The Linux Journalling API

Roger Gammans

rgammans@computer-surgery.co.uk

Stephen Tweedie

sct@redhat.com

The Linux Journalling API
by Roger Gammans

by Stephen Tweedie

Copyright © 2002 Roger Gammans

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents

L. OVBIVIBW....eieieeeeee ettt sttt ettt h e e bt b e se et ek e e bt ARt eh e b e £ e e e Rt eReeE e e b e seeeeenb e s e ebenaeeb et e nbe e eneenens 1
00 O B = - £ SR 1
S0 01 0 1=V /APPSR 2

B B = = R Y/ 01T SO O SRS PR P PSSP 4
2.0, SEUCTUIES ...ttt ettt et b bbb e b s e e se e s e e e st eR e e b e e b e R e ne e e e bt nb e s besr e s e s e e ene e 4

17 010 1=l =T To | = S 4
107 010 1= o 10T = | O 4
£ (U2 o U = S 5

B T U T 1o o S 10

R0 700 N Lo T 0T = I I SR 10
JTo 18 Tq g = U T 11 S Lo o =TSRSS 10
JOUMNAL_CTEALE ...ttt ettt b ettt b et e sn e en 10
journal_update_SUPEIDIOCK ...t 11
JOUMNAI_IOAM. ...ttt ettt 12
JTo 18T q g = U [S1S] [0)V USSR 12
journal_check USed _fEAtUIES........coo e e 13
journal_check_available_featUres.........o e e 14
J[o 18l q gt UREST=] A (ST LU (== TR 15
journal_update fOrMAL....... .o e e 16
[18 T = VI L0 o PSSR 16
[18 1 = U7 o LSS 17
[181 = U= 1oL L ST 18
[18 1 = V=T 1 o TSP 19
J (018 = U (== U = o PSS 20
(181 = V= T =] PSR 20
JTo 18T g T= U (=o)<Y 21

3.2, TraNSASCLON LEVEL.......ciricieecieere ettt sttt e 22
o184 g = LIRS - o SR 22
JTo 10T aT= U (Y] = L S 23
o 18T g T= U= (=T o S 23
o 18T g = U (=] €= Lt S 24
JOUMNAL_IOCK _UPAALES......cueiiieiieieriee et sttt st st 25
JOUNAl_UNIOCK_UPAALES......coviiiieerieierieie et s e 26
JOUMNAl_gEt WIE _GICCESS....cviirieiirieie ittt sttt ettt eb e 26
JOUMNAl_get_Create _ACCESS.....ciueireeierieee ettt et 27
JOUrNAl_get_UNCAO_ACCESS. ..ottt ettt bbb 28
JOUMNAL_AINY _ALA.......cveieeeeieteerie e et 29
journal_dirty MetaOata.ccoevueerieiriee e 30
JOUMNAL_FONGEL. ...ttt ettt e 30
JOUPNAL_STOP. ...ttt ettt ettt s b et b et b et bbbt nn e e nne s 31
journal_try to_free BUfELS.......ooie e 32
JOUMNAL_fIUSNPAGE. ... et 33

YT = L= o JO SRRSO 35

Chapter 1. Overview

1.1. Detalls

The journalling layer is easy to use. You need to first of all create a journal_t data structure. There are
two calls to do this dependent on how you decide to allocate the physical media on which the journal
resides. The journal_init_inode() call is for journals stored in filesystem inodes, or the journal_init_dev()
call can be use for journal stored on a raw device (in a continuous range of blocks). A journal_tis a
typedef for a struct pointer, so when you are finally finished make sure you call journal_destroy() on it to
free up any used kernel memory.

Once you have got your journal_t object you need to 'mount’ or load the journal file, unless of course
you haven't initialised it yet - in which case you need to call journal_create().

Most of the time however your journal file will already have been created, but before you load it you must
call journal_wipe() to empty the journal file. Hang on, you say , what if the filesystem wasn't cleanly
umount()’d . Well, it is the job of the client file system to detect this and skip the call to journal_wipe().

