
The Linux 2.4 Parallel Port Subsystem

Tim Waugh
twaugh@redhat.com

The Linux 2.4 Parallel Port Subsystem
by Tim Waugh

Copyright © 1999-2000 Tim Waugh

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or

any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover

Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Table of Contents
1. Design goals..1

1.1. The problems...1
1.2. The solutions...2

2. Standard transfer modes...4

3. Structure...5

3.1. Sharing core..5
3.2. Parports and their overrides...5
3.3. IEEE 1284 transfer modes..5
3.4. Pardevices and parport_drivers...6
3.5. The IEEE 1284.3 API...6

4. Device driver’s view...9

5. Port drivers...14

6. The printer driver ..15

7. User-level device drivers..19

7.1. Introduction to ppdev..19
7.2. User-level or kernel-level driver?..19
7.3. Programming interface..19

7.3.1. Starting and stopping:open andclose ...20
7.3.2. Control:ioctl ...20
7.3.3. Transferring data:read andwrite ...24
7.3.4. Waiting for events:poll andselect ...24

7.4. Examples...24

A. Linux parallel port driver API reference ...30

parport_device_num...30
parport_device_coords...30
parport_find_device..32
parport_find_class..32
parport_register_driver...33
parport_unregister_driver...34
parport_get_port...35
parport_put_port...36
parport_find_number..36
parport_find_base...37
parport_register_device..38
parport_unregister_device..40
parport_open..40
parport_close..42
parport_claim...42
parport_claim_or_block...43
parport_release...44
parport_yield..44
parport_yield_blocking..45
parport_negotiate..46
parport_write..46

iii

parport_read...47
parport_set_timeout...48

B. The Linux 2.2 Parallel Port Subsystem...50

C. GNU Free Documentation License..51

iv

Chapter 1. Design goals

1.1. The problems

The first parallel port support for Linux came with the line printer driver,lp . The printer driver is a
character special device, and (in Linux 2.0) had support for writing, viawrite , and configuration and
statistics reporting viaioctl .

The printer driver could be used on any computer that had an IBM PC-compatible parallel port. Because
some architectures have parallel ports that aren’t really the same as PC-style ports, other variants of the
printer driver were written in order to support Amiga and Atari parallel ports.

When the Iomega Zip drive was released, and a driver written for it, a problem became apparent. The Zip
drive is a parallel port device that provides a parallel port of its own---it is designed to sit between a
computer and an attached printer, with the printer plugged into the Zip drive, and the Zip drive plugged
into the computer.

The problem was that, although printers and Zip drives were both supported, for any given port only one
could be used at a time. Only one of the two drivers could be present in the kernel at once. This was
because of the fact that both drivers wanted to drive the same hardware---the parallel port. When the
printer driver initialised, it would call thecheck_region function to make sure that the IO region
associated with the parallel port was free, and then it would callrequest_region to allocate it. The Zip
drive used the same mechanism. Whichever driver initialised first would gain exclusive control of the
parallel port.

The only way around this problem at the time was to make sure that both drivers were available as
loadable kernel modules. To use the printer, load the printer driver module; then for the Zip drive, unload
the printer driver module and load the Zip driver module.

The net effect was that printing a document that was stored on a Zip drive was a bit of an ordeal, at least
if the Zip drive and printer shared a parallel port. A better solution was needed.

Zip drives are not the only devices that presented problems for Linux. There are other devices with
pass-through ports, for example parallel port CD-ROM drives. There are also printers that report their
status textually rather than using simple error pins: sending a command to the printer can cause it to
report the number of pages that it has ever printed, or how much free memory it has, or whether it is
running out of toner, and so on. The printer driver didn’t originally offer any facility for reading back this
information (although Carsten Gross added nibble mode readback support for kernel 2.2).

The IEEE has issued a standards document called IEEE 1284, which documents existing practice for
parallel port communications in a variety of modes. Those modes are: “compatibility”, reverse nibble,

1

Chapter 1. Design goals

reverse byte, ECP and EPP. Newer devices often use the more advanced modes of transfer (ECP and
EPP). In Linux 2.0, the printer driver only supported “compatibility mode” (i.e. normal printer protocol)
and reverse nibble mode.

1.2. The solutions

Theparport code in Linux 2.2 was designed to meet these problems of architectural differences in
parallel ports, of port-sharing between devices with pass-through ports, and of lack of support for IEEE
1284 transfer modes.

There are two layers to theparport subsystem, only one of which deals directly with the hardware. The
other layer deals with sharing and IEEE 1284 transfer modes. In this way, parallel support for a particular
architecture comes in the form of a module which registers itself with the generic sharing layer.

The sharing model provided by theparport subsystem is one of exclusive access. A device driver, such
as the printer driver, must ask theparport layer for access to the port, and can only use the port once
access has been granted. When it has finished a “transaction”, it can tell theparport layer that it may
release the port for other device drivers to use.

Devices with pass-through ports all manage to share a parallel port with other devices in generally the
same way. The device has a latch for each of the pins on its pass-through port. The normal state of affairs
is pass-through mode, with the device copying the signal lines between its host port and its pass-through
port. When the device sees a special signal from the host port, it latches the pass-through port so that
devices further downstream don’t get confused by the pass-through device’s conversation with the host
parallel port: the device connected to the pass-through port (and any devices connected in turn to it) are
effectively cut off from the computer. When the pass-through device has completed its transaction with
the computer, it enables the pass-through port again.

This technique relies on certain “special signals” being invisible to devices that aren’t watching for them.

2

Chapter 1. Design goals

This tends to mean only changing the data signals and leaving the control signals alone. IEEE 1284.3
documents a standard protocol for daisy-chaining devices together with parallel ports.

Support for standard transfer modes are provided as operations that can be performed on a port, along
with operations for setting the data lines, or the control lines, or reading the status lines. These operations
appear to the device driver as function pointers; more later.

3

Chapter 2. Standard transfer modes

The “standard” transfer modes in use over the parallel port are “defined” by a document called IEEE
1284. It really just codifies existing practice and documents protocols (and variations on protocols) that
have been in common use for quite some time.

The original definitions of which pin did what were set out by Centronics Data Computer Corporation,
but only the printer-side interface signals were specified.

By the early 1980s, IBM’s host-side implementation had become the most widely used. New printers
emerged that claimed Centronics compatibility, but although compatible with Centronics they differed
from one another in a number of ways.

As a result of this, when IEEE 1284 was published in 1994, all that it could really do was document the
various protocols that are used for printers (there are about six variations on a theme).

In addition to the protocol used to talk to Centronics-compatible printers, IEEE 1284 defined other
protocols that are used for unidirectional peripheral-to-host transfers (reverse nibble and reverse byte)
and for fast bidirectional transfers (ECP and EPP).

4

Chapter 3. Structure

3.1. Sharing core

At the core of theparport subsystem is the sharing mechanism (seedrivers/parport/share.c).
This module,parport , is responsible for keeping track of which ports there are in the system, which
device drivers might be interested in new ports, and whether or not each port is available for use (or if
not, which driver is currently using it).

3.2. Parports and their overrides

The genericparport sharing code doesn’t directly handle the parallel port hardware. That is done
instead by “low-level”parport drivers. The function of a low-levelparport driver is to detect parallel
ports, register them with the sharing code, and provide a list of access functions for each port.

The most basic access functions that must be provided are ones for examining the status lines, for setting
the control lines, and for setting the data lines. There are also access functions for setting the direction of
the data lines; normally they are in the “forward” direction (that is, the computer drives them), but some
ports allow switching to “reverse” mode (driven by the peripheral). There is an access function for
examining the data lines once in reverse mode.

