September 16, 2000

Numerical Python

David Ascher
Paul F. Dubois
Konrad Hinsen
Jim Hugunin
Travis Oliphant

Lawrence Livermore National Laboratory, Livermore, CA 94566
UCRL-MA-128569

Legal Notice
Copyright (c) 1999. The Regents of the University of California. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted,
provided that this entire notice is included in all copies of any software which is or includes a copy or modifi-
cation of this software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under con-
tract no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of Cali-
fornia for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately-owned rights. Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

Table of Contents

Part 1: Numerical Python 11

L. INrOTUCTION ... 12
Where to get information and COdecooiiiiiiiiiiieiiiiiece e 13
ACKNOWIEAGMENTS ...t 13

2. Installing NUMPY ..o, 15
Testing the Python installation ... 15
Testing the Numeric Python Extension Installation...............cccccecevveeviininnen. 15
INSEAIING NUMPY ..o 15
AL thE SOUMCEFOITE. .. ittt et e 16

The NUMeric DiSCUSSION LiSt...........ccovoeeeimiiiieiiiiiie e 16
BUGS and PAtCREScccoviiiiiiiie ettt 16
CVE REPOSILONYeeeiisieeie ettt 16
Ll] = 17
PYFOIT ...ttt 17

3. The NUMTUL PACKAGEovvveeeeeeiiieeeeeee e 18
Testing the NUMTUt PaCKAgEccoiiiiiiiiiiiie e 18
Possible reasons for failure: ... 18

WINB2 .ottt 18
URUX ottt 19

4. High-Level OVEIVIEWcccoiiiiiiiiiieiciee e 20
ATAY ODJECES ... 20
UNIVErsal FUNCHONS.ooiiiiiiie e 21
CoNVENIENCE FUNCHIONS.....coiiiiiiie ittt 21

I N €=\ Y == Lo 23
BlASICS . ettt ettt 23
Creating arrays from SCratCcceeiiiiiiiiiiiiiee e 24

array() and tyPECOUEScooeeeeeiiiiieeiiee e 24

MUItIdIMENSIONAI AITAYScccccuieii ittt 25

TESIZE .ttt ettt
Creating arrays with values specified “on-the-fly'...........ccooc i, 28
ZEI0S() @NA ONES() ..ot 28
AITAYIANGE(). ...ttt 29
Creating an array from a function: fromfunction()..............cccoceeveeen... 30
JAONEIY() ..ottt 31
Coercion and CASHNG........cuviiiieieii it 32
Automatic Coercions and Binary Operationscccoccueevveeesennn. 32
Deliberate up-casting: The asarray function................cccocoeeeeeseescunncn.. 32
The typecode value tablecccooeooiiiiiiiiiiieii e 33
Consequences of silent UPCASEING.............ccccuuvcveeiiiiieieiniiieieeisieee, 33
SAVING SPAC ..ot 34
Deliberate casts (potentially down): the astype method....................... 34
OPErALING ON AITAYS ..ceeiuitiiie ettt ettt ettt n e e e sanree s 34
SIMPIE OPEIALIONS........cooeiiiieiisie e 34
Getting and Setting array ValUES..........ccooiiiiiiiiiiiiieie e 35
SHCING AITAYS .ottt e e e e e e sabeee e e 36
B. UTUNCS ..ot 39
What are UFUNCS? ..o 39
Ufuncs can operate on any Python SeqUeNCccccoeevvccveeennanen. 40
Ufuncs can take output arguments..............cccceuiiceeeesiieeeaniieeeesiiineeens 40
Ufuncs have special methodsccccocoeeeiiiiiiiiniiiiiiiiiiee e 40
The reduce ufunc MEthodcoovvvieeiiii e
The accumulate ufunc Methodccoovviiiiiiiie e
The outer UfuNC MELNOcoiiiiiiiiii e
The reduceat ufunc Methodccocviiiiiniii e
Ufuncs always return NEW Arrayscccceeuweeeeniieeeeniieae e 42
Which are the UFUNCS?coooiiii e 42
Unary Mathematical Ufuncs (take only one argument) 42
Binary Mathematical UfUNCS...............ccceoiiiieeaniiiieessee e 42
LOGICAI UFUNCS ...ttt 42
UUNC ShOMhANGSccooviiiiis e 43
7. Pseudo INdICESccciiiiiiiiiiici 45
8. Array FUNCHONSuuuiieieee i e e e e e a7
take(a, INAICES, AXISTO) ...ovueeeiiiieie ettt e a7
PUt (@, INICES, VAIUES)eiiiiiiiie ettt 48
transpose(a, aXESTINONE)cciiuiiiiiiii et 49
repeat(a, repeats, axiST0)uiiiiiiiii i 49
choose(a, (D0, ..., BN)) oo 49
(oY=) PP TP PP UPPR 50
(010] g P 4=T4 o] (-) H PP PP PPPPRRPPPPPN 50
WHErE(CONILION, X, ¥) 1vreeeiitieee ettt ettt 50
compress(condition, @, aXIST0)ccoiuiiiiriiiie e 50
diagonal(@, K=0)eeeieiiie e 50
ErACE(A, KT0) ..ttt 51
Searchsorted(@, VAlUES).........oooiiii ittt 51
SOM(A, AXIST=L) 1tteie ettt ettt ettt et ettt 51
ArgSONT(A, AXIST=L1) .ueiiiiitiiieii it ie ettt ettt e 52
argmax(a, axis=-1), argmin(a, axXiS=-1)cccecsriurreirmureeerriiee e 52

fromstring(String, tYPECOUE)uuiei it 52

(o [0] {00 1WA 11123 HR O PP PP PP UPPP 53
MAtriXmMUItIPIY(ML, M2) ..o 53
Clip(M, M_IMIN, M_MAX) .. tteieiiitiiie ettt 53
indices(shape, typecode=NONE)ccooueriiiiiiiiiiie e 53
SWaPaXeS(@, aXiSL, AXIS2)iiiiurriiiiiiiiii it 54
concatenate((a0, al, ..., an), axXiS=0)covuerreriiririniiiee e 54
INNEIProdUCE(A, D) .vveeeiiieie e 55
T NV (=] o (PP PP PP 55
AITAY _STI() ettt ettt 55
resize(a, NEW_SNAPE)oi i 55
diagonal(a, offset=0, axis1=-2, axXiS2=-1)c.cccuuttrriurreerririeer e e e e 55
FEPEAL ... e ittt ittt (a, counts, axis=0)55
CONVOIVE (8, V, MOAET0)....cciiiiiiiiiiiii ettt 56
cross_correlate (a, V, MOAE=0)ccooiuiiriiiiiie it 56
WheEre (CONAILION, X, ¥) ..ereiiiiiie ettt et et 56
o L=T 01113 () PP PR PPPP 57
SUM(@, INAEXT0) 1. cveie ettt ettt et e sb e e sbn e e e s bneeeaas 57
CUMSUM(@, INAEXTO) ettt e sb e e saneeeee 57
Product(a, INAEXT0)eeiiiiiiie i 57
cUMProduct(a, INAEXT0)cccoiiiieiiiiee et 57
alltrue(a, INAEXT0) ...oeieeieieie it 57
SOMELrUe(@, INAEXT0) ..oiveiiiiiitiiie ettt e 57
S BN =\ V1Y, =1 o o £ USRS 58
TEEMISIZE() vttt ettt ettt et e b 58
ISCONTIGUOUS() +- ettt ettt ettt ettt et ettt e et e bt e b e et e e e e e 58
177 0 1=TeloTo [T IR PP UPUPPPRPUPPTPPPRIN 58
DYLESWAPPEA(). ... ettt e 58
1005 1T Lo | TP PP PP PTPR 58
EONIST() <ottt ettt 59
10. Array ATHDULESvveeieieec e 60
FIAL ... 60
real and IMAGINALYcovueeeaiiieie ettt 60
11. SpecCial TOPICS...cuuviiiiiiieeeeeeeeeee e e e e e e eees 62
SUDCIASSING ...ttt 62
COdE OrgaNIZALIONcceeiiiiie ettt ettt e e nan e e 62
Numeric.py and frieNdsccccouivooiiiiiiies e 62
USEIAITAY.PY .o 62
MELTIX.DY ettt 62
PrECISION.PY ...ttt 62
AITQYPIINLEI.PY ...ttt 62
MIBD.DY ..o 62
DAIIETE(IM) e e ————— 63
BIACKMAN(M) ..o e 63
COITCOET(X, YENONE) v e e 63
COV(MLYENONE) et e e e e e ar e e e e e e e e e e e 63
(o0 a] o] o To [{2 1O 63
o010 YU T2 0T (10 63

AIag(V, KZ0) et e —————————————— 63

=TT (2) SRR
eye(N, M=N, k=0, typecode=NONE)........ccccceeeeriiiieeeeieieieieieiiie s
111711 (0] P PEREERRRRR
1117 018 o [(0 R
hammMING(M)o e
NANNING(M) .. e e e e e
Kaiser(M, DeLA).......cuuueeiii i
T (1)
TS T a1 () SRR
LT L= T (2) PP
0011 T (0) ISP
0 EST0 1 {1 1) ISP
o] (o o (2 1) IR
011 o (1) SRR
rand(dl, ..., dN) oo e —————
01010 1 it) SRR
£ L]) PSP
RS0 [B1STSY4=T =) SRR,
£ 00 (2 1) R URURRR
£ 1012) TS
ES3 Yo 1 (. SO
TrAPZ(Y,XENONE) v
tri(N, M=N, k=0, typecode=NONE)..........cocvrrrrrrrriiiii e e e
L 2) PP
THU(MLKZ0) o e e ———————————
The multiarray ODJECT...........vii i 65
TYPECOUES ...ttt ettt et et 65
Indexing in and Out, SHICINGcoiiiiiiiiiiiie e 66
EHIDSES ettt 67
INEWAXIS ..ttt ettt e bt e ee et e e b e et bt e e bt e e e e bbb e e e b e e neee 67
Set-indexing and BroadCastinccccoeiiiiiriiiiiiie e 68
AXIS SPECIICALIONS ...ttt 68
Textual representations Of ArraysS.........cveeiiieie i 68
array2string(a, max_line_width = None, precision = None,
suppress_small = None, separator="", array_output=0)....................... 68
COMPANISONS ...eeetieee ettt ettt et e e e et e e eae e e e saibeeeeaabeeee e 70
Pickling and Unpickling -- storing arrays on disSKccccovveeeiriieeeiniieeeens 70
Dealing with floating point eXCeptionS...........cooviieiiiiie i 70
12. Writing a C extension t0 NUMPYcccccvvvvvveeiiiviiiiiinneennn 71
)i o o [UTet i o] o RSP P PP TP 71
Preparing an extension module for NUMPY arraysccccocveverinnneninnnen 71
Accessing NUMPY arrays from Ccooiuieiiiiiiii e 72
Types and Internal SIrUCHUFEcovieiiieiiii e 72
Element data LYPES.cocueee ettt 72
CONLIGUOUS @ITAYS ...ttt 73
Zero-dimenSioONal @ITAYS............cuiuuueiiiiei i 73
A SIMPIE EXAMPIE ..o 73
Accepting input data from any SEqQUENCE tYPEccovvvviriiiiiieriiiie e 74
Creating NUMPY @ITAYS.....coooiiiie ettt 75
Returning arrays from C fUNCHONSoocviiiiiiiiiiie e 75
A 1ess SIMPIEe eXAMPIEoooiiiiiie e 76

Vi

0 T o o) PR

13. C APl REIEIENCE ..o 78

ArrayObject C Structure and APccooiiiiiiii e 78
SHUCEUIES ..ottt 78
The ArrayODJECE APcocoiieieiieee ettt 79
INOEES ...ttt 82
UfuncObject C Structure and APl ..o 82
C SHUCHUIE ...ttt e 82
UFRUNCODBJECE C AP ..ot 84
I €110 17T T OSSR 87

Part 2: Optional Packages 89

License and disclaimer for packages MA and RNG...........c.ccceeeiiiiieiiinennne 90
15. FFT Reference........ccooovviiiiiiiiiii e 91
PYthon INtErfacooooiiiie e e 91
fft(data, N=NONE, AXIST-1)........ccoiiiiiiii et 91
inverse_fft(data, N=NONE, aXiS=-1)........cccccrmvueeeemiieeeassiieieassieeeesireeens 91
real_fft(data, N=NONE, @XiS==-1)...........comieeeemriieeeasiiiee e 91
inverse_real_fft(data, N=NONE, aXiS=-1).......cccccceeurevcrmreaiaasaisrieinaannnns 92
fft2d(data, sS=None, axesS=(-2,-1))cccocuurvomeimiciieiisiieeiseee e, 92
real_fft2d(data, s=None, axes=(-2,-1))ccccccevvoueriesiieeiaiiieeeeeiee e 92
L O N = BT PPUPPPPPPPPPPPPPIN 92
ComPIlAtION NOLES ...t 93
16. LinearAlgebra Referencecccccccceeiieiiiiii e 94
PYthon INtErfacooooiiiie e e 94
solve_linear_equationS(@, D)ccccuuooiiiioiiiiiiiis e 94
JAVEISE(@) ..ttt 94
EIGENVAIUES(Q).......eeeeisseee e 94
EIGENVECIOIS(A) ...ttt 95
singular_value _decomposition(a, full_matrices=0)cccccccevvvennn. 95
generalized_inverse(a, rcond=1€-10)cccccueeeeeeiciueieeeieeseesiieeaea 95
AELEIMINANT(A) ...ttt 95
linear_least_squares(a, b, rcond=e-10)ccccovoueerieesessciieinanaannnns 95
ComPIlAtION NOLES ...t 95
17. RandomArray Reference........ccccvvevervveiiuiiiiiiieeieeeeeeeeeeeeeeninnns 96
PYthon INtErfacooooiiiie e e 96
SEEUAXTO, YT0) .. 96
GEL SEEU() . 96
random(shape=RetUrnFIOAL)cccceommioueeiniiieieaniieie e 96
uniform(minimum, maximum, shape=ReturnFloat)c....cccc........ 96
randint(minimum, maximum, shape=ReturnFloat)...................ccoc....... 96
PEIMUIALION(IN) ... 96
Floating point random Arraysc.cooeiieiieiiieee e 97
standard_normal (shape=Returnfloat)ccccccucooeenicvneanscieeennnnn. 97
normal (mean, variance, shape=ReturnFloat).............c...cccccevvvveennun. 97

multivariate_normal (mean, covariance) or

Vii

multivariate_normal (mean, covariance, leadingAxesShape) 97

exponential (mean, shape=ReturnFloat)cccccoeemrcorreenscveneennnune. 97
beta (a, b, sShape=ReturnFIOat)cccccuueeiiiiiciiieiiieiiiee e 97
gamma (a, r, Shape=ReturnFIoat)cccccovcuiueviiesiciiiiisaciiie e, 98
chi_square (df, shape=ReturnFIOAL)..............ccccccocvivuiiiciiiiiiiciineannen, 98
noncentral_chi_square (df, nonc, shape=ReturnFloat)........................ 98
F (dfn, dfd, shape=ReturnFlOat)cccocoeiirioeeiisiieieiiiiieeasiiieaens 98
noncentral_F (dfn, dfd, nconc, shape=Returnfloat)............................. 98
INtEgEr FANTOM AITAYSeiiieiiieiiieieee ettt ettt et e ee e et e e sbee e 98
binomial (trials, prob, shape=Returning)..............ccccecvereviiveeeinnieeennnn. 98
negative_binomial (trials, prob, shape=Returnint).....................ccccc..... 98
poisson (mean, Shape=RetUrNINt)cccocueeviiieeiiciiaiiiiiees e 98
multinomial (trials, probs) or multinomial (trials, probs, leadingAxesShape)98
EXAMPIES <. 99
18. Independent Random Streams............ccoevvveveeeviiiniiiineeeeeenn, 101
BACKGIOUNGcooiiiie i 10
L0 L= Yo PR 10
MOAUIE RNG ...ttt 10
GeNErator ODJECES.. ..o ii e
MOAUIE TANT ...t 10
EXAMPIES <. 10
19. MASKEA AITAYSvveieeeeeeeie e e e e ettt e e e e e e e e e e e eees 103
What is @ MASKEA AITAY?cvveeeeiiiiie ettt 10
Installing and USING MA ..o 10
ClasS MA ... e 10
Attributes of MAaSKed AITAYS..........ccccccueiiiciieiisiee e 10
Methods 0n Masked AITaYS.cc.cccoouiiicieiiiiiiis e 10
Constructing MAaskKed ArraysS.............ccoouiicveiiiiieieisiieie et 10
TRHE filled FUNCHIONceeeiieee ettt 10
WOrking With MASKSc.cccouiiiiiiii et 10
COPYING OF NOL? ...ttt 10
BERAVIOIS ..ottt 10
Indexing @and SHCINGc..ccooooiiiiiiiiiiee e 10
Indexing that produces a scalar result................cccooveeeeiiesiciciinanaannns 10
Assignment to elements and SIICESccccuvcciiiicieeiiiiiieiiieee 10
Module MA: ALHDULESooiiiii e 10
Module MA: FUNCLIONSooiiiiiiie ittt 10
UNary FUNCHONScooieiiiiee e 10
BiNAry fUNCHONScooiiieeis et 10
COMPArISON OPEIALOIS....ciitveieiiirieer ittt ee st ee et neees
(oo [ot 11o] o 1=] -1 o] £= PR
Special array OPEratoOrScccouiiiieeiiiiiiee e 10
Controlling the size of the string representationscc.c.ccc.o.... 11
HEIPEI ClASSES ... 11
Class masked _unary fUNCHONcccoovooiieieieeieeeieeae e 11
Class masked_binary fuNCtiocccccooeveoiiiiiiieaieseiee e 11
EXAMPIES ..o 11
Data with a given value representing missing data 11
Filling in the miSSiNg Qataccoooiiiiiiiiiiiiiii e 11
NUmMerical OPEratiONScccouiiiiieiiiiiiiie e 11
SEEING thE MASK.........cooiiiiiiiiiiie e 11

viii

Filling it your way

Index 115

PART I: Numerical Python

Numerical Python (“Numpy”) adds a fast multidimensional array facility to Python. This
part contains all you need to know about “Numpy” arrays and the functions that operate
upon them.

11

1. Introduction

This chapter introduces the Numeric Python extension and outlines the rest of the
document.

The Numeric Python extensions (NumPy henceforth) is a set of extensions to the Python programming lan-
guage which allows Python programmers to efficiently manipulate large sets of objects organized in grid-like
fashion. These sets of objects are called arrays, and they can have any number of dimensions: one dimensional
arrays are similar to standard Python sequences, two-dimensional arrays are similar to matrices from linear al-
gebra. Note that one-dimensional arrays aredifferentfrom any other Python sequence, and that two-dimen-

sional matrices are alslifferentfrom the matrices of linear algebra, in ways which we will mention later in this

text.

Why are these extensions needed? The core reason is a very prosaic one, and that is that manipulating a set of
a million numbers in Python with the standard data structures such as lists, tuples or classes is much too slow
and uses too much space. Anything which we can do in NumPy we can do in standard Python — we just may
not be alive to see the program finish. A more subtle reason for these extensions however is that the kinds of
operations that programmers typically want to do on arrays, while sometimes very complex, can often be de-
composed into a set of fairly standard operations. This decomposition has been developed similarly in many ar-
ray languages. In some ways, NumPy is simply the application of this experience to the Python language — thus
many of the operations described in NumPy work the way they do because experience has shown that way to
be a good one, in a variety of contexts. The languages which were used to guide the development of NumPy in-
clude the infamous APL family of languages, Basis, MATLAB, FORTRAN, S and S+, and others. This heri-
tage will be obvious to users of NumPy who already have experience with these other languages. This tutorial,
however, does not assume any such background, and all that is expected of the reader is a reasonable working
knowledge of the standard Python language.

This document is the “official” documentation for NumPy. It is both a tutorial and the most authoritative source
of information about NumPy with the exception of the source code. The tutorial material will walk you through
a set of manipulations of simple, small, arrays of numbers, as well as image files. This choice was made be-
cause:

» Aconcrete data set makes explaining the behavior of some functions much easier to motivate than simply
talking about abstract operations on abstract data sets;

« Every reader will at least dntuition as to the meaning of the data and organization of image files, and
« The result of various manipulations can be displayed simply since the data set has a natural graphical rep-
resentation.

All users of NumPy, whether interested in image processing or not, are encouraged to follow the tutorial with
a working NumPy installation at their side, testing the examples, and, more importantly, transferring the under-
standing gained by working on images to their specific domain. The best way to learn is by doing — the aim of
this tutorial is to guide you along this “doing.”

12

Here is what the rest of this part contains:

» “Installing NumPy” on p agel5 provides information on testing Python, NumPy, and compiling and install-
ing NumPy if necessary.

* “The NumTut package” on pa gel8 provides information on testing and installing the NumTut package,
which allows easy visualization of arrays.

uoNONPOIU| e

» “High-Level Overview” on pa ge20 gives a high-level overview of the components of the NumPy syste
as a whole.

« “Array Basics” on p age23 provides a detailed step-by-step introduction to the most important aspect of
NumPy, the multidimensional array objects.

« “Ufuncs” on page 39 provides information on universal functions, the mathematical functions which oper-
ate on arrays and other sequences elementwise.

« “Pseudo Indices” on pag e45 covers syntax for some special indexing operators.

« “Array Functions” on p age47 is a catalog of each of the utility functions which allow easy algorithmic pro-
cessing of arrays.

« “Array Methods” o n page58 discusses the methods of array objects.
« “Array Attributes” on pa ge60 presents the attributes of array objects.

» “Special Topics” on page62 is a collection of special topics, from the organization of the codebase to the
mechanisms for customizing printing.

* “Writing a C extension to NumPy” on pa ge71 is an tutorial on how to write a C extension which uses
NumPy arrays.

» “C API Reference” on pa ge78 is a reference for the C APl to NumPy objects (both PyArrayObjects and
UFuncObijects).

» “Glossary” on page87 i s a glossary of terms.

» Reference material for the optional packages distributed with Numeric Python are described in the next part,
“Optional Packages” on page89 .

Where to get information and code
Numerical Python and its documentation are available at SourceForge. The main web site is:
http://numpy.sourceforge.net

Downloads, bug reports, and patch facility, and releases are at the main project page, reachable from the above
site or directly at: http://sourceforge.net/projects/numpy

The Python web site is www.python.org

Acknowledgments

Numerical Python is the outgrowth of a long collaborative design process carried out by the Matrix SIG of the
Python Software Activity (PSA). Jim Hugunin, while a graduate student at MIT, wrote most of the code and
initial documentation. When Jim joined CNRI and began working on JPython, he didn’t have the time to main-
tain Numerical Python so Paul Dubois at LLNL agreed to become the maintainer of Numerical Python. David
Ascher, working as a consultant to LLNL, wrote most of this document, incorporating contributions from Kon-
rad Hinsen and Travis Oliphant, both of whom are major contributors to Numerical Python.

13

Many other people have contributed to Numerical Python by making suggestions and sending in bug fixes. Nu-
merical Python illustrates the power of the open source software concept. We hope that readers will also send
in “bug fixes” for this manual. We have made this early first release of the manual in the belief that such a pro-
cess is the fastest way to improve it. Please send comments about the manual to support@icf.linl.gov or to Paul
Dubois, L-264, Lawrence Livermore National Laboratory, Livermore, CA 94566, U.S.A.

14

2. Installing NumPy

This chapter explains how to install and test NumPy, from either the source distribution or
from the binary distribution.

Adwnp Bujpeisu]

Before we start with the actual tutorial, we will describe the steps needed for you to be able to follow along the
examples step by step. These steps including installing Python, the NumPy extensions, and some tools and sam-
ple files used in the examples of this tutorial.

Testing the Python installation

The first stepis to install Python if you haven’t already. Python is available from the Python website’s download
directory ahttp://www.python.org/downloadClick on the link corresponding to your platform, and follow the
instructions described there. When installed, starting Python by fyimgn at the shell or double-clicking

on the Python interpreter should give a prompt such as:

Python 1.5.1 (#0, Apr 13 1998, 20:22:04) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

If you have problems getting this part to work, consider contacting a local support person or ethiling
help@python.ordor help. If neither solution works, consider posting on the comp.lang.python newsgroup (de-
tails on the newsgroup/mailing list are availabletéy://www.python.org/psa/MailingLists.html#Elp

Testing the Numeric Python Extension Installation

The standard Python distribution does not come as of this writing with the Numeric Python extensions installed,
but your system administrator may have installed them already. To find out if your Python interpreter has
NumPy installed, typamport Numeric at the Python prompt. You'll see one of two behaviors (throughout
this documenthold Courier New font indicates user input, astndard Courier New font indicates

output):

>>> import Numeric

Traceback (innermost last):

File "<stdin>", line 1, in ?

ImportError: No module named Numeric
>>>

indicating that you don’t have NumPy installed, or:

>>> import Numeric
>>>

indicating that you do. If you do, go on to the next step. If you don’t, you have to get the NumPy extensions.

Installing NumPy

The release facility at SourceForge is accessed through the project page, http://sourceforge.net/projects/numpy.
Click on the “numpy” releases and you will be presented with a list of the available files. The files whose names
end in “.tar.gz” are source code releases. The others are “prebuilt” for a given platform.

15

On Windows, we currently have .zip files that should be unzipped into the top of your Python distribution; there
is no “Setup” to run.

In general, there may not be a prebuilt version of a particular kind available in every minor release. If you need
a prebuilt version, choose the most recent version available.
The source distribution should be uncompressed and unpacked using the the tar program:

csh> tar xfz Numeric-n.m.tar.gz
Follow the instructions in the top-level directory for compilation and installation. Note that there are ptions you
mustconsider before beginning.

* Read the README file. With many software distributions, this is an optional step. It isn’t for Numeric Py-
thon. Your build won’t work unless you make a decision about LAPACK and the BLAS.

« Subdirectory Packages contains some optional packages you may wish to install. The Makefile in the top-
level directory can be used to do this after you have completed the main installation. These packages are
described in “Optional Packages” on page 89.

