. The option is available only if SUPPORT_MAILDIR is
present in Local/Makefile. See section 15.3 below for further details.

[105] appendfile transport (15)

maildir_retries

Type: integer
Default: 10

This option specifies the number of times to retry when writing a file in ‘maildir’ format. See
section 15.3 below.

maildir_tag

Type: string
Default: unset

This option applies only to deliveries in maildir format, and is described in section 15.3 below.

mailstore_format

Type: boolean
Default: false

If this option is set with the directory option, then the delivery is into two new files in ‘mailstore’
format. The option is available only if SUPPORT_MAILSTORE is present in Local/Makefile. See section
15.3 below for further details.

mailstore_prefix

Type: string
Default: unset

This option applies only to deliveries in mailstore format, and is described in section 15.3 below.

mailstore_suffix

Type: string
Default: unset

This option applies only to deliveries in mailstore format, and is described in section 15.3 below.

mbx_format

Type: boolean
Default: false

This option is available only if Exim has been compiled with SUPPORT_MBX set in Local/Makefile. If
mbx_format is set with the file option, then the message is appended to the mailbox file in MBX
format instead of traditional Unix format. This format is supported by Pine4 and its associated
IMAP and POP daemons, and is implemented by the c-client library that they all use. The prefix
and suffix options are not automatically changed by the use of mbx_format; they should normally
be set empty.

If none of the locking options are mentioned in the configuration, use_mbx_lock is assumed and
the other locking options default to false. It is possible to specify the other kinds of locking with

 mbx_format, but use_fcntl_lock and use_mbx_lock are mutually exclusive. MBX locking inter-
works with c-client, providing for shared access to the mailbox. It should not be used if any
program that does not use this form of locking is going to access the mailbox, nor should it be used
if the mailbox file is NFS mounted, because it works only when the mailbox is accessed from a
single host.

If you set use_fcntl_lock with an MBX-format mailbox, you cannot use the standard version of c-
 client, because as long as it has a mailbox open (this means for the whole of a Pine or IMAP

session), Exim will not be able to append messages to it.

[106] appendfile transport (15)

mode

Type: octal integer
Default: 0600

If the output file is created, it is given this mode. If it already exists and has wider permissions,
they are reduced to this mode. If it has narrower permissions, an error occurs unless mode_fail_

 narrower is false. However, if the delivery is the result of a save command in a filter file specifing
a particular mode, then the mode of the output file is always forced to take that value, and this
option is ignored.

mode_fail_narrower

Type: boolean
Default: true

This option applies in the case when an existing mailbox file has a narrower mode than that
specified by the mode option. If mode_fail_narrower is true, the delivery is frozen (‘mailbox has
the wrong mode’); otherwise Exim continues with the delivery attempt, using the existing mode of
the file.

notify_comsat

Type: boolean
Default: false

If this option is true, the comsat daemon is notified after every successful delivery to a user
mailbox. This is the daemon that notifies logged on users about incoming mail.

prefix

Type: string
Default: see below

The string specified here is expanded and output at the start of every message. The default is

prefix = "From ${if def:return_path{$return_path}{MAILER-DAEMON}}\
 ${tod_bsdinbox}\n"

This line can be suppressed by setting

prefix =

and this is usually necessary when doing batch SMTP deliveries, or delivering into individual files
or MBX-format mailboxes.

quota

Type: string
Default: unset

This option imposes a limit on the size of the file to which Exim is appending, or to the total space
used in the directory tree if the directory option is set. In the latter case, computation of the space
used is expensive, as all the files in the directory (and any sub-directories) have to be individually
inspected and their sizes summed. Also, there is no interlock against two simultaneous deliveries. It
is preferable to use quota mechanisms in the operating system if you can.

The value is expanded, and must then be a numerical value (decimal point allowed), optionally
followed by one of the letters K or M. The expansion happens while Exim is running as root or the
Exim user, before setuid() is called for the delivery, so files that are inaccessible to the end user can
be used to hold quota values that are looked up in the expansion. When delivery fails because this
quota is exceeded, the handling of the error is as for system quota failures. The value specified is
not accurate to the last byte, owing to separator lines and additional headers that may get added
during the delivery. See also quota_warn_threshold.

[107] appendfile transport (15)

quota_filecount

Type: integer
Default: 0

This option applies when the directory option is set. It limits the total number of files in the
directory (compare the inode limit in system quotas). It can only be used if quota is also set.

quota_warn_threshold

Type: string
Default: 0

This option is expanded in the same way as quota (see above). If the resulting value is greater than
zero, and delivery of the message causes the size of the file or total space in the directory tree to
cross the given threshold, then a warning message is sent. The message itself is specified by the
quota_warn_message option, and it must start with a To: header line containing the recipient(s). A
Subject: line should also normally be supplied. The quota option does not have to be set in order
to use this option; they are independent of one another.

quota_warn_message

Type: string
Default: see below

See above for the use of this option. If it is not set when quota_warn_threshold is set, it
defaults to

quota_warn_message = "\
To: $local_part@$domain\n\
Subject: Your mailbox\n\n\
This message is automatically created \
by mail delivery software.\n\n\
The size of your mailbox has exceeded \
a warning threshold that is\n\
set by the system administrator.\n"

require_lockfile

Type: boolean
Default: true

When a lock file is being used (see use_lockfile) and require_lockfile is true, a lock file must be
created before delivery can proceed. If the option is not true, failure to create a lock file is not
treated as an error, though failure of the fcntl() locking function is. This option should always be
set when delivering from more than one host over NFS. It is required to be set if the file option is
set and use_fcntl_lock is not set, except when mbx_format is set.

retry_use_local_part

Type: boolean
Default: true

When a local delivery suffers a temporary failure, both the local part and the domain are normally
used to form a key that is used to determine when next to try the address. This handles common
cases such as exceeding a quota, where the failure applies to the specific local part. However, when
local delivery is being used to collect messages for onward transmission by some other means, a
temporary failure may not depend on the local part at all. Setting this option false causes Exim to
use only the domain when handling retries for this transport.

[108] appendfile transport (15)

suffix

Type: string
Default: "\n"

The string specified here is expanded and output at the end of every message. The default blank
line can be suppressed by setting

suffix =

and this is usually necessary when doing batch SMTP deliveries, or delivering into individual files
or MBX-format mailboxes.

use_crlf

Type: boolean
Default: false

This option causes lines to be terminated with the two-character CRLF sequence (carriage return,
linefeed) instead of just a linefeed character. In the case of batched SMTP, the byte sequence
written to the file is then an exact image of what would be sent down a real SMTP connection.

The contents of the prefix and suffix options are written verbatim, so must contain their own
carriage return characters if these are needed. Since the default values for both prefix and suffix
end with a single linefeed, their values almost always need to be changed if use_crlf is set.

use_fcntl_lock

Type: boolean
Default: see below

This option controls the use of the fcntl() function to lock a file for exclusive use when a message
is being appended. It is set by default unless use_mbx_lock is set. Otherwise, it should be turned

 off only if you know that all your MUAs use lock file locking. When use_fcntl_lock is off,
use_lockfile and require_lockfile must both be on if mbx_format is not set.

use_lockfile

Type: boolean
Default: see below

If this option is turned off, Exim does not attempt to create a lock file when appending to a file.
Thus the only locking is by fcntl(). This option is set by default unless use_mbx_lock is set. It is
not possible to turn both use_lockfile and use_fcntl_lock off, except when mbx_format is set. You
should only turn use_lockfile off if you are absolutely sure that every MUA that is ever going to
look at your users’ mailboxes uses fcntl() rather than a lock file, and even then only when you are
not delivering over NFS from more than one host. In order to append to an NFS file safely from
more than one host, it is necessary to take out a lock before opening the file, and the lock file
achieves this. Otherwise, even with fcntl() locking, there is a risk of file corruption. See also the

 require_lockfile option.

use_mbx_lock

Type: boolean
Default: see below

This option is available only if Exim has been compiled with SUPPORT_MBX set in Local/Makefile.
Setting the option specifies that special MBX locking rules be used. It is set by default if
mbx_format is set and none of the locking options are mentioned in the configuration. The locking
rules are the same as are used by the c-client library that underlies Pine4 and the IMAP4 and POP
daemons that come with it (see the discussion below). The rules allow for shared access to the
mailbox. However, this kind of locking does not work when the mailbox is NFS mounted.

[109] appendfile transport (15)

user

Type: string
Default: unset

If this option is set, it specifies the user under whose uid the delivery process is to be run, and
which must be the owner of an existing file to which the message is appended. If the option is not
set, a value must have been associated with the address by the director that handled it. If the string
contains no $ characters, it is resolved when Exim starts up. Otherwise, the string is expanded at
the time the transport is run, and must yield either a digit string or a name which can be looked up
using getpwnam(). When getpwnam() is used, either at start-up time or later, the group id value
associated with the user is taken as the value to be used if the group option is not set.

15.2 Operational details for appending

Before appending to a file, Exim proceeds as follows:

• If the name of the file is /dev/null, no action is taken, and a success return is given.

• If any directories on the file’s patch are missing, Exim creates them if the create_directory
option is set. A created directory’s mode is given by the directory_mode option.

• If use_lockfile is set, a lock file is built in a way that will work reliably over NFS, as follows:

• Create a ‘hitching post’ file whose name is that of the lock file with the current time,
primary host name, and process id added, by opening for writing as a new file. If this fails
with an access error, the message is frozen unless require_lockfile is false. Otherwise
delivery is deferred.

• Close the hitching post file, and hard link it to the lock file name.

• If the call to link() succeeds, creation of the lock file has succeeded. Unlink the hitching
post name.

• Otherwise, use stat() to get information about the hitching post file, and then unlink
hitching post name. If the number of links is exactly two, creation of the lock file succeeded
but something (for example, an NFS server crash and restart) caused this fact not to be
communicated to the link() call.

• If creation of the lock file failed, wait for lock_interval and try again, up to lock_retries
times. However, since any program that writes to a mailbox should complete its task very

 quickly, it is reasonable to time out old lock files that are normally the result of user agent
and system crashes. If an existing lock file is older than lockfile_timeout Exim attempts to
unlink it before trying again.

• A call is made to lstat() to discover whether the main file exists, and if so, what its character-
istics are. If lstat() fails for any reason other than non-existence, delivery is deferred.

• If the file does exist and is a symbolic link, delivery is deferred and the message is frozen, unless
the allow_symlinks option is set, in which case the ownership of the link is checked, and then
stat() is called to find out about the real file, which is then subjected to the checks below. The
check on the top-level link ownership prevents one user creating a link for another ’s mailbox in a
sticky directory, though allowing symbolic links in this case is definitely not a good idea. If there
is a chain of symbolic links, the intermediate ones are not checked.

• If the file already exists but is not a regular file, or if the file’s owner and group (if the group is
being checked – see check_group above) are different from the user and group under which the
delivery is running, delivery is deferred, and the message is frozen.

• If the file’s permissions are more generous than specified, they are reduced. If they are insuf-
ficient, delivery is deferred, and the message is frozen, unless mode_fail_narrower is set false.

[110] appendfile transport (15)

• The file’s inode number is saved, and it is then opened for appending. If this fails because the file
has vanished, appendfile behaves as if it hadn’t existed (see below). If the open failure is

 EWOULDBLOCK, just defer delivery; otherwise defer and freeze the message.

• If the file is opened successfully, check that the inode number hasn’t changed, that it is still a
regular file, and that the owner and permissions have not changed. If anything is wrong, defer
and freeze the message.

• If the file did not exist originally, defer delivery and freeze the message if the file_must_exist
option is set. Otherwise, check that the file is being created in a permitted directory if the

 create_file option is set (deferring and freezing on failure), and then open for writing as a new
file, with the O_EXCL and O_CREAT options, except when dealing with a symbolic link (the
allow_symlinks option must be set). In this case, which can happen if the link points to a non-
existent file, the file is opened for writing using O_CREAT but not O_EXCL, because that prevents
link following.

• If opening fails because the file exists, obey the tests given above for existing files. However, to
avoid looping in a situation where the file is being continuously created and destroyed, the
exists/not-exists loop is broken after 10 repetitions, and the message is then frozen.

• If opening fails with any other error, defer delivery.

• Once the file is open, unless both use_fcntl_lock and use_mbx_lock are false, it is locked using
 fcntl(). In the former case, an exclusive lock is requested, while in the latter, Exim takes out a

shared lock on the open file, and an exclusive lock on the file whose name is

/tmp/.<device-number>.<inode-number>

using the device and inode numbers of the open mailbox file, in accordance with the MBX
locking rules. If locking fails, the file is closed, Exim waits for lock_interval and then goes back
and re-opens it as above and tries to lock it again. This happens up to lock_retries times, after
which the delivery is deferred.

At the end of delivery, Exim closes the file (which releases the fcntl() lock) and then deletes the lock
file if one was created.

15.3 Operational details for delivery to a new file
When the directory option is set, each message is delivered into a newly-created file or set of files. No
locking is required while writing the message, so the various locking options of the transport are
ignored. The ‘From’ line that by default separates messages in a single file is not normally needed, nor
is the escaping of message lines that start with ‘From’, and there is no need to ensure a newline at the
end of each message. Consequently, the default settings in appendfile need changing as follows:

no_from_hack
prefix=""
suffix=""

There are three different ways in which delivery to individual files can be done, depending on the
settings of the maildir_format and mailstore_format options. Note that code to support maildir and
mailstore formats is not included in the binary unless SUPPORT_MAILDIR or SUPPORT_MAILSTORE, respect-
ively, are set in Local/Makefile.

In all three cases an attempt is made to create the directory and any necessary sub-directories if they
do not exist, provided that the create_directory option is set (the default). A created directory’s mode
is given by the directory_mode option. If creation fails, or if the create_directory option is not set
when creation is required, then the delivery is deferred.

• If neither maildir_format nor mailstore_format is set, a single new file is created directly in the
named directory. For example, when delivering messages into files using the bsmtp option (see
section 42.7), a setting such as

directory = /var/bsmtp/${host}

[111] appendfile transport (15)

might be used. A message is written to a file with a temporary name, which is then renamed
when the delivery is complete. The final name is constructed from the time and the file’s inode

 number, and starts with the letter ‘q’ for compatibility with smail.

• If the maildir_format option is true, Exim delivers each message by writing it to a file whose
name is tmp/<time>.<pid>.<host> in the given directory, and then renaming it into the new sub-
directory if all goes well.

Before opening the temporary file, Exim calls stat() on its name. If any response other than
ENOENT (does not exist) is given, it waits 2 seconds and tries again, up to maildir_retries times.

If maildir_tag is set, the string is expanded for each delivery. If the expansion is forced to fail,
the tag is ignored, but a non-forced failure causes delivery to be deferred. Each maildir file that is
created has a colon followed by the expanded string added to its name. The tag is restricted to
the alphanumeric characters plus full stop, comma, colon, hyphen, and underscore. Any other
characters in the string are ignored; if the resulting string is empty, no tag is added. If the tag
takes the length of the name to the point where the test stat() call fails with ENAMETOOLONG, then
the tag is dropped and the maildir file is created with no tag.

• If the mailstore_format option is true, each message is written as two files in the given
 directory. A unique base name is constructed from the message id and the current delivery

process, and the files that are written use this base name plus the suffixes .env and .msg. The
.env file contains the message’s envelope, and the .msg file contains the message itself.

During delivery, the envelope is first written to a file with the suffix .tmp. The .msg file is then
written, and when it is complete, the .tmp file is renamed as the .env file. Programs that access
messages in mailstore format should wait for the presence of both a .msg and a .env file before
accessing either of them. An alternative approach is to wait for the absence of a .tmp file.

The envelope file starts with any text defined by the mailstore_prefix option, expanded and
terminated by a newline if there isn’t one. Then follows the sender address on one line, then all
the recipient addresses, one per line. There can be more than one recipient only if the batch
option is set. Finally, mailstore_suffix is expanded and the result appended to the file, followed
by a newline if it does not end with one.

If expansion of the prefix or suffix ends with a forced failure, it is ignored. Other expansion
errors are treated as serious configuration errors, and delivery is deferred.

[112] appendfile transport (15)

16. The autoreply transport

The autoreply transport is not a true transport in that it does not cause the message to be transmitted.
Instead, it generates another mail message, usually as the result of mail filtering. A traditional
‘vacation’ message is the standard example.

Autoreply is implemented as a local transport so that it runs under the uid and gid of the local user
and with appropriate current and home directories (see chapter 13). The parameters of the message to
be sent can be specified in the configuration by the options described below, but in the common case
when autoreply is activated as a result of filtering, none of them are normally set, because all the
information is obtained from the filter file.

In an attempt to reduce the possibility of message cascades, messages created by the autoreply
transport always take the form of delivery error messages. That is, the envelope sender field is empty.

There is a subtle difference between directing a message to a pipe transport that generates some text to
be returned to the sender, and directing it to an autoreply transport. This difference is noticeable only
if more than one address from the same message is so handled. In the case of a pipe, the separate
outputs from the different addresses are gathered up and returned to the sender in a single message,
while if autoreply is used, a separate message is generated for each address passed to it.

The private options of the autoreply transport that describe the message are used only when the
address passed to it does not contain any reply information. Thus the message is specified entirely by
the director or by the transport; it is never built from a mixture of options. The remaining private
options (file_optional, group, initgroups, mode, return_message, and user) apply in all cases.

If any of the generic options for manipulating headers (for example, headers_add) are set on an
autoreply transport, they apply to the copy of the original message that is included in the generated
message when return_message is set. They do not apply to the generated message itself.

If the autoreply transport receives return code 2 from Exim when it submits the message, indicating
that there were no recipients, it does not treat this as an error. This means that autoreplies sent to
$sender_address when this is empty (because the incoming message is a delivery failure report) do
not cause problems.

16.1 Private options for autor eply

bcc

Type: string
Default: unset

Specifies the addresses that are to receive ‘blind carbon copies’ of the message when the message is
specified by the transport. The string is expanded.

cc

Type: string
Default: unset

Specifies recipients of the message and the contents of the Cc: header when the message is
specified by the transport. The string is expanded.

file

Type: string
Default: unset

The contents of the file are sent as the body of the message when the message is specified by the
transport. The string is expanded. If both file and text are set, the text string comes first.

[113] autoreply transport (16)

file_expand

Type: boolean
Default: false

If this is set, the contents of the file named by the file option are subjected to string expansion as
they are added to the message.

file_optional

Type: boolean
Default: false

If this option is true, no error is generated if the file named by the file option does not exist or
cannot be read.

from

Type: string
Default: unset

The contents of the From: header when the message is specified by the transport. The string is
 expanded.

group

Type: string
Default: unset

If this option is set, it specifies the group under whose gid the delivery process is to be run. If it is
not set, a value associated with a user may be used (see below); otherwise a value must have been
associated with the address by the director which handled it. If the string contains no $ characters,
it is resolved when Exim starts up. Otherwise, the string is expanded at the time the transport is
run, and must yield either a digit string or a name which can be looked up using getgrnam().

headers

Type: string
Default: unset

Specified additional RFC 822 headers that are to be added to the message when the message is
specified by the transport. The string is expanded. Several can be given by using ‘\n’ to separate
them. There is no check on the format.

initgroups

Type: boolean
Default: false

If this option is true and the uid is provided by the transport, then the initgroups() function is
called when running the transport to ensure that any additional groups associated with the uid are
set up. By default no additional groups are present.

log

Type: string
Default: unset

This option names a file in which a record of every message sent is logged when the message is
specified by the transport. The string is expanded.

[114] autoreply transport (16)

mode

Type: octal integer
Default: 0600

If either the log file or the ‘once’ file has to be created, this mode is used.

once

Type: string
Default: unset

This option names a DBM database in which a record of each recipient is kept when the message is
specified by the transport. The string is expanded. If a potential recipient is already in the database,
no message is sent by default. However, if once_repeat specifies a time greater than zero, the
message is sent if that much time has elapsed since a message was last sent to this recipient. If
once is unset, the message is always sent.

once_repeat

Type: time
Default: 0s

See once above.

reply_to

Type: string
Default: unset

Specifies the contents of the Reply-to: header when the message is specified by the transport. The
string is expanded.

return_message

Type: boolean
Default: false

If this is set, a copy of the original message is returned with the new message, subject to the
maximum size set in the return_size_limit general configuration option.

subject

Type: string
Default: unset

The contents of the Subject: header when the message is specified by the transport. The string is
expanded.

text

Type: string
Default: unset

This specifies a single string to be used as the body of the message when the message is specified
by the transport. The string is expanded. If both text and file are set, the text comes first.

to

Type: string
Default: unset

Specifies recipients of the message and the contents of the To: header when the message is
specified by the transport. The string is expanded.

[115] autoreply transport (16)

user

Type: string
Default: unset

If this option is set, it specifies the user under whose uid the delivery process is to be run. If it is
not set, a value must have been associated with the address by the director that handled it. If the
string contains no $ characters, it is resolved when Exim starts up. Otherwise, the string is
expanded at the time the transport is run, and must yield either a digit string or a name which can
be looked up using getpwnam(). When getpwnam() is used, either at start-up time or later, the
group id value associated with the user is taken as the value to be used if the group option is
not set.

[116] autoreply transport (16)

17. The pipe transport

The pipe transport is used to deliver messages via a pipe to a command running in another process.
This can happen when when a director explicitly directs a message to a pipe transport, and also when
an address is expanded via an alias, filter, or forward file that specifies a pipe command. In this case,
$local_part contains the local part that was aliased or forwarded, while $address_pipe contains the
text of the pipe command itself.

A pipe transport can also be used from a router as a pseudo-remote transport for passing messages for
remote delivery by some means other than Exim.

As pipe is a local transport, it is always run in a separate process, normally under a non-privileged uid
and gid. In the common case, these are the uid and gid belonging to the user whose .forward file
directed the message at the pipe. In other cases the uid and gid have to be specified explicitly, either
on the transport or on the director or router that handled the address. Current and ‘home’ directories
are also controllable. See chapter 13 for details of the local delivery environment.

17.1 Returned status and data
If the command exits with a non-zero return code, the delivery is deemed to have failed, unless either
the ignore_status option is set (in which case the return code is treated as zero), or the return code is
one of those listed in the temp_errors option, which are interpreted as meaning ‘try again later’. In
this case, delivery is deferred.

If the return code is greater than 128 and the command being run is a shell script, it normally means
that the script was terminated by a signal whose value is the return code minus 128.

The return_output option can affect the result of a pipe delivery. If it is set and the command
produces any output on its standard output or standard error files, it is considered to have failed, even
if it gave a zero return code or if ignore_status is set. The output from the command is sent as part of
the delivery failure report. However, if return_fail_output is set, output is returned only when the
command exits with a failure return code, that is, a value other than zero or a code that matches
temp_errors.

17.2 How the command is run
By default, the command line is broken down into a command name and arguments by the pipe
transport. The allow_commands and restrict_to_path options can be used to restrict the commands
that may be run. Unquoted arguments are delimited by white space; in double-quoted arguments,
backslash is interpreted as an escape character in the usual way. This does not happen for single-
quoted arguments.

String expansion is applied to the command line except when it comes from a traditional .forward file
(commands from a filter file are expanded). The expansion is applied to each argument in turn rather
than to the whole line. Thus the number of arguments cannot be changed as a result of string
expansion, and quotes or backslashes in inserted variables do not interact with external quoting.

Special handling takes place when an argument consists precisely of the text ‘$pipe_addresses’.
This is not a general expansion variable; the only place this string is recognized is when it appears as
an argument for a pipe or transport filter command. It causes each address that is being handled to be
inserted in the argument list at that point as a separate argument. This avoids any problems with
spaces or shell metacharacters, and is of use when a pipe transport is handling groups of addresses in
a batch (see the batch option below).

The resulting command is then run in a subprocess directly from the transport, not under a shell, with
the message supplied on the standard input, and the standard output and standard error both connected
to a single pipe that is read by Exim. The max_output option controls how much output the command
may produce, and the return_output and return_fail_output options control what is done with it.

[117] pipe transport (17)

Not running the command under a shell (by default) lessens the security risks in cases when a
command from a user ’s filter file is built out of data that was taken from an incoming message. If a
shell is required, it can of course be explicitly specified as the command to be run. However, there are
circumstances where existing commands (for example, in .forward files) expect to be run under a
shell and cannot easily be modified. To allow for these cases, there is an option called use_shell,
which changes the way the pipe transport works. Instead of breaking up the command line as just
described, it expands it as a single string and passes the result to /bin/sh. The restrict_to_path option
and the $pipe_addresses facility cannot be used with use_shell, and the whole mechanism is
inherently less secure.

17.3 Environment variables

The following environment variables are set up when the command is invoked:

DOMAIN the local domain of the address
HOME the ‘home’ directory – see below
HOST the host name when called from a router
LOCAL_PART see below
LOGNAME see below
MESSAGE_ID the message’s id
PATH as specified by the path option below

 QUALIFY_DOMAIN the configured qualification domain
SENDER the sender of the message
SHELL /bin/sh
USER see below

The environment option can be used to add additional variables to this environment.

When a pipe transport is called directly from (for example) a smartuser director, then LOCAL_PART is
set to the local part of the address. When it is called as a result of a forward or alias expansion,
LOCAL_PART is set to the local part of the address that was expanded. LOGNAME and USER are set to the
same value as LOCAL_PART for compatibility with other MTAs.

HOST is set only when a pipe transport is called from a router as a pseudo-remote transport (for
example, for handling batched SMTP). It is set to the first host name specified by the router (if any).

If the transport’s home_directory option is set, then its value is used for the HOME environment
variable. Otherwise, certain directors may set a home directory value, as described in chapter 13.

17.4 Private options for pipe

allow_commands

Type: string
Default: unset

The string is expanded, and then is interpreted as a colon-separated list of permitted commands. If
 restrict_to_path is not set, then the only commands permitted are those in the allow_commands

list. They need not be absolute paths; the path option is still used for relative paths. If
 restrict_to_path is set with allow_commands, then the command must either be in the

allow_commands list, or a name without any slashes that is found on the path. In other words, if
neither allow_commands nor restrict_to_path is set, there is no restriction on the command, but
otherwise only commands that are permitted by one or the other are allowed. For example, if

allow_commands = /usr/ucb/vacation

and restrict_to_commands is not set, the only permitted command is /usr/ucb/vacation. The
allow_commands option may not be set if use_shell is set.

[118] pipe transport (17)

batch

Type: string
Default: "none"

Normally, each address that is directed or routed to a pipe transport is handled separately. In special
cases it may be desirable to handle several addresses at once, for example, when passing a message
with several addresses to a different mail regime (for example, UUCP). If this option is set to the
string ‘domain’, then all addresses with the same domain that are directed or routed to the transport
are handled in a single delivery. If it is set to ‘all’ then multiple domains are batched. The list of
addresses is included in the Envelope-to: header if envelope_to_add is set (see below). The
addresses can also be set up as separate arguments to the pipe command by means of the specially-
recognized argument $pipe_addresses (see above). Otherwise, the only difference between this
option and bsmtp is the inclusion of SMTP command lines in the output for bsmtp.

batch_max

Type: integer
Default: 100

This limits the number of addresses that can be handled in a batch, and applies to both the batch
and the bsmtp options.

bsmtp

Type: string
Default: "none"

This option is used to set up a pipe transport as a pseudo-remote transport for delivering messages
in batch SMTP format for onward transmission by some non-Exim means. It is usually necessary to
suppress the default settings of the prefix and suffix options when using batch SMTP. The value of
the option must be one of the strings ‘none’, ‘one’, ‘domain’, or ‘all’. The first of these turns the
feature off. A full description of the batch SMTP mechanism is given in section 42.7. When bstmp
is set, the batch option automatically takes the same value. See also the use_crlf option.

bsmtp_helo

Type: boolean
Default: false

When this option is set, a HELO line is added to the output at the start of each message written in
batch SMTP format. Some software that reads batch SMTP is unhappy without this.

command

Type: string
Default: unset

This option need not be set when pipe is being used to deliver to pipes obtained from address
expansions (usually under the instance name address_pipe). In other cases, the option must be set,
to provide a command to be run. It need not yield an absolute path (see the path option below).
The command is split up into separate arguments by Exim, and each argument is separately
expanded. Both single and double quotes are recognized. In double-quoted arguments, backslash is
an escape character in the usual way. If a shell is required, it must be explicitly requested, as the
command is not run under a shell by default.

current_directory

Type: string
Default: unset

If this option is set, it specifies the directory to make current when running the delivery process.
The string is expanded at the time the transport is run. If this is not set, the current directory is
taken from data associated with the address. See chapter 13 for full details of the local delivery
environment.

[119] pipe transport (17)

environment

Type: string
Default: unset

This option is used to add additional variables to the environment in which the command runs (see
section 17.3 for the default list). Its value is a string which is expanded, and then interpreted as a
colon-separated list of environment settings of the form ‘<name>=<value>’.

freeze_exec_fail

Type: boolean
Default: false

Failure to exec the command in a pipe transport is by default treated like any other failure while
running the command. However, if freeze_exec_fail is set, failure to exec is treated specially, and
causes the message to be frozen, whatever the setting of ignore_status.

from_hack

Type: boolean
Default: false

If this option is true, lines in the body of the message that start with the string ‘From ’ are modified
by adding a right angle-bracket at their start. This is necessary for traditional BSD-format
mailboxes, where such lines might otherwise indicate the start of a new message.

group

Type: string
Default: unset

If this option is set, it specifies the group under whose gid the delivery process is to be run. If it is
not set, a value associated with a user may be used (see below); otherwise a value must have been
associated with the address by the director which handled it. If the string contains no $ characters,
it is resolved when Exim starts up. Otherwise, the string is expanded at the time the transport is
run, and must yield either a digit string or a name which can be looked up using getgrnam().

home_directory

Type: string
Default: unset

If this option is set, its expanded value is used to set the HOME environment variable before running
the command. This overrides any value that is set by the director. If no current directory is supplied
by the director or the transport, the home directory value is used for that as well. See chapter 13 for
details of the local delivery environment.

ignore_status

Type: boolean
Default: false

If this option is true, the status returned by the subprocess that is set up to run the command is
ignored, and Exim behaves as if zero had been returned. Otherwise, a non-zero status causes an
error return from the transport unless the value is EX_TEMPFAIL, which causes the delivery to be
deferred and tried again later.

initgroups

Type: boolean
Default: false

If this option is true and the uid for the local delivery is specified by the user option, then the
 initgroups() function is called when running the transport to ensure that any additional groups

associated with the uid are set up.

[120] pipe transport (17)

log_defer_output

Type: boolean
Default: false

If this option is set and the status returned by the command is EX_TEMPFAIL and any output was
produced, the first line of it is written to the main log.

log_fail_output

Type: boolean
Default: false

If this option is set and the command returns any output and also ends with a return code that is
neither zero nor EX_TEMPFAIL, the first line of output is written to the main log.

log_output

Type: boolean
Default: false

If this option is set and the command returns any output, the first line of output is written to the
main log, whatever the return code.

max_output

Type: integer
Default: 20K

This specifies the maximum amount of output that the command may produce on its standard
output and standard error file combined. If the limit is exceeded, the process running the command
is killed. This is intended as a safety measure to catch runaway processes. The limit is applied
whether any return_output option is set or not. Because of buffering effects, the amount of output
may exceed the limit by a small amount before Exim notices.

path

Type: string-list
Default: "/usr/bin"

This option specifies the string that is set up in the PATH environment variable of the subprocess. If
the command option does not yield an absolute path name, the command is sought in the PATH

directories, in the usual way.

pipe_as_creator

Type: boolean
Default: false

If user is not set and this option is true, then the delivery process is run under the uid that was in
force when Exim was originally called to accept the message. If the group id is not otherwise set
(via the group option above, or by the director that processed the address), then the gid that was in
force when Exim was originally called to accept the message is used. Setting this option may be
necessary in order to get some free-standing local delivery agents to work correctly. Note, however,
that the never_users configuration option overrides.

prefix

Type: string
Default: see below

The string specified here is expanded and output at the start of every message. The default is the
same as for the appendfile transport, namely

prefix = "From ${if def:return_path{$return_path}{MAILER-DAEMON}}\
${tod_bsdinbox}\n"

[121] pipe transport (17)

This is required by the commonly used /usr/ucb/vacation program, but it must not be present if
delivery is to the Cyrus IMAP server, or to the tmail local delivery agent. The prefix can be
suppressed by setting

prefix =

This is also usually necessary when doing batch SMTP deliveries.

restrict_to_path

Type: boolean
Default: false

When this option is set, any command name not listed in allow_commands must contain no
slashes. The command is searched for only in the directories listed in the path option. This option
is intended for use in the case when a pipe command has been generated from a user ’s .forward
file. This is usually handled by a pipe transport called address_pipe.

retry_use_local_part

Type: boolean
Default: true

When a local delivery suffers a temporary failure, both the local part and the domain are normally
used to form a key that is used to determine when next to try the address. This handles common
cases such as exceeding a quota, where the failure applies to the specific local part. However, when
local delivery is being used to collect messages for onward transmission by some other means, a
temporary failure may not depend on the local part at all. Setting this option false causes Exim to
use only the domain when handling retries for this transport.

return_fail_output

Type: boolean
Default: false

If this option is true, and the command produced any output and ended with a return code other
than zero or EX_TEMPFAIL, the output is returned in the delivery error message. However, if the
message has a null sender (that is, it is a delivery error message), output from the command is

 discarded.

return_output

Type: boolean
Default: false

If this option is true, and the command produced any output, the delivery is deemed to have failed
whatever the return code from the command, and the output is returned in the delivery error
message. Otherwise, the output is just discarded. However, if the message has a null sender (that is,
it is a delivery error message), output from the command is always discarded, whatever the setting
of this option.

suffix

Type: string
Default: "\n"

The string specified here is expanded and output at the end of every message. The default is the
same as for the appendfile transport. It can be suppressed by setting

suffix =

and this is usually necessary when doing batch SMTP deliveries.

[122] pipe transport (17)

temp_errors

Type: string
Default: see below

This option contains a colon-separated list of numbers. If ignore_status is false and the command
exits with a return code that matches one of the numbers, the failure is treated as temporary and the
delivery is deferred. The default setting contains the codes defined by EX_TEMPFAIL and

 EX_CANTCREAT in sysexits.h. If Exim is compiled on a system that does not define these macros, it
assumes values of 75 and 73, respectively.

timeout

Type: time
Default: 1h

If the command fails to complete within this time, it is killed. This normally causes the delivery to
fail. A zero time interval specifies no timeout. In order to ensure that any subprocesses created by
the command are also killed, Exim makes the initial process a process group leader, and kills the
whole process group on a timeout. However, this can be defeated if one of the processes starts a
new process group.

umask

Type: octal integer
Default: 022

This specifies the umask setting for the subprocess that runs the command.

use_crlf

Type: boolean
Default: false

This option causes lines to be terminated with the two-character CRLF sequence (carriage return,
linefeed) instead of just a linefeed character. In the case of batched SMTP, the byte sequence
written to the pipe is then an exact image of what would be sent down a real SMTP connection.

The contents of the prefix and suffix options are written verbatim, so must contain their own
carriage return characters if these are needed. Since the default values for both prefix and suffix
end with a single linefeed, their values almost always need to be changed if use_crlf is set.

use_shell

Type: boolean
Default: false

If this option is set, it causes the command to be passed to /bin/sh instead of being run directly
from the transport as described in section 17.2. This is less secure, but is needed in some situations
where the command is expected to be run under a shell and cannot easily be modified. The
allow_commands and restrict_to_path options, and the ‘$pipe_addresses’ facility are incompatible
with use_shell. The command is expanded as a single string, and handed to /bin/sh as data for its
-c option.

user

Type: string
Default: unset

If this option is set, it specifies the user under whose uid the delivery process is to be run. If it is
not set, a value must have been associated with the address by the director that handled it. If the
string contains no $ characters, it is resolved when Exim starts up. Otherwise, the string is
expanded at the time the transport is run, and must yield either a digit string or a name which can
be looked up using getpwnam(). When getpwnam() is used, either at start-up time or later, the

[123] pipe transport (17)

group id value associated with the user is taken as the value to be used if the group option is
not set.

17.5 Using an external local delivery agent
The pipe transport can be used to pass all messages that require local delivery to a separate local
delivery agent such as procmail. When doing this, care must be taken to ensure that the pipe is run
under an appropriate uid and gid. In some configurations one wants this to be a uid that is trusted by
the delivery agent to supply the correct sender of the message. It may be necessary to recompile or
reconfigure the delivery agent so that it trusts an appropriate user. The following is an example
transport and director configuration for procmail:

transport
procmail_pipe:
driver = pipe
command = "/opt/local/bin/procmail -d ${local_part}"

 from_hack
user = exim

director
 procmail:

driver = localuser
transport = procmail_pipe

In this example, the pipe is run as the user exim, assuming that procmail trusts that user.
Alternatively, you can run the delivery in a special group, but neither of these are mandatory. If you
don’t specify either a group or a user option, then the pipe command is run as the local user. The
home directory is the user ’s home directory by default.

Note that the command that the pipe transport runs does not begin with

IFS=" "

as shown in the procmail documentation, because Exim does not by default use a shell to run pipe
commands.

The next example shows a transport and a director for a system where local deliveries are handled by
the Cyrus IMAP server.

transport
 local_delivery_cyrus:

driver = pipe
command = "/usr/cyrus/bin/deliver \

-m ${substr_1:${local_part_suffix}} -- ${local_part}"
user = cyrus
group = mail

 return_output
 log_output

prefix =
suffix =

director
local_user_cyrus:
driver = localuser
suffix = .*
transport = local_delivery_cyrus

Note the unsetting of prefix and suffix, and the use of return_output to cause any text written by
Cyrus to be returned to the sender.

[124] pipe transport (17)

18. The smtp transport

The smtp transport delivers messages over TCP/IP connections using the SMTP protocol. The list of
hosts to try can either be taken from the address that is being processed, or specified explicitly for the
transport. Timeout and retry processing (see chapter 31) is applied to each IP address independently.
The private options are as follows:

allow_localhost

Type: boolean
Default: false

When a host specified in hosts or fallback_hosts (see below) turns out to be the local host, or is
listed in hosts_treat_as_local, Exim freezes the message by default. However, if allow_localhost is
set, it goes on to do the delivery anyway. This should be used only in special cases when the
configuration ensures that no looping will result (for example, a differently configured Exim is
listening on the SMTP port).

batch_max

Type: integer
Default: 0

This controls the maximum number of separate message deliveries that can take place over a single
TCP/IP connection. If the value is zero, there is no limit.

When a message has been successfully delivered over a TCP/IP connection, Exim looks in its hints
database to see if there are any other messages awaiting a connection to the same host. If there are,
a new delivery process is started for one of them, and the current TCP/IP connection is passed on
to it. The new process may in turn create yet another process. Each time this happens, a sequence
counter is incremented, and if it ever gets to the (non-zero) batch_max value, no further messages
are sent on the same TCP/IP connection.

For testing purposes, this value can be overridden by the -oB command line option.

command_timeout

Type: time
Default: 5m

This sets a timeout for receiving a response to an SMTP command that has been sent out. It is also
used when waiting for the initial banner line from the remote host. Its value must not be zero.

connect_timeout

Type: time
Default: 0s

This sets a timeout for the connect() function, which sets up a TCP/IP call to a remote host. A
setting of zero allows the system timeout (typically several minutes) to act. To have any effect, the
value of this option must be less than the system timeout.

data_timeout

Type: time
Default: 5m

This sets a timeout for the transmission of each block in the data portion of the message. As a
result, the overall timeout for a message depends on the size of the message. Its value must not be
zero.

[125] smtp transport (18)

delay_after_cutoff

Type: boolean
Default: true

This option controls what happens when all remote IP addresses for a given domain have been
inaccessible for so long that they have passed their retry cutoff times.

In the default state, if the next retry time has not been reached for any of them, the address is
bounced without trying any deliveries. In other words, Exim delays retrying an IP address after the
final cutoff time until a new retry time is reached, and can therefore bounce an address without ever
trying a delivery, when machines have been down for a long time. Some people are unhappy at this
prospect, so...

