
R Data Import/Export
Version 1.2.2 (2001-02-26)

R Development Core Team

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the R Development Core Team.
Copyright c© 2000–2001 R Development Core Team

i

Table of Contents

Acknowledgements . 1

1 Introduction . 2
1.1 Imports . 2
1.2 Export to text files . 3
1.3 XML . 4

2 Spreadsheet-like data . 5
2.1 Variations on read.table . 5
2.2 Fixed-width-format files . 6
2.3 Using scan directly . 6
2.4 Re-shaping data . 7
2.5 Flat contingency tables . 8

3 Importing from other statistical systems 9
3.1 Minitab, SAS, SPSS, Stata . 9
3.2 S-PLUS . 9
3.3 Octave . 9

4 Relational databases . 10
4.1 Why use a database? . 10
4.2 Overview of RDBMSs . 10

4.2.1 sql queries . 11
4.2.2 Data types . 12

4.3 R interface packages . 12
4.3.1 Package RPgSQL . 12
4.3.2 Package RODBC . 14
4.3.3 Package RMySQL . 16
4.3.4 Package RmSQL. 17

5 Binary files . 18
5.1 Package Rstreams . 18
5.2 Binary data formats . 19

6 Connections . 20
6.1 Types of connections . 20
6.2 Output to connections . 21
6.3 Input from connections . 21

6.3.1 Pushback . 22
6.4 Listing and manipulating connections . 22
6.5 Binary connections . 23

ii

7 Network interfaces . 24
7.1 Reading from sockets . 24
7.2 Using download.file . 24
7.3 dcom interface . 24
7.4 corba interface . 24

Appendix A References . 26

Function and variable index 27

Concept index . 29

Acknowledgements 1

Acknowledgements

The relational databases part of this manual is based in part on an earlier manual by
Douglas Bates and Saikat DebRoy. The principal author of this manual was Brian Ripley.

Many volunteers have contributed to the packages used here. The principal authors of
the packages mentioned are

CORBA Duncan Temple Lang
e1071 Friedrich Leisch
foreign Thomas Lumley, Saikat DebRoy and Douglas Bates
hdf5 Marcus Daniels
Java John Chambers and Duncan Temple Lang
netCDF Thomas Lumley
RmSQL Torsten Hothorn
RMySQL David James and Saikat DebRoy
RODBC Michael Lapsley
RSPerl Duncan Temple Lang
RPgSQL Timothy Keitt
RSPython Duncan Temple Lang
Rstreams Brian Ripley and Duncan Murdoch

Brian Ripley is the author of the support for connections.

Chapter 1: Introduction 2

1 Introduction

Reading data into a statistical system for analysis and exporting the results to some
other system for report writing can be frustrating tasks that can take far more time than the
statistical analysis itself, even though most readers will find the latter far more appealing.

This manual describes the import and export facilities available either in R itself or
via packages which are available from cran. Some of the packages described are still
under development (and hence in the Devel area on cran) but they already provide useful
functionality.

Unless otherwise stated, everything described in this manual is available for both
Unix/Linux and Windows versions of R.

In general, statistical systems like R are not particularly well suited to manipulations of
large-scale data. Some other systems are better than R at this, and part of the thrust of
this manual is to suggest that rather than duplicating functionality in R we can make the
other system do the work! (For example Therneau & Grambsch (2000) comment that they
prefer to do data manipulation in SAS and then use survival5 in S for the analysis.) Several
recent packages allow functionality developed in languages such as Java, perl and python
to be directly integrated with R code, making the use of facilities in these languages even
more appropriate. (See the Java, RSPerl and RSPython packages.)

It is also worth remembering that R like S comes from the Unix tradition of small re-
usable tools, and it can be rewarding to use tools such as awk and perl to manipulate data
before import or after export. The case study in Becker, Chambers & Wilks (1988, Chapter
9) is an example of this, where Unix tools were used to check and manipulate the data
before input to S. R itself takes that approach, using perl to manipulate its databases of
help files rather than R itself, and the function read.fwf used a call to a perl script until
it was decided not to require perl at run-time. The traditional Unix tools are now much
more widely available, including on Windows.

1.1 Imports

The easiest form of data to import into R is a simple text file, and this will often be
acceptable for problems of small or medium scale. The primary function to import from
a text file is scan, and this underlies most of the more convenient functions discussed in
Chapter 2 [Spreadsheet-like data], page 5.

However, all statistical consultants are familiar with being presented by a client with
a floppy disc or CD-R of data in some proprietary binary format, for example ‘an Excel
spreadsheet’ or ‘an SPSS file’. Often the simplest thing to do is to use the originating
application to export the data as a text file (and statistical consultants will have copies
of the commonest applications on their computers for that purpose). However, this is not
always possible, and Chapter 3 [Importing from other statistical systems], page 9 discusses
what facilities are available to access such files directly from R.

In a few cases, data have been stored in a binary form for compactness and speed of
access. One application of this that we have seen several times is imaging data, which
is normally stored as a stream of bytes as represented in memory, possibly preceded by a
header. Such data formats are discussed in Chapter 5 [Binary files], page 18 and Section 6.5
[Binary connections], page 23.

Chapter 1: Introduction 3

For much larger databases it is common to handle the data using a database management
system (DBMS). There is once again the option of using the DBMS to extract a plain file,
but for many such DBMSs the extraction operation can be done directly from an R package:
See Chapter 4 [Relational databases], page 10. Importing data via network connections is
discussed in Chapter 7 [Network interfaces], page 24.

1.2 Export to text files

Exporting results from R is usually a less contentious task, but there are still a number
of pitfalls. There will be a target application in mind, and normally a text file will be the
most convenient interchange vehicle. (If a binary file is required, see Chapter 5 [Binary
files], page 18.)

Function cat underlies the functions for exporting data. It takes a file argument, and
the append argument allows a text file to be written via successive calls to cat.

The commonest task is to write a matrix or data frame to file as a rectangular grid
of numbers, possibly with row and column labels. This can be done by the functions
write.table and write. Function write just writes out a matrix or vector in a specified
number of columns (and transposes a matrix). Function write.table is more convenient,
and writes out a data frame (or an object that can be coerced to a data frame) with row
and column labels.

There are a number of issues that need to be considered in writing out a data frame to
a text file.

1. Precision

These functions are based on cat not print, and the precision to which numbers are
printed is governed by the current setting of options(digits). It may be necessary to
increase this to avoid losing precision. For more control, use format on a data frame,
possibly column-by-column.

2. Header line

R prefers the header line to have no entry for the row names, so the file looks like
dist climb time

Greenmantle 2.5 650 16.083
...

Some other systems require a (possibly empty) entry for the row names, which is what
write.table will provide if argument col.names = NA is specified. Excel is one such
system.

3. Separator

A common field separator to use in the file is a comma, as that is unlikely to appear in
any of the fields, in English-speaking countries. Such files are known as CSV (comma
separated values) files. In some locales the comma is used as the decimal point (set
this in write.table by dec = ",") and there CSV files use the semicolon as the field
separator.

