The mairix program

This manual describes how to use
the mairix program for indexing and
searching email messages stored in maildir folders.

Richard P. Curnow

Copyright (©) 2002,2003,2004,2005 Richard P. Curnow

Table of Contents

1 Introduction......

1.1 Background

2 Installation.......

3.1 Overview of use.......

3.2 Indexing strategy and search capabilities....... o i i

3.3 The ‘~/.mairixrc’ file
3.3.1 Overview........

3.3.2 mairixrc file keys .

3.3.3 MAITIXTC EXPANSIONS. . . .\ttt ettt et ettt ettt et e et e
3.4 Setting up the match folder.

3.5 Command line options

3.6 Syntax used for specifying dates........ ..o

Chapter 1: Introduction 1

1 Introduction

1.1 Background

The mairiz program arose from a need to index and search 100’s or 1000’s of email messages in an
efficient way. It began life supporting just Maildir format folder, but now MH and mbox formats
are also supported.

I use the mutt email client. mutt has a feature called limit, where the display of messages in
the current folder can be filtered based on matching regular expressions in particular parts of the
messages. I find this really useful. But there is a snag - it only works on the current folder. If
you have messages spread across many folders, you're out of luck with limit. OK - so why not
keep all messages in a single folder? The problem is that the performance drops badly. This is
true regardless of folder format - mbox, maildir etc, though probably worse for some formats than
others depending on the sizes of messages in the folders.

So on the one hand, we want small folders to keep the performance high. But on the other hand,
we want useful searching.

I use the maildir format for my incoming folders. This scheme has one file per message. On my
inboxes!, I like this for 2 reasons :

e Fast deletion of messages I don’t want to keep (spam, circulars, mailing list threads I'm not
interested in etc). (Compare mbox, where the whole file would need to be rewritten.)

e No locking issues whatever. Maybe I'm over cautious, but I don’t really trust all that locking
stuff to protect a single mbox file in all cases, and a single file seems just too vulnerable to
corruption.) Also, I sometimes read the mail over NFS mounted filesystems, where locking
tends to be a real disaster area.

Since I'm using maildir for inboxes, I've traditionally used it for all my folders, for uniformity.

So, I hear you ask, if you use a one-file-per-message format, why not just use find + egrep to search
for messages? I saw the following problems with this:

e What if I want to find all messages to/cc me, from Homer Simpson, dated between 1 and 2
months ago, with the word "wubble" in the body? This would involve a pretty nasty set of
regexps in a pipeline of separate egreps (and bear in mind, headers could be split over line
boundaries...)

e What if the message body has quoted-printable (or worse, base64) transfer encoding? The
egrep for "wubble" could come very unstuck.

e How would the matching messages be conveniently arranged into a new folder to allow browsing
with mutt?

e What if I wanted to see all messages in the same threads as those matching the above condition?

e If I had 1000’s of messages, this wasn’t going to be quick, especially if I wanted to keep tuning
the search condition.?.

So find + egrep was a non-starter. I looked around for other technology. I found grepmail, but this
only works for mbox format folders, and involved scanning each message every time (so lost on the
speed issue).

I decided that this was going to be my next project, and mairix was born. By the way, the name
originally came from abbreviating MAildIR IndeX, but this is now an anachronism since MH and
mbox are supported too.

of which I have many, because I (naturally) use procmail to split my incoming mail

This may be a non-issue for people with the lastest technology under their desk, but at the time I started writing
mairix, I had a 1996 model 486 at home

Chapter 2: Installation 2

2 Installation

There is not much to this. In the simplest case you can just do

./configure
make
make install

You need to be root to run the final step unless you're installing under your own home directory
somewhere.

However, you might want to tune the options further. The ‘configure’ script shares its common
options with the usual autoconf-generated scripts, even though it’s not autoconf-generated itself.
For example, a fuller build could use

CC=gcc CFLAGS="-02 -Wall" ./configure \
--prefix=/opt/mairix \
--infodir=/usr/share/info

make

make install

make docs

make install_docs

The final step is to create a *~/.mairixrc’ file. An example is included in the file ‘dotmairixrc.eg’.
Just copy that to *~/.mairixrc’ and edit it.