3.3. IEEE 1284 transfer modes

Stacked on top of the sharing mechanism, but still in theparport module, are functions for transferring
data. They are provided for the device drivers to use, and are very much like library routines. Since these

5

Chapter 3. Structure

transfer functions are provided by the genericparport core they must use the “lowest common
denominator” set of access functions: they can set the control lines, examine the status lines, and use the
data lines. With some parallel ports the data lines can only be set and not examined, and with other ports
accessing the data register causes control line activity; with these types of situations, the IEEE 1284
transfer functions make a best effort attempt to do the right thing. In some cases, it is not physically
possible to use particular IEEE 1284 transfer modes.

The low-levelparport drivers also provide IEEE 1284 transfer functions, as names in the access
function list. The low-level driver can just name the generic IEEE 1284 transfer functions for this. Some
parallel ports can do IEEE 1284 transfers in hardware; for those ports, the low-level driver can provide
functions to utilise that feature.

3.4. Pardevices and parport_drivers

When a parallel port device driver (such aslp) initialises it tells the sharing layer about itself using
parport_register_driver . The information is put into a struct parport_driver, which is put into a
linked list. The information in a struct parport_driver really just amounts to some function pointers to
callbacks in the parallel port device driver.

During its initialisation, a low-level port driver tells the sharing layer about all the ports that it has found
(usingparport_register_port), and the sharing layer creates a struct parport for each of them. Each
struct parport contains (among other things) a pointer to a struct parport_operations, which is a list of
function pointers for the various operations that can be performed on a port. You can think of a struct
parport as a parallel port “object”, if “object-orientated” programming is your thing. The parport
structures are chained in a linked list, whose head isportlist (in drivers/parport/share.c).

Once the port has been registered, the low-level port driver announces it. The
parport_announce_port function walks down the list of parallel port device drivers (struct
parport_drivers) calling theattach function of each (which may block).

Similarly, a low-level port driver can undo the effect of registering a port with the
parport_unregister_port function, and device drivers are notified using thedetach callback
(which may not block).

Device drivers can undo the effect of registering themselves with theparport_unregister_driver

function.

3.5. The IEEE 1284.3 API

The ability to daisy-chain devices is very useful, but if every device does it in a different way it could
lead to lots of complications for device driver writers. Fortunately, the IEEE are standardising it in IEEE

6

Chapter 3. Structure

1284.3, which covers daisy-chain devices and port multiplexors.

At the time of writing, IEEE 1284.3 has not been published, but the draft specifies the on-the-wire
protocol for daisy-chaining and multiplexing, and also suggests a programming interface for using it.
That interface (or most of it) has been implemented in theparport code in Linux.

At initialisation of the parallel port “bus”, daisy-chained devices are assigned addresses starting from
zero. There can only be four devices with daisy-chain addresses, plus one device on the end that doesn’t
know about daisy-chaining and thinks it’s connected directly to a computer.

Another way of connecting more parallel port devices is to use a multiplexor. The idea is to have a device
that is connected directly to a parallel port on a computer, but has a number of parallel ports on the other
side for other peripherals to connect to (two or four ports are allowed). The multiplexor switches control
to different ports under software control---it is, in effect, a programmable printer switch.

Combining the ability of daisy-chaining five devices together with the ability to multiplex one parallel
port between four gives the potential to have twenty peripherals connected to the same parallel port!

In addition, of course, a single computer can have multiple parallel ports. So, each parallel port
peripheral in the system can be identified with three numbers, or co-ordinates: the parallel port, the
multiplexed port, and the daisy-chain address.

Each device in the system is numbered at initialisation (byparport_daisy_init). You can convert
between this device number and its co-ordinates withparport_device_num and
parport_device_coords .

#include <parport.h >

int parport_device_num (int parport , int mux, int daisy);

7

Chapter 3. Structure

int parport_device_coords (int devnum, int * parport , int * mux, int * daisy);

Any parallel port peripheral will be connected directly or indirectly to a parallel port on the system, but it
won’t have a daisy-chain address if it does not know about daisy-chaining, and it won’t be connected
through a multiplexor port if there is no multiplexor. The special co-ordinate value-1 is used to indicate
these cases.

Two functions are provided for finding devices based on their IEEE 1284 Device ID:
parport_find_device andparport_find_class .

#include <parport.h >

int parport_find_device (const char * mfg , const char * mdl , int from);

int parport_find_class (parport_device_class cls , int from);

These functions take a device number (in addition to some other things), and return another device
number. They walk through the list of detected devices until they find one that matches the requirements,
and then return that device number (or-1 if there are no more such devices). They start their search at
the device after the one in the list with the number given (atfrom +1, in other words).

8

Chapter 4. Device driver’s view

This section is written from the point of view of the device driver programmer, who might be writing a
driver for a printer or a scanner or else anything that plugs into the parallel port. It explains how to use
theparport interface to find parallel ports, use them, and share them with other device drivers.

We’ll start out with a description of the various functions that can be called, and then look at a
reasonably simple example of their use: the printer driver.

The interactions between the device driver and theparport layer are as follows. First, the device driver
registers its existence withparport , in order to get told about any parallel ports that have been (or will
be) detected. When it gets told about a parallel port, it then tellsparport that it wants to drive a device
on that port. Thereafter it can claim exclusive access to the port in order to talk to its device.

So, the first thing for the device driver to do is tellparport that it wants to know what parallel ports are
on the system. To do this, it uses theparport_register_driver function:

#include <parport.h >

struct parport_driver {
const char *name;
void (*attach) (struct parport *);
void (*detach) (struct parport *);
struct parport_driver *next;

};

int parport_register_driver (struct parport_driver * driver);

In other words, the device driver passes pointers to a couple of functions toparport , andparport calls
attach for each port that’s detected (anddetach for each port that disappears---yes, this can happen).

The next thing that happens is that the device driver tellsparport that it thinks there’s a device on the
port that it can drive. This typically will happen in the driver’sattach function, and is done with
parport_register_device :

#include <parport.h >

struct pardevice * parport_register_device (struct parport * port , const char
* name, int (*pf) (void *), void (*kf) (void *), void (*irq_func) (int, void
*, struct pt_regs *), int flags , void * handle);

9

Chapter 4. Device driver’s view

Theport comes from the parameter supplied to theattach function when it is called, or alternatively
can be found from the list of detected parallel ports directly with the (now deprecated)
parport_enumerate function. A better way of doing this is withparport_find_number or
parport_find_base functions, which find ports by number and by base I/O address respectively.

#include <parport.h >

struct parport * parport_find_number (int number);

#include <parport.h >

struct parport * parport_find_base (unsigned long base);

The next three parameters,pf , kf , andirq_func , are more function pointers. These callback
functions get called under various circumstances, and are always given thehandle as one of their
parameters.

The preemption callback,pf , is called when the driver has claimed access to the port but another device
driver wants access. If the driver is willing to let the port go, it should return zero and the port will be
released on its behalf. There is no need to callparport_release . If pf gets called at a bad time for
letting the port go, it should return non-zero and no action will be taken. It is good manners for the driver
to try to release the port at the earliest opportunity after its preemption callback is called.

The “kick” callback,kf , is called when the port can be claimed for exclusive access; that is,
parport_claim is guaranteed to succeed inside the “kick” callback. If the driver wants to claim the
port it should do so; otherwise, it need not take any action.

The irq_func callback is called, predictably, when a parallel port interrupt is generated. But it is not
the only code that hooks on the interrupt. The sequence is this: the lowlevel driver is the one that has
donerequest_irq ; it then does whatever hardware-specific things it needs to do to the parallel port
hardware (for PC-style ports, there is nothing special to do); it then tells the IEEE 1284 code about the
interrupt, which may involve reacting to an IEEE 1284 event, depending on the current IEEE 1284
phase; and finally theirq_func function is called.