Using a semicolon or tab (sep = "\t") are probably the safest options.

Chapter 1: Introduction 4

4. Missing values

By default missing values are output as NA, but this may be changed by argument na.
Note that NaNs are treated as NA by write.table, but not by cat nor write.

5. Quoting strings

By default strings are quoted (including the row and column names). Argument quote
controls quoting of character and factor variables.
Some care is needed if the strings contain embedded quotes. Three useful forms are

> df <- data.frame(a = I("a \" quote"))
> write.table(df)
"a"
"1" "a \" quote"
> write.table(df, qmethod = "double")
"a"
"1" "a "" quote"
> write.table(df, quote = FALSE, sep = ",")
a
1,a " quote

The second is the form of escape commonly used by spreadsheets.

It is possible to use sink to divert the standard R output to a file, and thereby capture
the output of (possibly implicit) print statements. This is not usually the most efficient
route, and the options(width) setting may need to be increased.

1.3 XML

When reading data from text files, it is the responsibility of the user to know and to
specify the conventions used to create that file, e.g. the comment character, whether a
header line is present, the value separator, the representation for missing values (and so
on) described in Section 1.2 [Export to text files], page 3. A markup language which can
be used to describe not only content but also the structure of the content can make a file
self-describing, so that one need not provide these details to the software reading the data.

The eXtensible Markup Language – more commonly know simply as xml – can be
used to provide such structure, not only for standard datasets but also more complex
data structures. xml is becoming extremely popular and is emerging as a standard for
general data markup and exchange. It is being used by different communities to describe
geographical data such as maps, graphical displays, mathematics and so on.

The XML package provides general facilities for reading and writing xml documents
within both R and S-PLUS in the hope that we can easily make use of this technology as it
evolves. Several people are exploring how we can use xml for, amongst other things, repre-
senting datasets to be shared across different applications; storing R and S-PLUS objects so
they can be shared by both systems; representing plots via svg (Scalable Vector Graphics,
a dialect of xml); representing function documentation; generating “live” analyses/reports
that contain text, data and code.

A description of the facilities of the XML package is outside the scope of this document:
see the package’s Web page at http://www.omegahat.org/RSXML for details and examples.

http://www.omegahat.org/RSXML

Chapter 2: Spreadsheet-like data 5

2 Spreadsheet-like data

In Section 1.2 [Export to text files], page 3 we saw a number of variations on the format
of a spreadsheet-like text file, in which the data are presented in a rectangular grid, possibly
with row and column labels. In this section we consider importing such files into R.

2.1 Variations on read.table

The function read.table is the most convenient way to read in a rectangular grid of data.
Because of the many possibilities, there are several other functions that call read.table
but change a group of default arguments.

Some of the issues to consider are:
1. Header line

We recommend that you specify the header argument explicitly, Conventionally the
header line has entries only for the columns and not for the row labels, so is one field
shorter than the remaining lines. (If R sees this, it sets header = TRUE.) If presented
with a file that has a (possibly empty) header field for the row labels, read it in by
something like

read.table("file.dat", header = TRUE, row.names = 1)

Column names can be given explicitly via the col.names; explicit names override the
header line (if present).

2. Separator

Normally looking at the file will determine the field separator to be used, but with
white-space separated files there may be a choice between sep = "" which uses any
white space (spaces, tabs or newlines) as a separator, sep = " " and sep = "\t". Note
that the choice of separator affects the input of quoted strings.

3. Quoting

By default character strings can be quoted by either ‘"’ or ‘’’, and in each case all the
characters up to a matching quote are taken as part of the character string. The set of
valid quoting characters (which might be none) is controlled by the quote argument.
For sep = "\n" the default is changed to quote = "".
If no separator character is specified, quotes can be escaped within quoted strings by
immediately preceding them by ‘\’, C-style.
If a separator character is specified, quotes can be escaped within quoted strings by
doubling them as is conventional in spreadsheets. For example

’One string isn’’t two’,"one more"

can be read by
read.table("testfile", sep = ",")

This does not work with the default separator.
4. Missing values

By default the file is assumed to contain the character string NA to represent missing
values, but this can be changed by the argument na.strings, which is a vector of one
or more character representations of missing values.
Empty fields in numeric columns are also regarded as missing values.

Chapter 2: Spreadsheet-like data 6

5. Unfilled lines

It is quite common for a file exported from a spreadsheet to have all trailing empty
fields (and their separators) omitted. To read such files set fill = TRUE.

6. White space in character fields

If a separator is specified, leading and trailing white space in character fields is regarded
as part of the field. To strip the space, use argument strip.white = TRUE.

7. Blank lines

By default, read.table ignores empty lines. This can be changed by setting
blank.lines.skip = FALSE, which will only be useful in conjunction with fill =
TRUE, perhaps to indicate missing data in a regular layout.

Convenience functions read.csv and read.delim provide arguments to read.table
appropriate for CSV and tab-delimited files exported from spreadsheets in English-speaking
locales. The variations read.csv2 and read.delim2 are appropriate for use in countries
where the comma is used for the decimal point.

If the options to read.table are specified incorrectly, the error message will usually be
of the form

row.lens=
[1] 4 4 5 5 5 4 6 4 4 4 5 4 4 5 5
Error in read.table("file.dat", header = TRUE) :

all rows must have the same length.

This may give enough information to find the problem, but the auxiliary function
count.fields can be useful to investigate further.

2.2 Fixed-width-format files

Sometimes data files have no field delimiters but have fields in pre-specified columns.
This was very common in the days of punched cards, and is still sometimes used to save file
space.

Function read.fwf provides a simple way to read such files, specifying a vector of field
widths. The function reads the file into memory as whole lines, splits the resulting character
strings, writes out a temporary tab-separated file and then calls read.table. This is
adequate for small files, but for anything more complicated we recommend using the facilities
of a language like perl to pre-process the file.

2.3 Using scan directly

Both read.table and read.fwf use scan to read the file, and then process the results
of scan. They are very convenient, but sometimes it is better to use scan directly.

One reason can be to reduce memory usage. Function read.table reads the whole data
file into memory and processes it into a data frame, thereby creating another copy of the
data. If the post-processing is not required (for example if most of the variables are to be
discarded) it may be feasible to use scan but not to use read.table.

Function scan has many arguments, most of which we have already covered under
read.table. The most crucial argument is what, which specifies a list of modes of variables

Chapter 2: Spreadsheet-like data 7

to be read from the file. If the list is named, the names are used for the components of the
returned list. Modes can be numeric, character or complex, and are usually specified by an
example, e.g. 0, "" or 0i. For example

cat("2 3 5 7", "11 13 17 19", file="ex.dat", sep="\n")
scan(file="ex.dat", what=list(x=0, y="", z=0), flush=TRUE)

returns a list with three components and discards the fourth column in the file.
There is a function readLines which will be more convenient if all you want is to read

whole lines into R for further processing.