If delay_after_cutoff is set false, Exim behaves differently. If all IP addresses are past their final
 cutoff time, then Exim tries to deliver to those IP addresses that have not been tried since the

message arrived. If there are none, of if they all fail, the address is bounced. In other words, it does
not delay when a new message arrives, but immediately tries those expired IP addresses that

 haven’t been tried since the message arrived. If there is a continuous stream of messages for the
dead hosts, unsetting delay_after_cutoff means that there will be many more attempts to deliver to

 them.

dns_qualify_single

Type: boolean
Default: true

If the hosts or fallback_hosts option is being used and names are being looked up in the DNS,
then the option to cause the resolver to qualify single-component names with the local domain
is set.

dns_search_parents

Type: boolean
Default: false

If the hosts or fallback_hosts option is being used and names are being looked up in the DNS,
then the resolver option to enable the searching of parent domains is set. Many resolvers default
this option to be on, but its use in resolving mail addresses has caused problems in cases where
wildcard MX records exist, so the default was changed to false in Exim version 1.80.

fallback_hosts

Type: string-list
Default: unset

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or IP addresses. Fallback hosts can also be specified on routers and directors which then
associate them with the addresses they process; as for the hosts option, fallback_hosts specified on
the transport is used only if the address does not have its own associated fallback host list.

If Exim is unable to deliver to any of the hosts for a particular address, and the errors are not
permanent rejections, the address is put on a separate transport queue with its host list replaced by
the fallback hosts, unless the address was routed via MX records and the current host was in the
original MX list. In that situation, the fallback host list is not used.

Once normal deliveries are complete, the fallback queue is delivered by re-running the same
transports with the new host lists. If several failing addresses have the same fallback hosts (and

 max_rcpt permits it), a single copy of the message is sent.

The resolution of the host names on the fallback list is controlled by the gethostbyname() and
mx_domains options, as for the hosts option. Fallback hosts apply both to cases when the host list
comes with the address and when it is taken from hosts. This option provides a ‘use a smart host
only if delivery fails’ facility.

[126] smtp transport (18)

final_timeout

Type: time
Default: 10m

This is the timeout that applies while waiting for the response to the final line containing just ‘.’
that terminates a message. Its value must not be zero.

gethostbyname

Type: boolean
Default: false

If this option is true when the hosts and/or fallback_hosts options are being used, names are
looked up using gethostbyname() instead of using the DNS with MX processing. Of course,
gethostbyname() may in fact use the DNS to look up A (but not MX) records, but it may also
consult other sources of information such as /etc/hosts.

hosts

Type: string-list
Default: unset

Hosts are associated with an address by a router such as lookuphost, which finds the hosts by
looking up the address domain in the DNS. However, addresses can be passed to the smtp transport
by any router or director, not all of which provide an associated host list. This option specifies a list
of hosts which are used if the address being processed does not have any hosts associated with it,
or if the hosts_override option is set.

The string is first expanded, before being interpreted as a colon-separated list of host names or IP
addresses. Names are looked up either in the DNS (using MX processing) or using

 gethostbyname(), depending on the setting of the gethostbyname option. When Exim is compiled
with IPv6 support, if a host that is looked up in the DNS has both A and AAAA records, all the
addresses are used. See README.IPV6 for general information about IPv6 support.

This option is typically used in association with a smartuser director that wants to direct messages
to a particular host or hosts. The given hosts are tried in order, subject to their retry status. This
option is ignored when the address has been routed by a router that supplies a host list (for
example, lookuphost), unless hosts_override is set.

hosts_override

Type: boolean
Default: false

If this option is set and the hosts option is also set, then any hosts that are attached to the address
are ignored, and instead the hosts specified by the hosts option are always used.

interface

Type: string
Default: unset

This option specifies which interface to bind to when making an outgoing SMTP call. The string
must be an IP address, for example:

interface = 123.123.123.123

If interface is not set, the system’s IP functions choose which interface to use if there is more than
one. In an IPv6 system, the type of interface specified must be of the same kind as the address to
which the call is being made. If not, it is ignored.

[127] smtp transport (18)

keepalive

Type: boolean
Default: true

This option controls the setting of SO_KEEPALIVE on outgoing socket connections. This causes the
kernel periodically to send some OOB (out-of-band) data on idle connections. The option is
provided for symmetry with the global smtp_accept_keepalive option that has the same effect on
incoming SMTP connections.

max_rcpt

Type: integer
Default: 100

This option limits the number of RCPT commands that are sent in a single SMTP message transac-
tion. Each set of addresses is treated independently, and so can cause parallel connections to the
same host if remote_max_parallel permits this.

multi_domain

Type: boolean
Default: true

When this option is set, the smtp transport can handle a number of addresses containing a mixture
of different domains provided they all resolve to the same list of hosts. Turning the option off
restricts the transport to handling only one domain at a time. This is useful if you want to use
$domain in an expansion for the transport, because it is set only when there is a single domain
involved in a remote delivery.

mx_domains

Type: domain-list
Default: unset

If the hosts or fallback_hosts options are being used and names are being looked up in the DNS,
that is, the gethostbyname option is not set, then any domain name that matches this list is
required to have an MX record; an A record is not sufficient.

port

Type: string
Default: "smtp"

This option specifies the TCP/IP port that is used to send the message. If it begins with a digit it is
taken as a port number; otherwise it is looked up using getservbyname().

retry_include_ip_address

Type: boolean
Default: true

Exim normally includes both the host name and the IP address in the key it constructs for indexing
retry data after a temporary delivery failure. This means that when one of several IP addresses for a
host is failing, it gets tried periodically (controlled by the retry rules), but use of the other IP
addresses is not affected.

However, in some dialup environments hosts are assigned a different IP address each time they
connect. In this situation the use of the IP address as part of the retry key leads to undesirable

 behaviour. Setting this option false causes Exim to use only the host name. This should normally be
done on a separate instance of the smtp transport, set up specially to handle the dialup hosts.

[128] smtp transport (18)

serialize_hosts

Type: host-list
Default: unset

Because Exim operates in a distributed manner, if several messages for the same host arrive at
around the same time, more than one simultaneous connection to the remote host can occur. This is
not usually a problem except when there is a slow link between the hosts. In that situation it may
be helpful to restrict Exim to one connection at a time. This can be done by setting serialize_hosts
to match the relevant hosts.

Exim implements serialization by means of a hints database in which a record is written whenever a
process connects to one of the restricted hosts, and deleted when the connection is completed.
Obviously there is scope for records to get left lying around if there is a system or program crash.

 To guard against this, Exim ignores any records that are more than six hours old.

However, if you set up any serialization, you should also arrange to delete the hints database
whenever your system reboots. The names of the files all start with serialize-<transport name> and
they are kept in the spool/db directory. There may be one or two files per serialized transport,
depending on the type of DBM in use.

service

Type: string
Default: "smtp"

This option is a synonym for the port option.

size_addition

Type: integer
Default: 1024

If a remote SMTP server indicates that it supports the SIZE option of the MAIL command, Exim uses
this to pass over the message size at the start of an SMTP transaction. It adds the value of
size_addition to the value it sends, to allow for headers and other text that may be added during
delivery by configuration options or in a transport filter. It may be necessary to increase this if a lot
of text is added to messages.

Alternatively, if the value of size_addition is set negative, it disables the use of the SIZE option
 altogether.

[129] smtp transport (18)

19. Common generic options for directors and routers

Directors and routers have sufficiently many generic options in common to make it worth documenting
them jointly in this chapter, to save duplication. Any of these options can be used on any director or
router. Subsequent chapters describe the generic options that are specific either to directors or to
routers.

condition

Type: string
Default: unset

This option specifies a test that has to succeed for the driver to be called. The string is expanded,
and if the result is a forced failure or an empty string or one of the strings ‘0’ or ‘no’ or ‘false’
(checked without regard to the case of the letters), the driver is not run. This provides a means of
applying special-purpose conditions to the running of directors and routers. The $home variable is
available in the expansion for directors that set it up. If the expansion fails, it causes Exim to panic.
Some of the other options below are common special cases that could in fact be specified using

 condition.

debug_print

Type: string
Default: unset

If this option is set and debugging is enabled (see -d, -v, and debug_level), then the string is
expanded and included in the debugging output. This is to help with checking out the values of
variables and so on when debugging driver configurations. For example, if a condition option
appears not to be working, debug_print could be used to output the variables it references. The
output happens after checks for domains, local_parts, suffix and prefix, but before checking

 require_files and condition. A newline is added to the text if it does not end with one.

domains

Type: domain-list
Default: unset

If this option is set, the string is expanded, and is then interpreted as a colon-separated list. Because
of the expansion, if any of the items contain backslash or dollar characters, they must be escaped
with a backslash. This applies in particular to any query-style lookup that uses the $key variable,
because otherwise it gets expanded too early. If the string is given in quotes, backslashes have to be
escaped a second time.

The driver is skipped unless the current domain matches the list. If the match is achieved by means
of a file lookup, then the data that the lookup returned for the domain is placed in the
$domain_data variable for use in string expansions of the driver ’s private options. For directors,
this option is the means by which a host can handle several independent local domains. For routers,
it can be used to reduce the use of an expensive router such as queryprogram by doing a
preliminary plausibility check on the domain. Note that the current domain may change as routing
proceeds, as a router may replace the original with a different one for subsequent routers to use.

driver

Type: string
Default: unset

This option must always be set. It specifies the name of the director or router driver.

[130] generic director/router options (19)

errors_to

Type: string
Default: unset

Delivery errors for any addresses handled or generated by the director or router are sent to the
address that results from expanding this string, if it is set, and if it verifies as valid. In other words,
this option sets the value of the envelope sender address to be used for deliveries associated with
the driver. If it is unset, or fails to verify, the errors address associated with the incoming address
(normally the sender) is used. A typical use might be

errors_to = "aliasmaster"

The errors_to setting associated with an address can be overridden if it subsequently passes
through other directors or routers that have their own errors_to settings.

fail_verify

Type: boolean
Default: false

Setting this option has the effect of setting both fail_verify_sender and fail_verify_recipient to the
same value.

fail_verify_recipient

Type: boolean
Default: false

If this option is true and an address is accepted by this driver when verifying a recipient, then
verification fails. This option has no effect if the verify_recipient option is false.

fail_verify_sender

Type: boolean
Default: false

If this option is true and an address is accepted by this driver when verifying a sender, then
verification fails. This option has no effect if the verify_sender option is false.

fallback_hosts

Type: string-list
Default: unset

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or IP addresses. If a driver queues an address for a remote transport, this host list is
associated with the address, and used instead of the transport’s fallback host list. See the
fallback_hosts option of the smtp transport for further details.

group

Type: string
Default: see below

If a driver queues an address for a local transport, and the transport does not specify a group, then
the group given here is used when running the delivery process. If the string contains no $
characters, it is resolved when Exim starts up. Otherwise, the string is expanded at the time the
director or router is run, and must yield either a digit string or a name which can be looked up
using getgrnam(). For most directors and routers the default is unset, but for the forwardfile
director with check_local_user set, and for the localuser director, the default is taken from the
passwd file. See also initgroups and user and the discussion in chapter 13.

[131] generic director/router options (19)

headers_add

Type: string
Default: unset

This option specifies a string of text which is expanded at directing or routing time, and associated
with any addresses that are processed by the driver. If the expanded string is empty, or if the
expansion is forced to fail, the option has no effect. Other expansion failures are treated as
configuration errors. At transport time, for each address, all original headers listed in headers_

 remove are removed, and those specified by headers_add are added. It is not possible to remove
headers added to an address by headers_add.

The expanded string must be in the form of one or more RFC 822 header lines, separated by
newlines (coded as ‘\n’ inside a quoted string). For example:

headers_add = "X-added-header:"

Exim does not check the syntax of these added headers. A newline is supplied at the end if one is
not present. The text is added at the end of any existing headers, but before any headers added by
the transport.

If an address passes through several directors and/or routers, any headers_add or headers_remove
specifications are cumulative, and any such specifications on the transport are also honoured.
Addresses with different headers_add or headers_remove settings cannot be batched.

headers_remove

Type: string
Default: unset

The string is expanded at directing or routing time and is then associated with any addresses that
are processed by the driver. If the expansion is forced to fail, the option has no effect. Other
expansion failures are treated as configuration errors. After expansion, the string must consist of a
colon-separated list of header names, not including the terminating colon, for example:

remove_headers = "return-receipt-to:acknowledge-to"

It is used at transport time as described under headers_add above.

initgroups

Type: boolean
Default: false

If the driver queues an address for a local transport, and this option is true, and the uid supplied by
the router or director is not overridden by the transport, then the initgroups() function is called
when running the transport to ensure that any additional groups associated with the uid are set up.
See also group and user and the discussion in chapter 13.

local_parts

Type: string-list
Default: unset

If this option is set, the string is expanded, and is then interpreted as a colon-separated list. Because
of the expansion, if any of the items contain backslash or dollar characters, they must be escaped
with a backslash. This applies in particular to any query-style lookup that uses the $key variable,
because otherwise it gets expanded too early. If the string is given in quotes, backslashes have to be
escaped a second time.

The driver is run only if the local part of the address matches the list, which is tested in the same
way as a domain list and which may therefore include plain file names, file lookups, and negation.
Because the string is expanded, it is possible to make it depend on the domain, for example:

local_parts = dbm;/usr/local/specials/$domain

[132] generic director/router options (19)

If the match is achieved by a lookup, then the data that the lookup returned for the local part is
placed in the variable $local_part_data for use in expansions of the driver ’s private options. You
might use this option, for example, if you have a large number of local virtual domains, and you
want to send all postmaster mail to the same place without having to set up an alias in each virtual

 domain:

postmaster:
local_parts = postmaster
driver = smartuser
new_address = postmaster@real.dom.ain

more

Type: boolean
Default: true

If this option is false, then if the driver fails to handle an address, no further drivers are tried, and
directing or routing fails. This applies even in the case of address verification where the driver was
not run because the verify option was off (see section 19.1). However, if a router explicitly passes
an address to the following router by means of the setting

self = fail_soft

then the setting of more is ignored.

require_files

Type: string-list
Default: unset

The value of this option is first expanded and then interpreted as a colon-separated list of strings. If
the option is used on a localuser director, or on a forwardfile director that has either of the
check_local_user or file_directory options set, then the expansion variable $home may appear in
the list, referring to the home directory of the user whose name is that of the local part of the

 address.

If any string is empty, it is ignored. Otherwise, except as described below, each string must be a
fully qualified file path, optionally preceded by ‘!’. The paths are passed to the stat() function to
test for the existence of the files or directories. The driver is skipped if any paths not preceded by
‘!’ do not exist, or if any paths preceded by ‘!’ do exist.

The stat() function is normally run under the exim uid (or root if such is not defined). However, it
is possible to arrange for this test to be run under a specific uid and gid (which is set by means of
seteuid() and setegid()). If an item in a require_files list does not contain any forward slash
characters, it is taken to be the user (and optional group, separated by a comma) to be used for
testing subsequent files in the list. If no group is specified but the user is specified symbolically,
then the gid associated with the uid is used; otherwise the gid is not changed. For example:

require_files = mail:/some/file
require_files = ${local_part}:${home}/.procmailrc

The second example works because the require_files string is expanded before use.

If stat() cannot determine whether a file exists or not, delivery of the message is deferred. This can
happen when NFS-mounted filesystems are unavailable.

Sometimes stat() yields the error EACCES (‘Permission denied’). This means that the user is not
permitted to read one of the directories on the file’s path. The default action is to consider this a
configuration error, and delivery is deferred because the existence or non-existence of the file
cannot be determined. However, in some circumstances it may be desirable to treat this condition as
if the file did not exist. If the file name (or the exclamation mark that precedes the file name for
non-existence) is preceded by a plus sign, then the EACCES error is treated as if the file did not exist.
For example:

[133] generic director/router options (19)

require_files = +/some/file

This option provides a general mechanism for predicating the running of a director or router on the
existence or non-existence of certain files or directories. A failure to expand the string, or the
presence of a path within it that is not fully qualified causes a panic error. This includes forced
failure, because the whole string is expanded once, before being interpreted as a list. If you want a
particular variant of the expansion to specify that no files are to be checked, you should cause it to
yield an empty string rather than forcing failure.

senders

Type: address-list
Default: unset

The values of this option and except_senders are expanded, and the results of the expansions must
be colon-separated address lists, in the same format as used for general options like sender_reject.
The driver is run only if the sender address matches something in the senders list, if set, and does
not match anything in except_senders, if set. Using this option on a director makes it possible to
implement closed mailing lists (see chapter 36).

There are issues concerning verification when the running of directors or routers is dependent on
the sender. When Exim is verifying an errors_to setting in either forwardfile or aliasfile, it sets the
sender to the null string. If using the -bt option to check a configuration file, it is necessary also to
use the -f option to set an appropriate sender. For incoming mail, the sender is unset when verifying
the sender, but is available when verifying any recipients. If the SMTP VRFY command is enabled, it
must be used after MAIL if the sender address matters.

transport

Type: string
Default: unset

Some directors and routers require a transport to be supplied, except when verify_only is set, where
it is not relevant. Others require that a transport not be supplied, and for some it is optional. The
string must be the name of a configured transport instance, or an expandable string, thus allowing
transports to be dynamically selected. At directing or routing time, when a driver decides to accept
an address, the string is expanded, and must yield the name of an available transport. If it does not,
delivery is deferred. This isn’t as safe as fixed transports, whose existence is checked at
initialization time.

unseen

Type: boolean
Default: false

Setting this option has a similar effect to the unseen command qualifier in filter files. It causes an
address to be passed on to subsequent drivers, even if the current one succeeds in handling it, and
can be used to cause copies of messages to be delivered elsewhere.

user

Type: string
Default: see below

If the driver queues an address for a local transport, and the transport does not specify a user, then
the user given here is used when running the delivery process. If the string contains no $ characters,
it is resolved when Exim starts up. Otherwise, the string is expanded at the time the director or
router is run, and must yield either a digit string or a name which can be looked up using

 getpwnam(). In the latter case, the group associated with the user is used as a default for the group
option.

For most directors and routers the default for user is unset, but for the forwardfile director with
check_local_user set, and for the localuser director, the default is taken from the passwd file. See
also initgroups and group and the discussion in chapter 13.

[134] generic director/router options (19)

verify

Type: boolean
Default: true

Setting this option has the effect of setting verify_sender and verify_recipient to the same value.

verify_only

Type: boolean
Default: false

If this option is set, the driver is used only when verifying an address or testing with the -bv option,
not when actually doing a delivery, testing with the -bt option, or running the SMTP EXPN

command (see the expn generic option for directors). It can be further restricted to verifying only
senders or recipients by means of verify_sender and verify_recipient.

verify_recipient

Type: boolean
Default: true

If this option is false, then this driver is skipped when verifying recipient addresses. It is usual to
set it false for instances of the smartuser director.

verify_sender

Type: boolean
Default: true

If this option is false, then this driver is skipped when verifying sender addresses. It is usual to set
it false for instances of the smartuser director.

19.1 Skipping directors and routers
A number of the generic options that are common to directors and routers are concerned with
controlling which drivers are run in particular circumstances. They interact with each other in the
following way:

If the domain and local part of an address are not in agreement with domains and local_parts (when
set), or if the condition option fails, or if verify_only is set and verification is not happening, then the
director or router is skipped and the next one is tried. None of the other options are inspected.
Otherwise, if the more option is false, no subsequent drivers are ever called, except when a router
explicitly passes an address that routes to the local host on to the following driver, by means of the
generic self option or the host_find_failed option of the domainlist router. The current driver is itself
called unless

• Verification is happening and its verify_sender or verify_recipient option (as appropriate) is
turned off, or

• The existence or non-existence of files listed in the require_files option is not as expected, or

• The sender of the message is not in agreement with senders. This test is done after checking for
file existence so that sender lists can contain references to files whose existence is tested.

In the case of directors, there are some additional conditions that are tested here (see section 20.1).

The unseen option causes directing or routing to continue when it would otherwise cease. This is the
complementary action to no_more, which causes it to cease when it would otherwise continue.

The verify, fail_verify, and verify_only options make it possible to separate those addresses which
correspond to a real delivery from those which are recognized, but which do something else if actually
encountered in a message.

For example, a smartuser director might be used to pass all unrecognized local parts to a script that
tries to generate a helpful error message, or to a different machine that might be able to handle them.

[135] generic director/router options (19)

This means that no local part will ever cause a delivery failure. However, if (for example) verification
of senders is taking place (the sender_verify main configuration option), you probably don’t want
<random-local-part@your.domain> to be accepted. The solution is to set no_verify or no_verify_
sender on the smartuser director.

On our systems in Cambridge we can identify users whose accounts have recently been cancelled, and
their mail is piped to a script which sends back a more helpful message than ‘user unknown’.
Verification of such local parts as senders should fail, but just setting no_verify on the director doesn’t
work, because the local part is then passed to a localuser director that may still find it in the password
file. (Initially, cancellation just resets the password.) This is the sort of case for which fail_verify was
invented. It makes it possible to fail a set of local parts that is defined by what a specific director
matches.

[136] generic director/router options (19)

20. Additional generic options for directors

The following additional generic options apply to all directors, in addition to the common generic
options for both directors and routers which are described in chapter 19. Directors are concerned with
addresses whose domains match something in local_domains, or which have been explicitly deter-
mined to be local by a router.

expn

Type: boolean
Default: true

If this option is turned off, the director is skipped when testing an address as a result of processing
an SMTP EXPN command. You might, for example, want to turn it off on a director for users’
.forward files, while leaving it on for the system alias file. The use of the SMTP EXPN command is
permitted only from hosts that match the smtp_expn_hosts main configuration option.

This option is specific to directors because EXPN applies only to local addresses, so no address that
is an argument to EXPN is ever passed to any router. When Exim is running an EXPN command, it is
similar to testing an address with -bt. Compare VRFY, whose counterpart is -bv.

new_director

Type: string
Default: unset

Sometimes an administrator knows that it is pointless to reprocess addresses generated from alias or
forward files with the same director again. For example, if an alias file translates real names into
login ids there is no point searching the alias file again, especially if it is a large file.

The new_director option can be set to the name of any director instance. It causes the directing of
any generated local addresses to start at the named director instead of the first director. The named
director can be any configured director. This option has no effect if the director in which it is set
does not generate new addresses, or if such addresses are not in local domains.

prefix

Type: string-list
Default: unset

If this option is set, the director is skipped unless the local part starts with one of the given strings,
or the prefix_optional option is true. A limited form of wildcard is available; if the prefix begins
with an asterisk, it matches the longest possible sequence of arbitrary characters at the start of the
local part. An asterisk should therefore always be followed by some character that does not occur in
normal local parts. Wildcarding can be used to set up multiple user mailboxes, as described in
chapter 35.

While the director is running, the prefix is removed from the local part, and is available in the
expansion variable local_part_prefix. If the director succeeds, this remains true during subsequent

 delivery.

The prefix facility is commonly used to handle local parts of the form owner-something. Another
common use is to support local parts of the form real-username to bypass a user ’s .forward file –
helpful when trying to tell a user their forwarding is broken – by placing a director like this one
immediately before the director that handles .forward files:

real_localuser:
driver = localuser
transport = local_delivery
prefix = real-

[137] generic director options (20)

If both prefix and suffix are set for a director, both conditions must be met if not optional. Care
must be taken if wildcards are used in both a prefix and a suffix on the same director. Different
separator characters must be used to avoid ambiguity.

prefix_optional

Type: boolean
Default: false

See prefix above.

suffix

Type: string-list
Default: unset

This option operates in the same way as prefix, except that the local part must end (rather than
start) with the given string, the suffix_optional option determines whether the suffix is mandatory,
and the wildcard * character, if present, must be the last character of the suffix. This option facility
is commonly used to handle local parts of the form something-request and multiple user mailboxes
of the form username-foo.

suffix_optional

Type: boolean
Default: false

See suffix above.

20.1 Skipping directors
Section 19.1 above describes the circumstances in which the generic options that are common to both
directors and routers cause a driver to be skipped. Directors have additional generic options which
impose some further condition.

The new_director generic option causes the directing of a generated local address to start at a
particular director, thus skipping those above it for that address.

Processing of the prefix and suffix options does not happen until after the check of local_parts is
done, so the local part that is checked at that stage is the full local part. If you want to select a director
based on a partial local part, you can use a regular expression, or make use of the condition option to
do more complicated processing (such as looking up a prefix-stripped local part in a file).

The following additional conditions, which are applied after the initial checks on the domain etc.,
prevent the current director from being run:

• An SMTP EXPN command is being processed and the director ’s expn option is turned off, or

• There is a prefix or suffix mismatch, or

• The address was generated by aliasing or forwarding and is identical to an ancestor address that
was processed by this director. This restriction breaks addressing loops.

[138] generic director options (20)

21. The aliasfile director

The aliasfile director expands local parts by consulting a file of aliases. The expansion may safely
contain the same local part as the input, because a director is automatically skipped if any ancestor of
a local part has the same name and was processed by that director.

The alias file can be a text file that is searched linearly, a DBM direct-access database, a NIS or NIS+
map, or any other kind of lookup supported by Exim (see chapter 6).

Unless the locally_caseless option has been set false, local parts are forced to lower case, and so the
keys in alias files should normally be in lower case. For linearly searched files this isn’t in fact
necessary, because the searching is done in a case-independent manner, but it is relevant for other
forms of alias lookup. The exim_dbmbuild utility can be used to convert a text file into a DBM
database; the keys are lower-cased by default.

21.1 Alias file format
A textual alias file to be searched linearly consists of entries that start with the alias name, terminated
by a colon or white space. However, a colon must be used if data for the alias starts with a colon,
because white space is permitted between the alias name and its terminating colon. This is Exim’s
standard lsearch format (see chapter 6).

The remainder of the entry, up to the end of the line, consists of a list of addresses, file names, pipe
commands, or certain special items (see below). The items in the list are separated by commas. The
list can be continued over several lines by starting each of the continuation lines with white space. A
comma is still required following an item that ends at the end of a line, because the lsearch lookup
code removes newlines from the string it returns.

Lines in textual alias files that start with a # character are comments, and are ignored, and a # may
also appear following a comma in an item list, in which case everything after the # is ignored.

Other forms of alias file (DBM, NIS, etc.) involve lookups using the local part as a key on files and
databases. The value returned is a list of address, file, or pipe items separated by commas or newlines.

In all cases, the returned list is normally used exactly as it stands, but if the expand option is set, it is
first passed through the string expansion mechanism.

By default, alias names are simple local parts such as ‘postmaster’, but if the include_domain option
is set, they must contain both a local part and a domain, thus allowing aliases for more than one
domain to be held in a single file.

It is possible to set up a default in an alias file, to match any incoming local part that doesn’t match
any other entry. This is done by making use of a lookup type name followed by an asterisk, for
example dbm* (see chapter 6).

21.2 Types of alias item
If an item is entirely enclosed in double quotes, these are removed. Otherwise double quotes are
retained because some forms of mail address require their use (but never to enclose the entire address).
In the following description, ‘item’ refers to what remains after any surrounding double quotes have
been removed. An item may safely be the same as the one currently under consideration, because any
director is automatically skipped if any ancestor has the same local part and was processed by that
director.

• If an item begins with ‘\’ and the rest of the item parses as a valid RFC 822 address that does not
include a domain, the item is qualified using the domain of the incoming address. The use of ‘\’
makes a difference only if there is more than one local domain. In the absence of a leading ‘\’,
unqualified addresses are qualified using the value in qualify_recipient, unless qualify_

[139] aliasfile director (21)

 preserve_domain is set. It is not necessary to include ‘\’ in aliases to prevent directing loops,
because Exim has its own method of loop detection.

• An item is treated as a pipe command if it begins with ‘|’ and does not parse as a valid RFC 822
address that includes a domain. A transport for running the command must be specified by the
pipe_transport option. Either the director or the transport must specify a user and group under
which to run the delivery.

Either single or double quotes can be used for enclosing the individual arguments of the pipe
command; no interpretation of escapes is done for single quotes. If the command contains a
comma character, it is necessary to put the whole item in double quotes, for example:

"|/some/command ready,steady,go"

since items are terminated by commas. Do not, however, quote just the command. An item
such as

|"/some/command ready,steady,go"

is interpreted as a pipe with a rather strange command name, and no arguments.

• An item is interpreted as a path name if it begins with ‘/’ and does not parse as a valid RFC 822
address that includes a domain. For example,

/home/world/minbari

is treated as a file name, but

/s=molari/o=babylon/@x400gate.way

is treated as an address. For a file name, a transport must be specified using the file_transport
option. However, if the generated path name ends with a forward slash character, it is interpreted
as a directory name rather than a file name, and directory_transport is used instead. If it ends
with two slashes, directory2_transport is required. This makes it possible to support two
different kinds of directory delivery simultaneously.

If a generated path is /dev/null, delivery to it is bypassed at a high level, and the log entry shows
 ‘**bypassed**’ instead of a transport name. This avoids the need to specify a user and group,

which are necessary for a genuine delivery to a file. When the file name is not /dev/null, either
the director or the transport must specify a user and group under which to run the delivery.

• An item of the form

:include:<path name>

may appear in an alias file, in which case a list of further items is taken from the given file and
included at that point. The items in the list are separated by commas or newlines and are not
subject to expansion, even when the expand option is set. If this is the first item in an alias list, a
colon must be used to terminate the alias name.

• Sometimes you want to throw away mail to a particular local part. An alias entry with no
addresses causes Exim to generate an error, so that cannot be used. However, another special
item that may appear in an alias file is

:blackhole:

which does what its name implies. No delivery is done for it, and no error message is generated.
If this is the first item in an alias list, a colon must be used to terminate the alias name.

This used to be more efficient than directing a message to /dev/null because it happens at
directing time, and also there was no need to specify a user and group to run the transport
process for delivery to a file. However, from Exim version 1.90 onwards /dev/null is recognized

 specially, and handled in essentially the same way as :blackhole:.

• An attempt to deliver to a particular local part can be deferred or forced to fail by aliasing the
local part to

[140] aliasfile director (21)

 :defer:
or
:fail:

respectively. As this is normally the only item in an alias list, a colon must be used to terminate
the alias name.

When an alias list contains such an item, it applies to the entire alias; any other items in the list
are ignored (:blackhole: is different). Any text following :fail: or :defer: is placed in the error
message. For example:

X.Employee: :fail: Gone away, no forwarding address

In the case of an address that is being verified by the SMTP RCPT or VRFY commands, the text is
included in the SMTP error response. In other cases it is included in the error message that Exim
generates.

Normally the text is the rest of the alias entry – a comma does not terminate it – but a newline
does act as a terminator. Newlines are not normally present in alias expansions. In lsearch
lookups they are removed as part of the continuation process, but they may exist in other kinds
of lookup and in :include:d files.

An alias containing :fail: causes an immediate failure of the incoming address, whereas :defer:
causes the message to remain on the queue so that a subsequent delivery attempt can happen at a
later time. If an address is :defer:red for too long, it will ultimately fail, since normal retry rules

 apply.

• Sometimes it is useful to use a search type with a default (see chapter 6) for aliases. However,
there may be a need for exceptions to the default. These can be handled by aliasing them to

:unknown:

This differs from :fail: in that it causes aliasfile to pass the address on to the next director,
whereas :fail: forces directing to fail immediately. If :unknown: is the first item in an alias list, a
colon must be used to terminate the alias name.

21.3 Duplicate addresses
Exim removes duplicate addresses from the list to which it is delivering, so as to deliver just one copy
to each address. This does not apply to deliveries directed at pipes by different immediate parent
addresses, but an indirect aliasing scheme of the type

pipe: |/some/command ${local_part}
localpart1: pipe
localpart2: pipe

does not work with a message that is addressed to both local parts, because when the second is aliased
to the intermediate local part ‘pipe’ it gets discarded as being the same as a previously handled
address. However, a scheme such as

localpart1: |/some/command ${local_part}
localpart2: |/some/command ${local_part}

does result in two different pipe deliveries, because the immediate parents of the pipes are distinct.

21.4 Repeated alias expansion

When a message cannot be delivered to all of its recipients immediately, leading to two or more
delivery attempts, alias expansion is carried out afresh each time for those addresses whose children
were not all previously delivered. If an alias is being used as a mailing list, this can lead to new
members of the list receiving copies of old messages. The one_time option can be used to avoid this.

[141] aliasfile director (21)

21.5 Errors in alias files

If skip_syntax_errors is set, a malformed address that causes a parsing error is skipped, and an entry
is written to the main log. This may be useful for mailing lists that are automatically managed, but
note the inherent danger. Otherwise, if an error is detected while generating the list of new addresses,
the message is frozen, except for the special case of inability to open an included file, when
no_freeze_missing_include is set. In this case, delivery is simply deferred.

21.6 Specifying transports for aliasfile

If the generic transport option is specified for this director, then the message is directed to that
transport for any local part which is found in the file, any data in the file that is associated with the
local part being ignored (so it isn’t really ‘aliasing’ in this case). Thus the same processing can be
done for any local part that is listed in the file. For example, a file containing a list of cancelled users
can be used to direct messages addressed to them to a particular script.

A common use of aliasfile with a transport is for handling local deliveries without reference to
/etc/passwd. Local parts are validated by using aliasfile to look them up in a file or database, which
can also be used to hold information for use during delivery (for example, the uid to use, or the
location of the mailbox). There is a sample configuration that gives more detail.

There are also a number of private options that specify transports for use in certain cases, for example,
when a local part is aliased directly to a file name, or to a pipe command.

21.7 Aliasfile private options

check_ancestor

Type: boolean
Default: false

When this option is set, if a generated address is the same as any ancestor of the current address,
then it is not used, but instead the current address gets passed on to subsequent directors. In the
default case, this happens only if the ancestor was processed by the current director. See the
check_ancestor option on the forwardfile director for more details.

current_directory

Type: string
Default: unset

This option associates a current directory with any address that aliasfile directs to a local transport.
This can happen either because a transport is explicitly configured for the director, or because it
generates a delivery to a file or a pipe. The option string is expanded and is set as the current
directory during the delivery process, unless overridden by a setting on the transport. See chapter 13
for details of the local delivery environment.

directory_transport

Type: string
Default: unset

An aliasfile director sets up a direct delivery to a directory when a path name ending with a slash is
specified as a new ‘address’. The transport used is specified by this option, which, after expansion,
must be the name of a configured transport.

directory2_transport

Type: string
Default: unset

[142] aliasfile director (21)

An aliasfile director sets up an alternative direct delivery to a directory when a path name ending
with two slashes is specified as a new ‘address’. The transport used is specified by this option,
which, after expansion, must be the name of a configured transport.

errors_to

Type: string
Default: unset

This used to exist as an option specific to this director, but it is now a generic option that can be
used on any director or router (see chapter 19).

expand

Type: boolean
Default: false

If this option is set true, then the text obtained by looking up the local part is passed through the
string expansion mechanism before being interpreted as a list of alias items. Addresses that are
subsequently added by means of the ‘include’ mechanism are not expanded.

file

Type: string
Default: unset

This option specifies the name of the alias file, and it must be set if search_type specifies a single-
key lookup; if it does not, an error occurs. (For query-style lookups, query must be set instead.)
See chapter 6 for details of different lookup styles. The string is expanded before use; if expansion
fails, Exim panics. The resulting string must be an absolute path for linear search and DBM
lookups. If the original string does not start with ‘/’ or ‘$’ in these cases, Exim gives a configur-
ation error when it starts up; otherwise, if an expanded string does not begin with ‘/’ delivery is

 frozen.

file_transport

Type: string
Default: unset

An aliasfile director sets up a direct delivery to a file when a path name not ending in a slash is
specified as a new ‘address’. The transport used is specified by this option, which, after expansion,
must be the name of a configured transport.

forbid_file

Type: boolean
Default: false

If this option is true, then this director may not generate a new address which specifies delivery to a
local file or directory. If it attempts to do so, a delivery failure occurs.

forbid_pipe

Type: boolean
Default: false

If this option is true, then this director may not generate a new address which specifies delivery to a
pipe. If it attempts to do so, a delivery failure occurs.

freeze_missing_include

Type: boolean
Default: true

If a file named by the ‘include’ mechanism fails to open, delivery is frozen if this option is true.
Otherwise, delivery is just deferred. Unsetting this option can be useful if included files are NFS
mounted and may not always be available.

[143] aliasfile director (21)

home_directory

Type: string
Default: unset

This option associates a home directory with any address that aliasfile directs to a local transport.
This can happen either because a transport is explicitly configured for the director, or because it
generates a delivery to a file or a pipe. The option string is expanded and is set as the home
directory during the delivery process, unless overridden by a setting on the transport. See chapter 13
for details of the local delivery environment. This means that the expansion variable $home does
not take on this value at directing time. In particular, it cannot be used in the require_files option.

include_domain

Type: boolean
Default: false

Setting this option true causes the key that is looked up to be ‘local-part@domain’ instead of just
‘local-part’. Thus a single file can be used to hold aliases for many local domains. This option has
no effect if the search type specifies a query-style lookup.

If you want include defaults for each domain in an alias file in the form

*@domain1: default@domain1
*@domain2: default@domain2

then you need to include ‘*@’ in the search type (for example, dbm*@). See section 6.1 for details
of this kind of search.

modemask

Type: octal integer
Default: 022

This specifies mode bits which must not be set for the alias file. If they are set, the director fails
and the message is frozen.

one_time

Type: boolean
Default: false

Sometimes the fact that Exim re-evaluates aliases each time it tries to deliver a message causes
problems. This is particularly true in the case of mailing lists and so is more likely to be a problem
with forward files than with alias files.

If one_time is set and any addresses generated by the director fail to deliver at the first attempt, the
failing addresses are added to the message as ‘top level’ addresses, and the parent address that
generated them is marked ‘delivered’. Thus aliasing does not happen again at the next delivery
attempt. To ensure that aliasfile generates only addresses (as opposed to pipe or file deliveries)
forbid_file and forbid_pipe must also be set.

The original top-level address is remembered with each of the generated addresses, and is output in
any log messages. However, any intermediate parent addresses are not recorded. This makes a

 difference to the log only if log_all_parents is set. It is expected that one_time will typically be
used for mailing lists, where there is normally just one level of expansion.

optional

Type: boolean
Default: false

If the file cannot be opened because it does not exist (the ENOENT error) and this option is set, the
director simply fails to match the address. Otherwise any failure to open the file causes an entry to
be written to the log and delivery to be deferred.

[144] aliasfile director (21)

owners

Type: string-list
Default: unset

This specifies a list of permitted owners for the alias file. If it is unset, no check on the ownership
is done. If the file is not owned by a user in the list, the director fails and the message is frozen.

owngroups

Type: string-list
Default: unset

This specifies a list of permitted groups for the alias file. If it is unset, no check on the file’s group
is done. If the file’s group is not in the list, the director fails and the message is frozen.

pipe_transport

Type: string
Default: unset

An aliasfile director sets up a direct delivery to a pipe when a string starting with a vertical bar
character is specified as a new ‘address’. The transport used is specified by this option, which, after
expansion, must be the name of a configured transport.

qualify_preserve_domain

Type: boolean
Default: false

If this is set and an unqualified address (one without a domain) is generated, it is qualified with the
domain of the incoming address instead of the global setting in qualify_recipient.

queries

Type: string
Default: unset

This option is an alternative to query; the two options are mutually exclusive. The difference is that
queries contains a colon-separated list of queries, which are tried in order until one succeeds or
defers, or all fail. Any colon characters actually required in an individual query must be doubled, in
order that they not be treated as query separators.

query

Type: string
Default: unset

This option specifies a database query, and either it or queries must be set if search_type specifies
a query-style lookup; if neither is set, an error occurs. (For single-key lookups, file must be set
instead.) See chapter 6 for details of different lookup styles. The query is expanded before use, and
would normally contain a reference to the local part. For example,

search_type = nisplus
query = [alias=${local_part}],mail_aliases.org_dir:expansion

could be used for a NIS+ lookup. Sometimes a lookup cannot be completed (for example, a NIS+
database might be inaccessible) and in this case the director causes delivery to be deferred.

rewrite

Type: boolean
Default: true

If this option is set false, addresses generated by the director are not subject to address rewriting.
Otherwise, they are treated like new addresses.

[145] aliasfile director (21)

search_type

Type: string
Default: unset

This option must be set to the name of a supported search type (‘lsearch’, ‘dbm’, etc.), specifying
the type of data lookup. For query-style lookups, the query option specifies the search query, and
file must not be set. For the other search types, file is required and query must not be set. See
chapter 6 for details of the different lookup styles.