Once your lapack_lite decision is made and the library built if necessary, installation is usually as simple as:

python setup.py install

However, please (please!) see the README itself for the latest details.

ing either themport Numeric form, or thefrom Numeric import ...
form. Because most of the functions we’ll talk about are in the Numeric module, in
this document, all of the code samples will assume that they have been preceded by
a statement:

from Numeric import *

@ Just like all Python modules and packages, the Numeric module can be invoked us-

At the SourceForge...

The SourceForge facility is at http://sourceforge.net/projects/numpy. Look on SourceForge also for various Nu-
meric-based packages supplied by individuals.

The Numeric Discussion List

You can subscribe to a discussion list about Numeric python using the project page at SourceForge. The list is
a good place to ask questions and get help. Send mail to numpy-discussion@lists.sourceforge.net.

Bugs and Patches
Bug tracking and patch-management facilities is provided on the SourceForge project page.
CVS Repository

You can get the latest and greatest (albeit less tested and trustworthy) version of Numeric directly from our
CVS repository.

16

FTP Site *
2

The FTP Site contains this documentation in several formats, plus maybe some other goodies we have lyirfg
around. 5
(o]

Pyfort £
yfor =
T

<

One tool for connecting Fortran to Numeric and Python is Pyfort, sourceforge.net/projects/pyfortran.

17

3. The NumTut package

This chapter leads the user through the installation and testing of the NumTut package,
which should have been distributed with this document.

Testing the NumTut package

This tutorial assumes that the NumTut package has been installed. This package contains a few sample images
and utility functions for displaying arrays and the like. To find out if NumTut has been installed, do:

>>> from NumTut import *
>>> view(greece)

If a picture of a greek street shows up on your screen, you're all set, and you can go to the next chapter.

Possible reasons for failure:

>>> import NumTut
Traceback (innermost last):
File "<stdin>", line 1, in ?
ImportError: No module named NumTut

This message indicates that you do not have the NumTut package installed in your PythonPath. NumTut is dis-
tributed along with the Python source in the Demo subdirectory. Copy the NumTut subdirectory somewhere
into your Python path, or just execute python from the Demo directory.

On Win32, the NumTut directory can be placed in the main directory of your Python installation. On Unix, it
can be placed in the site-packages directory of your installation.

Win32

>>> import NumTut
Traceback (innermost last):

18

[.]
ConfigurationError: view needs Tkinter on Win32, and either threads or
the IDLE editor"

or:

ConfigurationError: view needs either threads or the IDLE editor to be
enabled.

Bexoed InJwnN ayl e

On Win32 (Windows 95, 98, NT), the Tk toolkit is needed to view the images. Additionally, either the Python @
interpreter needs to be compiled with thread support (which is true in the standard win32 distribution) or you
need to call the NumTut program from the IDLE interactive development environment.

If you do not wish to modify your Python installation to match these requirements, you can simply ignore the
references to the demonstrations which useith®() command later in this document. Using NumPy does
not require image display tools, they just make some array operations easier to understand.

Unix

On Unix machines, NumTut will work best with a Python interpreter with Tk support (not true in the default
configuration), with the Tkinter GUI framework available and optionally with the tkimaging add-on (part of the
Python Imaging Library). If this is not the case, it will try to use an external viewer which is able to read PPM
files. The default viewer is 'xv’, a common image viewer available fitpr¥ftp.cis.upenn.edu/pub/xif.xv is

not installed, you will get an error message similar to:

>>> import NumTut
Traceback (innermost last):

[..]

ConfigurationError: PPM image viewer 'xv’ not found

You can configure NumTut to use a different image viewer, by typing e.qg.:

>>> import NumTut

>>> NumTut.view.PPMVIEWER = 'ppmviewer’
>>> from NumTut import *

>>> view(greece)

If you do not have a PPM image viewer, you can simply ignore the references to the demonstrations which use

theview() command later in this document. Using NumPy does not require image display tools, they just
make some array operations easier to understand.

19

4. High-Level Overview

In this chapter, a high-level overview of the extensions is provided, giving the reader the
definitions of the key components of the system. This section defines the concepts used by
the remaining sections.

Numeric Python consists of a set of modules:
e Numeric.py (and its helper modulenultiarray andumath .)

This module defines two new object types, and a set of functions which manipulate these objects, as well as
convert between them and other Python types. The objects are the new array object (technically called
multiarray objects), and universal functions (technicalfync objects).

» Other optional packages shipped with Numeric are discussed in “Optional Packages” on page89. Among
these a packages for linear algebra, random numbers, masked or missing values, and Fast Fourier Trans-
forms.

Array Objects

The array objects are generally homogeneous collections of potentially large numbers of numbers. All numbers
in a multiarray are the same kind (i.e. number representation, such as double-precision floating point). Array
objects must be full (no empty cells are allowed), and their size is immutable. The specific numbers within
them can change throughout the life of the array.

Note: In some applications arrays of numbers may contain entries representing invalid or missing values. An
optional package “MA” is available to represent such arrays. Attempting to do so by using NaN as a value may
lead to disappointment or lack of portability.

Mathematical operations on arrays return new arrays containing the results of these operations pae&formed
mentwiseon the arguments of the operation.

Thesizeof an array is the total number of elements therein (it can be 0 or more). It does not change throughout
the life of the array.

Theshapeof an array is the number of dimensions of the array and its extent in each of these dimensions (it can
be 0, 1 or more). It can change throughout the life of the array. In Python terms, the shape of an array is a tuple
of integers, one integer for each dimension that represents the extent in that dimension.

Therank of an array is the number of dimensions along which it is defined. It can change throughout the life of
the array. Thus, the rank is the length of the shape.

Thetypecodeof an array is a single character description of the kind of element it contains (number format,
character or Python reference). It determines the itemsize of the array.

Theitemsizeof an array is the number of 8-bit bytes used to store a single element in the array. The total mem-
ory used by an array tends to its size times its itemsize, as the size goes to infinity (there is a fixed overhead per
array, as well as a fixed overhead per dimension).

20

To put this in more familiar mathematicial language: A vector is a rank-1 array (it has only one dimension along®

which it can be indexed). A matrix as used in linear algebra is a rank-2 array (it has two dimensions along.
which it can be indexed). There are also rank-0 arrays, which can hold single scalars -- they have no dimensigh
along which they can be indexed, but they contain a single number.

Here is an example of Python code using the array objects (bold text refers to user input, non-bold text to co
puter output):

>>> vectorl = array((1,2,4,5))

>>> print vectorl

[12345]

>>> matrixl = array(([0,1],[1,3]))

>>> print matrix1

[[01]

(13]]

>>> print vectorl.shape, matrix1l.shape

(5)(2.2)

>>> print vectorl + vectorl

[2 468 10]

>>> print matrix1 * matrix1

[[0 1] # note that this is not the matrix
[19]] # multiplication of linear algebra

MBINISAG |98

If this example does not work for you because it complains of an unknown name “array”, you forgot to begin
your session with

from Numeric import *
See page 16.

Universal Functions

Universal functions (ufuncs) are functions which operate on arrays and other sequences. Most ufuncs perfor
mathematical operations on their arguments, also elementwise.

Here is an example of Python code using the ufunc objects:

>>> print sin([pi/2., pi/4., pi/6.])

[1. , 0.70710678, 0.5]

>>> print greater([1,2,4,5], [5,4,3,2])

[0011]

>>> print add([1,2,4,5], [5,4,3,2])

[6677]

>>> print add.reduce([1,2,4,5])

12 #1+2+3+4+5

Ufuncs are covered in detail in “Ufuncs” o n page39.

Convenience Functions

The Numeric module provides, in addition to the functions which are needed to create the objects above, a set
of powerful functions to manipulate arrays, select subsets of arrays based on the contents of other arrays, and
other array-processing operations.

>>> data = arange(10) # convenient homolog of builtin
range()

>>> print data

[0123456789]

21

>>> print where(greater(data, 5), -1, data)
[012345-1-1-1-1] # selection facility
>>> data = resize(array((0,1)), (9, 9))

>>> print data

[010101010]

[101010101]

[010101010]

[101010101]

[010101010]

[101010101]

[010101010]

[101010101]

[010101010]

All of the functions which operate on NumPy arrays are described in “Array Functions” on page47.

22

5. Array Basics

solseg Aelly e

This chapter introduces some of the basic functions which will be used throughout the text.

Basics

Before we explore the world of image manipulation as a case-study in array manipulation, we should first de-
fine a few terms which we’ll use over and over again. Discussions of arrays and matrices and vectors can get
confusing due to disagreements on the nomenclature. Here is a brief definition of the terms used in this tutorial,
and more or less consistently in the error messages of NumPy.

The python objects under discussion are formally called “multiarray” objects, but informally we’'ll just call
them “array” objects or just “arrays.” These are different from the array objects defined in the standard Python
array module (which is an older module designed for processing one-dimensional data such as sound files).

These array objects hold their data in a homogeneous block of elements, i.e. their elements all have the same C
type (such as a 64-bit floating-point number). This is quite different from most Python container objects, which
can contain heterogeneous collections. (You can, however, have an array of Python objects, as discussed later).

Any given array object has a rank, which is the number of “dimensions” or “axes” it has. For example, a point
in 3D space [1, 2, 1] is an array of rank 1 — it has one dimension. That dimensiderigthaf 3.

As another example, the array

1.00.00.0
0.01.02.0

is an array of rank 2 (it is 2-dimensional). The first dimension has a length of 2, the second dimension has a
length of 3. Because the word “dimension” has many different meanings to different folks, in general the word
“axis” will be used instead. Axes are numbered just like Python list indices: they start at 0, and can also be
counted from the end, so that axis -1 is the last axis of an array, axis -2 is the penultimate axis, etc.

There are two important and potentially unintuitive behaviors of NumPy arrays which take some getting used
to. The first is that by default, operations on arrays are performed element-wise. This means that when adding
two arrays, the resulting array has as elements the pairwise sums of the two operand arrays. This is true for all
operations, including multiplication. Thus, array multiplication using the * operator will default to element-
wise multiplication, not matrix multiplication as used in linear algebra. Many people will want to use arrays as
linear algebra-type matrices (including their rank-1 versions, vectors). For those users, the Matrix class pro-
vides a more intuitive interface. We defer discussion of the Matrix class until later.

The second behavior which will catch many users by surprise is that functions which return arrays which are
simply different views at the same data will in falgaretheir data. This will be discussed at length when we
have more concrete examples of what exactly this means.

Now that all of these definitions and warnings are laid out, let's see what we can do with these arrays.

23

Creating arrays from scratch

array() and typecodes

There are many ways to create arrays. The most basic one is the usar@fytf)e function:
>>> a=array([1.2, 3.5, -1])

to make sure this worked, do:

>>> printa
[1.2 35-1.]

Thearray(numbers, typecode=None, savespace=0) function takes three arguments — the first

one is the values, which have to be in a Python sequence object (such as a list or a tuple). The optional second
argument is the typecode of the elements. If it is omitted, as in the example above, Python tries to find the one
type which can represent all the elements. The third is discussed in “Saving space” on pa ge34.

Since the elements we gave our example were two floats and one integer, it chose “float' as the type of the re-
sulting array. If one specifies the typecode, one can specify unequivocally the type of the elements — this is es-
pecially useful when, for example, one wants to make sure that an array contains floats even though in some
cases all of its elements are integers:

>>> x,y,z=1,23

>>> a = array([x,y,z]) # integers are enough for 1, 2 and 3
>>> printa

[123]

>>> a = array([x,y,z], Float) # not the default type

>>> print a

[1. 2. 3]

@ Pop Quiz:hat will be the type of an array defined as follows:

>>> mystery = array([1, 2.0, -3j])
Hint: -3] is an imaginary number.
Answer: try it out!

array(1,2,3,4,5) . This doesn’t produce the expected result as soon as at least
two numbers are used, because the first argumentag() must be the entire

data for the array -- thus, in most cases, a sequence of numbers. The correct way to
write the preceding invocation is most likedyray((1,2,3,4,5))

@ A very common mistake is to call array with a set of numbers as arguments, as in

Possible values for the second argument taathey creator function (and indeed to any function which ac-
cepts a so-called typecode for arrays) are:

1. One type corresponding to single ASCII charactéhsiracter
2. One unsigned numeric typdnsignedint8 , used to store numbers between 0 and 255.
3. Many signed numeric types:

» Signed integer choicetnt , Int0 , Int8 |, Intl6 , Int32 , and on some platformb)t64 and

24

Int128 (their ranges depend on their size).

» Floating point choiceszloat , Float0 ,Float8 ,Floatl6 ,Float32 ,Float64 ,and on some
platforms,Float128

e Complex number choicesComplex , Complex0 , Complex8 , Complex16 , Complex32 ,
Complex64 , Complex128 .

solseg Aelly e

The meaning of these is as follows:

« The versions without any numbeist(, Float , Complex) correspond to thimt , float and
complex datatypes in Python. They are thus long integers and double-precision floating point num-
bers, with a complex number corresponding to two double-precision floats.

* The versions with a number following correspond to whatever words are available on the specific
platform you are using which hae¢ leastthat many bits in them. ThukitO corresponds to the
smallest integer word size availablle{8 corresponds to the smallest integer word size available
which has at least 8 bits, etc. The word sizes for the complex numbers refer to the total number of
bits used by both the real and imaginary parts (in other words, the data portion of an array of N
Complex128 elements uses up the same amount of memory as the data portions of two arrays of
typecodeFloat64 with 2N elements).

4. One non-numeric typ®&yObject . Arrays of typecod®yObject are arrays of Python references, and
as such their data area can contain references to any kind of Python objects.

The last typecode deserves a little comment. Indeed, it seems to indicate that arrays can be filled with any Py-
thon objects. This appears to violate the notion that arrays are homogeneous. In fact, the By@bjsaix

doesallow heterogeneous arrays. However, if you plan to do numerical computation, you're much better off
with a homogeneous array with a potentially “large” type than with a heterogeneous array. This is because a
heterogeneous array stores references to objects, which incurs a memory cost, and because the speed of com-
putation is much slower with arraysRyObject 's than with uniform number arrays. Why does it exist, then?

A very useful features of arrays is the ability to slice them, dice them, select and choose from them, etc. This
feature is so nice that sometimes one wants to do the same operations with, e.g., arrays of class instances. In
such cases, computation speed is not as important as convenience. Also, if the array is filled with objects which
are instances of classes which define the appropriate methods, then NumPy will let you do math with those ob-
jects. For example, if one creates an object class which hasadd method, then arrays (created with the
PyObject typecode) of instances of such a class can be added together.

Multidimensional Arrays

The following example shows one way of creating multidimensional arrays:

>>> ma = array([[1,2,3],[4,5,6]])
>>> print ma

[[123]

[4 5 6]]

The first argument tarray() in the code above is a single list containing two lists, each containing three el-
ements. If we wanted floats instead, we could specify, as discussed in the previous section, the optional type-
code we wished:

>>> ma_floats = array([[1,2,3],[4,5,6]], Float)
>>> print ma_floats

[1. 2. 3]

[4. 5. 6.]]

This array allows us to introduce the notion of “shape'. The shape of an array is the set of numbers which define

its dimensions. The shape of the amagdefined above is 2 by 3. More precisely, all arrays have a shape at-
tribute which is a tuple of integers. So, in this case:

25

>>> print ma.shape
(2,3)

Using the earlier definitions, this is a shapeank 2, where the first axis has length 2, and the seond axis has
length 3. The rank of an arrdyis always equal tten(A.shape)

Note thatshape is anattribute of array objects. It is the first of several which we will see throughout this
tutorial. If you're not used to object-oriented programming, you can think of attributes as “features” or “quali-
ties” of individual arrays. The relation between an array and its shape is similar to the relation between a person
and their hair color. In Python, it's called an object/attribute relation.

What if one wants to change the dimensions of an array? For now, let us consider changing the shape of an array
without making it “grow.” Say, for example, we want to make the 2x3 array defined aia@aa @rray of rank
1:

>>> flattened_ma = reshape(ma, (6,))
>>> print flattened_ma
[L23456]

One can change the shape of arrays to any shape as long as the product of all the lengths of all the axes is kept
constant (in other words, as long as the number of elements in the array doesn’t change):

>>> a=array([1,2,3,4,5,6,7,8])

[L2345678]

>>> printa

>>> b =reshape(a, (2,4)) #2%4 ==
[[1234]

[5678]

>>> printb

>>> c =reshape(b, (4,2) #4*2 ==
>>> printc

[[12]

[3 4]

[5 6]

[78]]

Notice that we used a new functisashape() . It, like array() , is a function defined in théumeric

module. It expects an array as its first argument, and a shape as its second argument. The shape has to be a se-
guence of integers (a list or a tuple). Keep in mind that a tuple with a single element needs a comma at the end;
the right shape tuple for a rank-1 array with 5 elemengs,) , not(5) .

One nice feature of shape tuples is that one entry in the shape tuple is allowell toThee-1 will be auto-
matically replaced by whatever number is needed to build a shape which does not change the size of the array.
Thus:

>>> a =reshape(array(range(25)), (5,-1))
>>> print a, a.shape

[[012314]

[56 7 8 9]

[10 11 12 13 14]

[1516 17 18 19]

[20 21 22 23 24]] (5, 5)

The shape of an array is a modifiable attribute of the array. You can therefore change the shape of an array sim-
ply by assigning a new shape to it:

>>> a=array([1,2,3,4,5,6,7,8,9,10])
>>> a.shape

26

(10,) *
>>> a.shape = (2,5) z
>>> print a 2
(12345 S
[6 7 8 910]] 2.
>>> a.shape = (10,1) # second axis has length 1 2
>>> printa

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]]

>>> a.shape = (5,-1) # note the -1 trick described above

>>> print a

M1 2]

[3 4]

[5 6]

[7 8]

[910]]

As in the rest of Python, violating rules (such as the one about which shapes are allowed) results in exceptions:

>>> a.shape = (6,-1)
Traceback (innermost last):
File "<stdin>", line 1, in ?
ValueError: total size of new array must be unchanged

The default printing routine provided by the Numeric module prints arrays as fol-
@ lows:
1 The last axis is always printed left to right
2 The next-to-last axis is printed top to bottom
3 The remaining axes are printed top to bottom with increasing numbers of sepa-
rators

This explains why rank-1 arrays are printed from left to right, rank-2 arrays have the first dimension going
down the screen and the second dimension going from left to right, etc.

If you want to change the shape of an array so that it has more elements than it started with (i.e. grow it), then
you have many options: One solution is to usedhiecat() = method discussed later. An alternative is to use
thearray() creator function with existing arrays as arguments:

>>> printa
[012345667]
>>> b = array([a,a])
>>> printb
[[12345678]
[12345678]
>>> print b.shape

27

(2, 8)
resiz

A final possibility is theresize() function, which takes a “base” array as its first argument and the desired
shape as the second argument. Unldghape() , the shape argumenttesize() can corresponds to a
smaller or larger shape than the input array. Smaller shapes will result in arrays with the data at the “beginning”
of the input array, and larger shapes result in arrays with data containing as many replications of the input array
as are needed to fill the shape. For example, starting with a simple array

>>> base = array([0,1])

one can quickly build a large array with replicated data:

>>> big = resize(base, (9,9))
>>> print big
[010101010]
[101010101]
[010101010]
[101010101]
[010101010]
[101010101]
[010101010]
[101010101]
[010101010]

and if you imported theiew function from theNumTut package, you can do:

>>> view(resize(base, (100,100)))

grey grid of horizontal lines is shown

>>> view(resize(base, (101,101)))

grey grid of alternating black and white pixels is shown

Sections denoted such as this one wittiey® symbol will be used to indicate as-
@ pects of the functions which may not be needed for a first introduction at NumPy, but
which should be mentioned for the sake of completeness.

Thearray constructor takes a mandatatgta argument, an optional typecode,

and optionakavespace argument, and an optior@py argument. If thelata
argument is a sequence, then array creates a new object of type multiarray, and fill
the array with the elements of tata object. The shape of the array is determined
by the size and nesting arrangement of the elements of data.

If data is not a sequence, then the array returned is an array of shéthe empty
tuple), of typecodeO’ , containing a single element, whictdata .

Creating arrays with values specified “on-the-fly’'

zeros() and ones()

Often, one needs to manipulate arrays filled with numbers which aren't available beforehand. The Numeric
module provides a few functions which create arrays from scratch:

zeros() andones() simply create arrays of a given shape filled with zeros and ones respectively:

28

>>> 7z = zeros((3,3))
>>> print z

[[000]

[000]

[000]]

>>> 0 = ones([2,3])
>>> printo

((111]

(111]]

solseg Aelly e

Note that the first argument is a shape — it needs to be a list or a tuple of integers. Also note that the default type
for the returned arrays Int , which you can feel free to override using something like:

>>> 0 = ones((2,3), Float)
>>> printo
1. 1. 1]
[1. 1. 1]

arrayrange()

Thearrayrange() function is similar to theange() function in Python, except that it returns an array as
opposed to a list.

>>> r = arrayrange(10)
>>> printr
[0123456789]

Combining thearrayrange() with thereshape() function, we can get:

>>> big = reshape(arrayrange(100),(10,10))

>>> print big

[01234567 89

[1011 1213141516 17 18 19]

[20 21 22 23 24 25 26 27 28 29]

[30 31 32 33 34 35 36 37 38 39]

[40 41 42 43 44 45 46 47 48 49]

[50 51 52 53 54 55 56 57 58 59]

[60 61 62 63 64 65 66 67 68 69]

[7T071 727374757677 78 79]

[80 81 82 83 84 85 86 87 88 89]

[90 91 92 93 94 95 96 97 98 99]]

>>> view(reshape(arrayrange(10000),(100,100)))
array of increasing lightness from top down (slowly) and from left to
right (faster) is shown

arange() is a shorthand foarrayrange()

One can set the start, stop and step arguments, which allows for more varied ranges:
>>> print arrayrange(10,-10,-2)
[10 86 420 -2 -4 -6 -8
An important feature of arrayrange is that it can be used with non-integer starting points and strides:

>>> print arrayrange(5.0)
[0.1.2.3.4]

>>> print arrayrange(0, 1, .2)
[0. 0.2 0.4 0.6 0.8]

29

If you want to create an array with just one value, repeated over and over, you can use the * operator applied to
lists

>>> a = array([[3]*5]*5)
>>> printa

[[33333]

[33333]

[33333]

[33333]

[33333]]

but that is relatively slow, since the duplication is done on Python lists. A quicker way would be to start with
0's and add 3:

>>> a = zeros([5,5]) + 3
>>> printa
[[33333]
[33333]
[33333]
[33333]
[33333]]

The optional typecode argument can force the typecode of the resulting array, which is otherwise the “highest”
of the starting and stopping arguments. The starting argument defaults to 0 if not spacifige. is a syn-

onym forarrayrange . Note thatif a typecode is specified which is “lower” than that which arrayrange would
normally use, the array is the result of a precision-losing cast (a round-down, as that usestyp¢hemethod

for arrays.)

Creating an array from a function: fromfunction()

Finally, one may want to create an array with contents which are the result of a function evaluation. This is done
using thefromfunction() function, which takes two arguments, a shape and a callable object (usually a
function). For example:

>>> def dist(x,y):
return (x-5)**2+(y-5)**2 # distance from point (5,5) squared

>>> m = fromfunction(dist, (10,10))
>>> printm
[[50 41 34 29 26 25 26 29 34 41]
[41 32252017 16 17 20 25 32]
[34251813 10 91013 18 25]
[292013 8 5 4 5 813 20]
[261710 52 1 2 51017]
[2516 9 4 1 0 1 4 916]
[261710 52 1 2 51017]
[292013 8 5 4 5 813 20]
[34251813 10 91013 18 25]
[41 32252017 16 17 20 25 32]]
>>> view(fromfunction(dist, (100,100))
shows image which is dark in topleft corner, and lighter away from it.
>>> m = fromfunction(lambda i,j,k: 100*(i+1)+10*(j+1)+(k+1), (4,2,3))
>>> printm
[[[111 112 113]
[121 122 123]]
[[211 212 213]
[221 222 223]]

30

[[311 312 313] .
[321 322 323]] :‘Jg
[[411 412 413] &
[421 422 423]]] gJJ

%28

By examining the above examples, one can seé&dnafunction() creates an array of the shape specified &

by its second argument, and with the contents corresponding to the value of the function argument (the first ar-
gument) evaluated at the indices of the array. Thus the vahjg,48f in the first example above is the value
of dist whenx=3 andy=4. Similarly for the lambda function in the second example, but with a rank-3 array.

The implementation of fromfunction consists of:

def fromfunction(function, dimensions):
return apply(function, tuple(indices(dimensions)))

which means that the function function is called for each element in the sequence indices(dimensions). As de-
scribed in the definition of indices, this consists of arrays of indices which will be of rank one less than that
specified by dimensions. This means that the function argument must accept the same number of arguments as
there are dimensions in dimensions, and that each argument will be an array of the same shape as that specified
by dimensions. Furthermore, the array which is passed as the first argument corresponds to the indices of each
element in the resulting array along the first axis, that which is passed as the second argument corresponds to
the indices of each element in the resulting array along the second axis, etc. A consequence of this is that the
function which is used with fromfunction will work as expected only if it performs a separable computation on

its arguments, and expects its arguments to be indices along each axis. Thus, no logical operation on the argu-
ments can be performed, or any non-shape preserving operation. The first example below satisfies these re-
quirements, hence works (tkeandy arrays both get 10x10 arrays as input corresponding to the values of the
indices along the two dimensions), while the second array attemps to do a comparison test on an array of indi-
ces, which fails.