2.4 Re-shaping data

Sometimes spreadsheet data is in a compact format that gives the covariates for each
subject followed by all the observations on that subject. R’s modelling functions need
observations in a single column. Consider the following sample of data from repeated MRI
brain measurements

Status Age V1 V2 V3 V4
P 23646 45190 50333 55166 56271
CC 26174 35535 38227 37911 41184
CC 27723 25691 25712 26144 26398
CC 27193 30949 29693 29754 30772
CC 24370 50542 51966 54341 54273
CC 28359 58591 58803 59435 61292
CC 25136 45801 45389 47197 47126

There are two covariates and up to four measurements on each subject. The data were
exported from Excel as a file ‘mr.csv’.

We can use stack to help manipulate these data to give a single response.
zz <- read.csv("mr.csv", strip.white = TRUE)
zzz <- cbind(zz[gl(nrow(zz), 1, 4*nrow(zz)), 1:2], stack(zz[, 3:6]))

with result
Status Age values ind

X1 P 23646 45190 V1
X2 CC 26174 35535 V1
X3 CC 27723 25691 V1
X4 CC 27193 30949 V1
X5 CC 24370 50542 V1
X6 CC 28359 58591 V1
X7 CC 25136 45801 V1
X11 P 23646 50333 V2
...

Function unstack goes in the opposite direction, and may be useful for exporting data.
Another way to do this is to use the (experimental) function reshapeLong, by

> reshapeLong(zz, V1:V4)
Status Age reshape.i reshape.j reshape.v

1 P 23646 1 V1 45190
2 P 23646 1 V2 50333

Chapter 2: Spreadsheet-like data 8

3 P 23646 1 V3 55166
4 P 23646 1 V4 56271
5 CC 26174 2 V1 35535
6 CC 26174 2 V2 38227
7 CC 26174 2 V3 37911
8 CC 26174 2 V4 41184
...

2.5 Flat contingency tables

Displaying higher-dimensional contingency tables in array form typically is rather in-
convenient. In categorical data analysis, such information is often represented in the form
of bordered two-dimensional arrays with leading rows and columns specifying the combina-
tion of factor levels corresponding to the cell counts. These rows and columns are typically
“ragged” in the sense that labels are only displayed when they change, with the obvious
convention that rows are read from top to bottom and columns are read from left to right.
In R, such “flat” contingency tables can be created using ftable, which creates objects of
class "ftable" with an appropriate print method.

As a simple example, consider the R standard data set UCBAdmissions which is a 3-
dimensional contingency table resulting from classifying applicants to graduate school at
UC Berkeley for the six largest departments in 1973 classified by admission and sex.

> data(UCBAdmissions)
> ftable(UCBAdmissions)

Dept A B C D E F
Admit Gender
Admitted Male 512 353 120 138 53 22

Female 89 17 202 131 94 24
Rejected Male 313 207 205 279 138 351

Female 19 8 391 244 299 317

The printed representation is clearly more useful than displaying the data as a 3-dimensional
array.

There is also a function read.ftable for reading in flat-like contingency tables from files.
This has additional arguments for dealing with variants on how exactly the information on
row and column variables names and levels is represented. The help page for read.ftable
has some useful examples. The flat tables can be converted to standard contingency tables
in array form using as.table.

Note that flat tables are characterized by their “ragged” display of row (and maybe also
column) labels. If the full grid of levels of the row variables is given, one should instead use
read.table to read in the data, and create the contingency table from this using xtabs.

Chapter 3: Importing from other statistical systems 9

3 Importing from other statistical systems

In this chapter we consider the problem of reading a binary data file written by another
statistical system. This is often best avoided, but may be unavoidable if the originating
system is not available.

3.1 Minitab, SAS, SPSS, Stata

Package foreign on cran provides import facilities for files produced by these four sta-
tistical systems, and for export to Stata.

Stata ‘.dta’ files are a binary file format. Files from versions 5.0 and 6.0 of Stata can
be read and written by functions read.dta and write.dta.

Function read.mtp imports a ‘Minitab Portable Worksheet’. This returns the compo-
nents of the worksheet as an R list.

Function read.xport reads a file in SAS Transport (XPORT) format and return a list
of data frames.

Function read.spss can read files created by the ‘save’ and ‘export’ commands in spss.
It returns a list with one component for each variable in the saved data set.

3.2 S-PLUS

Package Rstreams on cran contains a function readSfile which can read binary objects
produced by S-PLUS 3.x, 4.x or 2000 on Unix or Windows (and can read them on a different
OS). This is able to read many but not all S objects: in particular it can read vectors,
matrices and data frames and lists containing those.

Package Rstreams also contains a function data.restore to read S-PLUS data dumps
(created by data.dump) with the same restrictions. It may be possible to read data dumps
from S-PLUS 5.x and 6.x written with data.dump(oldStyle=T).

3.3 Octave

Octave is a numerical linear algebra system, and function read.octave in package e1071
can read the first vector or matrix from an Octave ASCII data file created using the Octave
command save -ascii.

Chapter 4: Relational databases 10

4 Relational databases

4.1 Why use a database?

There are limitations on the types of data that R handles well. Since all data being
manipulated by R are resident in memory, and several copies of the data can be created
during execution of a function, R is not well suited to extremely large data sets. Data
objects that are more than a few (tens of) megabytes in size can cause R to run out of
memory.

R does not easily support concurrent access to data. That is, if more than one user is
accessing, and perhaps updating, the same data, the changes made by one user will not be
visible to the others.

R does support persistence of data, in that you can save a data object or an entire
worksheet from one session and restore it at the subsequent session, but the format of the
stored data is specific to R and not easily manipulated by other systems.

Database management systems (DBMSs) and, in particular, relational DBMSs
(RDBMSs) are designed to do all of these things well. Their strengths are
1. To provide fast access to selected parts of large databases.
2. Powerful ways to summarize and cross-tabulate columns in databases.
3. Store data in more organized ways than the rectangular grid model of spreadsheets and

R data frames.
4. Concurrent access from multiple clients running on multiple hosts while enforcing se-

curity constraints on access to the data.
5. Ability to act as a server to a wide range of clients.

The sort of statistical applications for which DBMS might be used are to extract a 10%
sample of the data, to cross-tabulate data to produce a multi-dimensional contingency table,
and to extract data group by group from a database for separate analysis.

4.2 Overview of RDBMSs

Traditionally there have been large (and expensive) commercial RDBMSs (Informix;
Oracle; Sysbase; IBM’s DB/2; Microsoft sql Server on Windows) and academic and small-
system databases (such as MySQL, PostgreSQL, Microsoft Access, . . .), the former marked
out by much greater emphasis on data security features. The line is blurring, with the Open
Source PostgreSQL having more and more high-end features, and ‘free’ versions of Informix,
Oracle and Sysbase being made available on Linux.

There are other commonly used data sources, including spreadsheets, non-relational
databases and even text files (possibly compressed). Open Database Connectivity
(odbc) is a standard to use all of these data sources. It originated on Windows (see
http://www.microsoft.com/data/odbc/) but is also implemented on Linux.