Chapter 3: Use 3

3 Use

3.1 Overview of use

mairiz has two modes of use : index building and searching. The searching mode runs whenever
the command line contains any expressions to search for. Otherwise, the indexing mode is run.

To begin with, an indexing run must be performed before searching will work at all. Otherwise
your search will be operating on an empty database and won’t produce any output.

The output of the search mode is usually placed in a match folder. You can select the type of folder
that is used. For Maildir, it is just a normal maildir directory (i.e. containing ‘new’, ‘tmp’ and
‘cur’) subdirectories. If you select MH it is a directory containing entries with numerical filenames,
so you can open it as a normal MH folder in your mail program. If you select mbox, it is a single
file in mbox format.

You configure the path for the match folder in your ‘*/.mairixrc’ file. When writing to a mfolder
in maildir or MH format, mairix will populate it with symbolic links pointing to the paths of the
real messages that were matched by the search expression.! If a message in a mbox folder matches,
mairix will copy the message contents to a single file in the mfolder directory.

If the mfolder is in mbox format, mairix will copy the message contents of each matching message
into the mfolder file. (There is no way of exploiting symlinks to avoid the copying in this case.)

If desired, mairix can produce just a list of files that match the search expression and omit the
building of the match folder (the so-called raw’ output mode). This mode of operation may be
useful in communicating the results of the search to other programs.

3.2 Indexing strategy and search capabilities

mairiz works exclusively in terms of words. The index that’s built in non-search mode contains
a table of which words occur in which messages. Hence, the search capability is based on finding
messages that contain particular words. mairiz defines a word as any string of alphanumeric
characters + underscore. Any whitespace, punctuation, hyphens etc are treated as word boundaries.

mairiz has special handling for the To:, Cc: and From: headers. Besides the normal word scan,
these headers are scanned a second time, where the characters ‘@, ‘-’ and ‘.’ are also treated as
word characters. This allows most (if not all) email addresses to appear in the database as single
words. So if you have a mail from wibble@foobar.zzz, it will match on both these searches

mairix f:foobar
mairix f:wibble@foobar.zzz

It should be clear by now that the searching cannot be used to find messages matching general
regular expressions. Personally, I don’t find that much use anyway for locating old messages -
I’'m far more likely to remember particular keywords that were in the messages, or details of the
recipients, or the approximate date.
It’s also worth pointing out that there is no ’locality’ information stored, so you can’t search for
messages that have one words ’close’ to some other word. For every message and every word, there
is a simple yes/no condition stored - whether the message contains the word in a particular header
or in the body. So far this has proved to be adequate. mairix has a similar feel to using an Internet
search engine.
There are three further searching criteria that are supported (besides word searching):

e Searching for messages whose Date: header is in a particular range

e Searching for messages whose size is in a particular range. (I see this being used mainly for

finding 'huge’ messages, as you're most likely to want to cull these to recover disc space.)

Although symlinks use up more inodes than hard links, I decided they were more useful because it makes it possible
to see the filenames of the original messages via 1s -1.

Chapter 3: Use 4

e Searching for messages with a particular substring in their paths. You can use this feature to
limit the search to particular folders in your mail hierarchy, for example.

3.3 The ‘°/.mairixrc’ file

3.3.1 Overview

This file contains information about where you keep your mail folders, where you want the index
file to be stored and where you want the match folder to be, into which the search mode places the
symlinks.

mairix searches for this file at ‘“/.mairixrc’ unless you specify the ‘-f’ command line option.

If a # character appears in the file, the rest of that line is ignored. This allows you to specify
cominents.

There are 3 entries (‘base’, ‘mfolder’ and ‘database’) that must appear in the file. Also at least
one of ‘maildir’, ‘mh’ and ‘mbox’ must appear. Optionally, the ‘mformat’ entry may appear. An
example illustrates:

base=/home/richard/mail
maildir=new-mail:new-chrony
maildir=recent...:ancient...
mh=an_mh_folder

mbox=archivel:archive?2

mfolder=mfolder

mformat=maildir
database=/home/richard/.mairix_database

3.3.2 mairixrc file keys

The keys are as follows:
base This is the path to the common parent directory of all your maildir folders.

maildir This is a colon-separated list of the Maildir folders (relative to ‘base’) that you want
indexed. Any entry that ends ‘...’ is recursively scanned to find any Maildir folders
underneath it.

