
Ray Miller <raym@herald.ox.ac.uk>
Systems Development and Support

Computing Services, University of Oxford

Authentication for
Web Services

• Password-based authentication

• Cookie-based authentication

• Using cookies for single sign-on

• Kerberos

• Stanford WebAuth

• Integrating uPortal and WebAuth

Overview

• The simplest authentication scheme used
for web services is HTTP Basic Authentication,
defined in RFC 1945

• When a client requests a protected
resource, the server responds with 401
(Authorization required)

• The client resends the request with an
Authorization header encoding the
username and password

Basic authentication

• Often used in conjunction with htaccess and
htpasswd files under the control of the
information provider

• Username and password information can
also be stored in a database (GNU DBM,
Berkeley DB, mySQL, PostgreSQL, LDAP)

Basic authentication

• HTTP is a stateless protocol: every time a
client requests a protected resource, it must
include an Authorizaton header that the
server must verify

• If account information is held in a remote
database, the web server will have to verify
the username and password against the
remote data source for every client request

Basic authentication

Cookies

• When responding to an HTTP request, a
server may also send a piece of state
information that the client will store:

Set-Cookie: NAME=VALUE; expires=DATE;
path=PATH; domain=DOMAIN_NAME; secure

• This state object is known as a cookie

• The cookie will be sent by the client along
with any future requests to the specified
domain/path

Cookies

• Cookies enable state to be stored between
HTTP requests

• A server can issue a session cookie after
authenticating a user for the first time

• The server can use the session cookie to
identify the user when they make future
requests

• No need to verify the username and
password for every request

Cookies

• By introducing a central log-in server, we
can use cookies to provide intra-
institutional single sign-on for web services

• Pubcookie (University of Washington)

• BrownTicket (Brown University)

• Cosign (University of Michigan)

• WebAuth (Stanford)

Using cookies for SSO

• These cookie-based single sign-on systems
all consist of several components:

• a user agent (web browser)

• an application server

• a login server

• an external authentication service

SSO components

• trusted, central authentication service

• interacts directly with users

• verifies usernames and passwords with
backend authentication services

• issues cookies to users to provide single
sign-on functionality

• provides authentication information to
application servers

The login server

• authentication enforcer

• redirects users who haven’t been
authenticated to the login server

• verifies authentication information returned
from the login server

• issues cookies to maintain authenticated
application sessions

• provides user authentication information to
applications

The application server

• verifies user authentication information sent
from the login server

• Kerberos

• LDAP

• NIS

The external
authentication service

How it works

• If the user requests a protected resource
from a new application server, they will be
redirected to the login server

• They already have a cookie for the login
server, so they don’t need to re-authenticate

• The login server simply issues the
appropriate cookie and directs them back to
the application server

This really is SSO

• Passwords, if used, are only sent to the
central login server over SSL

• Users need only authenticate once per
session to access any protected resource

• Can leverage an existing authentication
system

• Works with almost all modern browsers

Benefits

We’ve seen this
before...

• This looks a lot like the Kerberos single
sign-on protocol:

• cookies issued by the login server grant
access to a particular application server;
they are like Kerberos service tickets

• the cookie shared between the browser
and the login server is like a Kerberos
ticket-granting ticket

We’ve seen this
before...

• Takes the Kerberos analogue a step further

• The cookie shared with the login server
really is a Kerberos ticket-granting ticket

• The cookie issued for access to an
application server really is a Kerberos
ticket

Stanford’s WebAuth

• The designers of the Kerberos protocol
have already solved many of the security
problems associated with ticketing systems

Why does this matter?

• What happens when the application server
needs authenticated access to another
service?

• For example, Herald’s WING servers need
to authenticate the user when opening a
connection to an IMAP server on their
behalf

There’s another
advantage

• Stanford’s WebAuth system includes support
for secondary tickets

• When the application server redirects the
user to the login server, it can request
tickets for additional services

• The user’s ticket-granting ticket shared
with the login server takes care of this

• Multiple tickets are encoded in cookies
sent to the application server

Secondary tickets

• The login server component of WebAuth
consists of two CGI programs, login.fcgi and
logout.fcgi, and an Apache 2.0 module,
mod_webkdc

• You don’t need to worry about this: the
login server will be provided centrally

The WebAuth login
server

• The mod_webauth module provides an
authentication handler for Apache 2.0

The WebAuth
application server

LoadModule webauth_module modules/mod_webauth.so

WebAuthKeyring conf/webauth/keyring
WebAuthKeytab conf/webauth/keytab
WebAuthServiceTokenCache conf/webauth/service_token_cache
WebAuthLoginURL https://webkdc/login/
WebAuthWebKdcURL https://webkdc/webkdc-service/
WebAuthWebKdcPrincipal service/webkdc

<Location /private/>
AuthType WebAuth
Require valid-user
</Location>

• The WebAuth module provides information
in additional environment variables to the
SSI and CGI namespace

The WebAuth
application server

WEBAUTH_USER Name of the WebAuth authenticated user

WEBAUTH_TOKEN_CREATION When the token was created

WEBAUTH_TOKEN_EXPIRATION When the token will expire

WEBAUTH_TOKEN_LASTUSED When the token was last used

REMOTE_USER Name of the WebAuth authenticated user

AUTH_TYPE Set to WebAuth

• Perl CGI scripts can access information
about the authenticated user via
environment variables

my $webauth_user = $ENV{’WEBAUTH_USER’}

• As can PHP

$webauth_user = getenv(’WEBAUTH_USER’);

Integration with Perl
and PHP

• When Apache 2.0 is used to proxy requests
to Tomcat, mod_webauth can be used in
conjunction with mod_jk in order to pass
environment variables to the Java servlet

Integration with
Java/Tomcat

• Now that we’ve authenticated the user, how
do we decide whether or not they’re
authorized to use this service?

The sticky issue of
authorization

• The latest version of WebAuth includes an
Apache 2.0 authorization module,
mod_webauthldap

• Can allow access to groups of individuals
defined in LDAP

• Can include arbitrary attributes from an
LDAP record in environment variables

The sticky issue of
authorization

• Alternatively, an application can make its
own authorization decision based on the
identity of the authenticated user

• For example, by performing its own LDAP
lookup

The sticky issue of
authorization

• We should be able to use Apache 2.0 with
mod_webauth and mod_jk to proxy
requests to the Tomcat instance running
uPortal

• Will require some changes to uPortal to
extract information about the authenticated
user from environment variables

Integration with
uPortal

• This might not be flexible enough for
uPortal channels that require secondary
tickets

• Implement the WebAuth protocol in pure
Java for uPortal?

Integration with
uPortal

• We have a working kdc (Kerberos domain
controller), but none of our services are
Kerberos-enabled

• We have a working WebAuth login server

• We have a working WebAuth application
server

Where we are now
(May 2003)

• We have not yet tried the latest WebAuth
with LDAP support for authorization

• We have not set up the Apache 2.0 proxy to
uPortal

• The kdc and WebAuth login server are
some way from being production-ready

Where we are now
(May 2003)

• http://users.ox.ac.uk/~raym/talks/webauth.pdf

• http://www.pubcookie.org/

• http://www.brown.edu/Facilities/CIS/
Network_Services/web-auth/

• http://www.umich.edu/~umweb/software/cosign/

• http://webauthv3.stanford.edu/

• http://web.mit.edu/kerberos/www/

References

