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Abstract

A package for formatting algebraic expressions in MACSYMA® is de-
scribed. It provides facilities for user-directed hierarchical structuring of
expressions, as well as for directing simplifications to selected subexpres-
sions. It emphasizes a semantic rather than syntactic description of the
desired form. The package also provides utilities for obtaining efficiently
the coefficients of polynomials, trigonometric sums and power series. Sim-
ilar capabilities would be useful in other computer algebra systems.
Keywords: algebraic structure, computer algebra, MACSYMA, simplifi-
cation, software, transformation.

1 Introduction

In a general purpose Computer Algebra System (CAS), any particular mathe-
matical expression can take on a variety of forms: expanded form, factored form
or anything in between. Each form may have advantages; a given form may be
more compact than another, or allow clear expression of certain algorithms. Or
it may simply be more informative, particularly if it has physical significance.

A CAS contains many tools for transforming expressions. However, most
are like MAacsyMA’s[l] factor and expand, operating only on the entire ex-
pression or its top level. At the other extreme are operations like substpart
which extract a specific part of an expression, then transform and replace it.
Unfortunately, the means of specifying the piece of interest is purely syntactic,
requiring the user to keep close watch on the form of the arguments to avoid
error.

The package described here gives users of MACSYMA more control over the
structure of expressions, and it does so using a more semantic, almost algebraic,
language describing the desired structure. It also provides a semantic means of
addressing parts of an expression for particular simplifications. For example, to
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rearrange an expression into a series in eps through order 5, whose terms will
be polynomials in the x and y, whose coefficients, in turn, will be trigonometric
sums in 1 and g with factored coefficients one uses the command:

format(foo, %series(eps,5), %opoly(x,y), %trig(l,g), %ofactor);

— more easily invoked than described.

An expression ‘formatting’ tool for a general purpose system was reported
in [4] for Scratchpad, predating the user-specified canonical representations of
AxioM and the author’s system MAO. Jeffrey Golden[3] proposed a similar
system for MAcsYMA— although never implemented, his design provided inspi-
ration and a good naming convention for the package described here. A different
addressing scheme for directing simplifications in Mathematica was reported in
[5]. Thus the general idea behind these tools is not new, yet the tools themselves
are not commonly available in most CAS. Further, we feel that our synthesis is
unique. And while our syntax may be a bit baroque, including many keywords,
we have found the package to be an indispensable tool in practice.

Two modules are documented in this report. The principal tool, format, is
described in Section 2. It uses procedures in coeflist which obtain coefficients
of polynomials, trigonometric sums and power series. The latter module can be
useful alone; it is documented in section 3. An appendix discusses implementa-
tion issues. The LISP source code may be obtained from the author.

2 FORMAT; Formatting expressions

format(ezpr,templatey,. ..) Function
Recursively arranges ezpr according to the chain of templates, template;.

Each template indicates the desired form for an expression; either the ex-
pected form or that into which it will be transformed. At the same time, the
indicated form implies a set of pieces; the next template in the chain applies to
those pieces. For example, %poly(x) specifies the transformation into a poly-
nomial in z, with the pieces being the coefficients. The passive %frac treats the
expression as a fraction; the pieces are the numerator and denominator.

Whereas the next template formats all pieces of the previous layer, positional
subtemplates may be used to specify formats for each piece individually. This is
most useful when the pieces have unique roles and need to be treated differently,
such as a fraction’s numerator and denominator.

The full syntax of a template is

keyword(parameter, .. .)[subtemplate, . . ].

The recognized keywords are described in Table 1. The parameters (if not
needed) and subtemplates (along with parentheses and brackets) are optional.



In addition to the keyword templates, arithmetic patterns are recognized.
This is an expression involving addition, multiplication and exponentiation con-
taining a single instance of a keyword template. In effect, the system ‘solves’ the
expression to be formatted for the corresponding part, formats it accordingly
and reinserts it. Eg. , format (X, a+)factor) is equivalent to a+factor(X-a).

Any other template is assumed to be a function to be applied to the expres-
sion; the result is then formatted according to the rest of the template chain.