>>> def buggy(test):
if test > 4: return 1
else: return O

>>> print fromfunction(buggy, (10,))
Traceback (innermost last):
File "<stdin>", line 1, in ?
File "C:\PYTHONI\LIB\Numeric.py", line 157, in fromfunction
return apply(function, tuple(indices(dimensions)))
File "<stdin>", line 2, in buggy
TypeError: Comparison of multiarray objects is not implemented.

identity()

The simplest array constructor is tidentity(n) function, which takes a single integer argument and re-
turns a square identity array of that size of integers:

>>> print identity(5)

[A0000]

[01000]

[00100]

[00010]

[00001]]

>>> view(identity(100))

shows black square with a single white diagonal

31

Coercion and Casting

We've mentioned the typecodes of arrays, and how to create arrays with the right typecode, but we haven't cov-
ered what happens when arrays with different typecodes interact.

Automatic Coercions and Binary Operations

The rules followed by NumPy when performing binary operations on arrays mirror those used by Python in
general. Operations between numeric and non-numeric types are not allowed (e.g. an array of characters can'’t
be added to an array of numbers), and operations between mixed number types (e.g. floats and integers, floats
and omplex numbers, or in the case of NumPy, operations between any two arrays with different numeric type-
codes) first perform a coercion of the 'smaller’ numeric type to the type of the ‘larger’ numeric type. Finally,
when scalars and arrays are operated on together, the scalar is converted to a rank-0 array first. Thus, adding a
“small” integer to a “large” floating point array is equivalent to first casting the integer “up” to the typecode of
the array:

>>> arange(0, 1.0, .1) + 12

array([12., 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8,
12.9])

The automatic coercions are described in Figure 1. Avoiding upcasting is discussed in “Saving space” on
page 34.

——» Same-type coercion

UnsignedInt8 }\\ | Int8 f——)l Float8 | ——————— » Different-type coercion

| Int32 l-> Float32 N >| Complex32 |
v A 4 II\\\ A 4
| Int64 }——>| Float64 L\)I Complex64 |
| Int1‘;8 }--)I Float‘1'28 | *| Compl‘;x128 | | Char
\\\\\\\\\\\‘ \\v/ < ”’/’//”

Figure 1 Up-casts are indicated with arrows. Down-casts are allowed by the
astype() method, but may result in loss of information.

Deliberate up-casting: The asarray function
One more array constructor is thgarray() function. It is used if you want to have an array of a specific

typecode and you don't know what typecode array you have (for example, in a generic function which can op-
erate on all kinds of arrays, but needs them to be converted to complex arrays). If the array it gets as an argu-

32

ment is of the right typecode, it will get sent back unchanged. If the array is not of the right typecode, each*®
element of the new array will be the result of the coercion to the new type of the old elexmarrisy()
will refuse to operate if there might be loss of information -- in other wasdsray() only casts 'up’.

Aely

W
asarray is also used when you have a function that operates on arrays, but you want to allow people to caﬁ_‘;,
it with an arbitrary python sequence object. This gives your function a behavior similar to that of most of the(
builtin functions that operate on arrays.

The typecode value table

The typecodes identifieré-{oat0 , etc.) have as values single-character strings. The mapping between type-
code and character strings is machine dependent. An example of the correspondences between typecode char-
acters and the typecode identifiers for 32-bit architectures are shown in Table 3-X.

Table 1: Typecode character/identifier table on a Pentium computer

Character :yt(gs ﬁi?sf Identifiers
D 16 128 Complex, Complex64
F 8 64 Complex0, Complex16, Complex32, Complex8
d 8 64 Float, Float64
f 4 32 Float0, Float16, Float32, Float8
I 4 32 Int
1 1 8 IntO, Int8
S 2 16 Int16
i 4 32 Int32

Consequences of silent upcasting

When dealing with very large arrays of floats and if precision is not important (or arrays of small integers), then
it may be worthwhile to cast the arrays to “small” typecodes, sualBas Int16 orFloat32 . Asthe stan-

dard Python integers and floats correspond to the typetm@2 andFloat64 , using them in apparently
“innocent” ways will result in up-casting, which may null the benefit of the use of small typecode arrays. For
example:

>>> mylargearray.typecode()

f # a.k.a. Float32 on a Pentium
>>> mylargearray.itemsize()

4

>>> mylargearray = mylargearray + 1 # 1is an Int64 on a Pentium
>>> mylargearray.typecode() # see Fig. 1 for explanation.

ld!

>>> mylargearray.itemsize()

8

Note that the sizes returned by itamsize() method are expressed in bytes.

33

Saving space

Numeric arrays can be created using an optional, keyworded argument to the constructor, savespace. If
savespace is setto 1, Numeric will attempt to avoid the silent upcasting behavior. The status of an array can be
gueried with the spacesaver() method. If x.spacesaver() is true, x has its space-saving flag set. The flag can be
set with the savespace method: x.savespace(1) to set it, x.savespace(0) to clear it.

Deliberate casts (potentially down): the astype method

You may also force NumPy to cast any number array to another number array. For example, to take an array
of any numeric type (IntX or FloatX or ComplexX or Unsignedint8) and convert it to a 64-bit float, one can do:

>>> floatarray = otherarray.astype(Float64)

The typecode can be any of the number typecodes, “larger” or “smaller”. If it is larger, this is a cast-up, as if
asarray() had been used. If it is smaller, the standard casting rules of the underlying language (C) are used,
which means that truncation or loss of precision can occur:

>>> print X

[0. 0.4 0.8 1.2 1.6]
>>> x.astype(Int)
array([0, 0, 0, 1, 1))

If the typecode used withstype() is the original array’s typecode, then a copy of the original array is re-
turned.

Operating on Arrays

Simple operations

If you have a keen eye, you have noticed that some of the previous examples did something new. It added a
number to an array. Indeed, most Python operations applicable to numbers are directly applicable to arrays:

>>> printa
[123]

>>> printa*3
[369]

>>> printa+ 3
[45 6]

Note that the mathematical operators behave differently depending on the types of their operands. When one of
the operands is an array and the other is a number, the number is added to all the elements of the array and the
resulting array is returned. This is calledadcasting This also occurs for unary mathematical operations such

as sin and the negative sign

>>> print sin(a)

[0.84147098 0.90929743 0.14112001]
>>> print -a

[-1-2-3]

When both elements are arrays with the same shape, then a new array is created, where each element is the sum
of the corresponding elements in the original arrays:

>>> printa+a

[24 6]

If the operands of operations such as addition are arrays which have the same rank but different non-integer di-
mensions, then an exception is generated:

34

>>> printa
[123]
>>> b = array([4,5,6,7]) # note this has four elements

>>> printa+b
Traceback (innermost last):

File “<stdin>"", line 1, in ?
ArrayError: frames are not aligned

solseg Aelly e

This is because there is no reasonable way for NumPy to interpret addit{8r) of shaped array and4,)
shaped array.

Note what happens when adding arrays with different rank

>>> printa
[123]
>>> printb
[[4 812]
[5 913]

[610 14]
[7 11 15]]
>>> printa+b
[[5 10 15]
[611 16]
[71217]
[81318]]

This is another form of broadcasting. To understand this, one needs to look carefully at the shapekb of

>>> a.shape

3)
>>> h.shape
(4.3)

Because arrag’s last dimension had length 3 and aby&ylast dimension also had length 3, those two dimen-
sions were “matched” and a new dimension was created and automatically “assumed” for array a. The data al-
ready ina was “replicated” as many times as needed (4, in this case) to make the two shapes of the operand
arrays conform. This replication (broadcasting) occurs when arrays are operands to binary operations and their
shapes differ and when the following conditions are true:

« starting from the last axis, the axis lengths (dimensions) of the operands are compared
« if both arrays have an axis length greater than 1, an exception is raised

« if one array has an axis length greater than 1, then the other array’s axis is “stretched” to match the
length of the first axis -- if the other array’s axis is not present (i.e., if the other array has smaller
rank), then a new axis of the same length is created.

This algorithm is complex, but intuitive in practice. For more details, consult the Numeric Reference.

Getting and Setting array values

Just like other Python sequences, array contents are manipulated with the [] notation. For rank-1 arrays, there
are no differences between list and array notations:

>>> @a = arrayrange(10)

>>> print a[0] # get first element

0

>>> print a[1:5] # get second through fifth element
[1234]

35

>>> print a[:-1] # get last element
9

The first difference with lists comes with multidimensional indexing. If an array is multidimensional (of rank
> 1), then specifying a single integer index will return an array of dimension one less than the original array.

>>> a = arrayrange(9)

>>> a.shape = (3,3)

>>> printa

[[012]

[345]

(67 8]]

>>> print a[0] # get first row, not first element!
[012]

>>> print a[1] # get second row

[345]

To get to individual elements in a rank-2 array, one specifies both indices separated by commas:

>>> print a[0,0] # get elt at first row, first column
2>> print a[0,1] # get elt at first row, second column
i» print a[1,0] # get elt at second row, first column
§>> print a[2,-1] # get elt at third row, last column

8

Of course, thg] notation can be used $etvalues as well:

>>> g[0,0] =123
>>> printa
[[223 1 2]
[3 4 5]
[6 7 8]

Note that when referring to rows, the right hand side of the equal sign needs to be a sequence which “fits” in the
referred array subset (in the code sample below, a 3-element row):

>>> a[l] =[10,11,12]
>>> print a
[[223 1 2]
[10 11 12]
[6 7 8]

Slicing Arrays

The standard rules of Python slicing apply to arrays, on a per-dimension basis. Assuming a 3x3 array:

>>> a = reshape(arrayrange(9),(3,3))
>>> printa

[[012]

[345]

[6 78]

The plain [:] operator slices from beginning to end:

>>> print a[:,:]
[012]

36

[3 4 5]
[678]]

In other words, [:] with no arguments is the same as [:] for lists — it can be read ""all indices along this axis. S
to get the second row along the second dimension:

soIse§ Aelly .

>>> print a[:,1]
[147]

Note that what was a “column” vector is now a “row” vector -- any “integer slice” (as in the 1 in the example
above) results in a returned array with rank one less than the input array.

If one does not specify as many slices as there are dimensions in an array, then the remaining slices are assumed
to be all". IfAlis a rank-3 array, then

All] == A[1,:] == A[1,:,]

There is one addition to the slice notation for arrays which does not exist for lists, and that is the optional third
argument, meaning the ““step size" also called stride or increment. Its default value is 1, meaning return every
element in the specified range. Alternate values allow one to skip some of the elements in the slice:

>>> a=arange(12)

>>> printa

[01234567 891011]

>>> print a[::2] # return every *other* element
[02 46 810]

Negative strides are allowed as long as the starting index is greater than the stopping index:

>>> a = reshape(arrayrange(9),(3,3))
>>> printa

[[012]

[345]

(6 78]]

>>> print a[:, 0]
[036]

>>> print a[0:3, 0]
[036]

>>> print af2:-1, 0]
[630]

If a negative stride is specified and the starting or stopping indices are omitted, they default to “end of axis” and
“beginning of axis” respectively. Thus, the following two statements are equivalent for the array given:

>>> print a[2:-1, 0]

[6 3 0]

>>> print af::-1, 0]

[6 30]

>>> print a[::-1] # this reverses only the first axis
[[67 8]

[345]

[012]

>>> print af::-1,::-1] # this reverses both axes
(8 7 6]

[543]

(210]]

37

One final way of slicing arrays is with the keyword This keyword is somewhat complicated. It stands for

“however many ;' | need depending on the rank of the object I'm indexing, so that the indices | *do* specify
are at the end of the index list as opposed to the usual beginning.™

So, if one has a rank-3 array thenA|[...,0] is the same thing ay:,:,0] but i Bis rank-4, then
B[...,0] is the same thing aB[:,:,:,0] . Only one... is expanded in an index expression, so if one
has a rank-5 arr&y, then: C[...,0,...] is the same thing a€[:,:,:,0,’]

38

6. Ufuncs

saunyn o

What are Ufuncs?

The operations on arrays that were mentioned in the previous section (element-wise addition, multiplication,
etc.) all share some features -- they all follow similar rules for broadcasting, coercion and “element-wise oper-
ation". Just like standard addition is available in Python through the add function in the operator module, array
operations are available through callable objects as well. Thus, the following objects are available in the Nu-
meric module:

Table 2: Universal Functions, arfunc s. The operators which invoke them when
applied to arrays are indicated in parentheses. The entries in slanted
typeface refer to unary ufuncs, while the others refer to binary ufuncs.

add (+) subtract (-) multiply (*) divide (/)

remainder (%) power (**) arccos arccosh
aresin arcsinh arctan arctanh

cos cosh exp log

log10 sin sinh sqrt

tan tanh maximum minimum
conjugate equal (==) not_equal (!=) greater (>)
greater_equal (>=) less (<) less_equal (<=) logical_and (and)
logical_or (or) logical_xor logical_not (not) bitwise_and (&)

bitwise_or (|) bitwise_xor bitwise_not (~)

All of these ufuncs can be used as functions. For example, éoldsevhich is a binary ufunc (i.e. it takes two
arguments), one can do either of:

>>> a = arange(10)

>>> print add(a,a)

[0 246810121416 18]
>>> printa+a

[0 246810121416 18]

In other words, the + operator on arrays performs exactly the same thingadd thRuinc when operated on
arrays. For a unary ufunc suchsas , one can do, e.g.:
>>> a = arange(10)
>>> print sin(a)
[O. 0.84147098 0.90929743 0.14112001 -0.7568025 -0.95892427
-0.2794155 0.6569866 0.98935825 0.41211849]

Unary ufuncs return arrays with the same shape as their arguments, but with the contents corresponding to the
corresponding mathematical function applied to each element (sin(0)=0, sin(1)=0.84147098, etc.).

39

There are three additional features of ufuncs which make them different from standard Python functions. They
can operate on any Python sequence in addition to arrays; they can take an “output” argument; they have at-
tributes which are themselves callable with arrays and sequences. Each of these will be described in turn.

Ufuncs can operate on any Python sequence

Ufuncs have so far been described as callable objects which take either one or two arrays as arguments (depend-
ing on whether they are unary or binary). In fact, any Python sequence which can be the input to the array()
constructor can be used. The return value from ufuncs is always an array. Thus:

>>> add([1,2,3,4], (1,2,3,4))

array([2, 4, 6, 8])

Ufuncs can take output arguments

In many computations with large sets of numbers, arrays are often used only once. For example, a computation
on a large set of numbers could involve the following step

dataset = dataset * 1.20

This operation as written needs to create a temporary array to store the results of the computation, and then
eventually free the memory used by the original dataset array (provided there are no other references to the data
it contains). Itis more efficient, both in terms of memory and computation time, to do an “in-place” operation.

This can be done by specifying an existing array as the place to store the result of the ufunc. In this example,
one can write:

multiply(dataset, 1.20, dataset)
This is not a step to take lightly, however. For example, the “big and slow” vedsitasét = dataset
*1.20) and the “small and fast” version above will yield different results in two cases:

« If the typecode of the target array is not that which would normally be computed, the operation will
fail and raise a TypeError exception.

» If the target array corresponds to a different “view” on the same data as either of the source arrays,
inconsistencies will result. For example,

>>> a = arange(5, typecode=Float64)
>>> print a[::-1] * 1.2

[4.8 3.6 24 1.2 0.]

>>> multiply(a[::-1], 1.2, a)
array([4.8, 3.6, 2.4, 4.32, 5.76])

>>> print a

[48 3.6 2.4 4.32 5.76]

This is because the ufunc does not know which arrays share which data, and in this case the over-

writing of the data contents follows a different path through the shared data space of the two arrays,
thus resulting in strangely distorted data.

Ufuncs have special methods

The reduce ufunc method

If you don't know about theeduce command in Python, review section 5.1.1 of the Python Tutdritg:(/
www.python.org/doc/tut/functional.htjnBriefly, reduce is most often used with two arguments, a callable
object (such as a function), and a sequence. It calls the callable object with the first two element of the se-
guence, then with the result of that operation and the third element, and so on, returning at the end the succes-
sive “reduction” of the specified callable object over the sequence elements. Similadgute method of

ufuncs is called with a sequence as an argument, and performs the reduction of that ufunc on the sequence. As
an example, adding all of the elements in a rank-1 array can be done with:

40

>>> a=array([1,2,3,4])
>>> print add.reduce(a)
10

saunyn o

When applied to arrays which are of rank greater than one, the reduction proceeds by default along the first axis:

>>> b = array([[1,2,3,4],[6,7,8,9]])
>>> printb

[[1234]

[6789]

>>> print add.reduce(b)

[7 91113]

A different axis of reduction can be specified with a second integer argument:

>>> printb

[[1234]

[6789]

>>> print add.reduce(b, 1)
[10 30]

The accumulate ufunc method

Theaccumulate ufunc method is simular teduce , except that it returns an array containing the interme-
diate results of the reduction:

>>> a = arange(10)

>>> printa

[0123456789]

>>> print add.accumulate(a)

[0136101521283645] #0,0+1, 0+1+2, 0+1+2+3, ... 0+...+9

>>> print add.reduce(a)

45 # same as add.accumulate(...)[-1]

The outer ufunc method

The third ufunc method Buter , which takes two arrays as arguments and returns the “outer ufunc” of the two
arguments. Thus thmuter method of thenultiply ufunc, results in the outer product. The outer method is
only supported for binary methods.

>>> print a

[01234]

>>> printb

[0123]

>>> print add.outer(a,b)
[0123]

[1234]

[2345]

[3456]

[456 7]

>>> print multiply.outer(b,a)
[[0 000 Q]

[01 234

[02 46 8]

[0 36 912]

>>> print power.outer(a,b)
[[1000]

[111 1]

41

[12 48]
[13927]
[1 416 64]]

The reduceat ufunc method
The final ufunc method is theduceat method, which I'd love to explain it, but | don’t understand it (XXX).

Ufuncs always return new arrays

Except when the 'output’ argument are used as described above, ufuncs always return new arrays which do not
share any data with the input array.

Which are the Ufuncs?

Table 1 lists all the ufuncs. We will first discuss the mathematical ufuncs, which perform operations very sim-
ilar to the functions in th@ath andcmath modules, albeit elementwise, on arrays. These come in two forms,
unary and binary:

Unary Mathematical Ufuncs (take only one argument)
The following ufuncs apply the predictable functions on their single array arguments, one element at a time:

arccos ,arccosh , arcsin , arcsinh , arctan , arctanh , cos , cosh , exp , log , logl0
sin , sinh , sgrt , tan , tanh

As an example:

>>> print X

[01234]

>>> print cos(x)

[1. 0.54030231 -0.41614684 -0.9899925 -0.65364362]
>>> print arccos(cos(x))

[O. 1. 2. 3. 2.28318531]

not a bug, but wraparound: 2*pi%4 is 2.28318531

Theconjugate ufunc takes an array of complex numbers and returns the array with entries which are the
complex conjugates of the entries in the input array. If it is called with real numbers, a copy of the array is re-
turned unchanged.

Binary Mathematical Ufuncs

These ufuncs take two arrays as arguments, and perform the specified mathematical operation on them, one pair
of elements at a timexdd , subtract , multiply , divide ,remainder ,power .

Logical Ufuncs

The “logical" ufuncs also perform their operations on arrays in elementwise fashion, just like the “"mathemat-
ical" ones.

Two are speciahfaximum andmiminum) in that they return arrays with entries taken from their input arrays:

>>> print X

[01234]

>>> printy

[2. 25 3. 35 4.]
>>> print maximum(x, y)
[2. 25 3. 35 4.]
>>> print minimum(x, y)

42

[0. 1. 2. 3. 4] .

<

The others all return arrays of 0's or l&qqual , not_equal , greater , greater_equal , less , 5

less_equal ,logical_and |, logical_or , logical_xor , logical_not , bitwise_and , @
bitwise_or , bitwise_xor , bitwise_not

These are fairly self-explanatory, especially with the associated symbols from the standard Python version of
the same operations in Table 1 above. [bgecal_* ufuncs perform their operations (and, or, etc.) using

the truth value of the elements in the array (equality to O for numbers and the standard truth test for PyObject
arrays). Theditwise_* ufuncs, on the other hand, can be used only with integer arrays (of any word size),
and will return integer arrays of the larger bit size of the two input arrays:

>>> X

array([7, 7, 0],'1")

>>> vy

array([4, 5, 6])

>>> pitwise_and(x,y)
array([4, 5, 0],"1")

We've already discussed how to find out about the contents of arrays based on the indices in the arrays — that's
what the various slice mechanisms are for. Often, especially when dealing with the result of computations or
data analysis, one needs to ““pick out" parts of matrices based on the content of those matrices. For example, it
might be useful to find out which elements of an array are negative, and which are positive. The comparison
ufuncs are designed for just this type of operation. Assume an array with various positive and negative numbers
in it (for the sake of the example we'll generate it from scratch):

>>> print a

[[01234

[667 8 9]

[1011 12 13 14]

[1516 17 18 19]

[20 21 22 23 24]]

>>> b =sin(a)

>>> printb

[[o. 0.84147098 0.90929743 0.14112001 -0.7568025]
[-0.95892427 -0.2794155 0.6569866 0.98935825 0.41211849]
[-0.54402111 -0.99999021 -0.53657292 0.42016704 0.99060736]
[0.65028784 -0.28790332 -0.96139749 -0.75098725 0.14987721]
[0.91294525 0.83665564 -0.00885131 -0.8462204 -0.90557836]]
>>> print less_equal(b, 0)

[10001]

[11000]

[11100]

[01110]

[00111]]

This last example has 1's where the corresponding elements are less than or equal to 0, and 0’s everywhere else.

>>> view(greater(greeceBW, .3))
shows a binary image with white where the pixel value was greater than
3

Ufunc shorthands

Numeric defines a few functions which correspond to often-used uses of ufuncs: for exadadple;
duce() is synonymous with theum() utility function:

>>> a = arange(b) #[01234]

43

>>> print sum(a) #0+1+2+3+4

10

Similarly, cumsumis equivalent tadd.accumulate (for ““cumulative sum™)product to multi-

ply.reduce , andcumproduct to multiply.accumulate

Additional “"utility" functions which are often useful aalitrue

andsometrue , which are defined as

logical_and.reduce andlogical_or.reduce respectively:

>>> a = array([0,1,2,3,4])
>>> print greater(a,0)
[01111]

>>> alltrue(greater(a,0))

0

>>> sometrue(greater(a,0))
1

44

7. Pseudo Indices

S92IpU| OpNasd e

This chapter discusses pseudo-indices, which allow arrays to have their shapes modified
by adding axes, sometimes only for the duration of the evaluation of a Python expression.

Consider multiplication of a rank-1 array by a scalar:

>>> a = array([1,2,3])
>>> g*2
[246]

This should be trivial to you by now. We've just multiplied a rank-1 array by a scalar (which is converted to a
rank-0 array). In other words, the rank-0 array was broadcast to the next rank. This works for adding some two
rank-1 arrays as well:

>>> printa
[123]

>>> a + array([4])
[567]

but it won't work if either of the two rank-1 arrays have non-matching dimensions which aren't 1 — put another
way, broadcast only works for dimensions which are either missing (e.g. a lower-rank array) or for dimensions
of 1.

With this in mind, consider a classic task, matrix multiplication. Suppose we want to multiply the row vector
[10,20] by the column vector [1,2,3].

>>> a = array([10,20])
>>> b = array([1,2,3])
>>> a*b
Traceback (innermost last):
File "<stdin>", line 1, in ?
ValueError: frames are not aligned example

This makes sense — we're trying to multiply a rank-1 array of shape (2,) with a rank-1 array of shape (3,). This
violates the laws of broadcast. What we really want to do is make the second vector a vector of shape (3,1), so
that the first vector can be broadcast accross the second axis of the second vector. One way to do this is to use
the reshape function:

>>> a.shape

(2)

>>> b.shape

(3)

>>> b2 = reshape(b, (3,1))
>>> print b2

[[1]

(2]

(311

>>> b2.shape
Ch)

>>> printa* b2
[[10 20]

45

[20 40]
[30 60]]

This is such a common operation that a special feature was added (it turns out to be useful in many other places
as well) — theNewAxis ““pseudo-index", originally developed in the Yorick langud¢ewAxis is an index,

just like integers, so it is used inside of the slice brackets []. It can be thought of as meaning “add a new axis
here," in much the same ways as adding a 1 to an array's shape adds an axis. Again, examples help clarify the
situation:

>>> printb
[123]

>>> b.shape
3)

>>> ¢ = b[:, NewAXxis]
>>> printc
[[1]

(2]

(311

>>> c.shape
3.1

Why use such a pseudo-index over the reshape function or shape assignments? Often one doesn't really want a
new array with a new axis, one just wants it for an intermediate computation. Witness the array multiplication
mentioned above, without and with pseudo-indices:

>>> without = a * reshape(b, (3,1))
>>> with = a * b[:,NewAXxis]

The second is much more readable (once you understanddvafxis works), and it's much closer to the in-
tended meaning. Also, it's independent of the dimensions of the array b You might counter that using something
like reshape(b, (-1,1)) is also dimension-independent, but 1) would you argue that it's as readable? 2)
how would you deal with rank-3 or rank-N arrays? NasvAxis -based idiom also works nicely with higher

rank arrays, and with the ““rubber index" mentioned earlier. Adding an axis before the last axis in an array
can be done simply with:

>>> gl...,NewAxis,]

46

8. Array Functions

onound Aelly .

Most of the useful manipulations on arrays are done with functions. This might be surprising given Python's obg
ject-oriented framework, and that many of these functions could have been implemented using methods in-
stead. Choosing functions means that the same procedures can be applied to arbitrary python sequences, not just
to arrays. For example, whildranspose([[1,2],[3,4]]) works just fine,
[[1,2],[3,4]].transpose() can’t work. This approach also allows uniformity in interface between
functions defined in the Numeric Python system, whether implemented in C or in Python, and functions defined

in extension modules. The use of array methods is limited to functionality which depends critically on the im-
plementation details of array objects. Array methods are discussed in the next chapter.