More than one line starting with ‘maildir’ can be included. In this case, mairix joins
the lines together with colons as though a single list of folders had been given on a
single very long line.
Each colon-separated entry may be a wildcard. See the discussion under mbox (below)
for the wildcard syntax. For example

maildir=zzz/foo*. ..
will match maildir folders like these (relative to the folder_base)

zzz/foobar/xyz

zzz/fooquux

zzz/foo
zzz/fooabc/u/v/w

and
maildir=zzz/foo[abc]*
will match maildir folders like these (relative to the folder_base)

zzz/fooa
zzz/fooaaaxyz
zzz/foobcd
zzz/foocccceccc

Chapter 3: Use 5

mh

mbox

If a folder name contains a colon, you can write this by using the sequence ‘\:’ to
escape the colon. Otherwise, the backslash character is treated normally. (If the folder
name actually contains the sequence ‘\:’, you're out of luck.)

This is a colon-separated list of the MH folders (relative to ‘base’) that you want
indexed. Any entry that ends ‘...’ is recursively scanned to find any MH folders
underneath it.

More than one line starting with ‘mh’ can be included. In this case, mairix joins the
lines together with colons as though a single list of folders had been given on a single
very long line.

Each colon-separated entry may be a wildcard, see the discussion under maildir (above)
and mbox (below) for the syntax and semantics of specifying wildcards.

This is a colon-separated list of the mbox folders (relative to ‘base’) that you want
indexed.

Each colon-separated item in the list can be suffixed by ‘...’. If the item matches a
regular file, that file is treated as a mbox folder and the ‘...’ suffix is ignored. If the
item matches a directory, a recursive scan of everything inside that directory is made,
and all regular files are initially considered as mbox folders. (Any directories found in
this scan are themselves scanned, since the scan is recursive.)

Each colon-separated item may contain wildcard operators, but only in its final path
component. The wildcard operators currently supported are

* Match zero or more characters (each character matched is arbitrary)
? Match exactly one arbitrary character
[abes-7] Character class : match a single character from the set a, b, c, s, t, u, v,

w, X, y and z.

To include a literal ‘]’ in the class, place it immediately after the opening
‘[’. To include a literal ‘-’ in the class, place it immediately before the
closing ‘1’.

If these metacharacters are included in non-final path components, they have no special

meaning.

Here are some examples

mbox=foo/bar*
matches ‘foo/bar’, ‘foo/barl’, ‘foo/barrrr’ etc

mbox=foo* /bar*
matches ‘foo*/bar’, ‘foox/barl’, ‘foo*/barrrr’ etc

mbox=foo/*
matches ‘foo/bar’, ‘foo/barl’, ‘foo/barrrr’, ‘foo/foo’, ‘foo/x’ etc

mbox=foo...
matches any regular file in the tree rooted at ‘foo’

mbox=foo/*...
same as before

mbox=foo/[a-z]*...
matches ‘foo/a’, ‘foo/aardvark/xxx’, ‘foo/zzz/foobar’,
‘foo/w/x/y/zzz’, but not ‘foo/A/foobar’

Regular files that are mbox folder candidates are examined internally. Only files con-
taining standard mbox ‘From ’ separator lines will be scanned for messages.

Chapter 3: Use 6

omit

nochecks

mfolder

mformat

database

More than one line starting with ‘mbox’ can be included. In this case, mairix joins the
lines together with colons as though a single list of folders had been given on a single
very long line.

mairix performs no locking of mbox folders when it is accessing them. If a mail delivery
program is modifying the mbox at the same time, it is likely that one or messages in
the mbox will never get indexed by mairix (until the database is removed and recreated
from scratch, anyway.) The assumption is that mairix will be used to index archive
folders rather than incoming ones, so this is unlikely to be much of a problem in reality.

mairiz can support a maximum of 65536 separate mboxes, and a maximum of 65536
messages within any one mbox.

This is a colon-separated list of glob patterns for folders to be omitted from the index-
ing. This allows wide wildcards to be used in the maildir, mh and mbozr arguments,
with the omit option used to selectively remove unwanted folders from the folder lists.
Within the glob patterns, a single ‘*’ matches any sequence of characters other than
*/’. However ‘**’ matches any sequence of characters including ‘/’. This allows glob
patterns to be constructed which have a wildcard for just one directory component, or
for any number of directory components.

