
Bundlor User Guide
Ben Hale

Juliet Shackell

1.0.0.RELEASE

Table of Contents
Copyright ..iv
License ..v
1. Introduction to Bundlor ...1

1.1. About Bundlor ...1
2. Getting Bundlor ..2

2.1. Getting the Bundlor ZIP ...2
2.2. Getting Bundlor with Ivy ..2
2.3. Getting Bundlor with Maven ...3

3. Quickstart ...4
3.1. Command Line Quickstart ..4
3.2. Apache ANT Quickstart ...4
3.3. Apache Maven Quickstart ...5

4. Usage ...7
4.1. Command-Line Usage ..7

Command Syntax ...7
Command Line Reference ...7

Command Line Parameters ...7
Command Line Property Values ..8

ANT Task Examples ...8
Creating a manifest ...8
Creating a manifest with placeholder replacement ...9

4.2. Apache ANT Usage ...9
ANT Setup ...9
ANT Task Reference ..10

Task Attributes ...10
Inline Manifest Template ..12
Inline OSGi Profile ...12
Inline Property Values ..12

ANT Task Examples ...13
Creating a manifest ...13
Creating a manifest with placeholder replacement ...13

4.3. Apache Maven Usage ...14
Maven Setup ..14
Maven Plugin Reference ...15

Plugin Configuration ...15
Inline Manifest Template ..16
Inline OSGi Profile ...16
Inline Property Values ..17

Maven Plugin Examples ..17
Creating a manifest ...17

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide ii

Creating a manifest with placeholder replacement ...18
5. Manifest Templates ...19

5.1. Introduction ...19
5.2. Manifest Template Format ..19
5.3. Specifying property placeholders ..20
5.4. Specifying automatic version expansion of imported packages based on a pattern21

Re-using version patterns ..22
5.5. Example Bundlor Manifest Template ..23

6. OSGI Profiles and Bundlor ..25
6.1. Overview of OSGI profiles ...25
6.2. Using OSGI profiles with Bundlor ..25

7. Detecting Manifest Requirements ..27
7.1. Java Detection Criteria ...27

Export Package ..27
Import Package ..27

7.2. Spring Context Configuration Detection Criteria ..28
Spring Context Values ..28

7.3. Blueprint Service Configuration Detection Criteria ...29
Blueprint Configuration Values ...29

7.4. Web Application File Detection Criteria ..30
web.xml Values ..30

7.5. Bundle-Classpath File Detection Criteria ...31
7.6. JPA Detection Criteria ..31

persistence.xml Values ..31
7.7. Hibernate Mapping File Detection Criteria ...31

Hibernate Attributes ..32
Hibernate Keywords ...32

7.8. JSP File Detection Criteria ..34
JSP Values ...34

7.9. Log4J Configuration Detection Criteria ...35
Log4J Configuration Values ..35

7.10. Static Resource Detection Criteria ...35
8. Detecting Manifest Issues ..36

8.1. Import Version Range Warning Criteria ...36
8.2. Import of Exported Packages Warning Criteria ..36
8.3. Signed JAR Warning Criteria ..36
8.4. Versioned Imports Warning Criteria ..36
8.5. Versioned Exports Warning Criteria ..36
8.6. Bundle-SymbolicName Warning Criteria ...36
8.7. Manifest-Version Warning Criteria ...36

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide iii

Copyright

Copyright 2008-2009, SpringSource

Licensed Under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide iv

http://www.apache.org/licenses/LICENSE-2.0

License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide v

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide vi

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide vii

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide viii

1. Introduction to Bundlor

1.1 About Bundlor

With the increasing focus on OSGi in Enterprise Java, there has been increasing focus on creating OSGi
bundles for deployment. When a development team is creating their own bundles, it is easy for them to
focus on identifying Imports and Exports and ensuring that their manifests are correct. When it comes
time to use third-party enterprise libraries however, things start to break down.

Many of these libraries are not packaged as OSGi bundles. In fact, many of them have internal
architectures and designs that do not lend themselves to controls that OSGi provides. In this case, a user
must retrofit OSGi directives to the library before use.

This is where SpringSource Bundlor comes in. It can be very hard for a developer to know exactly what
dependencies are needed by a library using simple inspection. Bundlor is a tool that automates the
detection of dependencies and the creation of OSGi manifest directives for JARs after their creation.
Bundlor takes as input a JAR and a template consisting of a superset of the standard OSGi manifest
headers. Bundlor analyses the source code and support files contained in the JAR, applies the template to
the results, and generates a manifest.