Single-key search types for aliasfile can be preceded by partial- and/or followed by *. The former
 isn’t likely to be useful very often, but the latter provides a default facility. Note, however, that if

two addresses in the same message provoke the use of the default, only one copy gets delivered,
but any added Envelope-to: header contains all the original addresses. Exceptions to the default can
be set up by aliasing them to :unknown:.

skip_syntax_errors

Type: boolean
Default: false

If skip_syntax_errors is set, a malformed address that causes a parsing error is skipped, and an
entry is written to the main log. This may be useful for mailing lists that are automatically
managed, but note the inherent danger. Exim always considers it to be an error if no addresses at all
are generated, even if this option is set.

syntax_errors_text

Type: string
Default: unset

See syntax_errors_to.

syntax_errors_to

Type: string
Default: unset

This option applies only when skip_syntax_errors is set. If any addresses are skipped because of
syntax errors, a mail message is sent to the address specified by syntax_errors_to, giving details of
the failing address(es). If syntax_errors_text is set, its contents are expanded and placed at the
head of the error message. Often it will be appropriate to set syntax_errors_to to be the same
address as the generic errors_to option.

[146] aliasfile director (21)

22. The forwardfile director

The forwardfile director can be used for two different but related operations. Its effect is to replace a
local part with a list of addresses, file names, or pipe commands, taken from a single file. It gets its
name from the common case where the file is in a user ’s home directory and is called .forward, but
another common use is for expanding mailing lists, which are discussed in more detail in chapter 36.

A standard transport must not be specified for this director. That is, the generic transport option must
not be set. A configuration error occurs if one is given. However, the special transports for handling
files, pipes, and autoreplies must be set if needed.

When handling a user ’s .forward file, a uid, gid, and home directory are commonly obtained from the
password file by calling getpwnam(). However, these may alternatively be specified by options to the
director, in which case getpwnam() is not called.

22.1 Forward file items
The contents of the file are a list of addresses, file names, or pipe commands, separated by commas or
newlines. Items that are empty are ignored. This includes items consisting solely of RFC 822 address
comments. If an item is entirely enclosed in double quotes, these are removed, but otherwise double
quotes are retained, because some forms of mail address require the use of double quotes, though
never enclosing the whole address.

Lines starting with a # character are comments, and are ignored, and # may also appear following a
comma, in which case everything between the # and the end of the line is ignored. If the file is empty,
or contains only blank lines and comments, the director behaves as if it did not exist.

If a message is addressed to two or more different local parts, each of which results in an expansion
that generates an identical file name or pipe command, different deliveries occur, though of course
each delivery process runs with different values in the LOCAL_PART environment variable, and with
different uids (in the common case). This happens only if the immediate ancestors of the pipes or files
are different local parts. If several different local parts generate an intermediate alias which in turn
generates a pipe or file delivery, only a single delivery is done, because the duplicate intermediate
addresses are discarded.

• An address item may safely be the same local part as the one currently under consideration,
because a director is automatically skipped if any ancestor has the same local part and was
processed by that director. Thus a user with login name spqr who wants to preserve a copy of
mail and also forward it somewhere else can set up a file such as

spqr, spqr@st.else.where

without provoking a loop. A backslash before an unqualified local part is permitted for compati-
bility with other mailers, but is not necessary for loop prevention. The presence or absence of a
backslash does, however, make a difference when there is more than one local domain. Without a
backslash, an unqualified local part is qualified with the contents of qualify_recipient unless

 qualify_preserve_domain is set, but if a backslash is present, the local part is always qualified
with the domain of the incoming address.

Care must be taken if there are alias names for local users. For example if the system alias file
 contains

Sam.Reman: spqr

then

Sam.Reman, spqr@reme.else.where

in spqr’s forward file fails on an incoming message addressed to Sam.Reman, because the
aliasfile director does not process Sam.Reman the second time round, having previously done
so. The forward file should really contain

[147] forwardfile director (22)

spqr, spqr@reme.else.where

but because this is such a common error, the check_ancestor option (see below) exists to provide
a way to get round it.

• An item is interpreted as a file name if it begins with ‘/’ and does not parse as a valid RFC 822
address that includes a domain. For example,

/home/world/shadow

is treated as a file name, but

/s=molari/o=babylon/@x400gate.way

is treated as an address. For a file name, a transport must be specified using the file_transport
option. However, if the generated path name ends with a forward slash character, it is interpreted
as a directory name rather than a file name, and directory_transport is used instead. If it ends
with two slashes, directory2_transport is required. This makes it possible to support two
different kinds of directory delivery simultaneously.

If an item is /dev/null, delivery to it is bypassed at a high level, and the log entry shows
 ‘**bypassed**’ instead of a transport name. This avoids the need for a user and group, which are

necessary for a genuine delivery to a file. When the file name is not /dev/null, either the director
or the transport must specify a user and group under which to run the delivery. If
check_local_user is set, the uid and gid from the passwd file are used as defaults for the generic
user and group options.

• An item is treated as a pipe command if it begins with ‘|’ and does not parse as a valid RFC 822
address that includes a domain. A transport for running the command must be specified by the
pipe_transport option. Either the director or the transport must specify a user and group under
which to run the delivery. If check_local_user is set, the uid and gid from the passwd file are
used as defaults for the generic user and group options.

Both single and double quotes can be used for enclosing individual arguments to the pipe
command; no interpretation of escapes is done for single quotes. If the command contains a
comma character, it is necessary to put the whole item in double quotes, for example:

"|/some/command ready,steady,go"

since items are terminated by commas. Do not, however, quote just the command. An item
such as

|"/some/command ready,steady,go"

is interpreted as a pipe with a rather strange command name, and no arguments.

• Instead of an address, file name, or pipe command, an item of the form

:include:<path name>

may appear, in which case a list of addresses is taken from the given file and included at that
point, unless the forbid_include option is set. There are some security considerations when such
an item is included in a user ’s .forward file:

(i) If the seteuid() function is being used to read the main file as a specific user (see seteuid
below) then the included file is read as the same user.

(ii) Otherwise Exim is running as root at this point. If check_local_user is set, or if an explicit
directory is specified, then any included files must be within the home or given directory,
and no symbolic links are permitted below the directory name.

(iii) If neither check_local_user nor directory is set when seteuid() is not in use, then included
files are not permitted.

[148] forwardfile director (22)

22.2 Repeated forwarding expansion

When a message cannot be delivered to all of its recipients immediately, leading to two or more
delivery attempts, forwarding expansion is carried out afresh each time for those addresses whose
children were not all previously delivered. If a forward file is being used as a mailing list, this can lead
to new members of the list receiving copies of old messages. The one_time option can be used to
avoid this.

22.3 Errors in forward files

If skip_syntax_errors is set, a malformed address that causes a parsing error is skipped, and an entry
is written to the main log. This may be useful for mailing lists that are automatically managed, but
note the inherent danger. The option should never be set for users’ .forward files. Otherwise, if any
error is detected while generating the list of new addresses, the message is frozen, except for the
special case of inability to open an included file when no_freeze_missing_include is set. In this case,
delivery is simply deferred.

22.4 Filter files

As an alternative to treating the file as a simple list of addresses, the forwardfile director can be
configured, by means of the filter option, to read a file and interpret it as a list of filtering instructions
if it conforms to a specific format. The instructions can specify various actions such as appending the
message to certain mail folders, or forwarding it to other users, predicated on the content of the
message. Details of the syntax and semantics of filter files are described in a separate document
entitled Exim’s User interface to mail filtering; this is intended for use by end users. If filters are
permitted to generate mail messages (see forbid_reply) then the reply_transport option must be set.

22.5 The home dir ectory

The home expansion variable can be used in a number of local options for forwardfile. Its value
depends on the way the options are set up, as follows:

• If check_local_user is set without file_directory, then the user ’s home directory is set in the
home expansion variable when expanding the file option that specifies a forward or filter file.

• If file_directory is set without check_local_user, then the expanded value of file_directory is
set in the home expansion variable when expanding the file option. If home appears in the string
for file_directory, its substitution value is the empty string.

• If both check_local_user and file_directory are set, home in the string for file_directory is the
user ’s home directory, but home in the file option is the expanded value of file_directory.

If the generic require_files option, or any other expanded option, contains $home, it takes the same
value as it does when expanding the file option, and this value is also used for $home if encountered
in a filter file, and as the default value to pass with the address when a pipe or file delivery is
generated.

22.6 Forwardfile private options

allow_system_actions

Type: boolean
Default: false

Setting this option permits the use of freeze and fail in filter files. This should not be set on the
director for users’ .forward files, but can be useful if you want to run a system-wide filter for each
address, as opposed to the system filter, which runs just once per message. See chapter 41.

[149] forwardfile director (22)

check_ancestor

Type: boolean
Default: false

Although this option is off by default in the code, it is set in the default configuration file for
handling users’ .forward files. It is recommended for this use of the forwardfile director. When set,
if a generated address is the same as any ancestor of the current address, then it is not used, but
instead the current address gets passed on to subsequent directors. This helps in the case where
local part A is aliased to B, and B has a .forward file pointing back to A, for example:
‘Joe.Bloggs’ is aliased to ‘jb’ and ~jb/.forward contains:

\Joe.Bloggs, some.other.address

Without the check_ancestor setting, either local part (‘jb’ or ‘joe.bloggs’) gets processed once by
each director and so ends up as it was originally. If ‘jb’ is the real mailbox name, then mail to ‘jb’
gets delivered (having been turned into ‘joe.bloggs’ by the .forward file and back to ‘jb’ by the
alias), while mail to ‘joe.bloggs’ fails. Setting check_ancestor on the forwardfile director prevents
it from turning ‘jb’ back into ‘joe.bloggs’ when that was the original address.

The aliasfile director also has a check_ancestor option for use in special cases. Setting it does not
have the desired effect in a conventional configuration.

check_group

Type: boolean
Default: false

The group of the file is checked only when this option is set. If check_local_user is set, then the
user ’s default group is permitted; otherwise the group must be one of those listed in the owngroups
option.

check_local_user

Type: boolean
Default: true

If this option is true, then the local part that is passed to this director is checked to ensure that it is
the login of a local user by calling the getpwnam() function. The director fails to handle the
address if it is not. In addition, when this option is true, the string specified for the file option is
taken as relative to the user ’s home directory if it is not an absolute path, unless the file_directory
option is set.

When this option is set, the local user is always one of the permitted owners of the file, and the
local user ’s uid is used when reading the forward file if the seteuid option is set or if the global
security setting is not ‘setuid’. In addition the uid and gid read from the passwd file are used as
defaults for the generic user and group options.

current_directory

Type: string
Default: unset

This option associates a current directory with any address that forwardfile directs to a local
transport because it specifies a file name, pipe command, or autoreply. The option string is
expanded and is set as the current directory during the delivery process, that is, at transport time,
unless overridden by a setting on the transport. See chapter 13 for details of the local delivery
environment.

A special string value is provided for the case when both check_local_user and file_directory are
set, when $home contains the file_directory value. If current_directory contains the string
‘check_local_user ’ then it is replaced by the user ’s home directory path.

[150] forwardfile director (22)

directory_transport

Type: string
Default: unset

A forwardfile director sets up a direct delivery to a directory when a path name ending with a slash
is specified as a new ‘address’. The transport used is specified by this option, which, after
expansion, must be the name of a configured transport.

directory2_transport

Type: string
Default: unset

A forwardfile director sets up a direct delivery to a directory when a path name ending with two
slashes is specified as a new ‘address’. The transport used is specified by this option, which, after
expansion, must be the name of a configured transport.

errors_to

Type: string
Default: unset

This used to exist as an option specific to this director, but it is now a generic option that can be
used on any director or router (see chapter 19).

file

Type: string
Default: unset

This option must be set. The string is expanded before use – see above for a discussion of the
home expansion variable. If expansion fails, Exim panics. The expanded string is interpreted as a
single file name, and must start with a slash character unless check_local_user is true, or a

 file_directory option is set. A non-absolute path is interpreted relative to the file_directory setting
if it exists; otherwise it is interpreted relative to the user ’s home directory.

If a non-absolute path is used, Exim uses the stat() function to check the directory before
attempting to open the file therein. If the directory is inaccessible, the delivery to the current
address is deferred. This distinguishes between the cases of a non-existent file (where the director
cannot handle the address) and an unmounted NFS directory (where delivery should be deferred).
Thus the difference between the two settings

file = .forward
file = $home/.forward

is that in the second case the directory is not checked with stat().

If the file exists but is empty or contains only blank and comment lines starting with #, Exim
behaves as if it did not exist, and the director fails to handle the address. Note that this is not the
case when the file contains syntactically valid items that happen to yield empty addresses, for
example, items containing only RFC 822 address comments.

file_directory

Type: string
Default: unset

The string is expanded before use – see above for a discussion of the home expansion variable.
The option sets a directory path which is used if the file option does not specify an absolute path.
This on its own is not very useful, since the directory string could just as well be prepended to the
file string. However, if a separate directory is given, it is treated like a directory obtained from

 check_local_user, and its existence is tested before trying to open the file. If the directory appears
not to exist, delivery is deferred. Thus, a setting such as

[151] forwardfile director (22)

file_directory = /usr/forwards
file = ${local_part}.forward

defers delivery if /usr/forwards appears not to exist. This can be useful if the directory is NFS
mounted. If check_local_user is also set, file_directory takes precedence in determining the
directory name for non-absolute files.

If forwardfile sets up a delivery to a file or a pipe command and the home_directory option is not
set, then the directory specified by file_directory, or if that is not set, the home directory obtained
from check_local_user is associated with the address during delivery.

file_transport

Type: string
Default: unset

A forwardfile director sets up a direct delivery to a file when a path name not ending in a slash is
specified as a new ‘address’. The transport used is specified by this option, which, after expansion,
must be the name of a configured transport.

filter

Type: boolean
Default: false

If this option is set, and the forward file starts with the text ‘# Exim filter’, then it is interpreted as
a set of filtering commands instead of a list of forwarding addresses. Details of the syntax and
semantics of filter files are described in a separate document entitled Exim’s User interface to mail

 filtering; this is intended for use by end users.

In addition to the commands described therein, there are some extra commands that are permitted
only in system filter files, or if allow_system_actions is set. These are described in chapter 41.

The logging facility in filter files is available only if the filter is being run under some unprivileged
uid. The system configuration must specify that seteuid() is available, either user or
check_local_user must be set on the director, forbid_filter_log must not be set, and the global
security setting must not be ‘setuid’. Writing the log takes place while the filter file is being
interpreted, that is, at directing time. It does not queue up for later like the delivery commands. The
reason for this is so that a log file need be opened only once for several write operations.

forbid_file

Type: boolean
Default: false

If this option is true, then this director may not generate a new address which specifies delivery to a
local file. If it attempts to do so, a delivery failure occurs.

forbid_filter_logwrite

Type: boolean
Default: false

If this option is true, use of the logging facility in filter files is not permitted. This is in any case
available only if the filter is being run under some unprivileged uid, which is normally the case for
ordinary users’ .forward files on a system with seteuid() available.

forbid_include

Type: boolean
Default: false

If this option is true, then items of the form

:include:<path name>

are not permitted, and if one is encountered, the message is frozen.

[152] forwardfile director (22)

forbid_pipe

Type: boolean
Default: false

If this option is true, then this director may not generate a new address which specifies delivery to a
pipe. If it attempts to do so, a delivery failure occurs.

forbid_reply

Type: boolean
Default: false

If this option is true, then this director may not generate an automatic reply message. If it attempts
to do so, a delivery failure occurs. Automatic replies can be generated only from filter files, not
from traditional forward files.

freeze_missing_include

Type: boolean
Default: true

If a file named by the ‘include’ mechanism fails to open, delivery is frozen if this option is true.
Otherwise, delivery is just deferred. Unsetting this option can be useful if included files are NFS
mounted and may not always be available.

home_directory

Type: string
Default: unset

If this option is set, it associates a home directory with any address that forwardfile directs to a
local transport because it specifies a file name or pipe command. The option string is expanded and
set as the home directory during the delivery process (that is, at transport time), unless overridden
by a setting on the transport. If home_directory is not set, then the directory specified by

 file_directory, or if that is not set, the home directory obtained from check_local_user is
associated with the address during delivery. See chapter 13 for details of the local delivery
environment. This option has no effect during the running of the forwardfile director.

In installations where users’ .forward files are not kept in their home directories, both
check_local_user and file_directory may be set, which leads to the file_directory value being used
as the default. It is no good specifying

home_directory = $home

because the same value is used for $home. A special string value is provided for use in this case. If
 home_directory is set to the string ‘check_local_user’ then the user ’s home directory path is set as

the home directory during delivery.

ignore_eacces

Type: boolean
Default: false

If this option is set and an attempt to open the forward file yields the EACCES error (permission
denied) then forwardfile behaves as if the file did not exist.

ignore_enotdir

Type: boolean
Default: false

If this option is set and an attempt to open the forward file yields the ENOTDIR error (something on
the path is not a directory) then forwardfile behaves as if the file did not exist.

[153] forwardfile director (22)

match_directory

Type: string
Default: unset

If this option is set with check_local_user, the user ’s home directory, as obtained from
 getpwnam(), must match the given string. If it does not, the director fails to match the address. The

string is expanded before use if it contains any $ characters. If the expansion fails, Exim panics,
unless the failure was explicitly triggered by a ‘fail’ item in a conditional sub-expression in the
expansion, in which case the director just fails to handle the address.

If the expanded string starts with an asterisk, then the remainder must match the end of the home
directory name; if it starts with a circumflex, a regular expression match is performed. In fact, the
matching process is the same as is used for domain list items and may include file lookups.

modemask

Type: octal integer
Default: 022

This specifies mode bits which must not be set for the forward file. If they are set, the director
 defers.

one_time

Type: boolean
Default: false

Sometimes the fact that Exim re-processes forward files each time it tries to deliver a message
causes problems. This is particularly true in the case of mailing lists (see chapter 36).

If one_time is set and any addresses generated by the director fail to deliver at the first attempt, the
failing addresses are added to the message as ‘top level’ addresses, and the parent address that
generated them is marked ‘delivered’. Thus expansion via the forward file does not happen again at
the next delivery attempt. To ensure that forwardfile generates only addresses (as opposed to pipe
or file deliveries or autoreplies) forbid_file and forbid_pipe must also be set, as must forbid_reply
if filter is set.

The original top-level address is remembered with each of the generated addresses, and is output in
any log messages. However, any intermediate parent addresses are not recorded. This makes a

 difference to the log only if log_all_parents is set. It is expected that one_time will typically be
used for mailing lists, where there is normally just one level of expansion.

owners

Type: string-list
Default: unset

This specifies a list of permitted owners for the file. These are in addition to the local user in the
case when check_local_user is set. If owners is unset and check_local_user is false, no check on
the ownership is done. If the file is not correctly owned, the director fails and the message is

 frozen.

owngroups

Type: string-list
Default: unset

This specifies a list of permitted groups for the file. These are in addition to the local user ’s group
in the case when check_local_user is set. However, a check on the group is made only when

 check_group is set. If the file’s group is not correct, the director fails and the message is frozen.

[154] forwardfile director (22)

pipe_transport

Type: string
Default: unset

A forwardfile director sets up a direct delivery to a pipe when a string starting with a vertical bar
character is specified as a new ‘address’. The transport used is specified by this option, which, after
expansion, must be the name of a configured transport.

qualify_preserve_domain

Type: boolean
Default: false

If this is set and an unqualified address (one without a domain) is generated, it is qualified with the
domain of the incoming address instead of the global setting in qualify_recipient.

reply_transport

Type: string
Default: unset

A forwardfile director sets up a delivery to an autoreply transport when a mail or vacation
command is used in a filter file. The transport used is specified by this option, which, after
expansion, must be the name of a configured transport.

rewrite

Type: boolean
Default: true

If this option is set false, addresses generated by the director are not subject to address rewriting.
Otherwise, they are treated like new addresses.

seteuid

Type: boolean
Default: false

This option may not be set unless the compile-time configuration in the OS-specific configuration
files specifies that the seteuid() function is available in the operating system. In addition, either the
check_local_user or the generic user and group options must be set. A configuration error occurs
if these conditions do not hold.

When this option is true, the seteuid() and setegid() functions are called to change the effective uid
and gid before accessing the home directory and the file. If both check_local_user and user are set,
the uid is taken from the latter. If the generic initgroups option is set, initgroups() is called to
initialise the group list with all the user ’s groups. The user remains set during interpretation of a
filter file; if it writes log entries the log file must be accessible to the uid or gid. Changing uid is
necessary in two circumstances:

(i) When Exim is configured to change the effective uid from root to the Exim user (using
 seteuid()) while running the directors. See chapter 49 for details.

(ii) When users’ home directories are NFS mounted, and root access is not exported to the local
host, to allow for cases when the files are not world-readable.

The forwardfile director can detect the first of these cases, and it always uses seteuid(), regardless
of the setting of this option, since it does not make sense to do otherwise.

On a system without the seteuid() function, but with NFS home directories that do not export root,
it is necessary for forward files to be world-readable.

[155] forwardfile director (22)

skip_syntax_errors

Type: boolean
Default: false

If skip_syntax_errors is set for a non-filter forward file, a malformed address that causes a parsing
error is skipped, and an entry is written to the main log. This may be useful for mailing lists that
are automatically managed, but note the inherent danger. If all the addresses in the list are
malformed, the original address is passed on to subsequent directors.

If skip_syntax_errors is set for an Exim filter file, any syntax error in the filter file causes filtering
to be abandoned, the incident is logged, and the address is passed on to the next director.

If skip_syntax_errors is set for the director that handles users’ .forward files, it should normally
be done in conjunction with

syntax_errors_to = $local_part@domain

in order to pass the error report back to the owner of the .forward file. Additional locally-written
explanation can be included by setting syntax_errors_text.

syntax_errors_text

Type: string
Default: unset

See syntax_errors_to.

syntax_errors_to

Type: string
Default: unset

This option applies only when skip_syntax_errors is set. If any addresses are skipped because of
syntax errors, a mail message is sent to the address specified by syntax_errors_to, giving details of
the failing address(es). If syntax_errors_text is set, its contents are expanded and placed at the
head of the error message. Often it will be appropriate to set syntax_errors_to to be the same
address as errors_to.

[156] forwardfile director (22)

23. The localuser director

The localuser director checks whether the local part of an address is the login of a local user, by
calling the getpwnam() function. If it is, and if other conditions set by options are met, it accepts the
address and sets up a transport for it. The user ’s uid, gid, and home directory are set up by default to
be used while running the delivery process. The generic transport option must always be specified,
unless the generic verify_only option is set.

The generic require_files option may contain references to $home when used with this director. Thus
it is possible to pick out all users with particular files in their home directories and route their mail to
a specific transport. This could be used, for example, to check for a .procmailrc file and then to route
delivery via procmail if one is found.

current_directory

Type: string
Default: unset

This option string is expanded and set as the current directory during the delivery process, unless
overridden by a setting on the transport. See chapter 13 for details of the local delivery

 environment.

home_directory

Type: string
Default: unset

This option overrides the home directory that is obtained from the getpwnam() function. The string
is expanded and set as the home directory during the delivery process, unless overridden by a
setting on the transport. See chapter 13 for details of the local delivery environment.

When processing the require_files generic option, the value of $home is the value of this option if
it is set. Otherwise the value of $home is the user ’s home directory as obtained from getpwnam().

match_directory

Type: string
Default: unset

If this option is set, the user ’s home directory, as obtained from getpwnam(), must match the given
string. If it does not, the director fails to match the address. This provides a way of partitioning the
local users by home directory. The string is expanded before use if it contains any $ characters. If
the expansion fails, Exim panics, unless the failure was explicitly triggered by a ‘fail’ item in a
conditional sub-expression in the expansion, in which case the director just fails to handle the

 address.

If the expanded string starts with an asterisk, then the remainder must match the end of the home
directory name; if it starts with a circumflex, a regular expression match is performed. In fact, the
matching process is the same as is used for domain list items and may include file lookups.

On central systems at Cambridge, when a user account is cancelled, it remains in the password file for
a while, with the home directory set to /home/CANCELLED. We use the match_directory option to
detect mail addressed to such users and bounce it with an explanatory message.

[157] localuser director (23)

24. The smartuser director

The smartuser director matches any local part, so it can be used to handle local addresses that all
other directors have failed. It is, of course, subject to the generic director options, so specific instances
can be used for all addresses in certain domains, or all local parts with certain prefixes or suffixes, or
specific local parts, or any other generic condition.

Smartuser can generate a new address from the old one, and cause that to be reprocessed, or it can set
a transport, optionally changing the address. Common uses are to pipe the message to a script that
generates an information message to be returned to the sender, or to send the message to another host
for processing.

new_address

Type: string
Default: unset

This option specifies a new address, to replace the current one. It must be a qualified address (that
is, contain an @ character). The string is expanded, so settings such as

new_address = ${local_part}@some.new.host

can be used, or a file lookup on the local part can be done. If the expansion fails as a result of an
explicit ‘fail’ item in an expansion sub-expression, the director just fails to handle the address.
Otherwise, an expansion failure is treated as a serious configuration error, and causes a panic,
unless this panic_expansion_fail is set false, in which case the same action is taken as for ‘fail’.

The new address is rewritten by Exim’s normal rewriting rules (see chapter 32) unless the rewrite
option is turned off.

If no transport is specified, new_address is required, and the new address is processed by the
directors and routers in the normal way, as if it were the result of aliasing or forwarding. In

 particular, if it is a duplicate of any other address in the message, it is discarded.

On the other hand, if a transport is specified for smartuser, the new address replaces the old one
when the message is delivered by the given transport, and no checking for duplication takes place.
The original address is available to the transport via the expansion variables $original_local_part
and $original_domain.

panic_expansion_fail

Type: boolean
Default: true

See new_address above.

rewrite

Type: boolean
Default: true

If this option is set false, the address specified by new_address is not subject to rewriting.

[158] smartuser director (24)

25. Additional generic options for routers

The following additional generic options apply to all routers, in addition to the common generic
options for both directors and routers which are described in chapter 19. Routers are concerned with
addresses whose domains do not match something in local_domains.

pass_on_timeout

Type: boolean
Default: false

If a router times out during a host lookup, it normally causes deferral of the address. If
pass_on_timeout is set, the address is instead passed on to the next router. This may be helpful for
systems that are intermittently connected to the Internet, or those that want to pass to a smart host
any messages that cannot immediately be delivered.

There are occasional other temporary errors that can occur while doing DNS lookups. They are
treated in the same way as a timeout, and this option applies to all of them.

self

Type: string
Default: "freeze"

This option specifies what is to happen if routing a remote address ends up pointing at the local
host, or at a host whose name matches hosts_treat_as_local. Normally this indicates either an error
in Exim’s configuration (for example, the domain should be listed as local), or an error in the DNS
(for example, the MX shouldn’t point at this host). However, this situation is not confined to the use
of MX records, and the self option can be used on any router .

The default action is to freeze the message. The following alternatives are provided for use in
special cases:

• defer
Delivery of the message is tried again later.

• reroute: <domain>
The domain is changed to the given domain, and the address is passed back to be reprocessed
by the directors and routers. No rewriting of headers takes place.

• reroute: rewrite: <domain>
The domain is changed to the given domain, and the address is passed back to be reprocessed
by the directors and routers. Any headers that contain the original domain are rewritten.

• local
The address is passed to the directors, as if its domain were a local domain, even though it
does not match anything in local_domains. This can be used to treat all domains whose
lowest MX records point to the host as local domains. During subsequent directing and
delivery the variable $self_hostname is set to the name of the local host that the router
encountered. This can be used to distinguish between different cases for hosts with multiple

 names.

• fail_soft
The router fails, passing the address to the following router. During subsequent routing and
delivery, the variable $self_hostname contains the name of the local host that the router
encountered. This can be used to distinguish between different cases for hosts with multiple
names. This setting overrides a setting of no_more on the router, so a combination of fail_soft
and no_more ensures that only those addresses that routed to the local host are passed on.
Without no_more, failing addresses would also be passed to the next router.

[159] generic router options (25)

• fail_hard
The router fails, and the address is not passed to any following routers. Consequently, delivery
fails and an error report is generated.

• send
The anomaly is ignored and the message is transmitted anyway. This setting should be used
with extreme caution. It makes sense only in cases where the program that is listening on the
SMTP port is not this version of Exim. That is, it must be some other MTA, or Exim with a

 different configuration file that handles the domain in another way.

When a router just rewrites, that is, does not set up IP addresses, the self option is not relevant.

[160] generic router options (25)

26. The domainlist router

The domainlist router compares a list of domain patterns with the domain it is trying to route. When a
match is found, the information associated with the pattern can specify several different actions:

• The message can be sent to a specific host, or one of a number of hosts.

• The domain name can be replaced by a new name, which can be

(i) passed to the next router; or

(ii) looked up directly in the DNS, with or without MX processing; or

(iii) looked up using gethostbyname().

Of course, gethostbyname() may well do its own DNS lookup, but it does not do MX process-
ing, and it may also reference other sources of information, such as /etc/hosts. When Exim is
compiled with IPv6 support, if a host that is looked up in the DNS has both A and AAAA
records, all the addresses are used. See README.IPV6 for general information about IPv6

 support.

The list of patterns can be specified as an option string, or looked up in a file or database, or both; at
least one of route_list, route_file, route_query, or route_queries must be set. A transport must be set
when the routing is completed by this router, that is, when the address is not passed on to subsequent
routers, unless verify_only is set. Each routing entry can specify its own transport, with the generic
transport option acting as a default for those that don’t.

host_find_failed

Type: string
Default: "freeze"

This option controls what happens if a host which domainlist tries to look up because an address
has been specifically routed to it does not exist. The option can be set to one of

freeze
defer

 fail_soft
 fail_hard

The default assumes that this state is a serious configuration error. The difference between
‘fail_soft’ and ‘fail_hard’ is that the former causes the address to be passed to the next router,
overriding no_more, while the latter does not, causing the address to fail completely. This option
applies only to a definite ‘does not exist’ state; if a host lookup gets a temporary error, delivery is
deferred unless the generic pass_on_timeout option is set.

modemask

Type: octal integer
Default: 022

This specifies mode bits which must not be set for the route file. If they are set, the director fails
and the message is frozen.

owners

Type: string-list
Default: unset

This specifies a list of permitted owners for the route file. If it is unset, no check on the ownership
is done. If the file is not owned by a user in the list, the router fails and the message is frozen.

[161] domainlist router (26)

owngroups

Type: string-list
Default: unset

This specifies a list of permitted groups for the route file. If it is unset, no check on the file’s group
is done. If the file’s group is not in the list, the router fails and the message is frozen.

qualify_single

Type: boolean
Default: true

For any domain that is looked up in the DNS, the resolver option that causes it to qualify single-
component names with the default domain (RES_DEFNAMES) is set. For example, on a machine called
dictionary.ref.book, looking up the domain thesaurus would cause the name thesaurus.ref.book
to be looked up.

route_file

Type: string
Default: unset

If this option is set, search_type must be set to one of the single-key lookup types, and
 route_query must not be set. See chapter 6 for details of file and database lookups. The domain

being routed is used as the key for the lookup, and the resulting data must be a list of routing rules
in the form described below. The file name is expanded before use.

route_list

Type: string-list, semicolon-separated
Default: unset

This string is a list of routing rules, in the form defined below. Note that, unlike most string lists,
the items are separated by semicolons. This is so that they may contain colon-separated host lists.

route_queries

Type: string
Default: unset

This option is an alternative to route_query; the two options are mutually exclusive. The difference
is that route_queries contains a colon-separated list of queries, which are tried in order until one
succeeds or defers, or all fail. Any colon characters actually required in an individual query must be
doubled, in order that they not be treated as query separators.

route_query

Type: string
Default: unset

If this option is set, search_type must be set to a query-style lookup type, and route_file must not
be set. See chapter 6 for details of file and database lookups. The query is expanded before use, and
the expansion variable $domain contains the domain being routed. The data returned from the
lookup must be a list of routing rules, in the form described below.

search_parents

Type: boolean
Default: false

For any domain that is looked up in the DNS, the resolver option that causes it to search parent
domains (RES_DNSRCH) is set if this option is true. This is different from the qualify_single option in
that it applies to domains containing dots. For example, on a machine in the fict.book domain,
when looking up teaparty.wonderland initially fails, the resolver automatically tries
teaparty.wonderland.fict.book if this option is set.

[162] domainlist router (26)

search_type

Type: string
Default: unset

This option is mandatory when route_file, route_query, or route_queries is specified. It must be
set to one of the supported search types (for example, lsearch). See chapter 6.

For single-file lookups, the name may be preceded by ‘partial-’, indicating a simple wildcard file
lookup that works as follows:

(a) Exim first tries to look up the domain exactly as given.

(b) If that fails, it adds ‘*.’ on the front of the domain, and looks that up.

(c) If that fails, it replaces the first component of the domain with ‘*’ and tries that, and continues
chopping off components in this way until either the lookup succeeds, or there are fewer than
two non-* components left.

Thus, for example, if you put an entry keyed by *.austen.fict.film in your database, that entry will
be used for

(1) austen.fict.film by rule (b) above, having failed on rule (a). (If you are worried about the
resource waste implied by this, you can always add an entry for austen.fict.film as well.)

(2) emma.austen.fict.film at the first attempt in rule (c), having failed on rules (a) and (b).

A domain such as jane.fict.film will fail, having tried 3 lookups: jane.fict.film, *.jane.fict.film,
*.fict.film, but it won’t waste effort looking up *.film because that has only one non-* component.
In fact, the minimum number of components can be altered by including a number immediately
before the hyphen. For example, ‘partial4-dbm’ specifies a minimum of four non-* components.

26.1 Routing rules
Routing rules specified in route_list are scanned before route_file, route_query or route_queries are
used. The contents of route_list is a string consisting of a sequence of routing rules, separated by
semicolons. If a semicolon is needed in a rule, it can be entered as two semicolons. Empty rules are
ignored. The format of each rule is

<domain pattern> <host-list> <options>

The following example contains a simple domain pattern and just one rule:

route_list = "dict.ref.book mail-1.ref.book:mail-2.ref.book byname"

The three parts of a rule are separated by white space. Each rule in a route_list must start with a
single domain pattern, which is the only mandatory item in the rule. The pattern is in the same format
as one item in a domain list (see section 7.12), that is, it may be wildcarded or a regular expression, or
a file or database lookup (with semicolons doubled, because of the use of semicolon as a separator in a
route_list). The rules in route_list are searched in order until one of the patterns matches the domain
that is being routed. The host list and options are then used as described below.

If no rule in route_list matches the domain, it is used as the key for a lookup of the type specified by
search_type, using route_file, route_query, or route_queries, as appropriate. The data returned from
a successful lookup must be a string containing a host list and options, separated by white space. For
example, a line in a linearly searched route file might be:

dict.ref.book: mail-1.ref.book:mail-2.ref.book byname

Note that there are two different uses of the colon character in this line. The first one is the delimiter
of the key in the file, while the second is the normal list delimiter in the host list, which in this
example consists of two host names. As both the host list and the options are not compulsory in a rule,
the data returned from a lookup can legitimately be an empty string in some circumstances (see
Application of routing rules below).

[163] domainlist router (26)

If the domain does not match anything in route_list and looking it up using route_file, route_query
or route_queries also fails, then the router cannot handle the address, and it gets passed on to the next
router, unless no_more is set.

26.2 Host list format
If a host list is present in the rule which matches the domain, it is expanded before use. If the pattern
that matched the domain was a lookup item, the data that was looked up is available in the expansion
variable $value.

The result of the expansion must be a colon-separated list of host names and/or IP addresses. Some
string expansion items may contain white space, and if this is the case, the host list must be enclosed
in single or double quotes, because otherwise white space terminates it. The numeric expansion
variables are available during host list expansion. These are mainly used when the domain is matched
against a regular expression domain pattern in a route_list string, but $1 is also set when partial
matching is done in a file lookup, and $0 is always set to the entire domain.

The value of $domain is the original domain for the address. This may differ from $0 if the address
has been processed by a previous domainlist router which passed on a different routing domain.

If the expansion of the host list is forced to fail (by using the ‘fail’ item in a conditional construction),
the router just fails to handle the address, and (unless no_more is set) it gets passed on to the next
router. If expansion fails for some other reason, the message is frozen, since this is considered to be a
configuration error.

26.3 Options format
Options can be present only if there is a host list. They are a sequence of words, but in practice no
more than two are ever present. One of the words can be the name of one of the configured transports,
and this overrides the transport option on the router for this particular routing rule only. The other
word (if present) specifies how the IP addresses of the hosts in the host list are to be found:

• byname: use gethostbyname(), or use literal IP addresses if present. Literal IP addresses are
written without any surrounding square brackets.

• bydns: use the DNS, doing the full MX and A record processing.

• bydns_a: look up A records for the host(s) in the DNS; fail if there are none.

• bydns_mx: look up MX records for the host(s) in the DNS; fail if there are none.

The qualify_single and search_parents options apply to any DNS lookups that are done. If no IP
address for a host can be found, what happens is controlled by the host_find_failed option.

26.4 Application of routing rules
When a rule has been found that matches the current domain, either by matching one of the rules in
route_list, or by a successful lookup in route_file or using route_query or route_queries, the host
list and options are used in a number of different ways, depending on which are present and on
whether a transport has been specified.

• If there is no host list (and therefore necessarily no options either), then a local transport (that is,
not an SMTP transport) must be specified for the router via the generic transport option, unless
the driver is being used only for verification (verify_only is set). In this case, if there is no
transport and no host list, the address is taken as verified. Otherwise, failure to specify a local
transport in the absence of a host list is a configuration error. The address is routed to the
transport. In all other cases, a host list must be provided.

• If there is a host list, and a local transport is specified either by the generic transport option, or
by an option item in the rule, then the host list must contain just a single host name which is
passed to the transport in the $host variable. Any byxxx options are ignored.

[164] domainlist router (26)

• If no byxxx option is present, then any remote transport setting is ignored, and there must be just
one name in the host list. The address is passed on to the next router, with the domain being
routed being replaced by the name from the host list. However if the expansion variable $domain
is used in any subsequent router, it still refers to the original domain.

• Otherwise, a remote (that is, SMTP) transport must be specified, unless the driver is being used
only for verification (verify_only is set). The transport is specified either via the generic trans-
port option or by a transport name as an option setting, and there may be many hosts in the list.
Their IP addresses are looked up according to the byxxx option. If any of them are found to be
the local host, that one and all those that follow it are discarded. If the first host is found to be
the local host, then the generic self option specifies what happens. Otherwise, the address is
passed to the specified transport, along with the ordered list of hosts. The transport will try
delivering to each host in turn, until one accepts the message.

The various different possibilities for configuring the domainlist router make it possible to use it for a
number of different routing requirements, as shown in the examples in the next section.

26.5 Domainlist examples
In some of the examples that follow, the presence of the remote_smtp transport, as defined in the
default configuration file, is assumed.

• Routing to a gateway to another mail environment can be set up using a wildcarded domain
pattern that matches some pseudo top-level domain. For example, to route certain addresses to
UUCP and Bitnet gateways:

uucp_bitnet:
driver = domainlist
route_list = "*.uucp uugateway.fict.book; \

*.bitnet bngateway.ref.book"

The two rules match domains ending in .uucp and .bitnet respectively, and because no options or
transport are specified in either case, the name of the appropriate gateway domain is taken from
the host list and passed to subsequent routers for further routing. So, for example, mail addressed
to user@faraway.uucp is routed by applying subsequent routers to the domain

 uugateway.fict.book to determine where to send it.

If there are two hosts servicing one of these domains and they are not connected to a single
domain name (by MX records for example), you may want to quote two names in the host list
portion of a rule. In this case, you have to specify one of the byxxx options, to get the names
looked up by domainlist, since it can pass on only a single domain name to other routers. A
transport must also be provided:

uucp:
driver = domainlist
transport = remote_smtp
route_list = "\
*.uucp uugate1.fict.book:uugate2.fict.book byname"

In this case, no further routers are called.