In either case the next call should be to journal_load() which prepares the journal file for use. Note that
journal_wipe(..,0) calls journal_skip_recovery() for you if it detects any outstanding transactions in the
journal and similarly journal_load() will call journal_recover() if necessary. | would advise reading
fs/ext3/super.c for examples on this stage. [RGG: Why is the journal_wipe() call necessary - doesn't this
needlessly complicate the API. Or isn’t a good idea for the journal layer to hide dirty mounts from the
client fs]

Now you can go ahead and start modifying the underlying filesystem. Almost.

You still need to actually journal your filesystem changes, this is done by wrapping them into
transactions. Additionally you also need to wrap the modification of each of the the buffers with calls to
the journal layer, so it knows what the modifications you are actually making are. To do this use
journal_start() which returns a transaction handle.

journal_start() and its counterpart journal_stop(), which indicates the end of a transaction are nestable
calls, so you can reenter a transaction if necessary, but remember you must call journal_stop() the same
number of times as journal_start() before the transaction is completed (or more accurately leaves the the
update phase). Ext3/VFS makes use of this feature to simplify quota support.

Inside each transaction you need to wrap the modifications to the individual buffers (blocks). Before you
start to modify a buffer you need to call journal_get_{create,write,undo}_access() as appropriate, this
allows the journalling layer to copy the unmodified data if it needs to. After all the buffer may be part of

a previously uncommitted transaction. At this point you are at last ready to modify a buffer, and once you

Chapter 1. Overview

are have done so you need to call journal_dirty {meta,}data(). Or if you've asked for access to a buffer
you now know is now longer required to be pushed back on the device you can call journal_forget() in
much the same way as you might have used bforget() in the past.

A journal_flush() may be called at any time to commit and checkpoint all your transactions.

Then at umount time , in your put_super() (2.4) or write_super() (2.5) you can then call journal_destroy()
to clean up your in-core journal object.

Unfortunately there a couple of ways the journal layer can cause a deadlock. The first thing to note is that
each task can only have a single outstanding transaction at any one time, remember nothing commits
until the outermost journal_stop(). This means you must complete the transaction at the end of each
file/inode/address etc. operation you perform, so that the journalling system isn't re-entered on another
journal. Since transactions can't be nested/batched across differing journals, and another filesystem other
than yours (say ext3) may be modified in a later syscall.

The second case to bear in mind is that journal_start() can block if there isn’t enough space in the journal
for your transaction (based on the passed nblocks param) - when it blocks it merely(!) needs to wait for
transactions to complete and be committed from other tasks, so essentially we are waiting for
journal_stop(). So to avoid deadlocks you must treat journal_start/stop() as if they were semaphores and
include them in your semaphore ordering rules to prevent deadlocks. Note that journal_extend() has
similar blocking behaviour to journal_start() so you can deadlock here just as easily as on journal_start().

Try to reserve the right number of blocks the first time. ;-).

Another wriggle to watch out for is your on-disk block allocation strategy. why? Because, if you undo a
delete, you need to ensure you haven't reused any of the freed blocks in a later transaction. One simple
way of doing this is make sure any blocks you allocate only have checkpointed transactions listed against
them. Ext3 does this in ext3_test_allocatable().

Lock is also providing through journal_{un,}lock_updates(), ext3 uses this when it wants a window with
a clean and stable fs for a moment. eg.

journal_lock_updates() //stop new stuff happening..
journal_flush() /I checkpoint everything.

..do stuff on stable fs

journal_unlock_updates() // carry on with filesystem use.

The opportunities for abuse and DOS attacks with this should be obvious, if you allow unprivileged
userspace to trigger codepaths containing these calls.

Chapter 1. Overview

1.2. Summary

Using the journal is a matter of wrapping the different context changes, being each mount, each
modification (transaction) and each changed buffer to tell the journalling layer about them.