The use of Bundlor can take different forms, from tasks for Apache ANT and plugins for Apache Maven,
to simple command line execution for integration into any existing build system.

Before you start using Bundlor, please take a moment to look at the SpringSource Enterprise Bundle
Repository; you may find that what you are looking for has already been updated. If you convert a library
for your own use and think that it might be useful to the community at large, please submit your bundle
information to the Enterprise Bundle Repository for inclusion.

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 1

2. Getting Bundlor

2.1 Getting the Bundlor ZIP

SpringSource Bundlor is distributed as a ZIP file.

1. Download ZIP file from Bundlor download page.

The Bundlor download page is located at http://www.springsource.org/bundlor.

2.2 Getting Bundlor with Ivy

SpringSource Bundlor can be obtained from an Ivy repository

1. Add the SpringSource Enterprise Bundle Repository resolvers to theivysettings.xml file

<url
<attribute>name</attribute>
=
<value>"com.springsource.repository.bundles.release"</value>
>
<ivy

<attribute>pattern</attribute>
=
<value>"http://repository.springsource.com/ivy/bundles/release/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"</value>
/>
<artifact

<attribute>pattern</attribute>
=
<value>"http://repository.springsource.com/ivy/bundles/release/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"</value>
/>
</url>

2. Download the SpringSource Bundlor dependency in the build.xml file

<ivy:cachepath
<attribute>resolveId</attribute>
=
<value>"bundlor.classpath"</value>

<attribute>pathid</attribute>
=
<value>"bundlor.classpath"</value>

<attribute>organisation</attribute>
=
<value>"com.springsource.bundlor"</value>

<attribute>module</attribute>
=
<value>"com.springsource.bundlor.ant"</value>

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 2

http://www.springsource.org/bundlor

<attribute>revision</attribute>
=
<value>"1.0.0.RELEASE"</value>

<attribute>conf</attribute>
=
<value>"ant"</value>

<attribute>inline</attribute>
=
<value>"true"</value>

<attribute>type</attribute>
=
<value>"jar"</value>

<attribute>log</attribute>
=
<value>"download-only"</value>
/>

2.3 Getting Bundlor with Maven

SpringSource Bundlor can be obtained from a Maven repository

1. Add the SpringSource Enterprise Bundle Repository resolvers to the pom.xml file

<repository>
<id>com.springsource.repository.bundles.release</id>
<url>http://repository.springsource.com/maven/bundles/release</url>

</repository>

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 3

3. Quickstart

3.1 Command Line Quickstart

The command line client allows Bundlor to be run from the command line of any platform

1. Change directory to the $BUNDLOR_HOME/bin directory

2. Run bundlor.sh or bundlor.bat scripts. See Section 4.1, “Command-Line Usage” for details
about the parameters the command line client.

% ./bundlor.sh \
-i ./org.springframework.integration.jar \
-m ./template.mf \
-o ./target/org.springframework.integration.jar

Transformed bundle written to ./target/org.springframework.integration.jar
%

3.2 Apache ANT Quickstart

The ANT task allows Bundlor to be run from inside any ANT based build system

1. Define a bundlor namespace

<project
<attribute>name</attribute>
=
<value>"bundlor-sample-ant"</value>

<attribute>xmlns:bundlor</attribute>
=
<value>"antlib:com.springsource.bundlor.ant"</value>
>

2. Import the bundlor task into your build

<target
<attribute>name</attribute>
=
<value>"bundlor.init"</value>
>
<taskdef

<attribute>resource</attribute>
=
<value>"com/springsource/bundlor/ant/antlib.xml"</value>

<attribute>uri</attribute>
=
<value>"antlib:com.springsource.bundlor.ant"</value>
>

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 4

<classpath
<attribute>id</attribute>
=
<value>"bundlor.classpath"</value>
>

<fileset
<attribute>dir</attribute>
=
<value>"${bundlor.home}/dist"</value>
/>

<fileset
<attribute>dir</attribute>
=
<value>"${bundlor.home}/lib"</value>
/>

</classpath>
</taskdef>

</target>

This example uses a very simplistic method for building the bundlor task classpath. It is possible to
use a dependency manager such as Ivy to better manage the classpath of Bundlor.