• A host that is itself a gateway can ‘deliver’ messages to pipes or into files in batched SMTP
format for onward transportation by some other means. In this case, the route list entry can be as
simple as a single domain name in a configuration like this:

route_append:
driver = domainlist
transport = batchsmtp_appendfile
route_list = gated.domain

[165] domainlist router (26)

though often a pattern is used to pick up more than one domain. If there are several domains or
groups of domains with different transport requirements, different transports can be listed in the
routing information:

route_append:
driver = domainlist
route_list = "\
*.gated.domain1 $domain batch_appendfile; \
*.gated.domain2 \
${lookup{$domain}dbm{/domain2/hosts}{$value}fail} \

 batch_pipe"

The first of these just passes the domain in the $host variable, which doesn’t achieve much (since
it is also in $domain) but the second does a file lookup to find a value to pass, causing the router
to fail to handle the address if the lookup fails.

• Routing mail directly to UUCP software is a specific case of the use of domainlist in a gateway
to another mail environment. This is an example of one way it can be done, taken from a real

 configuration:

Transport
 uucp:

driver = pipe
user = nobody
command = "/usr/local/bin/uux -r - \

${substr_-5:$host}!rmail ${local_part}"
return_fail_output = true

Router
 uucphost:

transport = uucp
driver = domainlist
route_file = /usr/local/exim/uucphosts
search_type = lsearch

The file /usr/local/exim/uucphosts contains entries like

darksite.ethereal.ru: darksite.UUCP

It can be set up more simply without adding and removing ‘.UUCP’ but this way makes clear the
distinction between the domain name darksite.ethereal.ru and the UUCP host name darksite.

• A mail hub is a machine which receives mail for a number of domains via MX records in the
DNS and delivers it via its own private routing mechanism. Often the final destinations are
behind a firewall, with the mail hub being the one machine that can connect to machines both
inside and outside the firewall. The domainlist router can be set up for this kind of purpose:

through_firewall:
driver = domainlist
transport = remote_smtp
route_file = /internal/host/routes
search_type = lsearch

For a small number of cases, the routing could be inline, using the route_list option, but for a
 larger number a file lookup would be easier to manage, and the file containing the internal

routing might contain lines like this:

dict.ref.book: mail-1.ref.book:mail-2.ref.book byname

The DNS would be set up with an MX record for dict.ref.book pointing to the mail hub, which
would then then forward mail for dict.ref.book to one of the two specified machines, looking up
their addresses using gethostbyname().

[166] domainlist router (26)

If the domain names are in fact the names of the machines to which the mail is to be sent by the
mail hub, then the configuration can be quite simple. For example,

hub_route:
driver = domainlist
transport = remote_smtp
route_list = *.rhodes.tvs $domain byname

This configuration routes domains that match *.rhodes.tvs by calling gethostbyname() on the
domain that matched. A similar approach can be taken if the host name can be obtained from the
domain name by simple manipulation that the expansion facilities can handle.

• The domainlist router can also be used to forward all non-local mail to a smart host by using a
configuration like

smart_route:
driver = domainlist
transport = remote_smtp
route_list = "* smarthost.ref.book bydns_a"

which causes all messages containing remote addresses to be sent to the single host
 smarthost.ref.book, whose address (in this example) is obtained from its DNS address record. If

a colon-separated list of smart hosts is given, they are tried in order. A router like this should be
the last one in the configuration file, since it will route any domain whatsoever.

• A domainlist router can be used to force success or failure on verification of remote addresses
by setting verify_only (and verify_sender or verify_recipient if required). If failure is wanted,
set fail_verify. No transports or hosts need be defined.

[167] domainlist router (26)

27. The ipliteral router

This router succeeds if the ‘domain’ being routed takes the form of an RFC 822 domain literal, that is,
an IP address in dotted-quad notation enclosed in square brackets. For example, this router handles the
address

root@[111.1.1.1]

by setting up delivery to the host with that IP address. If an IP literal turns out to refer to the local
host, the generic self option determines what happens. The RFCs require support for domain literals,
though it seems anachronistic in today’s Internet. There are no private options for this router; a
transport must be set using the generic transport option.

[168] ipliteral router (27)

28. The iplookup router

The iplookup router was written to fulfil a specific requirement in Cambridge. For this reason, it is not
included in the binary of Exim by default. If you want to include it, then you must set

ROUTER_IPLOOKUP=yes

in your Local/Makefile configuration file.

The iplookup router routes an address by sending it over a TCP or UDP connection to one or more
specific hosts. The host can then return the same or a different address – in effect rewriting the
recipient address in the message’s envelope. If this process fails, the address can be passed on to other
routers, or delivery can be deferred.

Background, for those that are interested: We have an Oracle database of all Cambridge users, and one
of the bits of data it maintains for each user is where to send mail addressed to <user>@cam.ac.uk.
The MX records for cam.ac.uk point to a central machine that has a large alias list that is abstracted
from the database. Mail from outside is switched by this system, and originally internal mail was also
done this way. However, this resulted in a fair number of messages travelling from some of our larger
systems to the switch and back again. The Oracle machine now runs a UDP service that can be called
by the iplookup router in Exim to find out where <user>@cam.ac.uk addresses really have to go; this
saves passing through the central switch, and in many cases saves doing any remote delivery at all.

Since iplookup is just a rewriting router, a transport must not be specified for it.

hosts

Type: string
Default: unset

This option must be supplied. Its value is a colon-separated list of host names. The hosts are looked
up using gethostbyname() and are tried in order until one responds to the query.

optional

Type: boolean
Default: false

If optional is true, then if no response is obtained from any host, the address is passed on to the
next router. If optional is false, delivery to this address is deferred.

port

Type: integer
Default: 0

This option must be supplied. It specifies the port number for the TCP or UDP call.

protocol

Type: string
Default: udp

This option can be set to ‘udp’ or ‘tcp’ to specify which of the two protocols is to be used.

query

Type: string
Default: "${local_part}@${domain} ${local_part}@${domain}"

This defines the content of the query that is sent to the remote hosts. The repetition serves as a way
of checking that a response is to the correct query in the default case (see response_pattern

 below).

[169] iplookup router (28)

reroute

Type: string
Default: unset

If this option is not set, the rerouted address is precisely the byte string returned by the remote host,
up to the first white space, if any. If set, the string is expanded to form the rerouted address. It can
include parts matched in the response by response_pattern by means of numeric variables such as

 $1, $2, etc. The variable $0 refers to the entire input string, whether or not a pattern is in use. In all
cases, the rerouted address must end up in the form <local_part>@<domain>.

response_pattern

Type: string
Default: unset

This option can be set to a regular expression that is applied to the string returned from the remote
host. If the pattern does not match the response, the router fails. If response_pattern is not set, no
checking of the response is done, unless the query was defaulted, in which case there is a check
that the text returned after the first white space is the original address. This checks that the answer
that has been received is in response to the correct question. For example, if the response is just a
new domain, the following could be used:

response_pattern = "^([^@]+)$"
reroute = "${local_part}@${1}"

service

Type: integer
Default: 0

This is an alternative name for the port option.

timeout

Type: time
Default: 5s

This specifies the amount of time to wait for a response from the remote machine. The same
timeout is used for the connect() function for a TCP call. It does not apply to UDP.

[170] iplookup router (28)

29. The lookuphost router

The lookuphost router looks up the hosts that handle mail for the given domain either via the
gethostbyname() function, or by using the DNS directly. A transport must always be set for this
router, unless verify_only is set.

When the DNS is used, MX records are looked up first, followed by A records if no MX records are
found, unless the domain matches mx_domains. Unless they have the highest priority (lowest MX
value), MX records that point to the local host, or to any host name that matches hosts_treat_as_
local, are discarded, together with any other MX records of equal or lower priority.

If the host pointed to by the highest priority MX record or the host looked up by gethostbyname() is
the local host, or matches hosts_treat_as_local, then what happens is controlled by the generic self
option.

check_secondary_mx

Type: boolean
Default: false

If this option is set, the router fails unless the local host is found in (and removed from) the list of
hosts obtained by MX lookup. This can be used to process domains for which the local host is a
secondary mail exchanger differently to other domains.

gethostbyname

Type: boolean
Default: false

If this is true, the gethostbyname() function is used and the options relating to the DNS are
ignored. Otherwise, the name is looked up directly in the DNS. Of course, gethostbyname() may
do its own DNS lookup for an A record (no MX processing is involved), but it may also access
other sources of information such as /etc/hosts.

When Exim is compiled with IPv6 support, if a host that is looked up in the DNS has both A and
AAAA records, all the addresses are used. See README.IPV6 for general information about IPv6

 support.

mx_domains

Type: domain-list
Default: unset

This option applies to domains that are looked up directly in the DNS (gethostbyname is not set)
for non-source-routed RFC 822 addresses (that is, addresses that do not start with @). A domain
which matches mx_domains is required to have an MX record in order to be recognised. For
example, if all the mail hosts in fict.book are known to have MX records, except for those in
discworld.fict.book, options of the form

mx_domains = ! *.discworld.fict.book : *.fict.book

could be used. This would cause messages addressed to a machine that matched the option but had
only an A record to be bounced immediately instead of sitting on the queue until the delivery timed
out. Note, however, that for source-routed RFC 822 addresses (ones that start with @) this
restriction does not apply, as the first domain in such an address is a machine name. The

 collapse_source_routes main configuration option provides a way of locking out the use of source
 routes.

[171] lookuphost router (29)

qualify_single

Type: boolean
Default: true

If domains are being looked up in the DNS (gethostbyname is false), then the resolver option that
causes it to qualify single-component names with the default domain (RES_DEFNAMES) is set. For
example, on a machine called dictionary.ref.book, looking up the domain thesaurus would cause
the name thesaurus.ref.book to be looked up internally in the resolver. Exim itself still looks up
the single name.

rewrite_headers

Type: boolean
Default: true

An abbreviated name may be expanded to its full form by both gethostbyname() or by DNS
lookup, or as a result of the widen_domains option. For example, if an address is specified as

 dormouse@teaparty, the domain might get expanded to teaparty.wonderland.fict.book. If this
option is true, then all occurrences of the abbreviated name in the headers of the message are
rewritten with the full name. This option should be turned off only when it is known that no
message is ever going to be sent outside an environment where the abbreviation makes sense.

When an MX record is looked up in the DNS and matches a wildcard record, nameservers normally
return a record containing the name that has been looked up, making it impossible to detect whether
a wildcard was present or not. However, some nameservers have recently been seen to return the
wildcard entry. If the name returned by a DNS lookup begins with an asterisk, it is not used for
header rewriting.

search_parents

Type: boolean
Default: false

If domains are being looked up in the DNS (gethostbyname is false), then the resolver option that
causes it to search parent domains (RES_DNSRCH) is set if this option is true. This is different from
the qualify_single option in that it applies to domains containing dots. For example, on a machine
in the fict.book domain, when looking up teaparty.wonderland initially fails, the resolver auto-
matically tries teaparty.wonderland.fict.book if this option is set. The default setting of this option
used to be true, but this causes problems in domains that have a wildcard MX record, because any
domain that does not have its own MX record then matches the local wildcard. The default was
changed to false in Exim 1.80.

widen_domains

Type: string-list
Default: unset

If a lookup fails and this option is set, each of its strings in turn is added onto the end of the
domain, and the lookup is tried again. For example, if

widen_domains = "fict.book:ref.book"

is set and a lookup of klingon.dictionary fails, then klingon.dictionary.fict.book is looked up, and
if this fails, then klingon.dictionary.ref.book is tried. This option applies to lookups using
gethostbyname() as well as to DNS lookups. Note that when the DNS is being used for lookups,
the qualify_single and search_parents options cause some widening to be undertaken inside the
DNS resolver.

[172] lookuphost router (29)

30. The queryprogram router

The queryprogram router routes a domain by running an external command and acting on its output.
This is an expensive way to route, and is intended mainly for use in lightly-loaded systems, or for
performing experiments. However, if it is possible to use the domains, local_parts or condition
generic options to skip this router for most addresses, then it could sensibly be used in special cases.
There are the following private options:

command

Type: string
Default: unset

This option must be set, and must start with a slash character. It specifies the command that is to be
run. It is expanded before use. Failure to expand causes the router to fail and the message to be
frozen.

command_group

Type: string
Default: unset

This option specifies a gid to be set when running the command. If it begins with a digit it is
interpreted as the numerical value of the gid. Otherwise it is looked up using getgrnam().

command_user

Type: string
Default: unset

This option specifies the uid which is set when running the command. If it begins with a digit it is
interpreted as the numerical value of the uid. Otherwise, it is looked up using getpwnam() to obtain
a value for the uid and, if command_group is not set, a value for the gid also.

current_directory

Type: string
Default: unset

This option specifies an absolute path which is made the current directory before running the
command. If it is not set, ‘/’ is used.

timeout

Type: time
Default: 1h

If the command does not complete within the timeout period, its process group is killed and the
message gets frozen. A value of zero time specifies no timeout.

If command_user is not specified, the command is run as ‘nobody’. If the main configuration has not
defined a user and group for ‘nobody’, then it is looked up using getpwnam(). If this fails, the router
fails and the message is frozen.

In previous versions of Exim the command_group and command_user options were called group
and user. Their names were changed when group and user became generic router options.

The standard output of the command is connected to a pipe, which is read when the command
terminates. It should consist of a single line of output, containing up to five fields, separated by white
space. The first field is one of the following words:

• OK: routing succeeded; the remaining fields specify what to do.

[173] queryprogram router (30)

• FAIL: routing failed; pass the address to the next router.

• FORCEFAIL: routing failed; do not pass the address to any more routers.

• DEFER: routing could not be completed at this time; try again later.

• ERROR: some disastrous error occurred; freeze the message.

When the first word is not OK, the remainder of the line is an error message explaining what went
wrong. For example:

FAIL queryprogram cannot route to unseen.discworld.fict.book

Otherwise, the line must be formatted as follows:

OK <transport name> <new domain> <option> <arbitrary text>

The second field is the name of a transport instance, or a plus character, which means that the
transport specified for the router using the generic transport option is to be used, if set.

If the third field is not empty or a single plus character, it is a new domain name to replace the current
one. If a transport is specified and the fourth field is not empty or a plus character, it specifies the
method of looking up the new name. This can be one of the words ‘byname’, ‘bydns’, ‘bydns_a’, or
‘bydns_mx’. For example,

OK smtp gate.star.fict.book bydns_a

causes the message to be sent using the smtp transport to the host gate.star.fict.book, whose address
is looked up as a DNS address record. If the host turns out to be the local host, what happens is
controlled by the generic self option.

The fifth field, if present, is made available to the transport via the expansion variable $route_option.
For example, a line such as

OK special + + /computed/filename

sends the message to the special transport, which can use $route_option in its configuration to access
the text ‘/computed/filename’.

The fourth and fifth fields are ignored and the new domain name (if any) is passed to the next router if
no transport is specified in the response line (that is, a plus character is given) and the generic
transport option is also unset.

[174] queryprogram router (30)

31. Retry configuration

The fifth part of the configuration file contains a list of retry rules which control how often Exim tries
to deliver messages that cannot be delivered at the first attempt. If there are no retry rules, Exim gives
up after the first failure. The -brt command line option can be used to test which retry rule will be
used for a given address or domain.

The most common cause of retries is temporary failure to deliver to a remote host. Exim’s retry
processing in this case is applied on a per-host (strictly, per IP address) basis, not on a per-message
basis. Thus, if one message has recently been delayed, a new message to the same host does not
immediately get tried, but waits for the host’s retry time to arrive. If the value of log_level is greater
than 4, the message ‘retry time not reached’ is written to the main log whenever a delivery is skipped
for this reason. Section 42.2 contains more details of the handling of errors during remote deliveries.

Retry processing applies to directing and routing as well as to delivering, except as covered in the next
paragraph. The retry rules do not distinguish between these three actions, so it is not possible, for
example, to specify different behaviour for failures to route the domain snark.fict.book and failures to
deliver to the host snark.fict.book. I didn’t think anyone would ever need this added complication, so
did not implement it. However, although they share the same retry rule, the actual retry times for
routing, directing, and transporting a given domain are maintained independently.

When a delivery is not part of a queue run (typically an immediate delivery on receipt of a message),
the directors are always run for local addresses, and local deliveries are always attempted, even if retry
times are set for them. This makes for better behaviour if one particular message is causing problems
(for example, causing quota overflow, or provoking an error in a filter file). If such a delivery suffers a
temporary failure, the retry data gets updated as normal, and subsequent delivery attempts from queue
runs occur only when the retry time for the local address is reached.

31.1 Retry rules
Each retry rule occupies one line and consists of three parts, separated by white space: a pattern, an
error name, and a list of retry parameters. The rules are searched in order until one is found whose
pattern matches the failing host or address.

The pattern may be a complete address (local_part@domain), a plain domain, a wildcarded domain
(that is, starting with an asterisk), a domain lookup (as in a domain list), or a regular expression. The
first form must be used with local domains only; in this case the local part may begin with an asterisk.

After a directing or local delivery failure, regular expressions and patterns containing local parts are
normally matched against the complete address (local_part@domain). However, if there is no local
part in a pattern that is not a regular expression, then the local part of the address isn’t used in the
matching. Thus an entry such as

lookingglass.fict.book * F,24h,30m;

matches any address whose domain is lookingglass.fict.book, whether this is a local or a remote
domain, whereas

alice@lookingglass.fict.book * F,24h,30m;

can be used only if lookingglass.fict.book is a local domain. It applies to temporary failures involving
the local part alice, but not to any other local parts.

If a local delivery is being used to collect messages for onward transmission by some other means (for
example, as batched SMTP), a temporary failure may not be dependent on the local part at all. Both
the appendfile and pipe transports have an option called retry_use_local_part which can be set false
in order to suppress the inclusion of local parts when matching retry patterns for those transport
instances. When this option is set, patterns containing local parts are skipped, and regular expressions
are matched against the domain only.

[175] retry configuration (31)

For remote domains, when looking for a retry rule after a routing attempt has failed (for example, after
a DNS timeout), each line in the retry configuration is tested only against the domain in the address.
However, when looking for a retry rule after a remote delivery attempt has failed (for example, a
connection timeout), each line in the retry configuration is first tested against the remote host name,
and then against the domain name in the address. For example, if the MX records for a.b.c.d are

a.b.c.d MX 5 x.y.z
MX 6 p.q.r
MX 7 m.n.o

and the retry rules are

p.q.r * F,24h,30m;
a.b.c.d * F,4d,45m;

then failures to deliver to host p.q.r use the first rule to determine retry times, but for all the other
hosts for the domain a.b.c.d, the second rule is used, and that rule would also be used if routing to
a.b.c.d suffers a temporary failure.

The second field in a retry rule is the name of a particular error, or an asterisk, which matches any
error. The errors that can be tested for are:

refused_MX: connection refused from a host obtained from an MX record

refused_A: connection refused from a host not obtained from an MX record

refused: any connection refusal

timeout_connect: connection timed out

timeout_DNS: DNS lookup timed out

timeout: any timeout

quota: quota exceeded in local delivery

quota_<time>: quota exceeded in local delivery, and the mailbox has not been read for <time>.

The quota errors apply both to system-enforced quotas and to Exim’s own quota mechanism in the
appendfile transport.

The third field in a retry rule is a sequence of retry parameter sets, separated by semicolons. Each set
consists of

<letter>,<cutoff time>,<arguments>

The letter identifies the algorithm for computing a new retry time; the cutoff time is the time beyond
which this algorithm no longer applies, and the arguments vary the algorithm’s action. The cutoff time
is measured from the time that the first failure for the domain (combined with the local part if
relevant) was detected, not from the time the message was received. The available algorithms are:

• F: retry at fixed intervals. There is a single time parameter specifying the interval.

• G: retry at geometrically increasing intervals. The first argument specifies a starting value for the
interval, and the second a multiplier.

When computing the next retry time, the algorithm definitions are scanned in order until one whose
cutoff time has not yet passed is reached. This is then used to compute a new retry time that is later
than the current time. In the case of fixed interval retries, this simply means adding the interval to the
current time. For geometrically increasing intervals, retry intervals are computed from the rule’s
parameters until one that is greater than the previous interval is found. The main configuration variable
retry_interval_max limits the maximum interval between retries.

A single remote domain may have a number of hosts associated with it, and each host may have more
than one IP address. Retry algorithms are selected on the basis of the domain name, but are applied to
each IP address independently. If, for example, a host has two IP addresses and one is broken, Exim

[176] retry configuration (31)

will generate retry times for it and will not try to use it until its next retry time comes. Thus the good
IP address is likely to be tried first most of the time.

Retry times are hints rather than promises. Exim does not make any attempt to run deliveries exactly
at the computed times. Instead, a queue-running process starts delivery processes for delayed messages
periodically, and these attempt new deliveries only for those addresses that have passed their next retry
time. Therefore, whatever you set in the retry rules, the minimum time between retries is the interval
between queue-running processes. There is not much point in setting retry times of five minutes if
your queue-runners happen only once an hour.

31.2 Retry rule examples
Here are some example retry rules suitable for use when wonderland.fict.book is a local domain:

alice@wonderland.fict.book quota_5d F,7d,3h
wonderland.fict.book quota_5d
wonderland.fict.book * F,1h,15m; G,2d,1h,2;
lookingglass.fict.book * F,24h,30m;
* refused_A F,2h,20m;
* * F,2h,15m; G,16h,1h,1.5; F,5d,8h

The first rule sets up special handling for mail to alice@wonderland.fict.book when there is an over-
quota error and the mailbox hasn’t been read for at least 5 days. Retries continue every three hours for
7 days. The second rule handles over-quota errors for all other local parts at wonderland.fict.book;
the absence of a local part has the same effect as supplying ‘*@’. As no retry algorithms are supplied,
messages that fail are bounced immediately if the mailbox hasn’t been read for at least 5 days.

The third rule handles all other errors at wonderland.fict.book; retries happen every 15 minutes for an
hour, then with geometrically increasing intervals until two days have passed since a delivery first
failed. The fourth rule controls retries for the domain lookingglass.fict.book, whether it is local or
remote, and the remaining two rules handle all other domains, with special action for connection
refusal from hosts that were not obtained from an MX record.

The final rule in a retry configuration should always have asterisks in the first two fields so as to
provide a general catch-all for any addresses that do not have their own special handling. This
example tries every 15 minutes for 2 hours, then with intervals starting at one hour and increasing by a
factor of 1.5 up to 16 hours, then every 8 hours up to 5 days.

31.3 Long-term failures
Special processing happens when an address has been failing for so long that the cutoff time for the
last algorithm has been reached. This is independent of how long any specific message has been
failing; it is the length of continuous failure for the address that counts. When this is the case for a
local delivery, or for all IP addresses associated with a remote delivery, a subsequent delivery failure
causes Exim to give up on the address, and a delivery error message is generated. In order to cater for
new messages that may use the failing address, a next retry time is still computed from the final
algorithm, and is used as follows:

If the delivery is a local one, one delivery attempt is always made for any subsequent messages. If it
fails, the address fails immediately. The post-cutoff retry time is not used.

If the delivery is remote, there are two possibilities, controlled by the delay_after_cutoff option of the
smtp transport. The option is true by default and in that case:

Until the post-cutoff retry time for one of the IP addresses is reached, any attempt to deliver to
the failing address is bounced immediately. After that time, one new delivery attempt is made to
those IP addresses that are past their retry times, and if that still fails, the address is bounced and
new retry times are computed.

In other words, Exim delays retrying an IP address after the final cutoff time until a new retry time is
reached, and can therefore bounce an email address without ever trying a delivery when machines

[177] retry configuration (31)

have been down for a long time. This ensures that few resources are wasted in repeatedly trying to
deliver to a broken destination, but if it does recover, Exim will eventually notice.

If delay_after_cutoff is set false, Exim behaves differently. If all IP addresses are past their final
cutoff time, Exim tries to deliver to those IP addresses that have not been tried since the message
arrived. If there are none, or if they all fail, the address is bounced. In other words, it does not delay
when a new message arrives, but tries the expired addresses immediately, unless they have been tried
since the message arrived. If there is a continuous stream of messages for the failing domains,
unsetting delay_after_cutoff means that there will be many more attempts to deliver to failing IP
addresses than when delay_after_cutoff is true.

An additional rule is needed to cope with cases where a host is intermittently available, or when a
message has some attribute that prevents its delivery when others to the same address get through.
Because some messages are successfully delivered, the ‘retry clock’ keeps getting restarted, and so a
message could remain on the queue for ever. To prevent this, if a message has been on the queue for
longer than the cutoff time of any applicable retry rule, the associated email address is failed after its
next temporary delivery error. A new retry time is not computed in this case, so that other messages
for the same address are considered immediately.

Even with this rule a large queue of messages can take a long time to clear if some occasionally get
delivered, because the intermittent failures delay delivery attempts on the others (and the above rule
acts only after a delivery attempt). There is therefore an ultimate clean-up rule which causes all the
remaining addresses in a message to be failed, whether or not there has just been a delivery attempt, if
the message has been on the queue for longer than the longest cutoff time for any retry rule in the
configuration file.

The data in the retry hints database can be inspected by using the exim_dumpdb or exim_fixdb utility
programs (see chapter 47). The latter utility can also be used to change the data. The exinext utility
script can be used to find out what the next retry times are for the hosts associated with a particular
mail domain, and also for local deliveries that have been deferred.

[178] retry configuration (31)

32. Address rewriting

Some people believe that configured address rewriting is a Mortal Sin. Others believe that life is not
possible without it. Exim provides the facility; you do not have to use it. There are two cases that are
commonly encountered:

• The company hitch.fict.book has a number of machines that exchange mail with each other
behind a firewall, but only a single gateway to the outer world. The gateway rewrites
*.hitch.fict.book as hitch.fict.book.

• A machine rewrites the local parts of its own users so that, for example, fp42@hitch.fict.book
becomes Ford.Prefect@hitch.fict.book.

In general, rewriting addresses from one’s own system or domain has some legitimacy. Rewriting other
addresses should be done only with great care and in special circumstances.

Address rewriting can be applied both to envelope addresses and addresses in header lines. Exim’s
rewriting rules specify to which addresses they apply.

• Rewriting rules for envelope addresses are also applied to new addresses that are generated by
aliasing or forwarding operations, unless no_rewrite is set on the relevant directors.

• Rewriting of headers happens when a message is received, which is why it is possible to rewrite
Bcc: headers (Exim removes Bcc: headers only when the -t option is used). It does not apply to
headers that are added by the generic driver option add_headers.

Exim’s rewriting configuration appears as the sixth part of the runtime configuration file. It can be
tested by the -brw command line option. This takes an address (which can be a full RFC 822 address)
as its argument. The output is a list of how the address would be transformed by the rewriting rules for
each of the different places it might appear, that is, for each different header and for the envelope
sender and recipient fields. For example,

exim -brw ph10@exim.work.shop

might produce the output

sender: Philip.Hazel@exim.work.shop
from: Philip.Hazel@exim.work.shop
to: ph10@exim.work.shop
cc: ph10@exim.work.shop
bcc: ph10@exim.work.shop

reply-to: Philip.Hazel@exim.work.shop
env-from: Philip.Hazel@exim.work.shop
env-to: ph10@exim.work.shop

which shows that rewriting has been set up for that address when used in any of the source fields, but
not when it appears as a recipient address.

32.1 Rewriting rules
The rewriting configuration consists of lines of rewriting rules in the form

<source pattern> <replacement> <flags>

The flags are single characters which may appear in any order. Spaces and tabs between them are
ignored.

The formats of source patterns and replacement strings are described below. Each is terminated by
white space. If a replacement string contains spaces, which can happen for certain forms of expansion
expression, it must be enclosed in double quotes, and the normal quoting conventions apply inside
them.

[179] address rewriting (32)

Long rules (whether using quotes or not) can be split over several lines by terminating all but the last
with a backslash character. Leading white space on continuation lines is ignored. Consequently, a
continuation backslash should never appear immediately after the source pattern or replacement string,
but instead should follow its terminating white space.

For each address that could potentially be rewritten, the rules are scanned in order, and replacements
from earlier rules can themselves be replaced as a result of later rules (but see the ‘q’ and ‘R’ flags).

The order in which header and envelope addresses are rewritten is undefined, may change between
releases, and must not be relied on. For example, the replacement string for a header rewrite must not
assume that the message’s envelope sender address has (or has not) already been rewritten.

$local_part and $domain can be used in the replacement string to refer the address that is being
rewritten. Note that complete lookup-driven rewriting can be done by a line of the form

@ ${lookup ...

where the lookup key is derived from $1 and $2 or $local_part and $domain.

32.2 Rewriting patterns
The source pattern can be in one of the following forms. Note that it is not enclosed in quotes, and
there is no special processing of any characters. In particular, if it is a regular expression, backslash
characters should not be doubled.

• An address containing a local part and a domain, either of which may start with an asterisk,
implying independent wildcard matching, for example

*@orchestra-land.fict.book

If the domain is specified as a single @ character, it matches the primary host name. After
matching, the numerical variables refer to the character strings matched by asterisks, with $1
associated with the first asterisk, while $0 refers to the entire address. For example, if the pattern

queen@.fict.book

is matched against the address hearts-queen@wonderland.fict.book then

$0 = hearts-queen@wonderland.fict.book
$1 = hearts-
$2 = wonderland

Note that if the local part does not start with an asterisk, but the domain does, then it is $1 that
contains the wild part of the domain.

• A local part, possibly starting with an asterisk, and a lookup item (as in a domain list), for
example

root@lsearch;/special/domains

If there is an asterisk in the local part, the value of the wild part is placed in the first numerical
variable. If the lookup is a partial one, the wild part of the domain is placed in the next numerical
variable, and the fixed part of the domain is placed in the succeeding variable. Thus, for example,
if the address foo@bar.baz.com is processed by a rewriting rule of the form

*@partial-dbm;/some/dbm/file <replacement string>

and the key in the file that matches the domain is *.baz.com, then

$1 = foo
$2 = bar
$3 = baz.com

If the address foo@baz.com is looked up, this matches the same wildcard file entry, and in this
case $2 is set to the empty string, but $3 is still set to baz.com. If a non-wild key is matched in a

[180] address rewriting (32)

partial lookup, then again $2 is set to the empty string and $3 is set to the whole domain. For
non-partial lookups, no numerical variables are set.

• A local part, possibly starting with an asterisk, and a regular expression (as in a domain list), for
example

*.queen@^(wonderland|lookingglass).fict.book$

If there is an asterisk in the local part, the value of the wild part is placed in the first numerical
variable. Any substrings captured by the regular expression are placed in numerical variables
starting at $1 if there is no asterisk in the local part, or at $2 if there is.

• A lookup without a local part, for example

partial-dbm;/rewrite/database

This works as for an address-list configuration item – the domain is first looked up, possibly
 partially, and if that fails, the whole address is then looked up (not partially). When a partial

lookup succeeds, the numerical variable $1 contains the wild part of the domain, and $2 contains
the fixed part. The ‘@@’ form of address-list lookup can also be used.

• A single regular expression. This is matched against the entire address, with the domain part
lower-cased. After matching, the numerical variables refer to the bracketed ‘capturing’ sub-
expressions, with $0 referring to the entire address. For example, if the pattern

^(red|white).king@(wonderland|lookingglass).fict.book$

is matched against the address red.king@lookingglass.fict.book then

$0 = red.king@lookingglass.fict.book
$1 = red
$2 = lookingglass

Note that because the pattern part of a rewriting rule is terminated by white space, no white
space may be present in the regular expression.

32.3 Rewriting replacements
If the replacement string for a rule is a single asterisk, then addresses that match the pattern and flags
are not rewritten, and no subsequent rewriting rules are scanned. For example,

hatta@lookingglass.fict.book * f

specifies that hatta@lookingglass.fict.book is never to be rewritten in From: headers.

Otherwise, the replacement string is expanded and must yield a fully qualified address. Within the
expansion, the variables $local_part and $domain refer to the address that is being rewritten. Any
letters they contain retain their original case – they are not lower cased. The numerical variables are
set up according to the type of pattern that matched the address, as described above. If the expansion
is forced to fail by the presence of ‘fail’ in a conditional or lookup item, rewriting by the current rule
is abandoned. Any other expansion failure causes the entire rewriting operation to be abandoned, and
an entry written to the panic log.

32.4 Rewriting flags
There are four dif ferent kinds of flag that may appear on rewriting rules:

• Flags that specify which headers and envelope addresses to rewrite: E, F, T, b, c, f, h, r, s, t.

• A flag that specifies rewriting at SMTP time: S.

• Flags that control the rewriting process: Q, q, R, w.

• A special-purpose flag for additional relay checking: X.

[181] address rewriting (32)

32.5 Flags specifying which headers and envelope addresses to rewrite
If none of the following flag letters, nor the ‘S’ flag (see section 32.6) are present, the rewriting rule
applies to all headers and to both the sender and recipient fields of the envelope. Otherwise, the
rewriting rule is skipped unless the relevant addresses are being processed.

E rewrite all envelope fields
F rewrite the envelope From field
T rewrite the envelope To field
b rewrite the Bcc: header
c rewrite the Cc: header
f rewrite the From: header
h rewrite all headers
r rewrite the Reply-to: header
s rewrite the Sender: header
t rewrite the To: header

You should be particularly careful about rewriting Sender: headers, and restrict this to special known
cases in your own domains.

32.6 The SMTP-time rewriting flag
The rewrite flag ‘S’ specifies a rewrite at SMTP time, as soon as an address is received and before any
other processing; even before syntax checking. The pattern is required to be a regular expression. This
applies to both sender and recipient addresses, and allows for the handling of addresses that are not
compliant with RFC 822 (for example, ‘bang paths’ in batched SMTP input). Because of this, the
variables $local_part and $domain are not available during the expansion of the replacement string.

32.7 Flags controlling the rewriting process
There are four flags which control the way the rewriting process works. These take effect only when a
rule is invoked, that is, when the address is of the correct type (matches the flags) and matches the
pattern.

• If the ‘Q’ flag is set on a rule, the rewritten address is permitted to be an unqualified local part. It
is qualified with qualify_recipient. In the absence of ‘Q’ the rewritten address must always
include a domain.

• If the ‘q’ flag is set on a rule, then no further rewriting rules are considered, even if no rewriting
actually takes place because of a ‘fail’ in the expansion. The ‘q’ flag is not effective if the
address is of the wrong type (does not match the flags) or does not match the pattern.

• The ‘R’ flag causes a successful rewriting rule to be re-applied to the new address, up to ten
times. It can be combined with the ‘q’ flag, to stop rewriting once it fails to match (after at least
one successful rewrite).

• When an address in a header is rewritten, the rewriting normally applies only to the working part
of the address, with any comments and RFC 822 ‘phrase’ left unchanged. For example, rewriting
might change

From: Ford Prefect <fp42@restaurant.hitch.fict.book>

into

From: Ford Prefect <prefectf@hitch.fict.book>

Sometimes there is a need to replace the whole address item, and this can be done by adding the
flag letter ‘w’ to a rule. If this is set on a rule that causes an address in a header to be rewritten,
the entire address is replaced, not just the working part. The replacement must be a complete
RFC 822 address, including the angle brackets if necessary. When the ‘w’ flag is set on a rule
that causes an envelope address to be rewritten, all but the working part of the replacement
address is discarded.

[182] address rewriting (32)

32.8 The additional relay checking flag
The ‘X’ flag is a slightly strange oddity that adds additional checking to sender_address_relay.
Whenever an address passes the sender_address_relay check, if there are any rewriting rules with the
‘X’ flag set, the address is rewritten and if this makes any change to the address, it must verify
successfully for the relaying to be permitted.

We use this in Cambridge as follows: users have a centrally registered address in the virtual domain
cam.ac.uk, but there are a number of different hosts where they actually have their accounts and from
which they can read mail using IMAP or POP. It is desirable to prevent them using hosts other than
those on which they have accounts as outgoing relays, and yet to permit the sending addresses to
contain the cam.ac.uk domain. Since the user names are the same on the relay hosts as in the
cam.ac.uk domain, a rewriting rule of the form

*@cam.ac.uk $1@${qualify_domain} X

means that any sender address of the form user@cam.ac.uk is acceptable only if user has an account
on the local host. This also has the virtue of detecting typos in the configurations of users’ MUAs.

32.9 Rewriting examples
Here is an example of the two common rewriting paradigms:

@.hitch.book.fict $1@hitch.book.fict
*@hitch.book.fict ${lookup{$1}dbm{/etc/realnames}\

{$value}fail}@hitch.book.fict bctfrF

Note the use of ‘fail’ in the lookup expansion. This causes the string expansion to fail, and in this
context it has the effect of leaving the original address unchanged, but Exim goes on to consider
subsequent rewriting rules, if any, since the ‘q’ flag is not present in that rule. An alternative to ‘fail’
would be to supply $1 explicitly, which would cause the rewritten address to be the same as before, at
the cost of a small bit of processing. Not supplying either of these is an error, since the rewritten
address would then contain no local part.

The first example above replaces the domain with a superior, more general domain. This may not be
desirable for certain local parts. If the rule

root@*.hitch.book.fict *

were inserted as the first rule, rewriting is suppressed if the local part is root at any domain ending in
hitch.book.fict.

Rewriting can be made conditional on a number of tests, by making use of ${if in the expansion item.
For example, to apply a rewriting rule only to messages that originate outside the local host:

@.hitch.book.fict "${if !eq {$sender_host_address}{}\
{$1@hitch.book.fict}fail}"

The replacement string is quoted in this example because it contains white space.

Exim does not handle addresses in the form of ‘bang paths’. If it sees such an address it treats it as an
unqualified local part which it qualifies with the local qualification domain (if the source of the
message is local or if the remote host is permitted to send unqualified addresses). Rewriting can
sometimes be used to handle simple bang paths with a fixed number of components. For example,
the rule

^([^!]+)!(.*)@your\.domain$ $2@$1

rewrites a two-component bang path ‘host.name!user’ as the domain address ‘user@host.name’.
However, there is a security implication in doing this as a normal rewriting rule for envelope
addresses. It can provide a backdoor method for using your system as a relay, since the incoming
addresses appear to be local. If the bang path addresses are received via SMTP, it is safer to use the
‘S’ flag to rewrite them as they are received, so that relay checking can be done on the rewritten
addresses.

[183] address rewriting (32)

33. Customizing error and warning messages

When a message fails to get delivered, or remains on the queue for more than a configured amount of
time, Exim sends a message to the original sender, or to an alternative configured address. The text of
these messages is built into the code of Exim, but it is possible to change it, either by adding a single
string, or by replacing each of the paragraphs by text supplied in a file.

33.1 Customizing error messages
If errmsg_text is set, its contents are included in the default message immediately after ‘This message
was created automatically by mail delivery software.’ The string is not expanded. It is not used if
errmsg_file is set.

When errmsg_file is set, it must point to a template file for constructing error messages. The file
consists of a series of text items, separated by lines consisting of exactly four asterisks. If the file
cannot be opened, default text is used and a message is written to the main and panic logs. If any text
item in the file is empty, default text is used for that item.

Each item of text that is read from the file is expanded, and there are two expansion variables which
can be of use here: $errmsg_recipient is set to the recipient of an error message while it is being
created, and $return_size_limit contains the value of the return_size_limit option, rounded to a
whole number.

The items must appear in the file in the following order:

• The first item is included in the headers, and should include at least a Subject: header. Exim
does not check the syntax of these headers.

• The second item forms the start of the error message. After it, Exim lists the failing addresses
with their error messages.

• The third item is used to introduce any text from pipe transports that is to be returned to the
 sender. It is omitted if there is no such text.

• The fourth item is used to introduce the copy of the message that is returned as part of the error
 report.

• The fifth item is added after the fourth one if the returned message is truncated because it is
bigger than return_size_limit.

• The sixth item is added after the copy of the original message.

The default state (errmsg_file unset) is equivalent to the following file, in which the sixth item is
empty. The Subject: line has been split into two here in order to fit it on the page.

Subject: Mail delivery failed

${if eq{$sender_address}{$errmsg_recipient}{: returning message to sender}}

This message was created automatically by mail delivery software.

A message ${if eq{$sender_address}{$errmsg_recipient}{that you sent }{sent by

<$sender_address>

}}could not be delivered to all of its recipients.

The following address(es) failed:

The following text was generated during the delivery attempt(s):

------ This is a copy of the message, including all the headers. ------

------ The body of the message is $message_size characters long; only the first

[184] customizing messages (33)

------ $return_size_limit or so are included here.

33.2 Customizing warning messages
The option warnmsg_file can be pointed at a template file for use when warnings about message
delays are created. In this case there are only three text sections:

• The first item is included in the headers, and should include at least a Subject: header. Exim
does not check the syntax of these headers.