We've already covered two functions which operate on arraghape andresize

take(a, indices, axis=0)

take isin some ways like the slice operations. It selects the elements of the array it gets as first argument based
on the indices it gets as a second argument. Unlike slicing, however, the array retuiaasl thas the same
rank as the input array. This is again much easier to understand with an illustration:

>>> printa

[[01234]

[567 8 9]

[10 11 12 13 14]

[15 16 17 18 19]]

>>> print take(a, (0,)) # first row
[[01234]]

>>> print take(a, (0,1)) # first and second row
[[01234]

[567809]

>>> print take(a, (0,-1)) # first and last row
[[01234]

[15 16 17 18 19]]

The optional third argument specifies the axis along which the selection occurs, and the default value (as in the
examples above) is 0, the first axis. If you want another axis, then you can specify it:

>>> print take(a, (0,), 1) # first column

[[al

[5]

(10]

(15]]

>>> print take(a, (0,1), 1) # first and second column
(o 1]

[5 6]

[10 11]

[15 16]]

>>> print take(a, (0,-1), 1) # first and last column
[0 4]

[5 9]

[10 14]

[1519]]

47

This is considered to be a ““structural” operation, because its result does not depend on the content of the arrays
or the result of a computation on those contents but uniquely on the structure of the array. Like all such struc-
tural operations, the default axis is O (the first rank). | mention it here because later in this tutorial, we will see
functions which have a default axis of -1.

Take is often used to create multidimensional arrays with the indices from a rank-1 array. As in the earlier ex-
amples, the shape of the array returnethkg() is a combination of the shape of its first argument and the

shape of the array that elements are “taken” from -- when that array is rank-1, the shape of the returned array
has the same shape as the index sequence. This, as with many other facets of Numeric, is best understood by ex-
periment.

>>> x = arange(10) * 100

>>> print X

[0100 200 300 400 500 600 700 800 900]
>>> print take(X, [[2,4],[1,2]])

[[200 400]

[100 200]]

A typical example of usintake() isto replace the grey values in an image according to a “translation table".

For example, let's consider a brightening of a greyscale imagevigwé€) function defined in the NumTut

package automatically scales the input arrays to use the entire range of grey values, except if the input arrays
are of typecodé&’ unsigned bytes -- thus to test this brightening function, we’ll first start by converting the
greyscale floating point array to a greyscale byte array:

>>> BW = (greeceBW+*256).astype('b")
>>> view(BW) # shows black and white picture

We then create a table mapping the integers 0-255 to integers 0-255 using a “compressive nonlinearity":

>>> table = (255- arange(256)**2 / 256).astype('b’)
>>> view(table) # shows the conversion curve

To do the “taking” into an array of the right kind, we first create a blank image array with the same shape and
typecode as the original array:

>>> BW?2 = zeros(BW.shape, BW.typecode())

and then perform the take() operation

>>> BW2.flat[:] = take(table, BW.flat)
>>> view(BW2)

put (a, indices, values)

put is the opposite dfake . The values of the array at the locations specified indices are set to the
corresponding value ofalues . The arraya must be a contiguous array. The argument indices can be any
integer sequence object with values suitable for indexing into the flat foamTdife argument v must be any
sequence of values that can be converted to the typecade of

>>> x = arange(6)

>>> put(x, [2,4], [20,40])
>>> print X

[0 120 340 5]

Note that the target arrayis not required to be one-dimensional. Since it is contiguous and stored in row-major
order, the arrayndices can be treated as indexiags elements in storage order.

48

The routineput is thus equivalent to the following (although the loop is in C for speed):

ind = array(indices, copy=0)
v = array(values, copy=0).astype(a.typecode())
for i in len(ind): a.flat[i] = v[i]

suonoun4 Aelily e

transpose(a, axes=None)

transpose takes an array and returns a new array which corresponds to a with the order of axes specified by
the second argument. The default corresponds to flipping the order of all the axes (it is equivalent to
a.shape[::-1] if a is the input array).

>>> printa

[[01234]

[567 89

[10 11 12 13 14]

[15 16 17 18 19]]

>>> print transpose(a)

[0 51015]

[161116]

[2 71217]

[3 81318]

[4 91419]]

>>> greece.shape # it's a 355x242 RGB picture
(355, 242, 3)

>>> view(greece)

picture of greek street is shown

>>> view(transpose(greece, (1,0,2))) # swap x and y, not color axis!
picture of greek street is shown sideways

repeat(a, repeats, axis=0)

repeat takes an array and returns an array with each element in the input array repeated as often as indicated

by the corresponding elements in the second array. It operates along the specified axis. So, to stretch an array

evenly, one needs the repeats array to contain as many instances of the integer scaling factor as the size of the
specified axis:

>>> view(repeat(greece, 2*ones(greece.shape[0]))) # double in X
>>> view(repeat(greece, 2*ones(greece.shape[1]), 1)) # double in Y

choose(a, (b0, ..., bn))

a is an array of integers between 0 and n. The resulting array will have the same shape as a, with element select-
ed from b0,...,bn as indicating by the value of the corresponding element in a.

Assume a is an arrag that you want to " “clip” so that no values are greater than 100.0.
>>> choose(greater(a, 100.0), (a, 100.0))

Everywhere that greater(a, 100.0) is false (ie. 0) this will “"choose" the corresponding value in a. Everywhere
else it will "choose" 100.0.

This works as well with arrays. Try to figure out what the following does:

>>> ret = choose(greater_than(a,b), (c,d))

49

ravel(a)

returns the argument arrayas a 1d array. It is equivalentr@shape(a, (-1,)) ora.fla . Unlike
a.flat , howeverravel works with non-contiguous arrays.

>>> print X

[[0123]

[56 7 8]

[10 11 12 13]]
>>> x.iscontiguous()
0
>>> x.flat
Traceback (innermost last):
File "<stdin>", line 1, in ?
ValueError: flattened indexing only available for contiguous array
>>> ravel(x)
array([0, 1, 2, 3, 5, 6, 7, 8,10, 11,12, 13])

nonzero(a)

nonzero() returns an array containing the indices of the elements in a that are nonzero. These indices only make
sense for 1d arrays, so the function refuses to act on anything else. As of 1.0a5 this function does not work for
complex arrays.

where(condition, x, y)

where(condition,x,y) returns an array shaped like condition and has elements of x and y where condition is re-
spectively true or false

compress(condition, a, axis=0)

returns those elements of a corresponding to those elements of condition that are nonzero. condition must be the
same size as the given axis of a.

>>> print X

[0123]

>>> print greater(x, 2)

[0001]

>>> print compress(greater(x, 2), X)

(3]
diagonal(a, k=0)

returns the entries along the k th diagonal of a (k is an offset from the main diagonal). This is designed for 2d
arrays. For larger arrays, it will return the diagonal of each 2d sub-array.

>>> print X
[[012314]

[56 7 8 9]

[10 11 12 13 14]

[1516 17 18 19]

[20 21 22 23 24]]

>>> print diagonal(x)
[0 61218 24]

>>> print diagonal(x, 1)
[171319]

50

>>> print diagonal(x, -1)
[51117 23]

trace(a, k=0)

returns the sum of the elements in a along the k th diagonal.

suonoun4 Aelily e

>>> print X

[[01234]

[5667 8 9]

[10 11 12 13 14]

[1516 17 18 19]

[20 21 22 23 24]]

>>> print trace(x) #0+6+12+ 18+ 24
60

>>> print trace(x, -1) #5+11+17+23
56

>>> print trace(x, 1) #1+7+13+19
40

searchsorted(a, values)

Called with a rank-1 array sorted in ascending orskachsorted() will return the indices of the posi-
tions in a where the corresponding values would fit.

>>> print bin_boundaries

[0. 0.1 0.2 0.3 040506 0.7 0809 1.]

>>> print data

[0.3029573 0.79585496 0.82714031 0.77993884 0.55069605 0.76043182
0.28511823 0.29987358 0.40286206 0.68617903]

>>> print searchsorted(bin_boundaries, data)

[4898683357]

This can be used for example to write a simple histogramming function:

>>> def histogram(a, bins):
n = searchsorted(sort(a), bins)
n = concatenate([n, [len(a)]])
return n[1:]-n[:-1]

>>> print histogram([0,0,0,0,0,0,0,.33,.33,.33], arange(0,1.0,.1))
[7003000000]

>>> print histogram(sin(arange(0,10,.2)), arange(-1.2, 1.2, .1))
[004222021213131323234900]

sort(a, axis=-1)

This function returns an array containing a copy of the daaawith the same shape asbut with the order

of the elements along the specified axis sorted. The shape of the returned array is the asanithas,

sort(a, 3) will be an array of the same shape as a, where the elements of a have been sorted along the fourth
axis.

>>> print data
[50198]
[25832]
[80370]
[96950]

51

[90977]

>>> print sort(data) # Axis -1 by default
[[01589]

[22358]

[00378]

[056909]
[077909]

>>> print sort(data, 0)
[20130]

[50350]

[80872]

[95977]
[96998]

argsort(a, axis=-1)

argsort will return the indices of the elements of a needed to pragut@) . In other words, for a rank-
1 array,take(a, argsort(a)) == sort(a)

>>> print data

[50198]

>>> print sort(data)

[01589]

>>> print argsort(data)

[L204 3]

>>> print take(data, argsort(data))
[01589]

argmax(a, axis=-1), argmin(a, axis=-1)

Theargmax() function returns an array with the arguments of the maximum values of its input array a along
the given axis. The returned array will have one less dimension trgmin() is just likeargmax() , ex-
cept that it returns the indices of the minima along the given axis.

>>> print data
[[96130]

[00891]

[74540]

[52771]

[99797]]

>>> print argmax(data)
[03020]

>>> print argmax(data, 0)
[04114]

>>> print argmin(data)
[40442]

>>> print argmin(data, 0)
[11000]

fromstring(string, typecode)

Will return the array formed by the binary data given in string of the specified typecode. Thisis mainly used for
reading binary data to and from files, it can also be used to exchange binary data with other modules that us
python strings as storaged.PIL). Note that this representation is dependent on the byte order. To find out the
byte ordering used, use thgteswapped() = method described on page58.

52

dot(m1, m2)

Aeny «

Thedot() function returns the dot product mfl andm2 This is equivalent to matrix multiply for rank-2 ar-
rays (without the transpose). Somebody who does more linear algebra really needs to do this function righ
some day!

SUOIOUITY

matrixmultiply(m1, m2)

The matrixmultiply(m1, m2) multiplies matrices or matrices and vectors as matrices rather than ele-
mentwise. Compare:

>>> printa

[(012]

(34 5]]

>>> printb

[123]

>>> print a*b

([0 2 6]

[3 815]]

>>> print matrixmultiply(a,b)
[8 26]

clip(m, m_min, m_max)

The clip function creates an array with the same shape and typecode as m, but where every entry in m that is
less than m_min is replaced by m_min, and every entry greater than m_max is replaced by m_max. Entries
within the range [m_min, m_max] are left unchanged.

>>> a = arange(9, Float)
>>> clip(a, 1.5, 7.5)
1.5000 1.5000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 7.5000

indices(shape, typecode=None)

The indices function returns an array corresponding to the shape given. The array returned is an array of a new
shape which is based on the specified shape, but has an added dimension of length the number of dimensions
in the specified shape. For example, if the shape specified Ishéipe argument is (3,4), then the shape of

the array returned will be (2,3,4) since the length of (3,4) is 2. The contents of the returned arrays are such that
the ith subarray (along index 0, the first dimension) contains the indices for that axis of the elements in the array.
An example makes things clearer:

>>> | =indices((4,3))
>>> j.shape
(2,4,3)

>>> printi[0]
[[000]
[111]
[222]
[333]]

>>> printi[1]
[[012]
[012]
[012]
[012]

53

S0,i[0] has an array of the specified shape, and each element in that array specifies the index of that position
in the subarray for axis 0. Similarly, each element in the subarifh] in contains the index of that position
in the subarray for axis 1.

swapaxes(a, axisl, axis2)

Returns a new array which shares the datg bt which has the two axes specifiedaxsl andaxis2
swapped. If is of rank 0 or 1, swapaxes simply returns a new refererge to

>>> x = arange(10)
>>> x.shape = (5,2,1)
>>> print X
[[[0]
[1]]
[[2]
(31]
[[4]
(5]]
([6]
[71]
[[8]
(91
>>> y = swapaxes(x, 0, 2)
>>> print y.shape
1,2,5)
>>> printy
[[[02468]
[13579]]

concatenate((a0, al, ... , an), axis=0)

Returns a new array containing copies of the data contained in all aGraysin . The arrays ai will be
concatenated along the specified axis (0 by default). All arrays ai must have the same shape along every axis
except for the one given. To concatenate arrays along a newly created axis, youacaay((s®, ...,

an)) as long as all arrays have the same shape.

>>> print X

[[012 3]

[56 7 8]

[10 11 12 13]]

>>> print concatenate((x,X))
[[0123]

[56 7 8]

[10 11 12 13]

[01 23]

[56 7 8]

[10 11 12 13]]

>>> print concatenate((x,x), 1)
[0123012 3]

[56 785678

[10 11 12 13 10 11 12 13]]
>>> print array((x,X))
[(fo 1 23]

[56 7 8]

[10 11 12 13]]

[[0123]

54

[56 7 8]
[10 11 12 13]]]

innerproduct(a, b)

innerproduct produces the inner product of arrays a and b. It is equivalent to matrixmultiply(a, transpose(b)).

suonoun4 Aelily e

array_repr()

See section on Textual Representations of arrays.

array_str()

See section on Textual Representations of arrays.
resize(a, new_shape)

Theresize function takes an array and a shape, and returns a new array with the specified shape, and filled
with the data in the input array. Unlike tleshape function, the new shape does not have to yield the same
size as the original array. If the new size of is less than that of the input array, the returned array contains the
appropriate data from the “beginning” of the old array. If the new size is greater than that of the input array, the
data in the input array is repeated as many times as needed to fill the new array.

>>> x = arange(10)

>>> y =resize(x, (4,2)) # note that 4*2 < 10
>>> print X

[0123456789]

>>> printy

[[01]

(2 3]

[4 5]

(6711

>>> print resize(array((0,1)), (5,5)) # note that 5*5 > 2
[01010]

[10101]

[01010]

[10101]

[01010]]

diagonal(a, offset=0, axis1=-2, axis2=-1)

The diagonal function takes an array a, and returns an array of rank 1 containing all of the elements of a such
that the difference between their indices along the specified axes is equal to the specified offset. With the default
values, this corresponds to all of the elements of the diagonal of a along the last t@oresetly this is bro-

ken for offsets other than -1, 0 and 1, and for non-square arrays.

repeat (a, counts, axis=0)

The repeat function uses repeated copies of a to create a result. The axis argument refers to the axis of x which
will be replicated. The counts argument tells how many copies of each element to make. The length of counts
must be the len(shape(a)[axis]).

In one dimension this is straightforward:

>>>y
array([0, 1, 2, 3, 4, 5])

>>> repeat(y, (1,2,0,2,2,3))
array([0, 1,1, 3, 3,4, 4,5, 5, 5])

55

In more than one dimension it sometimes gets harder to understand. Consider for example this array x whose
shape is (2,3).

>>> X
array([[0, 1, 2],
[3, 4, 5]])

>>> repeat(x, (2,6))
array([[0, 1, 2],

[0, 1, 2],

[3, 4, 5],

[3, 4, 5],

[3, 4, 5],

[3, 4, 5],

[3, 4, 5],

[3, 4, 5]])

>>> repeat(x, (6,3), 1)
array([[0, 0,0,0,0,0, 1, 1, 1],
[2,2,2,2,2,2,3,3,3])

convolve (a, v, mode=0)

The convolve function returns the linear convolution of two rank 1 arrays. The output is a rank 1 array whose
length depends on the value of mode which is zero by default. Linear convolution can be used to find the re-
sponse of a linear system to an arbitrary input. If the input arrays correspond to the coefficientgrafraiglo

and mode=2, the output of linear convolution corresponds to the coefficients of the product of the polynomials.

The mode parameter requires a bit of explanation. True linear convolution is only defined over infinite sequenc-
es. As both input arrays must represent finite sequences, the convolve operation assumes that the infinite se-
guences represented by the finite inputs are zero outside of their domain of definition. In other words, the
sequences are zero-padded. If mode is 2, then the non-zero part of the full linear convolution is returned, so the
output has length len (a)+len (v)-1. Call this output f. If mode is 0, then any part of f which was affected by the
zero-padding is chopped from the result. In other words, let b be the input with smallest length and let ¢ be the
other input. The output when mode is 0 is the middle len (c)-len (b)+1 elements of f. When mode is 1, the output
is the same size as c and is equal to the middle len (c) elements of f.

cross_correlate (a, v, mode=0)

The cross_correlate function computes the cross_correlation between two rank 1 arrays. The output is a rank 1
array representing the inner product of a with shifted versions of v. This is very similar to convolution. The dif-
ference is that convolution reverses the axis of one of the input sequences but cross_correlation does not. In fact
it is easy to verify that convolve (a, v, mode) = cross_correlate (a, v [::-1], mode)

where (condition, x, y)

The where function creates an array whose values are those of x at those indicesndtitoa is true, and

those of y otherwise. The shape of the result is the shape of condition. The type of the result is determined by
the types of x and y. Either or both of x and y and be a scalar, which is then used for any element of condition
which is true.

56

identity(n)

The identity function returns an n by n array where the diagonal elements are 1, and the off-diagonal eleme
are 0.

>>> print identity(5)
[[10000]
[01000]
[00100]
[00010]
[00001]]

suonoun4 /@JJV .

sum(a, index=0)

The sum function is a synonym for the reduce method of the add ufunc. It returns the sum of all of the elements
in the sequence given along the specified axis (first axis by default).

>>> print X
[[012 3]
[456 7]

[8 91011]

[12 13 14 15]
[16 17 18 19]]
>>> print sum(x)

[40 45 50 55] # 0+4+8+12+16, 1+5+9+13+17,
2+6+10+14+18, ...

>>> print sum(x, 1)

[6 223854 70] # 0+1+2+3, 4+5+6+7, 8+9+10+11, ...

cumsum(a, index=0)

Thecumsum function is a synonym for theccumulate method of theadd ufunc.
product(a, index=0)

Theproduct function is a synonym for theduce method of thenultiply ufunc.
cumproduct(a, index=0)

Thecumproduct function is a synonym for treccumulate method of thanultiply ~ ufunc.
alltrue(a, index=0)

Thealltrue function is a synonym for theduce method of thdogical _and ufunc.
sometrue(a, index=0)

Thesometrue function is a synonym for threduce method of thdogical_or ufunc.

57

9. Array Methods

As we discussed at the beginning of the last chapter, there are very few array methods for good reasons, and
these all depend on the the implementation details. They're worth knowing, though:

itemsize()

The itemsize() method applied to an array returns the number of bytes used by any one of its elements.

>>> a = arange(10)

>>> a.itemsize()

4

>>> a = array([1.0])

>>> a.itemsize()

8

>>> a = array([1], Complex)
>>> a.itemsize()

16

iscontiguous()

Calling an array's iscontiguous() method returns true if the memory used by A is contiguous. A non-contiguous
array can be converted to a contiguous one by the copy() method. This is useful for interfacing to C routines
only, as far as | know.

>>> XXX example

typecode()

The “typecode()' method returns the typecode of the array it is applied to. While we've been talking about them
as Float, Int, etc., they are represented internally as characters, so this is what you'll get:

>>> a=array([1,2,3])

>>> a.typecode()

lIl

>>> a = array([1], Complex)
>>> a.typecode()

D

byteswapped()

Thebyteswapped method performs a byte swapping operation on all the elements in the array.

>>> printa

[123]

>>> print a.byteswapped()
[16777216 33554432 50331648]

tostring()
Thetostring method returns a string representation of the data portion of the array it is applied to.

>>> a = arange(65,100)

58

>>> print a.tostring()

ABCDEFGHIJKLMNOPOQRST
UVWXYZ[\]"~_abec

tolist()

Calling an array's tolist() method returns a hierarchical python list version of the same array:

>>> printa

[[65 66 67 68 69 70 71]

[72 73747576 77 78]

[79 80 81 82 83 84 85]

[86 87 88 89 90 91 92]

[93 94 95 96 97 98 99]]

>>> print a.tolist()

[[65, 66, 67, 68, 69, 70, 71], [72, 73, 74, 75, 76, 77, 78], [79, 80,
81, 82, 83, 84, 85], [86, 87, 88, 89, 90, 91, 92], [93, 94, 95, 96, 97,
98, 99]]

59

SPOYISN ARy

10. Array Attributes

We've already seen a very useful attribute of arrays, the shape attribute. There are three more, flat, real and
imaginary.

flat

Accessing thdlat attribute of an array returns the flattenedramel() 'ed version of that array, without

having to do a function call. The returner array has the same number of elements as the input array, but is of
rank-1. One cannot set the flat attribute of an array, but one can use the indexing and slicing notations to modify
the contents of the array:

>>> printa

[[012]

[345]

(67 8]]

>>> print a.flat

[012345678]

>>> a.flat = arange(9,18)

Traceback (innermost last):
File "<stdin>", line 1, in ?

AttributeError: Attribute does not exist or cannot be set

>>> a.flat[4] = 100

>>> printa

[0 1 2]

[3100 5]

[6 7 8]

>>> a.flat:] = arange(9, 18)

>>> print a

[[91011]

[12 13 14]

[15 16 17]]

real and imaginary

These attributes exist only for complex arrays. They return respectively arrays filled with the real and imaginary
parts of their elementsmag is a synonym foiimaginary . The arrays returned are not contiguous (except

for arrays of length 1, which are always contiguousepl ,.imag and.imaginary are modifiable:
>>> print X
[0. +1] 0.84147098+0.54030231j 0.90929743-0.41614684j]
>>> print x.real
[O. 0.84147098 0.90929743]
>>> print X.imag
[1. 0.54030231 -0.41614684]
>>> x.imag = arange(3)
>>> print X
[O. +0.j 0.84147098+1.j 0.90929743+2.j]
>>> x = reshape(arange(10), (2,5)) + 0j # make complex array
>>> print X

[[0.+0.j 1.+0.j 2.+0.j 3.+0.j 4.+0.j]

60

[5.+0.,j 6.+0.j 7.+0.j 8.+0.j 9.+0.]]
>>> print x.real

[[0. 1. 2. 3. 4]

[5. 6. 7. 8. 9]]

>>> print X.typecode(), x.real.typecode()
Dd

>>> print X.itemsize(), X.imag.itemsize()
16 8

61

soINqLNY ALy o

11. Special Topics

This chapter holds miscellaneous information which did not neatly fit in any of the other
chapters.

Subclassing

Subclassing Numeric arrays is not possible due to a limitation of Python. The approach taken in the Masked
Array facility (“Masked Arrays” on page 103) is one answer. UserArray.py, described below, can be sub-
classed, but this is often unsatisfactory unless you putin a similar effort to that in MA.

Code Organization

Numeric.py and friends

Numeric.py is the most commonly used interface to the Numeric extensions. It is a Python module which
imports all of the exported functions and attributes fronmihgarray module, and then defines some util-

ity functions. As some of the functions definedNimmeric.py could someday be moved into a supporting

C module, the utility functions and thmsultiarray object are documented together, in this section. The
multiarray objects are the core of Numeric Python — they are extension types written in C which are de-
signed to provide both space- and time-efficiency when manipulating large arrays of homogeneous data types,
with special emphasis to numeric data types.

UserArray.py

In the tradition ofUserList.py andUserDict.py , theUserArray.py module defines a class whose
instances act in many ways like array objects.

Matrix.py

TheMatrix.py python module defines a clabfatrix which is a subclass afserArray . The only dif-
ferences betweeMatrix instances andlserArray instances is that theoperator oriMatrix performs a
matrix multiplication, as opposed to element-wise multiplication, and that the power opferetalisallowed
for Matrix instances.

Precision.py

The Precision.py module contains the code which is used to determine the mapping between typecode names
and values, by building small arrays and looking at the number of bytes they use per element.

ArrayPrinter.py

The ArrayPrinter.py module defines the functions used for default printing of arrays. See the section on Textual
Representations of arrays on pag €68,

Miab.py

The Mlab.py module provides some functions which are compatible with the functions of the same name in the
MATLAB programming language. These are:

62

bartlett(M)

returns the M-point Bartlett window.

blackman(M)

returns the M-point Blackman window.

soido] [enads .

corrcoef(x, y=None)

The correlation coefficient

cov(m,y=None)

returns the covariance

cumprod(m)

returns the cumulative product of the elments along the first dimension of m.

cumsum(m)

returns the cumulative sum of the elements along the first dimension of m.

diag(v, k=0)

returns the k-th diagonal if v is a matrix or returns a matrix with v as the k-th diagonal if v is a vector.
diff(x, n=1)

calculates the first-order, discrete difference approximation to the derivative.

eig(m)

returns the the eigenvalues of min x and the corresponding eigenvectors in the rows of v.
eye(N, M=N, k=0, typecode=None)

returns a N-by-M matrix where the k-th diagonal is all ones, and everything else is zeros.
fliplr(m)

returns a 2-D matrix m with the rows preserved and columns flipped in the left/right direction. Only works with
2-D arrays.

flipud(m)

returns a 2-D matrix with the columns preserved and rows flipped in the up/down direction. Only works with
2-D arrays.

hamming(M)

returns the M-point Hamming window.
hanning(M)

returns the M-point Hanning window.
kaiser(M, beta)

returns a Kaiser window of length M with shape parameter beta. It depends on the cephes module for the mod-
ified bessel function i0.

63

max(m)

returns the maximum along the first dimension of m.

mean(m)

returns the mean along the first dimension of m. Note: if m is an integer array, integer division will occur.
median(m)

returns a mean of m along the first dimension of m.

min(m)

returns the minimum along the first dimension of m.

msort(m)

returns a sort along the first dimension of m as in MATLAB.
prod(m)

returns the product of the elements along the first dimension of m.
ptp(m)

returns the maximum - minimum along the first dimension of m.
rand(d1, ..., dn)

returns a matrix of the given dimensions which is initialized to random numbers from a uniform distribution in
the range [0,1).

rot9o(m,k=1)

returns the matrix found by rotating m by k*90 degrees in the counterclockwise direction.
sinc(x)

returns sin(pi*x)/(pi*x) at all points of array x.

squeeze(a)

removes any ones from the shape of a

std(m)

returns the standard deviation along the first dimension of m. The result is unbiased meaning division b
len(m)-1.

sum(m)

returns the sum of the elements along the first dimension of m.
svd(m)

return the singular value decomposition of m [u,x,Vv]
trapz(y,x=None)

integrates y = f(x) using the trapezoidal rule.