3. Use the bundlor task. See Section 4.2, “Apache ANT Usage” for details about the parameters of the
task.

<bundlor:bundlor

<attribute>inputPath</attribute>
=
<value>"${basedir}/target/classes"</value>

<attribute>outputPath</attribute>
=
<value>"${basedir}/target/classes"</value>

<attribute>bundleVersion</attribute>
=
<value>"1.0.2.BUILD-${timestamp}"</value>

<attribute>manifestTemplatePath</attribute>
=
<value>"${basedir}/template.mf"</value>
/>

3.3 Apache Maven Quickstart

The Maven plugin allows Bundlor to be run from inside any Maven project.

1. Add the SpringSource Enterprise Bundle Repository to the pom.xml file

<pluginRepositories>
<pluginRepository>

<id>com.springsource.repository.bundles.release</id>

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 5

<name>SpringSource Enterprise Bundle Repository</name>
<url>http://repository.springsource.com/maven/bundles/release</url>

</pluginRepository>
...

</pluginRepositories>

2. Use the bundlor plugin in the pom.xml file. See Section 4.3, “Apache Maven Usage” for details
about the parameters of the plugin.

<build>
<plugins>

<plugin>
<groupId>com.springsource.bundlor</groupId>
<artifactId>com.springsource.bundlor.maven</artifactId>
<version>1.0.0.RELEASE</version>
<executions>
<execution>

<id>bundlor</id>
<goals>
<goal>bundlor</goal>

</goals>
</execution>

</executions>
</plugin>
...

</plugins>
...

</build>

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 6

4. Usage

4.1 Command-Line Usage

The command line client allows Bundlor to be run from the command line of any platform

Command Syntax

To use Bundlor run the following for UNIX and Windows respectively.

$BUNDLOR_HOME/bin/bundlor.sh [options]

%BUNDLOR_HOME%\bin\bundlor.bat [options]

Command Line Reference

Command Line Parameters

The following table lists all the parameters that you can specify for the bundlor command line client.

Table 4.1. Attributes

Attribute Description Required

-f Whether Bundlor should cause a
build failure when there are
warnings warnings about the
resulting manifest

No - defaults to false

-i <path> The path to the input to create a
manifest for. This can either be a
directory or a JAR file.

Yes

-m <path> The path to the manifest
template. See Chapter 5,
Manifest Templates for details.

No

-p <path> The path to the OSGi profile. See
Chapter 6, OSGI Profiles and
Bundlor for details.

No

-o <path>
The path to write the manifest to.
This can either be a directory, a

No - defaults to System.out

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 7

Attribute Description Required

JAR file, or not specified.

If a directory is specified, the
manifest will be written to
${directory}/META-INF/MANIFEST.MF.

If a JAR file is specified, the
manifest will be written as the
manifest for that JAR file.

If nothing is specified, the
manifest will be written to
System.out.

-r <path> The path to a properties file used
for substitution. See Section 5.3,
“Specifying property
placeholders” for details.

No

Command Line Property Values

Property substitution values can be optionally specified on the command line instead of as an external file
using the -Dproperty=value parameter.

% ./bundlor.sh \
-i ./org.springframework.integration.jar \
-m ./template.mf \
-o ./target/org.springframework.integration.jar \
-Dname="Spring Integration"

Transformed bundle written to ./target/org.springframework.integration.jar
%

See Section 5.3, “Specifying property placeholders” for details.

ANT Task Examples

Creating a manifest

% ./bundlor.sh \
-i ./org.springframework.integration.jar \
-m ./template.mf \
-o ./target/org.springframework.integration.jar

Transformed bundle written to ./target/org.springframework.integration.jar
%

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 8

Creating a manifest with placeholder replacement

% ./bundlor.sh \
-i ./org.springframework.integration.jar \
-m ./template.mf \
-o ./target/org.springframework.integration.jar \
-Dname="Spring Integration"

Transformed bundle written to ./target/org.springframework.integration.jar
%

4.2 Apache ANT Usage

The ANT task allows you to run Bundlor from inside any ANT based build system

ANT Setup

The following procedure shows how to set up Bundlor inside of an existing ANT build file

1. Define a bundlor namespace

<project
<attribute>name</attribute>
=
<value>"bundlor-sample-ant"</value>

<attribute>xmlns:bundlor</attribute>
=
<value>"antlib:com.springsource.bundlor.ant"</value>
>

2. Import the bundlor task into your build

<target
<attribute>name</attribute>
=
<value>"bundlor.init"</value>
>
<taskdef

<attribute>resource</attribute>
=
<value>"com/springsource/bundlor/ant/antlib.xml"</value>