Examples

(c1) format((a+b*x)*(c-x)"2,%poly(x),%factor);
3 2 2
(di) bx - (2bc-a)x +c(bc-2a)x+ac

(c2) format((1+2*ex(q+r*cos(g))~2)"4,%series(e,2),%trig(g) ,%L);
2 2 2
(@2) 1 +e (4 (r +2q ) +4cos(2g)r + 16 cos(g) q 1)

2 4 2 2 4 4
+e (3(3r +24q r +8q ) +3cos(4g)r

3 2 2
+ 24 cos(3g) gqr + 24 cos(g) gr (3r + 4q)

2 2 2
+12 cos(2g)r (r +6q9)) + ...

(c3) format((1+2*a+a~2)*b + a*(1+2*b+b~2),%sum,%product,’factor);
2 2
(@a3) a(b+1) +((a+1) b

(c4) format(expand((1+x"4)*y~2+(1+x"8)*y~4),%p(y),%f(a"2-2));
4 2 4 2 4
(44) (x - ax +1) (x +ax +1)y

2 2 2
+(x —ax+1)(x +ax+ 1)y

(c5) format(expand((a+x)~3-a~3),%f-a~3);
3 3
(@a5) (x +a) -a

format can also be used to focus simplifications on manageable pieces of large
expressions.
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Table 1: Tem;zllate keywords.
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Table 1: Template keywords continued.



(c6) foo:X"2*SIN(Y) "4-2*X"2*SIN(Y)"2+X"4*C0S(Y) "4
-2%X~4*C0OS(Y) "2+X"4+X"2+1$
(c7) trigsimp(foo);
4 2 4 4 2 4
(@7) (x +x ) cos (y) —2x cos (y) +x + 1

(c8) format(foo,%p(x),trigsimp);
4 4 2 4
(d8) x sin (y) + x cos (y) + 1

The following examples illustrate the use of subtemplates

(c9) 11:[1+2%a+a~2,1+2*b+b"2,1+2*%c+c"2]$
(c10) format(1l1,%list,%f);

2 2 2
(d10) [(a + 1) , (b + 1), (c+ 1) 1]

(c11) format(l1,%list[%noop,%£]);
2 2 2
(d11) [a + 2 a+ 1, (b+1) , ¢ +2c+ 1]

(c12) format(11,%list[Y%noop,%ditto(%£)]);
2 2 2
(d12) [a +2a+ 1, (b+1), (¢c +1)1]

The following examples illustrate the usage with ‘bags.’

(c13) format([a=b,c=d,e=f],%equation);
(a13) [a, c, €] = [b, 4, £]

(c14) format(%,%list);
(d14) [a = Db, c =d, e = f]

(c15) mi:matrix([a~2+2%a+1=q,b"2+2%b+1=r],
[c"2+2%c+1=s,d"2+2*d+1=t])$

(c16) format(ml,%equation,¥matrix[/noop,%list[Ynoop,%factorl]l);
[ 2 2 ]
[a +2a+1 b +2b+ 1] ]

(a16) [ ] ]
[ 2 2 ] ]

[Lc +2c+1 (a +1) ]

The more concise format(mi,%eq,%el(2,2),%f); obtains the same result.

And a more involved example:

(c17) sqrtp(f):=not(atom(f)) and op(f)=’sqrt$



(c18) first(solve(a*x~2+b*x-(b-2%a)/4,x));
2 2
sqrt(b +ab-2a) +b
(d18) X = = =—mmm—mm—m— e

(c19) format(%,%rhs,%preformat(%p(match(sqrtp))),
%match(sqrtp),%arg(1),%f);
sqrt((b - a) (b + 2 a)) b
(d19) x = = —=mmmmmmmmmm——mmmmeee - oo

2.1 User defined templates

New templates can be defined by giving the template keyword the property
formatter; the value should be a function (or lambda expression) of the ex-
pression to be formatted and any parameters for the template.

For example, %rectform and %if could be defined as

put (%rectform,lambda([c],
block([r:rectformlist(c)],
format_piece(r[1]) +/I* format_piece(r[2]))),
formatter)$
put (%if, lambda([x,test],
if test(x) then format_piece(x,1)
else format_piece(x,2)),
formatter)$

Tools useful for defining templates are the following.
format piece(piece,{nth}) Function

Format a given piece of an expression, automatically accounting for
subtemplates and the remaining template chain. A specific subtem-
plate, rather than the next one, can be selected by specifying nth.

coerce_bag(op,ezpr) Function

Attempts to coerce ezpr into an expression with op (one of "=",
g, g, ong=t ) s =l n N or matrix) as the top-level op-
erator. It coerces the expression by swapping operands between
layers — but only if adjacent layers are also lists, matrices or rela-
tions. This model assumes that a list of equations, for example, can
be viewed as an equation whose sides are lists. Certain combina-
tions, particularly those involving inequalities may not be meaning-
ful, however, so some caution is advised.