64

tri(N, M=N, k=0, typecode=None)
returns a N-by-M matrix where all the diagonals starting from lower left corner up to the k-th are all ones.

tril(m,k=0)

g91do] [enads .

returns the elements on and below the k-th diagonal of m. k=0 is the main diagonal, k > 0 is above and k <0
below the main diagonal.

triu(m,k=0)

returns the elements on and above the k-th diagonal of m. k=0 is the main diagonal, k > 0 is above and k<0 is
below the main diagonal.

The multiarray object

The array objects which Numeric Python manipulates is actually a multiarray object, given this name to distin-
guish it from the one-dimensional array object defined in the standard array module. From here on, however,
the terms array and multiarray will be used interchangeably to refer to the new object type. multiarray objects
are homogeneous multidimensional sequences. Starting from the back, they are sequences. Thet means
they are container (compound) objects, which contain references to other objects. They are multidimensional,
meaning that unlike standard Python sequences which define only a single dimension along which one can it-

erate through the contents, multiarray objects can have up to 40 dimehsforaly, they are homogeneous.

This means that every object in a multiarray must be of the same type. This is done for efficiency reasons --
storing the type of the contained objects once in the array means that the process of finding the type-specific
operation to operate on each element in the array needs to be done only once per array, as opposed to once per
element. Furthemore, as the main purpose of these arrays is to process numbers, the numbers can be stored di-
rectly, and not as full-fledged Python objects (PyObject *), thus yielding memory savings. It is however pos-
sible to make arrays of Python objects, which relinquish both the space and time efficiencies but allow
heterogeneous contents (as we shall see, these arrays are still homogeneous from the Numeric perspective, they
are just arrays of Python object references).

Typecodes

The kind of number stored in an array is described by its typecode. This code is stored internally as a single-
character Python string, but more descriptive names corresponding to the typecodes are made available to the
Python programmer in the Precision.py module. The typecodes are defined as follows:

Table 3: Typecode Listing

Variable defined in Typecode Description

Typecode module character
Char ’c’ Single-character strings
PyObiject o Reference to Python object
Unsignedint8 e} Unsigned integer using a single byte.
Int I Python standard integers (i.e. C long integers)
Float d’ Python standard floating point numbers

(i.e. C double-precision floats)

n/a f Single-precision floating point numbers

1. This limit is modifiable in the source code if higher dimensionality is heeded.

65

Table 3: Typecode Listing

Variable defined in Typecode Descrintion
Typecode module character P
Complex D’ Complex numbers consisting of two double-preci-
sion floats
n/a ' Complex numbers consisting of two single-precisipn
floats
IntO, Int8, Int16, n/a These correspond to machine-dependent typecodes:
Int32, Int64, Int128 Int0 returns the typecode corresponding to the
smallest available integdnt8 that corresponding
to the smallest available integer with at least 8 bits,
Intl6 that with at least 16 bits, etc. If a typecoddq is
not available (e.gnt64 on a 32-bit machine), the
variable is not defined.
Float0, Float8, Float16, n/a Same agit0 , Int8 etc. except for floating point
Float32, Float64, numbers.
Float128
Complex0, Complex8, n/a Same aBloat0 |, etc., except that the number of
Complex16, Complex32, bits refers to the precision of each of the two (rea
Complex64, Complex128 and imaginary) parts of the complex number.

Note on number fomat: the binary format used by Python is that of the underlying C library. [notes about IEEE
formats, etc?]

Indexing in and out, slicing

Indexing arrays works like indexing of other Python sequences, but supports some extensions which are as of

yet not implemented for other sequence typd@$e standard [start:stop] notation is supported, with start de-
faulting to O (the first index position) and stop defaulting to the length of the sequence, as for lists and tuples.
In addition, there is an optional stride argument, which specifies the stride size between successive indices in
the slice. It is expressed by a integer following a second : immediately after the usual start:stop slice. Thus
[0:11:2] will slice the array at indices 0, 2, 4, .. 10. The start and stop indices are optional, but the first : must
be specified for the stride interpretation to occur. Therefo2§, means slice from beginning to end, with a

stride of 2 (i.e. skip an index for each stride). If the start index is omitted and the stride is negative, the indexing
starts from the end of the sequence and works towards the beginning of the sequence. If the stop index is omitted
and the stride is negative, the indexing stops at the beginning of the sequence.

>>> print X
[012345678910111213141516171819]
>>> print x[10]

10

>>> print x[:10]

[0123456789]

>>> print x[5:15:3]

[5 811 14]

>>> print x[:10:2]

1. The Python syntax can allow other Python datatypes to use both the stride notation and multidimen-
sional indexing, and it is relatively simple to write Python classes which support these operations. See
the Python Reference manual for details.

66

[02468]

>>> print X[10::-2]

[10 8 6 4 2 0]

>>> print x[::-1]

[19181716151413121110 98 76 54 3 21 Q]

o1do] [e10adsg .

It is important to note that the out-of-bounds conditions follow the same rules as standard Python indexing, s
that slices out of bounds are trimmed to the sequence boundaries, but element indexing with out-of-bound in-
dices yields an IndexError:

>>> print x[:100]
[01234567891011121314151617 1819]
>>> print x[-200:4]
[0123]
>>> x[100]
Traceback (innermost last):
File "<stdin>", line 1, in ?
IndexError: index out of bounds

The second difference between array indexing and other sequences is that arrays provide multidimensional in-
dexing. An array of rank N can be indexed with up to N indices or slices (or combinations thereof. Indices
should be integers (with negative integers indicating offsets from the end of the dimension, as for other Python
sequences), and slices can have, as explained above, one or two :’s separating integer arguments. These indices
and slies must be separated by commas, and correspond to sequential dimensions starting from the leftmost
(first) index on. Thus[3] means index 3 along dimensiond]3,:,-4] means the slice of a along three
dimensions: index 3 along the first dimension, the entire range of indices along the second dimension, and the
4th from the end index along the third dimension. If the array being indexed has more dimensions than are spec-
ified in the multidimensional slice, those dimensions are assumed to be sliced from beginning to end. Thus, if

a is arank 3 array,
a[0] == a[0,:] == a[0,:,7]

Ellipses

A special slice element called Ellipses (and written) is used to refer to a variable number of slices fro
beginning to end along the current dimension. It is a shorthand for a set of such slices, specifically the number
of dimensions of the array being indexed minus those which are already specified. Only the first (leftmost) El-
lipses in an multidimensional slice is expanded, while the others are single dimensional slices from beginning

to end.

Thus, ifa is a rank-6 array,
a[3,;,.,:,-1,;] ==4a[3,...,-1,:] == a[3,...,-1,...]

NewAxis

There is another special symbol which can be used inside indexing operations to create new dimensions in the
returned array. The reference NewAXxis, used as one of the comma-separated slice elements, does not change
the selection of the subset of the array being indexed, but changes the shape of the array returned by the indexing
operation, so that an additional dimension (of length 1) is created, at the dimension position corresponding to

the location of NewAxis within the indexing sequence. Taus,NewAxis,-3] will perform the index-
ing of a corresponding to the slige,3,-3] , but will also modify the shape of a so that the new shagpe of
is (a.shape[0], a.shape[1], 1, a.shape[2]) . This operation is especially useful in conjunction

with the broadcasting feature described next, as it replaces a lengthy but common operation with a simple no-
tation (in the example above, the same effect can be had with

reshape(al:,3,-1], (a.shape[0], a.shape[1], 1, a.shape[2])).

67

Set-indexing and Broadcasting

The indexing rules described so far specify exactly the behavior of get-indexing. For set-indexing, the rules are
exactly the same, and describe the slice of the array on the left hand side of the assignment operator which is
the target of the assignment. The only point left to mention is the process of assigning from the source (on the

right hand side of the assignment) to the target (on the left hand side).

If both source and target have the same shape, then the assignment is done element by element. The typecode
of the target specifies the casting which can be applied in the case of a typecode mismatch between source and
target. If the typecode of the source is “lower” than that of the target, then an 'up-cast’ is performed and no loss
in precision results. If the typecode of the source is “higher” than that of the target, then a downcast is per-
formed, which may lose precision (as discussed in the description of the array call, these casts are truncating
casts, not rounding casts). Complex numbers cannot be cast to non-complex numbers.

If the source and the target have different shapes, Numeric Python attempts to broadcast the contents of the
source over the range of the target. This broadcasting occurs for all dimensions where the source has dimension
1or0(i.e., is absent). If there exists a dimension for which the two arrays have differing lengths, and the length
of that dimension in the source is not 1, then the assignment fails and an exception (ValueError) is raised, noti-
fying the user that the arrays are not aligned.

AXxis specifications

In many of the functions defined in this document, indices are used to refer to axes. The numbering scheme is
the same as that used by indexing in Python: the first (leftmost) axis is axis 0, the second axis is axis 1, etc. Axis
-1 refers to the last axis, -2 refers to the next-to-last axis, etc.

Textual representations of arrays

The algorithm used to display arrays as text strings is defined in the file ArrayPrinter.py, which defines a func-
tion array2string (imported into Numeric’s namespace) which offers considerable control over how arrays are
output. The range of options to the array2string function will be described first, followed by a description of

which options are used by default&ly andrepr .

array2string(a, max_line_width = None, precision = None,
suppress_small = None, separator="", array output=0):

Thearray2string function takes an array and returns a textual representation of it. Each dimension is in-
dicated by a pair of matching square brackgt9,(within which each subset of the array is output. The orien-
tation of the dimensions is as follows: the last (rightmost) dimension is always horizontal, so that the frequent
rank-1 arrays use a minimum of screen real-estate. The next-to-last dimension is displayed vertically if present,
and any earlier dimension is displayed with additional bracket divisions. For example:

>>> a = arange(24)
>>> print array2string(a)
[01234567 891011121314151617 1819202122 23]
>>> a.shape = (2,10)
>>> print array2string(a)
[0123456 7 891011]
[1213 141516 17 18 19 20 21 22 23]]
>>> a.shape = (2,3,4)
>>> print array2string(a)

[(fo 1 23]

[4567]

[8 910 11]]

[[12 13 14 15]

[16 17 18 19]

68

[20 21 22 23]]]

The max_line_width argument specifies the maximum number of characters which the array2string rou-
tine uses in a single line. If it is setNone, then the value of thgys.output_line_width attribute is
looked up. If it exists, it is used. If not, the default of 77 characters is used.

>>> print array2string(x)
[01234567891011121314151617 1819 202122232425
26 27 28 29|
>>> sys.output_line_width = 30
>>> print array2string(x)
[0123456789
1011121314 1516 17
1819 20 21 22 23 24 25
26 27 28 29]

soido] [enads .

Theprecision argument specifies the number of digits after the decimal point which are used. If a value of
None is used, the value of tlsgs.float_output_precision is looked up. If it exists, it is used. If not,
the default of 8 digits is used.

>>> x = array((10.11111111111123123111, pi))
>>> print array2string(x)

[10.11111111 3.14159265]

>>> print array2string(x, precision=3)

[10.111 3.142]

>>> sys.float_output_precision = 2

>>> print array2string(x)

[10.11 3.14]
Thesuppress_small argument specifies whether small values should be suppressed (and output as 0). If a
value ofNone is used, the value of tisgs.float_output_suppress_small is looked up. If it exists,

itis used (all that matters is whether it evaluates to true or false). If not, the default of O (false) is used. This vari-
able also interacts with the precision parameters, as it can be used to suppress the use of exponential notation.

>>> print X

[1.00000000e-005 3.14159265e+000]

>>> print array2string(x)

[1.00000000e-005 3.14159265e+000]

>>> print array2string(x, suppress_small=1)

[0.00001 3.14159265]

>>> print array2string(x, precision=3)

[1.000e-005 3.142e+000]

>>> print array2string(x, precision=3, suppress_small=1)
[0. 3.142]

Theseparator argument is used to specify what character string should be placed between two numbers
which do not straddle a dimension. The default is a single space.

>>> print array2string(x)

[0O 100 200 300 400 500 600 700 800 900 100]

>>> print array2string(x, separator =", ")

[0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 100]

Finally, the last attribute, array_output, specifies whether to prepend the string "array(” and append either the
string ")" or ", X)" where X is a typecode for non-default typecodes (in other words, the typecode will only be
displayed if it is not that corresponding to Float, Complex or Int, which are the standard typecodes associated
with floating point numbers, complex numbers and integers respectively). The array() is so that an eval of the
returned string will return an array object (provided a comma separator is also used).

69

>>> array2string(arange(3))
[012]
>>> eval(array2string(arange(3), array_output=1))
Traceback (innermost last):

File "<stdin>", line 1, in ?

File "<string>", line 1

array([0 1 2])
N

SyntaxError: invalid syntax

>>> type(eval(array2string(arange(3), array_output=1, separator=",")))
<type 'array'>

>>> array2string(arange(3), array_output=1)

‘array([0, 1, 2])'

>>> array2string(zeros((3,), 'i') + arange(3), array_output=1)
"array([O, 1, 2],'")"

Thestr andrep operations on arrays caltray2string with themax_line_width | precision
andsuppress_small all set to None, meaning that the defaults are used, but that modifying the attributes
in thesys module will affect array printing. str uses the default separator and does not use the array() text,
while repr uses a comma as a separator and does use the array(...) text.

>>> x = arange(3)

>>> print X

[012]

>>> str(x)

o12y

>>> repr(x)

‘array([0, 1, 2])' # note the array(...) and ,’s
>>> x = arange(0,.01,.001)

>>> print X

[0. 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009]
>>> import sys

>>> sys.float_output_precision = 2

>>> print X

[0. 0. 0. 0. 0. 0.01 0.01 0.01 0.01 0.01]

Comparisons

Currently, comparisons of multiarray objects results in exceptions, since reasonable results (arrays of booleans)
are not doable without non-trivial changes to the Python core. These changes are planned for Python 1.6, at
which point array object comparisons will be updated.

>>> print X,y
[012][345]
>>> printx <y
Traceback (innermost last):
File "<stdin>", line 1, in ?
TypeError: Comparison of multiarray objects is not implemented.

Pickling and Unpickling -- storing arrays on disk
This documentation has not yet been written, but pickling of Numeric arrays is possible.

Dealing with floating point exceptions

fpectl, NaNs, etc. -- another long story nobody has written down.

70

12. Writing a C extension to NumPy <
g:

«

Q

(@]

i 2
Introduction)
(%28

There are two applications that require using the NumPy array type in C extension modules: S
* Access to numerical libraries: Extension modules can be used to make numerical libraries written in C (o%

languages linkable to C, such as Fortran) accessible to Python programs. The NumPy array type has the &-
vantage of using the same data layout as arrays in C and Fortran.

Ad

» Mixed-language numerical code: In most numerical applications, only a small part of the total code is CPU
time intensive. Only this part should thus be written in C, the rest can be written in Python. NumPy arrays
are important for the interface between these two parts, because they provide equally simple access to their
contents from Python and from C.

This document is a tutorial for using NumPy arrays in C extensions.

Preparing an extension module for NumPy arrays

To make NumPy arrays available to an extension module, it must include the heaaleayitdbject.h ,

after the header file Python.h that is obligatory for all extension modules. Theréijobject.h comes

with the NumPy distribution; depending on where it was installed on your system you might have to tell your
compiler how to find it. By default Distutils installed in a subdirectory Numeric in your Python include path,
and so you should include it this way:

#include “Numeric/arrayobject.h”

Is your C extension using Numeric blowing up? Maybe you didn’t call
import_array().

In addition to includingarrayobject.h , the extension must cathport_array() in its initialization
function, after the call tBy_InitModule() . This call makes sure that the module which implements the ar-
ray type has been imported, and initializes a pointer array through which the NumPy functions are called. If you
forget this call, your extension module will crash on the first call to a NumPy function! If you will be manipu-
lating ufunc objects, you should also include thefigncobject.h , also available as part of the NumPy
distribution in thelinclude directory and usually installed in subdirectory Numeric.

All of the rules related to writing extension modules for Python apply. The reader unfamiliar with these rules

is encouraged to read the standard text on the topic, “Extending and Embedding the Python Interpreter,” avail-
able as part of the standard Python documentation distribution.

71

Accessing NumPy arrays from C

Types and Internal Structure

NumPy arrays are defined by the structByérrayObject , which is an extension of the structuigOb-

ject . Pointers tdPyArrayObject can thus safely be castRyObject pointers, whereas the inverse is
safe only if the object is known to be an array. The type structure pomeéng toarray objects is
PyArray Type . The structur®yArrayObject has four elements that are needed in order to access the ar-
ray's data from C code:

int nd
The number of dimensions in the array.
int *dimensions

A pointer to an array afd integers, describing the number of elements along each dimension. The
sizes are in the conventional order, so that for any array
a.shape==(dimensions[0], dimensions[1], ..., dimensions[nd])

int *strides

A pointer to an array ofd integers, describing the address offset between two successive data ele-
ments along each dimension. Note that strides can also be negative! Each number gives the number
of bytes to add to a pointer to get to the next element in that dimension. For exammgbéy; ifcur-

rently points to element of a rank-5 array at indice$,3,2 and you want it to point to element
1,0,5,4,2 then you should adstrides[3] to the pointermyptr += strides[3] . This

works even if (and is especially useful when) the array is not contiguous in memory.

char *data

A pointer to the first data element of the array.

The address of a data element can be calculated from its indices and the data and strides pointers. For example,
elementi, j] of a two-dimensional array has the adddzga + i*array->strides[0] + j*ar-

ray->strides|[1] . Note that the stride offsets are in bytes, not in storage units of the array elements. There-
fore address calculations must be made in bytes as well, starting from the data pointer, which is always a char
pointer. To access the element, the result of the address calculation must be cast to a pointer of the required
type. The advantage of this arrangement is that purely structural array operations (indexing, extraction of sub-
arrays, etc.) do not have to know the type of the array elements.

Element data types

The type of the array elements is indicated by a type number, whose possible values are defined as constants in
arrayobject.h , as given in Table 3.

Table 4: C constants corresponding to storage types

Constant element data type
PyArray _CHAR char
PyArray_UBYTE unsigned char
PyArray_SBYTE signed char
PyArray_SHORT short
PyArray _INT int

72

Table 4: C constants corresponding to storage types é

Constant element data type §3

PyArray LONG long g
PyArray_FLOAT float %
PyArray DOUBLE double §
=}

PyArray CFLOAT float[2] 3
pd

PyArray CDOUBLE double[2] %
T

PyArray OBJECT PyObiject * <

The type number is stored @rray->descr->type_num . Note that the names of the element type con-

stants refer to the C data types, not the Python data types. A Rythois equivalent to a ®ng , and a Py-
thonfloat corresponds to a Gouble . Many of the element types listed above do not have corresponding
Python scalar types (e ByArray INT).

Contiguous arrays

An important special case of a NumPy array is the contiguous array. This is an array whose elements occupy a
single contiguous block of memory and have the same order as a standard C array. In a contiguous array, the
value ofarray->strides]i] is equal to the size of a single array element times the prodaicaigf
>dimensions]j] forj uptoi-1 . Arrays that are created from scratch are always contiguous; non-contig-
uous arrays are the result of indexing and other structural array operations. The main advantage of contiguous
arrays is easier handling in C; the poirteay->data is cast to the required type and then used like a C ar-

ray, without any reference to the stride values. This is particularly important when interfacing to existing librar-
ies in C or Fortran, which typically require this standard data layout. A function that requires input arrays to be
contiguous must call the conversion functiBgArray ContiguousFr omObject() , described in the

section “Accepting input data from any sequence type".

Zero-dimensional arrays

NumPy permits the creation and use of zero-dimensional arrays, which can be useful to treat scalars and higher-
dimensional arrays in the same way. However, library routines for general use should not return zero-demen-
sional arrays, because most Python code is not prepared to handle them. Moreover, zero-dimensional arrays can
create confusion because they behave like ordinary Python scalars in many circumstances but are of a different
type. A comparison between a Python scalar and a zero-dimensional array will always fail, for example, even

if the values are the same. NumPy provides a conversion function from zero-dimensional arrays to Python sca-
lars, which is described in the section “Returning arrays from C functions".

A simple example

The following function calculates the sum of the diagonal elements of a two-dimensional array, verifying that
the array is in fact two-dimensional and of typyArray DOUBLE .

static PyObject *
trace(PyObject *self, PyObject *args)
{

PyArrayObiject *array;

double sum;

inti, n;

if (IPyArg_ParseTuple(args, "O!",

73

&PyArray Type, &array))
return NULL;
if (array->nd != 2 || array->descr->type_num != PyArray DOUBLE) {
PyErr_SetString(PyExc_ValueError,
"array must be two-dimensional and of type float");
return NULL;

}

n = array->dimensions[0];
if (n > array->dimensions[1])
n = array->dimensions|[1];
sum =0,
for (i=0;i<n;i++)
sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);

return PyFloat_FromDouble(sum);

}

Accepting input data from any sequence type

The example in the last section requires its input to be an array of type double. In many circumstances this is

sufficient, but often, especially in the case of library routines for general use, it would be preferable to accept

input data from any sequence (lists, tuples, etc.) and to convert the element type to double automatically where
possible. NumPy provides a function that accepts arbitrary sequence objects as input and returns an equivalent
array of specified type (this is in fact exactly what the array constridctmeric.array() does in Python

code):

PyObiject *

PyArray ContiguousFromObject(PyObject *object,
int type_num,
int min_dimensions,
int max_dimensions);

The first argument, object, is the sequence object from which the data is taken. The second argument,
type_num, specifies the array element type (see the table in the section “Element data types". If you want the
function to the select the ““smallest" type that is sufficient to store the data, you can ppssitiealue
PyArray NOTYPE . The remaining two arguments let you specify the number of dimensions of the resulting
array, which is guaranteed to be no smaller them dimensions and no larger thamax_dimensions

except for the casmax_dimensions == , which means that no upper limit is imposed.

If the input data is not compatible with the type or dimension restrictions, an exception is raised. Since the array
returned byPyArray ContiguousFromObject() is guaranteed to be contiguous, this function also pro-
vides a method of converting a non-contiguous array to a contiguous one. If the input object is already a con-
tiguous array of the specified type, it is passed on directly; there is thus no performance or memory penalty for
calling the conversion function when it is not required. Using this function, the example from the last section
becomes

static PyObject *
trace(PyObject *self, PyObject *args)
{

PyObiject *input;

PyArrayObiject *array;

double sum;

inti, n;

74

if (IPyArg_ParseTuple(args, "O", &input))
return NULL;
array = (PyArrayObject *)
PyArray_ContiguousFromObiject(input, PyArray DOUBLE, 2, 2);
if (array == NULL)
return NULL;

n = array->dimensions[0];
if (n > array->dimensions[1])
n = array->dimensions[1];
sum =0,
for (i=0;i<n;i++)
sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);

AJWNN 0] UOISUBIXS D & BUNLIA o

Py DECREF(array);
return PyFloat_FromDouble(sum);

}
Note that no explicit error checking is necessary in this version, and that the array reference that is returned by
PyArray ContiguousFromObject() must be destroyed by callifgy DECREF() .

Creating NumPy arrays

NumPy arrays can be created by calling the function

PyObiject *

PyArray_FromDims(int n_dimensions,
int dimensions[n_dimensions],
int type_num);

The first argument specifies the number of dimensions, the second one the length of each dimension, and the
third one the element data type (see the table in the section “Element data types". The array that is returned is
contiguous, but the contents of its data space are undefined. There is a second function which permits the cre-
ation of an array object that uses a given memory block for its data space:

PyObiject *

PyArray_FromDimsAndData(int n_dimensions,
int dimensions[n_dimensions]
int item_type
char *data);

The first three arguments are the same ayfArray_FromDims() . The fourth argument is a pointer to the
memory block that is to be used as the array's data space. It is the caller's responsibility to ensure that this mem-
ory block is not freed before the array object is destroyed. With few exceptions (such as the creation of a tem-
porary array object to which no reference is passed to other functions), this means that the memory block may
never be freed, because the lifetime of Python objects are difficult to predict. Nevertheless, this function can be
useful in special cases, for example for providing Python access to arrays in Fortran common blocks.

Returning arrays from C functions

Array objects can of course be passed out of a C function just like any other object. However, as has been men-
tioned before, care should be taken notto return zero-dimensional arrays unless the receiver is known to be pre-
pared to handle them. An equivalent Python scalar object should be returned instead. To facilitate this step,
NumPy provides a special function

PyObiject *

75

PyArray Return(PyArrayObject *array);

which returns the array unchanged if it has one or more dimensions, or the appropriate Python scalar object in
case of a zero-dimensional array.

A less simple example

The function shown below performs a matrix-vector multiplication by callingBthaS function DGEM. It

takes three arguments: a scalar prefactor, the matrix (a two-dimensional array), and the vector (a one-dimen-
sional array). The return value is a one-dimensional array. The input values are checked for consistency. In ad-
dition to providing an illustration of the functions explained above, this example also demonstrates how a
Fortran routine can be integrated into Python. Unfortunately, mixing Fortran and C code involves machine-spe-
cific peculiarities. In this example, two assumptions have been made:

e The Fortran functiodGEMMnust be called from C agemv_. Many Fortran compilers apply this rule,
but the C name could also 8gemv or DGEM\(or in principle anything else; there is no fixed standard).

« Fortraninteger s are equivalent to ©ng s, and Fortran double precision numbers are equivalent to
C doubles. This works for all systems that | have personally used, but again there is no standard.