None of the callback functions are allowed to block.

Theflags are for tellingparport any requirements or hints that are useful. The only useful value here
(other than0, which is the usual value) isPARPORT_DEV_EXCL. The point of that flag is to request
exclusive access at all times---once a driver has successfully calledparport_register_device with
that flag, no other device drivers will be able to register devices on that port (until the successful driver
deregisters its device, of course).

10

Chapter 4. Device driver’s view

ThePARPORT_DEV_EXCLflag is for preventing port sharing, and so should only be used when sharing
the port with other device drivers is impossible and would lead to incorrect behaviour. Use it sparingly!

Devices can also be registered by device drivers based on their device numbers (the same device
numbers as in the previous section).

Theparport_open function is similar toparport_register_device , andparport_close is the
equivalent ofparport_unregister_device . The difference is thatparport_open takes a device
number rather than a pointer to a struct parport.

#include <parport.h >

struct pardevice * parport_open (int devnum, const char * name, int (*pf) (void
*), int (*kf) (void *), int (*irqf) (int, void *, struct pt_regs *), int
flags , void * handle);

void parport_close (struct pardevice * dev);

struct pardevice * parport_register_device (struct parport * port , const char
* name, int (*pf) (void *), int (*kf) (void *), int (*irqf) (int, void *,
struct pt_regs *), int flags , void * handle);

void parport_unregister_device (struct pardevice * dev);

The intended use of these functions is during driver initialisation while the driver looks for devices that it
supports, as demonstrated by the following code fragment:

int devnum = -1;
while ((devnum = parport_find_class (PARPORT_CLASS_DIGCAM,

devnum)) != -1) {
struct pardevice *dev = parport_open (devnum, ...);
...

}

Once your device driver has registered its device and been handed a pointer to a struct pardevice, the next
thing you are likely to want to do is communicate with the device you think is there. To do that you’ll
need to claim access to the port.

#include <parport.h >

11

Chapter 4. Device driver’s view

int parport_claim (struct pardevice * dev);

int parport_claim_or_block (struct pardevice * dev);

void parport_release (struct pardevice * dev);

To claim access to the port, useparport_claim or parport_claim_or_block . The first of these will
not block, and so can be used from interrupt context. Ifparport_claim succeeds it will return zero and
the port is available to use. It may fail (returning non-zero) if the port is in use by another driver and that
driver is not willing to relinquish control of the port.

The other function,parport_claim_or_block , will block if necessary to wait for the port to be free.
If it slept, it returns1; if it succeeded without needing to sleep it returns0. If it fails it will return a
negative error code.

When you have finished communicating with the device, you can give up access to the port so that other
drivers can communicate with their devices. Theparport_release function cannot fail, but it should
not be called without the port claimed. Similarly, you should not try to claim the port if you already have
it claimed.

You may find that although there are convenient points for your driver to relinquish the parallel port and
allow other drivers to talk to their devices, it would be preferable to keep hold of the port. The printer
driver only needs the port when there is data to print, for example, but a network driver (such as PLIP)
could be sent a remote packet at any time. With PLIP, it is no huge catastrophe if a network packet is
dropped, since it will likely be sent again, so it is possible for that kind of driver to share the port with
other (pass-through) devices.

Theparport_yield andparport_yield_blocking functions are for marking points in the driver at
which other drivers may claim the port and use their devices. Yielding the port is similar to releasing it
and reclaiming it, but is more efficient because nothing is done if there are no other devices needing the
port. In fact, nothing is done even if there are other devices waiting but the current device is still within
its “timeslice”. The default timeslice is half a second, but it can be adjusted via a/proc entry.

#include <parport.h >

int parport_yield (struct pardevice * dev);

int parport_yield_blocking (struct pardevice * dev);

12

Chapter 4. Device driver’s view

The first of these,parport_yield , will not block but as a result may fail. The return value for
parport_yield is the same as forparport_claim . The blocking version,
parport_yield_blocking , has the same return code asparport_claim_or_block .

Once the port has been claimed, the device driver can use the functions in the struct parport_operations
pointer in the struct parport it has a pointer to. For example:

port->ops->write_data (port, d);

Some of these operations have “shortcuts”. For instance,parport_write_data is equivalent to the
above, but may be a little bit faster (it’s a macro that in some cases can avoid needing to indirect through
port andops).

13

Chapter 5. Port drivers

To recap, then:

• The device driver registers itself withparport .
• A low-level driver finds a parallel port and registers it withparport (these first two things can happen

in either order). This registration creates a struct parport which is linked onto a list of known ports.
• parport calls theattach function of each registered device driver, passing it the pointer to the new

struct parport.
• The device driver gets a handle fromparport , for use withparport_claim /release . This handle

takes the form of a pointer to a struct pardevice, representing a particular device on the parallel port,
and is acquired usingparport_register_device .

• The device driver claims the port usingparport_claim (or function_claim_or_block).
• Then it goes ahead and uses the port. When finished it releases the port.

The purpose of the low-level drivers, then, is to detect parallel ports and provide methods of accessing
them (i.e. implementing the operations in struct parport_operations).

A more complete description of which operation is supposed to do what is available in
Documentation/parport-lowlevel.txt .

14

Chapter 6. The printer driver

The printer driver,lp is a character special device driver and aparport client. As a character special
device driver it registers a struct file_operations usingregister_chrdev , with pointers filled in for
write , ioctl , open andrelease . As a client ofparport , it registers a struct parport_driver using
parport_register_driver , so thatparport knows to calllp_attach when a new parallel port is
discovered (andlp_detach when it goes away).

The parallel port console functionality is also implemented indrivers/char/lp.c , but that won’t be
covered here (it’s quite simple though).

The initialisation of the driver is quite easy to understand (seelp_init). Thelp_table is an array of
structures that contain information about a specific device (the struct pardevice associated with it, for
example). That array is initialised to sensible values first of all.

Next, the printer driver callsregister_chrdev passing it a pointer tolp_fops , which contains
function pointers for the printer driver’s implementation ofopen , write , and so on. This part is the
same as for any character special device driver.

After successfully registering itself as a character special device driver, the printer driver registers itself
as aparport client usingparport_register_driver . It passes a pointer to this structure:

static struct parport_driver lp_driver = {
"lp",
lp_attach,
lp_detach,
NULL

};

The lp_detach function is not very interesting (it does nothing); the interesting bit islp_attach .
What goes on here depends on whether the user supplied any parameters. The possibilities are: no
parameters supplied, in which case the printer driver uses every port that is detected; the user supplied
the parameter “auto”, in which case only ports on which the device ID string indicates a printer is present
are used; or the user supplied a list of parallel port numbers to try, in which case only those are used.

For each port that the printer driver wants to use (seelp_register), it calls
parport_register_device and stores the resulting struct pardevice pointer in thelp_table . If the
user told it to do so, it then resets the printer.

The other interesting piece of the printer driver, from the point of view ofparport , is lp_write . In this
function, the user space process has data that it wants printed, and the printer driver hands it off to the
parport code to deal with.

15

Chapter 6. The printer driver

Theparport functions it uses that we have not seen yet areparport_negotiate ,
parport_set_timeout , andparport_write . These functions are part of the IEEE 1284
implementation.

The way the IEEE 1284 protocol works is that the host tells the peripheral what transfer mode it would
like to use, and the peripheral either accepts that mode or rejects it; if the mode is rejected, the host can
try again with a different mode. This is the negotation phase. Once the peripheral has accepted a
particular transfer mode, data transfer can begin that mode.