Here is a some pseudo code to give you an idea of how it works, as an example.

journal_t* my_jnrl = journal_create();
journal_init_{dev,inode}(jnrl,...)

if (clean) journal_wipe();
journal_load();

foreach(transaction) { /*transactions must be
completed before
a syscall returns to
userspace*/

handle_t * xct=journal_start(my_jnrl);
foreach(bh) {
journal_get_{create,write,undo}_access(xact,bh);
if (myfs_modify(bh)) { /* returns true
if makes changes */
journal_dirty_{meta,}data(xact,bh);
} else {
journal_forget(bh);
}
}
journal_stop(xct);

}

journal_destroy(my_jrnl);

Chapter 2. Data Types

The journalling layer uses typedefs to 'hide’ the concrete definitions of the structures used. As a client of
the JBD layer you can just rely on the using the pointer as a magic cookie of some sort. Obviously the
hiding is not enforced as this is 'C’.

2.1. Structures

typedef handle t

Name

typedef handle_t — The handle_t type represents a single atomic update being performed by
some process.

Synopsis

typedef handle_t;

Description

All filesystem modifications made by the process go through this handle. Recursive operations (such as
quota operations) are gathered into a single update.

The buffer credits field is used to account for journaled buffers being modified by the running process. To
ensure that there is enough log space for all outstanding operations, we need to limit the number of
outstanding buffers possible at any time. When the operation completes, any buffer credits not used are
credited back to the transaction, so that at all times we know how many buffers the outstanding updates
on a transaction might possibly touch.

This is an opaque datatype.

Chapter 2. Data Types

typedef journal _t

Name

typedef journal_t — The journal_t maintains all of the journaling state information for a single
filesystem.

Synopsis

typedef journal_t;

Description

journal_tis linked to from the fs superblock structure.

We use the journal_t to keep track of all outstanding transaction activity on the filesystem, and to manage
the state of the log writing process.

This is an opaque datatype.

struct journal_s

Name
struct journal_s — The journal_s type is the concrete type associated with journal_t.

Synopsis

struct journal_s {
unsigned long |_flags;
int j_errno;
struct buffer_head * j_sb_buffer;
journal_superblock_t * j_superblock;
int j_format_version;
int j_barrier_count;
struct semaphore j_barrier;
transaction_t * j_running_transaction;

Chapter 2. Data Types

transaction_t * j_committing_transaction;
transaction_t * j_checkpoint_transactions;
wait_queue_head_t j_wait_transaction_locked;
wait_queue_head_t j_wait_logspace;
wait_queue_head_t j_wait_done_commit;
wait_queue_head_t j_wait_checkpoint;
wait_queue_head_t j_wait_commit;
wait_queue_head_t j_wait_updates;
struct semaphore j_checkpoint_sem;
struct semaphore j_sem;

unsigned long j_head,;

unsigned long |_tail;

unsigned long |_free;

unsigned long |_first, j_last;

kdev_t j_dev;

int j_blocksize;

unsigned int j_blk_offset;

kdev_t j_fs_dev;

unsigned int j_maxlen;

struct inode * j_inode;

tid_t j_tail_sequence;

tid_t j_transaction_sequence;

tid_t j_commit_sequence;

tid_t j_commit_request;

__u8 * j_uuid;

struct task_struct * j_task;

int]_max_transaction_buffers;

unsigned long j_commit_interval,
struct timer_list * j_commit_timer;

int j_commit_timer_active;

struct list_head j_all_journals;

struct jbd_revoke_table_s * j_revoke;

Members
j_flags
General journaling state flags

j_errno

Is there an outstanding uncleared error on the journal (from a prior abort)?

j_sb_buffer

First part of superblock buffer

j_superblock

Second part of superblock buffer

Chapter 2. Data Types

j_format_version

Version of the superblock format

j_barrier_count

Number of processes waiting to create a barrier lock

j_barrier

The barrier lock itself

j_running_transaction

The current running transaction..