<attribute>uri</attribute>
=
<value>"antlib:com.springsource.bundlor.ant"</value>
>

<classpath
<attribute>id</attribute>
=
<value>"bundlor.classpath"</value>
>

<fileset

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 9

<attribute>dir</attribute>
=
<value>"${bundlor.home}/dist"</value>
/>

<fileset
<attribute>dir</attribute>
=
<value>"${bundlor.home}/lib"</value>
/>

</classpath>
</taskdef>

</target>

This example uses a very simplistic method for building the bundlor task classpath. It is possible to
use a dependency manager such as Ivy to better manage the classpath of Bundlor.

3. Use the bundlor task, as shown in the following example. See the section called “ANT Task
Reference” for details about the parameters of the task.

<bundlor:bundlor

<attribute>inputPath</attribute>
=
<value>"${basedir}/target/classes"</value>

<attribute>outputPath</attribute>
=
<value>"${basedir}/target/classes"</value>

<attribute>bundleVersion</attribute>
=
<value>"1.0.2.BUILD-${timestamp}"</value>

<attribute>manifestTemplatePath</attribute>
=
<value>"${basedir}/template.mf"</value>
>
<property

<attribute>name</attribute>
=
<value>"name"</value>

<attribute>value</attribute>
=
<value>"${ant.project.name}"</value>
/>

</bundlor:bundlor>

ANT Task Reference

Task Attributes

The following table lists all the attributes that you can specify for the bundlor ANT task.

Table 4.2. Attributes

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 10

Attribute Description Required

bundleSymbolicName The OSGi
Bundle-SymbolicName for
the resulting manifest

No

bundleVersion The OSGi Bundle-Version
for the resulting manifest

No

enabled Whether Bundlor should create a
manifest

No - defaults to true

failOnWarnings Whether Bundlor should cause a
build failure when there are
warnings warnings about the
resulting manifest

No - defaults to false

inputPath The path to the input to create a
manifest for. This can either be a
directory or a JAR file.

Yes

manifestTemplatePath The path to the manifest
template. See Chapter 5,
Manifest Templates for details.

No

osgiProfilePath The path to the OSGi profile. See
Chapter 6, OSGI Profiles and
Bundlor for details.

No

outputPath
The path to write the manifest to.
This can either be a directory, a
JAR file, or not specified.

If a directory is specified, the
manifest will be written to
${directory}/META-INF/MANIFEST.MF.

If a JAR file is specified, the
manifest will be written as the
manifest for that JAR file.

If nothing is specified, the
manifest will be written to
System.out.

No - defaults to System.out

propertiesPath The path to a properties file used
for substitution. See Section 5.3,
“Specifying property
placeholders” for details.

No

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 11

Inline Manifest Template

Manifest templates can be optionally specified inline instead of as an external file using the
<manifestTemplate/> element.

<bundlor:bundlor>
<manifestTemplate>

Bundle-ManifestVersion: 2
Bundle-Name: Bundlor Core
Bundle-Vendor: SpringSource Inc.
Bundle-SymbolicName: com.springsource.bundlor
Bundle-Version: 0
</manifestTemplate>

</bundlor:bundlor>

See Chapter 5, Manifest Templates for details.

Inline OSGi Profile

OSGI profiles can be optionally specified inline instead of as an external file using the
<osgiProfile/> element.

<bundlor:bundlor>
<osgiProfile>

org.osgi.framework.system.packages = \
javax.accessibility,\
javax.activation,\
javax.activation;version="1.1.0",\
javax.activity,\
javax.annotation,\

...

org.osgi.framework.bootdelegation = \
com_cenqua_clover,\
com.cenqua.*,\
com.yourkit.*,\

...
</osgiProfile>

</bundlor:bundlor>

See Chapter 6, OSGI Profiles and Bundlor for details.

Inline Property Values

Property substitution values can be optionally specified inline instead of as an external file using the
<property/> and <propertySet/> elements.

<bundlor:bundlor>
<property

<attribute>name</attribute>
=
<value>"bundle.name"</value>

<attribute>value</attribute>
=
<value>"Kernel test bundle"</value>
/>

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 12

<property
<attribute>name</attribute>
=
<value>"bundle.version"</value>

<attribute>value</attribute>
=
<value>"1.0.2.BUILD-${timestamp}"</value>
/>
<propertyset>

<propertyref
<attribute>builtin</attribute>
=
<value>"all"</value>
/>
</propertyset>

</bundlor:bundlor>

See Section 5.3, “Specifying property placeholders” for details.