• The second item forms the start of the warning message. After it, Exim lists the delayed
 addresses.

• The third item then ends the message.

The default state is equivalent to the file

Subject: Warning: message $message_id delayed $warnmsg_delay

This message was created automatically by mail delivery software.

A message ${if eq{$sender_address}{$warnmsg_recipients}{that you sent }{sent by

<$sender_address>

}}has not been delivered to all of its recipients after

more than $warnmsg_delay on the queue on $primary_hostname.

The message identifier is: $message_id

The subject of the message is: $h_subject

The date of the message is: $h_date

The following address(es) have not yet been delivered:

No action is required on your part. Delivery attempts will continue for

some time, and this warning may be repeated at intervals if the message

remains undelivered. Eventually the mail delivery software will give up,

and when that happens, the message will be returned to you.

except that in the default state the subject and date lines are omitted if no appropriate headers exist.
During the expansion of this file, $warnmsg_delay is set to the delay time in one of the forms ‘<n>
minutes’ or ‘<n> hours’, and $warnmsg_recipients contains a list of recipients for the warning
message. There may be more than one if there are multiple addresses with different errors_to settings
on the routers/directors that handled them.

[185] customizing messages (33)

34. The default configuration file

The default configuration file supplied with Exim as src/configure.default is sufficient for a single
host with simple mail requirements. It contains comments about options you might want to set, but
which it lets default, together with the settings described here.

34.1 Main configuration settings
There are two explicit options in this section:

never_users = root

This prevents Exim from ever running as root when performing a local delivery. Instead, it runs as
‘nobody’.

host_lookup = 0.0.0.0/0

This specifies the sending IP networks for which a DNS reverse lookup is done, in order to get the
host name from the IP address of an incoming message. The default setting matches all IP addresses.
The host name appears in the log and in messages’ Received: headers.

As the primary_hostname, qualify_domain, and local_domains options are not specified, they all
take the name of the local host, as obtained by the uname() function, as their value.

No relaying is permitted through the host, because neither relay_domains nor host_accept_relay is
set. See chapter 40 for more details about relay control.

34.2 Transport configuration settings
Four local transports and one remote transport are defined. The first o ne is the remote transport:

remote_smtp:
driver = smtp

This transport is used to do external deliveries over SMTP, with default options. The first local
transport is

local_delivery:
driver = appendfile
file = /var/mail/${local_part}
delivery_date_add
envelope_to_add

 return_path_add

This is set up to deliver to local mailboxes in a traditional ‘sticky bit’ directory. Some installations
prefer not to set the ‘sticky bit’, but instead run the delivery under a specific group, with the directory
being writeable by the group. Adding the following options achieves this:

group = mail
mode = 0660

To deliver into files in users’ home directories, a setting such as

file = /home/${local_part}/inbox

or

file = ${home}/inbox

should be substituted for the default file option. The three options ending in _add cause Exim to add
three header lines to the message as it writes it to the mailbox. They can be removed if these headers
are not required. The second local transport is

[186] default configuration (34)

 address_pipe:
driver = pipe
return_output

This transport is used by Exim when a local part that is expanded via an alias or forward file causes
delivery to a pipe. Any output from the pipe is returned to the sender of the message. The third local
transport is

address_file:
driver = appendfile
delivery_date_add
envelope_to_add
return_path_add

This transport is used by Exim when a local part that is expanded via an alias or forward file causes
delivery to a specified file (by generating a path name not ending in ‘/’). The final local transport is

address_reply:
driver = autoreply

This transport used by Exim when a local part that is expanded via a filter file causes an automatic
reply to a message to be generated.

34.3 Director configuration settings
Three directors are specified for the default configuration. Note that the order of director definitions
matters. The first director causes local parts to be checked against the system alias file, which is
searched linearly:

system_aliases:
driver = aliasfile
file = /etc/aliases
search_type = lsearch
file_transport = address_file
pipe_transport = address_pipe

If an alias generates a file or pipe delivery, the address_file or address_pipe transport is used, as
appropriate. The second director comes into play if a local part does not match a system alias:

userforward:
driver = forwardfile
file = .forward
no_verify
no_expn
check_ancestor

filter
filetransport = addressfile
pipetransport = addresspipe
replytransport = addressreply

An attempt is made to look for a file called .forward in the home directory of a local user. However,
this director is skipped when verifying addresses or running an SMTP EXPN command. The
check_ancestor option prevents a .forward file from turning a login name back into a previously-
handled alias name. The filter option is commented out in the default configuration. Thus .forward
files are treated in the conventional manner, but filtering can be enabled by removing the # character.

If forwarding or filtering generates a file, pipe, or autoreply delivery, the address_file, address_pipe,
or address_reply transport is used, as appropriate. The final director is

localuser:
driver = localuser
transport = local_delivery

[187] default configuration (34)

This checks that a local part is the login of a local user, and if so, directs the message to be delivered
using the local_delivery transport.

34.4 Router configuration settings
Two routers are defined in the default configuration. The first is

lookuphost:
driver = lookuphost
transport = remote_smtp

and its default settings cause it to look up the domain in the DNS, in order to determine the host to
which a message should be sent, using the remote_smtp transport. The second router is

literal:
driver = ipliteral
transport = remote_smtp

This handles ‘domains’ that are actually RFC 822 domain literals, that is, IP addresses enclosed in
square brackets.

34.5 Default retry rule
A single retry rule is given in the default configuration:

* * F,2h,15m; G,16h,1h,1.5; F,4d,8h

This causes any temporarily failing address to be retried every 15 minutes for 2 hours, then at intervals
starting at one hour and increasing by a factor of 1.5 until 16 hours have passed, then every 8 hours up
to 4 days.

34.6 Rewriting configuration
There are no rewriting rules in the default configuration file.

[188] default configuration (34)

35. Multiple user mailboxes

The wildcard facility of the generic prefix and suffix options for directors allows you to configure
Exim to permit users to make use of arbitrary local part prefixes or suffixes in any way they wish. A
director such as

userforward:
driver = forwardfile
file = .forward
suffix = -*

 suffix_optional
 filter

runs a user ’s .forward file for all local parts of the form username-*. Within the filter file the user can
distinguish different cases by testing the variable $local_part_suffix. For example:

if $local_part_suffix contains -special then
save /home/$local_part/Mail/special

 endif

If the filter file does not exist, or does not deal with such addresses, they fall through to subsequent
directors, and, assuming no subsequent use of the suffix option is made, they presumably fail. Thus
users have control over what suffixes are valid.

Alternatively, a suffix can be used to trigger the use of a different .forward file – which is the way a
similar facility is implemented in another MTA:

userforward:
driver = forwardfile
file = .forward${local_part_suffix}
suffix = -*

 suffix_optional
 filter

If there is no suffix, .forward is used; if the suffix is -special, for example, then .forward-special is
used. Once again, if the appropriate file does not exist, or does not deal with the address, it is passed
on to subsequent directors, which could, if required, look for an unqualified .forward file to use as a
default.

[189] multiple mailboxes (35)

36. Using Exim to handle mailing lists

Exim can be used to run simple mailing lists, but for large and/or complicated requirements, the use of
additional specialized mailing list software is recommended.

The forwardfile director can be used to handle mailing lists where each list is maintained in a separate
file, which can therefore be managed by an independent manager. The domains director option can be
used to run these lists in a separate domain from normal mail. For example:

lists:
driver = forwardfile
domains = lists.ref.book

 no_more
file = /opt/lists/${local_part}

 no_check_local_user
 forbid_pipe
 forbid_file

errors_to = ${local_part}-request@lists.ref.book

The domain lists.ref.book must appear as one of the domains in the local_domains configuration
option. This director is used only when an address refers to that domain. Because the no_more option
is set, if the local part of the address does not match a file in the /opt/lists directory, causing the
director to fail, no subsequent directors are tried, and the whole delivery fails.

The no_check_local_user option stops Exim insisting that the local part is the login id of a local user,
and because no user or group is specified, no check is made on the ownership of the file. The
forbid_pipe and forbid_file options prevent a local part from being expanded into a file name or a
pipe delivery.

The errors_to option specifies that any delivery errors caused by addresses taken from a mailing list
are to be sent to the given address rather than the original sender of the message. However, before
acting on this, Exim verifies the error address, and ignores it if verification fails.

For example, using the configuration above, mail sent to dicts@lists.ref.book is passed on to those
addresses contained in /opt/lists/dicts, with error reports directed to dicts-request@lists.ref.book,
provided that this address can be verified. There could be a file called /opt/lists/dicts-request contain-
ing the address(es) of this particular list’s manager(s), but other approaches, such as setting up an
earlier director (possibly using the prefix or suffix options) to handle addresses of the form owner-xxx
or xxx-request, are also possible.

36.1 Syntax errors in mailing lists

If an entry in a forward file contains a syntax error, Exim normally defers delivery of the entire
message. This may not be appropriate when the list is being maintained automatically from address
texts supplied by users. If the skip_syntax_errors option is set on the forwardfile director, it just
skips entries that fail to parse, noting the incident in the log. If in addition syntax_errors_to is set to a
verifyable address, messages about skipped addresses are sent to it.

36.2 NFS-mounted mailing lists

It is not advisable to have list files that are NFS mounted, since the absence of the mount cannot be
distinguished from a non-existent file. One way round this is to use an aliasfile director where the alias
file is local and contains a list of the lists, and each alias expansion is simply an ‘include’ item to get
the list from a separate, NFS mounted file. If no_freeze_missing_include is set for the aliasfile
director, an unavailable file then just causes delivery to be deferred.

[190] mailing lists (36)

36.3 Re-expansion of mailing lists
Exim remembers every individual address to which a message has been delivered, in order to avoid
duplication, but it normally stores only the original recipient addresses with a message. If all the
deliveries to a mailing list cannot be done at the first attempt, the mailing list is re-expanded when the
delivery is next tried. This means that alterations to the list are taken into account at each delivery
attempt, and addresses that have been added to the list since the message arrived will thus receive a
copy of the message, even though it pre-dates their subscription.

If this behaviour is felt to be undesirable, the one_time option can be set on the forwardfile director.
If this is done, any addresses generated by the director that fail to deliver at the first attempt are added
to the message as ‘top level’ addresses, and the parent address that generated them is marked
‘delivered’. Thus expansion of the mailing list does not happen again at the subsequent delivery
attempts. The disadvantage of this is that if any of the failing addresses are incorrect, correcting them
in the file has no effect on pre-existing messages.

The original top-level address is remembered with each of the generated addresses, and is output in
any log messages. However, any intermediate parent addresses are not recorded. This makes a
difference to the log only if log_all_parents is set, but for mailing lists there is normally only one
level of expansion anyway.

36.4 Closed mailing lists
The examples so far have assumed open mailing lists, to which anybody may send mail. It is also
possible to set up closed lists, where mail is accepted from specified senders only. This is done by
making use of the generic senders option. The following example uses the same file for each list, both
as a list of recipients and as a list of permitted senders. In this case, it is necessary to set up a separate
director to handle the ‘-request’ address.

Handle mail to xxx-request@lists.ref.book;
anybody can mail to this address.

lists_request:
driver = forwardfile
domains = lists.ref.book
suffix = -request
file = /opt/lists/${local_part}${local_part_suffix}
no_check_local_user

Handle mail to xxx@lists.ref.book;
only the subscribers to a list may mail to it.
Use one_time to prevent multiple expansions.

lists:
driver = forwardfile
domains = lists.ref.book
no_more
require_files = /opt/lists/${local_part}
senders = lsearch;opt/lists/${local_part}
file = /opt/lists/${local_part}
no_check_local_user
forbid_pipe

 forbid_file
 one_time

skip_syntax_errors
errors_to = ${local_part}-request@lists.ref.book

The require_files option is needed to ensure that the file exists before trying to search it via the
senders option; an attempt to search a non-existent file causes Exim to panic. If the file does not exist
– that is, if the mailing list is unknown, the director fails, but because no_more is set, no further
directors are tried, and so Exim gives up.

[191] mailing lists (36)

37. Virtual domains

There are a number of ways in which virtual domains can be handled in Exim. As this seems to be
quite a common requirement, some ways of doing this are described here. These are not the only
possibilities.

37.1 All mail to a given host
Simply sending all mail for a domain to a given host isn’t really a virtual domain; it is just a routing
operation that can be handled by a domainlist router.

To send all mail for a domain to a particular local part at a given host, define the domain as local, then
process it with a smartuser director that sets the new delivery address and passes the message to an
smtp transport which specifies the host. Alternatively, use a forwardfile director pointing to a fixed
file name; the file can contain any number of addresses to which each message is forwarded.

37.2 Virtual domains not preserving envelopes
A virtual domain that does not preserve the envelope information when delivering can be handled by
an alias file defined for a local domain. If you are handling a large number of local domains, you can
define them as a file lookup. For example:

local_domains = "your.normal.domain:\
dbm;/customer/domains"

Where /customer/domains is a DBM file built from a source file that contains just a list of domains:

list of virtual domains for customers
 customer1.domain
 customer2.domain

This can be turned into a DBM file by exim_dbmbuild.

You can then set up a director (see below) to handle the customer domains, arranging a separate alias
file for each domain. A single director can handle all of them if the names follow a fixed pattern.
Permissions can be arranged so that appropriate people can edit the alias files. The domains option
ensures that this director is used only for the customer domains. The DBM file lookup is cached, so it
isn’t too inefficient to do this. The no_more setting ensures that if the lookup fails, Exim gives up on
the address without trying any subsequent directors.

virtual:
driver = aliasfile
domains = dbm;/customer/domains

 no_more
file = /etc/mail/$domain
search_type = lsearch

A successful aliasing operation results in a new envelope recipient address, which is then directed or
routed from scratch.

37.3 Virtual domains preserving envelopes
If you want to arrange for mail for known local parts at certain domains to be sent to specific hosts
without changing the envelope recipients of messages, then the following is one way of doing it.

Set up the domains as local, and create an aliasfile director for them, as above, but in addition, specify
a transport for the director:

[192] virtual domains (37)

 virtual:
driver = aliasfile
domains = dbm;/customer/domains
transport = virtual_smtp

 no_more
file = /etc/mail/$domain
search_type = lsearch

Each domain has its own alias file, but the provision of a transport means that this is used purely as a
check list of local parts. The data portion of each alias is not used.

The transport has to look up the appropriate host to which the message must be sent:

virtual_smtp:
driver = smtp
hosts = ${lookup{$domain}dbm{/virtual/routes}{$value}fail}

The file /virtual/routes contains lines of the form

customer1.domain: cust1.host
customer2.domain: cust2.host

and the messages get delivered with RCPT (the envelope) containing the original destination address
(for example, postmaster@customer1.domain). In fact, you could use the same file for
/virtual/routes and /customer/domains, since the lookup on the latter doesn’t make any use of the
data – it’s just checking that the file contains the key.

[193] virtual domains (37)

38. Intermittently connected hosts

It is becoming quite common (because it is cheaper) for hosts to connect to the Internet periodically
rather than remain connected all the time. The normal arrangement is that mail for such hosts
accumulates on a system that is permanently connected.

Exim was designed for use on permanently connected hosts, and so it is not particularly well-suited to
use in an intermittently connected environment. Nevertheless there are some features that can be used.

38.1 Exim on the upstream host
If the ‘holding system’ is running Exim, then it should be configured with a long retry period for the
intermittent host. For example:

cheshire.wonderland.fict.book * F,5d,24h

This stops a lot of failed delivery attempts from occurring, but Exim remembers which messages it has
queued up for that host. Once the intermittent host comes online, forcing delivery of one message
(either by using the -M or -R options, or by using the ETRN SMTP command – see smtp_etrn_hosts
and section 42.6) causes all the queued up messages to be delivered, often down a single SMTP
connection. While the host remains connected, any new messages get delivered immediately.

If the connecting hosts do not have fixed IP addresses, that is, if a host is issued with a different IP
address each time it connects, then Exim’s retry mechanisms on the holding host get confused, because
the IP address is normally used as part of the key string for holding retry information. This can be
avoided by unsetting retry_include_ip_address on the smtp transport. Since this has disadvantages
for permanently connected hosts, it is best to arrange a separate transport for the intermittently
connected ones.

38.2 Exim on the intermittently connected host
The value of smtp_accept_queue_per_connection should probably be increased, or even set to zero
(that is, disabled) on the intermittently connected host, so that all incoming messages down a single
connection get delivered immediately.

Mail waiting to be sent from an intermittently connected host will probably not have been routed,
since without a connection DNS lookups are not possible. This means that if a normal queue run is
done at connection time, each message is likely to be sent in a separate SMTP session. This can be
avoided by starting the queue run with a command line option beginning with -qq instead of -q. In
this case, the queue is scanned twice. In the first pass, routing is done but no deliveries take place. The
second pass is a normal queue run; since all the messages have been previously routed, those destined
for the same host are likely to get sent as multiple deliveries in a single SMTP connection.

38.3 Handling many intermittently connected hosts
Leaving mail for intermittently connected hosts on the main queue of a holding system as suggested
above does not scale very well. Two different kinds of waiting message are being mixed up in the
same queue – those that cannot be delivered because of some temporary problem, and those that are
waiting for their destination host to connect. This makes it hard to manage the queue, as well as
wasting resources, because each queue runner scans the entire queue.

A better approach is to separate off those messages that are waiting for an intermittently connected
host. This can be done by using a separate version of Exim that stores only those messages, or by
delivering such messages into local files in ‘mailstore’ or other envelope-preserving format, from
where they are transmitted by other software when their destination connects. This makes it easy to
collect all the mail for one host in a single directory, and to apply local timeout rules on a per-message
basis if required.

[194] intermittent connections (38)

39. Verification of incoming mail

Exim always checks the syntax of SMTP commands, and rejects any that are invalid. There are a
number of options that cause Exim to verify the semantic validity of the data in an incoming SMTP
message. Verification failures can cause the message to be rejected, or they can just be logged. Other
types of control over incoming mail are discussed in subsequent chapters. The -bh command line
option can be used to run fake SMTP sessions for the purpose of testing verification options.

39.1 Host verification
The name of the sending host is looked up using gethostbyaddr() if its IP address matches
host_lookup (which is unset in the Exim binary, but in the default configuration file is set to match all
hosts). In some environments this might involve an expensive DNS lookup, so some sites may wish to
disable it. However, an SMTP server for local desktop systems (which are frequently misconfigured)
can normally look up their host names cheaply. This improves the contents of Exim’s logs by
including the correct host names.

Even if its address doesn’t match host_lookup, a sending host’s real name is looked up from its IP
address if the argument it provides for the HELO or EHLO command is the local host’s own name, or the
name of one of its local domains, which seems to be a fairly common misconfiguration.

A host name that is obtained from looking up the sender ’s IP address is placed in the
$sender_host_name variable. If no lookup was done, or if the lookup failed, that variable is left
empty. Failure to look up the sending host’s name is not of itself an error, nor is it by default an error
for the name given in the HELO or EHLO command (which is placed in $sender_helo_name) to be
different.

The RFCs specifically state that mail should not be refused on the basis of the content of the HELO or
EHLO commands. However, there are installations that do want to be strict in this area, and to support
them, Exim has the helo_verify option. Even when this is not set, Exim checks the syntax of the
commands, and rejects them if there are syntax errors. It can be made less strict by unsetting
helo_strict_syntax (which allows underscores to get through) or by setting helo_accept_junk_hosts
(which permits certain hosts to send any old junk).

When helo_verify is set, a HELO or EHLO command must precede any MAIL commands in an incoming
SMTP connection. If there wasn’t one, all MAIL commands are rejected with a permanent error code. In
addition, the argument supplied by HELO or EHLO is verified. If it is in the form of a literal IP address
in square brackets, it must match the actual IP address of the sending host. If it is a domain name, then
the sending host’s name is looked up from its IP address (whether or not it matches host_lookup) and
compared against it. If the comparison fails, the IP addresses associated with the HELO or EHLO name
are looked up using gethostbyname() and compared against the sending host’s IP address. If none of
them match, the HELO or EHLO command is rejected with a permanent error code, and an entry is
written in the main and reject logs.

39.2 Sender verification
When sender_verify is set, Exim checks the senders of incoming SMTP messages, that is, the
addresses given in the SMTP MAIL commands. This does not apply to batch SMTP input by default,
but sender_verify_batch can be set true if it is required.

The check is performed by running the same verification code as is used then Exim is called with the
-bv option. The check is performed when the MAIL command is received. If the address cannot
immediately be verified (typically because of DNS timeouts), a temporary failure error response (code
451) is given after the data for the message has been received. It is delayed until this time so that the
message’s headers can be logged. However, if sender_try_verify is set, the sender is accepted with a
warning message after a temporary verification failure.

[195] verification of incoming mail (39)

Exim remembers temporary sender verification errors in a hints database. Subsequent temporary errors
for the same address from the same host within 24 hours cause a 451 error after MAIL instead of after
the data. This reduces the data on the reject log and also the amount repeatedly transferred over
the net.

If sender_verify_max_retry_rate is set greater than zero, and the rate of temporary rejection of a
specific incoming sender address from a specific host, in units of rejections per hour, exceeds it, the
temporary error is converted into a permanent verification error. This should help in stopping hosts
hammering too frequently with temporarily failing sender addresses. The default value of the option is
12, which means that a sender address that has a temporary verification error more than once every 5
minutes will soon get permanently rejected. Once permanent rejection has been triggered, subsequent
temporary failures will all cause permanent errors, until there has been an interval of at least 24 hours
since the last failure. After 24 hours, the hint expires.

What happens if verification fails with a permanent error depends on the setting of the sender_verify_
reject option. If it is set (the default) then the message is rejected. Otherwise a warning message is
logged, and processing continues.

Because remote postmasters always want to see the message headers when there is a problem, Exim
does not give an error response immediately a sender address fails, but instead it reads the data for the
message first. The headers of rejected messages are written to the reject log, for use in tracking down
the problem or tracing mail abusers. Up to three envelope recipients are also logged with the headers.

Unfortunately, there are a number of mailers in use that treat any SMTP error response given after the
data has been transmitted as a temporary failure. Exim sends code 550 when it rejects a message
because of a bad sender, and RFC 821 is quite clear in stating that all codes starting with 5 are always
‘permanent negative completion’ replies. However, it does not give any guidance as to what should be
done on receiving such replies, and some mailers persist in trying to send messages when they receive
such a code at the end of the data.

To get round this, Exim keeps a database in which it remembers the bad sender address and host name
when it rejects a message. If the same host sends the same bad sender address within 24 hours, Exim
rejects the message at the MAIL command, before it reads the data for the message. This should prevent
the sender from trying to send the message again, but there seem to be plenty of broken mailers out
there that do keep on trying, sometimes for days on end.

In an attempt to shut such MTAs up, if the same host sends the same bad sender for a third time
within 24 hours, MAIL is accepted, but all subsequent RCPT commands are rejected with a 550 error
code. This means ‘unknown user’ and if a remote mailer doesn’t treat that as a hard error, it is very
seriously broken.

The sender_verify_hosts option can be used to restrict hosts and RFC 1413 idents for which sender
verification is not applied. If a cluster of hosts all check incoming external messages, there is no need
to waste effort checking mail sent between them. For example:

sender_verify_hosts = "! *.ref.book : ! exim@mailer.fict.book"

39.3 Fixing bad senders
It is unfortunately the case that lots of messages are sent out onto the Internet with invalid senders. In
some cases, the message itself contains a valid return address in one of its headers. If the
sender_verify_fixup option is set as well as sender_verify, Exim does not reject a message if the
sender is invalid, provided it can find a Sender:, Reply-to:, or From: header containing a valid
address. Instead, it replaces the sender with the valid address, and records the fact that it has done so
by adding a header of the form:

X-BadReturnPath: <invalid address> rewritten using <name> header

If there are several occurrences of any of the relevant headers, they are all checked. If any Resent-
headers exist, it is those headers that are checked rather than the original ones.

[196] verification of incoming mail (39)

The fixup happens for both permanent and temporary errors. This covers the case when the bad
addresses refer to some DNS zone whose nameservers are unreachable. This approach is, of course,
fixing the symptom and not the disease.

If sender_verify_fixup is set when sender_verify_reject is false, Exim does not modify the message,
but records in the log the fixup it would have made.

39.4 Header verification
Exim’s sender verification options can be used to block messages with bad envelope senders. However,
if a message arrives with a null envelope sender, that is, if the SMTP command was

MAIL FROM:<>

then Exim has nothing to check, and is forced to accept the message (unless it fails another check, of
course). If headers_sender_verify_errmsg is set, then for messages that have null senders (purporting
to be mail delivery error messages), Exim does some checking of the RFC 822 headers. It looks for a
valid address in the Sender:, Reply-to:, and From: headers, and if one cannot be found, the message
is rejected, unless headers_checks_fail is false, in which case it just makes a warning entry in the
reject log.

If there are several occurrences of any of the relevant headers, they are all checked. If any Resent-
headers exist, it is those headers that are checked rather than the original ones.

Unfortunately, because it has to read the message before doing this check, the rejection happens after
the end of the data, and it is known that some mailers do not treat hard (5xx) errors correctly at this
point – they keep the message on their spools and try again later, but that is their problem, though it
does waste some resources.

The option headers_sender_verify is also available. It insists on there being a valid Sender:, Reply-
to:, or From: header on all incoming SMTP messages, not just those with null senders.

The sender_verify_hosts option applies to both of these header checking options as well as to checks
on envelope senders (sender_verify).

A common spamming ploy is to send syntactically invalid headers such as

To: @

The option headers_check_syntax causes Exim to check the syntax of all headers that can contain
lists of addresses (Sender:, From:, Reply-to:, To:, Cc:, and Bcc:) on all incoming messages (both
local and SMTP). This is a syntax check only. Like the headers_sender_verify options, the rejection
happens after the end of the data, and it is also controlled by headers_checks_fail; if that is false, a
bad message is accepted, with a warning in the reject log.

39.5 Receiver verification
By default, Exim just checks the syntax of addresses given in the SMTP RCPT command. This
minimizes the time required for an SMTP message transfer, and also makes it possible to provide
special processing for unknown local parts in local domains, by using a smartuser director to pass
messages with unknown local parts to a script or to another host.

Some installations prefer to check receiver addresses as they are received. If the receiver_verify
option is set, the same code that is used by the -bv option is used to check incoming addresses from
remote hosts that match receiver_verify_hosts, whose default setting is to match all hosts. If verifi-
cation fails, a permanent negative response is given to the RCPT command. If there is a temporary
failure, a temporary error is given, unless receiver_try_verify is set, in which case the address is
accepted.

It is also possible to restrict the addresses that are verified to certain domains by setting receiver_
verify_addresses, and receiver verification can also be made conditional on the sender address by
setting receiver_verify_senders. All of these options operate only when receiver_verify or
receiver_try_verify is set.

[197] verification of incoming mail (39)

40. Other policy controls on incoming mail

Exim provides a number of facilities for controlling incoming mail from remote hosts, in addition to
the verification options described in the previous chapter. These controls can be used to stop unwanted
messages getting into your machine. After a message has been accepted, the filtering mechanism
described in chapter 41 can be used to check it before going ahead with delivery.

An MTA is said to relay a message if it receives it from some host and delivers it directly to another
host as a result of a remote address contained within it. Expanding a local address via an alias or
forward file and then passing the message on to a remote host does not count as relaying. There are
special options for controlling which remote hosts may use the local host as a relay.

The options described in this chapter control three stages of checking that are applied to an incoming
SMTP message:

(1) At the start of an SMTP connection, a check on the remote host is made, leading to one of the
following conclusions:

(i) No mail whatsoever is acceptable from the remote host.

(ii) The remote host is permitted to send messages to local recipients only, but is not permitted
to use the local host as a relay.

(iii) The remote host is permitted to send messages to local recipients, and can also use the local
host as a relay to certain specified domains only.

(iv) The remote host is permitted to send mail to any recipient.

If the host is completely unacceptable, the SMTP connection may be rejected immediately, or
(depending on the configuration) the message may be refused later on by a rejection at the end of
the message (so the headers can be logged) or by rejecting every recipient.

(2) The message’s sender, which is obtained from the MAIL command, is checked. Again there is a
choice of immediate rejection, or delayed rejection of all recipients.

(3) Unless there are no controls on relaying, the recipient address in each RCPT command is checked.

These checks are all in addition to any verification that may be enabled. The following sections give
details of the various checking options. The -bh command line option can be used to run fake SMTP
sessions for the purpose of testing them.

40.1 Host checking using RBL
The Realtime Blocking List (RBL) is a blacklist of hosts that is maintained in the DNS. See
http://maps.vix.com/rbl/ for the background to this. Since the RBL was created, a number of other
similar lists (DUL, ORCA, IMRSS) have sprung up. These all operate in the same way. If the
rbl_domains option is set, Exim looks up inverted incoming IP addresses in each of the given
domains, provided the remote host matches rbl_hosts (whose default is to match all hosts). For
example, if the setting is

rbl_domains = rbl.maps.vix.com:dul.maps.vix.com

and an SMTP call is received from the host whose IP address is 131.111.8.1, then DNS lookups for
address records for

1.8.111.131.rbl.maps.vix.com
and
1.8.111.131.dul.maps.vix.com

are done. Each domain in rbl_domains can be followed by ‘/warn’ or ‘/reject’ to specify what is to be
done when a match is found, for example:

rbl_domains = rbl.maps.vix.com/warn : dul.maps.vix.com/reject

[198] policy controls (40)

The action for domains without either of these is controlled by rbl_reject_recipients, which implies
‘/reject’ when set.

Warning consists of writing a message to the main and reject logs, and, if rbl_warn_header is true
(the default), adding an X-RBL-Warning: header to the message. This can be detected later by system
or user filter files. If a host appears in several RBL lists, more than one such header may be added to a
message.

Rejection is done by refusing all recipients, that is, by giving permanent error returns to all RCPT

commands, except for any recipients that are listed in recipients_reject_except. It is fairly common
to set

recipients_reject_except = postmaster@your.domain

to allow your host to accept mail to the postmaster from blacklisted hosts. If a TXT record associated
with the host is found in the RBL domain, its contents are returned as part of the 550 rejection
message, unless prohibition_message is set (see section 40.6), in which case a locally-specified
message (possibly including the TXT data) is used. If a lookup times out or otherwise fails to give a
decisive answer, the mail is not blocked.

40.2 Other host checking
Exim rejects incoming SMTP calls from any host that matches host_reject. For example:

host_reject = ! xxx.yy.zz : *.yy.zz : ! *.zz

rejects mail from any host outside the zz domain, and all hosts in the yy.zz domain, except for
xx.yy.zz. The use of wildcarded names implies a reverse DNS lookup of the incoming IP address. This
can be avoided by using IP addresses. See section 7.16 for details.

Calls are rejected as a result of these options by sending a 5xx error code as soon as the connection is
received. Since this does not relate to any particular message, the remote host is likely to keep on
trying to send mail (possibly to an alternative MX host) until it times out. This may be what is wanted
in some circumstances (for example, you want temporarily to hold back all incoming mail from some
host), but when dealing with incoming spam, for example, one normally wants messages to be rejected
once and for all, and in thist case, host_reject_recipients should be used instead of host_reject.

A call from a host which matches host_reject_recipients is not rejected at the start; instead, every
RCPT command is subsequently rejected, which should cause the remote MTA to cease trying to deliver
the message. This style of blocking also has the advantage of catering for exceptions for certain
recipients, via the recipients_reject_except option. This is commonly set to the local postmaster
address.

40.3 Sender checking
Incoming messages can be rejected on the basis of the sender address, as given in the MAIL command.
A list of senders to reject is set by the sender_reject configuration option; see its description in
chapter 11 for details.

Some MTAs continue to try to deliver a message even after receiving a 5xx error code for MAIL. The
alternative configuration option sender_reject_recipients is provided for use in such cases. It accepts
the MAIL command but rejects all subsequent RCPT commands.

40.4 Control of relaying
There are two aspects of control over relaying via the local host, which might be termed ‘incoming’
and ‘outgoing’. A host which is acting as a gateway or an MX backup is concerned with incoming
relaying from arbitrary hosts to a specific set of domains. A host which is acting as a smart host for a
number of clients is concerned with outgoing relaying from those clients to the Internet at large. Often
the same host is fulfilling both functions, as illustrated in the diagram below, but in principle these two
kinds of relaying are entirely independent, and are therefore controlled by two separate options. What

[199] policy controls (40)

is not wanted is the transmission of mail from arbitrary remote hosts through your system to arbitrary
domains.

Arbitrary
remote hosts

Arbitrary
domains

Local host

Specific
hosts

Specific
domains

Outgoing Incoming

Not wanted

Controlled relaying

Incoming relaying is controlled by restricting the domains to which an arbitrary host may send;
outgoing relaying is controlled by restricting the hosts which may send to an arbitrary domain. If an
arbitrary host can send via the local host to an arbitrary domain, the host is open to abuse.

The relaying check happens whenever a message’s recipient is received, that is, immediately after a
RCPT command. The first check is whether the address would cause relaying at all: if its domain
matches something in local_domains then it is destined to be handled on the local host as a local
address, and relaying is not involved, unless the ‘percent hack’ is in use. In this case, the local part is
converted into a new address and that is then checked.

When the relevant domain is not in local_domains, there is first a check for legitimate incoming
relaying, by seeing if it matches relay_domains, or, when relay_domains_include_local_mx is set, if
it is a domain with an MX record pointing to the local host. If it does match, this is an acceptable
incoming relay, and it is permitted to proceed.

For example, if the FooBar company has a firewall machine through which all mail from external
hosts must pass, and this machine’s configuration contains

local_domains = foobar.com
relay_domains = *.foobar.com

then mail from external hosts is rejected, unless it is for a domain ending in foobar.com.

If a recipient address is neither for a local domain nor an incoming relay, it must be an outgoing relay,
and it is accepted only if the sending host is permitted to relay to arbitrary domains, and if the sender
address is acceptable. The set of hosts is specified by host_accept_relay. For example, if the FooBar
company’s IP network is 192.153.213.0, and all hosts on that network send their outgoing mail via the
firewall machine, then its configuration should contain

[200] policy controls (40)

host_accept_relay = 192.153.213.0/24

in order to allow only the internal hosts to use it as a relay to arbitrary domains. Exim does not make
an exception for the loopback IP address, so if you want to permit relaying from processes on the local
host using this method, you need to set

host_accept_relay = 127.0.0.1

In addition to the test on the host, if sender_address_relay is set, the sender ’s address from the MAIL

command must match one of its patterns to allow outgoing relaying to an arbitrary domain. Also, if
there are any rewriting rules with the ‘X’ flag set, such an address is rewritten using those rules, and
the result (if different) must verify successfully. See section 32.8 for an example of how this can be
used.

Normally, therefore, both the host and the sender must be acceptable before an outgoing relay is
allowed to proceed. However, if relay_match_host_or_sender is set, an address is accepted for
outgoing relaying if either the host or the sender is acceptable. Of course, sender addresses can easily
be forged, but the sender check does mean you can prevent some kinds of unwanted mail from going
through your host.

Both relay_domains and host_accept_relay are unset by default, which means that no relaying of any
kind is enabled. This does not prevent a local user from setting up forwarding to some external
system, but it does prevent the ‘percent hack’ from working even when percent_hack_domains is set.

If you have a list of domains that any host can relay to, but there are no hosts that are permitted to
relay to arbitrary domains (for example, if your host is an MX backup for some domains), then set
relay_domains.

If the recipient address is an RFC 821 source routed address, that is, an address of the form
<@hop1,@hop2:user@domain>, it is the final domain which is tested. By default, however, Exim
will send the message to the hop1 domain, unless it is a local domain. The collapse_source_routes
option can be used to prevent this.

As all the relay checking is done at RCPT time on incoming messages, the directors and routers are not
involved. Depending on the configuration of these drivers, an address that appears to be remote to the
relay checking code (that is, its domain does not match local_domains) may nevertheless end up being
delivered locally, and similarly an apparently local address may end up being delivered to some other
host.

None of the relay checking applies when mail is passed to Exim locally using the -bm, -bs or -bS
options, but it does apply when -bs is used from inetd.

Exim does not attempt to fully qualify domains at RCPT time. If an incoming message contains a
domain which is not fully qualified, it is treated as a non-local, non-relay domain (unless partial
domains are included in local_domains or relay_domains, but this is not recommended). The use of
domains that are not fully qualified is non-standard, but it is a commonly encountered usage when an
MTA is being used as a smart host by some remote UA. In this situation, it would be usual to permit
the UA host to relay to any domain, so in practice there is not normally a problem.

40.5 Policy checking flowchart
The diagrams below shows how the various policy checks are applied to an incoming message from a
remote host. The normal flow of control is vertically down the left-hand set of boxes.

If verification of a sender fails, rejection may be immediate, or it may follow later after the RCPT

command or after the data has been received (see section 39.2). If recipient verification fails, rejection
is immediate.

[201] policy controls (40)

host reject? yes reject

host reject
recipients?

yes set HRR flag

check RBL found RBL reject? yes set HRR flag

add warning
header

verify HELO fail reject

HELO

HRR flag set?

MAIL

sender reject? yes reject

sender reject
recipients?

yes set SRR flag

verify sender

(continued)

yes

Policy checking, part 1

40.6 Customizing prohibition messages
It is possible to add a site-specific message to the error response that is sent when an incoming SMTP
command fails for policy reasons, for example if the sending host is in a host reject list. This is done
by setting the option prohibition_message, which causes one or more additional response lines with
the same error code and a multiline marker to be output before the standard response line. For
example, setting

prohibition_message = "contact postmaster@my.site for details"

causes the response to a RCPT command for a blocked recipient to be

[202] policy controls (40)

(continued)

HRR or SRR set?
yes recipients reject

except?
no reject

RCPT

local or relay
domain?

host accept relay?
no

set HFR flag

sender address
relay?

no
set SFR flag

relay need host
or sender?

yes HFR and SFR
both set?

SFR set?
yes reject

HFR set?
yes relay domains

include local MX?
no reject

exists MX to
local host?

no reject

verify recipient

no

yes

Policy checking, part 2

550-contact postmaster@my.site for details
550 rejected: administrative prohibition

The string is expanded, and so it can do file lookups if necessary. If it ends up as an empty string, no
additional response is transmitted. To make it possible to distinguish between the several different
types of administrative rejection, the variable $prohibition_reason is set to a characteristic text string
in each case. The possibilities are as follows:

[203] policy controls (40)

host_accept_relay the host is not in an accept_relay list
host_reject the host is in a reject list
host_reject_recipients the host is in a reject_recipients list
rbl_reject the host is rejected by an RBL domain
sender_relay the sender is not in a sender relay list
sender_reject the sender is in a reject list
sender_reject_recipients the sender is in a reject_recipients list
sender_verify sender verification failed

In addition, if relay_match_host_or_sender is set, there is

sender+host_accept_relay the sender is not in a sender relay list
and the host is not in an accept relay list

For example, if the configuration contains

prohibition_message = "${lookup{$prohibition_reason}lsearch\
 {/etc/exim/reject.messages}{$value}}"

and the file /etc/exim/reject.messages contains (inter alia)

host_accept_relay: host not in relay list

then a response to a relay attempt might be

550-host not in relay list
550 relaying to <santa@northpole.com> prohibited by administrator

Because some administrators may want to put in quite long messages, and it isn’t possible to get
newlines into the text returned from an lsearch lookup, Exim treats the vertical bar character as a line
separator in this text. If you want the looked up text to be re-expanded, you can use the expand
operator. For example, the setting

prohibition_message = "${lookup{$prohibition_reason}lsearch\
 {/etc/exim/reject.messages}{${expand:$value}}}"

when used with a file entry of the form

host_accept_relay: Host $sender_fullhost is not permitted to
relay |through $primary_hostname.

might produce

550-Host that.host.name [111.222.3.4] is not permitted to relay
550-through this.host.name.
550 relaying to <penguins@southpole.com> prohibited by administrator

When the prohibition is due to an entry in a Realtime Blocking List and a message is available from a
DNS TXT record, that text is available in the $rbl_text variable. If prohibition_message is not set,
then the TXT data is always included in the rejection message.

[204] policy controls (40)

41. System-wide message filtering

The previous chapters describe checks that can be applied to messages before they are accepted by a
host. There are also mechanisms for checking messages once they have been received, but before they
are delivered. A system message filter can be run each time a delivery process is started for a message.
It is also possible to run a centrally-defined filter file once for each local address, as part of the
directing for that address.