Also note that the libraries that this function must be linked to are system-dependent; on my Linux system (us-
ing gcc /g77), the libraries arbdlas andf2c . So here is the code:

static PyObject *
matrix_vector(PyObject *self, PyObject *args)
{

PyObject *inputl, *input2;

PyArrayObject *matrix, *vector, *result;

int dimensions[1];

double factor[1];

double real_zero[1] = {0.};

long int_one[1] = {1};

long dimO[1], dim1[1];

extern dgemv_(char *trans, long *m, long *n,
double *alpha, double *a, long *lda,
double *x, long *incx,
double *beta, double *Y, long *incy);

if (IPyArg_ParseTuple(args, "dOQ", factor, &inputl, &input2))
return NULL;
matrix = (PyArrayObiject *)
PyArray _ContiguousFromObiject(inputl, PyArray DOUBLE, 2, 2);
if (matrix == NULL)
return NULL;
vector = (PyArrayObject *)
PyArray_ContiguousFromObiject(input2, PyArray DOUBLE, 1, 1);
if (vector == NULL)
return NULL;
if (matrix->dimensions[1] != vector->dimensions[0]) {
PyErr_SetString(PyExc_ValueError,
"array dimensions are not compatible");
return NULL;

}

dimensions[0] = matrix->dimensions[0];
result = (PyArrayObject *)PyArray_FromDims(1, dimensions,

76

PyArray_DOUBLE);
if (result == NULL)
return NULL,

dimO[0] = (long)matrix->dimensions|[0];

dim1[0] = (long)matrix->dimensions[1];

dgemv_("T", dim1, dimO, factor, (double *)matrix->data, dim1,
(double *)vector->data, int_one,
real_zero, (double *)result->data, int_one);

return PyArray Return(result);

}

Note thatPyArray Return() is not really necessary in this case, since we know that the array being re-
turned is one-dimensional. Nevertheless, it is a good habit to always use this function; its performance cost is
practically zero.

AJWNN 0] UOISUBIXS D & BUNLIA o

77

13. C API Reference

This chapter describes the API for ArrayObjects and Ufuncs.

ArrayObject C Structure and API

Structures

The PyArrayObject is, like all Python types, a kind of PyObject. Its definition is:

typedef struct {

PyObject HEAD

ch ar*data;

int nd;

in t*dimensions, *strides;
Py Object*base;

Py Array_Descr*descr;
int flags;

} PyArrayObject;

WherePyObject HEAD is the standar®yObject header, and the other fields are:

78

char *data

A pointer to the first data element of the array.
int nd

The number of dimensions in the array.
int *dimensions

A pointer to an array afd integers, describing the number of elements along each dimension. The
sizes are in the conventional order, so that for any array
a.shape==(dimensions[0], dimensions[1], ..., dimensions[nd])

int *strides

A pointer to an array ofd integers, describing the address offset between two successive data ele-
ments along each dimension. Note that strides can also be negative! Each number gives the number
of bytes to add to a pointer to get to the next element in that dimension. For exammgbéy;, ifcur-

rently points to an element in a rank-5 array at indics5,3,2 and you want it to point to ele-
ment1,0,5,4,2 then you should adstrides[3] to the pointermyptr += strides[3]

This works even if (and is especially useful when) the array is not contiguous in memory.

PyObject *base

Used internally in arrays that are created as slices of other arrays. Since the new array shares its data
area with the old one, the original array’s reference count is incremented. When the subarray is gar-
bage collected, the base array’s reference count is decremented.

PyArray_Desc *descr

See below.

int flags
A bitfield indicating whether the array:
* is contiguous (rightmost bit)
» owns the dimensions (next bit to the left) (??7?)

20UBI9J9Y IdV D

« owns the strides (next bit to the left) (??7?)
* owns the data area

The ownership bits are used by NumPy internally to manage memory allocation and deallocation.
They can be false if the array is the result of e.g. a slicing operation on an existing array.

PyArrayDescr *descr

a pointer to a data structure that describes the array and has some handy functions. The slots in this
structure are:

PyArray VectorUnaryFunc *cast[]
an array of function pointers which will cast this arraytype to each of the other data types.
PyArray GetltemFunc *getitem

a pointer to a function which returns a PyObject of the appropriate type given a (char) pointer to
the data to get.

PyArray SetltemFunc *setitem

a pointer to a function which sets the element pointed to by the second argument to converted
Python Ojbect given as the first argument.

int type_num
A number indicating the datatype of the array (ileyArray_XXXX)
char *one
A pointer to a representation of one for this datatype.
char *zero
A pointer to a representation of zero for this datatype (especially useful for PyArray OBJECT
types)
char type
A character representing the array’s typecode (onebasilfdFDO').

The ArrayObject API

In the followingop is a pointer to #yObject andarp is a pointer to #yArrayObject . Routines which
returnPyObject * returnNULL to indicate failure (and follow the standard exception-setting mechanism).
Functions followed by a dagget) are functions which return PyObjects whose reference count has been in-
creased by one (new references). See the Python Extending/Embedding manual for details on reference-count

management.
int PyArray Check(op)
returnsl if op is aPyArrayObject orO if it is not.
int PyArray SetNumericOps(d)
internally used byimath to setup some of its functions.
int PyArray INCREF(op)
Used for arrays of python objec®yArray OBJECT) to increment the reference count of every

79

80

python object in the arrayp. User code does not typically need to call this.
int PyArray XDECREF(op)

Used for arrays of python objec®yArray OBJECT) to decrement the reference count of every
python object in the arrayp.

PyArrayError
Exports the array error object. | don't know its use.
void PyArray_SetStringFunction(op,repr)

Sets the function for representation of all arrayspto which should be a callablyObject . If
repr is non-zero then the function corresponding tadipe string representationis set, otherwise,
that for thestr string representation is set.

PyArray Descr PyArray DescrFromType(type)

returns aPyArray _Descr structure for the datatype given type . The input type can be either
the enumerated typeByArray Float |, etc.) or a charactexcplsilfdFDO').

PyObject *PyArray_Cast(arp, type) T

returns a pointer to ByArrayObject that isarp cast to the array type specified type . It is
just a wrapper around the function defineaip->descr->cast that handles non-contiguous
arrays and arrays of Python objects appropriately.

int PyArray_CanCastSafely(fromtype,totype)

returnsl if the array with typdromtype can be cast to an array of typtype without loss of
accuracy, otherwise it retur@s It allows conversion dbng s toint s which is not safe on 64-bit
machines. The inputfromtype and totype are the enumerated array types (e.g.
PyArray_SBYTE).

int PyArray _ObjectType(op, min_type)

returns the typecode to use for a call to an array creation function given an input python sequence
objectop and a minimum type valuein_type . It looks at the datatypes usedap, compares

this withmin_type and returns a consistent type value that can be used to store all of the data in
op and satisfying at the minimum the precisiormof_type

int _PyArray_multiply_list(list,n)
is a utility routine to multiply an array af integers pointed to bijst
int PyArray_Size(op)

is a useful function for returning the total number of elememts ihop is aPyArrayObject ,0
otherwise.

PyObject *PyArray FromDims(nd,dims,type)

returns a pointer to a newly construc®trrayObject (returned as ®yObject) given the
number of dimensions ind, an arraydims of nd integers specifying the size of the array, and the
enumerated type of the arraytype .

PyObject *PyArray FromDimsAndData(nd,dims,type,data)

This function should only be used to access global data that will never be freed (like FORTRAN
common blocks). It builds ByArrayObject in the same way &@yArray_FromDims but in-

stead of allocating new memory for the array elements it uses the bytes pointedata bya

char *).

PyObject *PyArray_ContiguousFromObiject(op,type,min_dim,max_dim) t

returns a contiguous array of typge from the (possibly nested) sequence objgctIf op is a
contiguousPyArrayObject then areference is madegff is a non-contiguous then a copy is per-
formed to get a contiguous arraypib is not aPyArrayObject then a newPyArrayObject

is created from the sequence object and returned. The two paramigtedim andmax_dim let

you specify the expected rank of the input sequence. An error will result if the ré2yimnay-

Object does not have rank bounded by these limits. To specify an exact rank requirement set
min_dim = max_dim . To allow for an arbitrary number of dimensions spewifyi_dim =

max_dim =0

30U9I9J9Y IdV D ¢

PyObject *PyArray_ CopyFromObject(op,type,min_dim,max_dim) t
returns a contiguous array similafRgArray _ContiguousFromObiject except that a copy of
op is performed even if a shared array could have been used.

PyObject *PyArray_ FromObiject(op,type,min_dim,max_dim) t

returns a reference ap if op is aPyArrayObject and a newly constructdtl/ArrayObject
if op is any other (nested) sequence object. You must use strides to access the elements of this pos-
sibly discontiguous array correctly.

PyObject *PyArray Return(apr)

returns a pointer tapr with some extra code to check for errors and be sure that zero-dimensional
arrays are returned as scalars. If a scalar is returned instapd dfienapr 's reference count is
decremented, so it is safe to use this function in the form :

return PyArray Return (apr);

PyObject *PyArray Reshape(apr,op)
returns a reference apr with a new shape specified bp which must be a one dimensional se-
guence object. One dimension may be specified as unknown by giving a value less than zero, its val-
ue will be calculated from the size agr .

PyObject *PyArray Copy(apr) T
returns an element-for-element copyapf

PyObject *PyArray Take(a,indices,axis) T
the equivalent afake(a, indices, axis) which is a method defined in the Numeric module
that just calls this function.

int PyArray_As1D(*op, char **ptr, int *n, int type)

This function replacesop with a pointer to a contiguous 1-[PyArrayObject (using
PyArray ContiguousFromObject) and sets as output parameters a pointer to the first byte of
the array inptr and the number of elements in the array.itt returns-1 on failure pp is not a

1-D array or sequence object that can be cast totyygee) and0 on success.

int PyArray_As2D(*op, char **ptr, int *m, int *n, int type)

This function replacesop with a pointer to a contiguous 2-[PyArrayObject (using

PyArray ContiguousFromObject). It returns -1 on failure (op is not a 2-D array or nested
sequence object that can be cast to type type) and 0 on success. It also sets as output parameters: an
array of pointers iptr which can be used to access the data as a 2-D array so that ptr[i][j] is a point-

er to the first byte of element [i,j] in the arreyandn are set to respectively the number of rows and
columns of the array.

int PyArray Free(op,ptr)

is supposed to free the allocated data structures and decrease object references when using
PyArray Asl1D andPyArray As2D but there are suspicions that this code is buggy.

81

Notes
Number formats, overflow issues, NaN/Inf representations, fpectl module, how to deal with 'missing’ values.

UfuncObject C Structure and API

C Structure

The ufuncobject is a generic function object that can be used to perform fast operations over Numeric Arrays
with very useful broadcasting rules and type conversions performed automatically. The ufuncobject and its API
make it easy and graceful to add arbitrary functions to Python which operate over Numeric arrays. All of the
unary and binary operators currently available in the Numerical extensions (like sin, cos, +, logical_or, etc.) are
implemented using this object. The hooks are all in place to make it very easy to add any function that takes one
or two (double) arguments and returns a single (double) argument. Itis not difficult to add support routines in
order to handle arbitrary functions whose total number of input/output arguments is less than some maximum
number (currently 10).

typedef struct {
PyObject HEAD
in t * ranks,*canonical_ranks;
int nin, nout, nargs;
int identity;
Py UFuncGenericFunction*functions;
vo id**data;
int ntypes, nranks, attributes;
ch ar *name,*types;
int check_return;
} PyUFuncObject;
where:
int *ranks
unused.
int *canonical_ranks
unused
int nin
the number of input arguments to function
int nout
the number of output arguments for the function
int nargs
the total number of argumeng nin + nout
int identity

a flag telling whether the identity for this functio®ier 1 for use in theeduce method for a zero
size array input.

PyUFuncGenericFunction *functions

an array of functions that perform the innermost looping over the input and output arrays (I think this
is over a single axis). These functions call the underlying math function with the data from the input
arguments along this axis and return the outputs of the function into the correct place in the output
arrayobject (with appropriate typecasting). These functions are called by the general looping code.
There is one function for each of the supported datatypes. Function pointers to do this looping for

82

typest ,'d" ,'F' ,and'D' , are provided in the C-API for functions that take one or two argu-
ments and return one argument. ERglJFuncGenericFunction returnsvoid and has the fol-
lowing argument list (in order):

args
an array of pointers to the data for each of the input and output arguments with input argument:

first and output arguments immediately following. Each elementgs is achar * to the
first byte in the corresponding input or output array.

aoudioey Idv D

dimensions
a pointer to a singlmt giving the size of the axis being looped over.

steps

an array ofnt s giving the number of bytes to skip to go to the next element of the array for this
loop. There is an entry in the array for each of the input and output arguments, with input argu-
ments first and output arguments immediately following.

func

a pointer to the underlying math function to be called at each point in this inner loop. This is a

void * and must be recast to the required type before actually calling the function e.g. to a

pointer to a function that takes twlouble s and returns double). If you need to write your

ownPyUFuncGenericFunction , it is most readable to also haviypedef statement that

defines your specific underlying function type so the function pointer cast is somewhat readable.
void **data

a pointer to an array of functions (each cagbtd *) that compute the actual mathematical func-
tion for each set of inputs and outputs. There should be a function in the array for each supported data
type. This function will be called from tHeyUFuncGenericFunction for the corresponding

type.
int ntypes

the number of datatypes supported by this function. For datatypes that are not directly supported, a
coercion will be performed if possible safely, otherwise an error will be reported.

int nranks
unused.

int attributes

unused.
char *name
the name of this function (not the same as the dictionary label for this function object, but it is usually
set to the same string). It is printed whenepr__ is called for this object, defaults t8" if set
to NULL

char *types
an array of supported types for this function object. I'm not sure why but each supported datatype
(PyArray_FLOAT , etc.) is entered as many times as there are arguments for this fumetiga. |

int check_return

Usually best to set to 1. If this is non-zero then returned matrices will be cleaned up so that rank-0
arrays will be returned as python scalars. Also, if non-zero, then any math error thateset®the
global variable will cause an appropriate Python exception to be raised.

83

UfuncObject C API

There are currently 15 pointers in the C-API array for the ufuncobject which is loaagabttyufunc()

The macros implemented by this API, available by including theffilecobject.h ,"are given below. The

only function normally called by user code is the ufuncobject creation function
PyUFunc_FromFuncAndData . Some of the other functions can be used as elements of an array to be passed
to this creation function.

int PyUFunc_Check(op)
returnsl if op is a ufunc object otherwise retuths

PyObject *PyUFunc_FromFuncAndData(functions, data, types, ntypes, nin,
nout, identity, name, check_return)

returns the ufunc object given its parameters. This is the most important function call. It requires de-
fining three arrays to be passed as paramdiarstions |, data , andtypes . The arguments to
be passed are:

functions

an array of functions of tygeyUFuncGenericFunction , there should be one function for
each supported datatype. The functions should be in order so that datatypes listed toward the be-
ginning of the array could be cast as datatypes listed toward the end.

data

an array of pointers to void* the same size as the functions array and in the same datatype order.
Each element of this array is the actual underlying math function (recasbid &) that will
be called from one of tHeyUFuncGenericFunctions . It will operate on each element of
the input NumPyarrayobject (s) and return its element-by-element result in the output
NumPy arrayobject(s). There is one function call for each datatype supported, (though functions
can be repeated if you handle the typecasting appropriately wRltHeincGenericFunc-
tion).

types

an array ofPyArray_Type s. The size of this array should Imnrnout) times the size of

one of the previous two arrays. There shouldiibenout copies ofPyArray XXXXX for

each datatype explicitly supported. (Remember datatypes not explicitly supported will still be ac-
cepted as input arguments to the ufunc if they can be cast safely to a supported type.)

ntypes
the number of supported types for this ufunc.
nin
the number of input arguments
nout
the number of output arguments
identity

PyUFunc_One, PyUFunc_Zero , orPyUFunc_None , depending on the desired value for the
identity. This is only relevant for functions that take two input arguments and return one output
argument. If not relevant ug&/UFunc_None .

name
the name of thisfuncobject for use in the_repr__ method.
check_return
the desired value for check_return for this ufuncobject.

84

int PyUFunc_GenericFunction(self,args,mps)

allows calling the ufunc from user C routine. It returns 0 on success and -1 on any failures. This i

the core of what happens when a ufunc is called from Python. Its arguments are:

self
the ufunc object to be called. INPUT

args

2ouaI9eYy IdY O -

a Python tuple object containing the input arguments to the ufunc (should be Python sequence

objects). INPUT

mps
an array of pointers to PyArrayObijects for the input and output arguments to this function. The
input NumPy arrays are elementps[0]...mps[self->nin-1] . The output NumPy ar-
rays are elementaps[self->nin]...mps[self->nargs-1] . OUTPUT

The following are all functions of typeyUFuncGenericFunction and are suitable for use in thumc-

tions

argument passed RyUFunc_FromFuncAndData
PyUFunc f f As d d

for a unary function that takesdauble input and returns double output as a ufunc that takes
PyArray FLOAT input and return®yArray_FLOAT output.

PyUFunc_d_d

for a using a unary function that takedauble input and returns double output as a ufunc that
takesPyArray DOUBLE input and return®yArray DOUBLE output.

PyUFunc_F F As D D

for a unary function that takeg_complex input and returns By _complex output as a ufunc
that takes?yArray CFLOAT input and returnPyArray CFLOAT output.

PyUFunc_D D

for a unary function that takeg_complex input and returns By _complex output as a ufunc
that takes?yArray CFLOAT input and returnPyArray CFLOAT output.

PyUFunc_O_O

for a unary function that takesPy_Object * input and returns By _Object * output as a
ufunc that take®yArray_OBJECT input and return®yArray OBJECT output

PyUFunc_ff f As dd_d

for a binary function that takes twamuble inputs and returns orouble output as a ufunc that
takesPyArray FLOAT input and return®yArray FLOAT output.

PyUFunc_dd_d

for a binary function that takes tvamuble inputs and returns orouble output as a ufunc that
takesPyArray DOUBLE input and return®yArray DOUBLE output.

PyUFunc_FF _F_As DD_D

for a binary function that takes twRy_complex inputs and returns By _complex output as a
ufunc that take®yArray_CFLOAT input and return®yArray_CFLOAT output.

PyUFunc_DD_D

for a binary function that takes twRy_complex inputs and returnsBy_complex output as a
ufunc that take®yArray_CFLOAT input and return®yArray CFLOAT output

85

86

PyUFunc_OO_O

for a unary function that takes tigy_Object * input and returnsRy_Object * output as a
ufunc that take®yArray OBJECT input and return®yArray_OBJECT output

PyUFunc_O_O_method

for a unary function that takesPy_Object * input and returns By _ Object* output and is
pointed to by a Python method as a ufunc that takes PyArray OBJECT input and returns
PyArray_OBJECT output

PyArrayMap

an exported API that was apparently considered but never implemented probably because the func-
tionality is already available with Pythomtzap function.

14. Glossary

A1esso|9) .

This section will define a few of the technical words used throughout this document. [Please let us know of any
additions to this list which you feel would be helpful -- the authors]

typecode: a single character describing the format of the data stored in an array. For example, 'b’ refers to
unsigned byte-sized integers (0-255).

ufunc / universal function: a ufunc is a callable object which performs operations on all of the elements of
its arguments, which can be lists, tuples, or arrays. Many ufuncs are definednmatie module.

array / multiarray: an array refers to the Python object type defined by the NumPy extensions to store and
manipulate numbers efficiently.

UserArray: The UserArray module defines a UserArray class which should be subclassed by users wishing
to have classes which behave similarly to the array object type.

Matrix: The Matrix module defines a subclass Matrix of the UserArray class which is specialized for linear
algebra matrices. Most notably, it overrides the multiplication operator on Matrix instances to perform ma-
trix multiplication instead of element-wise multiplication.

rank: the rank of an array is the number of dimensions it has, or the number of integers in its shape tuple.

shape: array objects have an attribute called shape which is necessarily a tuple. An array with an empty tu-
ple shape is treated like a scalar (it holds one element).

87

88

PART II: Optional Packages

This part contains descriptions of the packages that are included with the distribution but

which are not necessary for using Numeric arrays. The packages are for the most part in
the Packages subdirectory of the source distribution, and can be installed anywhere in the

Python module search path. Each has its own “setup.py” to use to build and install the

package.

For historical reasons, some of these packages are currently installed inside the Numeric
package rather than on their own. We hope to remedy this in the future.

The subdirectory Packages contains directories, each of which contains its own installation script setup.py. As

with the main directory, these packages are generally compiled and installed using the command

python setup.py install

The Makefile in the main directory will do this for all the packages provided.

In addition, many people make available libraries that use Numeric. At the moment a centralized reference for
these does not exist, but they are usually announced on the discussion list; also check the project web page.

Table 5: Descriptions of the Optional Packages

ing or invalid entries.

Package _
9 Description Reference
Name
FFT Fast Fourier Transforms “FFT Reference” on pag €91
LinearAlgebra| Basic linear algebra “LinearAlgebra Reference” on
page 94
RandomArray | Arrays of random numbers. “RandomArray Reference” on
page 96
RNG Generators for independent streams of randofindependent Random Streams” gn
numbers from various distributions and arraypage 101
of same.
MA Masked arrays, that is, arrays that have miss“Masked Arrays” on page 1 03

89

License and disclaimer for packages MA and RNG

Package MA was written by Paul Dubois, LLNL. Package RNG was written by Konrad Hinsen after modifying
an earlier package UNRG by Paul Dubois and Fred Fritsch.

Copyright (c) 1999, 2000. The Regents of the University of California. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, pro-
vided that this entire notice is included in all copies of any software which is or includes a copy or modification
of this software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under con-
tract no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of Cali-
fornia for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately-owned rights. Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

90

15. FFT Reference

90UaJ9JOY 14 o

The FFT.py module provides a simple interface to the FFTPACK FORTRAN library,
which is a powerful standard library for doing fast Fourier transforms of real and complex
data sets, or the C fftpack library, which is algorithmically based on FFTPACK and
provides a compatible interface. On some platforms, optimized version of one of these
libraries may be available, and can be used to provide optimal performance (see
“Compilation Notes” on page 93).

Python Interface

The Python user imports the FFT module, which provides a set of utility functions which provide access to the
most commonly used FFT routines, and allows the specification of which axes (dimensions) of the input arrays
are to be used for the FFT’s. These routines are:

fft(data, n=None, axis=-1)

Performs a n-point discrete Fourier transform of the array dadafaults to the size of data. It is most efficient

for n a power of two. If nis larger thdata , thendata will be zero-padded to make up the difference. If n

is smaller than data, thetata will be aliased to reduce its size. This also stores a cache of working memory
for different sizes of fft's, so you could theoretically run into memory problems if you call this too many times
with too many different n's.

The FFT is performed along the axis indicated byakis argument, which defaults to be the last dimension
of data .

The format of the returned array is a complex array of the same shdgia a where the first element in the
result array contains the DC (steady-state) value of the FFT, and where each successive ...XXX

Example of use:

>>> print fft(array((1,0,1,0,1,0,1,0))+ 10).real
[84. 0. 0. 0. 4. 0. 0. 0]
>>> print fft(array((0,1,0,1,0,1,0,1))+ 10).real
[84. 0. 0. 0. 4. 0. 0. 0]
>>> print fft(array((0,1,0,0,0,1,0,0))+ 10).real
[82. 0. 0. 0. -2. 0. 0. 0]

inverse_fft(data, n=None, axis=-1)

Will return then point inverse discrete Fourier transformdata . n defaults to the length ofata . This is

most efficient fom a power of two. Ih is larger thardata , thendata will be zero-padded to make up the
difference. Ifn is smaller thamata , thendata will be aliased to reduce its size. This also stores a cache of
working memory for different sizes of FFT'’s, so you could theoretically run into memory problems if you call
this too many times with too many differeris.

real_fft(data, n=None, axis=-1)

Will return then point discrete Fourier transform of the real valued ataéy . n defaults to the length ofa-
ta . This is most efficient fon a power of two. The returned array will be one half of the symmetric complex
transform of the real array.

91

>>> x = cos(arange(30.0)/30.0*2*pi)

>>> print real_fft(x)

[-1. +0.j 13.69406641+2.91076367]
-0.91354546-0.40673664 -0.80901699-0.58778525j
-0.66913061-0.74314483) -0.5 -0.8660254j
-0.30901699-0.95105652] -0.10452846-0.9945219j
0.10452846-0.9945219j 0.30901699-0.95105652;
0.5 -0.8660254) 0.66913061-0.74314483]
0.80901699-0.58778525] 0.91354546-0.40673664]
0.9781476 -0.20791169; 1. +0.j]

inverse_real fft(data, n=None, axis=-1)
Will return the inverse FFT of the real valued ardaya .

fft2d(data, s=None, axes=(-2,-1))
Will return the 2-dimensional FFT of the arrdgta .

real_fft2d(data, s=None, axes=(-2,-1))
Will return the 2d FFT of the real valued ardata .

C API

The interface to the FFTPACK library is performed via the fftpackmodule module, which is responsible for
making sure that the arrays sent to the FFTPACK routines are in the right format (contiguous memory locations,
right numerical storage format, etc). It provides interfaces to the following FFTPACK routines, which are also
the names of the Python functions:

o cffti(i)

- cfftf(data, savearea)
 cfftb(data, savearea)
o rffti(i)

« rfftf(data, savearea)

- rfftb(data, savearea)

The routines which start with expect arrays of complex numbers, the routines which start vétpect real
numbers only. The routines which end witlare the initalization functions, those which end Witberform
the forward FFTs and those which end viatherform the backwards FFTs.

The initialization functions require a single integer argument corresponding to the size of the dataset, and re-
turns a work array. The forward and backwards FFTs require two array arguments -- the first is the data array,
the second is the work array returned by the initialization function. They return arrays corresponding to the co-
efficients of the FFT, with the first element in the returned array corresponding to the DC component, the sec-
ond one to the first fundamental, etc.The length of the returned array is 1 + half the length of the input array in
the case of real FFTs, and the same size as the input array in the case of complex data.