All of the packages described later in this chapter provide clients to client/server
databases. The database can reside on the same machine or (more often) remotely.
There is an iso standard (in fact several: sql-92 is iso/IEC 9075, also known as ansi

http://www.informix.com
http://www.oracle.com
http://www.sysbase.com
http://www.microsoft.com/data/odbc/

Chapter 4: Relational databases 11

X3.135-1992) for an interface language called sql (Structured Query Language, sometimes
pronounced ‘sequel’: see Bowman et al. 1996) which these DBMSs support to varying
degrees.

4.2.1 sql queries

The more comprehensive R interfaces generate sql behind the scenes for common oper-
ations, but direct use of sql is needed for complex operations in all. Conventionally sql is
written in upper case, but many users will find it more convenient to use lower case in the
R interface functions.

A relational DBMS stores data as a database of tables (or relations) which are rather
similar to R data frames, in that they are made up of columns or fields of one type (numeric,
character, date, currency, . . .) and rows or records containing the observations for one entity.

sql ‘queries’ are quite general operations on a relational database. The classical query
is a SELECT statement of the type

SELECT State, Murder FROM USArrests WHERE rape > 30 ORDER BY Murder

SELECT t.sch, c.meanses, t.sex, t.achieve
FROM student as t, school as c WHERE t.sch = c.id

SELECT sex, COUNT(*) FROM student GROUP BY sex

SELECT sch, AVG(sestat) FROM student GROUP BY sch LIMIT 10

The first of these selects two columns from the R data frame USArrests that has been
copied across to a database table, subsets on a third column and asks the results be sorted.
The second performs a database join on two tables student and school and returns four
columns. The third and fourth queries do some cross-tabulation and return counts or
averages. (The five aggregation functions are COUNT(*) and SUM, MAX, MIN and AVG,
each applied to a single column.)

SELECT queries use FROM to select the table, WHERE to specify a condition for
inclusion (or more than one condition separated by AND or OR), and ORDER BY to sort
the result. Unlike data frames, rows in RDBMS tables are best thought of as unordered,
and without an ORDER BY statement the ordering is indeterminate. You can sort (in
lexicographical order) on more than one column by separating them by commas. Placing
DESC after an ORDER BY puts the sort in descending order.

SELECT DISTINCT queries will only return one copy of each distinct row in the selected
table.

The GROUP BY clause selects subgroups of the rows according to the criterion. If more
than one column is specified (separated by commas) then multi-way cross-classifications
can be summarized by one of the five aggregation functions. A HAVING clause allows the
select to include or exclude groups depending on the aggregated value.

If the SELECT statement contains an ORDER BY statement that produces a unique
ordering, a LIMIT clause can be added to select (by number) a contiguous block of output
rows. This can be useful to retrieve rows a block at a time. (It may not be reliable unless
the ordering is unique, as the LIMIT clause can be used to optimize the query.)

Chapter 4: Relational databases 12

There are queries to create a table (CREATE TABLE, but usually one copies a data
frame to the database in these interfaces), INSERT or DELETE or UPDATE data. A table
is destroyed by a DROP TABLE ‘query’.

4.2.2 Data types

Data can be stored in a database in various data types. The range of data types is
DBMS-specific, but the sql standard defines many types, including the following that are
widely implemented (often not by the sql name).

float(p) Real number, with optional precision. Often called real or double or double
precision.

integer 32-bit integer. Often called int.

smallint 16-bit integer

character(n)
fixed-length character string. Often called char.

character varying(n)
variable-length character string. Often called varchar.

boolean true or false. Sometimes called bool.

date calendar date

time time of day

timestamp
date and time

There are variants on time and timestamp, with timezone.
The more comprehensive of the R interface packages hide the type conversion issues from

the user.

4.3 R interface packages

There are four packages available on cran to help R communicate with DBMSs. They
provide different levels of abstraction. Some provide means to copy whole data frames to
and from databases. All have functions to select data within the database via sql queries,
and (except RmSQL) to retrieve the result as a whole as a data frame or in pieces (usually
as groups of rows, but RPgSQL can retrieve columns). All except RODBC are (currently)
tied to one DBMS.

4.3.1 Package RPgSQL

Package RPgSQL at http://rpgsql.sourceforge.net/ and on cran provides an in-
terface to PostgreSQL.

PostgreSQL is described by its developers as ‘the most advanced open source database
server’ (Momjian, 2000). It would appear to be buildable for most Unix-alike OSes and
Windows (under Cygwin or U/Win). PostgreSQL has most of the features of the commercial
RDBMSs.

http://rpgsql.sourceforge.net/
http://www.postgresql.org

Chapter 4: Relational databases 13

RPgSQL is the most mature and comprehensive of these RDBMS interfaces.
To make use of RPgSQL, first open a connection to a database using db.connect.

(Currently only one connection can be open at a time.) Once a connection is open an R data
frame can be copied to a PostgreSQL table by db.write.table, whereas db.read.table
copies a PostgreSQL table to an R data frame.

RPgSQL has the interesting concept of a proxy data frame. A data frame proxy is an R
object that inherits from the "data.frame" class, but contains no data. All accesses to the
proxy data frame generate the appropriate sql query and retrieve the resulting data from
the database. A proxy data frame is set up by a call to bind.db.proxy. To remove the
proxy, just remove the object which bind.db.proxy created.

A finer level of control is available via sending sql queries to the PostgreSQL server via
db.execute. This leaves a result in PostgreSQL’s result cache, unless flushed by clear =
TRUE (the default). Once a result is in the cache, db.fetch.result can be used to fetch the
whole result as a data frame. Functions such as db.result.columns and db.result.rows
will report the number of columns and rows in the cached table, and db.read.column
will fetch a single column (as a vector). An individual cell in the result can be read by
db.result.get.value. db.clear.result will clear the result cache.

One disadvantage is that PostgreSQL maps all table and column names to lower case,
so for maximal flexibility, only use lower case in R names. Functions sql.insert and
sql.select provide convenience wrappers for the INSERT and SELECT queries.

We can explore these functions in a simple example. The database ‘testdb’ had al-
ready been set up, and as PostgreSQL was running on a standalone machine no further
authentication was required to connect.