41.1 The system message filter
The system message filter operates in a similar manner to users’ filter files, but it is run just once per
message (however many recipients is has) at the start of a delivery attempt, before any routing or
directing is done. If a message fails to be completely delivered at the first attempt, the filter is run
again at the start of the every retry.

There are two special conditions which, though available in users’ filter files, are designed for use in
system filters. The condition first_delivery is true only for the first attempt at delivering a message,
while manually_thawed is true only if the message has been frozen, and subsequently thawed by an
admin user. An explicit forced delivery counts as a manual thaw, but thawing as a result of the auto_
thaw setting does not.

If the filter sets up any deliveries of its own, an extra header line is added to them with the name X-
Envelope-to:. This contains up to 100 of the original message’s envelope recipients. If the filter
specifies any significant deliveries, then the message’s own recipient list is ignored; otherwise it is
added to any recipients set up by the filter.

The message_filter option names the filter file, while message_filter_user and message_filter_group
specify the uid and gid to be used while processing it. If they are not set, then the exim uid is used if
available and if seteuid() is available; otherwise root is used. There are also options for specifying
which transports are to be used if the filter generates any file, pipe or autoreply deliveries.

The filter file can contain any of the normal filtering commands, as described in the separate document
Exim’s User interface to mail filtering. However, because the system filter is run just once per delivery
attempt, the variable $local_part is not available, nor does the ‘personal’ condition make any sense.

The filter variables $n0 – $n9 can be used in a system filter; when it finishes, their values are copied
into $sn0 – $sn9 and are thereby made available to users’ filter files. Thus a system filter can, for
example, set up a ‘score’ for a message to which users’ filter files can refer.

In addition to the filter commands available in user ’s files there are some extra commands which are
available only in system filter files:

fail
freeze
headers add <string>
headers remove <string>

As well as the additional commands, there is also an extra expansion variable, $recipients, containing
a list of all the recipients of the message, separated by commas and white space. The extra commands
and variable are not available in ordinary users’ filter files. They are faulted in normal use and in
testing via -bf, but not if -bF is used.

The freeze and fail commands can optionally be followed by the word text and a string containing an
error message, for example:

fail text "this message looks like spam to me"

If either freeze or fail is obeyed in a system filter file, no deliveries are done, not even those set up by
mail commands in the filter. See the freeze_tell_mailmaster option for a way of having a message
sent when a message is frozen.

[205] system filtering (41)

The keyword text is optional if the next character is a double quote. The fail command causes all
recipients to be failed, while freeze suspends all delivery attempts. It is ignored if the message has
been manually unfrozen and not manually frozen since. This means that automatic freezing by a
system filter can be used as a way of checking out suspicious messages. If a message is found to be all
right, manually unfreezing it allows it to be delivered.

The argument for the headers add is a string which is expanded and then added to the end of the
message’s headers. It is the responsibility of the filter maintainer to make sure it conforms to RFC 822
syntax. Leading white space is ignored, and if the string is otherwise empty, or if the expansion is
forced to fail, the command has no effect. A newline is added at the end of the string if it lacks one.
More than one header may be added in one command by including ‘\n’ within the string.

The argument for headers remove is a colon-separated list of header names. This command applies
only to those headers that are stored with the message; ones such as Envelope-To: and Return-Path:
that are added at delivery time cannot be removed by this means.

Take great care with the fail command when basing the decision to fail on the contents of the
message, because this option causes a normal delivery error message to be generated, and it will of
course include the contents of the original message and will therefore trigger the fail command again
(causing a mail loop) unless steps are taken to prevent this. Testing the error_message condition is
one way to prevent this. You could use, for example

if
$message_body contains "this is spam" and not error_message

 then
fail text "spam is not wanted here"

 endif

though of course that might still let through unwanted messages. The alternative is clever checking of
the body and/or headers to detect error messages caused by the filter.

41.2 Per-address filtering
In contrast to the system filter, which is run just once per message for each delivery attempt, it is also
possible to set up a system-wide filtering operation that runs once for each address, for local addresses
only. In this case, variables such as $local_part and $domain can be used, and indeed, the choice of
filter file could be made dependent on them. This is an example of a director which implements such a
filter:

central_filter:
driver = forwardfile
file = /central/filters/${local_part}

 no_check_local_user
 no_verify
 filter
 allow_system_actions

The setting of allow_system_actions permits the use of freeze and fail in the filter file, but not the
headers command or the $recipients variable.

[206] system filtering (41)

42. SMTP processing

Two kinds of SMTP processing are supported: SMTP over TCP/IP, and so-called ‘batched SMTP’.
The latter is the name for a process in which batches of messages are stored in files, using SMTP
commands as separators and to contain the envelope information. Such batches are delivered to or
received from other systems using some transport mechanism other than Exim. For each kind of
SMTP processing there are two aspects: outgoing and incoming.

42.1 Outgoing SMTP over TCP/IP

This is implemented by the smtp transport. If the greeting line from the remote host contains the string
‘ESMTP’, Exim sends an EHLO command instead of HELO, and if it is told that the SIZE parameter is
supported, it adds SIZE=<n> to each subsequent MAIL command. The value of <n> is the message size
plus the value of the size_addition option (default 1024) to allow for additions to the message such as
per-transport header lines, or changes made in a transport filter. If size_addition is set negative, the
use of SIZE is suppressed.

Responses from the remote host are supposed to be terminated by CR followed by LF. However, there
are known to be hosts that do not send CR characters, so in order to be able to interwork with such
hosts, Exim treats LF on its own as a line terminator.

If a message contains a number of different addresses, all those with the same characteristics (for
example, the same envelope sender) that resolve to the same set of hosts, in the same order, are sent in
a single SMTP transaction, even if they are for different domains, unless there are more than the
setting of the max_rcpts option in the smtp transport allows, in which case they are split into groups
containing no more than max_rcpts addresses each. If remote_max_parallel is greater than one, such
groups may be sent in parallel sessions. The order of hosts with identical MX values is not significant
when checking whether addresses can be batched in this way.

When the smtp transport suffers a temporary failure that is not message-related, Exim updates its
transport-specific database, which contains records indexed by host name that remember which mess-
ages are waiting for each particular host. It also updates the retry database with new retry times.
Exim’s retry hints are based on host name plus IP address, so if one address of a multi-homed host is
broken, it will soon be skipped most of the time. See the next section for more detail about error
handling.

When a message is successfully delivered over a TCP/IP SMTP connection, Exim looks in the hints
database for the transport to see if there are any queued messages waiting for the host to which it is
connected. If it finds one, it creates a new Exim process using the -MC option (which can only be
used by a process running as root or the Exim user) and passes the TCP/IP socket to it. The new
process does only those deliveries that are routed to the connected host, and may in turn pass the
socket on to a third process, and so on. The batch_max option of the smtp transport can be used to
limit the number of messages sent down a single connection. The second and subsequent messages
delivered down an SMTP connection are identified in the main log by the addition of an asterisk after
the closing square bracket of the IP address.

When a delivery process that is part of a queue run passes a socket on to a new delivery process, it
writes the new process’ id to a file in Exim’s spool directory whose name is ‘qr ’ followed by the
process id of the queue runner. It also passes on the queue runner ’s process id using the -MCQ option,
in case the socket is passed on to yet another process. The queue running process reads the file when
the original process ends, and waits for each process listed therein to finish before proceeding. Because
each process writes the process id of its child into the file before it itself finishes, the end of the file is
reached only when the entire tree of processes spawned by the original delivery process is complete.

[207] smtp processing (42)

42.2 Errors in outgoing SMTP
Three different kinds of error are recognized for outgoing SMTP: host errors, message errors, and
recipient errors.

(1) A host error is not associated with a particular message or with a particular recipient of a
message. The host errors are:

• Connection refused or timed out,

• Any error response code on connection,

• Any error response code to HELO or EHLO,

• Loss of connection at any time, except after ‘.’,

• I/O errors at any time,

• Timeouts during the session, other than in response to MAIL, RCPT or the ‘.’ at the end of the
data.

A host error causes all addresses to be deferred, and retry data to be created for the host. It is not
tried again, for any message, until its retry time arrives. If the current set of addresses are not all
delivered in this run (to some alternative host), the message is added to the list of those waiting
for this host, so if it is still undelivered when a subsequent successful delivery is made to the
host, it will be sent down the same SMTP connection.

(2) A message error is associated with a particular message when sent to a particular host, but not
with a particular recipient of the message. The message errors are:

• Any error response code to MAIL, DATA, or the ‘.’ that terminates the data,

• Timeout after MAIL,

• Timeout or loss of connection after the ‘.’ that terminates the data. A timeout after the DATA

command itself is treated as a host error, as is loss of connection at any other time.

A permanent error response (5xx) causes all addresses to be failed, and a delivery error report to
be returned to the sender. A temporary error response (4xx) or one of the timeouts causes all
addresses to be deferred. Retry data is not created for the host, but instead, a retry record for the
combination of host plus message id is created. The message is not added to the list of those
waiting for this host. This ensures that the failing message will not be sent to this host again until
the retry time arrives. However, other messages that are routed to the host are not affected, so if
it is some property of the message that is causing the error, it will not stop the delivery of other
mail.

If the remote host specified support for the SIZE parameter in its response to EHLO, then Exim adds
 SIZE=nnn to the MAIL command, so an over-large message will cause a message error because it

will arrive as a response to MAIL.

(3) A recipient error is associated with a particular recipient of a message. The recipient errors are:

• Any error response to RCPT,

• Timeout after RCPT.

A permanent error response (5xx) causes the recipient address to be failed, and a delivery error
report to be returned to the sender. A temporary error response (4xx) or a timeout causes the
failing address to be deferred, and routing retry data to be created for it. This is used to delay
processing of the address in subsequent queue runs, until its routing retry time arrives. This
applies to all messages, but because it operates only in queue runs, one attempt will be made to
deliver a new message to the failing address before the delay starts to operate. This ensures that,
if the failure is really related to the message rather than the recipient (‘message too big for this
recipient’ is a possible example), other messages have a chance of getting delivered. However, if
a delivery to the address does succeed, the retry information gets cleared, so all stuck messages
get tried again, and the retry clock is reset.

[208] smtp processing (42)

The message is not added to the list of those waiting for this host. Use of the host for other
messages is unaffected, and except in the case of a timeout, other recipients are processed

 independently, and may be successfully delivered in the current SMTP session. After a timeout it
is of course impossible to proceed with the session, so all addresses get deferred. However, those
other than the one that failed do not suffer any subsequent retry delays. Therefore, if one
recipient is causing trouble, the others have a chance of getting through when a subsequent
delivery attempt occurs before the failing recipient’s retry time.

In all cases, if there are other hosts (or IP addresses) available for the current set of addresses (for
example, from multiple MX records), they are tried in this run for any undelivered addresses, subject
of course to their own retry data. In other words, recipient error retry data does not take effect until the
next delivery attempt.

Some hosts have been observed to give temporary error responses to every MAIL command at certain
times (‘insufficient space’ has been seen). It would be nice if such circumstances could be recognized,
and defer data for the host itself created, but this is not possible within the current Exim design. What
actually happens is that retry data for every (host, message) combination is created.

The reason that timeouts after MAIL and RCPT are treated specially is that these can sometimes arise as
a result of the remote host’s verification procedures. Exim makes this assumption, and treats them as if
a temporary error response had been received. A timeout after ‘.’ is treated specially because it is
known that some broken implementations fail to recognize the end of the message if the last character
of the last line is a binary zero. Thus is it helpful to treat this case as a message error.

Timeouts at other times are treated as host errors, assuming a problem with the host, or the connection
to it. If a timeout after MAIL, RCPT, or ‘.’ is really a connection problem, the assumption is that at the
next try the timeout is likely to occur at some other point in the dialogue, causing it then to be treated
as a host error.

There is experimental evidence that some MTAs drop the connection after the terminating ‘.’ if they
don’t like the contents of the message for some reason, in contravention of the RFC, which indicates
that a 5xx response should be given. That is why Exim treats this case as a message rather than a host
error, in order not to delay other messages to the same host.

42.3 Variable Envelope Return Paths (VERP)
Variable Envelope Return Paths – see ftp://koobera.math.uic.edu/www/proto/verp.txt – can be
supported in Exim by using the return_path generic transport option to rewrite the return path at
transport time. For example, the following could be used on an smtp transport:

return_path = "\
${if match {$return_path}{^(.+?)-request@your.domain\\$}\
{$1-request=$local_part%$domain@your.domain}fail}"

This has the effect of rewriting the return path (envelope sender) on all outgoing SMTP messages, if
the local part of the original return path ends in ‘-request’, and the domain is your.domain. The
rewriting inserts the local part and domain of the recipient into the return path. If, for example, a
message with return path somelist-request@your.domain is sent to subscriber@other.domain, the
return path is rewritten as

somelist-request=subscriber%other.domain@your.domain

For this to work, you must arrange for outgoing messages that have ‘-request’ in their return paths to
have just a single recipient. This can be done by setting

max_rcpt = 1

in the smtp transport. Otherwise a single copy of a message might be addressed to several different
recipients in the same domain, in which case $local_part is not available (because it is not unique). Of
course, if you do start sending out messages with this kind of return path, you must also configure
Exim to accept the bounce messages that come back to those paths. Typically this would be done by
setting a suffix option in a suitable director.

[209] smtp processing (42)

The overhead incurred in using VERP depends very much on the size of the message, the number of
recipient addresses that resolve to the same remote host, and the speed of the connection over which
the message is being sent. If a lot of addresses resolve to the same host and the connection is slow,
sending a separate copy of the message for each address may take substantially longer than sending a
single copy with many recipients (for which VERP cannot be used).

42.4 Incoming SMTP messages over TCP/IP
Incoming SMTP messages can be accepted in one of two ways: by running a listening daemon, or by
using inetd. In the latter case, the entry in /etc/inetd.conf should be like this:

smtp stream tcp nowait exim /opt/exim/bin/exim in.exim -bs

Exim distinguishes between this case and the case of a user agent using the -bs option by checking
whether the standard input is a socket using the getpeername() function.

By default, Exim does not make a log entry when a remote hosts connects or disconnects (either via
the daemon or inetd), unless the disconnection is unexpected. It can be made to write such log entries
by setting the log_smtp_connections option.

Commands from the remote host are supposed to be terminated by CR followed by LF. However, there
are known to be hosts that do not send CR characters, so in order to be able to interwork with such
hosts, Exim treats LF on its own as a line terminator.

The amount of disc space available is checked whenever SIZE is received on a MAIL command,
independently of whether message_size_limit or check_spool_space is configured, unless smtp_
check_spool_space is set false. A temporary error is given if there isn’t enough. If check_spool_space
is set, the check is for that amount of space plus the value given with SIZE, that is, it checks that the
addition of the incoming message will not reduce the space below the threshold.

When a message is successfully received, Exim includes the local message id in its response to the
final ‘.’ that terminates the data. If the remote host logs this text it can help with tracing what has
happened to a message.

The Exim daemon can limit the number of simultaneous incoming connections it is prepared to handle
(see the smtp_accept_max option). It can also limit the number of simultaneous incoming connections
from a single remote host (see the smtp_accept_max_per_host option). Additional connection
attempts are rejected using the SMTP temporary error code 421.

On some operating systems the SIGCHLD signal that is used to detect when a subprocess has finished
can get lost at busy times. However, the daemon looks for completed subprocesses every time it wakes
up, so provided there are other things happening (new incoming calls, starts of queue runs), the
completion of processes created to handle incoming calls should get noticed eventually. If, however,
Exim appears not to be accepting as many incoming connections as expected, sending the daemon a
SIGCHLD signal will wake it up and cause it to check for any completed subprocesses.

When running as a daemon, Exim can reserve some SMTP slots for specific hosts, and can also be set
up to reject SMTP calls from non-reserved hosts at times of high system load – for details see the
smtp_accept_reserve, smtp_load_reserve, and smtp_reserve_hosts options. The load check applies
in both the daemon and inetd cases.

If neither queue_only nor the -odq command line option is set, Exim normally starts a delivery
process for each message received. However, the number of simultaneously running delivery processes
started in this way can be limited by the smtp_accept_queue and smtp_accept_queue_per_connec-
tion options, and the queue_only_load option can specify a system load average above which
immediate delivery is suspended. When either limit is reached, subsequently received messages are
just put on the input queue.

The controls that involve counts of incoming SMTP calls (smtp_accept_max smtp_accept_queue,
smtp_accept_reserve) are not available when Exim is started up from the inetd daemon, since each
connection is handled by an entirely independent Exim process. Control by load average is, however,
available with inetd.

[210] smtp processing (42)

Exim can be configured to verify addresses in incoming SMTP commands as they are received. See
chapter 39 for details. It can also be configured to rewrite addresses at this time – before any syntax
checking is done. See section 32.6.

42.5 The VRFY, EXPN, and DEBUG commands
The SMTP command VRFY is accepted only when the configuration option smtp_verify is set, and if
so, it runs exactly the same code as when Exim is called with the -bv option.

The SMTP command EXPN is is permitted only if the calling host matches smtp_expn_hosts (add
‘localhost’ if you want calls to 127.0.0.1 to be able to use it). A single-level expansion of the address
is done. EXPN is treated as an ‘address test’ (similar to the -bt option) rather than a verification (the -bv
option). If an unqualified local part is given as the argument to EXPN, it is qualified with
qualify_domain.

Rejections of VRFY and EXPN commands are logged on the main and reject logs, and VRFY verification
failures are logged on the main log for consistency with RCPT failures.

The SMTP command DEBUG is not supported at all. Occurrences of this command are rejected, and the
incident is logged.

42.6 The ETRN command
RFC 1985 describes an SMTP command called ETRN that is designed to overcome the security
problems of the TURN command (which has fallen into disuse). Exim recognizes ETRN if the calling
host matches smtp_etrn_hosts. Attempts to use ETRN from other hosts are logged on the main and
reject logs; when ETRN is accepted, it is logged on the main log.

The ETRN command is concerned with ‘releasing’ messages that are awaiting delivery to certain hosts.
As Exim does not organize its message queue by host, the only form of ETRN that is internally
supported is the one where the text starts with the ‘#’ prefix, in which case the remainder of the text is
specific to the SMTP server. A valid ETRN command causes a run of Exim with the -R option to
happen, with the remainder of the ETRN text as its argument. For example,

ETRN #brigadoon

causes a delivery attempt on all messages with undelivered addresses containing the text ‘brigadoon’.

For more control over what ETRN does, the smtp_etrn_command option can used. This specifies a
command that is run whenever ETRN is received. For example:

smtp_etrn_command = /etc/etrn_command $domain $sender_host_address

The string is split up into arguments which are independently expanded. The expansion variable
$domain is set to the argument of the ETRN command, and no syntax checking is done on the
contents of this argument. A new freestanding process is created to run the command. Exim does not
wait for it to complete, so its status code is not checked. As Exim is normally running under its own
uid and gid when receiving incoming SMTP, it is not possible for it to change them before running the
command.

42.7 Outgoing batched SMTP
Both the appendfile and pipe transports can be used for handling batched SMTP. Each has an option
called bsmtp which, if set to anything other than ‘none’ causes the message to be output in SMTP
format. The message is written to the file or pipe preceded by the SMTP commands MAIL and RCPT,
and followed by a line containing a single dot. The SMTP command HELO is not normally used, but if
the transport’s bsmtp_helo option is set true, a HELO command line precedes each message.

Lines in the message starting with a dot get an extra dot added. If the prefix option is set, its contents
are included after the SMTP commands, and the contents of suffix appear at the end of the message,
before the terminating dot; normally these options are specified as empty, to override the defaults.

[211] smtp processing (42)

The value of the bsmtp option determines how multiple addresses in a single message may be
batched, if other conditions permit. If the value of bsmtp is ‘one’, then there is no batching, and a
copy of the message is output for each address. If the value is ‘domain’ then a single copy (with
multiple RCPT commands) is output for all addresses that have the same domain. If the value is ‘all’
then only a single copy of the message is written. The batching is further constrained by other
parameters:

• If any of the transport’s expandable strings contain a reference to $local_part, then no batching
takes place.

• If any of the transport’s expandable strings contains a reference to $domain, then only domain
batching is done.

• Addresses are not batched if they have different error addresses, associated hosts, header
additions or removals and so on.

• The uid and gid for delivery must be explicitly set. This is normally done in the transport, but if
they are specified by a router or director, batching occurs only for addresses that have the same
uid/gid set up.

Here is an example of a transport and router for batched SMTP:

transport
 smtp_appendfile:

driver = appendfile
directory = /var/bsmtp/${host}
bsmtp = all
prefix =
suffix =
user = exim

router
 route_append:

driver = domainlist
transport = smtp_appendfile
route_list = "some.domain batch.host"

This causes messages addressed to some.domain to be written in batched SMTP format to
/var/bsmtp/batch.host, with only a single copy of each message. Note that prefix and suffix must be
explicitly changed from their defaults.

42.8 Incoming batched SMTP
The -bS command line option causes Exim to accept one or more messages by reading SMTP on the
standard input, but to generate no responses. If the caller is trusted, then the senders in the MAIL

commands are believed; otherwise the sender is always the caller of Exim. Unqualified senders and
receivers are not rejected (there seems little point) but instead just get qualified. If sender_verify is
set, sender verification takes place only if sender_verify_batch is set (it defaults unset). Receiver
verification and administrative rejection is not done, even if configured. HELO and EHLO act as RSET;
VRFY, EXPN, ETRN, HELP, and DEBUG act as NOOP; QUIT quits.

If any error is detected while reading a message, including a missing ‘.’ at the end, Exim gives up
immediately. It writes details of the error to the standard output in a stylized way that the calling
program should be able to make some use of automatically, for example:

554 Unexpected end of file
Transaction started in line 10
Error detected in line 14

It writes a more verbose version, for human consumption, to the standard error file, for example:

[212] smtp processing (42)

An error was detected while processing a file of BSMTP input.
The error message was:

501 ’>’ missing at end of address

The SMTP transaction started in line 10.
The error was detected in line 12.
The SMTP command at fault was:

rcpt to:<malformed@in.com.plete

1 previous message was successfully processed.
The rest of the batch was abandoned.

The return code from Exim is zero only if there were no errors. It is 1 if some messages were accepted
before an error was detected, and 2 if no messages were accepted.

[213] smtp processing (42)

43. Message processing

Exim performs various transformations on the sender and recipient addresses of all messages that it
handles, and also on the messages’ header lines. Some of these are optional and configurable, while
others always take place. All of this processing, except rewriting as a result of routing, happens when
a message is received, before it is first written to the spool.

RFC 822 makes provision for headers starting with the string Resent-. It states that in general, the
Resent- fields should be treated as containing a set of information that is independent of the set of
original fields, and that information for one set should not automatically be taken from the other. If
Exim finds any Resent- headers in the message, it applies the header transformations described below
only to the Resent- header set, leaving the unqualified set alone.

43.1 Unqualified addresses
By default, Exim expects every address it receives from an external host to be fully qualified.
Unqualified addresses cause negative responses to SMTP commands. However, because SMTP is used
as a means of transporting messages from MUAs running on personal workstations, there is sometimes
a requirement to accept unqualified addresses from specific hosts or IP networks.

Exim has two options that separately control which hosts may send unqualified sender or receiver
addresses in SMTP commands, namely sender_unqualified_hosts and receiver_unqualified_hosts. In
both cases, if an unqualified address is accepted, it is qualified by adding the value of qualify_domain
or qualify_receiver, as appropriate.

Any addresses that are unqualified are made fully qualified by adding qualify_domain or qualify_
recipient, as appropriate. Unqualified addresses are accepted only from local sources or from hosts
that match one of the receiver_unqualified or sender_unqualified options, as appropriate.

43.2 The UUCP From line
Messages that have come from UUCP (and some other applications) often begin with a line containing
the envelope sender and a timestamp, following the word ‘From’. Examples of two common for-
mats are:

From a.oakley@berlin.mus Fri Jan 5 12:35 GMT 1996
From f.butler@berlin.mus Fri, 7 Jan 97 14:00:00 GMT

This line precedes the RFC 822 header lines. For compatibility with Sendmail, Exim recognizes such
lines at the start of messages that are submitted to it via the command line (that is, on the standard
input). It does not recognize such lines in incoming SMTP messages, unless the sending host matches
ignore_fromline_hosts or the -bs option was used for a local message and ignore_fromline_local is
set. The recognition is controlled by a regular expression that is defined by the uucp_from_pattern
option, whose default value matches the two common cases shown above and puts the address that
follows ‘From’ into $1.

When the caller of Exim for a non-SMTP message is a trusted user, the message’s sender address is
constructed by expanding the contents of uucp_sender_address, whose default value is ‘$1’. This is
then parsed as an RFC 822 address. If there is no domain, the local part is qualified with
qualify_domain unless it is the empty string. However, if the command line -f option is used, it
overrides the ‘From’ line.

If the caller of Exim is not trusted, the ‘From’ line is recognized, but the sender address is not
changed. This is also the case for incoming SMTP messages that are permitted to contain ‘From’ lines.

Only one ‘From’ line is recognized. If there is more than one, the second is treated as a data line that
starts the body of the message, as it is not valid as a header line. This also happens if a ‘From’ line is
present in an incoming SMTP message from a source that is not permitted to send them.

[214] message processing (43)

43.3 The Bcc: header

If Exim is called with the -t option, to take recipient addresses from a message’s headers, it removes
any Bcc: header that may exist (after extracting its addresses), unless the message has no To: or Cc:
header, in which case a Bcc: header with no addresses is left in the message, in accordance with RFC
822. If -t is not present on the command line, any existing Bcc: header is not removed.

If Exim is called to receive a message with the recipient addresses given on the command line, and
there is no Bcc:, To:, or Cc: header in the message, it normally adds a To: header, listing the
recipients. Some mailing list software is known to submit messages in this way, and in this case the
creation of a To: header is not what is wanted. If the always_bcc option is set, Exim adds an empty
Bcc: header instead in this circumstance.

43.4 The Date: header

If a message has no Date: header, Exim adds one, giving the current date and time.

43.5 The Delivery-date: header

Delivery-date: headers are not part of the standard RFC 822 header set. Exim can be configured to
add them to the final delivery of messages. (See the generic delivery_date_add transport option.)
They should not be present in messages in transit. If the delivery_date_remove configuration option is
set (the default), Exim removes Delivery-date: headers from incoming messages.

43.6 The Envelope-to: header

Envelope-to: headers are not part of the standard RFC 822 header set. Exim can be configured to add
them to the final delivery of messages. (See the generic envelope_to_add transport option.) They
should not be present in messages in transit. If the envelope_to_remove configuration option is set
(the default), Exim removes Envelope-to: headers from incoming messages.

43.7 The From: header

If an incoming message does not contain a From: header, Exim adds one containing the sender ’s
address. This is obtained from the message’s envelope in the case of remote messages; for locally-
generated messages the calling user ’s login name and full name are used to construct an address, as
described in section 43.14. They are obtained from the password file entry by calling getpwuid() (but
see the unknown_login configuration option). The address is qualified with qualify_domain.

For compatibility with Sendmail, if an incoming, non-SMTP message has a From: header containing
just the unqualified login name of the calling user, this is replaced by an address containing the user ’s
login name and full name as described in section 43.14.

43.8 The Message-id: header

If an incoming message does not contain a Message-id: header, Exim constructs one and adds it to the
message. The id is constructed from Exim’s internal message id, preceded by the letter E to ensure it
starts with a letter, and followed by @ and the primary host name. Additional information can be
included in this header by setting the message_id_header_text option.

43.9 The Received: header

A Received: header is added at the start of every message. The contents of this header are defined by
the received_header_text configuration option, and Exim automatically adds a semicolon and a
timestamp to the configured string.

[215] message processing (43)

43.10 The Return-path: header
Return-path: headers are defined as something the MTA may insert when it does the final delivery of
messages. (See the generic return_path_add transport option.) Therefore, they should not be present
in messages in transit. If the return_path_remove configuration option is set (the default), Exim
removes Return-path: headers from incoming messages.

43.11 The Sender: header
For locally-originated messages, unless originated by a trusted user using the -f or -bs command line
option, any existing Sender: header is removed. For non-trusted callers, a check is made to see if the
address given in the From: header is the correct (local) sender of the message. If not, a Sender:
header giving the true sender address is added to the message. No processing of the Sender: header is
done for messages originating externally.

43.12 The To: header
If a message has no To:, Cc:, or Bcc: header, Exim adds an empty Bcc: header, in accordance with
RFC 822, except when the message is being received locally with the recipients supplied on the
command line. In this case, a To: header listing the recipients is normally added. Some mailing list
software is known to submit messages in this way, and in this case the creation of a To: header is not
what is wanted. If the always_bcc option is set, Exim adds an empty Bcc: header instead in this
circumstance. An Apparently-to: header is never added.

43.13 Adding and removing headers
The addition and removal of headers can be specified on any of the drivers, and also in system filter
files. Changes specified in the system filter affect all deliveries of a message.

Header changes specified on a director or router affect all addresses handled by that driver, and also
any new addresses it generates. If an address passes through several directors and/or routers, the
changes are cumulative. When a message is processed by a transport, the message’s original set of
headers is output, except for those named in any headers_remove options that the address has
encountered as it was processed, and any in the transport’s own headers_remove option. Then any
new headers from any headers_add options are output.

43.14 Constructed addresses
When Exim constructs a sender address for a locally-generated message, it uses the form

<user name> <<login>@<qualify_domain>>

For example:

Zaphod Beeblebrox <zaphod@end.univ>

The user name is obtained from the -F command line option if set, or otherwise by looking up the
calling user by getpwuid() and extracing the ‘gecos’ field from the password entry. If the ‘gecos’ field
contains an ampersand character, this is replaced by the login name with the first letter upper-cased, as
is conventional in a number of operating systems. See the gecos_name option for a way to tailor the
handling of the ‘gecos’ field. The unknown_username option can be used to specify user names in
cases when there is no password file entry. In all cases the user name is made to conform to RFC 822
by quoting all or parts of it if necessary.

43.15 Case of local parts
RFC 822 states that the case of letters in the local parts of addresses cannot be assumed not to be
significant. Exim preserves the case of local parts of remote addresses. However, when it is processing
an address in one of its local domains, the case of letters in the local part is significant only when
locally_caseless is unset. This option is set by default, and this causes Exim to lowercase local parts in
local domains before processing them.

[216] message processing (43)

If you must have mixed-case user names in your password file, the best way to proceed, assuming you
want case-independent handling of incoming email, is to unset locally_caseless and then set up an
initial smartuser director to convert incoming local parts to the correct case by a file lookup such as

new_address = "${lookup{${lc:$local_part}}cdb\
{/etc/usercased.cdb}{$value}fail}\
@$domain"

43.16 Dots in local parts
RFC 822 forbids empty components in local parts. That is, an unquoted local part may not begin or
end with a dot, nor have two consecutive dots in the middle. However, it seems that many MTAs do
not enforce this, so Exim permits empty components for compatibility.

43.17 Rewriting addresses
Rewriting of sender and recipient addresses, and addresses in headers, can happen automatically, or as
the result of configuration options, as described in chapter 32. The headers that may be affected by this
are Bcc:, Cc:, From:, Reply-to:, Sender:, and To:.

Automatic rewriting includes qualification, as mentioned above. The other case in which it can happen
is when an incomplete non-local domain is given. The routing process may cause this to be expanded
into the full domain name. For example, a header such as

To: hare@teaparty

might get rewritten as

To: hare@teaparty.wonderland.fict.book

Rewriting as a result of routing is the one kind of message processing that does not happen at input
time, as it cannot be done until the address has been routed.

Strictly, one should not do any deliveries of a message until all its addresses have been routed, in case
any of the headers get changed as a result of routing. However, doing this in practice would hold up
many deliveries for unreasonable amounts of time, just because one address could not immediately be
routed. Exim therefore does not delay other deliveries when routing of one or more addresses is
deferred.

[217] message processing (43)

44. Automatic mail processing

This chapter describes some of the ways in which incoming mail can be processed automatically,
either on a system-wide basis, or as specified by individual users.

44.1 System-wide automatic processing
Simple re-addressing of messages can be handled by aliasfile or forwardfile directors. The particular
case of mailing lists is covered in chapter 36. Other kinds of automatic processing can be handled by
suitable configurations of directors and transports. As an example, here is an extract from the
configuration of a system which tries to send back helpful information when a message is received for
an unknown user. The last director in the configuration is:

unknownuser:
driver = smartuser
transport = unknownuser_pipe

 no_verify

This collects all the addresses whose local parts haven’t been matched by any other director, and
directs them to a special pipe transport, whose configuration is:

unknownuser_pipe:
driver = pipe
command = /opt/exim/util/baduser.sh

 ignore_status
return_output
user = nobody

The script is run as the user ‘nobody’, and it applies heuristics and a soundex search to the local part,
in an attempt to produce a list of possible users for whom the message might have been intended. This
is then included in a message that is written to its standard output; Exim picks this up and returns it to
the sender as part of the delivery error message.

Chapter 41 describes how to arrange to run a system filter file once per message. Sometimes there is a
requirement to set up similar automatic processing, but on a per-address basis, that is, the filter is run
once for each address. This can be done by using a director such as the following:

filter_per_address:
driver = forwardfile
no_verify

 filter
file = /etc/per-address-filter
no_check_local_user
user = nobody

See the separate document entitled Exim’s User interface to mail filtering which describes the available
filtering commands. Care should be taken to ensure that none of the commands in the filter file specify
a significant delivery if the message is to go on to be delivered to its intended recipient. The director
will not then claim to have dealt with the address, so it will be passed on to subsequent directors to be
delivered in the normal way. Note that a traditional (non-filter) .forward file does not have this
property, so cannot be used in this way, though you could use it to forward all mail for a particular
domain to a single recipient in a different domain.

44.2 Taking copies of mail
Some installations have policies that require archive copies of all messages to be made. A single copy
of each message can easily be taken by an appropriate command in a system filter, which could, for
example, use a different file for each day’s messages.

[218] automatic mail processing (44)

There is also a shadow transport mechanism that can be used to take copies of messages that are
successfully delivered by local transports, one copy per delivery. This could be used, inter alia, to
implement automatic notification of delivery by sites that insist on doing such things.

44.3 Automatic processing by users
Users can cause their mail to be processed automatically by creating .forward files, provided that
Exim’s configuration contains an appropriate forwardfile director. Traditionally, such files contain just
a list of forwarding addresses, local files, and pipe commands, but if the forwardfile director has the
filter option set, users can access Exim’s filtering facilities by beginning a .forward file with the text
‘# Exim filter’. Details of the syntax and semantics of filter files are described in a separate document
entitled Exim’s User interface to mail filtering; this is intended for use by end users.

The name .forward is purely conventional; a forwardfile director can be configured to use any
arbitrary name. As there are some finger daemons that display the contents of users’ .forward files,
some sites might like to use a different name when mail filtering is provided.

What users may do in their .forward files can be constrained by various options of the forwardfile
director:

• If the filter option is not set, then only traditional .forward files are permitted.

• If the forbid_file option is set, then neither a traditional .forward file, nor a filter file may direct
that a message be appended to a particular local file. An attempt to do so causes a delivery error.

• If the forbid_filter_log option is set, then the use of the log command in a filter file is not
 permitted.

• If the forbid_pipe option is set, then neither a traditional .forward file, nor a filter file may
direct that a message be piped to a user-specified command. An attempt to do so causes a
delivery error.

• If the forbid_reply option is set, then a filter file may not direct that a new mail message be
created. An attempt to do so causes a delivery error.

If piping is permitted, the pipe transport that is used (conventionally called address_pipe) can
constrain the command to be taken from a particular set of files. Pipe commands generated from
traditional .forward files are not string-expanded, but when a pipe command is generated in a filter
file, each argument is separately expanded.

If delivery to specified files is permitted, the appendfile transport that is used (conventionally called
address_file) can specify that the file must already exist, or can restrict the whereabouts of its creation
by means of the create_file option.

44.4 Simplified vacation processing
The traditional way of running the vacation program is for a user to set up a pipe command in a
.forward file. This is prone to error by inexperienced users. There are two features of Exim that can
be used to make this process simpler for users:

• A local part prefix such as ‘vacation-’ can be specified on a director which causes the message to
be delivered directly to the vacation program, or uses Exim’s autoreply transport. The contents
of a user ’s .forward file are then much simpler. For example:

spqr, vacation-spqr

• The require_files generic director option can be used to trigger a vacation delivery by checking
for the existence of a certain file in the user ’s home directory. The unseen generic option should
also be used, to ensure that the original delivery also proceeds. In this case, all the user has to do
is to create a file called, say, .vacation, containing a vacation message.

Another advantage of both these methods is that they both work even when the use of arbitrary pipes
by users is locked out.

[219] automatic mail processing (44)

45. Log files

Exim writes four different log files called mainlog, rejectlog, paniclog, and processlog into a sub-
directory of its spool directory called log, unless a compile-time option called LOG_FILE_PATH or a
runtime option called log_file_path is defined to specify a different directory and template for the file
names. The template has a wild portion which is replaced by ‘main’, ‘reject’, ‘panic’, or ‘process’
when writing to a log file. See the comments in src/EDITME for more details of this. In the text
below, the default file names are used.

• The file called mainlog records the arrival of each message and each delivery in a single line in
each case. The format is as compact as possible, in an attempt to keep down the size of log files.

 Two-character flag sequences make it easy to pick out these lines. A number of other events are
also recorded in the main log. Some of these entries can be suppressed by changing the value of
the log_level configuration option.

• The file called rejectlog records information from messages that are rejected as a result of a
configuration option (that is, for policy reasons) for example, because their return paths are
invalid. In this particular case, the headers are written to this log, following a copy of the one-
line message that is also written to the main log. For other rejections, just a single line is written
to the reject log.

• The file called paniclog is written when Exim suffers a disaster and has to bomb out. This should
be checked regularly to pick up any problems. When exim cannot open its panic log, it tries as a
last resort to write to the system log. This is opened with LOG_PID+LOG_CONS and the
facility code of LOG_MAIL. The message itself is written at priority LOG_CRIT.

• On systems that support signal handlers that restart a system call on exit, Exim reacts to a
SIGUSR1 signal by writing a line describing its current activity to a file called processlog. This
makes it possible to find out what each exim process on a machine is currently doing.

A utility script called exicyclog which renames and compresses the main and reject logs each time it is
called is provided. The maximum number of old logs to keep can be set. It is suggested this is run as a
daily cron job. A Perl script called eximstats which does simple analysis of main log files is also
provided. See chapter 47 for details of both these utilities.

An Exim delivery process opens the main log when it first needs to write to it, and it keeps the file
open in case subsequent entries are required – for example, if a number of different deliveries are
being done for the same message. However, remote SMTP deliveries can take a long time, and this
means that the file may be kept open long after it is renamed if exicyclog or something similar is
being used to rename log files on a regular basis. To ensure that a switch of log files is noticed as soon
as possible, Exim calls stat() on the main log’s name before reusing an open file, and if the file does
not exist, or its inode has changed, the old file is closed and Exim tries to open the main log from
scratch. Thus, an old log file may remain open for quite some time, but no Exim processes should
write to it once it has been renamed.

45.1 Logging message reception
The format of the single-line entry in the main log that is written for every message received is shown
in the example below, which is split over several lines in order to fit it on the page:

1995-10-31 08:57:53 0tACW1-0005MB-00 <= kryten@dwarf.fict.book
H=mailer.fict.book [123.123.123.123] U=exim
P=smtp S=5678 id=<incoming message id>

The H and U fields identify the remote host and record the RFC 1413 identity of the user that sent the
message, if one was received. The number given in square brackets is the IP address of the sending
host. If there is just a single host name in the H field, as above, it has been verified to correspond to
the IP address (see the host_lookup option). If the name is in parentheses, it was the name quoted by
the remote host in the SMTP HELO or EHLO command, and has not been verified. If verification yields a

[220] log files (45)

different name to that given for HELO or EHLO, then the verified name appears first, followed by the
HELO or EHLO name in parentheses.

Misconfigured hosts (and mail forgers) sometimes put an IP address, with or without brackets, in the
HELO or EHLO command, leading to entries in the log containing things like

H=(10.21.32.43) [123.99.8.34]
H=([10.21.32.43]) [123.99.8.34]

which can be confusing. Only the final address in square brackets can be relied on. For locally
generated messages, the H field is omitted, and the U field contains the login name of the caller of
Exim.