j_committing_transaction

the transaction we are pushing to disk

j_checkpoint_transactions

a linked circular list of all transactions waiting for checkpointing

j_wait_transaction_locked
Wait queue for waiting for a locked transaction to start committing, or for a barrier lock to be
released

j_wait_logspace

Wait queue for waiting for checkpointing to complete
j_wait_done_commit

Wait queue for waiting for commit to complete
j_wait_checkpoint

Wait queue to trigger checkpointing
j_wait_commit

Wait queue to trigger commit
j_wait_updates

Wait queue to wait for updates to complete
j_checkpoint_sem

Semaphore for locking against concurrent checkpoints
j_sem

The main journal lock, used byck_journal

j_head

Journal head - identifies the first unused block in the journal

Chapter 2. Data Types

j_tail

Journal tail - identifies the oldest still-used block in the journal.
j_free

Journal free - how many free blocks are there in the journal?
j_last

The block number one beyond the last usable block
j_dev

Device where we store the journal
j_blocksize

blocksize for the location where we store the journal.
j_blk_offset

starting block offset for into the device where we store the journal
j_fs_dev

Device which holds the client fs. For internal journal this will be equal to j_dev
j_maxlen

Total maximum capacity of the journal region on disk.
j_inode

Optional inode where we store the journal. If present, all journal block numbers are mapped into
this inode viabmap.

j_tail_sequence
Sequence number of the oldest transaction in the log

j_transaction_sequence

Sequence number of the next transaction to grant

j_commit_sequence

Sequence number of the most recently committed transaction
j_commit_request

Sequence number of the most recent transaction wanting commit
j_uuid

Uuid of client object.

j_task

Pointer to the current commit thread for this journal

Chapter 2. Data Types

j_max_transaction_buffers

Maximum number of metadata buffers to allow in a single compound commit transaction

j_commit_interval

What is the maximum transaction lifetime before we begin a commit?
j_commit_timer

The timer used to wakeup the commit thread
j_commit_timer_active

Timer flag

j_all_journals

Link all journals together - system-wide

j_revoke

The revoke table - maintains the list of revoked blocks in the current transaction.

Chapter 3. Functions

The functions here are split into two groups those that affect a journal as a whole, and those which are
used to manage transactions

3.1. Journal Level

journal_init_inode

Name
journal_init_inode — creates a journal which maps to a inode.

Synopsis

journal_t * journal_init_inode (struct inode * inode);

Arguments

inode

An inode to create the journal in

Description

journal_init_inode creates a journal which maps an on-disk inode as the journal. The inode must exist
already, must suppobimap and must have all data blocks preallocated.

journal_create

Name
journal_create — Initialise the new journal file

10

Chapter 3. Functions
Synopsis

int journal_create (journal_t * journal);

Arguments

journal

Journal to create. This structure must have been initialised

Description

Given a journal_t structure which tells us which disk blocks we can use, create a new journal superblock
and initialise all of the journal fields from scratch.

journal _update superblock

Name
journal_update_superblock — Update journal sb on disk.

Synopsis

void journal_update_superblock (journal_t * journal , int wait);

Arguments

journal

The journal to update.

wait

Set to '0’ if you don’t want to wait for IO completion.

11

Chapter 3. Functions

Description

Update a journal’s dynamic superblock fields and write it to disk, optionally waiting for the 10 to
complete.

journal_load

Name
journal_load — Read journal from disk.

Synopsis

int journal_load (journal_t * journal);

Arguments

journal

Journal to act on.

Description

Given a journal_t structure which tells us which disk blocks contain a journal, read the journal from disk
to initialise the in-memory structures.

journal_destroy

Name
journal_destroy — Release a journal_t structure.

12

Chapter 3. Functions
Synopsis

void journal_destroy (journal_t * journal);

Arguments

journal

Journal to act on.

Description

Release a journal_t structure once it is no longer in use by the journaled object.

journal_check used features

Name
journal_check _used_features — Check if features specified are used.

