Authentication for
Web Services

Ray Miller <raym@herald.ox.ac.uk>
Systems Development and Support
Computing Services, University of Oxford

Overview

Password-based authentication
Cookie-based authentication
Using cookies for single sign-on
Kerberos

Stanford WebAuth

Integrating uPortal and WebAuth

Basic authentication

® The simplest authentication scheme used

for web services is HT TP Basic Authentication,
defined in RFC 1945

® When a client requests a protected
resource, the server responds with 401/
(Authorization required)

® The client resends the request with an
Authorization header encoding the
username and password

Basic authentication

® Often used in conjunction with htaccess and
htpasswd files under the control of the
information provider

® Username and password information can
also be stored in a database (GNU DBM,
Berkeley DB, mySQL, PostgreSQL, LDAP)

Basic authentication

® HTTP is a stateless protocol: every time a
client requests a protected resource, it must
include an Authorizaton header that the
server must verify

® |[f account information is held in a remote
database, the web server will have to verify
the username and password against the
remote data source for every client request

Cookies

Cookies

® When responding to an HT TP request, a
server may also send a piece of state
information that the client will store:

Set-Cookie: NAME=VALUE; explires=DATE;
path=PATH; domain=DOMAIN NAME; secure

® This state object is known as a cookie

® The cookie will be sent by the client along
with any future requests to the specified
domain/path

Cookies

Cookies enable state to be stored between
HTTP requests

A server can issue a session cookie after
authenticating a user for the first time

The server can use the session cookie to
identify the user when they make future
requests

No need to verify the username and
password for every request

Using cookies for SSO

® By introducing a central log-in server, we
can use cookies to provide intra-
institutional single sign-on for web services

® Pubcookie (University of Washington)
® BrownTicket (Brown University)

® Cosign (University of Michigan)

® WebAuth (Stanford)

SSO components

® These cookie-based single sign-on systems
all consist of several components:

® a user agent (web browser)
® an application server
® a login server

® an external authentication service

The login server

trusted, central authentication service
interacts directly with users

verifies usernames and passwords with
backend authentication services

issues cookies to users to provide single
sign-on functionality

provides authentication information to
application servers

The application server

authentication enforcer

redirects users who haven’t been
authenticated to the login server

verifies authentication information returned
from the login server

issues cookies to maintain authenticated
application sessions

provides user authentication information to
applications

The external
authentication service

® verifies user authentication information sent
from the login server

® Kerberos

e LDAP
e NIS

-F.h

10.

How it works

User-Agent Application Login AuthN
(browser) Server Server Service

| request resource

redirect
- edirect page

: granting req uest'

. login form
-

submit login f{:rrn__

iff
verify

_esponse

o edirect page wi granting reply

re-reguest
-

- responss
-

This really is SSO

® |f the user requests a protected resource
from a new application server, they will be
redirected to the login server

® They already have a cookie for the login
server, so they don’t need to re-authenticate

® The login server simply issues the
appropriate cookie and directs them back to

the application server

Benefits

Passwords, if used, are only sent to the
central login server over SSL

Users need only authenticate once per
session to access any protected resource

Can leverage an existing authentication
system

Works with almost all modern browsers

We've seen this
before...

We've seen this
before...

® This looks a lot like the Kerberos single
sign-on protocol:

® cookies issued by the login server grant
access to a particular application server;
they are like Kerberos service tickets

® the cookie shared between the browser
and the login server is like a Kerberos
ticket-granting ticket

Stanford’s VWebAuth

® Takes the Kerberos analogue a step further

® The cookie shared with the login server
really is a Kerberos ticket-granting ticket

® The cookie issued for access to an
application server really is a Kerberos
ticket

Why does this matter?

® The designers of the Kerberos protocol
have already solved many of the security
problems associated with ticketing systems

There’s another
advantage

® What happens when the application server
needs authenticated access to another
service!

® For example, Herald’s WING servers need
to authenticate the user when opening a

connection to an IMAP server on their
behalf

Secondary tickets

® Stanford’s WebAuth system includes support
for secondary tickets

® When the application server redirects the
user to the login server, it can request
tickets for additional services

® The user’s ticket-granting ticket shared
with the login server takes care of this

® Multiple tickets are encoded in cookies
sent to the application server

The WebAuth login
server

® The login server component of WebAuth
consists of two CGI programes, login.fcgi and
logout.fcgi, and an Apache 2.0 module,
mod_webkdc

® You don’t need to worry about this: the
login server will be provided centrally

The WebAuth
application server

® The mod_webauth module provides an
authentication handler for Apache 2.0

LoadModule webauth module modules/mod webauth.so

WebAuthKeyring conf/webauth/keyring

WebAuthKeytab conf/webauth/keytab
WebAuthServiceTokenCache conf/webauth/service token cache
WebAuthLoginURL https://webkdc/login/

WebAuthWebKdcURL https://webkdc/webkdc-service/
WebAuthWebKdcPrincipal service/webkdc

<Location /private/>
AuthType WebAuth
Require valid-user
</Location>

The WebAuth
application server

® The WebAuth module provides information
in additional environment variables to the
SSI and CGI namespace

WEBAUTH USER

Name of the WebAuth authenticated user

WEBAUTH TOKEN CREATION

When the token was created

WEBAUTH TOKEN EXPIRATION

When the token will expire

WEBAUTH TOKEN LASTUSED

When the token was last used

REMOTE USER

Name of the WebAuth authenticated user

AUTH TYPE

Set to WebAuth

Integration with Perl
and PHP

® Perl CGl scripts can access information
about the authenticated user via
environment variables

my Swebauth user = S$ENV{’'WEBAUTH USER'}

® As can PHP

Swebauth user = getenv(’'WEBAUTH USER');

Integration with
Java/Tomcat

® When Apache 2.0 is used to proxy requests
to Tomcat, mod webauth can be used in
conjunction with mod_jk in order to pass
environment variables to the Java servlet

The sticky issue of
authorization

® Now that we’ve authenticated the user, how
do we decide whether or not they're
authorized to use this service?

The sticky issue of
authorization

® The latest version of WebAuth includes an
Apache 2.0 authorization module,
mod_webauthldap

® Can allow access to groups of individuals
defined in LDAP

® Can include arbitrary attributes from an
LDAP record in environment variables

The sticky issue of
authorization

® Alternatively, an application can make its
own authorization decision based on the
identity of the authenticated user

® For example, by performing its own LDAP
lookup

Integration with
uPortal

® We should be able to use Apache 2.0 with
mod_webauth and mod_jk to proxy

requests to the Tomcat instance running
uPortal

® Will require some changes to uPortal to
extract information about the authenticated
user from environment variables

Integration with
uPortal

® This might not be flexible enough for
uPortal channels that require secondary
tickets

® |mplement the WebAuth protocol in pure
Java for uPortal?

Where we are now
(May 2003)

® We have a working kdc (Kerberos domain
controller), but none of our services are
Kerberos-enabled

® We have a working VWebAuth login server

® We have a working WebAuth application
server

Where we are now
(May 2003)

We have not yet tried the latest WebAuth
with LDAP support for authorization

We have not set up the Apache 2.0 proxy to
uPortal

The kdc and WebAuth login server are
some way from being production-ready

References

http://users.ox.ac.uk/~raym/talks/webauth.pdf
http://www.pubcookie.org/

http://www.brown.edu/Facilities/CIS/
Network Services/web-auth/

http://www.umich.edu/~umweb/software/cosign/
http://webauthv3.stanford.edu/

http://web.mit.edu/kerberos/www/