For all messages, the P field specifies the protocol used to receive the message, and the id field records
the existing message id, if present. The size of the received message is given by the S field. When the
message is delivered, headers may get removed or added, so that the size of delivered copies of the
message may not correspond with this value (and indeed may be different to each other).

If the log_received_sender option is on, the unrewritten original sender of a message is added to the
end of the log line that records the message’s arrival, after the word ‘from’. If the log_received_
recipients option is on, a list of all the recipients of a message is added to the log line, preceded by
the word ‘for’. This happens after any unqualified addresses are qualified, but before any rewriting is
done. If the log_subject option is on, the subject of the message is added to the log line, preceded by
‘T=’ (T for ‘topic’, since S is already used for ‘size’).

A delivery error message is shown with the sender address ‘<>’, and if it is a locally-generated error
message, this is normally followed by an item of the form

R=<message id>

which is a reference to the local identification of the message that caused the error message to be sent.

45.2 Logging deliveries
The format of the single-line entry in the main log that is written for every delivery is shown in one of
the examples below, for local and remote deliveries, respectively. Each example has been split into two
lines in order to fit it on the page:

1995-10-31 08:59:13 0tACW1-0005MB-00 => marv <marv@hitch.fict.book>
D=localuser T=local_delivery

1995-10-31 09:00:10 0tACW1-0005MB-00 => monk@holistic.fict.book
R=lookuphost T=smtp H=holistic.fict.book [234.234.234.234]

For ordinary local deliveries, the original address is given in angle brackets after the final delivery
address, which might be a pipe or a file. If intermediate address(es) exist between the original and the
final address, the last of these is given in parentheses after the final address. However, log_all_parents
can be set to cause all intermediate addresses to be logged.

If a shadow transport was run after a successful local delivery, the log line for the successful delivery
has an item added on the end, of the form

ST=<shadow transport name>

If the shadow transport did not succeed, the error message is put in parentheses afterwards.

When a local delivery occurs as a result of routing rather than directing (for example, messages are
being batched up for transmission by some other means), the log entry looks more like that for a
remote delivery.

For normal remote deliveries, if the log_smtp_confirmation option is on, the response to the final ‘.’
in the SMTP transmission is added to the log line, preceded by ‘C=’. If the final delivery address is
not the same as the original address (owing to changes made by routers), the original is shown in
angle brackets.

[221] log files (45)

The generation of a reply message by a filter file gets logged as a ‘delivery’ to the addressee, preceded
by ‘>’. The D and T items record the director and transport. For remote deliveries, the router,
transport, and host are recorded.

When more than one address is included in a single delivery (for example, two SMTP RCPT commands
in one transaction) then the second and subsequent addresses are flagged with ‘->’ instead of ‘=>’.
When two or more messages are delivered down a single SMTP connection, an asterisk follows the IP
address in the log lines for the second and subsequent messages.

When the -N debugging option is used to prevent delivery from actually occurring, log entries are
flagged with ‘*>’ instead of ‘=>’.

When a message is discarded as a result of the command ‘seen finish’ being obeyed in a filter file
which generates no deliveries, a log entry of the form

1998-12-10 00:50:49 0znuJc-0001UB-00 => discarded
<low.club@trick4.bridge> D=userforward

is written, to record why no deliveries are logged.

45.3 Deferred deliveries
When a delivery is deferred, a line of the following form is logged:

1995-12-19 16:20:23 0tRiQz-0002Q5-00 == marvin@endrest.book
T=smtp defer (146): Connection refused

In the case of remote deliveries, the error is the one that was given for the last IP address that was
tried. Details of individual SMTP failures are also written to the log, so the above line would be
preceded by something like

1995-12-19 16:20:23 0tRiQz-0002Q5-00 Failed to connect to endrest.book
[239.239.239.239]: Connection refused

When a deferred address is skipped because its retry time has not been reached, a message is written
to the log, but this can be suppressed by changing the log_level option.

45.4 Delivery failures
If a delivery fails, a line of the following form is logged:

1995-12-19 16:20:23 0tRiQz-0002Q5-00 ** jim@trek99.film
<jimtrek99.film>: unknown mail domain

This is followed (eventually) by a line giving the address to which the delivery error has been sent.

45.5 Completion
A line of the form

1995-10-31 09:00:11 0tACW1-0005MB-00 Completed

is written to the main log when a message is about to be removed from the spool at the end of its
processing.

45.6 Other log entries
Various other types of log entry are written from time to time. Most should be self-explanatory.
Among the more common are:

• retry time not reached An address previously suffered a temporary error during directing or
routing or local delivery, and the time to retry it has not yet arrived.

• retry time not reached for any host An address previously suffered temporary errors during
remote delivery, and the retry time has not yet arrived for any of the hosts to which it is routed.

[222] log files (45)

• spool file locked An attempt to deliver a message cannot proceed because some other Exim
process is already working on the message. This can be quite common if queue running processes
are started at frequent intervals. The exiwhat utility script can be used to find out what Exim
processes are doing.

45.7 Log level
The log_level configuration option controls the amount of data written to the main log. The higher the
number, the more is written. A value of 6 causes all possible messages to appear, though higher levels
may get defined in the future. Zero sets a minimal level of logging, with higher levels adding the
following, successively:

1 rejections because of policy
re-addressing by the system filter

2 rejections because of message size

3 verification failures

4 SMTP timeouts
SMTP connection refusals because too busy
SMTP unexpected connection loss
SMTP (dis)connections when log_smtp_connections is set
SMTP syntax errors when log_smtp_syntax_errors is set
non-immediate delivery of SMTP messages because of load level,

or number of connections etc.

5 ‘retry time not reached [for any host]’
‘spool file locked’ (i.e. some other process is delivering the message)
‘message is frozen’ (when skipping it in a queue run)
‘error message sent to ...’

6 invalid HELO and EHLO arguments (see helo_verify)

The default log level is 5, which is on the verbose side. Rejection information is still written to the
reject log in all cases.

45.8 Message log
In addition to the four main log files, Exim writes a log file for each message that it handles. The
names of these per-message logs are the message ids, and they are kept in the msglog sub-directory of
the spool directory. A single line is written to the message log for each delivery attempt for each
address. It records either a successful delivery, or the reason (temporary or permanent) for failure. If
the log level is 5 or higher, ‘retry time not reached’ messages are also written to individual message
logs. If the log level is 4 or less, they are suppressed after the first delivery attempt.

When a local part is expanded by aliasing or a forwarding file, a line is written to the message log
when all its child deliveries are completed. SMTP connection failures for each remote host are also
logged here. The log is deleted when processing of the message is complete, unless preserve_
message_logs is set, but this should be used only with great care because they can fill up your disc
very quickly.

[223] log files (45)

46. Day-to-day management

This chapter describes some of the regular tasks that need to be done to keep Exim running smoothly.

46.1 The panic log
When certain disasters occur, Exim writes entries to its panic log. These are often copied to the main
log as well, but can get lost amid the mass of other entries. The panic log should be empty under
normal circumstances. It is therefore a good idea to check it (or to have a cron script check it)
regularly, in order to become aware of any problems.

46.2 The reject log
If checking of sender addresses on incoming mail is enabled, the headers of rejected messages are
written to the reject log. Other policy rejections also cause entries in this log, which should be
regularly inspected to ensure that the checking is working properly, and to pick up errors such as
missing DNS entries.

46.3 Log cycling
The exicyclog script (see chapter 47) cycles the names of log files, compresses all but the most recent,
and deletes the oldest. This should be run at intervals dependent on the amount of mail traffic. For a
system with a reasonable amount of mail, running it daily via cron is suggested.

46.4 Statistics
The eximstats script (see chapter 47) produces statistics about messages received and delivered, by
analysing log files.

46.5 What is Exim doing?
On systems that can restart a system call after receiving a signal, Exim responds to the SIGUSR1 signal
by writing a line describing what it is doing to its process log. The exiwhat script (see chapter 47)
sends the signal to all Exim processes it can find, having first emptied the process log. It then waits for
one second to allow the Exim processes to react before displaying the results. In order to run exiwhat
successfully you have to have sufficient privilege to send the signal to the Exim processes, so it is
normally run as root.

When the number of processes handling incoming SMTP calls is limited by setting the smtp_accept_
max option, the daemon uses the SIGCHLD signal to detect when any of its subprocesses finishes. On
some operating systems this signal sometimes gets lost when the system is very busy. However,
Exim’s daemon cleans up subprocesses every time it wakes up, so even if SIGCHLD doesn’t happen, the
completion of subprocesses should eventually get noticed.

46.6 Changing the configuration
A changed configuration file is picked up immediately by any Exim processes that are subsequently
started, and by any existing process that re-execs Exim, but it will not be noticed by any existing
processes. The daemon process can be caused to restart itself by sending it the SIGHUP signal, which
should also be sent when a new version of the Exim binary is installed. Restarting causes its process id
to change. The current process id is written to a file whose name depends on the type of daemon being
run. By default, the file is written in Exim’s spool directory, but a compile-time configuration of
PID_FILE_PATH can be used to cause it to be placed elsewhere. When the daemon is both listening for
incoming SMTP on the standard port and periodically starting queue runner processes, the file is called
exim-daemon.pid. If it is doing only one of these things, the option that started it (either -bd or
-q<time>) is added to the file name. It is not necessary to use SIGHUP when changing the contents of

[224] day-to-day management (46)

any files referred to in the configuration (for example, alias files) since each delivery process reads
such files independently.

46.7 Watching the queue
The queue of messages awaiting delivery can be examined by running the Exim monitor (see chapter
48), or by obeying exim -bp periodically. The exiqsumm utility script can be called to obtain a
summary of the waiting messages for each domain, sorted by domain, age, or message count.

If any messages are frozen, their header files and message log files should be examined to determine
the cause of the problem. Once the problem is believed to be fixed, the messages can be unfrozen by
the administrator, who can also kick off an immediate delivery attempt, and also change recipient and
sender addresses if necessary.

46.8 Holding domains
The option hold_domains allows mail for particular domains to be held on the queue manually. This
option is intended as a temporary operational measure for delaying the delivery of mail while some
problem is being sorted out, or some new configuration tested.

[225] day-to-day management (46)

47. Exim utilities

A number of utility scripts and programs are supplied with Exim. Most of them are built as part of the
normal building process, but the log file analyser is entirely free-standing.

47.1 Querying Exim processes
The shell script called exiwhat first of all empties the process log file in Exim’s log directory. It then
uses the ps command to find all processes running exim, and sends each one the SIGUSR1 signal. This
causes each process to write a single line describing its current activity to the process log. The script
then waits for one second to allow the Exim processes to react, then copies the file to the standard
output.

Unfortunately, the ps command varies between different versions of Unix. Not only are different
options used, but the format of the output is different. For this reason, there are some system
configuration options that configure exactly how exiwhat works. If it doesn’t seem to be working for
you, check the following compile-time options:

EXIWHAT_PS_CMD the command for running ps
EXIWHAT_PS_ARG the argument for ps
EXIWHAT_EGREP_ARG the argument for egrep to select from ps output
EXIWHAT_KILL_ARG the argument for the kill command

This facility is available only in operating systems where a signal handler can be set up such that an
interrupted system call is resumed when the signal handler has finished. An example of typical output
from exiwhat is

164 1.82 daemon: -q1h, listening on port 25
10483 1.90 running queue: waiting for 0tAycK-0002ij-00 (10492)
10492 1.90 delivering 0tAycK-0002ij-00 to mail.ref.book [42.42.42.42]
(editor@ref.book)

10592 1.82 handling incoming call from [245.211.243.242]
10628 1.90 accepting a local non-SMTP message

The first number in the output line is the process number; the second is the Exim version number. The
third line has been split here, in order to fit it on the page. Because Exim processes run under a variety
of uids, it is necessary to run exiwhat as root in order to be able to send the signal to all Exim
processes.

47.2 Summarising the queue
The exiqsumm utility is a Perl script, provided in the util directory, which reads the output of exim
-bp and produces a summary of the messages by outputting a line like the following for each domain:

3 2322 74m 66m msn.com

This contains the number of messages for that domain, their total volume, and the length of time the
oldest and the newest have been waiting. By default the output is sorted on the domain name, but
exiqsumm has the options -a and -c, which cause it to be sorted by oldest message and by count of
messages, respectively.

The output of exim -bp is based on the original addresses in the message, so no addresses generated
by aliasing or forwarding are included. Consequently this applies also to the output from exiqsumm.

47.3 Extracting log information
The exigrep utility is a Perl script, provided in the util directory, that extracts from one or more log
files all entries relevant to any message whose log entries contain at least one that matches a given

[226] utilities (47)

pattern. The pattern match is case-insensitive. Thus one can search for all mail for a given user or a
given host, for example. The usage is:

exigrep [-l] <pattern> [<log file>] ...

where the -l flag means ‘literal’, that is, treat all characters in the pattern as standing for themselves.
Otherwise the pattern must be a Perl regular expression. If no file names are given on the command
line, the standard input is read.

47.4 Cycling log files
The exicyclog script cycles the main and reject log files. Each time it is run the files get ‘shuffled
down’ by one. If the main log file name is mainlog (the default) then when exicyclog is run mainlog
becomes mainlog.01, the previous mainlog.01 becomes mainlog.02 and so on, up to a limit which is
set in the script, and which defaults to 10.

In versions of Exim prior to 1.90, exicyclog used single-digits for numbers less than ten. This was
changed to make the files list in a more natural order. The script contains conversion code. If it finds a
file called mainlog.1 it attempts to rename all files in the old form to the new form.

If no mainlog file exists, the script does nothing. Reject logs are handled similarly. Files that ‘drop
off ’ the end are deleted. All files with numbers greater than 01 are compressed, using a compression
command which is configured in the script.

It is usual to run exicyclog daily from a crontab entry of the form

1 0 * * * /opt/exim/bin/exicyclog

In this way, each day’s log is (mostly) in a separate file. There will be some overlap from processes
that have the log open at the time of renaming.

The exicyclog script can be run as the Exim user when one is defined, as the log files will be owned
by that user in that case. Otherwise it has to be run as root.

47.5 Making DBM files
The exim_dbmbuild program reads an input file in the format of an alias file (see chapter 21) and
writes a DBM database using the lower-cased alias names as keys and the remainder of the infor-
mation as data. A terminating zero is included as part of the key string. The lower-casing can be
prevented by calling it with the -nolc option. Two arguments are required: the name of the input file
(which can be a single hyphen to indicate the standard input), and the base name of the output
database. For example:

exim_dbmbuild /etc/aliases /etc/aliases

reads the system alias file and creates a DBM database using /etc/aliases as the base name. In systems
that use the ndbm routines, the database consists of two files called (in this case) /etc/aliases.dir and
/etc/aliases.pag, while in systems using the ndbm interface to the db routines a single file called
/etc/aliases.db is created. If the native db interface is in use (USE_DB is set in a compile-time
configuration file) then a single file with no added prefix is created. In this case the two file names on
the command line must be different. The utility in fact creates the database under a temporary name,
and then renames the file(s).

47.6 Individual retry times
A utility called exinext (mostly a Perl script) provides the ability to fish specific information out of the
retry database. Given a mail domain (or a complete address), it looks up the hosts for that domain, and
outputs any retry information. At present, the retry information is obtained by running exim_dumpdb
(see below) and post-processing the output. For example:

[227] utilities (47)

exinext piglet@milne.fict.book
kanga.milne.fict.book:100.100.8.1 error 146: Connection refused
first failed: 21-Feb-1996 14:57:34
last tried: 21-Feb-1996 14:57:34
next try at: 21-Feb-1996 15:02:34

roo.milne.fict.book:100.100.8.3 error 146: Connection refused
first failed: 20-Jan-1996 13:12:08
last tried: 21-Feb-1996 11:42:03
next try at: 21-Feb-1996 19:42:03
past final cutoff time

You can also give exinext a local local_part, without a domain, and it will give any retry information
for it. Also, a message id can be given to obtain retry information pertaining to a specific message.
This exists only when an attempt to deliver a message to a remote host suffers a message-specific error
(see section 42.2). Exinext is not particularly ef ficient, but then it isn’ t expected to be run very often.

47.7 Database maintenance
Three utility programs are provided for maintaining the DBM files that Exim uses to contain its
delivery hint information. Each program requires two arguments. The first specifies the name of
Exim’s spool directory, and the second is the name of the database it is to operate on. These are as
follows:

• retry: the database of retry information

• reject: the database of information about rejected messages

• wait-<transport name>: databases of information about messages waiting for remote hosts

• serialize-<transport name>: databases of information about current connections to hosts which
are restricted to one connection at a time

• serialize-etrn-runs: database of information about current queue runs started by the ETRN com-
mand when smtp_etrn_serialize is set.

The entire contents of a database are written to the standard output by the exim_dumpdb program,
which has no options or arguments other than the spool and database names. For example, to dump the
retry database:

exim_dumpdb /var/spool/exim retry

Two lines of output are produced for each entry:

T:mail.ref.book:242.242.242.242 146 77 Connection refused
31-Oct-1995 12:00:12 02-Nov-1995 12:21:39 02-Nov-1995 20:21:39 *

The first item on the first line is the key of the record. It starts with one of the letters D, R, or T,
depending on whether it refers to a directing, routing, or transport retry. For a local delivery, the next
part is the local address; for a remote delivery it is the name of the remote host, followed by its failing
IP address. Then there follows an error code, an additional error code, and a textual description of the
error.

The three times on the second line are the time of first failure, the time of the last delivery attempt,
and the computed time for the next attempt. The line ends with an asterisk if the cutoff time for the
last retry rule has been exceeded.

Each output line from exim_dumpdb for the reject database consists of a date and time, followed by
the letter T or F and a fixed point number, followed by the address that was rejected, followed either
by the name of the host that sent the bad address, if this has been verified, or otherwise the IP address.
The letter is F if only one previous rejection of this address (from this host) has been done recently,
and T if a second has occurred, causing rejection of the MAIL command, and subsequently rejection of
the RCPT commands. The fixed point number is zero when the last rejection was a permanent one.

[228] utilities (47)

Otherwise it records the rate of temporary rejections for the same address from the same host, per
hour.

Each output line from exim_dumpdb for the wait-xxx databases consists of a host name followed by a
list of ids for messages that are or were waiting to be delivered to that host. If there are a very large
number for any one host, continuation records, with a sequence number added to the host name, may
be seen. The data in these records is often out of date, because a message may be routed to several
alternative hosts, and Exim makes no effort to keep cross-references.

Each output line from exim_dumpdb for the serialize-smtp database consists of a host name preceded
by the time that Exim made a connection to that host. Exim keeps track of connections only for those
hosts or networks that have been configured for serialization.

The exim_tidydb utility program is used to tidy up the contents of the databases. If run with no
options, it removes all records from a database that are more than 30 days old. The cutoff date can be
altered by means of the -t option, which must be followed by a time. For example, to remove all
records older than a week from the retry database:

exim_tidydb -t 7d /var/spool/exim retry

For the wait-xxx databases, the -f option can also be used. This causes a check to be made to ensure
that message ids in database records are those of messages that are still on the queue. Other message
ids are removed, and if this leaves records empty, they are also removed. The -f option can also be
used for the retry database; it causes the removal of any retry records for specific messages if those
messages no longer exist. For other types of database, -f has no effect.

The exim_tidydb utility outputs comments on the standard output whenever it removes information
from the database. It is suggested that it be run periodically on all three databases, but at a quiet time
of day, since it requires a database to be locked (and therefore inaccessible to Exim) while it does its
work.

The exim_fixdb program is a utility for interactively modifying databases. Its main use is for testing
Exim, but it might also be occasionally useful for getting round problems in a live system. It has no
options, and its interface is somewhat crude. On entry, it prompts for input with a right angle-bracket.
A key of a database record can then be entered, and the data for that record is displayed.

If ‘d’ is typed at the next prompt, the entire record is deleted. For all except the retry database, that is
the only operation that can be carried out. For the retry database, each field is output preceded by a
number, and data for individual fields can be changed by typing the field number followed by new
data, for example:

> 4 951102:1000

resets the time of the next delivery attempt. Time values are given as a sequence of digit pairs for
year, month, day, hour, and minute. Colons can be used as optional separators.

47.8 Mail statistics
A Perl script called eximstats is supplied in the util directory. This has been hacked about quite a bit
over time. It now gives quite a lot of information by default, but there are options for suppressing
various parts of it. Following any options, the arguments to the script are a list of files, which should
be main log files.

Eximstats extracts information about the number and volume of messages received from or delivered
to various hosts. The information is sorted both by message count and by volume, and the top fifty
hosts in each category are listed on the standard output. For messages delivered and received locally,
similar statistics are produced per user.

The output also includes total counts and statistics about delivery errors, and histograms showing the
number of messages received and deliveries made in each hour of the day. A delivery with more than
one address in its ‘envelope’ (for example, an SMTP transaction with more than one RCPT command)
is counted as a single delivery by eximstats.

[229] utilities (47)

Though normally more deliveries than receipts are reported (as messages may have multiple recipi-
ents), it is possible for eximstats to report more messages received than delivered, even though the
spool is empty at the start and end of the period in question. If an incoming message contains no valid
recipients, no deliveries are recorded for it. An error report is handled as an entirely separate message.

Eximstats always outputs a grand total summary giving the volume and number of messages received
and deliveries made, and the number of hosts involved in each case. It also outputs the number of
messages that were delayed (that is, not completely delivered at the first attempt), and the number that
had at least one address that failed.

The remainder of the output is in sections that can be independently disabled or modified by various
options. It consists of a summary of deliveries by transport, histograms of messages received and
delivered per time interval (default per hour), information about the time messages spent on the queue,
a list of relayed messages, lists of the top fifty sending hosts, local senders, destination hosts, and
destination local users by count and by volume, and a list of delivery errors that occurred.

The relay information lists messages that were actually relayed, that is, they came from a remote host
and were directly delivered to some other remote host. A delivery that is considered as a relay by the
checking features described in section 40.4, because its domain is not in local_domains, might still
end up being delivered locally under some configurations, and if this happens it doesn’t show up as a
relay in the eximstats output.

The options for eximstats are as follows:

-nt Suppress the statistics about delivery by transport.

-h<n> This option controls the histograms of messages received and deliveries per time interval. By
default the time interval is one hour. If -h0 is given, the histograms are suppressed; otherwise
the value of <n> gives the number of divisions per hour, so -h2 sets an interval of 30
minutes, and the default is equivalent to -h1.

-q0 Suppress information about times messages spend on the queue.

-q<n1>...
This option sets an alternative list of time intervals for the queueing information. The values
are separated by commas and are in seconds, but can involve arithmetic multipliers, so for
example you can set 3*60 to specify 3 minutes. A setting such as

-q60,5*60,10*60

causes eximstats to give counts of messages that stayed on the queue for less than one
minute, less than five minutes, less than ten minutes, and over ten minutes.

-nr Suppress information about messages relayed through this host.

-nr/pattern/
Suppress information about relayed messages that match the pattern, which is matched against
a string of the following form (split over two lines here in order to fit it on the page):

H=<host> [<ip address>] A=<sender address> =>
H=<host> A=<recipient address>

for example

H=in.host [1.2.3.4] A=from@some.where =>
H=out.host A=to@else.where

The sending host name appears in parentheses if it has not been verified as matching the IP
address. The mail addresses are taken from the envelope, not the headers. This option allows
you to screen out hosts whom you are happy to have using your host as a relay.

-t<n> Sets the ‘top’ count to <n>. This controls the listings of the ‘top <n>’ hosts and users by
count and volume. The default is 50, and setting 0 suppresses the output altogether.

-tnl Omit local information from the ‘top’ listings.

[230] utilities (47)

-ne Suppress the list of delivery errors.

47.9 Mailbox maintenance
The exim_lock utility locks a mailbox file using the same algorithm as Exim. This can be used to
prevent any modification of a mailbox by Exim or a user agent while investigating a problem. The
utility requires the name of the file as its first argument. If the locking is successful, the second
argument is run as a command (using C’s system() function); if there is no second argument, the value
of the SHELL environment variable is used; if this is unset or empty, /bin/sh is run. When the
command finishes, the mailbox is unlocked and the utility ends. The following options are available:

-fcntl Use fcntl() locking on the open mailbox.

-lockfile Create a lock file before opening the mailbox.

-mbx Lock the mailbox using MBX rules.

-v Generate verbose output.

-q Suppress verification output.

If none of -fcntl, -lockfile or -mbx are given, the default is to create a lock file and also use fcntl()
locking on the mailbox, which is the same as Exim’s default. The use of -fcntl requires that the file be
writeable; the use of -lockfile requires that the directory containing the file be writeable. Locking by
lock file does not last for ever; Exim assumes that a lock file is expired if it is more than 30
minutes old.

The -mbx option is mutually exclusive with -fcntl. It causes a shared lock to be taken out on the open
mailbox, and an exclusive lock on the file /tmp/.n.m where n and m are the device number and inode
number of the mailbox file. When the locking is released, if an exclusive lock can be obtained for the
mailbox, the file in /tmp is deleted.

The default output contains verification of the locking that takes place. The -v option causes some
additional information to be given. The -q option suppresses all output except error messages.

A command such as

exim_lock /var/spool/mail/spqr

runs an interactive shell while the file is locked, whereas

eximlock -q /var/spool/mail/spqr <<End
 <some commands>
 End

runs a specific non-interactive sequence of commands while the file is locked, suppressing all verifi-
cation output. A single command can be run by a command such as

exim_lock -q /var/spool/mail/spqr \
"cp /var/spool/mail/spqr /some/where"

Note that if a command is supplied, it must be entirely contained within the second argument – hence
the quotes.

[231] utilities (47)

48. The Exim monitor

The Exim monitor is an application which displays in an X window information about the state of
Exim’s queue and what Exim is doing. An admin user can perform certain operations on messages
from this GUI interface; however all such facilities are also available from the command line, and
indeed, the monitor itself makes use of it.

48.1 Running the monitor
The monitor is started by running the script called eximon. This is a shell script which sets up a
number of environment variables, and then runs the binary called eximon.bin. The appearance of the
monitor window can be changed by editing the Local/eximon.conf file created by editing
exim_monitor/EDITME. Comments in that file describe what the various parameters are for.

The parameters that get built into the eximon script can be overridden for a particular invocation by
setting up environment variables of the same names, preceded by ‘EXIMON_’. For example, a shell
command such as

EXIMON_LOG_DEPTH=400 eximon

(in a Bourne-compatible shell) runs eximon with an overriding setting of the LOG_DEPTH parameter. X
resources can be used to change the appearance of the window in the normal way. For example, a
resource setting of the form

Eximon*background: gray94

changes the colour of the background to light grey rather than white. The stripcharts are drawn with
both the data lines and the reference lines in black. This means that the reference lines are not visible
when on top of the data. However, their colour can be changed by setting a resource called ‘highlight’
(an odd name, but that’s what the Athena stripchart widget uses). For example, if your X server is
running Unix, you could set up lighter reference lines in the stripcharts by obeying

xrdb -merge <<End
Eximon*highlight: gray

 End

In order to see the contents of messages on the spool, and to operate on them, eximon must either be
run as root or by an admin user, that is, a user who is a member of the Exim group (when one is
defined).

The monitor ’s window is divided into three parts. The first contains one or more stripcharts and two
action buttons, the second contains a ‘tail’ of the main log file, and the third is a display of the queue
of messages awaiting delivery.

48.2 The stripcharts
The first stripchart is always a count of messages on the queue. Its name can be configured by setting
QUEUE_STRIPCHART_NAME in the Local/eximon.conf file. The remaining stripcharts are defined in the
configuration script by regular expression matches on log file entries, making it possible to display, for
example, counts of messages delivered to certain hosts or using certain transports. The supplied
defaults display counts of received and delivered messages, and of local and SMTP deliveries. The
default period between stripchart updates is one minute; this can be adjusted by a parameter in the
Local/eximon.conf file.

The stripchart displays rescale themselves automatically as the value they are displaying changes.
There are always 10 horizontal lines in each chart; the title string indicates the value of each division
when it is greater than one. For example, ‘x2’ means that each division represents a value of 2.

It is also possible to have a stripchart which shows the percentage fullness of a particular disc
partition, which is useful when local deliveries are confined to a single partition. This relies on the

[232] monitor (48)

availability of the statvfs function or equivalent in the operating system. Most, but not all versions of
Unix that support Exim have this. For this particular stripchart, the top of the chart always represents
100%, and the scale is given as ‘x10%’. It is configured by setting SIZE_STRIPCHART and (optionally)
SIZE_STRIPCHART_NAME in the Local/eximon.conf file.

48.3 Main action buttons
Below the stripcharts there is an action button for quitting the monitor. Next to this is another button
marked ‘Size’. They are placed here so that shrinking the window to its default minimum size leaves
just the queue count stripchart and these two buttons visible. Pressing the ‘Size’ button causes the
window to expand to its maximum size, unless it is already at the maximum, in which case it is
reduced to its minimum.

When expanding to the maximum, if the window cannot be fully seen where it currently is, it is
moved back to where it was the last time it was at full size. When it is expanding from its minimum
size, the old position is remembered, and next time it is reduced to the minimum it is moved back
there.

The idea is that you can keep a reduced window just showing one or two stripcharts at a convenient
place on your screen, easily expand it to show the full window when required, and just as easily put it
back to what it was. The idea is copied from what the twm window manager does for its f.fullzoom
action. The minimum size of the window can be changed by setting the MIN_HEIGHT and MIN_WIDTH

values in Local/eximon.conf.

Normally, the monitor starts up with the window at its full size, but it can be built so that it starts up
with the window at its smallest size, by setting START_SMALL=yes in Local/eximon.conf.

48.4 The log display
The second section of the window is an area in which a display of the tail of the main log is
maintained. This has a scroll bar at its lefthand side which can be used to move back to look at earlier
text, and the arrow keys also have this effect. Similarly, there is a horizontal scroll bar for accessing
long log lines. Text can be cut from this part of the window using the mouse in the normal way. The
size of this subwindow is controlled by parameters in the configuration file Local/eximon.conf.

Searches of the text in the log window can be carried out by means of the ^R and ^S keystrokes,
which default to a reverse and forwards search respectively. The search covers only the text that is
displayed in the window. It cannot go further back up the log.

The point from which the search starts is indicated by a caret marker. This is normally at the end of
the text in the window, but can be positioned explicitly by pointing and clicking with the left mouse
button, and is moved automatically by a successful search. If new text arrives in the window when it
is scrolled back, the caret remains where it is, but if the window is not scrolled back, the caret is
moved to the end of the new text.

Pressing ^R or ^S pops up a window into which the search text can be typed. There are buttons for
selecting forward or reverse searching, for carrying out the search, and for cancelling. If the ‘Search’
button is pressed, the search happens and the window remains so that further searches can be done. If
the ‘Return’ key is pressed, a single search is done and the window is closed. If ^C is pressed the
search is cancelled.

The searching facility is implemented using the facilities of the Athena text widget. By default this
pops up a window containing both ‘search’ and ‘replace’ options. In order to suppress the unwanted
‘replace’ portion for eximon, a modified version of the TextPop widget is distributed with Exim.
However, the linkers in BSDI and HP-UX seem unable to handle an externally provided version of
TextPop when the remaining parts of the text widget come from the standard libraries. The compile-
time option EXIMON_TEXTPOP can be unset to cut out the modified TextPop, making it possible to build
Eximon on these systems, at the expense of having unwanted items in the search popup window.

[233] monitor (48)

48.5 The queue display
The bottom section of the monitor window contains a list of all messages that are on the queue, which
includes those currently being received or delivered, as well as those awaiting delivery. The size of
this subwindow is controlled by parameters in the configuration file Local/eximon.conf, and the
frequency at which it is updated is controlled by another parameter in the same file – the default is 5
minutes, since queue scans can be quite expensive. However, there is an ‘Update’ action button just
above the display which can be used to force an update of the queue display at any time.

When a host is down for some time, a lot of pending mail can build up for it, and this can make it
hard to deal with other messages on the queue. To help with this situation there is a button next to
‘Update’ called ‘Hide’. If pressed, a dialogue box called ‘Hide addresses ending with’ is put up. If you
type anything in here and press ‘Return’, the text is added to a chain of such texts, and if every
undelivered address in a message matches at least one of the texts, the message is not displayed.

If there is an address that does not match any of the texts, all the addresses are displayed as normal.
The matching happens on the ends of addresses so, for example, cam.ac.uk specifies all addresses in
Cambridge, while xxx@foo.com specifies just one specific address. When any hiding has been set up,
a button called ‘Unhide’ is displayed. If pressed, it cancels all hiding. Also, to ensure that hidden
messages don’t get forgotten, a hide request is automatically cancelled after one hour.

While the dialogue box is displayed, you can’t press any buttons or do anything else to the monitor
window. For this reason, if you want to cut text from the queue display to use in the dialogue box, you
have to do the cutting before pressing the ‘Hide’ button.

The queue display contains, for each unhidden queued message, the length of time it has been on the
queue, the size of the message, the message id, the message sender, and the first undelivered recipient,
all on one line. If it is a delivery error message, the sender is shown as ‘<>’. If there is more than one
recipient to which the message has not yet been delivered, subsequent ones are listed on additional
lines, up to a maximum configured number, following which an ellipsis is displayed. Recipients that
have already received the message are not shown. If a message is frozen, an asterisk is displayed at the
left-hand side.

The queue display has a vertical scroll bar, and can also be scrolled by means of the arrow keys. Text
can be cut from it using the mouse in the normal way. The text searching facilities, as described above
for the log window, are also available, but the caret is always moved to the end of the text when the
queue display is updated.

48.6 The queue menu
If the shift key is held down and the left button is clicked when the mouse pointer is over the text for
any message, an action menu pops up, and the first line of the queue display for the message is
highlighted. This does not affect any selected text. If you want to use some other event for popping up
the menu, you can set the MENU_EVENT parameter in Local/eximon.conf to change the default, or set
EXIMON_MENU_EVENT in the environment before starting the monitor. The value set in this parameter is a
standard X event description. For example, to run eximon using ctrl rather than shift you could use

EXIMON_MENU_EVENT=’Ctrl<Btn1Down>’ eximon

The title of the menu is the message id, and it contains entries which act as follows:

• message log: The contents of the message log for the message are displayed in a new text
 window.

• headers: Information from the spool file that contains the envelope information and headers is
displayed in a new text window. See chapter 50 for a description of the format of spool files.

• body: The contents of the spool file containing the body of the message are displayed in a new
text window. There is a default limit of 20,000 bytes to the amount of data displayed. This can be
changed by setting the BODY_MAX option at compile time, or the EXIMON_BODY_MAX option at
runtime.

[234] monitor (48)

• deliver message: A call to Exim is made using the -M option to request delivery of the message.
This causes an automatic thaw if the message is frozen. The -v option is also set, and the output
from Exim is displayed in a new text window. The delivery is run in a separate process, to avoid
holding up the monitor while the delivery proceeds.

• freeze message: A call to Exim is made using the -Mf option to request that the message be
 frozen.

• thaw message: A call to Exim is made using the -Mt option to request that the message be
 thawed.

• give up on msg: A call to Exim is made using the -Mg option to request that Exim gives up
trying to deliver the message. A delivery failure report is generated for any remaining
undelivered addresses.

• remove message: A call to Exim is made using the -Mrm option to request that the message be
deleted from the system without generating any failure reports.

• add recipient: A dialog box is displayed into which a recipient address can be typed. If the
address is not qualified and the QUALIFY_DOMAIN parameter is set in Local/eximon.conf, the
address is qualified with that domain. Otherwise it must be entered as a fully qualified address.
Pressing RETURN causes a call to Exim to be made using the -Mar option to request that an
additional recipient be added to the message, unless the entry box is empty, in which case no
action is taken.

• mark delivered: A dialog box is displayed into which a recipient address can be typed. If the
address is not qualified and the QUALIFY_DOMAIN parameter is set in Local/eximon.conf, the
address is qualified with that domain. Otherwise it must be entered as a fully qualified address.
Pressing RETURN causes a call to Exim to be made using the -Mmd option to mark the given
recipient address as already delivered, unless the entry box is empty, in which case no action is

 taken.

• mark all delivered: A call to Exim is made using the -Mmad option to mark all recipient
addresses as already delivered.

• edit sender: A dialog box is displayed initialized with the current sender ’s address. Pressing
RETURN causes a call to Exim to be made using the -Mes option to replace the sender address,
unless the entry box is empty, in which case no action is taken. If the address is not qualified and
the QUALIFY_DOMAIN parameter is set in Local/eximon.conf, the address is qualified with that
domain. Otherwise it must be a fully qualified address.

• edit body: A new xterm process is forked in which a call to Exim is made using the -Meb option
in order to allow the body of the message to be edited. Note that the first line of the body file is
the name of the file, and this should never be changed.

In cases when a call to Exim is made, the actual command used is reflected in a new text window by
default, but this can be turned off for all except the delivery action by setting ACTION_OUTPUT=no in
Local/eximon.conf. However, if the call results in any output from Exim (in particular, if the
command fails) a window containing the command and the output is displayed. Otherwise, the results
of the action are normally apparent from the log and queue displays. The latter is automatically
updated for actions such as freezing and thawing, unless ACTION_QUEUE_UPDATE=no has been set in
Local/eximon.conf. In this case the ‘Update’ button has to be used to force an update to the display
after freezing or thawing.

In any text window that is displayed as result of a menu action, the normal cut-and-paste facility is
available, and searching can be carried out using ^R and ^S, as described above for the log tail
window.

[235] monitor (48)

49. Security considerations

This chapter discusses a number of issues concerned with security, some of which are also covered in
other parts of this manual.

For reasons that this author does not understand, some people have promoted Exim as a ‘particularly
secure’ mailer. Perhaps it is because of the existence of this chapter in the documentation. However,
the intent of the chapter is simply to describe the way Exim works in relation to certain security
concerns, not to make any specific claims about the effectiveness of its security as compared with
other MTAs.

What follows is a description of the way Exim is supposed to be. Best efforts have been made to try to
ensure that the code agrees with the theory, but an absence of bugs can never be guaranteed. Any that
are reported will get fixed as soon as possible.

49.1 Root privilege
The Exim binary is normally setuid to root. In some special cases (for example, when the daemon is
not in use and there are no conventional local deliveries), it may be possible to run it setuid to some
user other than root. However, root privilege is usually required for two things:

• To set up a socket connected to the standard SMTP port (25) when initialising the listening
 daemon.

• To be able to change uid and gid in order to read forward files and perform local deliveries as the
receiving user or as specified in the configuration.

It is not necessary to be root to do any of the other things Exim does, such as receiving messages and
delivering them externally over SMTP, and it is obviously more secure if Exim does not run as root
except when necessary.

If no user is specified for Exim in either the compile-time or runtime configuration files, then it runs as
root all the time, except when performing local deliveries. When an alternative user is specified (which
is recommended), it gives up root privilege when it can. Exactly how and when it does this depends
on whether the operating system supports the seteuid() or the setresuid() function.

To avoid unnecessary complication, the discussion below talks about users, and functions for setting
the uid. It should be understood that in all cases there is a corresponding group and gid, and that this
is also changed whenever the uid is changed. The description is written in terms of seteuid(), since
this is more common than setresuid(). However, it is possible to specify at compile time that an
operating system has setresuid() and not seteuid().

On systems without seteuid(), Exim uses setuid() to give up root privilege at certain times, at the
expense of having to re-invoke itself (using exec) in order to regain privilege when necessary. If
seteuid() is available, there is a configuration choice as to which method is used for temporarily giving
up the privilege. Using setuid() is more secure, and is the default, but uses more resources.

There are two instances in which Exim always uses setuid():

• Exim always uses setuid() to become a non-root user when running a local delivery process.
There are no exceptions. This applies whether or not an Exim user is defined.

• Exim always uses setuid() to change to the Exim user (if one is defined) before doing remote
deliveries. These are the last things a delivery process does, so it does not need to regain root
privilege again.

There are two instances in which Exim always uses seteuid() (provided it is available in the operating
system):

[236] security (49)

• When reading a user ’s .forward file, Exim uses seteuid() to become that user. This is necessary
when the file is not publicly readable and is on a remote NFS file system that is mounted without
root privilege. If this is the case on a system without seteuid(), the .forward file cannot be read.