Synopsis

int journal_check used_features (journal_t * journal , unsigned long compat ,
unsigned long ro, unsigned long incompat);

Arguments
journal
-- undescribed --

compat

-- undescribed --

ro

-- undescribed --

13

Chapter 3. Functions

incompat

-- undescribed --

Description

Check whether the journal uses all of a given set of features. Return true (non-zero) if it does.

journal_check available features

Name
journal_check_available_features — Check feature set in journalling layer

Synopsis

int journal_check_available_features (journal_t * journal , unsigned long
compat , unsigned long ro, unsigned long incompat);

Arguments
journal
-- undescribed --

compat

-- undescribed --

ro

-- undescribed --

incompat

-- undescribed --

14

Chapter 3. Functions

Description

Check whether the journaling code supports the use of all of a given set of features on this journal.
Return true

journal_set_features

Name
journal_set_features — Mark a given journal feature in the superblock

Synopsis

int journal_set_features (journal_t * journal , unsigned long compat , unsigned
long ro, unsigned long incompat);

Arguments
journal
-- undescribed --

compat

-- undescribed --

ro

-- undescribed --

incompat

-- undescribed --

Description

15

Chapter 3. Functions

Mark a given journal feature as present on the superblock. Returns true if the requested features could be
set.

journal_update format

Name
journal_update_format — Update on-disk journal structure.

Synopsis

int journal_update_format (journal_t * journal);

Arguments

journal

-- undescribed --

Description

Given an initialised but unloaded journal struct, poke about in the on-disk structure to update it to the
most recent supported version.

journal_flush

Name
journal_flush — Flush journal

16

Chapter 3. Functions
Synopsis

int journal_flush (journal_t * journal);

Arguments

journal

Journal to act on.

Description

Flush all data for a given journal to disk and empty the journal. Filesystems can use this when
remounting readonly to ensure that recovery does not need to happen on remount.

journal_wipe

Name
journal_wipe — Wipe journal contents

Synopsis

int journal_wipe (journal_t * journal , int write);

Arguments

journal

Journal to act on.

write

flag (see below)

17

Chapter 3. Functions

Description

Wipe out all of the contents of a journal, safely. This will produce a warning if the journal contains any
valid recovery information. Must be called between journal_init_*() machal_load

If 'write’ is non-zero, then we wipe out the journal on disk; otherwise we merely suppress recovery.

journal_abort

Name
journal_abort — Shutdown the journal immediately.

Synopsis

void journal_abort (journal_t * journal , int errno);

Arguments

journal

the journal to shutdown.

errno

an error number to record in the journal indicating the reason for the shutdown.

Description

Perform a complete, immediate shutdown of the ENTIRE journal (not of a single transaction). This
operation cannot be undone without closing and reopening the journal.

The journal_abort function is intended to support higher level error recovery mechanisms such as the
ext2/ext3 remount-readonly error mode.

18

Chapter 3. Functions
Journal abort has very specific semantics. Any existing dirty, unjournaled buffers in the main filesystem

will still be written to disk by bdflush, but the journaling mechanism will be suspended immediately and
no further transaction commits will be honoured.

Any dirty, journaled buffers will be written back to disk without hitting the journal. Atomicity cannot be
guaranteed on an aborted filesystem, but we _do__ attempt to leave as much data as possible behind for
fsck to use for cleanup.

Any attempt to get a new transaction handle on a journal which is in ABORT state will just result in an
-EROFS error return. A journal_stop on an existing handle will return -EIO if we have entered abort state
during the update.

Recursive transactions are not disturbed by journal abort until the final journal_stop, which will receive
the -EIO error.

Finally, the journal_abort call allows the caller to supply an errno which will be recorded (if possible) in
the journal superblock. This allows a client to record failure conditions in the middle of a transaction
without having to complete the transaction to record the failure to disk. ext3_error, for example, now
uses this functionality.

Errors which originate from within the journaling layer will NOT supply an errno; a null errno implies
that absolutely no further writes are done to the journal (unless there are any already in progress).

journal_errno

Name
journal_errno — returns the journal’s error state.

Synopsis

int journal_errno (journal_t * journal);

Arguments

journal

journal to examine.