The particular transfer mode that the printer driver wants to use is named in IEEE 1284 as
“compatibility” mode, and the function to request a particular mode is calledparport_negotiate .

#include <parport.h >

int parport_negotiate (struct parport * port , int mode);

Themodes parameter is a symbolic constant representing an IEEE 1284 mode; in this instance, it is
IEEE1284_MODE_COMPAT. (Compatibility mode is slightly different to the other modes---rather than
being specifically requested, it is the default until another mode is selected.)

Back tolp_write then. First, access to the parallel port is secured withparport_claim_or_block .
At this point the driver might sleep, waiting for another driver (perhaps a Zip drive driver, for instance) to
let the port go. Next, it goes to compatibility mode usingparport_negotiate .

The main work is done in the write-loop. In particular, the line that hands the data over toparport reads:

written = parport_write (port, kbuf, copy_size);

Theparport_write function writes data to the peripheral using the currently selected transfer mode
(compatibility mode, in this case). It returns the number of bytes successfully written:

#include <parport.h >

ssize_t parport_write (struct parport * port , const void * buf , size_t len);

ssize_t parport_read (struct parport * port , void * buf , size_t len);

(parport_read does what it sounds like, but only works for modes in which reverse transfer is
possible. Of course,parport_write only works in modes in which forward transfer is possible, too.)

16

Chapter 6. The printer driver

Thebuf pointer should be to kernel space memory, and obviously thelen parameter specifies the
amount of data to transfer.

In fact whatparport_write does is call the appropriate block transfer function from the struct
parport_operations:

struct parport_operations {
[...]

/* Block read/write */
size_t (*epp_write_data) (struct parport *port,

const void *buf,
size_t len, int flags);

size_t (*epp_read_data) (struct parport *port,
void *buf, size_t len,
int flags);

size_t (*epp_write_addr) (struct parport *port,
const void *buf,
size_t len, int flags);

size_t (*epp_read_addr) (struct parport *port,
void *buf, size_t len,
int flags);

size_t (*ecp_write_data) (struct parport *port,
const void *buf,
size_t len, int flags);

size_t (*ecp_read_data) (struct parport *port,
void *buf, size_t len,
int flags);

size_t (*ecp_write_addr) (struct parport *port,
const void *buf,
size_t len, int flags);

size_t (*compat_write_data) (struct parport *port,
const void *buf,
size_t len, int flags);

size_t (*nibble_read_data) (struct parport *port,
void *buf, size_t len,
int flags);

size_t (*byte_read_data) (struct parport *port,
void *buf, size_t len,
int flags);

};

The transfer code inparport will tolerate a data transfer stall only for so long, and this timeout can be
specified withparport_set_timeout , which returns the previous timeout:

#include <parport.h >

17

Chapter 6. The printer driver

long parport_set_timeout (struct pardevice * dev , long inactivity);

This timeout is specific to the device, and is restored onparport_claim .

The next function to look at is the one that allows processes to read from/dev/lp0 : lp_read . It’s
short, likelp_write .

The semantics of reading from a line printer device are as follows:

• Switch to reverse nibble mode.

• Try to read data from the peripheral using reverse nibble mode, until either the user-provided buffer is
full or the peripheral indicates that there is no more data.

• If there was data, stop, and return it.

• Otherwise, we tried to read data and there was none. If the user opened the device node with the
O_NONBLOCKflag, return. Otherwise wait until an interrupt occurs on the port (or a timeout elapses).

18

Chapter 7. User-level device drivers

7.1. Introduction to ppdev

The printer is accessible through/dev/lp0 ; in the same way, the parallel port itself is accessible
through/dev/parport0 . The difference is in the level of control that you have over the wires in the
parallel port cable.

With the printer driver, a user-space program (such as the printer spooler) can send bytes in “printer
protocol”. Briefly, this means that for each byte, the eight data lines are set up, then a “strobe” line tells
the printer to look at the data lines, and the printer sets an “acknowledgement” line to say that it got the
byte. The printer driver also allows the user-space program to read bytes in “nibble mode”, which is a
way of transferring data from the peripheral to the computer half a byte at a time (and so it’s quite slow).

In contrast, theppdev driver (accessed via/dev/parport0) allows you to:

• examine status lines,
• set control lines,
• set/examine data lines (and control the direction of the data lines),
• wait for an interrupt (triggered by one of the status lines),
• find out how many new interrupts have occurred,
• set up a response to an interrupt,
• use IEEE 1284 negotiation (for telling peripheral which transfer mode, to use)
• transfer data using a specified IEEE 1284 mode.

7.2. User-level or kernel-level driver?

The decision of whether to choose to write a kernel-level device driver or a user-level device driver
depends on several factors. One of the main ones from a practical point of view is speed: kernel-level
device drivers get to run faster because they are not preemptable, unlike user-level applications.

Another factor is ease of development. It is in general easier to write a user-level driver because (a) one
wrong move does not result in a crashed machine, (b) you have access to user libraries (such as the C
library), and (c) debugging is easier.

7.3. Programming interface

Theppdev interface is largely the same as that of other character special devices, in that it supports
open , close , read , write , andioctl . The constants for theioctl commands are in

19

Chapter 7. User-level device drivers

include/linux/ppdev.h .

7.3.1. Starting and stopping: open and close

The device node/dev/parport0 represents any device that is connected toparport0 , the first parallel
port in the system. Each time the device node is opened, it represents (to the process doing the opening) a
different device. It can be opened more than once, but only one instance can actually be in control of the
parallel port at any time. A process that has opened/dev/parport0 shares the parallel port in the same
way as any other device driver. A user-land driver may be sharing the parallel port with in-kernel device
drivers as well as other user-land drivers.

7.3.2. Control: ioctl

Most of the control is done, naturally enough, via theioctl call. Usingioctl , the user-land driver can
control both theppdev driver in the kernel and the physical parallel port itself. Theioctl call takes as
parameters a file descriptor (the one returned from opening the device node), a command, and optionally
(a pointer to) some data.

PPCLAIM

Claims access to the port. As a user-land device driver writer, you will need to do this before you
are able to actually change the state of the parallel port in any way. Note that some operations only
affect theppdev driver and not the port, such asPPSETMODE; they can be performed while access to
the port is not claimed.

PPEXCL

Instructs the kernel driver to forbid any sharing of the port with other drivers, i.e. it requests
exclusivity. ThePPEXCLcommand is only valid when the port is not already claimed for use, and it
may mean that the nextPPCLAIM ioctl will fail: some other driver may already have registered
itself on that port.

Most device drivers don’t need exclusive access to the port. It’s only provided in case it is really
needed, for example for devices where access to the port is required for extensive periods of time
(many seconds).

Note that thePPEXCL ioctl doesn’t actually claim the port there and then---action is deferred until
thePPCLAIM ioctl is performed.

PPRELEASE

Releases the port. Releasing the port undoes the effect of claiming the port. It allows other device
drivers to talk to their devices (assuming that there are any).

20

Chapter 7. User-level device drivers

PPYIELD

Yields the port to another driver. Thisioctl is a kind of short-hand for releasing the port and
immediately reclaiming it. It gives other drivers a chance to talk to their devices, but afterwards
claims the port back. An example of using this would be in a user-land printer driver: once a few
characters have been written we could give the port to another device driver for a while, but if we
still have characters to send to the printer we would want the port back as soon as possible.

It is important not to claim the parallel port for too long, as other device drivers will have no time to
service their devices. If your device does not allow for parallel port sharing at all, it is better to
claim the parallel port exclusively (seePPEXCL).