> library(RPgSQL)
> db.connect(dbname="testdb") # add authentication as needed
Connected to database "testdb" on ""
> data(USArrests)
> usarrests <- USArrests
> names(usarrests) <- tolower(names(USArrests))
> db.write.table(USArrests, write.row.names = TRUE)
> db.write.table(usarrests, write.row.names = TRUE)
> rm(USArrests, usarrests)
db.ls lists tables in the database.
> db.ls()
[1] "USArrests" "usarrests"
> db.read.table("USArrests")

Murder Assault UrbanPop Rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5

...
set up a proxy data frame. Remember USArrests has been removed
> bind.db.proxy("USArrests")
USArrests is now a proxy, so all accesses are to the database
> USArrests[, "Rape"]

Rape
1 21.2
2 44.5

Chapter 4: Relational databases 14

...
> rm(USArrests) # remove proxy
> db.execute("SELECT rpgsql_row_names, murder FROM usarrests",

"WHERE rape > 30 ORDER BY murder", clear=FALSE)
> db.fetch.result()

murder
Colorado 7.9
Arizona 8.1
California 9.0
Alaska 10.0
New Mexico 11.4
Michigan 12.1
Nevada 12.2
Florida 15.4
> db.rm("USArrests", "usarrests") # use ask=FALSE to skip confirmation
Destroy table USArrests? y
Destroy table usarrests? y
> db.ls()
character(0)
> db.disconnect()

Notice how the row names are mapped if write.row.names = TRUE to a field rpgsql_row_
names in the database table and transparently restored provided we preserve that field in
the query.

RPgSQL provides means to extend its mapping between R classes within a data frame
and PostgreSQL types.

4.3.2 Package RODBC

Package RODBC on cran provides an interface to database sources supporting an odbc

interface. This is very widely available, and allows the same R code to access different
database systems. RODBC runs on both Linux and Windows, and many database systems
provide support odbc, including most of those on Windows (such as Microsoft Access), and
MySQL, Oracle and PostgreSQL on Unix/Linux.

You will need an odbc Driver Manager such as unixODBC (http://www.unixODBC.org)
or iOBDC (http://www.iODBC.org) on Unix/Linux, and an installed driver for your
database system. The FreeODBC project (http://www.jepstone.net/FreeODBC/) is a
repository of information related to odbc.

Two groups of interface functions are provided. The odbc* group provide a low-level
interface to the basic odbc functions: see the help page (?RODBC) for details. The sql*
group provide an interface between R data frames and sql tables.

Up to 16 simultaneous connections are possible. A connection is opened by a call to
odbcConnect which returns a handle used for subsequent access to the database. A con-
nection is closed by odbcClose. Details of the tables on a connection can be found using
sqlTables.

Function sqlSave copies an R data frame to a table in the database, and sqlFetch
copies a table in the database to an R data frame.

http://www.unixODBC.org
http://www.iODBC.org
http://www.jepstone.net/FreeODBC/

Chapter 4: Relational databases 15

An sql query can be sent to the database by a call to sqlQuery. This returns the result
in an R data frame. (sqlCopy sends a query to the database and saves the result as a
table in the database.) A finer level of control is attained by first calling odbcQuery and
then sqlGetResults to fetch the results. The latter can be used within a loop to retrieve
a limited number of rows at a time. sqlGetResults by default returns a data frame, but
the raw results can also be obtained as a character matrix.

Here is an example using PostgreSQL, for which the odbc driver maps column and data
frame names to lower case. We use a database testdb we created earlier, and had the
DSN (data source name) set up in ‘~/.odbc.ini’ under unixODBC. Exactly the same code
worked using MyODBC to access a MySQL database under Linux or Windows NT (where
MySQL also maps names to lowercase). Under Windows, dsns are set up in the odbc

applet in the Control Panel.
> library(RODBC)
tell it to map names to l/case
> channel <- odbcConnect("testdb", uid="ripley", case="tolower")
load a data frame into the database
> data(USArrests)
> sqlSave(channel, USArrests, rownames="state")
> rm(USArrests)
list the tables in the database
> sqlTables(channel)

TABLE_QUALIFIER TABLE_OWNER TABLE_NAME TABLE_TYPE REMARKS
1 NA NA usarrests TABLE NA
list it
> sqlFetch(channel, "USArrests", rownames = TRUE)

murder assault urbanpop rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5

...
an SQL query, originally on one line
> sqlQuery(channel, "select state, murder from USArrests

where rape > 30 order by murder")
state murder

1 Colorado 7.9
2 Arizona 8.1
3 California 9.0
4 Alaska 10.0
5 New Mexico 11.4
6 Michigan 12.1
7 Nevada 12.2
8 Florida 15.4
remove the table
> sqlDrop(channel, "usarrests")
close the connection
> odbcClose(channel)

As a simple example of using odbc with a Excel spreadsheet, suppose that an dsn for
spreadsheet ‘bdr.xls’ has been set up in the Control Panel. Then we can read from the
spreadsheet by

Chapter 4: Relational databases 16

> library(RODBC)
> channel <- odbcConnect("bdr.xls")
list the spreadsheets
> sqlTables(channel)
TABLE_CAT TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS

1 C:\\bdr NA Sheet1$ SYSTEM TABLE NA
2 C:\\bdr NA Sheet2$ SYSTEM TABLE NA
3 C:\\bdr NA Sheet3$ SYSTEM TABLE NA
4 C:\\bdr NA Sheet1$Print_Area TABLE NA
retrieve the contents of sheet 1
> sh1 <- sqlQuery(channel, "select * from [Sheet1$]")

Notice that the specification of the table is different from the name returned by sqlTables:
this precludes the use of sqlFetch.

4.3.3 Package RMySQL

Package RMySQL in the Devel area on cran provides an interface to the MySQL
database system (see http://www.mysql.com and Dubois, 2000.). This is part of a project
to provide a common api for access from R to relational DBMSs using sql. Currently this
provides lower-level facilities than RPgSQL or RODBC.

MySQL exists on Unix/Linux and Windows: as from version 3.23 (Jan 2001) it is released
under GPL. MySQL is a ‘light and lean’ database. (It preserves the case of names where
the operating file system is case-sensitive, so not on Windows.) Package RMySQL has been
used on both Linux and Windows.

A call to the function MySQL returns a database connection manager object, and then a
call to dbConnect opens a database connection which can subsequently be closed by a call
to the generic function close.

sql queries can be sent by either dbExec or dbExecStatement. dbExec sends the query
and retrieves the results as a list. (It will fail unless the results are from a SELECT-like state-
ment.) dbExecStatement sends the query and returns an object of class "MySQLResultSet"
which can be used to retrieve the results, and subsequently used to close the result.

Function fetch is used to retrieve some or all of the rows in the query result, as a list.
The function hasCompleted indicates if all the rows have been fetched, and getRowCount
returns the number of rows in the result.

There is no simple way to load a data frame into the database, so we have to work harder
using direct sql statements. The following will only work if the database is local: otherwise
the file will need to be uploaded to the MySQL host.