19

Chapter 3. Functions

Description

This is the errno numbet set wilburnal_abort , the last time the journal was mounted - if the journal
was stopped without calling abort this will be 0.

If the journal has been aborted on this mount time -EROFS will be returned.

journal_clear_err

Name
journal_clear_err — clears the journal’s error state

Synopsis

int journal_clear_err (journal_t * journal);

Arguments

journal

-- undescribed --

Description

An error must be cleared or Acked to take a FS out of readonly mode.

journal_ack_err

Name
journal_ack_err — Ack journal err.

20

Chapter 3. Functions
Synopsis

void journal_ack_err (journal_t * journal);

Arguments

journal

-- undescribed --

Description

An error must be cleared or Acked to take a FS out of readonly mode.

journal_recover

Name
journal_recover — recovers a on-disk journal

Synopsis

int journal_recover (journal_t * journal);

Arguments

journal

the journal to recover

21

Chapter 3. Functions

Description

The primary function for recovering the log contents when mounting a journaled device.

3.2. Transasction Level

journal_start

Name
journal_start — Obtain a new handle.

Synopsis

handle_t * journal_start (journal_t * journal , int nblocks);

Arguments

journal

Journal to start transaction on.

nblocks

number of block buffer we might modify

Description

We make sure that the transaction can guarantee at least nblocks of modified buffers in the log. We block
until the log can guarantee that much space.

This function is visible to journal users (like ext3fs), so is not called with the journal already locked.

Return a pointer to a newly allocated handle, or NULL on failure

22

Chapter 3. Functions

journal _try start

Name
journal_try_start — Don't block, but try and get a handle

Synopsis

handle_t * journal_try_start (journal_t * journal , int nblocks);

Arguments

journal

Journal to start transaction on.

nblocks

number of block buffer we might modify

Description

Try to start a handle, but non-blockingly. If we weren’t able to, return an ERR_PTR value.

journal_extend

Name

journal_extend — extend buffer credits.

Synopsis

int journal_extend (handle_t * handle , int nblocks);

23

Chapter 3. Functions

Arguments

handle

handle to 'extend’

nblocks

nr blocks to try to extend by.

Description

Some transactions, such as large extends and truncates, can be done atomically all at once or in several
stages. The operation requests a credit for a number of buffer modications in advance, but can extend its
credit if it needs more.

journal_extend tries to give the running handle more buffer credits. It does not guarantee that allocation -
this is a best-effort only. The calling process MUST be able to deal cleanly with a failure to extend here.

Return 0 on success, non-zero on failure.

return code< 0 implies an error return code 0 implies normal transaction-full status.

journal_restart

Name
journal_restart — restart a handle .

Synopsis

int journal_restart (handle_t * handle , int nblocks);

Arguments

handle

handle to restart

24

Chapter 3. Functions

nblocks

nr credits requested

Description
Restart a handle for a multi-transaction filesystem operation.

If the journal_extend call above fails to grant new buffer credits to a running handle, a call to
journal_restart will commit the handle’s transaction so far and reattach the handle to a new transaction
capabable of guaranteeing the requested number of credits.

journal_lock updates

Name
journal_lock updates — establish a transaction barrier.

Synopsis

void journal_lock_updates (journal _t * journal);

Arguments

journal

Journal to establish a barrier on.

Description

This locks out any further updates from being started, and blocks until all existing updates have
completed, returning only once the journal is in a quiescent state with no updates running.

The journal lock should not be held on entry.

25

Chapter 3. Functions

journal_unlock updates

Name
journal_unlock_updates — release barrier

Synopsis

void journal_unlock_updates (journal_t * journal);

Arguments

journal

Journal to release the barrier on.

Description
Release a transaction barrier obtained vthnal_lock_updates

Should be called without the journal lock held.

journal_get_write_access

Name

journal_get_write_access — notify intent to modify a buffer for metadata (not data) update.
Synopsis

int journal_get write_access (handle_t * handle , struct buffer_head * bh);

26

Chapter 3. Functions

Arguments

handle

transaction to add buffer modifications to

bh

bh to be used for metadata writes

Description
Returns an error code or 0 on success.