PPNEGOT

Performs IEEE 1284 negotiation into a particular mode. Briefly, negotiation is the method by which
the host and the peripheral decide on a protocol to use when transferring data.

An IEEE 1284 compliant device will start out in compatibility mode, and then the host can
negotiate to another mode (such as ECP).

The ioctl parameter should be a pointer to an int; values for this are in
incluce/linux/parport.h and include:

• IEEE1284_MODE_COMPAT

• IEEE1284_MODE_NIBBLE

• IEEE1284_MODE_BYTE

• IEEE1284_MODE_EPP

• IEEE1284_MODE_ECP

ThePPNEGOT ioctl actually does two things: it performs the on-the-wire negotiation, and it sets
the behaviour of subsequentread /write calls so that they use that mode (but seePPSETMODE).

PPSETMODE

Sets which IEEE 1284 protocol to use for theread andwrite calls.

The ioctl parameter should be a pointer to an int.

PPGETMODE

Retrieves the current IEEE 1284 mode to use forread andwrite .

21

Chapter 7. User-level device drivers

PPGETTIME

Retrieves the time-out value. Theread andwrite calls will time out if the peripheral doesn’t
respond quickly enough. ThePPGETTIME ioctl retrieves the length of time that the peripheral is
allowed to have before giving up.

The ioctl parameter should be a pointer to a struct timeval.

PPSETTIME

Sets the time-out. Theioctl parameter should be a pointer to a struct timeval.

PPGETMODES

Retrieves the capabilities of the hardware (i.e. themodes field of the parport structure).

PPSETFLAGS

Sets flags on theppdev device which can affect future I/O operations. Available flags are:
• PP_FASTWRITE

• PP_FASTREAD

• PP_W91284PIC

PPWCONTROL

Sets the control lines. Theioctl parameter is a pointer to an unsigned char, the bitwise OR of the
control line values ininclude/linux/parport.h .

PPRCONTROL

Returns the last value written to the control register, in the form of an unsigned char: each bit
corresponds to a control line (although some are unused). Theioctl parameter should be a pointer
to an unsigned char.

This doesn’t actually touch the hardware; the last value written is remembered in software. This is
because some parallel port hardware does not offer read access to the control register.

The control lines bits are defined ininclude/linux/parport.h :

• PARPORT_CONTROL_STROBE

• PARPORT_CONTROL_AUTOFD

• PARPORT_CONTROL_SELECT

• PARPORT_CONTROL_INIT

PPFCONTROL

Frobs the control lines. Since a common operation is to change one of the control signals while
leaving the others alone, it would be quite inefficient for the user-land driver to have to use
PPRCONTROL, make the change, and then usePPWCONTROL. Of course, each driver could remember

22

Chapter 7. User-level device drivers

what state the control lines are supposed to be in (they are never changed by anything else), but in
order to providePPRCONTROL, ppdev must remember the state of the control lines anyway.

ThePPFCONTROL ioctl is for “frobbing” control lines, and is likePPWCONTROLbut acts on a
restricted set of control lines. Theioctl parameter is a pointer to a struct ppdev_frob_struct:

struct ppdev_frob_struct {
unsigned char mask;
unsigned char val;

};

Themask andval fields are bitwise ORs of control line names (such as inPPWCONTROL). The
operation performed byPPFCONTROLis:

new_ctr = (old_ctr & ~mask) | val;

In other words, the signals named inmask are set to the values inval .

PPRSTATUS

Returns an unsigned char containing bits set for each status line that is set (for instance,
PARPORT_STATUS_BUSY). Theioctl parameter should be a pointer to an unsigned char.

PPDATADIR

Controls the data line drivers. Normally the computer’s parallel port will drive the data lines, but for
byte-wide transfers from the peripheral to the host it is useful to turn off those drivers and let the
peripheral drive the signals. (If the drivers on the computer’s parallel port are left on when this
happens, the port might be damaged.)

This is only needed in conjunction withPPWDATAor PPRDATA.

The ioctl parameter is a pointer to an int. If the int is zero, the drivers are turned on (forward
direction); if non-zero, the drivers are turned off (reverse direction).

PPWDATA

Sets the data lines (if in forward mode). Theioctl parameter is a pointer to an unsigned char.

PPRDATA

Reads the data lines (if in reverse mode). Theioctl parameter is a pointer to an unsigned char.

23

Chapter 7. User-level device drivers

PPCLRIRQ

Clears the interrupt count. Theppdev driver keeps a count of interrupts as they are triggered.
PPCLRIRQstores this count in an int, a pointer to which is passed in as theioctl parameter.

In addition, the interrupt count is reset to zero.

PPWCTLONIRQ

Set a trigger response. Afterwards when an interrupt is triggered, the interrupt handler will set the
control lines as requested. Theioctl parameter is a pointer to an unsigned char, which is
interpreted in the same way as forPPWCONTROL.

The reason for thisioctl is simply speed. Without thisioctl , responding to an interrupt would
start in the interrupt handler, switch context to the user-land driver viapoll or select , and then
switch context back to the kernel in order to handlePPWCONTROL. Doing the whole lot in the
interrupt handler is a lot faster.

7.3.3. Transferring data: read and write

Transferring data usingread andwrite is straightforward. The data is transferring using the current
IEEE 1284 mode (see thePPSETMODE ioctl). For modes which can only transfer data in one direction,
only the appropriate function will work, of course.

7.3.4. Waiting for events: poll and select

Theppdev driver provides user-land device drivers with the ability to wait for interrupts, and this is done
usingpoll (andselect , which is implemented in terms ofpoll).

When a user-land device driver wants to wait for an interrupt, it sleeps withpoll . When the interrupt
arrives,ppdev wakes it up (with a “read” event, although strictly speaking there is nothing to actually
read).

7.4. Examples

Presented here are two demonstrations of how to write a simple printer driver forppdev . Firstly we will
use thewrite function, and after that we will drive the control and data lines directly.

24

Chapter 7. User-level device drivers

The first thing to do is to actually open the device.

int drive_printer (const char *name)
{

int fd;
int mode; /* We’ll need this later. */

fd = open (name, O_RDWR);
if (fd == -1) {

perror ("open");
return 1;

}

Herename should be something along the lines of"/dev/parport0" . (If you don’t have any
/dev/parport files, you can make them withmknod; they are character special device nodes with
major 99.)

In order to do anything with the port we need to claim access to it.

if (ioctl (fd, PPCLAIM)) {
perror ("PPCLAIM");
close (fd);
return 1;

}

Our printer driver will copy its input (fromstdin) to the printer, and it can do that it one of two ways.
The first way is to hand it all off to the kernel driver, with the knowledge that the protocol that the printer
speaks is IEEE 1284’s “compatibility” mode.

/* Switch to compatibility mode. (In fact we don’t need
* to do this, since we start off in compatibility mode
* anyway, but this demonstrates PPNEGOT.)

mode = IEEE1284_MODE_COMPAT;
if (ioctl (fd, PPNEGOT, &mode)) {

perror ("PPNEGOT");
close (fd);
return 1;

}

for (;;) {
char buffer[1000];
char *ptr = buffer;
size_t got;

got = read (0 /* stdin */, buffer, 1000);
if (got < 0) {

perror ("read");
close (fd);
return 1;

25

Chapter 7. User-level device drivers

}

if (got == 0)
/* End of input */
break;

while (got > 0) {
int written = write_printer (fd, ptr, got);

if (written < 0) {
perror ("write");
close (fd);
return 1;

}

ptr += written;
got -= written;

}
}

Thewrite_printer function is not pictured above. This is because the main loop that is shown can be
used for both methods of driving the printer. Here is one implementation ofwrite_printer :

ssize_t write_printer (int fd, const void *ptr, size_t count)
{

return write (fd, ptr, count);
}

We hand the data to the kernel-level driver (usingwrite) and it handles the printer protocol.