>>> x = cos(arange(30.0)/30.0*2*pi)
>>> w = rffti(30)

>>> = rfftf(x, w)

>>> f[0]

(-1+0j)

>>> f[1]
(13.6940664103+2.91076367145j)
>>> f[2]

92

(-0.913545457643-0.406736643076j)

9y 144 -

Compilation Notes
On some platforms, precompiled optimized versions of the FFTPACK library are preinstalled on the operatings’
system, and the compilation procedure needs to be modified to force the fftpackmodule file to be linked agam@

those rather than the fftpacklite.c file which is shipped with NumPy.

90

93

16. LinearAlgebra Reference

The LinearAlgebra.py module provides a simple interface to the low-level linear algebra
routines provided by either the LAPACK FORTRAN library or the compatible lapack_lite
C library.

Python Interface

solve_linear_equations(a, b

This function solves a system of linear equations with a square non-singular matrix a and a right-hand-side vec-
tor b. Several right-hand-side vectors can be treated simultaneously by making b a two-dimensional array (i.e.
a sequence of vectors). The function inverse(a) calculates the inverse of the square non-singular matrix a by
calling solve_linear_equations(a, b) with a suitable b.

inverse(a)

This function returns the inverse of the specified matrix a which must be square and non-singular. To within
floating point precision, it should always be true that:

matrixmultiply(a, inverse(a)) == identity(len(a))

To test this claim, one can do e.g.:

>>> a =reshape(arange(25.0), (5,5)) + identity(5)
>>> printa
[1. 1. 2. 3. 4]
[5. 7. 7. 8. 9]
[10. 11. 13. 13. 14]
[15. 16. 17. 19. 19]
[20. 21. 22. 23. 25]]
>>> inv_a = inverse(a)
>>> printinv_a
[[0.20634921 -0.52380952 -0.25396825 0.01587302 0.28571429]
[-0.5026455 0.63492063 -0.22751323 -0.08994709 0.04761905]
[[0.21164021 -0.20634921 0.7989418 -0.1957672 -0.19047619]
[0.07936508 -0.04761905 -0.17460317 0.6984127 -0.42857143]
[0.37037037 0.11111111 -0.14814815 -0.40740741 0.33333333]]
>>> # Verify the inverse by printing the largest absolute element

of a * a™{-1} - identity(5)

print "Inversion error:", \

maximum.reduce(fabs(ravel(dot(a, inv_a)-identity(5))))
Inversion error: 2.6645352591e-015

eigenvalues(a

This function returns the eigenvalues of the square matrix a.

>>> printa
[[1. 0. 0. 0. 0]
[0. 2. 0. 0. 1]

94

[0. 0. 3. 0. 0]

[0. 0.0 4. 0]

[0. 0. 0. 0. 1]]

>>> print eigenvalues(a)

[1. 2. 3. 4. 1]
eigenvectors(a)

This function returns both the eigenvalues and the eigenvectors, the latter as a two-dimensional array (i.e. a
guence of vectors).

9ouafploy rigab|yreaur] «

>>> printa
[[1. 0. 0. 0. 0]
[0. 2. 0. 0. 1]
[0. 0. 3. 0. 0]

[0. 0. 0. 4. 0]

[0. 0. 0. 0. 1.]]

>>> evalues, evectors = eigenvectors(a)
>>> print evalues

[1. 2. 3. 4. 1]

>>> print evectors

Il 1. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 1. 0.]
[0. -0.70710678 O. 0. 0.70710678]]

singular_value decomposition(a, full_matrices=0)

This function returns three arrays V, S, anl Whose matrix product is the original matrix a. V and are

unitary matrices (rank-2 arrays), whereas S is the vector (rank-1 array) of diagonal elements of the singular-
value matrix. This function is mainly used to check whether (and in what way) a matrix is ill-conditioned.
generalized_inverse(a, rcond=1e-10

This function returns the generalized inverse (also known as pseudo-inverse or Moore-Penrose-inverse) of the
matrix a. It has numerous applications related to linear equations and least-squares problems.
determinant(a)

This function returns the determinant of the square matrix a.

linear_least squares(a, b, rcond=e-10

This function returns the least-squares solution of an overdetermined system of linear equations. An optional
third argument indicates the cutoff for the range of singular values (defaults to 10-10). There are four return
values: the least-squares solution itself, the sum of the squared residuals (i.e. the quantity minimized by the so-
lution), the rank of the matrix a, and the singular values of a in descending order.

Compilation Notes

On some platforms, precompiled optimized versions of the LAPACK library are preinstalled on the operating
system, and the setup procedure needs to be modified to force the lapackmodule.c file to be linked against those
rather than the lapack_lite library.

95

17. RandomArray Reference

The RandomArray.py module (in conjunction with the ranlibmodule.c file) provides a
high-level interface to the ranlib module, which provides a good quality C implementation
of a random-number generator.

Python Interface

seed(x=0, y=0)

Theseed() function takes two integers and sets the two seeds of the random number generator to those values.
If the default values of 0 are used for both x and y, then a seed is generated from the current time, providing a
pseudo-random seed.

get _seed()

Theget_seed() function returns the two seeds used by the current random-number generator. It is most of-
ten used to find out what seeds the seed() function chose at the last iteration. [thread-safety issue?]

random(shape=ReturnFloat)

Therandom() function takes a shape, and returns an array of double-precision floatings point numbers be-

tween 0.0 and 1.0. Neither 0.0 nor 1.0 is ever returned by this function. If no argument is specified, the function
returns a single floating point number (not an array). The array is filled from the generator following the canon-
ical array organization (see discussion of flee attribute)

uniform(minimum, maximum, shape=ReturnFloat)

The uniform() function returns an array of the specified shape and containing double-precision floating
point random numbers strictly between minimum and maximum. If no shape is specified, a single number is
returned.

randint(minimum, maximum, shape=ReturnFloat)

The randint() function returns an array of the specified shape and containing random (standard) integers
greater than or equal inimum and strictly less thamaximum. If no shape is specified, a single number is
returned.

permutation(n)

Thepermutation() function returns an array of the integers betw@andn-1 , in an array of shaga,) |,
and with its elements randomly permuted.

An example use of the RandomArray module (exact output will be different each time!):

>>> from RandomArray import *

>>> seed() # Set seed based on current time
>>> print get_seed() # Find out what seeds were used
(897800491, 192000)

>>> print random()

0.0528018975065

>>> print random((5,2))

[[0.14833829 0.99031458]

96

[0.7526806 0.09601787]

[0.1895229 0.97674777]

[0.46134511 0.25420982]

[0.66132009 0.24864472]]

>>> print uniform(-1,1,(10,))

[0.72168852 -0.75374185 -0.73590945 0.50488248 -0.74462822 0.09293685
-0.65898308 0.9718067 -0.03252475 0.99611011]

>>> print randint(0,100, (12,))

[28 596 19 13269 40 56 69 53 44]

>>> print permutation(10)

[4289173650]

>>> seed(897800491, 192000) # resetting the same seeds

>>> print random() # yields the same numbers

0.0528018975065

9oUaIajay Aelywopuey e

Floating point random arrays

standard _normal (shape=ReturnFloat

The standard_normal () function returns an array of the specified shape that contains double precision floating
point numbers normally (Gaussian) distributed with mean zero and variance and standard deviation one. If no
shape is specified, a single number is returned.

normal (mean, variance, shape=ReturnFloat)

The normal () function returns an array of the specified shape that contains double precision floating point num-
bers normally distributed with the specified mean and variance. If no shape is specified, a single number is re-
turned.

multivariate_normal (mean, covariance) or
multivariate_normal (mean, covariance, leadingAxesShape)

The multivariate_normal () function takes a one dimensional array argument mean and a two dimensional array
argument covariance. Suppose the shape of mean is (n,). Then the shape of covariance must be (n,n). The
multivariate_normal () function returns a double precision floating point array. The effect of the leadin-
gAxesShape parameter is:

« If noleadingAxesShape is specified, then an array with shape (n,) is returned containing a vector of numbers
with a multivariate normal distribution with the specified mean and covariance.

« If leadingAxesShape is specified, then an array of such vectors is returned. The shape of the output is lead-
ingAxesShape.append ((n,)). The leading indices into the output array select a multivariate normal from the
array. The final index selects one number from within the multivariate normal.

In either case, the behavior of multivariate_normal () is undefingalviirianceis not symmetric and positive
definite.

exponential (mean, shape=ReturnFloat)

The exponential () function returns an array of the specified shape that contains double precision floating point
numbers exponentially distributed with the specified mean. If no shape is specified, a single number is returned.

beta (a, b, shape=ReturnFloat)
The beta () function returns an array of the specified shape that contains double precision floating point num-

bers beta distributed with alpha parameter a and beta parameter b. If no shape is specified, a single number is
returned.

97

gamma (a, r, shape=ReturnFloat

The gamma () function returns an array of the specified shape that contains double precision floating point num-
bers beta distributed with location parameter a and distribution shape parameter r. If no shape is specified, a sin-
gle number is returned.

chi_square (df, shape=ReturnFloat)

The chi_square() function returns an array of the specified shape that contains double precision floating point
numbers with the chi square distribution with df degrees of freedom. If no shape is specified, a single number
is returned.

noncentral_chi_square (df, nonc, shape=ReturnFloat

The noncentral_chi_square() function returns an array of the specified shape that contains double precision
floating point numbers with the chi square distribution with df degrees of freedom and noncentrality parameter
nconc. If no shape is specified, a single number is returned.

F (dfn, dfd, shape=ReturnFloat)

The F () function returns an array of the specified shape that contains double precision floating point numbers
with the F distribution with dfn degrees of freedom in the numerator and dfd degrees of freedom in the denom-
inator. If no shape is specified, a single number is returned.

noncentral_F (dfn, dfd, nconc, shape=ReturnFloat)

The noncentral_F () function returns an array of the specified shape that contains double precision floating
point numbers with the F distribution with dfn degrees of freedom in the numerator, dfd degrees of freedom in
the denominator, and noncentrality parameter nconc. If no shape is specified, a single number is returned.

Integer random arrays

binomial (trials, prob, shape=Returnint)

The binomial () function returns an array with the specified shape that contains integer numbers with the bino-
mial distribution with trials trials and event probability prob. In other words, each value in the returned array is
the number of times an event with probability prob occurred within trials repeated trials. If no shape is speci-
fied, a single number is returned.

negative _binomial (trials, prob, shape=Returnint

The negative_binomial () function returns an array with the specified shape that contains integer numbers with
the negative binomial distribution with trials trials and event probability prob. If no shape is specified, a single
number is returned.

poisson (mean, shape=Returnint)

The poisson () function returns an array with the specified shape that contains integer numbers with the Poisson
distribution with the specified mean. If no shape is specified, a single number is returned.

multinomial (trials, probs) or multinomial (trials, probs, leadingAxesShape)

The multinomial () function returns an array with that contains integer numbers with the multinomial distribu-
tion with trials trials and event probabilities given in probs. probs must be a one dimensional array. There are
len(probs)+1 events. probs]i] is the probability of the i-th event for O<=i<len(probs). The probability of event
len(probs) is 1.-Numeric.sum(prob).

98

The first form returns an integer array of shape (len(probs)+1,) containing one multinomially distributed vector.*®
The second form returns an array of shape (m, n, ..., len(probs)+1) where (m, n, ...) is leadingAxesShape. In tﬁs
case, each output[i,j,...,:;] is an integer array of shape (len(prob)+1,) containing one multinomially distributedg.
vector..

Examples

Most of the functions in this package take zero or more distribution specific parameters plus an optional sha
parameter. The shape parameter gives the shape of the output array:

22Uy Aesywo

>>> from RandomArray import *
>>> print standard_normal()
-0.435568600893
>>> print standard_normal(5)
[-1.36134553 0.78617644 -0.45038718 0.18508556 0.05941355]
>>> print standard_normal((5,2))
[1.33448863 -0.10125473]

[0.66838062 0.24691346]

[-0.95092064 0.94168913]

[-0.23919107 1.89288616]

[0.87651485 0.96400219]]
>>> print normal(7., 4., (5,2)) #mean=7, std. dev.=4
[2.66997623 11.65832615]

[6.73916003 6.58162862]

[8.47180378 4.30354905]

[1.35531998 -2.80886841]

[7.07408469 11.39024973]]
>>> print exponential(10., 5) #mean=10
[18.03347754 7.11702306 9.8587961 32.49231603 28.55408891]
>>> print beta(3.1, 9.1, 5) # alpha=3.1, beta=9.1
[0.1175056 0.17504358 0.3517828 0.06965593 0.43898219]
>>> print chi_square(7, 5) # 7 degrees of freedom (dfs)
[11.99046516 3.00741053 4.72235727 6.17056274 8.50756836]
>>> print noncentral_chi_square(7, 3, 5) # 7 dfs, noncentrality 3
[18.28332138 4.07550335 16.0425396 9.51192093 9.80156231]
>>> F(5,7,5)#5and 7 dfs
array([0.24693671, 3.76726145, 0.66883826, 0.59169068, 1.90763224])
>>> noncentral_F(5, 7, 3., 5) # 5 and 7 dfs, noncentrality 3
array([1.17992553, 0.7500126 , 0.77389943, 9.26798989, 1.35719634))
>>> binomial(32, .5, 5) # 32 trials, prob of an event = .5
array([12, 20, 21, 19, 17])
>>> negative_binomial(32, .5, 5) # 32 trials: prob of an event = .5
array([21, 38, 29, 32, 36])

Two functions that return generate multivariate random numbers (that is, random vectors with some known re-
lationship between the elements of each vector, defined by the distribution). They are multivariate_normal ()
and multinomial (). For these two functions, the lengths of the leading axes of the output may be specified. The
length of the last axis is determined by the length of some other parameter.

>>> multivariate_normal([1,2], [[1,2],[2,1]], [2,3])
array([[[0.14157988, 1.46232224],
[-1.11820295, -0.82796288],
[1.35251635, -0.2575901],
[[-0.61142141, 1.0230465],
[-1.08280948, -0.55567217],
[2.49873002, 3.28136372]]])

99

>>> x = multivariate_normal([10,100], [[1,2],[2,1]], 10000)

>>> X_mean = sum(x)/10000

>>> print X_mean

[9.98599893 100.00032416]

>>> X_minus_mean = X - X_mean

>>> cov = matrixmultiply(transpose(x_minus_mean), x_minus_mean) / 9999.
>>> cov

array([[2.01737122, 1.00474408],

[1.00474408, 2.0009806]])

The a priori probabilities for a multinomial distribution must sum to one. The prior probability argument to
multinomial () doesn't give the prior probability of the last event: it is computed to be one minus the sum of the
others.

>>> multinomial(16, [.1, .4, .2]) # prior probabilities [.1, .4, .2, .3]
array([2, 7, 1, 6])

>>> multinomial(16, [.1, .4, .2], [2,3]) # output shape [2,3,4]
array([[[1, 9, 1, 5],

100

18. Independent Random Streams

The RNG package provides any number of independent random number generators tied to
a distribution. Distributions include exponential, normal, and log-normal distributions, but
adding others is not difficult. Contributions of code for other distributions are welcome!

SwealS wopuey juspuadapu] .

Background

RNG was written by Konrad Hinsen based on the package URNG by Paul Dubois and Fred Fritsch of LLNL.
This package has been released for unlimited redistribution. Please see “License and disclaimer for packages
MA and RNG” on page90.

Usage

Package RNG installs two modules: RNG.RNG, and RNG.ranf. The former is a C extension that does the gen-
eration. The latter is an easy-to-use interface for a single uniform distribution.

Module RNG
Module RNG defines the function:
CreateGenerator (s, distribution=UniformDistribution(0., 1))

creates a new random number generator with a distribution The random numbers produced by the
generator sample the distribution and iardependent of other generatorscreated earlier or later.
Its first argument, an integer, determines the initial state:

* 0 Use the default initial seed value.
* <0:; Set a random value for the seed from the system clock.
» >0 ; Set seed directly (32 bits only).

The default distribution is a uniform distribution on [0., 1.); other distributims obtained by supplying
a second argument which must be a distribution. Currently RNG defines the following dis
tribution types:

« UniformDistribution(a, b) -- a uniform distribution of humbers in the interval [a, b)

* NormalDistribution(mu, sigma) -- a normal distribution with mean mu and standard deviation sigma

« ExponentialDistribution(l) -- an exponential distribution of positive numbers with decay constant I.

» LogNormalDistribution(mean, std) -- a log normal distribution with given mean and standard deviation.
Generator objects

Once a generator is created, it contains these methods:

« sample(n) will return an array of n samples from the generator.

« ranf() will return one sample from the generator.

101

Module ranf

Module ranf, whose main function ranf() is equivalent to the old ranf generator on Cray 1 computers, defines
these facilities.

Attribute standard_generator is an instance of RNG.UniformDistribution(0., 1.).
ranf(): returns a random number from the standard_generator.

random_sample(*n) returns a Numeric array of samples from the standard_generator.

random_sample(n) = array of n random numbers;
random_sample(nl, n2, ...)= array of shape (n1, n2, ..)

Examples

The test routine Demo/RNGdemo. py illustrates some common usage of both RNG and Numeric

The test routine RNGtest2.py combines RNG with Konrad Hinsen’s Statistics package to do a
test of the log normal distribution

Here is one function from RNGdemo.py, showing a test of a normal distribution.

from Numeric import *
import RNG

def test_normal (mean, std, n=10000):
dist = RNG.NormalDistribution(mean, std)
rng = RNG.CreateGenerator(0, dist)
values = rng.sample(n)
m = sum(values)/n
s = sqrt(sum((values-m)**2)/n)
return (m, s)

102

19. Masked Arrays

sAelly payse e

Masked arrays are arrays that may have missing or invalid entries. Module MA provides a
work-alike replacement for Numeric that supports data arrays with masks.

What is a masked array?

Masked arrays are arrays that may have missing or invalid entries. Module MA provides a work-alike replace-
ment for Numeric that supports data arrays with masks. A mask is either None or an array of ones and zeros,
that determines for each element of the masked array whether or not it contains an invalid entry. The package
assures that invalid entries are not used in calculations.

A particular element is said to be masked (nvalid) if the mask is not None and the corresponding element of the
mask is 1; otherwise it is unmasked (valid).

This package was written by Paul F. Dubois at Lawrence Livermore National Laboratory. Please see the legal
notice in the software and on “License and disclaimer for packages MA and RN G” on page90.

Installing and using MA
MA is one of the optional Packages and installing it requires a separate step as explained in the Numeric
README. To install just the MA package using Distutils, in the MA top directory enter:
python setup.py install
Use MA as a replacement for Numeric:
from MA import *
x = array([1, 2, 3])
To create an array with the second element invalid, we would do:
y = array([1, 2, 3], mask = [0, 1, 0])

To create a masked array where all values “near” 1.e20 are invalid, we can do:
z = masked_values ([1.0, 1.e20, 3.0, 4.0], 1.e20)

For a complete discussion of creation methods for masked arrays please see “Constructing masked arrays” on
page 105.

The Numeric module is an attribute in MA, so to execute a méttadfdom Numeric, you can reference it as
Numeric.foo(...).

Usually people use both MA and Numeric this way, but of course you can always fully-qualify the names:

import MA
x = MA.array([1, 2, 3])

The principal feature of module MA is class MA, the class whose instances are returned by the array construc-
tors and most functions in module MA. We will discuss this class first, and later cover the attributes and func-
tions in module MA. For now suffice it to say that among the attributes of the module are the constants fro
module Numeric including those for declaring typecodes, NewAxis, and the mathematical constants such as pi
and e. An additional typecode, MaskType, is the typecode used for masks.

103

Class MA

In Module MA, an array is an instance of class MA, which is defined in the module MA. An instance of class
MA can be thought of as containing the following parts:

« An array of data, of any shape;

* A mask of ones and zeros of the same shape as the data; and,

« A *fill value” -- this is a value that may be used to replace the invalid entries in order to return a plain Nu-
meric array. The chief method that does this is the mefified discussed below.

We will use the terms “invalid value” and “invalid entry” to refer to the data value at a place corresponding to
a mask value of 1. It should be emphasized that the invalid values\@rused in any computation, and that

the fill value is not used fany computational purpose. When an instarad class MA is converted to its
string representation, it is the result returnediltgd (x) that is converted to a string.

Attributes of masked arrays
flat: (deprecated) returns the masked array as one-dimensional. This is provided for compatibility with Numer-
ic. ravel (x) is preferred.

real: returns the real part of the array if complex.

imaginary: returns the imaginary part of the array if complex.

shape The shape of a masked array can be accessed or changed by using the speciahatpibare with
Numerical arrays.

shared_data This read-only flag if true indicates that the masked array shared a reference with the original
data used to construct it at the time of construction. Changes to the original array will affect the masked array.
(This is not the default behavior; see “Copying or not?” o n pagel107.) This flag is informational only.

shared_mas : This read-only flag if true indicates that the masked awasently shares a reference to the
mask used to create it. Unlike shared_data, this flag may change as the result of modifying the array contents,
as the mask uses copy on write semantics if it is shared.

104

Methods on masked arrays.

Table 6: Methods on masked arrays; attributes, constructors and operations
discussed separately.

Method

Description

Sample syntax

astype (typecode)

return self as array of given type.

y = X.astype (Float32)

filled (fill_value=None)

filled(self, self.fill_value()); see descriptiony = x.filled()

of module method filled.

fill_value ()

Get the current fill value.

v = x.fill_value ()

get_shape ()

Return the tuple giving the current shape
Same as shape attribute.

s = x.get_shape ()
s = x.shape

ids ()

Return the ids of the data and mask areas

id1, id2 = x.ids ()

is_contiguous ()

Is the data area contiguous? See Numeri
manual.

C if X.is_contiguous ()

mask ()

Return the data mask, or None.

m = x.mask ()

put (values)

Set the value at each non-masked entry|
the corresponding entry iralues The mask
is unchanged. See also module method p

ta.put (values

ut.

put_masked (values)

Eliminate any masked values by setting
value at each masked entry to the corre-
sponding entry ivalues Set the mask to
None.

th@ut_masked(values)
assert getmask(x) is None

raw_data ()

A reference to the non-filled data; portion
may be meaningless. Expert use only.

5 d = x.raw_data ()

savespace (V)

Set the spacesaver attribute to v.

x.savespace (1)

set_fill_value ()

Set the fill value to v. Omit v to restore
default.

x.set_fill_value (1.e21)

set_shape (args...)

shape (n, m, ...) sets the shape.

x.set_shape (3, 12)

size (axis) Number of elements in array, or in a partictotalsize = x.size ()
ular axis. col_len = x.size (1)
spacesaver() Query the spacesave flag. flag = x.spacesaver()

unshare_mask()

If shared_mask is currently true, replac
the reference to it with a copy.

ex.unshare_mask()

typecode ()

Return the type of the data. See module
cision.

Pie= x.typecode()

Constructing masked arrays

sAelly payse e

1. array (data, typecode = None, copy = 1, savespace = 0, mask = None, fill_value = None) creates a masked
array with the giveiataandmask The namearray is simply an alias for the class narw . This con-
structor sets the data area of the resulting masked arfélgdo(data, value = fill_value, copy = copy,

105

savespace = savespace), the maskake mask(mask, savespace), and the fill value is set to fill_value.
The class namBIA may also be used instead of the namay.

2. masked_array (data, mask = None, fill_value = None) is an easier to use versianmray, for the com-
mon case of typecode = None, copy = 0. Wiletais newly-created this function can be used to make it a
masked array without copying the datalétais already a Numeric array.

3. masked_valueqdata, valug rtol=1.e-5, atol=1.e-8, typecode = None, copy = 1, savespace = 0) constructs
a masked array whose mask is set at those places where
abs (lata- valug < atol + rtol * abs data).
That is a careful way of saying that those elements afatethat have value walue(to within a toler-
ance) are to be treated as invalid.

4. masked_object(data, value, copy=1, savespace=0) creates a masked array with those entries marked
invalid that are equal tealue Again,copyandsavespacare passed on to the Numeric array constructor.

On entry to any of these constructatatamust be any object which the Numeric package can accept to create
an array (with the desired typecode, if specified). The mask if given must be None or any object that can be
turned into a Numeric array of integer type (it will be converted to typecode MaskType, if necessary), have the
same shape akata, and contain only values of 0 or 1.

If the mask is not None but its shape does not match that of the data, the mask used will be

Numeric.resize (mask, data.shape)

It is important to understand whiagsize does; in particular, it never fails, but either truncates or replicates in
an effort to fill up the desired shape. If you use the constructors array and masked_array, and you supply a mask
argument, be sure it is the shape you desire.

See Figure, “ Copying or not?,” on page 107for a discussion of whether or not the resulting array shares its data
or its mask with the arguments given to these constructors.

The filled function

Be sure to read this: filledis very important. It converts its argument to a plain Nu-
meric array.

filled (x, value = None, copy=Qkturns x with any invalid locations replaced by a fill vafilled is guaranteed
to return a plain Numeric array. The argumedobes not have to be a masked array or even an array, just some-
thing that Numeric can turn into one.

« If xis not a masked array, and not a Numeric array, Numeric.array (x) is returned.
« If xisa Numeric array, and copy is zero, then X is returned. If copy is nonzero, a copy of the array is returned.

» If xis a masked array, but the mask is None, then its data array or a copy of it is returned depending on the
value of copy.

« If x is a masked array with an actual mask, then an array formed by replacing the invalid entviglsigvith
or fill_value (x) if valueis None, is returned. If the fill value used is of a different type or precisiorxthan
the result may be of a different type or precision tkan

The functionfilled plays a central role in our design. It is the “exit” back to Numeric, and is used whenever the
invalid values must be replaced before an operation. For example, adding two masked arrays a and b is roughly:

masked_array(filled(a, 0)+filled(b, 0), mask_or(getmask(a), getmask(b))

106

That is, fill the invalid entries a and b with zeros, add them up, and declare any entry of the result invalid if ei- ®
ther a or b was invalid at that spot. The functigesnaskandmask_or are discussed later.