The omit option can be specified as many times as required so that the list of patterns
doesn’t all have to fit on one line.

As an example,

mbox=bulk. ..
omit=bulk/spam*
will index all mbox folders at any level under the ‘bulk’ subdirectory of the base

folder, except for those folders whose names start ‘bulk/spam’, e.g. ‘bulk/spam’,
‘bulk/spam2005’ etc. In constrast,

mbox=bulk. ..
omit=bulk/spam*x*

will index all mbox folders at any level under the ‘bulk’ subdirectory of the base
folder, except for those folders whose names start ‘bulk/spam’, e.g. ‘bulk/spam’,
‘bulk/spam2005’, ‘bulk/spam/2005’, ‘bulk/spam/2005/jan’ etc.

This takes no arguments. If a line starting with ‘nochecks’ is present, it is the equiv-
alent of specifying the ‘-Q’ flag to every indexing run.

This defines the name of the match folder (within the directory specified by ‘base’)
into which the search mode writes its output. (If the mformat used is ‘raw’, then this
setting is not used and may be excluded.)

If the first character of the mfolder value is ‘/’ or ‘.’, it is taken as a pathname in its

own right. This allows you to specify absolute paths and paths relative to the current
directory where the mfolder should be written. Otherwise, the value of mfolder is
appended to the value of base, in the same way as for the source folders.

This defines the type of folder used for the match folder where the search results go.
There are four valid settings for this ‘mh’, ‘maildir’, ‘mbox’ or ‘raw’. If the ‘raw’ setting
is used then mairix will just print out the path names of the files that match and no
match folder will be created. ‘maildir’ is the default if this option is not defined. The
setting is case-insensitive.

This defines the path where mairix’s index database is kept. You can keep this file
anywhere you like.

It is illegal to have a folder listed twice. Once mairix has built a list of all the messages currently
in your folders, it will search for duplicates before proceeding. If any duplicates are found (arising

Chapter 3: Use 7

from the same folder being specified twice), it will give an error message and exit. This is to prevent
corrupting the index database file.

3.3.3 mairixrc expansions

4

The part of each line in ‘.mairixrc’ following the equals sign can contain the following types of

expansion:

Home directory expansion
If the sequence 7/’ appears at the start of the text after the equals sign, it is expanded
to the user’s home directory. Example:

database="/Mail/mairix_database
Environment expansion
If a ‘¢’ is followed by a sequence of alpha-numeric characters (or ‘_’), the whole string
is replaced by looking up the corresponding environment variable. Similarly, if ‘$’ is

followed by an open brace (‘{’), everything up to the next close brace is looked up as
an environment variable and the result replaces the entire sequence.

Suppose in the shell we do
export FOO=bar
and the ‘.mairixrc’ file contains

maildir=xxx/$F00
mbox=yyy/a${F00}b

this is equivalent to

maildir=xxx/bar
mbox=yyy/abarb

If the specified environment variable is not set, the replacement is the empty string.

3.4 Setting up the match folder

If the match folder does not exist when running in search mode, it is automatically created. For
‘mformat=maildir’ (the default), this should be all you need to do. If you use ‘mformat=mh’, you
may have to run some commands before your mailer will recognize the folder. e.g. for mutt, you
could do

mkdir -p /home/richard/Mail/mfolder
touch /home/richard/Mail/mfolder/.mh_sequences

which seems to work. Alternatively, within mutt, you could set mbox_type to ‘mh’ and save a
message to ‘+mfolder’ to have mutt set up the structure for you in advance.

If you use Sylpheed, the best way seems to be to create the new folder from within Sylpheed before
letting mairix write into it. This seems to be all you need to do.

3.5 Command line options

The command line syntax is
For indexing mode:

mairix [-f path] [-p] [-v] [-Q]
For search mode

mairix [-f path] [-t] [-v] [-a] [-r] [-o mfolder] exprl [expr2] ... [exprn]
For database dump mode

mairix [-f path] -d
The ‘=f’ or ‘--rcfile’ flag allows a different path to the ‘mairixrc’ file to be given, replacing the
default of ~/.mairixrc’.