Now let’s do it the hard way! In this particular example there is no practical reason to do anything other
than just callwrite , because we know that the printer talks an IEEE 1284 protocol. On the other hand,
this particular example does not even need a user-land driver since there is already a kernel-level one; for
the purpose of this discussion, try to imagine that the printer speaks a protocol that is not already
implemented under Linux.

So, here is the alternative implementation ofwrite_printer (for brevity, error checking has been
omitted):

ssize_t write_printer (int fd, const void *ptr, size_t count)
{

ssize_t wrote = 0;

while (wrote < count) {
unsigned char status, control, data;
unsigned char mask = (PARPORT_STATUS_ERROR

| PARPORT_STATUS_BUSY);

26

Chapter 7. User-level device drivers

unsigned char val = (PARPORT_STATUS_ERROR
| PARPORT_STATUS_BUSY);

struct ppdev_frob_struct frob;
struct timespec ts;

/* Wait for printer to be ready */
for (;;) {

ioctl (fd, PPRSTATUS, &status);

if ((status & mask) == val)
break;

ioctl (fd, PPRELEASE);
sleep (1);
ioctl (fd, PPCLAIM);

}

/* Set the data lines */
data = * ((char *) ptr)++;
ioctl (fd, PPWDATA, &data);

/* Delay for a bit */
ts.tv_sec = 0;
ts.tv_nsec = 1000;
nanosleep (&ts, NULL);

/* Pulse strobe */
frob.mask = PARPORT_CONTROL_STROBE;
frob.val = PARPORT_CONTROL_STROBE;
ioctl (fd, PPFCONTROL, &frob);
nanosleep (&ts, NULL);

/* End the pulse */
frob.val = 0;
ioctl (fd, PPFCONTROL, &frob);
nanosleep (&ts, NULL);

wrote++;
}

return wrote;
}

To show a bit more of theppdev interface, here is a small piece of code that is intended to mimic the
printer’s side of printer protocol.

for (;;)
{

int irqc;
int busy = nAck | nFault;
int acking = nFault;

27

Chapter 7. User-level device drivers

int ready = Busy | nAck | nFault;
char ch;

/* Set up the control lines when an interrupt happens. */
ioctl (fd, PPWCTLONIRQ, &busy);

/* Now we’re ready. */
ioctl (fd, PPWCONTROL, &ready);

/* Wait for an interrupt. */
{

fd_set rfds;
FD_ZERO (&rfds);
FD_SET (fd, &rfds);
if (!select (fd + 1, &rfds, NULL, NULL, NULL))

/* Caught a signal? */
continue;

}

/* We are now marked as busy. */

/* Fetch the data. */
ioctl (fd, PPRDATA, &ch);

/* Clear the interrupt. */
ioctl (fd, PPCLRIRQ, &irqc);
if (irqc > 1)

fprintf (stderr, "Arghh! Missed %d interrupt%s!\n",
irqc - 1, irqc == 2 ? "s" : "");

/* Ack it. */
ioctl (fd, PPWCONTROL, &acking);
usleep (2);
ioctl (fd, PPWCONTROL, &busy);

putchar (ch);
}

And here is an example (with no error checking at all) to show how to read data from the port, using ECP
mode, with optional negotiation to ECP mode first.

{
int fd, mode;
fd = open ("/dev/parport0", O_RDONLY | O_NOCTTY);
ioctl (fd, PPCLAIM);
mode = IEEE1284_MODE_ECP;
if (negotiate_first) {

ioctl (fd, PPNEGOT, &mode);
/* no need for PPSETMODE */

} else {
ioctl (fd, PPSETMODE, &mode);

28

Chapter 7. User-level device drivers

}

/* Now do whatever we want with fd */
close (0);
dup2 (fd, 0);
if (!fork()) {

/* child */
execlp ("cat", "cat", NULL);
exit (1);

} else {
/* parent */
wait (NULL);

}

/* Okay, finished */
ioctl (fd, PPRELEASE);
close (fd);

}

29

Appendix A. Linux parallel port driver API
reference

parport_device_num

Name
parport_device_num — convert device coordinates

Synopsis

int parport_device_num (int parport , int mux, int daisy);

Arguments

parport

parallel port number

mux

multiplexor port number (-1 for no multiplexor)

daisy

daisy chain address (-1 for no daisy chain address)

Description

This tries to locate a device on the given parallel port, multiplexor port and daisy chain address, and
returns its device number or -NXIO if no device with those coordinates exists.

30

Appendix A. Linux parallel port driver API reference

parport_device_coords

Name
parport_device_coords — convert canonical device number

Synopsis

int parport_device_coords (int devnum, int * parport , int * mux, int *
daisy);

Arguments

devnum

device number

parport

pointer to storage for parallel port number

mux

pointer to storage for multiplexor port number

daisy

pointer to storage for daisy chain address

Description

This function converts a device number into its coordinates in terms of which parallel port in the system
it is attached to, which multiplexor port it is attached to if there is a multiplexor on that port, and which
daisy chain address it has if it is in a daisy chain.

The caller must allocate storage forparport , mux, anddaisy .

If there is no device with the specified device number, -ENXIO is returned. Otherwise, the values pointed
to byparport , mux, anddaisy are set to the coordinates of the device, with -1 for coordinates with
no value.

This function is not actually very useful, but this interface was suggested by IEEE 1284.3.

31

Appendix A. Linux parallel port driver API reference

parport_find_device

Name
parport_find_device — find a specific device

Synopsis

int parport_find_device (const char * mfg , const char * mdl , int from);

Arguments

mfg

required manufacturer string

mdl

required model string

from

previous device number found in search, orNULL for new search

Description

This walks through the list of parallel port devices looking for a device whose ’MFG’ string matches
mfg and whose ’MDL’ string matchesmdl in their IEEE 1284 Device ID.

When a device is found matching those requirements, its device number is returned; if there is no
matching device, a negative value is returned.

A new search it initiated by passingNULLas thefrom argument. Iffrom is notNULL, the search
continues from that device.

32

Appendix A. Linux parallel port driver API reference

parport_find_class

Name
parport_find_class — find a device in a specified class

Synopsis

int parport_find_class (parport_device_class cls , int from);

Arguments

cls

required class

from

previous device number found in search, orNULL for new search

Description

This walks through the list of parallel port devices looking for a device whose ’CLS’ string matchescls
in their IEEE 1284 Device ID.

When a device is found matching those requirements, its device number is returned; if there is no
matching device, a negative value is returned.

A new search it initiated by passingNULLas thefrom argument. Iffrom is notNULL, the search
continues from that device.

parport_register_driver

Name
parport_register_driver — register a parallel port device driver

33

Appendix A. Linux parallel port driver API reference

Synopsis

int parport_register_driver (struct parport_driver * drv);

Arguments

drv

structure describing the driver

Description

This can be called by a parallel port device driver in order to receive notifications about ports being
found in the system, as well as ports no longer available.

Thedrv structure is allocated by the caller and must not be deallocated until after calling
parport_unregister_driver .

The driver’sattach function may block. The port thatattach is given will be valid for the duration of
the callback, but if the driver wants to take a copy of the pointer it must callparport_get_port to do
so. Callingparport_register_device on that port will do this for you.

The driver’sdetach function may not block. The port thatdetach is given will be valid for the duration
of the callback, but if the driver wants to take a copy of the pointer it must callparport_get_port to
do so.