In full data journalling mode the buffer may be of type BJ_AsyncData, because writ#e ing a buffer
which is also part of a shared mapping.

journal_get create_access

Name

journal_get_create_access — notify intent to use newly created bh

Synopsis

int journal_get _create_access (handle_t * handle , struct buffer_head * bh);

Arguments

handle

ransaction to new buffer to

bh

new buffer.

27

Chapter 3. Functions

Description

Call this if you create a hew bh.

journal_get undo_access

Name

journal_get_undo_access — Notify intent to modify metadata with non-rewindable
consequences

Synopsis

int journal_get_undo_access (handle_t * handle , struct buffer_head * bh);

Arguments

handle

transaction

bh

buffer to undo

Description

Sometimes there is a need to distinguish between metadata which has been committed to disk and that
which has not. The ext3fs code uses this for freeing and allocating space, we have to make sure that we
do not reuse freed space until the deallocation has been committed, since if we overwrote that space we
would make the delete un-rewindable in case of a crash.

To deal with that, journal_get _undo_access requests write access to a buffer for parts of non-rewindable
operations such as delete operations on the bitmaps. The journaling code must keep a copy of the buffer’'s
contents prior to the undo_access call until such time as we know that the buffer has definitely been
committed to disk.

28

Chapter 3. Functions
We never need to know which transaction the committed data is part of, buffers touched here are

guaranteed to be dirtied later and so will be committed to a new transaction in due course, at which point
we can discard the old committed data pointer.

Returns error number or 0 on success.

journal_dirty data

Name

journal_dirty_data — mark a buffer as containing dirty data which needs to be flushed before we
can commit the current transaction.

Synopsis

int journal_dirty_data (handle_t * handle , struct buffer_head * bh, int
async);

Arguments

handle

transaction

bh

bufferhead to mark

async

flag

Description
The buffer is placed on the transaction’s data list and is marked as belonging to the transaction.

If ‘async’ is set then the writebask will be initiated by the caller using submit>bh -
end_buffer_io_async. We put the buffer onto t_async_datalist.

29

Chapter 3. Functions

Returns error number or 0 on success.

journal_dirty _metadata

Name
journal_dirty_metadata — mark a buffer as containing dirty metadata

Synopsis

int journal_dirty_metadata (handle_t * handle , struct buffer_head * bh);

Arguments

handle

transaction to add buffer to.

bh

buffer to mark

Description
mark dirty metadata which needs to be journaled as part of the current transaction.
The buffer is placed on the transaction’s metadata list and is marked as belonging to the transaction.

Returns error number or 0 on success.

30

Chapter 3. Functions

journal_forget

Name
journal_forget — bforget for potentially-journaled buffers.

Synopsis

void journal_forget (handle_t * handle , struct buffer_head * bh);

Arguments

handle

transaction handle

bh
bh to 'forget’

Description

We can only do the bforget if there are no commits pending against the buffer. If the buffer is dirty in the
current running transaction we can safely unlink it.

bh may not be a journalled buffer at all - it may be a non-JBD buffer which came off the hashtable.
Check for this.

Decrements bh-b_count by one.

Allow this call even if the handle has aborted --- it may be part of the caller’s cleanup after an abort.

journal_stop

Name
journal_stop — complete a transaction

31

Chapter 3. Functions
Synopsis

int journal_stop (handle_t * handle);

Arguments

handle

tranaction to complete.

Description
All done for a particular handle.

There is not much action needed here. We just return any remaining buffer credits to the transaction and
remove the handle. The only complication is that we need to start a commit operation if the filesystem is
marked for synchronous update.

journal_stop itself will not usually return an error, but it may do so in unusual circumstances. In
particular, expect it to return -EIO if a journal_abort has been executed since the transaction began.

journal_try to free buffers

Name

journal_try to free_ buffers — try to free page buffers.