3 COEFLIST; Determining coefficients

We define the ‘algebras’ of polynomials, trigonometric sums and power series to
be those expressions that can be cast into the following forms.

7)(’1)1,...) = {P P = Zcivi’l'ivgz'i...},
T(v1,...) = {T T = Z c; cos(my ;v1 + -+ ¢) + Z 8 Sin(mll,i’ﬂl 4. )} ,
i i

S = Xn:civ“;pn < O} .

S(v, 0)

[l
——
n

The variables v; may be any atomic expression in the sense of ratvars[l]. The
shorthands operator(op) and match(predicate) may be used to specify all
subexpressions having op as an operator, or that pass the predicate, respectively.

The coeflicients ¢; and s; are general MACSYMA expressions. In principle
they would be independent of the variables v;, but in practice they may contain
non-polynomial dependence (or non-trigonometric, in the trigonometric case).
These non-polynomial cases would include expressions like (1 + z)", where n is
symbolic. Likewise, (z2)® is, in general, multivalued; unless a = 1 or b € Z or
radexpand=all, it will not be interpreted as z*® € P. Furthermore, we extend
the algebras to include lists, vectors, matrices and equations, by interpreting a
list of polynomials, say, as a polynomial with lists as coefficients.

The exponents p; in series are restricted to numbers, but the exponents
p;,; and multiples m; ; for polynomials and trigonometric sums may be general
expressions (excluding bags).

The following functions construct a list of the coefficients and ‘keys’, that
is, the exponents or multiples. Note that these are sparse representations — no
coefficients are zero.

coeffs(P,vy,...) — [[%opoly,vi,...,[c1,P1,15--,.. 1]
trig coeffs(T,vy,...) —
[%otrig,ve,.. ], [[er,ma,1,-- ]y ], [[81, M 1500 ] ]
series coeffs(S,v,0) — [[%series,v, O], [c1,p1],---,[cn,Pn]]
Taylor coeffs(S,v,0) — [[%Taylor,v,O], [c1,P1l;s---;[Cn, Pnl]

The latter two functions both expand an expression through order O, but the se-
ries version only carries expands arithmetic operations and is often considerably
faster than Taylor_coeffs.

Examples:



(c20) cli:coeffs((a+b*x)*(c-x)"2,x);
2 2
(a20) [[%poly,x],[a ¢ ,0],[bc -2 ac,1],[a - 2D ¢,2],[b,3]]

(c21) map(’first,rest(coeffs(
(a+b*x)*(c-x) "2=q0+ql*x+q2*x~2+q3*x~3,x)));
2 2
(a21) [a ¢ =0, bc -2ac=g9ql, a-2bc=g9g2, b=qg3]

(c22) trig_coeffs(2#(atcos(x))*cos(x+3*y),x,y);
(d22) [[%trig,x,yl,01,[[1,0,3],[2 a,1,3],[1,2,3]1]

(c23) series_coeffs((a+b*x)*(c-x)"2,x,2);
2 2
(d23) [[%series,x,2],[ac ,0],[bc -2 a c,1],[a -2 b c,2]]

(c24) coeffs((a+b*x)*sin(x),x);
(a24) [[%poly,x],[a sin(x),0],[b sin(x),1]1]

(c25) coeffs((a+log(b)*x)*(c-log(x)) ~2,operator(log));
2 2
(a25) [[%poly,log(x),log(v)],[a ¢ ,0,0],[c x,0,1]1,[- 2 a ¢,1,0],
[- 2 ¢ x,1,1],[a,2,0],[x,2,1]]

3.1 Related functions

get _coef(clist,ky,...) Function

Gets the coefficient from the coeflicient list clist corresponding to
the keys k;. The keys are matched to variable powers when clist is a
%poly, lseries or 4Taylor form. If clist is a Jitrig then k; should
be sin or cos and the remaining keys are matched to multipliers.

uncoef(clist) Function
Reconstructs the expression from a coefficient list clist. The coeffi-
cient list can be any of the coefficient list forms.

partition poly(ezpr,testvy,...) Function

Partitions ezprinto two polynomials; the first is made of those mono-
mials for which the function test returns true and the second is the
remainder. The test function is called on the powers of the v;.

partition trig(ezpr,sintest,costest,vy,...) Function



Trigonometric analog to partition_poly; The functions sintest and
costest select sine and cojsine terms, respectively; each are called on
the multipliers of the v;.

partition_series(ezpr,test,v,0) Function
partition Taylor(ezprtest,v,0) Function

Analog to partition_poly for series.