Returns 0 on success. Currently it always succeeds.

parport_unregister_driver

Name
parport_unregister_driver — deregister a parallel port device driver

34

Appendix A. Linux parallel port driver API reference

Synopsis

void parport_unregister_driver (struct parport_driver * arg);

Arguments

arg

structure describing the driver that was given toparport_register_driver

Description

This should be called by a parallel port device driver that has registered itself using
parport_register_driver when it is about to be unloaded.

When it returns, the driver’sattach routine will no longer be called, and for each port thatattach was
called for, thedetach routine will have been called.

If the caller’sattach function can block, it is their responsibility to make sure to wait for it to exit
before unloading.

All the driver’s detach calls are guaranteed to have finished by the time this function returns.

The driver’sdetach call is not allowed to block.

parport_get_port

Name
parport_get_port — increment a port’s reference count

Synopsis

struct parport * parport_get_port (struct parport * port);

35

Appendix A. Linux parallel port driver API reference

Arguments

port

the port

Description

This ensure’s that a struct parport pointer remains valid until the matchingparport_put_port call.

parport_put_port

Name
parport_put_port — decrement a port’s reference count

Synopsis

void parport_put_port (struct parport * port);

Arguments

port

the port

Description

This should be called once for each call toparport_get_port , once the port is no longer needed.

36

Appendix A. Linux parallel port driver API reference

parport_find_number

Name
parport_find_number — find a parallel port by number

Synopsis

struct parport * parport_find_number (int number);

Arguments

number

parallel port number

Description

This returns the parallel port with the specified number, orNULL if there is none.

There is an implicitparport_get_port done already; to throw away the reference to the port that
parport_find_number gives you, useparport_put_port .

parport_find_base

Name
parport_find_base — find a parallel port by base address

Synopsis

struct parport * parport_find_base (unsigned long base);

37

Appendix A. Linux parallel port driver API reference

Arguments

base

base I/O address

Description

This returns the parallel port with the specified base address, orNULL if there is none.

There is an implicitparport_get_port done already; to throw away the reference to the port that
parport_find_base gives you, useparport_put_port .

parport_register_device

Name
parport_register_device — register a device on a parallel port

Synopsis

struct pardevice * parport_register_device (struct parport * port , const char
* name, int (* pf) (void *), void (* kf) (void *), void (* irq_func) (int, void
*, struct pt_regs *), int flags , void * handle);

Arguments

port

port to which the device is attached

name

a name to refer to the device

pf

preemption callback

38

Appendix A. Linux parallel port driver API reference

kf

kick callback (wake-up)

irq_func

interrupt handler

flags

registration flags

handle

data for callback functions

Description

This function, called by parallel port device drivers, declares that a device is connected to a port, and tells
the system all it needs to know.

Thename is allocated by the caller and must not be deallocated until the caller calls
parport_unregister_device for that device.

The preemption callback function,pf , is called when this device driver has claimed access to the port
but another device driver wants to use it. It is givenhandle as its parameter, and should return zero if it
is willing for the system to release the port to another driver on its behalf. If it wants to keep control of
the port it should return non-zero, and no action will be taken. It is good manners for the driver to try to
release the port at the earliest opportunity after its preemption callback rejects a preemption attempt.
Note that if a preemption callback is happy for preemption to go ahead, there is no need to release the
port; it is done automatically. This function may not block, as it may be called from interrupt context. If
the device driver does not support preemption,pf can beNULL.

The wake-up (“kick”) callback function,kf , is called when the port is available to be claimed for
exclusive access; that is,parport_claim is guaranteed to succeed when called from inside the wake-up
callback function. If the driver wants to claim the port it should do so; otherwise, it need not take any
action. This function may not block, as it may be called from interrupt context. If the device driver does
not want to be explicitly invited to claim the port in this way,kf can beNULL.

The interrupt handler,irq_func , is called when an interrupt arrives from the parallel port. Note that if
a device driver wants to use interrupts it should useparport_enable_irq , and can also check the irq
member of the parport structure representing the port.

The parallel port (lowlevel) driver is the one that has calledrequest_irq and whose interrupt handler is
called first. This handler does whatever needs to be done to the hardware to acknowledge the interrupt
(for PC-style ports there is nothing special to be done). It then tells the IEEE 1284 code about the

39

Appendix A. Linux parallel port driver API reference

interrupt, which may involve reacting to an IEEE 1284 event depending on the current IEEE 1284 phase.
After this, it callsirq_func . Needless to say,irq_func will be called from interrupt context, and
may not block.

ThePARPORT_DEV_EXCLflag is for preventing port sharing, and so should only be used when sharing
the port with other device drivers is impossible and would lead to incorrect behaviour. Use it sparingly!
Normally, flags will be zero.

This function returns a pointer to a structure that represents the device on the port, orNULL if there is not
enough memory to allocate space for that structure.

parport_unregister_device

Name
parport_unregister_device — deregister a device on a parallel port

Synopsis

void parport_unregister_device (struct pardevice * dev);

Arguments

dev

pointer to structure representing device

Description

This undoes the effect ofparport_register_device .

40

Appendix A. Linux parallel port driver API reference

parport_open

Name
parport_open — find a device by canonical device number

Synopsis

struct pardevice * parport_open (int devnum, const char * name, int (* pf)
(void *), void (* kf) (void *), void (* irqf) (int, void *, struct pt_regs *),
int flags , void * handle);

Arguments

devnum

canonical device number

name

name to associate with the device

pf

preemption callback

kf

kick callback

irqf

interrupt handler

flags

registration flags

handle

driver data

Description

This function is similar toparport_register_device , except that it locates a device by its number
rather than by the port it is attached to. Seeparport_find_device andparport_find_class .

41

Appendix A. Linux parallel port driver API reference

All parameters except fordevnum are the same as forparport_register_device . The return value
is the same as forparport_register_device .

parport_close

Name
parport_close — close a device opened withparport_open

Synopsis

void parport_close (struct pardevice * dev);

Arguments

dev

device to close

Description

This is toparport_open asparport_unregister_device is to parport_register_device .

parport_claim

Name
parport_claim — claim access to a parallel port device

Synopsis

int parport_claim (struct pardevice * dev);

42

Appendix A. Linux parallel port driver API reference

Arguments

dev

pointer to structure representing a device on the port

Description

This function will not block and so can be used from interrupt context. Ifparport_claim succeeds in
claiming access to the port it returns zero and the port is available to use. It may fail (returning non-zero)
if the port is in use by another driver and that driver is not willing to relinquish control of the port.

parport_claim_or_block

Name
parport_claim_or_block — claim access to a parallel port device

Synopsis

int parport_claim_or_block (struct pardevice * dev);

Arguments

dev

pointer to structure representing a device on the port

Description

This behaves likeparport_claim , but will block if necessary to wait for the port to be free. A return
value of 1 indicates that it slept; 0 means that it succeeded without needing to sleep. A negative error
code indicates failure.

43

Appendix A. Linux parallel port driver API reference

parport_release

Name
parport_release — give up access to a parallel port device

Synopsis

void parport_release (struct pardevice * dev);

Arguments

dev

pointer to structure representing parallel port device

Description

This function cannot fail, but it should not be called without the port claimed. Similarly, if the port is
already claimed you should not try claiming it again.

parport_yield

Name
parport_yield — relinquish a parallel port temporarily

Synopsis

int parport_yield (struct pardevice * dev);

44

Appendix A. Linux parallel port driver API reference

Arguments

dev

a device on the parallel port

Description

This function relinquishes the port if it would be helpful to other drivers to do so. Afterwards it tries to
reclaim the port usingparport_claim , and the return value is the same as forparport_claim . If it
fails, the port is left unclaimed and it is the driver’s responsibility to reclaim the port.