Synopsis

int journal_try_to_free_buffers (journal_t * journal , struct page * page, int
ofp_mask);

32

Chapter 3. Functions
Arguments
journal
journal for operation

page
to try and free

gfp_mask

IO’ mode for try_to_free_buffers

Description

For all the buffers on this page, if they are fully written out ordered data, move them onto BUF_CLEAN

sotry_to_free_buffers can reap them.
This function returns non-zero if we wisty_to_free_buffers to be called. We do this if the page is
releasable byry_to_free_buffers . We also do it if the page has locked or dirty buffers and the

caller wants us to perform sync or async writeout.

journal_flushpage

Name
journal_flushpage —

Synopsis

int journal_flushpage (journal_t * journal , struct page * page, unsigned long
offset);

33

Chapter 3. Functions

Arguments

journal

journal to use for flush...

page
page to flush

offset

length of page to flush.

Description
Reap page buffers containing data after offset in page.

Return non-zero if the page’s buffers were successfully reaped.

34

Chapter 4. See also

[Journaling the Linux ext2fs Filesystem,LinuxExpo 98, Stephen Tweedie
(ftp://ftp.uk.linux.org/publ/linux/sct/fs/jfs/journal-design.ps.gz)]

[Ext3 Journalling FileSystem , OLS 2000, Dr. Stephen Tweedie
(http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html) |

35

	The Linux Journalling API
	Table of Contents
	Chapter 1. Overview
	1.1. Details
	1.2. Summary

	Chapter 2. Data Types
	2.1. Structures
	typedef handlet
	Name
	Synopsis
	Description

	typedef journalt
	Name
	Synopsis
	Description

	struct journals
	Name
	Synopsis
	Members

	Chapter 3. Functions
	3.1. Journal Level
	journalinitinode
	Name
	Synopsis
	Arguments
	Description

	journalcreate
	Name
	Synopsis
	Arguments
	Description

	journalupdatesuperblock
	Name
	Synopsis
	Arguments
	Description

	journalload
	Name
	Synopsis
	Arguments
	Description

	journaldestroy
	Name
	Synopsis
	Arguments
	Description

	journalcheckusedfeatures
	Name
	Synopsis
	Arguments
	Description

	journalcheckavailablefeatures
	Name
	Synopsis
	Arguments
	Description

	journalsetfeatures
	Name
	Synopsis
	Arguments
	Description

	journalupdateformat
	Name
	Synopsis
	Arguments
	Description

	journalflush
	Name
	Synopsis
	Arguments
	Description

	journalwipe
	Name
	Synopsis
	Arguments
	Description

	journalabort
	Name
	Synopsis
	Arguments
	Description

	journalerrno
	Name
	Synopsis
	Arguments
	Description

	journalclearerr
	Name
	Synopsis
	Arguments
	Description

	journalackerr
	Name
	Synopsis
	Arguments
	Description

	journalrecover
	Name
	Synopsis
	Arguments
	Description

	3.2. Transasction Level
	journalstart
	Name
	Synopsis
	Arguments
	Description

	journaltrystart
	Name
	Synopsis
	Arguments
	Description

	journalextend
	Name
	Synopsis
	Arguments
	Description

	journalrestart
	Name
	Synopsis
	Arguments
	Description

	journallockupdates
	Name
	Synopsis
	Arguments
	Description

	journalunlockupdates
	Name
	Synopsis
	Arguments
	Description

	journalgetwriteaccess
	Name
	Synopsis
	Arguments
	Description

	journalgetcreateaccess
	Name
	Synopsis
	Arguments
	Description

	journalgetundoaccess
	Name
	Synopsis
	Arguments
	Description

	journaldirtydata
	Name
	Synopsis
	Arguments
	Description

	journaldirtymetadata
	Name
	Synopsis
	Arguments
	Description

	journalforget
	Name
	Synopsis
	Arguments
	Description

	journalstop
	Name
	Synopsis
	Arguments
	Description

	journaltrytofreebuffers
	Name
	Synopsis
	Arguments
	Description

	journalflushpage
	Name
	Synopsis
	Arguments
	Description

	Chapter 4. See also