Q
wn
73
filled (x) also can be used to simply be certain that some expression is a Numerical array at little cost. If its arg
gument is a Numeric array already, it is returned without copying. >

2

w

fill_value (X), and the methodfdl_value () of the same name on masked arrays, returns a value suitable for fill-
ing x based on its type. If x is a masked array, then x.fill_value () results. The returned value for a given type
can be changed by assigning to these names in module MA: They should be set to scalars or one element arrays.

default_real_fill_value = Numeric.array([1.0e20], Float32)
default_complex_fill_value = Numeric.array([1.0e20 + 0.0j], Complex32)
default_character_fill_value = masked

default_integer_fill_value = Numeric.array([0]).astype(Unsignedint8)
default_object_fill_value = masked

The variablenaskedis a module variable of MA and is discussed in “Working with Masks” on pag €107. Call-
ing filled with a fill_value ofmaskedsometimes produces a useful printed representation of a masked array.
The functionfill_value works on any kind of object.

Working with Masks
Each of the following is defined in module MA:

is_mask(m) is true ifmis of a type and precision that would be allowed as the mask field of a masked array
(that is, it is an array of integers with Numeric’s typecode MaskType, or it is None). To be a legahmask,
should contain only zeros or ones, but this is not checked.

make_mask(m, copy=0, flag=0) returns an object whose entries are equaatw for whichis_maskwould
return true. linis already a mask or None, it retunmor a copy of it. Otherwise it will attempt to make a mask,
so it will accept any sequence of integers ofnfoitf flag is true,make_maskreturns None if its return value
otherwise would contain no true elements. To make a legal masiguld contain only zeros or ones, but this
is not checked.

getmask(X) return x.mask(), the mask ox, if X is a masked array, and None otherwise. Note that getmask may
return None if x is a masked array but has a mask of None.

getmaskarray (x) returnsx.mask() if X is a masked array and has a mask that is not None; otherwise it returns
a zero mask array of the same shape bilike getmask, getmaskarray always returns an Numeric array of
typecode MaskType.

mask_or (m1, m2) returns an object which when used as a mask behaves like the element-wise “logical or” of
mlandm2 wheremlandmz2are either masks or None (e.g., they are the results of cgdlingask. A None

is treated as everywhere false. If bothandm2are None, it returns None. If just one of them is None, it re-
turns the other. Inlandm2refer to the same object, a reference to that object is returned.

maskedis a module constant equal to an instance of a class that prints as the word ‘masked’ and which will
throw an exception of type MAError if any attempt is made to do arithmetic upon it. This constant is returned
when an indexing operation results in a scalar result at a masked location.

set_fill_value (a, fill_value) is the same as a.set_fill_value (fill_value) if a is a masked array; otherwise it does
nothing.
Copying or not?

Depending on the arguments results of constructors may or may not contain a separate copy of the data or mask
arguments. The easiest way to think about this is as follows: the given field, be it data or a mask, is required to
be a Numerical array, possibly with a given typecode, and a mask’s shape must match that of the data. If the

107

copy argument is zero, and the candidate array otherwise qualifies, a reference will be made instead of a copy.
If for any reason the data is unsuitable as is, an attempt will be made to make a copy that is suitable. Should that
fail, an exception will be thrown. Thus, a copy=0 argument is more of a hope than a command.

Since the default behavior for masks is to use a reference if possible, rather than a copy, which psashices a
able time and space savings, it is especially important not to modify something you used as a mask argument to
a masked array creation routine, if it was a Numeric array of typecode MaskType.

Behaviors

A masked array defines the conversion operators str (x), repr (x), float (x), and int (x) by applying the corre-
sponding operator to the Numeric arfdied (x)

Indexing and Slicing

Indexing and slicing differ from Numeric: while generally the same, they return a copy, not a reference, when
used in an expression that produces a non-scalar result. Consider this example:

from Numeric import *
x = array([1.,2.,3.])

y = Xx[1]

y[0] = 9.

print x

This will print [1., 9., 3.] since x[1:] returns a reference to a portion of x. Doing the same operation using MA,

from MA import *
x = array([1.,2.,3.])
y = Xx[1]

y[0] = 9.

print x

will print [1., 2., 3.], while y will be a separate array whose present value would be [9., 3.]. While sentiment on
the correct semantics here is divided amongst the Numeric community as a whole, it is not divided amongst the
author’'s community, on whose behalf this package is written.

Indexing that produces a scalar result

If indexing into a masked array with one or more indices produces a scalar result, then a scalar value is returned
rather than a one-element masked array. This raises the issue of what to return if that location is masked. The
answer is that the module constamasked discussed above, is returned.

Assignment to elements and slices

Assignment of a normal value to a single element or slice of a masked array has the effect of clearing the mask
in those locations. In this way previously invalid elements become valid. The value being assigned is filled first,
so that you are guaranteed that all the elements on the left-hand side are now valid.

Assignment of None to a single element or slice of a masked array has the effect of setting the mask in those
locations, and the locations become invalid.

Since these operations change the mask, the result afterwards will no longer share a mask, since masks have
copy-on-write semantics.

Module MA: Attributes

MA includes many constants from Numeric, includ@gi, NewAxis, and the constants from module Precision
that define nice names for the typecodes. The special vamabledis the sole instance of a clddasked-
Value. The moduleNumeric is available for reference.

108

Module MA: Functions

YSEW e

Each of the operations discussed below returns an instan@ssMA , having performed the desired opera-
tion element-wise. In most cases the array arguments can be masked arrays or Numeric arrays or somethg
that Numeric can turn into a Numeric array, such as a list of real numbers.

1y

Q
Where Numeric has a function of the same name, the behavior of the one in MA is the same, except that it “r&-
spects” the mask.
Unary functions

The result of a unary operation will be masked wherever the original operand was masked. It may also be
masked if the argument is not in the domain of the function. Functions available are:

sgrt, log, log10, exp, conjugate, sin, cos tan, arcsin, arccos arctan, sinh, cosh tanh, absolute fabs, nega-
tive (also as operator -xjonzerg, around, floor.

fabs (x) is the absolute value of x as a Float32 array. The other functions have their standard meaning.

Binary functions

Binary functions return a result that is masked wherever either of the operands were masked; it may also be
masked where the arguments are not in the domain of the function.

add (also as operator +§ubtract (also as operator -jultiply (also as operator *Jivide (also as operator /
), power (also as operator **yemainde , fmod, hypot, arctan2, bitwise_and, bitwise_o , bitwise_xor.

Comparison operators

Due to limitations in Python, it is not meaningful to compare arrays using the sym-
bolic comparison operators such as “<". Unfortunately, you can do it; the result just
won’t mean anything.

To compare arrays, use the following binary functions. Each of them returns a masked array of 1'sand 0’s.
equal, not_equal less_equalgreater_equal less greater
Note that as in Numeric, you can use a scalar for one argument and an array for the other.

Logical operators

Arrays of logical values can be manipulated with:
logical_not (unary),logical_or, logical_and, logical_xor.
alltrue (x) returns 1 if all elements of x are true. Masked elements are treated as true.

sometrue(x) returns 1 if any element of x is true. Masked elements are treated as false.

Special array operators

isarray (x), iSMA (x) return true if x is a masked array.
rank (x) is the number of dimensions in x.

shape(x) returns the shape of x, a tuple of array extents.

109

resize(x, new_shape) returns a new array with specified shape.

reshape(x, new_shape) returns a copy of x with the given new shape.

ravel (x) returns x as one-dimensional.

concatenate(arrays, axis=0) concatenates the arrays along the specified axis.
identity (n) returns the identity matrix of shape n by n.

indices (dimensions, typecode = None) returns an array representing a grid of indices with row-only and col-
umn-only variation.

len (x) is defined to be x.size (). This differs from standard Numeric, where len (x) is not helpful.

size(x, axis = None) is the total size of x, or the length of a particular dimension axis whose index is given.
When axis is given the dimension of the result is one less than the dimension of x.

count (x, axis = None) counts the number of (hon-masked) elements in the array, or in the array along a certain
axis.When axis is given the dimension of the result is one less than the dimension of x.

arange, arrayrange, ones andzerosare the same as in Numeric, but return masked arrays.

sum, product, andaverageare called the same way as count; the difference is that the result is the sum, prod-
uct, or average respectively of the unmasked elements.

allclose(x, vy, fill_value = 1, rtol = 1.e-5, atol = 1.e-8) tests whether or not arrays x and y are equal subject to
the given relative and absolute tolerances. If fill_value is 1, masked values are considered equal, otherwise they
are considered different. The formula used for elements where both x and y have a valid value is:

| x-y|<atol +rtol * |y |

This means essentially that both elements are small compared to atol or their difference divided by their value
is small compared to rtol.

allequal (x, y, fill_value = 1) is similar to allclose, except that exact equality is demanded.
take (a, indices, axis=0) returns a selection of items from a. See the documentation in the Numeric manual.

put (a, indices, values) is the oppositetaike . The values of the arrayat the locations specified indi-

ces are set to the corresponding valugalfies . The arraya must be a contiguous array. The argument in-
dices can be any integer sequence object with values suitable for indexing into the flaa farheairgument

v must be any sequence of values that can be converted to the typeaode of

>>> x = arange(6)

>>> put(x, [2,4], [20,40])
>>> print X

[0 120 340 5]

Note that the target arrayis not required to be one-dimensional. Since it is contiguous and stored in row-major
order, the arrayndices can be treated as indexiags elements in storage order.

The wrinkle on this for masked arrays is that if the locations being set by put are masked, the mask is cleared in
those locations.

choose(condition, t) has a result shaped like condition. t must be a tuple of two arrays t1 and t2. Each element
of the result is the corresponding element of t1 where condition is true, and the corresponding element of t2
where condition is false. The result is masked where condition is masked or where the seleetdd elem
masked.

110

where (condition, X, y) returns an array that is filled (x) where condition is true, filled (y) where the condition *
is false, and masked where any of the three arguments is masked. This is not really right, needs work. §
wn
73
[¢°)

innerproduct (a, b) andlot (a, b) work as in Numeric, but missing values don’t contribute. The result is always &
a masked array, possibly of length one, because of the possibility that one or more entries in it may be invalig
since all the data contributing to that entry was invalid.

shkel

compress(condition, x, dimension=-1) compresses out only thvadid values where condition is true.

maximum (x, y = None) andninimum (x, y = None) compute the minimum and maximum valid values of x
if y is None; with two arguments, they return the element-wise larger or smaller of valid values, and mask the
result where either x or y is masked.

sort (x, axis=-1, value = None) returns the arxaported along the given axis, with masked values treated as if
they have a sort value whluebut they are masked in the result.

argsort (x, axis = -1, fill_value = None) is unusual in that it returns a Numeric array, equal to
Numeric.argsort (filled (x, fill_value), axis); this is an array of indices for sorting along a given axis.
Controlling the size of the string representations

The functiongget_print_limit () andset_print_limit (n=0) query and set the limit for converting arrays using
str() or repr (). If an array is printed that is larger than this, the values are not printed; rather you are informed
of the type and size of the array. If n is zero, the standard Numeric conversion functions are used.

When imported, MA sets this limit to 300.

Helper classes

This section discusses some classes defined in Module MA that may be of independent interest.

Class masked_unary_function

Given a unary array function f (xnasked_unary_function(f, fill = 0, domain = None) is a function which
when applied to an argument x returns f applied to the array filled (x, fill), with a mask equal to
mask_or (getmask (x), domain (x)).

The argument domain therefore should be a callable object that returns true where x is not in the domain of f.
The following domains are also supplied as members of module MA:

» domain_check_interval (a, b) (X) = true where x <aory > h.

« domain_tan (eps) (x) is true where abs (cos (X)) < eps, that is, a domain suitable for the tangent function.

« domain_greater (v) (x) is true where x <=v.

« domain_greater_equal (v) (X) is true where x < v.

Class masked_binary_function

Given a binary array function f (x, y), masked_binary_function (f, fillx=0, filly=0, domain=None) defines a
function whose value at x is f (filled (x, fillx), filled (y, filly)) with a resulting mask of mask_or (getmask (x),
getmask (y), mask_or’d again with those locations where domain (x, y) is true. The values fillx and filly must
be chosen so that (fillx, filly) is in the domain of f.

In addition, an instance ofiasked_binary_functionhas two methods defined upon it:
» reduce (target, axis = 0)

e accumulate(target, axis = 0)

111

These methods perform reduction and accumulation as discussed in the section “Ufuncs have special methods”
onpage40.

The following domains are available for use as the domain argument:

» domain_safe_divide () (x, y) is true where absolute(x)*1.e-35 > absolute (y). As the comments in the code
say, “better ideas welcome”. This domain is used for the divide operator.

Examples

Data with a given value representing missing data

Suppose we have read a one-dimensional list of elements naivedalso know that if any of the values are
1.e20, they represent missing data. We want to compute the average value of the data and an estimate of its vari-
ance.

>>> from MA import *

>>> X = arange(5)

>>> x[2] = 1.e20

>>>y = masked_values (x, 1.e20)

>>> print average(y)

2.0

>>> print y-average(y)

[-2.00000000e+00, -1.00000000e+00, 1.00000002e+20, 1.00000000e+00,
2.00000000e+00,]

Filling in the missing data
Suppose now that we wish to print that same data, but with the missing values replaced by the average value.

>>> print filled (y, average(y))

Numerical operations

We can do numerical operations without worrying about missing values, dividing by zero, square roots of neg-
ative numbers, etc.

>>> from MA import *

>>> x=array([1., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,0])

>>> y=array([1., 2., 0., 4., 5., 6.], mask=[0,0,0,0,0,1])

>>> print sqrt(x/y)

[1.00000000e+00, 1.00000002e+20, 1.00000002e+20, 1.00000000e+00,
1.00000002e+20, 1.00000002e+20,]

Note that four values in the result are invalid: one from a negative square root, one from a divide by zero, and
two more where the two arrays x and y had invalid data. Since the result was of a real type, the print command
printed str (filled (sqrt (x/y))), filling with the default value for that t ype, which is 1.0e+20 as a 32 bit float.

Seeing the mask

There are two ways to see the mask along with the data. One is to print is directly, the other is to convert to the
repr representation.

>>> 7z = sqrt(x/y)
>>> print getmask(z)
[0,1,1,0,1,1]
>>> print repr(z)
MA([1.00000000e+00, 1.00000002e+20, 1.00000002e+20, 1.00000000e+00,
1.00000002e+20, 1.00000002e+20,],
[0,1,1,0,1,1],

112

fill_value =[1.00000002e+20,])

Filling it your way
If we want to

>>> print filled(z, -1)
[1.-1.-1., 1.-1.-1.]

113

sAelly payse e

114

Index

Symbols
.. 38
: 36
i 37, 66
_PyArray_multiply_list 80

alltrue() 57
argmax() 52
argsort() 52

array 87

Array Attributes 60
Array Functions 47
Array Methods 58
array() 24
array_repr() 55
array_str() 55
array2string 68
arrayobject.h 71
arrayrange 110
arrayrange() 29
astype 34
Automatic Coercions 32
axes 23

Broadcasting 68
Bugs 16
byteswapped() 58

Casting 32
Character 24
choose 49

class MA 109
clip() 53

Code Organization 62
Coercion 32
Complex 25
Complex0 25
Complex128 25
Complex16 25
Complex32 25
Complex64 25
Complex8 25
compress() 50
concatenate() 54
Contiguous arrays 73
Convenience 21
convolve 56
correlation 56
cross_correlate 56
cumproduct() 57
cumsum() 57

CVS 16

determinant() 95
diagonal() 50, 55
dimensions 23

Discussion list 16

116

Distutils 71
Dubois, Paul F. 103

eigenvalues() 94

eigenvectors() 95
element-wise 23

Ellipses 67

FFT 91

fft() 91

flat (attribute) 60

Float 25

Float0 25

Float128 25

Floatl6 25

Float32 25

Float64 25

Float8 25

floating point exceptions 70
Fortran and Python 17
fromfunction() 30
fromstring() 52, 56
FTP Site 17

gather

see put() 48
generalized_inverse() 95
get_seed() 96
Getting array values 35
greece 18

header files 71
homogeneous 23

identity() 31, 57

IDLE 19

imaginary (attribute) 60
import_array() 71
Indexing 66

indices() 53
innerproduct() 55
Installing NumPy 15

Int 24

Int0 24

Int128 25

Int16 24

Int32 24

Int64 24

Int8 24

inverse() 94
inverse_fft() 91
inverse_real_fft() 92
iscontiguous() 58
itemsize() 58

linear_least _squares() 95
Logical Ufuncs 42

MA
arange 110
array (constructor) 105
arrayrange 110
conversion to Numeric array 106
default_character_fill_value 107
default_complex_fill_value 107
default_integer_fill_value 107
default object_fil value 107
default_real_fill_value 107
differences from Numeric 110
fill_value 107
filled 106
functions and operators 108
getmask 107
getmaskarray 107
installing 103
invalid, defined 103
is_mask 107
isarray 109
iISMA 109
len 110
make_mask 107
mask method 107
mask_object (constructor) 106
mask_or 107
mask_values 103
masked (module constant) 107
masked, defined 103

masked_array 106
masked_array (constructor) 106
masked_unary_function 111
MaskedValue 108
ones 110
set_fill_value 107
zeros 110
MA (masked arrays) 20
mailing list 16
masked 108
masks 107
Matrix 87
matrixmultiply() 53
missing values 20
multiarray 20, 23, 65, 87

NaNs 70
NewAXxis 46, 67
nonzero() 50
Numeric

differences from 110
Numeric.py 20
NumTut 18

ones() 28

Patches 16

permutation() 96

Pickling 70

product() 57

Pseudo Indices 45

put() 48

PyArray As1D 81

PyArray As2D 81

PyArray CanCastSafely 80
PyArray Cast 80

PyArray Check 79

PyArray ContiguousFromObject 81
PyArray Copy 81

PyArray CopyFromObject 81
PyArray DescrFromType 80
PyArray Free 81

PyArray FromDims 80

PyArray FromDimsAndData 80

PyArray FromObject 81
PyArray INCREF 79

PyArray ObjectType 80
PyArray Reshape 81

PyArray Return 81

PyArray _SetNumericOps 79
PyArray_SetStringFunction 80
PyArray_Size 80

PyArray Take 81

PyArray XDECREF 80
PyArrayError 80
PyArrayObject 72, 78

Pyfort 17

PyObject 25

PyUFunc_Check 84
PyUFunc_FromFuncAndData 84
PyUFunc_GenericFunction 85

randint() 96
random() 96
RandomArray 96
rank 23, 87

ravel 50

real (attribute) 60
real_fft() 91
repeat() 49, 55
reshape 26
resize 28
resize() 55

seed() 96

Setting array values 35
shape 87
singular_value_decomposition() 95
Slicing Arrays 36
solve_linear_equations() 94
sometrue() 57

sort() 51

SoureForge 16

sum() 57

swapaxes() 54

take() 47
Textual representations 68

117

118

thread 19

Tk 19

tolist() 59

tostring() 58

trace() 51
transpose() 49
typecode 24, 33, 87
typecode() 58
Typecodes 65

ufunc 20, 87

Ufunc shorthands 43
UfuncObject 82

ufuncobject.h 71

Ufuncs 39

Unary Mathematical Ufuncs 42

uniform() 96
universal function 87
universal functions 20
Unix 16

Unpickling 70
UnsignedInt8 24
UserArray 87

view 18

where() 50, 56

Zero-dimensional arrays 73
zeros() 28

	Numerical Python
	Part I: Numerical Python
	1. Introduction
	Where to get information and code
	Acknowledgments

	2. Installing NumPy
	Testing the Python installation
	Testing the Numeric Python Extension Installation
	Installing NumPy
	At the SourceForge...
	The Numeric Discussion List
	Bugs and Patches
	CVS Repository
	FTP Site
	Pyfort

	3. The NumTut package
	Testing the NumTut package
	Possible reasons for failure:
	Win32
	Unix

	4. High-Level Overview
	Array Objects
	Universal Functions
	Convenience Functions

	5. Array Basics
	Basics
	Creating arrays from scratch
	array() and typecodes
	Multidimensional Arrays

	Creating arrays with values specified `on-the-fly'
	zeros() and ones()
	arrayrange()
	Creating an array from a function: fromfunction()
	identity()

	Coercion and Casting
	Automatic Coercions and Binary Operations
	Deliberate up-casting: The asarray function
	The typecode value table
	Consequences of silent upcasting
	Saving space
	Deliberate casts (potentially down): the astype method

	Operating on Arrays
	Simple operations

	Getting and Setting array values
	Slicing Arrays

	6. Ufuncs
	What are Ufuncs?
	Ufuncs can operate on any Python sequence
	Ufuncs can take output arguments
	Ufuncs have special methods
	Ufuncs always return new arrays

	Which are the Ufuncs?
	Unary Mathematical Ufuncs (take only one argument)
	Binary Mathematical Ufuncs
	Logical Ufuncs
	Ufunc shorthands

	7. Pseudo Indices
	8. Array Functions
	take(a, indices, axis=0)
	put (a, indices, values)
	transpose(a, axes=None)
	repeat(a, repeats, axis=0)
	choose(a, (b0, ..., bn))
	ravel(a)
	nonzero(a)
	where(condition, x, y)
	compress(condition, a, axis=0)
	diagonal(a, k=0)
	trace(a, k=0)
	searchsorted(a, values)
	sort(a, axis=-1)
	argsort(a, axis=-1)
	argmax(a, axis=-1), argmin(a, axis=-1)
	fromstring(string, typecode)
	dot(m1, m2)
	matrixmultiply(m1, m2)
	clip(m, m_min, m_max)
	indices(shape, typecode=None)
	swapaxes(a, axis1, axis2)
	concatenate((a0, a1, ... , an), axis=0)
	innerproduct(a, b)
	array_repr()
	array_str()
	resize(a, new_shape)
	diagonal(a, offset=0, axis1=-2, axis2=-1)
	repeat (a, counts, axis=0)
	convolve (a, v, mode=0)
	cross_correlate (a, v, mode=0)
	where (condition, x, y)
	identity(n)
	sum(a, index=0)
	cumsum(a, index=0)
	product(a, index=0)
	cumproduct(a, index=0)
	alltrue(a, index=0)
	sometrue(a, index=0)

	9. Array Methods
	itemsize()
	iscontiguous()
	typecode()
	byteswapped()
	tostring()
	tolist()

	10. Array Attributes
	flat
	real and imaginary

	11. Special Topics
	Subclassing
	Code Organization
	Numeric.py and friends
	UserArray.py
	Matrix.py
	Precision.py
	ArrayPrinter.py
	Mlab.py

	The multiarray object
	Typecodes
	Indexing in and out, slicing
	Ellipses
	NewAxis
	Set-indexing and Broadcasting
	Axis specifications
	Textual representations of arrays
	array2string(a, max_line_width = None, precision = None, suppress_small = None, separator=' ', ar...

	Comparisons
	Pickling and Unpickling -- storing arrays on disk
	Dealing with floating point exceptions

	12. Writing a C extension to NumPy
	Introduction
	Preparing an extension module for NumPy arrays
	Accessing NumPy arrays from C
	Types and Internal Structure
	Element data types
	Contiguous arrays
	Zero-dimensional arrays

	A simple example
	Accepting input data from any sequence type
	Creating NumPy arrays
	Returning arrays from C functions
	A less simple example

	13. C API Reference
	ArrayObject C Structure and API
	Structures
	The ArrayObject API
	Notes

	UfuncObject C Structure and API
	C Structure
	UfuncObject C API

	14. Glossary

	Part II: Optional Packages
	License and disclaimer for packages MA and RNG
	15. FFT Reference
	Python Interface
	fft(data, n=None, axis=-1)
	inverse_fft(data, n=None, axis=-1)
	real_fft(data, n=None, axis=-1)
	inverse_real_fft(data, n=None, axis=-1)
	fft2d(data, s=None, axes=(-2,-1))
	real_fft2d(data, s=None, axes=(-2,-1))

	C API
	Compilation Notes

	16. LinearAlgebra Reference
	Python Interface
	solve_linear_equations(a, b)
	inverse(a)
	eigenvalues(a)
	eigenvectors(a)
	singular_value_decomposition(a, full_matrices=0)
	generalized_inverse(a, rcond=1e-10)
	determinant(a)
	linear_least_squares(a, b, rcond=e-10)

	Compilation Notes

	17. RandomArray Reference
	Python Interface
	seed(x=0, y=0)
	get_seed()
	random(shape=ReturnFloat)
	uniform(minimum, maximum, shape=ReturnFloat)
	randint(minimum, maximum, shape=ReturnFloat)
	permutation(n)

	Floating point random arrays
	standard_normal (shape=ReturnFloat)
	normal (mean, variance, shape=ReturnFloat)
	multivariate_normal (mean, covariance) or multivariate_normal (mean, covariance, leadingAxesShape)
	exponential (mean, shape=ReturnFloat)
	beta (a, b, shape=ReturnFloat)
	gamma (a, r, shape=ReturnFloat)
	chi_square (df, shape=ReturnFloat)
	noncentral_chi_square (df, nonc, shape=ReturnFloat)
	F (dfn, dfd, shape=ReturnFloat)
	noncentral_F (dfn, dfd, nconc, shape=ReturnFloat)

	Integer random arrays
	binomial (trials, prob, shape=ReturnInt)
	negative_binomial (trials, prob, shape=ReturnInt)
	poisson (mean, shape=ReturnInt)
	multinomial (trials, probs) or multinomial (trials, probs, leadingAxesShape)

	Examples

	18. Independent Random Streams
	Background
	Usage
	Module RNG
	Module ranf

	Examples

	19. Masked Arrays
	What is a masked array?
	Installing and using MA
	Class MA
	Attributes of masked arrays
	Methods on masked arrays.
	Constructing masked arrays
	The filled function
	Working with Masks
	Copying or not?
	Behaviors
	Indexing and Slicing
	Indexing that produces a scalar result
	Assignment to elements and slices

	Module MA: Attributes
	Module MA: Functions
	Unary functions
	Binary functions
	Special array operators
	Controlling the size of the string representations

	Helper classes
	Class masked_unary_function
	Class masked_binary_function

	Examples
	Data with a given value representing missing data
	Filling in the missing data
	Numerical operations
	Seeing the mask
	Filling it your way

	Index