Theparport_yield andparport_yield_blocking functions are for marking points in the driver at
which other drivers may claim the port and use their devices. Yielding the port is similar to releasing it
and reclaiming it, but is more efficient because no action is taken if there are no other devices needing the
port. In fact, nothing is done even if there are other devices waiting but the current device is still within
its “timeslice”. The default timeslice is half a second, but it can be adjusted via the /proc interface.

parport_yield_blocking

Name
parport_yield_blocking — relinquish a parallel port temporarily

Synopsis

int parport_yield_blocking (struct pardevice * dev);

Arguments

dev

a device on the parallel port

45

Appendix A. Linux parallel port driver API reference

Description

This function relinquishes the port if it would be helpful to other drivers to do so. Afterwards it tries to
reclaim the port usingparport_claim_or_block , and the return value is the same as for
parport_claim_or_block .

parport_negotiate

Name
parport_negotiate — negotiate an IEEE 1284 mode

Synopsis

int parport_negotiate (struct parport * port , int mode);

Arguments

port

port to use

mode

mode to negotiate to

Description

Use this to negotiate to a particular IEEE 1284 transfer mode. Themode parameter should be one of the
constants in parport.h startingIEEE1284_MODE_xxx.

The return value is 0 if the peripheral has accepted the negotiation to the mode specified, -1 if the
peripheral is not IEEE 1284 compliant (or not present), or 1 if the peripheral has rejected the negotiation.

46

Appendix A. Linux parallel port driver API reference

parport_write

Name
parport_write — write a block of data to a parallel port

Synopsis

ssize_t parport_write (struct parport * port , const void * buffer , size_t
len);

Arguments

port

port to write to

buffer

data buffer (in kernel space)

len

number of bytes of data to transfer

Description

This will write up to len bytes ofbuffer to the port specified, using the IEEE 1284 transfer mode
most recently negotiated to (usingparport_negotiate), as long as that mode supports forward
transfers (host to peripheral).

It is the caller’s responsibility to ensure that the firstlen bytes ofbuffer are valid.

This function returns the number of bytes transferred (if zero or positive), or else an error code.

47

Appendix A. Linux parallel port driver API reference

parport_read

Name
parport_read — read a block of data from a parallel port

Synopsis

ssize_t parport_read (struct parport * port , void * buffer , size_t len);

Arguments

port

port to read from

buffer

data buffer (in kernel space)

len

number of bytes of data to transfer

Description

This will read up tolen bytes ofbuffer to the port specified, using the IEEE 1284 transfer mode most
recently negotiated to (usingparport_negotiate), as long as that mode supports reverse transfers
(peripheral to host).

It is the caller’s responsibility to ensure that the firstlen bytes ofbuffer are available to write to.

This function returns the number of bytes transferred (if zero or positive), or else an error code.

48

Appendix A. Linux parallel port driver API reference

parport_set_timeout

Name
parport_set_timeout — set the inactivity timeout for a device

Synopsis

long parport_set_timeout (struct pardevice * dev , long inactivity);

Arguments

dev

device on a port

inactivity

inactivity timeout (in jiffies)

Description

This sets the inactivity timeout for a particular device on a port. This affects functions like
parport_wait_peripheral . The special value 0 means not to callschedule while dealing with this
device.

The return value is the previous inactivity timeout.

Any callers ofparport_wait_event for this device are woken up.

49

Appendix B. The Linux 2.2 Parallel Port
Subsystem

Although the interface described in this document is largely new with the 2.4 kernel, the sharing
mechanism is available in the 2.2 kernel as well. The functions available in 2.2 are:

• parport_register_device

• parport_unregister_device

• parport_claim

• parport_claim_or_block

• parport_release

• parport_yield

• parport_yield_blocking

In addition, negotiation to reverse nibble mode is supported:

int parport_ieee1284_nibble_mode_ok (struct parport * port , unsigned char
mode);

The only valid values formode are 0 (for reverse nibble mode) and 4 (for Device ID in reverse nibble
mode).

This function is obsoleted byparport_negotiate in Linux 2.4, and has been removed.

50

Appendix C. GNU Free Documentation License

GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document", below, refers to any
such manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall subject

51

Appendix C. GNU Free Documentation License

(or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is
not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use

52

Appendix C. GNU Free Documentation License

technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100,
and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the
general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution

53

Appendix C. GNU Free Documentation License

and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled "History", and its title, and add to

it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications",
preserve the section’s title, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section as "Endorsements"
or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the

54

Appendix C. GNU Free Documentation License

list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this

55

Appendix C. GNU Free Documentation License

License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter
of the entire aggregate, the Document’s Cover Texts may be placed on
covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the
original English version of this License. In case of a disagreement
between the translation and the original English version of this
License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

56

Appendix C. GNU Free Documentation License

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http:///www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections"
instead of saying which ones are invariant. If you have no
Front-Cover Texts, write "no Front-Cover Texts" instead of
"Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

57

	The Linux 2.4 Parallel Port Subsystem
	Table of Contents
	Chapter 1. Design goals
	1.1. The problems
	1.2. The solutions

	Chapter 2. Standard transfer modes
	Chapter 3. Structure
	3.1. Sharing core
	3.2. Parports and their overrides
	3.3. IEEE 1284 transfer modes
	3.4. Pardevices and parportdrivers
	3.5. The IEEE 1284.3 API

	Chapter 4. Device driver's view
	Chapter 5. Port drivers
	Chapter 6. The printer driver
	Chapter 7. Userlevel device drivers
	7.1. Introduction to ppdev
	7.2. Userlevel or kernellevel driver?
	7.3. Programming interface
	7.3.1. Starting and stopping: open and close
	7.3.2. Control: ioctl
	7.3.3. Transferring data: read and write
	7.3.4. Waiting for events: poll and select

	7.4. Examples

	Appendix A. Linux parallel port driver API reference
	parportdevicenum
	Name
	Synopsis
	Arguments
	Description

	parportdevicecoords
	Name
	Synopsis
	Arguments
	Description

	parportfinddevice
	Name
	Synopsis
	Arguments
	Description

	parportfindclass
	Name
	Synopsis
	Arguments
	Description

	parportregisterdriver
	Name
	Synopsis
	Arguments
	Description

	parportunregisterdriver
	Name
	Synopsis
	Arguments
	Description

	parportgetport
	Name
	Synopsis
	Arguments
	Description

	parportputport
	Name
	Synopsis
	Arguments
	Description

	parportfindnumber
	Name
	Synopsis
	Arguments
	Description

	parportfindbase
	Name
	Synopsis
	Arguments
	Description

	parportregisterdevice
	Name
	Synopsis
	Arguments
	Description

	parportunregisterdevice
	Name
	Synopsis
	Arguments
	Description

	parportopen
	Name
	Synopsis
	Arguments
	Description

	parportclose
	Name
	Synopsis
	Arguments
	Description

	parportclaim
	Name
	Synopsis
	Arguments
	Description

	parportclaimorblock
	Name
	Synopsis
	Arguments
	Description

	parportrelease
	Name
	Synopsis
	Arguments
	Description

	parportyield
	Name
	Synopsis
	Arguments
	Description

	parportyieldblocking
	Name
	Synopsis
	Arguments
	Description

	parportnegotiate
	Name
	Synopsis
	Arguments
	Description

	parportwrite
	Name
	Synopsis
	Arguments
	Description

	parportread
	Name
	Synopsis
	Arguments
	Description

	parportsettimeout
	Name
	Synopsis
	Arguments
	Description

	Appendix B. The Linux 2.2 Parallel Port Subsystem
	Appendix C. GNU Free Documentation License