Chapter 3: Use 8

The ‘-p’ or ‘--purge’ flag is used in indexing mode. Indexing works incrementally. When new
messages are found, they are scanned and information about the words they contain is appended
onto the existing information. When messages are deleted, holes are normally left in the message
sequence. These holes take up space in the database file. This flag will compress the deleted paths
out of the database to save space. Additionally, where ‘mbox’ folders are in use, information in the
database about folders that no longer exist, or which are no longer referenced in the rc-file, will be
purged also.

The ‘-v’ or ‘--verbose’ flag is used in indexing mode. It causes more information to be shown
during the indexing process. In search mode, it causes debug information to be shown if there
are problems creating the symlinks. (Normally this would be an annoyance. If a message matches
multiple queries when using ‘-a’, mairix will try to create the same symlink multiple times. This
prevents the same message being shown multiple times in the match folder.)

The ‘-Q’ or ‘--no-integrity-checks’ flag is used in indexing mode. Normally, mairix will do
various integrity checks on the database after loading it in, and before writing the modified database
out again. The checking helps to detect mairix bugs much earlier, but it has a performance penalty.
This flag skips the checks, at the cost of some loss in robustness. See also the ‘nochecks’ directive
in Section 3.3 [mairixrc], page 4.

The ‘-—unlock’ flag is used in any mode. mairix dot-locks the database file to prevent corruption
due to concurrent accesses. If the process holding the lock exits prematurely for any reason, the
lockfile will be left behind. By using the ‘-—unlock’ option, an unwanted lockfile can be conveniently
removed.

The ‘-t’ or ‘--threads’ option applies to search mode. Normally, only the messages matching
all the specified expressions are included in the match folder that is built. With the ‘-t’ flag,
any message in the same thread as one of the matched messages will be included too. Note, the
threading is based on processing the Message-ID, In-Reply-To and References headers in the
messages. Some mailers don’t generate these headers in a co-operative way and will cause problems
with this threading support. (Outlook seems to be one culprit.) If you are plagued by this problem,
the ’edit threads’ patch to mutt may be useful to you.

The ‘-d’ or ‘~—dump’ option causes mairix to dump the database contents in human-readable form to
stdout. It is mainly for use in debugging. If this option is specified, neither indexing nor searching
are performed.

The ‘-a’ or ‘-—augment’ option also applies to search mode. Normally, the first action of the search
mode is to clear any existing message links from the match folder. With the ‘-a’ flag, this step is
suppressed. It allows the folder contents to be built up by matching with 2 or more diverse sets
of match expressions. If this mode is used, and a message matches multiple queries, only a single
symlink will be created for it.

The ‘-r’ or ‘~-raw-output’ option is used to force the raw output mode for a particular search, in
preference to the output format defined by the ‘mformat’ line in the ‘mairixrc’ file. This may be
useful for identifying which mbox contains a particular match, since there is way to see this when
the matching messages are placed in the mfolder in this case. (Note for matches in maildir and
MH folders when ‘mformat’ is maildir or MH, the symbolic links in the mfolder will show the path
to the matching message.)

The ‘-0’ or ‘--mfolder’ option is used in search mode to specify a match folder different to the one
specified in the ‘mairixrc’ to be used. The path given by the ‘mfolder’ argument after this flag is
relative to the folder base directory given in the ‘mairixrc’ file, in the same way as the directory
in the mfolder specification in that file is. So if your ‘mairixrc’ file contains
base=/home/foobar/Mail
and you run mairix like this
mairix -o mfolder2 make,money,fast

mairix will find all of your saved junk emails containing these three words and put the results into
‘/home/foobar/Mail/mfolder?2’.

Chapter 3: Use 9

The ‘-0’ argument obeys the same conventions regarding initial ¢/’ and ‘.’ characters as the mfolder
line in the ‘.mairixrc’ file does.