> library(RMySQL)
open a connection to a MySQL database
> con <- dbConnect(MySQL(), dbname = "test")
list the tables in the database
> getTables(con)
load a data frame into the database, deleting any existing copy
> data(USArrests)
write the values to a file
> write.table(USArrests, "/tmp/arrests.dat", sep="\t",

row.names = FALSE, col.names = FALSE)

http://www.mysql.com

Chapter 4: Relational databases 17

delete any existing table
> if(!is.na(match("arrests", getTables(con)[[1]])))

dbExecStatement(con, "drop table arrests")
character string here needs to be on one line
> dbExecStatement(con,

"create table arrests (Murder float, Assault float,
UrbanPop float, Rape float)")

> dbExecStatement(con,
’load data infile "/tmp/arrests.dat" into table arrests’)

> unlink("/tmp/arrests.dat")
Select from the loaded database.
> as.data.frame(dbExec(con,

"select * from arrests where Rape > 30 order by Murder"))
Murder Assault UrbanPop Rape

1 7.9 204 78 38.7
2 8.1 294 80 31.0
3 9.0 276 91 40.6
4 10.0 263 48 44.5
5 11.4 285 70 32.1
6 12.1 255 74 35.1
7 12.2 252 81 46.0
8 15.4 335 80 31.9
> close(con)

4.3.4 Package RmSQL

Package RmSQL on cran provides an interface to the Mini sql database system (also
known as mSQL, http://www.hughes.com.au, Yarger et al., 1999). The package docu-
mentation describes mSQL as

Note that mSQL is NOT GPL licenced but free of charge for universities and
noncommercial organisations.

RmSQL provides the most basic interface of those in this chapter, a wrapper to the C-api

of mSQL with no additional functionality.
A database connection is opened by first selecting a host with msqlConnect and then a

database by msqlSelect. The connection is closed by a call to msqlClose. Then an sql

query is sent by a call to msqlQuery, and the results stored by a call to msqlStoreResult.
When a query is finished with, the result can be freed by msqlFreeResult.

Once the result of a query has been stored, the values can be retrieved row by row
using msqlFetchRow. This fetches the rows in order unless the position is reset by a call to
msqlDataSeek. A call to msqlNumRows gives the total number of rows in the result.

No example is given here as the basic interface makes any example lengthy, but there is
one in the ‘Example’ directory of the package.

Chapter 5: Binary files 18

5 Binary files

5.1 Package Rstreams

Package Rstreams on cran provides a low-level interface to read from and write to
binary files. It has been used to read in data from MRI experiments and Windows sound
files, for example.

Rstreams’ view of the file is as a stream of bytes. A file can be opened by the function
openstream for either reading or writing. The return value is a number (in fact the file
descriptor) that is used to reference the open file until it is closed by closestream.

Once a stream is open for reading, bytes can be transferred from it to an R object by
one of the functions

readint(stream, n, size = 4, signed = TRUE, swapbytes = FALSE)
readfloat(stream, n, size = 8, swapbytes = FALSE)
readcomplex(stream, n, size = 8, swapbytes = FALSE)
readchar(stream, n = 1, len = NA, bufsize = 256)

These return an R object of an appropriate mode and storage mode. (Integers too large
to be represented in storage mode "integer" will be read into a vector of storage mode
"double".) Here n is the number of items to be read, but fewer will be read if there is
insufficient data on the file.

The size of the data components on file need not be the same as that in the machine
running R, and data written on a little-endian machine can be read on a big-endian machine
or vice versa by setting swapbytes = TRUE.

Character data can be read by readchar either as fixed-length blocks of bytes (by
specifying len) or as ascii-zero-delimited strings. It is also possible to read lines of text
separated by one of the standard end-of-line marks (LF, CRLF or CR) by

readlines(stream, n = 1, bufsize = 256, eol)

where by default the eol mark is detected automatically.

A file open for writing can be written to by any of

writeint(stream, data, size = 4, swapbytes = FALSE)
writefloat(stream, data, size = 8, swapbytes = FALSE)
writecomplex(stream, data, size = 8, swapbytes = FALSE)
writechar(stream, data, asciiz = FALSE)

where data is an R vector of an appropriate mode. There is no separator between character
strings on the file unless asciiz = TRUE is specified.

Function copystream can copy a specified number of bytes from one open stream to
another.

Function truncate truncates a stream at its current position, so all data after that point
is lost.

Chapter 5: Binary files 19

5.2 Binary data formats

Packages hdf5 (in the Devel area) and netCDF on cran provide experimental interfaces
to nasa’s HDF5 (Hierarchical Data Format, see http://hdf.ncsa.uiuc.edu/HDF5/)
and to UCAR’s netCDF data files (network Common Data Form, see
http://www.unidata.ucar.edu/packages/netcdf/), respectively.

Both of these are systems to store scientific data in array-oriented way, including descrip-
tions, labels, formats, units, HDF5 also allows groups of arrays, and the R interface
writes maps lists to HDF5 groups, and can write numeric and character vectors and matri-
ces.

The R interface can only read netCDF, not write it (yet).

http://hdf.ncsa.uiuc.edu/HDF5/
http://www.unidata.ucar.edu/packages/netcdf/

Chapter 6: Connections 20

6 Connections

Connections are used in R in the sense of Chambers (1998), a set of functions to replace
the use of file names by a flexible interface to file-like objects. Connections were introduced
to R in version 1.2.0, and the details are still experimental and subject to change. Their
potential is not yet fully realised.

6.1 Types of connections

The most familiar type of connection will be a file, and file connections are created by
function file. File connections can (if the OS will allow it for the particular file) be opened
for reading or writing or appending, in text or binary mode. Currently (and unlike S),
connections can only be opened for one of reading and writing/appending at a time.

Note that by default a connection is not opened when it is created. The rule is that
a function using a connection should open a connection (needed) if the connection is not
already open, and close a connection after use if it opened it. In brief, leave the connection
in the state you found it in. There are generic functions open and close with methods to
explicitly open and close connections.

Unix programmers are used to dealing with special files stdin, stdout and stderr.
These exist as terminal connections in R. They may be normal files, but they might also
refer to input from and output to a GUI console. (Even with the standard Unix R interface,
stdin refers to the lines submitted from readline rather than a file.)

The three terminal connections are always open, and cannot be opened or closed. stdout
and stderr are conventionally used for normal output and error messages respectively. They
may normally go to the same place, but whereas normal output can be re-directed by a call
to sink, error output is always sent to stderr. Note carefully the language used here: the
connections cannot be re-directed, but output can be sent to other connections.

Text connections are another source of input. They allow R character vectors to be read
as if the lines were being read from a text file. A text connection is created and opened by
a call to textConnection, which copies the current contents of the character vector to an
internal buffer at the time of creation.

Text connections can also be used to capture R output to a character vector.
textConnection can be asked to create a new character object or append to an existing
one, in both cases in the user’s workspace. The connection is opened by the call to
textConnection, and at all times the complete lines output to the connection are available
in the R object. Closing the connection writes any remaining output to a final element of
the character vector.

Pipes are a special form of file that connects to another process, and pipe connections are
created by the function pipe (currently implemented on Unix and Rterm only). Opening a
pipe connection for writing (it makes no sense to append to a pipe) runs an OS command,
and connects its standard input to whatever R then writes to that connection. Conversely,
opening a pipe connection for input runs an OS command and makes its standard output
available for R input from that connection.

More types of connections are planned, including reading from and writing to sockets
and URLs.

Chapter 6: Connections 21

6.2 Output to connections

We have described functions cat, write, write.table and sink as writing to a file,
possibly appending to a file if argument append = TRUE, and this is what they did prior to
R version 1.2.0.