Examples:

(c26) get_coef(CL1,2);
(d26) a - 2 b ¢

(c27) uncoef(cll);
3 2 2 2
(@27) bx +(a-2bc)x +(bc -2ac)x+ac

(c28) partition_poly((a+b*x)*(c-x)"2,’evenp,x);
2 2 3 2
(a28) [(a-2b¢c)x +ac,bx +((bc -2ac)x]

3.2 Support functions

matching parts(ezpr, predicate, args...) Function

Returns a list of all subexpressions of ezpr for which the application
predicate(piece,args...) returns True.

function _calls(ezpr,functions...) Function

Returns a list of all calls in ezpr involving any of functions.

function arguments(ezpr,functions. . .) Function

Returns a list of all argument lists for calls to functions in ezpr.

Examples:

(c29) t2:(atlog(b)*x)*(c-log(x))~2$
(c30) matching_parts(t2,constantp);
(d30) [2, - 1]

(c31) function_calls(t2,log);
(d31) [log(x), log(b)]
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4 Availability

This package has been tested in Macsyma Inc.’s versions 418.85 for Genera 8.3
and 418.1 for Sparc computers under SunOS 4.1.3, as well as the DOE ‘maxima’
version 4.155. The LisP source code is available from the author.
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A Implementation

In this appendix, we describe some of the most important elements of the im-
plementation. It is not our intention to describe every facet in detail, rather,
we offer it as an overview to the lisp code, and as a guide to anyone wishing to
implement similar facilities for another CAS.

A.1 Coefficient Lists

The fundamental algorithm for converting polynomials, poisson series, etc. into
canonical representations, such as the coefficient lists defined here, is as follows.
First, an ‘arithmetic’ is implemented for the new representation. That is, the
code to add, multiply and exponentiate (at least) objects in the new form is
written (See [2] for algorithms). An expression is then converted recursively; de-
pending on the main operator of the expression, its arguments are first converted
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and then they are combined appropriately. Atoms are converted in whatever
way is appropriate for the representation.

This is the method used internally by the CRE and Poisson facilities of
MAcsYMA. An issue for us was whether it was best to leverage these exist-
ing facilities by transforming first to CRE or Poisson representations and from
there into coefficient lists, or whether we should reimplement the methods for
conversions directly into coefficient list form.

In the end, we decided to reimplement the method for polynomial and series
arithmetic. The primary reason is that the CRE (and Taylor) transforms the
entire expression into CRE form, including what will become the coefficients.
This is unnecessary work for our purposes, and in the application to format,
the work may immediately be undone at the next step. Indeed, if an expression
had already been format’d, the current code may leave the coefficients in the
correct form.

The Poisson package does not carry out any transformations of the coef-
ficients and, so, was suitable for use in conversion to trigonometric coefficient
lists. Ultimately, we rewrote much of the existing poisson package anyway. This
was both to add flexibility (particularly to allow non-integral multipliers) that
would be useful both here and to users of the Poisson package, and also to rem-
edy a long standing limitation of the package — it failed to detect when encoded
trigonometric arguments exceeded the predeclared bounds resulting in spurious
computations. Contact the author for information about this alternate Poisson
package. However, we have an implementation of trig_coeffs that avoids using
Poisson, should our alternative Poisson package be unacceptable for whatever
reason.

Taylor_coeffs, the alternative conversion to series coeflicient lists, does use
Taylor as described above; it is useful when full Taylor expansions are needed.

A.2 Format

The basic operation of the formatting program is relatively simple; it is data-
driven by the templates. The first template in the chain is examined and if
it is a known formatting template, format binds the remaining template chain
and the subtemplates. It then calls the function associated with the template
on the expression and any parameters given to the template. Each template
function transforms the expression appropriately and then calls format_piece
on the appropriate pieces.

The function format_piece determines if there is a subtemplate that should
be applied to a given piece or if the next template in the chain should be used.
It then recursively invokes format to format the given piece with the selected
template.
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