4 3

Mairiz will refuse to output search results (whether specified by the ‘-0’ or in the ‘.mairixrc’
file) into one of the folders that are indexed; it figures out that list by looking in the ‘.mairixrc’
file, or in the file you specify using the ‘~f’ option. This sanity check prevents you inadvertantly
destroying one of your important folders (but won’t catch all such cases, sadly).
The search mode runs when there is at least one search expression. Search expressions can take
forms such as (in increasing order of complexity):
e A date expression. The format for specifying the date is described in section Section 3.6
[date_syntax|, page 11.
e A size expression. This matches all messages whose size in bytes is in a particular range. For
example, to match all messages bigger than 1 Megabyte the following command can be used
mairix z:1m-
To match all messages between 10kbytes and 20kbytes in size, the following command can be
used:
mairix z:10k-20k

e A word, e.g. ‘pointer’. This matches any message with the word ‘pointer’ in the To, Cc,
From or Subject headers, or in the message body.?
e A word in a particular part of the message, e.g. ‘s:pointer’. This matches any message with
the word ‘pointer’ in the subject. The qualifiers for this are :
t:pointer
to match ‘pointer’ in the To: header,

O

:pointer
to match ‘pointer’ in the Cc: header,

o

:pointer
to match ‘pointer’ in the To:, Cc: or From: headers (‘a’ meaning ‘address’),

h

:pointer
to match ‘pointer’ in the From: header,

9]

:pointer
to match ‘pointer’ in the Subject: header,

o

:pointer
to match ‘pointer’ in the message body.

=]

:pointer
to match messages having a Message-ID header of ‘pointer’.

Multiple fields may be specified, e.g. sb:pointer to match in the Subject: header or the
body.

e A negated word, e.g. ‘s: pointer’. This matches all messages that don’t have the word
‘pointer’ in the subject line.

¢

e A substring match, e.g. ‘s:point=’. This matches all messages containing a word in their
subject line where the word has ‘point’ as a substring, e.g. ‘pointer’, ‘disappoint’.

e An approximate match, e.g. ‘s:point=1’. This matches all messages containing a word in their
subject line where the word has ‘point’ as a substring with at most one error, e.g. ‘jointed’
contains ‘joint’ which can be got from ‘point’ with one letter changed. An error can be a
single letter changed, inserted or deleted.

2 Message body is taken to mean any body part of type text/plain or text/html. For text/html, text within meta tags
is ignored. In particular, the URLs inside tags are not currently indexed. Non-text attachments
are ignored. If there’s an attachment of type message/rfc822, this is parsed and the match is performed on this
sub-message too. If a hit occurs, the enclosing message is treated as having a hit.

Chapter 3: Use 10

A left-anchored substring match, e.g. ‘s:"point=’. This matches all messages containing

a word in their subject line where the word begins with the string ‘point’. (This feature
is intended to be useful for inflected languages where the substring search is used to avoid
the grammatical ending on the word.) This left-anchored facility can be combined with the
approximate match facility, e.g. ‘s: “point=1".

Note, if the ‘°7 prefix is used without the ‘=" suffix, it is ignored. For example, *

means the same thing as ‘s:point’.

s: point’

A disjunction, e.g. ‘s:pointer/dereference’. This matches all messages with one or both of
the words ‘pointer’ and ‘dereference’ in their subject lines.

Each disjunction may be a conjunction, e.g. ‘s:null,pointer/dereference=2’" matches all
messages whose subject lines either contain both the words ‘null’ and ‘pointer’, or contain
the word ‘dereference’ with up to 2 errors (or both).

A path expression. This matches all messages with a particular substring in their path. The
syntax is very similar to that for words within the message (above), and all the rules for ‘+’,
‘,’, approximate matching etc are the same. The word prefix used for a path expression is
‘p:’. Examples:

mairix p:/archive/
matches all messages with ‘/archive/’ in their path, and
mairix p:wibble=1 s:wibble=1

matches all messages with ‘wibble’ in their path and in their subject line, allowing up to 1
error in each case (the errors may be different for a particular message.)

Path expressions always use substring matches and never exact matches (it’s very unlikely you
want to type in the whole of a message path as a search expression!) The matches are always
case-sensitive. (All matches on words within messages are case-insensitive.) There is a limit
of 32 characters on the match expression.

The binding order of the constructions is:

1.
2.

Individual command line arguments define separate conditions which are AND-ed together

Within a single argument, the letters before the colon define which message parts the expression
applies to. If there is no colon, the expression applies to all the headers listed earlier and the
body.

3. After the colon, commas delineate separate disjuncts, which are OR-ed together.

Each disjunct may contain separate conjuncts, which are separated by plus signs. These
conditions are AND-ed together.

Each conjunct may start with a tilde to negate it, and may be followed by a slash to indicate
a substring match, optionally followed by an integer to define the maximum number of errors
allowed.