The current behaviour is equivalent, but what actually happens is that when the file
argument is a character string, a file connection is opened (for writing or appending) and
closed again at the end of the function call. If we want to repeatedly write to the same file,
it is more efficient to explicitly declare and open the connection, and pass the connection
object to each call to an output function. This also makes it possible to write to pipes,
which was implemented earlier in a limited way via the syntax file = "|cmd" (which can
still be used).

There is a function writeLines to write complete text lines to a connection.
Some simple examples are

zz <- file("ex.data", "w") # open an output file connection
cat("TITLE extra line", "2 3 5 7", "", "11 13 17",

file = zz, sep = "\n")
cat("One more line\n", file = zz)
close(zz)

convert decimal point to comma in output, using a pipe (Unix)
zz <- pipe(paste("sed s/\\./,/ >", "outfile"), "w")
cat(format(round(rnorm(100), 4)), sep = "\n", file = zz)
close(zz)
now look at the output file:
file.show(outfile, delete.file = TRUE)

capture R output: use examples from help(lm)
zz <- textConnection("ex.lm.out", "w")
sink(zz)
example(lm, prompt.echo = "> ")
sink()
close(zz)
now ‘ex.lm.out’ contains the output for futher processing.
Look at it by, e.g.,
cat(ex.lm.out, sep = "\n")

6.3 Input from connections

The basic functions to read from connections are scan and readLines. These take a
character string argument and open a file connection for the duration of the function call,
but explicitly opening a file connection allows a file to be read sequentially in different
formats.

Other functions that call scan can also make use of connections. In particular
read.table can use connections, but as it needs to read the data twice it is inefficient on
a non-seekable connection. (It reads the datafile into an R character vector and operates
on that via a text connection.)

Chapter 6: Connections 22

Some simple examples are
read in file created in last examples
readLines("ex.data")
unlink("ex.data")

read listing of current directory (Unix)
readLines(pipe("ls -1"))

remove trailing commas from an input file.
Suppose we are given a file ‘data’ containing
450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479
Then read this by
scan(pipe("sed -e s/,$// data"), sep=",")

6.3.1 Pushback

C programmers may be familiar with the ungetc function to push back a character onto
a text input stream. R connections have the same idea in a more powerful way, in that an
(essentially) arbitrary number of lines of text can be pushed back onto a connection via a
call to pushBack.

Pushbacks operate as a stack, so a read request first uses each line from the most recently
pushbacked text, then those from earlier pushbacks and finally reads from the connection
itself. Once a pushbacked line is read completely, it is cleared. The number of pending lines
pushed back can be found via a call to pushBackLength.

A simple example will show the idea.
> zz <- textConnection(LETTERS)
> readLines(zz, 2)
[1] "A" "B"
> scan(zz, "", 4)
Read 4 items
[1] "C" "D" "E" "F"
> pushBack(c("aa", "bb"), zz)
> scan(zz, "", 4)
Read 4 items
[1] "aa" "bb" "G" "H"
> close(zz)

Pushback is only available for connections opened for input in text mode.

6.4 Listing and manipulating connections

A summary of all the connections currently opened by the user can be found by
showConnections(), and a summary of all connections, including closed and terminal
connections, by showConnections(all = TRUE)

The generic function seek can be used to read and (on some connections) reset the
current position for reading or writing. Unfortunately it depends on OS facilities which
may be unreliable (e.g. with text files under Windows).

Chapter 6: Connections 23

6.5 Binary connections

R version 1.2.1 adds functions readBin and writeBin to read and write from binary
connections. A connection is opened in binary mode by appending "b" to the mode speci-
fication, that is using mode "rb" for reading, and mode "wb" or "ab" (where appropriate)
for writing. The functions have arguments

readBin(con, what, n = 1, size = NA, endian = .Platform$endian)
writeBin(object, con, size = NA, endian = .Platform$endian)

In each case con is a connection which will be opened if necessary for the duration of
the call, and if a character string is given it is assumed to specify a file name.

It is slightly simpler to describe writing, so we will do that first. object should be an
atomic vector object, that is a vector of mode numeric, integer, logical, character or
complex, without attributes. By default this is written to the file as a stream of bytes
exactly as it is represented in memory.

readBin reads a stream of bytes from the file and interprets them as a vector of mode
given by what. This can be either an object of the appropriate mode (e.g. what=integer())
or a character string describing the mode (one of the five given in the previous paragraph
or "double" or "int"). size specifies the maximum number of vector elements to read
from the connection: if fewer are available a shorter vector will be returned.

The remaining two arguments are used to write or read data for interchange with another
program or another platform. By default binary data is transferred directly from memory
to the connection or vice versa. This will not suffice if the file is to be transferred to a
machine with a different architecture, but between almost all R platforms the only change
needed is that of byte-order. Intel ix86-based machines, Compaq Alpha and Vaxen are
little-endian, whereas Sun Sparc, mc680x0 series, IBM R6000, SGI and most others are
big-endian. (Network byte-order (as used by XDR, eXternal Data Representation) is big-
endian.) To transfer to or from other programs we may need to do more, for example to
read 16-bit integers or write single-precision real numbers. This can be done using the size
argument, which (usually) allows sizes 1, 2, 4, 8 for integers and logicals, and sizes 4, 8 and
perhaps 12 or 16 for reals. Transferring at different sizes can lose precision, and should not
be attempted for vectors containing NA’s.

Character strings are read and written in C format, that is as a string of bytes terminated
by a zero byte. Package Rstreams provides more flexibility, for files.

Chapter 7: Network interfaces 24

7 Network interfaces

Some limited facilities are available to exchange data at a lower level across network
connections.

7.1 Reading from sockets

Base R comes with some facilities to communicate via bsd sockets on systems that
support them (including the common Linux, Unix and Windows ports of R). One potential
problem with using sockets is that these facilities are often blocked for security reasons or
to force the use of Web caches, so these functions may be more useful on an intranet than
externally.

The low-level interface is given by functions make.socket, read.socket, write.socket
and close.socket. The function httpclient builds on these to read (directly) from an
http server.

7.2 Using download.file

There are functions read.table.url and scan.url that appear to work like read.table
and scan but access a Web resource at a specified url. Appearances are deceptive, however,
as these functions (and url.show and source.url) first download the Web resource to a
local file and then apply the standard functions. Various methods can be used to download
the file, including the programs wget and lynx and the direct use of bsd sockets.

7.3 dcom interface

dcom is a Windows protocol for communicating between different programs, possibly
on different machines. Thomas Baier’s StatConnector program available from cran under
Software->Other->Non-standard provides an interface to the proxy DLL which ships with
the Windows version of R and makes an dcom server. This can be used to pass simple
objects (vectors and matrices) to and from R and to submit commands to R.

The program comes with a Visual Basic demonstration, and there is an Excel plug-in by
Erich Neuwirth available in the same area on cran. This interface is in the other direction
to most of those considered here in that it is another application (Excel, or written in Visual
Basic) that is the client and R is the server.