• If any director or router has the require_files option set to check the existence of a file as a
specific user, then seteuid() is used to become that user for the duration of the check.

For other operations, the security configuration option controls whether Exim uses setuid() or
seteuid() to change to its own uid. It can be set to one of three strings:

• seteuid: Exim uses seteuid() to give up root temporarily when it does not need it, and to regain
the privilege subsequently. This enables it to run with a non-root effective uid most of the time,
at very little cost, but offers less security.

• setuid: Exim uses setuid() to give up root when it is receiving a locally generated message, and
after it has set up a listening socket when running as a daemon. This means that, in order to
deliver a message that it has received, it has to re-invoke a fresh copy of itself to regain root
privilege. During delivery, it retains root except when actually transporting the message. In

 particular, it runs the directors and routers as root. Setuid() is generally reckoned to be more
secure than seteuid() but running this way uses more resources.

• setuid+seteuid: Exim uses setuid() as described immediately above, but in addition, it uses
seteuid() to give up root privilege temporarily when it needs to regain it subsequently without
losing a lot of state information, for example, while running the directors and routers.

On systems that do not support the seteuid() function, the only possible value for the security option
is ‘setuid’, and this is the default on such systems if an Exim user is defined. Otherwise the default is
‘setuid+seteuid’ – the most secure setting.

49.2 Reading forward files
When forward files are read from users’ home directories and those home directories are NFS mounted
without root privilege, even a program running as root cannot read a forward file that does not have
world read access.

If the seteuid() function is being used as described in the previous section, so that Exim is not root
when running the directors, then the forwardfile director automatically uses seteuid() to become the
local user when attempting to read a .forward file in a user ’s home directory. If seteuid() is not being
used generally, but is available in the operating system, the forwardfile director can be configured to
make use of it when reading files in home directories.

The forwardfile director does not necessarily have to read from users’ home directories as obtained
from getpwnam(). It can be given a directory explicitly, and a specific associated user and group. The
above remarks are applicable in this case also.

On systems that do not have seteuid(), the only way to support forward files on NFS file systems that
do not export root is to insist that the files be world readable.

Forward files are permitted to contain :include: items unless forbidden by setting forbid_include in the
director. If seteuid() is being used to read the forward file, then any included files are read as the same
user. Otherwise Exim is running as root, and it insists that any included files are within the same
directory as the forward file, and that there are no symbolic links below the directory. If no directory is
specified (either explicitly or by looking up a local user ’s home directory) then included files are not
permitted when seteuid() is not in use.

When the filtering option is enabled for forward files, users can construct pipe commands that contain
data from the incoming message by quoting variables such as $sender_address. To prevent the
contents of inserted data from interfering with a command, the string expansion is done after the
command line is split up into separate arguments, and the command is run directly instead of passing
the command line to a shell.

[237] security (49)

49.3 Delivering to local files
Full details of the checks applied by appendfile before it writes to a file are given in chapter 15.

49.4 IPv4 source routing
Many operating systems suppress IP source-routed packets in the kernel, but some cannot be made to
do this. Exim is configured by default to log incoming IPv4 source-routed TCP calls, and then to drop
the call. These actions can be independently turned off. Alternatively, the IP options can be deleted
instead of dropping the call. Things are all different in IPv6. No special checking is currently done.

49.5 The VRFY, EXPN, and ETRN commands in SMTP
Support for these SMTP commands is disabled by default. The VRFY command can be enabled by
setting smtp_verify. The EXPN command can be enabled for specific hosts by setting smtp_expn_
hosts, and there is a similar option controlling ETRN.

49.6 Privileged users
Exim recognises two sets of users with special privileges. Trusted users are able to submit new
messages to Exim locally, but supply their own sender addresses and information about a sending host.
For other users submitting local messages, Exim sets up the sender address from the uid, and doesn’t
permit a remote host to be specified.

However, an untrusted user is permitted to use the -f command line option in the special form -f <> to
indicate that a delivery failure for the message should not cause an error report. This affects the
message’s envelope, but it does not affect the Sender: header.

Trusted users are used to run processes that receive mail messages from some other mail domain and
pass them on to Exim for delivery either locally, or over the Internet. Exim trusts a caller that is
running as root, as the Exim user (if defined), as any user listed in the trusted_users configuration
option, or under any group listed in the trusted_groups option.

Admin users are permitted to do things to the messages on Exim’s queue. They can freeze or thaw
messages, cause them to be returned to their senders, remove them entirely, or modify them in various
ways. In addition, admin users can run the Exim monitor and see all the information it is capable of
providing, which includes the contents of files on the spool.

By default, the use of the -M and -q options to cause Exim to attempt delivery of messages on its
queue is restricted to admin users. However, this restriction can be relaxed by setting the
no_prod_requires_admin option.

Exim recognises an admin user if the calling process is running as root or as the Exim user (if defined)
or if any of the groups associated with the calling process is the Exim group (if defined). It is not
necessary actually to be running under the Exim group. However, if admin users who are not root or
exim are to access the contents of files on the spool via the Exim monitor (which runs unprivileged),
Exim must be built to allow group read access to its spool files.

49.7 Spool files
If a uid and gid are defined for Exim, then the spool directory and everything it contains will be
owned by exim and have its group set to exim. The mode for spool files is defined in the
Local/Makefile configuration file, and defaults to 0600. This should normally be changed to 0640 if a
uid and gid are defined for Exim, to allow access to spool files via the Exim monitor by other
members of the exim group.

49.8 Use of argv[0]
Exim examines the last component of argv[0], and if it matches one of a set of specific strings, Exim
assumes certain options. For example, calling Exim with the last component of argv[0] set to ‘rsmtp’
is exactly equivalent to calling it with the option -bS. There are no security implications in this.

[238] security (49)

49.9 Use of %f formatting
The only use made of ‘%f’ by Exim is in formatting load average values. These are actually stored in
integer variables as 1000 times the load average. Consequently, their range is limited and so therefore
is the length of the converted output.

49.10 Embedded Exim path
Exim uses its own path name, which is embedded in the code, only when it needs to re-exec in order
to regain root privilege. Therefore it is not root when it does so. If some bug allowed the path to get
overwritten, it would lead to an arbitrary program’s being run as exim, not as root. If there’s still
paranoia about this, two separate copies of the name could be kept, or a checksum could be applied to
the global data.

49.11 Use of sprintf()
A large number of occurrences of ‘sprintf’ in the code are actually calls to string_sprintf(), a function
which returns the result in malloc’d store. The intermediate formatting is done into a large fixed buffer
by a function that runs through the format string itself, and checks the length of each conversion
before performing it, thus preventing buffer overruns. [This was not true before Exim version 1.70.]

The remaining uses of sprintf() happen in controlled circumstances where the output buffer is known
to be sufficiently long to contain the converted string.

49.12 Use of debug_printf() and log_write()
Arbitrary strings are passed to both these functions, but they do their formatting by calling the function
string_vformat(), which runs through the format string itself, and checks the length of each conver-
sion. [This was not true before Exim version 1.70.]

49.13 Use of strcat() and strcpy()
These are used only in cases where the output buffer is known to be large enough to hold the result.

[239] security (49)

50. Format of spool files

A message on Exim’s spool consists of two files, whose names are the message id followed by -D and
-H, respectively. The data portion of the message is kept in the -D file on its own. The message’s
‘envelope’, status, and headers are all kept in the -H file, whose format is described in this chapter.
Each of these two files contains the final component of its own name as its first line. This is insurance
against disc crashes where the directory is lost but the files themselves are recoverable.

Files whose names end with -J may also be seen in the spool directory. These are journal files, used to
record addresses to which the message has been delivered during the course of a delivery run. At the
end of the run, the -H file is updated, and the -J file is deleted.

The second line of the header file contains the login id of the process that called Exim to create the
file, followed by the numerical uid and gid. For a locally generated message, this is normally the user
who sent the message. For an external message, the user is either root or exim.

The third line of the file contains the address of the message’s sender as transmitted in the ‘envelope’,
contained in angle brackets. In the case of incoming SMTP mail, this is the address given in the MAIL

command. For locally generated mail, the sender address is created by Exim from the login of the
current user and the configured qualify_domain, except when Exim is called by a trusted user that
supplied a sender address via the -f option, or a leading ‘From’ line. The sender address is null if the
message is a delivery failure report.

The fourth line contains two numbers. The first is the time that the message was received, in the form
supplied by the Unix time() function – a number of seconds since the start of the epoch. The second
number is a count of the number of messages warning of delayed delivery that have been sent to the
sender.

There follow a number of optional lines, each of which starts with a hyphen when present. These can
appear in any order, and are omitted when not relevant.

• -body_linecount <number>: This records the number of lines in the body of the message.

• -deliver_firsttime: This is written when a new message is first added to the spool. When the
spool file is updated after a deferral, it is omitted.

• -frozen <time>: The message is frozen, and the freezing happened at <time>. No deliveries will
be attempted while the message remains frozen, but the auto_thaw configuration option can
specify a time delay after which a delivery will be attempted.

• -helo_name <text>: This records the host name as specified by a remote host in a HELO or EHLO

 command.

• -host_name <text>: This records the name of the remote host from which the message was
received, if the host name was looked up from the IP address. It is not present if no reverse
lookup was done.

• -host_address <address>: This records the IP address of the remote host from which the
message was received. It is omitted for locally generated messages.

• -ident <text>: For locally submitted messages, this records the login of the originating user,
unless it was a trusted user and the -oMt option was used to specify an ident value. For messages
received over TCP/IP, this records the ident string supplied by the remote host.

• -interface_address <address>: This records the IP address of the local interface through which a
message was received from a remote host. It is omitted for locally generate d messages.

• -local: The message is from a local sender.

• -localerror: The message is a locally-generated delivery error report.

[240] spool file format (50)

• -manual_thaw: The message was frozen but has been thawed manually, that is, by an explicit
Exim command rather than via the auto-thaw process.

• -received_protocol: This records the value of the $received_protocol variable, which contains
the name of the protocol by which the message was received.

• -resent: The message contains Resent- headers, so the alternative set of header names is to be
used (see RFC 822).

• -user_null_sender: The message was received from an unprivileged user with the -f option
specifying ‘<>’ as the sender.

Following the options are those addresses to which the message is not to be delivered. This set of
addresses is initialized from the command line when the -t option is used and extract_addresses_
remove_arguments is set; otherwise it starts out empty. Whenever a successful delivery is made, the
address is added to this set. The addresses are kept internally as a balanced binary tree, and it is a
representation of that tree which is written to the spool file. If an address is expanded via an alias or
forward file, the original address is added to the tree when deliveries to all its child addresses are
completed.

If the tree is empty, there is a single line in the spool file containing just the text ‘XX’. Otherwise,
each line consists of two letters, which are either Y or N, followed by an address. The address is the
value for the node of the tree, and the letters indicate whether the node has a left branch and/or a right
branch attached to it, respectively. If branches exist, they immediately follow. Here is an example of a
three-node tree:

YY darcy@austen.fict.book
NN alice@wonderland.fict.book
NN editor@thesaurus.ref.book

After the non-recipients tree, there is a list of the message’s recipients. This is a simple list, preceded
by a count. It includes all the original recipients of the message, including those to whom the message
has already been delivered. In the simplest case, the list contains one address per line. For example:

4
 editor@thesaurus.ref.book
 darcy@austen.fict.book
 rdo@foundation
 alice@wonderland.fict.book

However, when a child address has been added to the top-level addresses as a result of the use of the
one_time option on an aliasfile or forwardfile director, each line is of the following form:

<top-level address> <flags number>,<parent number>,0

The flags at present contain only one bit, which is set for one_time addresses. It indicates that <parent
number> is the offset in the recipients list of the original parent of the address. The third number of
the trio is for future expansion and is currently always zero. A blank line separates the envelope and
status information from the headers which follow. A header may occupy several lines of the file, and
to save effort when reading it in, each header is preceded by a number and an identifying character.
The number is the number of characters in the header, including any embedded newlines and the
terminating newline. The character is one of the following:

[241] spool file format (50)

 <blank> header in which Exim has no special interest
B Bcc: header
C Cc: header
F From: header
I Message-id: header
P Received: header – P for ‘postmark’
R Reply-to: header
S Sender: header
T To: header
* replaced or deleted header

Deleted or replaced (rewritten) headers remain in the spool file for debugging purposes. They are not
transmitted when the message is delivered. When Resent- headers are present, it is those headers that
have the appropriate flags. Here is a typical set of headers:

111P Received: by hobbit.fict.book with local (Exim 0.17 #8)
id E0tHplY-0000mG-00; Tue, 21 Nov 1995 10:17:32 +0000

049 Message-Id: <E0tHplY-0000mG-00@hobbit.fict.book>
038* X-rewrote-sender: bb@hobbit.fict.book
042* From: Bilbo Baggins <bb@hobbit.fict.book>
049F From: Bilbo Baggins <B.Baggins@hobbit.fict.book>
099* To: alice@wonderland.fict.book, rdo@foundation,
darcy@austen.fict.book, editor@thesaurus.ref.book
109T To: alice@wonderland.fict.book, rdo@foundation.fict.book,
darcy@austen.fict.book, editor@thesaurus.ref.book
038 Date: Tue, 21 Nov 1995 10:17:32 +0000

The asterisked headers indicate that the envelope sender, From: header, and To: header have been
rewritten, the last one because routing expanded the unqualified domain foundation.

[242] spool file format (50)

51. Adding new drivers or lookup types

The following actions have to be taken in order to add a new director, router, transport or lookup type
to Exim:

(1) Choose a name for the driver or lookup type that does not conflict with any existing name; I will
use ‘newdriver’ in what follows.

(2) Add to src/EDITME the line

<type>_NEWDRIVER=yes

where <type> is DIRECTOR, ROUTER, TRANSPORT or LOOKUP. If the code is not to be included in the
binary by default, comment this line out. You should also add any relevant comments about the
driver or lookup type.

(3) Add to src/config.h.defaults the line

#define <type>_NEWDRIVER

(4) Edit src/drtables.c, adding conditional code to pull in the private header and create a table entry
as is done for all the other drivers and lookup types.

(5) Edit Makefile in the appropriate sub-directory (src/directors, src/routers, src/transports, or
 src/lookups); add a line for the new driver or lookup type and add it to the definition of OBJ.

(6) Create newdriver.h and newdriver.c in the appropriate sub-directory of src.

(7) Edit scripts/MakeLinks and add commands to link the .h and .c files as for other drivers and
 lookups.

Then all you need to do is write the code! A good way to start is to make a proforma by copying an
existing module of the same type, globally changing all occurrences of the name, and cutting out most
of the code. Note that any options you create must be listed in alphabetical order, because the tables
are searched using a binary chop procedure.

There is a README file in each of the sub-directories of src describing the interface that is expected.

[243] adding drivers (51)

 Index

*@ 32
$key 33, 41, 54, 130, 132
$value 48, 57, 164
+allow_unknown 44
/dev/null 140, 148
/etc/passwd 142

8-bit characters 61, 79

8BITMIME 61

abandoning mail 26, 140
accept_8bitmime 61
accept_timeout 61
adding drivers 243
additional groups 114, 120, 132
address:

constructed 216
duplicated 141
qualification 214
rewriting 179, 217
sender 24
testing 23, 137
verification 23, 195

address list case forcing 43
address list format 41
admin user 19, 25, 26, 232, 238
alias errors 142
alias file: 139

backslash in 139
building 19, 21
multi-domain 144
one-time expansion 144
per-domain default 32
repeated expansion 141

alias for host 44
aliasfile director 96, 97, 139
allow_commands 118
allow_localhost 125
allow_symlink 102
allow_system_actions 149
alternate configuration file 23, 36
always_bcc 61
angle brackets, excess 93
appendfile transport 97, 102
appending to a file 110
architecture type 14
asterisk after IP address 207
Athena 6
auto_thaw 8, 61
automatic mail processing 218
autoreply transport 76, 113

background delivery 27
backlog of connections 90
backslash in alias file 139
backslash in forward file 147
bad senders (fixing) 196
bang paths: 2

rewriting 183
banner for SMTP 90
batch delivery 119
batch option 102, 119
batch_max 103, 119, 125
batched SMTP input 22, 195, 212
batched SMTP output 165, 211
Bcc: header 30, 61, 179, 215
bcc option 113
bcopy 2
Berkeley DB 12
bi_command 61
BIN_DIRECTORY 16
bind IP address 72, 127
bitnet 165
black hole 140
body of message:

editing 25
expansion variable 54
size 54
transporting 98
visible size 75

body_only 98
bounce see delivery failure
broken forward files 156
bsmtp option 103, 119
bsmtp_helo 103, 119
build directory 14
building DBM files 227
building Exim 12

C header files 16
caching lookup data 34
case forcing in address lists 43
case forcing in strings 50
case of local parts 43, 216
Cc: header 30, 61
cc compiler 14
cc option 113
cdb 6, 15, 32
character code 79
check_ancestor 142, 150
check_group 103, 150
check_local_user 150
check_log_inodes 61
check_log_space 62
check_secondary_mx 171

 [245]

check_spool_inodes 62
check_spool_space 62
checking disc space 62, 90
closed mailing lists 134
collapse_source_routes 62
command line options 19
command option 119, 173
command_group 173
command_timeout 125
command_user 173
common option syntax 37
compiler name 14
condition option 130
configuration:

changes 224
default 186
main 61
pre-building 13
retry 175
runtime 23, 36

configuration file:
alternate 36
common option syntax 37
editing 16
errors 36
format 36
macros 37
ownership 36

configuration options 22
CONFIGURE_FILE 16, 23, 36
connect_timeout 125
connection backlog 90
constructed address 216
control of incoming mail 198
control of relaying 199
copy of message (unseen option) 134
CR 24, 207, 210
create_directory 103
create_file 103
creating directories 102
current directory 96
current_directory 104, 119, 142, 150, 157, 173
customizing:

Received: header 82
SMTP banner 90
SMTP error messages 202

cycling logs 227
Cyrus 121, 124

daemon 20, 72, 210, 224
daemon, process id 20, 22, 28, 29, 224
daemon_smtp_port 62
daemon_smtp_service 62
data_timeout 125
database:

lookup 32

maintenance 228
Date: header 215
DBM 32
DBM building 227
DBM libraries 12
debug_level 63
debug_print 98, 130
debugging 24
debugging output 24
default configuration 186
defaults for lookups 32
deferred delivery, forcing 140
delay_after_cutoff 126, 177
delay_warning 63
delay_warning_condition 63
deliver_load_max 63
deliver_queue_load_max 63
deliveries, maximum number of 85
delivery:

cancelling all 26
cancelling by address 26
deferral 10
failure 11, 143, 152, 153, 222
failure, long-term 177
failure report 8, 11, 24, 65, 86, 240
failure report, discarding 70
forcing 25
forcing deferral 140
forcing failure 140, 235
problems with 17
sorting remote 85
to given domain 30

delivery to single file 111
delivery_date_add 98
delivery_date_remove 63, 215
Delivery-date: header 63, 98, 215
dialup see intermittently connected hosts
directing loop 10, 140
director: 8

skipping 135, 138
directories, multiple 92
directory creation 102, 103, 110, 111
directory option 104
directory_mode 104
directory_transport 142, 151
directory2_transport 142, 151
disc space, checking 62, 90
discarded messages 222
DNS 33
DNS reverse lookup 57, 68, 186, 240
dns_again_means_nonexist 64
dns_check_names 64
dns_check_names_pattern 64
dns_qualify_single 126
dns_retrans 64
dns_retry 64

 [246]

dns_search_parents 126
domain:

definition 5
delivery to 30
in alias file 144
in alias file, preserving 145
list format 39
virtual 192

domain literal 66, 71, 72, 168
domainless addresses 2
domainlist router 161
domains option 130
dot handling 28, 93
dots in local parts 217
driver option 98, 130
driver specifications 95
drivers 8
duplicate addresses 141

EACCES 153
editing configuration files 16
editing message body 25
EDQUOT 15
EHLO 68, 207, 220
EHLO verification 195
ENOSPC 16
ENOTDIR 153
envelope_to_add 98
envelope_to_remove 64, 215
Envelope-to: header 64, 98, 103, 119, 146, 215
environment for local transports 96
environment for pipe transport 118, 120
environment option 120
errmsg_file 65
errmsg_text 65
ERRNO_QUOTA 15
error messages: 24

customizing 65, 184, 202
discarding 70

error reporting 27, 28
errors, in outgoing SMTP 208
errors in configuration file 36
errors_address 65
errors_copy 65
errors_reply_to 65
errors_to 131, 143, 151, 190
ETRN 53, 90, 91, 211
ETRN:

command 90
serializing 91

exceptions:
rejected recipients 84, 199

exec failure 120
exicyclog 227
exigrep 226
exim monitor 232

exim_dbmbuild 227
exim_dumpdb 228
exim_fixdb 229
exim_group 66
EXIM_GROUP 36
exim_lock 231
exim_monitor/EDITME 13, 232
exim_path 66
exim_tidydb 229
exim_user 66
EXIM_USER 36
eximon 232
eximstats 229
eximstats options 230
exinext 227
exiqsumm 226
exiwhat 226
expand option 143
expansion of strings: 47

alias data 143
conditions 48, 51
file lookup 48
headers 47
numeric comparison 51
operators 48, 49
query lookup 48
string comparison 52
testing 47
variables 47, 52

EXPN 91, 211
expn option 137
external local delivery 124
external transports 3
extract_addresses_remove_arguments 66
EXTRALIBS 15

fail_verify 131
fail_verify_recipient 131
fail_verify_sender 131
failing delivery, forcing 140
failure of exec 120
fallback_hosts 126, 131
file:

appending 110
length of names 2
locking 106, 110, 111
lookup 32, 48, 163
MBX format 106
too many open 75
transport 76

file option 104, 113, 143, 151
file_directory 151
file_expand 114
file_must_exist 104
file_optional 114
file_transport 143, 152

 [247]

filter:
system 75, 205
testing 20
testing, system 20

filter option 152
filtering all mail 205, 218
final_timeout 127
finduser_retries 66
fixed point format 38
fixing bad senders 196
forbid_domain_literals 66
forbid_file 143, 152
forbid_filter_logwrite 152
forbid_include 152
forbid_pipe 143, 153
forbid_reply 153
forcing delivery 25
foreground delivery 27
format:

address list 41
alias file 139
configuration file 36
domain list 39
fixed point 38
forward file 147
group name 39
host list 43
integer 37
message 21
octal integer 38
spool files 240
string 38
string list 39
time interval 38
user name 39

forward file: 237
backslash in 147
one-time expansion 154
testing 20

forward files:
broken 156
repeated expansion 149

forwardfile director 96, 97, 147
freeze_exec_fail 120
freeze_missing_include 143, 153
freeze_tell_mailmaster 67
freezing messages 26
‘From’ 21, 71, 214
From: header 19, 215
from option 114
from_hack 105, 120

gateway 165
gcc 14
gecos_name 67
gecos_pattern 67

generic options: 95
director 130, 137
router 130, 159
transport 98

gethostbyname option 127, 171
gid:

caller 53
 Exim’s own 66, 238

forward file 147
in spool file 240
local delivery 96, 105, 114, 131, 212
of originating user 55

 queryprogram 173
system filter 76, 205

giving up on messages 26
group name format 39
group option 105, 114, 120, 131
groups, additional 114, 120, 132

header files 16
header syntax checking 67
header verification 68, 197
headers:

adding 98, 132, 216
listing 26
removing 99, 132, 216
transporting 99

headers option 114
headers_add 98, 132
headers_check_syntax 67
headers_checks_fail 67
headers_only 99
headers_remove 99, 132
headers_sender_verify 68
headers_sender_verify_errmsg 68
HELO 68, 207, 220
HELO verification 195
helo_accept_junk_hosts 68
helo_strict_syntax 68
helo_verify 68
hold_domains 69
HOME 118
home directory 96, 147, 149, 153, 157
home_directory 120, 144, 153, 157
HOST 118
host:

alias 44
heavily loaded 18
list format 43
locally unique number 72
lookup failures 44
name 39, 70
name verification 195
serialising connections 129

host_accept_relay 69, 199
host_find_failed 161

 [248]

host_lookup 70
host_number 7
host_reject 70, 199
host_reject_recipients 70, 199
hosts option 127, 169
hosts_override 127
hosts_treat_as_local 70, 159
HP-UX 67
hub 166

id of message 7
ident see RFC 1413
ignore_eacces 153
ignore_enotdir 153
ignore_errmsg_errors 70
ignore_errmsg_errors_after 70
ignore_fromline_hosts 71
ignore_fromline_local 71
ignore_status 120
include_domain 144
included address list 140, 148, 237
incoming SMTP over TCP/IP 210
incorporated code 6
inetd 23, 24, 89, 210
initgroups option 114, 120, 132
initgroups option 96
installing exim 16
integer format 37, 38
interface address 28
interface option 127
intermittently connected hosts 194
IP address 72
IP address, binding 72, 127
IP options 71
IP source routing 71
ipliteral router 168
iplookup router 169
IPv6 14

journal file 8

keep_malformed 71
keepalive option 128
kill_ip_options 71

LDAP 15, 33, 35
length of file names 2
length of login name 75
LF 207, 210
limitations 2
linear search 32
listing:

message body 26
message headers 26
message log 26
the queue 21

load, heavy 18
load average 63, 80, 91
local address delivery 30
local delivery 27, 124
local delivery, definition 5
local domain, definition 5
local host:

domains treated as 70
MX pointing to 159, 171

local message reception 21
local nameserver 18
local part:

case of 73, 216
definition 5
dots in 217
prefix 189
starting with ! 42

 suffix 189
local SMTP input 23
local transports:

environment 96
uid and gid 96, 131, 132, 134

local_domains 71, 199
local_domains_include_host 72
local_domains_include_host_literals 72
local_interfaces 72
local_parts 132
Local/eximon.conf 13, 16, 232
Local/Makefile 13, 14
localhost_number 72
locally_caseless 73
localuser director 96, 97, 157
lock files 17
lock_interval 105
lock_retries 105
lockfile_mode 105
lockfile_timeout 105
locking files 104, 106, 110, 111
locking mailboxes 231
log:

all expanded addresses 73
cycling 224, 227
files 220
level 223
message 8, 223
process 224
SMTP connections 74
SMTP syntax errors 75
tail 233
unknown SMTP commands 75

log extraction 226
log option 114
log_all_parents 73
log_arguments 73
log_defer_output 121
log_fail_output 121

 [249]

log_file_path 73
log_ip_options 74
log_level 74
log_output 121
log_received_recipients 74, 221
log_received_sender 74, 221
log_refused_recipients 74
log_rewrites 74
log_smtp_confirmation 74
log_smtp_connections 74
log_smtp_syntax_errors 75
log_subject 75, 221
lookup: 32

* 32
*@ 32
caching 34
cdb 32
dbm 32
default values 32
DNS 33
LDAP 33, 35
lsearch 32
NIS 32
NIS+ 33, 35
partial matching 34
single key 32
temporary error 34
wildcard 32

lookup, in expanded string 48
lookup_open_max 75
lookuphost router 171
loop:

caused by fail 206
directing 10, 140
forward file 147
in lookups 42
local host 72, 125
prevention 83
prevention with IPV6 4
while file testing 111

lower casing 50, 73, 139, 181, 227

macro setting 24
macros in configuration file 37
mail delivery 7
mail filter 149
mail hub 166
mail loop prevention 83
mail relaying 69
mailbox maintenance 231
mailboxes, multiple 137, 189
mailboxes, size warning 108
maildir format 111
maildir_format 105
maildir_retries 106
maildir_tag 106

mailing lists: 190
closed 134, 191
re-expansion 191

mailmaster 5
mailq 19
mailstore format 111
mailstore_format 106
mailstore_prefix 106
mailstore_suffix 106
main configuration 61
main log 220
maintaining Exim’s database 228
make 14
match_directory 154, 157
max_output 121
max_rcpt 128
max_user_name_length 75
maximum incoming SMTP 89
maximum recipients 84
maximum retry interval 176
mbx_format 106
memmove 2
memory allocation 24
message:

adding recipients 25
 body, visible size 75

body in expansion 54
body size 54
changing sender 26
discarded 222
editing body of 25
format 21
id 7, 72
listing body of 26
log 8, 223
log listing 26
processing 214
queueing 80, 89
size 55
transporting body only 98
transporting headers only 99

message size 21, 129
message size limit 77, 86
message_body_visible 75
message_filter 75
message_filter_directory_transport 76
message_filter_directory2_transport 76
message_filter_file_transport 76
message_filter_group 76
message_filter_pipe_transport 76
message_filter_reply_transport 76
message_filter_user 76
message_id_header_text 77, 215
message_size_limit 77, 99
message_size_limit_count_recipients 77
Message-id: header 215

 [250]

mode option 107, 115
mode_fail_narrower 107
modemask option 144, 154, 161
monitor 6, 232
monitor window size 233
more option 133, 159, 161
msglog directory 223
multi_domain 128
multiple mailboxes 137, 189
multiple SMTP deliveries 25, 27, 29, 30, 125, 194
multiple spool directories 92
MX pointing to local host 159, 171
mx_domains 128, 171

name of sender 24
negation:

in domain lists 39
in host lists 43

negation in address lists 41
network interfaces 72
never_users 77
new drivers, adding 243
new_address 158
new_director 137
newaliases 19
NFS 104
NIS 15, 32
NIS+ 15, 33, 35
nobody_group 77
nobody_user 78
non-immediate delivery 27
notify_comsat 107
number of deliveries 85
numeric comparison 51

once option 115
once_repeat 115
one_time 144, 154
one-time aliasing expansion 144
one-time forwarding expansion 154
open files, too many 75
operating system type 14
optional option 144, 169
options:

aliasfile 142
appendfile 102
command line 19
command line, terminating 20
configuration 22
director 22
domainlist 161
forwardfile 149
generic 95
generic director 130, 137
generic router 130, 159
generic transport 98

iplookup 169
lookuphost 171
pipe 118
queryprogram 173
router 22
smartuser 158
smtp 125
transport 22

os.h 16
outgoing SMTP over TCP/IP 207
overriding build-time options 14
owners option 145, 154, 161
ownership of configuration file 36
owngroups option 145, 154, 162

panic log 220
panic_expansion_fail 158
partial matching 34, 41
pass_on_timeout 159
password file, doing without 142
path option 121
PCRE 6
‘percent hack’ 69, 78, 200, 201
percent_hack_domains 78
periodic queue running 29
Perl:

calling from Exim 59
embedded 15, 28, 29, 59
use in expanded string 49

perl_at_start 59, 78
perl_startup 59, 78
pid, of daemon 20, 22, 28, 29, 224
pid_file_path 78
pipe:

batch delivery 119
control of commands 117, 118
duplicated 141
environment 118, 120
failure of exec 120
logging output 121
path 117
returned data 117
temporary failure 123

pipe transport 76, 96, 97, 117
pipe_as_creator 121
pipe_transport 145, 155
policy checking flowchart 201
policy controls 198
port:

iplookup router 169
receiving TCP/IP 28
sending TCP/IP 128

port option 128, 169
postmaster 5, 65, 199
pre-building configuration 13
prefix option 107, 121, 137

 [251]

prefix_optional 138
preserve_message_logs 78, 223
preserving domain in alias file 145
primary host name 39
primary_hostname 39, 79
print_topbitchars 79
printing characters 79
private options 95
privileged user 238
process:

log 220, 224
querying 226

procmail 124, 157
prod_requires_admin 79
prohibition messages 202
prohibition_message 79
protocol 28
protocol option 169

qr files 207
qualify_domain 79, 214
qualify_preserve_domain 145, 155
qualify_recipient 79, 214
qualify_single 162, 172
queries option 145
query option 145, 169
queryprogram router 173
queue:

definition 5
display 234
double scanning 30
forcing 29
listing 21
local address delivery 30
routing 30
running 29, 30
summary 226

queue_list_requires_admin 80
queue_only 80
queue_only_file 80
queue_only_load 80
queue_remote_domains 80
queue_run_in_order 80
queue_run_max 81
queue_smtp_domains 81
queue-runner 5, 10, 19, 20, 29
queue-runners, maximum number of 81
queueing incoming messages 80, 89
quota:

imposed by Exim 107
warning threshold 108

quota option 107
quota_filecount 108
quota_warn_message 108
quota_warn_threshold 108
quote 50

quoting in pipe command 117
quoting insertions 50

RBL 81, 198, 204
rbl_domains 81, 198
rbl_hosts 81, 198
rbl_log_headers 81
rbl_log_rcpt_count 82
rbl_reject_recipients 82, 199
rbl_warn_header 82, 199
realtime blocking list see RBL
Received: header 215
received_header_text 82
received_headers_max 83
receiver verification 197
receiver_try_verify 83
receiver_unqualified_hosts 83
receiver_verify 83
receiver_verify_addresses 83
receiver_verify_hosts 83
receiver_verify_senders 83
recipients: 30

adding 25
maximum 84

recipients_max 84
recipients_max_reject 84
recipients_reject_except 84, 199
refuse_ip_options 84
regular expressions 6, 40, 46
reject log 220, 224
rejection by sender 199
rejection messages 202
relay_domains 84, 199
relay_domains_include_local_mx 84
relay_match_host_or_sender 85, 201
relaying:

control by sender 201
control of 69, 199
sender or host 201
testing configuration 20

remote delivery, definition 5
remote domain, definition 5
remote_max_parallel 85
remote_sort 85
removing messages 26
repeated alias expansion 141
repeated forwarding expansion 149
reply_to 115
reply_transport 155
require_files 133
require_lockfile 108
reroute option 170
response_pattern 170
restrict_to_path 122
retry algorithms 176
retry configuration 175

 [252]

retry configuration testing 22
retry interval, maximum 176
retry rules 175
retry time not reached 175, 222
retry times 227
retry_include_ip_address 128
retry_interval_max 86, 176
retry_use_local_part 108, 122
return_fail_output 122
return_message 115
return_output 122
return_path 99
return_path_add 100
return_path_remove 86, 216
return_size_limit 86
Return-path: header 86, 100, 216
reverse DNS lookup 57, 68, 186, 240
rewrite option 145, 155, 158
rewrite_headers 172
rewriting:

addresses 179, 217
bang paths 183
flags 182
headers 172
patterns 180
replacements 181
rules 179
testing 22, 74, 179
whole addresses 182

RFC 1413 6, 45, 199
rfc1413_hosts 86
rfc1413_query_timeout 86
rmail 19
root privilege 236
route_file 162
route_list 162
route_queries 162
route_query 162
router: 8

skipping 135
routing timeout 159
routing whole queue 30
rsmtp 19
runq 19
runtime configuration 23, 36
rxquote 51

search_parents 126, 162, 172
search_type 146, 163
security 148, 236
security option 86
self option 133, 135, 159
sender:

address 24, 214
changing 26
gid 55

host address 28
host name 28
ident string 28
name 24
rejection 199
source of 23
uid 55
verification 88, 195

Sender: header 19, 216
sender_address_relay 87, 201
sender_reject 87, 199
sender_reject_recipients 87, 199
sender_try_verify 87
sender_unqualified_hosts 87
sender_verify 88
sender_verify_batch 88
sender_verify_fixup 88
sender_verify_hosts 88
sender_verify_max_retry_rate 88
sender_verify_reject 89
senders option 134
serialising connections 129
serialize_hosts 129
service option 129, 170
seteuid 148, 236
seteuid option 155
setresuid 236
setuid 16, 236
shadow transport 100
shadow_condition 100
shadow_transport 100
SIGHUP 20, 224
SIGUSR1 224, 226
SIZE 207
size limit 77, 86
size of mailbox 108
size of message 21, 55, 77, 86, 129, 221
size of monitor window 233
size_addition 129
skip_syntax_errors 146, 156
skipping directors 135, 138
skipping routers 135
smart host 167
smartuser director 96, 97, 158
SMTP:

batched incoming 22, 195, 212
batched outgoing 165, 211
batching over TCP/IP 207
DEBUG 211
delaying delivery 27
EHLO 195
errors in outgoing 208
ETRN 91, 211
EXPN 211
HELO 195
host checking 199

 [253]

incoming call count 89, 90
incoming over TCP/IP 210
local input 23
logging connections 74
logging syntax errors 75
multiple deliveries 25, 27, 29, 30, 125, 194
outgoing over TCP/IP 207
passed channel 29, 30, 125, 194
passed connection 207
passing channel 25, 27
rewriting malformed addresses 182
SIZE 101, 129
syntax errors, logging 75
timeout 92, 125
unknown commands, logging 75
VRFY 211
welcome banner 90

smtp transport 125
smtp_accept_keepalive 89
smtp_accept_max 89, 224
smtp_accept_max_per_host 89
smtp_accept_queue 89
smtp_accept_queue_per_connection 89
smtp_accept_reserve 90
smtp_banner 90
smtp_check_spool_space 90
smtp_connect_backlog 90
smtp_etrn_command 53, 90, 211
smtp_etrn_hosts 91
smtp_etrn_serialize 91
smtp_expn_hosts 91
smtp_load_reserve 91
smtp_receive_timeout 92
smtp_reserve_hosts 92
smtp_verify 92
sorting remote deliveries 85
source routing 62
split spool directories 92
split_spool_directory 92
spool:

checking space 62, 90
directory 17
file locked 223
files 7, 238, 240
multiple directories 92
splitting directory 92

spool_directory 92
sprintf 2, 239
src/EDITME 13
statistics 229
statvfs function 232
STDERR_FILE 15, 24
‘sticky’ bit 17, 104
strerror 2
string:

case forcing 50

comparison 52
expansions 47
format 38
list format 39

strip_excess_angle_brackets 93
strip_trailing_dot 93
stripchart 232
subject option 115
substr 51
substring extraction 51
suffix option 109, 122, 138
suffix_optional 138
SunOS4 71
switching on 18
syntax checking headers 67
syntax of common options 37
syntax_errors_text 146, 156
syntax_errors_to 146, 156
system filter 205, 218
system filter, testing 20
system log 220

tail of log 233
TCP/IP incoming port 28
TCP/IP outgoing port 128
tcpwrappers 13
temp_errors 123
testing: 17

addresses 23, 137
filter file 20
forward file 20
incoming SMTP 20
regular expressions 46
relay control 20
retry configuration 22
rewriting 22, 74, 179
string expansion 47
variables in drivers 98, 130

text option 115
thawing messages 26, 29, 61, 235
time interval format 38
timeout:

local message 61
non-SMTP input 28
of router 159
SMTP 92, 125

timeout option 123, 170, 173
tmail 121
To: header 30, 61, 216
to option 115
too many open files 75
top bit see 8-bit characters
trailing dot 93
trailing period 93
transport: 8

appendfile 102

 [254]

autoreply 113
body only 98
external 3
headers only 99
local 96, 131, 132, 134
pipe 117
shadow 100
smtp 125

transport option 134
transport_filter 100
trusted user 19, 24, 28, 238
trusted_groups 93
trusted_users 93

uid:
caller 53

 Exim’s own 66, 238
forward file 147
in spool file 240
local delivery 96, 110, 116, 120, 121, 123,

134, 212
of originating user 55

 queryprogram 173
system filter 76, 205
unknown caller 93

umask option 123
unfreezing messages 26, 61, 235
unknown host name 44
unknown_login 93
unknown_username 93
unqualified addresses 83, 87, 214
unseen option 134
upper casing 50
use_crlf 109, 123
USE_DB 12, 227
use_fcntl_lock 109
use_lockfile 109
use_mbx_lock 109
use_shell 123
USE_TCP_WRAPPERS 13
user name, maximum length 75
user name format 39
user option 110, 116, 123, 134
users:

admin 19
trusted 19

utilities 226
UUCP 214
uucp 165, 166
uucp_from_pattern 93, 214
uucp_from_sender 94, 214

vacation processing 219
Variable Envelope Return Paths 209
verify option 135
verify_only 135

verify_recipient 135
verify_sender 135
verifying:

addresses 23
headers 68, 197
host name 195
incoming mail 195
receivers 83, 197
senders 88, 89, 195

VERP 209
version number 23
virtual domains 192
VRFY 92, 211

warning messages, customizing 185
warning of delay 63
warning of delay, customizing 94
warnmsg_file 94
welcome banner for SMTP 90
widen_domains 172
wildcard lookups 32, 34, 163
window size 233

X-Failed-Recipients: header 11
X-windows 6, 232
X11 libraries 15

 [255]