Now some examples. Suppose my email address is richard@doesnt.exist.

The following will match all messages newer than 3 months from me with the word ‘chrony’ in the
subject line:

mairix d:3m- f:richard+doesnt+exist s:chrony

Suppose [don’t mind a few spurious matches on the address, I want a wider date range, and I
suspect that some messages I replied to might have had the subject keyword spelt wrongly (let’s
allow up to 2 errors):

mairix d:6m- f:richard s:chrony=2

mailto:richard@doesnt.exist

Chapter 3: Use 11

3.6 Syntax used for specifying dates

This section describes the syntax used for specifying dates when searching using the ‘d:’ option.

Dates are specified as a range. The start and end of the range can both be specified. Alternatively,
if the start is omitted, it is treated as being the beginning of time. If the end is omitted, it is
treated as the current time.

There are 4 basic formats:

‘d:start-end’
Specify both start and end explicitly

‘d:start-’

Specify start, end is the current time
‘d:-end’ Specify end, start is ’a long time ago’ (i.e. early enough to include any message).
‘d:period’

Specify start and end implicitly, as the start and end of the period given.

The start and end can be specified either absolute or relative. A relative endpoint is given as a
number followed by a single letter defining the scaling;:

letter meaning example meaning

d days 3d 3 days

w weeks 2w 2 weeks (14 days)

m months 5m 5 months (150 days)
y years 4y 4 years (4*365 days)

Months are always treated as 30 days, and years as 365 days, for this purpose.

Absolute times can be specified in a lot of forms. Some forms have different meanings when they
define a start date from that when they define an end date. Where a single expression specifies
both the start and end (i.e. where the argument to d: doesn’t contain a ‘-’), it will usually have
different interpretations in the two cases.

In the examples below, suppose the current date is Sunday May 18th, 2003 (when I started to write

this material.)

Example
d:20030301—20030425
d:030301—030425
d:marl—apr25
d:Marl—Apr25
d:MAR1—-APR25
d:1mar—25apr

d:2002

d:mar

d:oct
d:21loct—mar
d:21lapr—mar
d:2lapr—
d:—21apr
d:6w—2w
d:2lapr—1w
d:21apr—2y
d:99—-11

Start date

March 1st, 2003
March 1st, 2003
March 1st, 2003
March 1st, 2003
March 1st, 2003
March 1st, 2003

January 1st, 2002
March 1st, 2003
October 1st, 2002
October 21st, 2002
April 21st, 2002
April 21st, 2003
January 1st, 1900
April 6th, 2003
April 21st, 2003
April 21st, 2001
January 1st, 1999

End date

25th April, 2003
April 25th, 2003
April 25th, 2003
April 25th, 2003
April 25th, 2003
April 25th, 2003

December 31st, 2002

March 31st, 2003
October 31st, 2002
March 31st, 2003
March 31st, 2003
May 18th, 2003
April 21st, 2003
May 4th, 2003
May 11th, 2003
May 11th, 2001
May 11th, 2003

Notes
century assumed

case insensitive

case insensitive

date and month in either
order

whole year

most recent March

most recent October
start before end

start before end

end omitted

start omitted

both dates relative

one date relative

start before end

2 digits are a day of the
month if possible, other-
wise a year

Chapter 3: Use

d:99oct—1oct

d:990ct—01oct

d:oct99—octl

d:0ct99—oct01

October 1st, 1999

October 1st, 1999
October 1st, 1999

October 1st, 1999

The principles in the table work as follows.

October 1st, 2002

October 31st, 2001
October 1st, 2002

October 31st, 2001

12

end before now, single
digit is a day of the
month

2 digits starting with zero
treated as a year

day and month in either
order

year and month in either
order

e When the expression defines a period of more than a day (i.e. if a month or year is specified),
the earliest day in the period is taken when the start date is defined, and the last day in the
period if the end of the range is being defined.

e The end date is always taken to be on or before the current date.

e The start date is always taken to be on or before the end date.

	Introduction
	Background

	Installation
	Use
	Overview of use
	Indexing strategy and search capabilities
	The ~/.mairixrc file
	Overview
	mairixrc file keys
	mairixrc expansions

	Setting up the match folder
	Command line options
	Syntax used for specifying dates