7.4 corba interface

corba (Common Object Request Broker Architecture) is similar to dcom,
allowing applications to call methods, or operations, in server objects running in other
applications, potentially programmed in different languages and running on different
machines. There is a CORBA package available from the Omegahat Project (at
http://www.omegahat.org/RSCORBA/), currently for Unix but a Windows version looks
to be possible.

This package allows R commands to be used to locate available corba servers, query the
methods they provide, and dynamically invoke methods on these objects. R values given

http://www.omegahat.org/RSCORBA/

Chapter 7: Network interfaces 25

as arguments in these calls are exported in the call and made available to that operation
invocation. Primitive data types (vectors and lists) are exported by default, while more
complex objects are exported by reference. Examples of using this include communicating
with the Gnumeric (http://www.gnumeric.org) spreadsheet, and also interacting with the
data visualization system ggobi.

One can also create corba servers within R, allowing other applications to call these
methods. For example, one might offer access to a particular dataset or to some of R’s
modelling software. This is done dynamically by combining R data objects and functions.
This allows one to explicitly export data and functionality from R.

One can also use the CORBA package to achieve distributed, parallel computing in
R. One R session acts as a manager and dispatches tasks to different servers running in
other R worker sessions. This uses the ability to invoke asynchronous or background
CORBA calls in R. More information is available from the Omegahat Project, at
http://www.omegahat.org/RSCORBA/.

http://www.gnumeric.org
http://www.ggobi.org
http://www.omegahat.org/RSCORBA/

Appendix A: References 26

Appendix A References

R. A. Becker, J. M. Chambers and A. R. Wilks (1988) The New S Language. A Programming
Environment for Data Analysis and Graphics. Wadsworth & Brooks/Cole.
J. Bowman, S. Emberson and M. Darnovsky (1996) The Practical sql Handbook. Using
Structured Query Language. Addison-Wesley.
J. M. Chambers (1998) Programming with Data. A Guide to the S Language. Springer-
Verlag.
P. Dubois (2000) MySQL. New Riders.
M. Henning and S. Vinoski (1999) Advanced CORBA Programming with C++ Addison-
Wesley.
B. Momjian (2000) PostgreSQL: Introduction and Concepts. Addison-Wesley. Also down-
loadable at http://www.postgresql.org/docs/awbook.html.
T. M. Therneau and P. M. Grambsch (2000) Modeling Survival Data. Extending the Cox
Model. Springer-Verlag.
E. J. Yarger, G. Reese and T. King (1999) MySQL & mSQL. O’Reilly.

http://www.postgresql.org/docs/awbook.html

Function and variable index 27

Function and variable index

B
bind.db.proxy . 13

C
cat . 3, 21
close . 16, 20
close.socket . 24
closestream . 18
copystream . 18
count.fields . 6

D
data.restore . 9
db.clear.result . 13
db.connect . 13
db.execute . 13
db.fetch.result . 13
db.read.column . 13
db.read.table . 13
db.result.columns . 13
db.result.get.value . 13
db.result.rows . 13
db.write.table . 13
dbConnect . 16
dbExec . 16
dbExecStatement . 16

F
fetch . 16
file . 20
format . 3
ftable . 8

H
hdf5 . 19
httpclient . 24

M
make.socket . 24
msqlClose . 17
msqlConnect . 17
msqlDataSeek . 17
msqlFetchRow . 17
msqlFreeResult . 17
msqlNumRows . 17
msqlQuery . 17
msqlSelect . 17

msqlStoreResult . 17

MySQL . 16

N
netCDF . 19

O
odbcClose . 14

odbcConnect . 14

odbcFetchRows . 14

odbcQuery . 14

open . 20

openstream . 18

P
pipe . 20

pushBack. 22

pushBackLength . 22

R
read.csv . 6

read.csv2. 6

read.delim . 6

read.delim2 . 6

read.dta . 9

read.ftable . 8

read.fwf . 6

read.mtp . 9

read.octave . 9

read.socket . 24

read.spss. 9

read.table . 5, 21

read.table.url . 24

read.xport . 9

readBin . 23

readchar . 18

readcomplex . 18

readfloat . 18

readint . 18

readlines . 18

readLines . 7, 21

readSfile. 9

reshapeLong . 7

Function and variable index 28

S
scan . 2, 6, 21

scan.url . 24

seek . 22

showConnections . 22

sink. 4, 21

sql.insert . 13

sql.select . 13

sqlCopy . 14

sqlFetch . 14

sqlGetResults . 14

sqlQuery . 14

sqlSave . 14

sqlTables . 14

stack . 7

stderr . 20

stdin . 20

stdout . 20

T
textConnection . 20
truncate . 18

U
unstack. 7

W
write . 3, 21
write.dta. 9
write.socket . 24
write.table . 3, 21
writeBin . 23
writechar . 18
writecomplex . 18
writefloat . 18
writeint . 18
writeLines . 21

Concept index 29

Concept index

A
AWK . 2

B
Binary files . 18, 23

C
comma separated values . 3

Connections . 20, 21, 22

CORBA . 24

CSV files . 3, 6

D
DBMS . 10

DCOM . 24

E
Exporting to a text file . 3

F
File connections . 20

Fixed-width-format files . 6

Flat contingency tables . 8

H
Hierarchical Data Format . 19

I
Importing from other statistical systems 9

L
lynx . 24

M
Mini SQL database system 17

Minitab . 9

Missing values . 4, 5

MySQL database system 15, 16

N
network Common Data Form 19

O
Octave . 9
ODBC . 10, 14
Open Database Connectivity 10, 14

P
perl . 2, 6
Pipe connections . 20
PostgreSQL database system 12, 15
proxy data frame . 13
Pushback on a connection . 22

Q
Quoting strings. 4, 5

R
Re-shaping data . 7
Relational databases . 10

S
S-PLUS . 9
SAS . 9
Spreadsheet-like data . 5
SPSS . 9
SQL queries . 11
Stata . 9

T
Terminal connections . 20
Text connections . 20

U
Unix tools . 2

W
wget . 24

X
XML . 4

	Acknowledgements
	Introduction
	Imports
	Export to text files
	XML

	Spreadsheet-like data
	Variations on read.table
	Fixed-width-format files
	Using scan directly
	Re-shaping data
	Flat contingency tables

	Importing from other statistical systems
	Minitab, SAS, SPSS, Stata
	S-PLUS
	Octave

	Relational databases
	Why use a database?
	Overview of RDBMSs
	SQL queries
	Data types

	R interface packages
	Package RPgSQL
	Package RODBC
	Package RMySQL
	Package RmSQL

	Binary files
	Package Rstreams
	Binary data formats

	Connections
	Types of connections
	Output to connections
	Input from connections
	Pushback

	Listing and manipulating connections
	Binary connections

	Network interfaces
	Reading from sockets
	Using download.file
	DCOM interface
	CORBA interface

	References
	Function and variable index
	Concept index