ANT Task Examples

Creating a manifest

<bundlor:bundlor

<attribute>inputPath</attribute>
=
<value>"${basedir}/target/classes"</value>

<attribute>outputPath</attribute>
=
<value>"${basedir}/target/classes"</value>

<attribute>bundleVersion</attribute>
=
<value>"1.0.2.BUILD-${timestamp}"</value>

<attribute>manifestTemplatePath</attribute>
=
<value>"${basedir}/template.mf"</value>
/>

Creating a manifest with placeholder replacement

<bundlor:bundlor

<attribute>inputPath</attribute>
=
<value>"${basedir}/target/classes"</value>

<attribute>outputPath</attribute>
=
<value>"${basedir}/target/target/classes"</value>

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 13

<attribute>bundleVersion</attribute>
=
<value>"1.0.2.BUILD-${timestamp}"</value>

<attribute>manifestTemplatePath</attribute>
=
<value>"${basedir}/template.mf"</value>
>
<property

<attribute>name</attribute>
=
<value>"bundle.name"</value>

<attribute>value</attribute>
=
<value>"Kernel test bundle"</value>
/>
<property

<attribute>name</attribute>
=
<value>"bundle.version"</value>

<attribute>value</attribute>
=
<value>"1.0.2.BUILD-${timestamp}"</value>
/>
</bundlor:bundlor>

4.3 Apache Maven Usage

The Maven plugin allows Bundlor to be run from inside any Maven project.

Maven Setup

The following procedure shows how to set up Bundlor inside of an existing Maven POM file.

1. Add the SpringSource Enterprise Bundle Repository to the pom.xml file.

<pluginRepositories>
<pluginRepository>

<id>com.springsource.repository.bundles.release</id>
<name>SpringSource Enterprise Bundle Repository</name>
<url>http://repository.springsource.com/maven/bundles/release</url>

</pluginRepository>
...

</pluginRepositories>

2. Use the bundlor plugin, as shown in the following example. See the section called “Maven Plugin
Reference” for details about the parameters of the plugin.

<build>
<plugins>

<plugin>
<groupId>com.springsource.bundlor</groupId>
<artifactId>com.springsource.bundlor.maven</artifactId>
<version>1.0.0.RELEASE</version>
<executions>

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 14

<execution>
<id>bundlor</id>
<goals>
<goal>bundlor</goal>

</goals>
</execution>

</executions>
</plugin>
...

</plugins>
...

</build>

Maven Plugin Reference

Plugin Configuration

The following table lists all the elements that you can specify for the bundlor Maven plugin.

Table 4.3. Elements

Attribute Description Required

bundleSymbolicName The OSGi
Bundle-SymbolicName for
the resulting manifest

No - defaults to
${project.artifactId}

bundleVersion The OSGi Bundle-Version
for the resulting manifest

No - defaults to
${project.version}

enabled Whether Bundlor should create a
manifest

No - defaults to true

failOnWarnings Whether Bundlor should cause a
build failure when there are
warnings warnings about the
resulting manifest

No - defaults to false

inputPath The path to the input to create a
manifest for. This can either be a
directory or a JAR file.

No - defaults to
${project.build.outputDirectory}

manifestTemplatePath The path to the manifest
template. See Chapter 5,
Manifest Templates for details.

No - defaults to
${basedir}/template.mf

osgiProfilePath The path to the OSGi profile. See
Chapter 6, OSGI Profiles and
Bundlor for details.

No

outputPath No - defaults to

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 15

Attribute Description Required

The path to write the manifest to.
This can either be a directory, a
JAR file, or not specified.

If a directory is specified, the
manifest will be written to
${directory}/META-INF/MANIFEST.MF.

If a JAR file is specified, the
manifest will be written as the
manifest for that JAR file.

${project.build.outputDirectory}

propertiesPath The path to a properties file used
for substitution. See Section 5.3,
“Specifying property
placeholders” for details.

No

Inline Manifest Template

Manifest templates can be optionally specified inline instead of as an external file using the
<manifestTemplate/> element.

<execution>
<id>bundlor</id>
<goals>

<goal>bundlor</goal>
</goals>
<configuration>

<manifestTemplate>
Bundle-ManifestVersion: 2
Bundle-Name: Bundlor Core
Bundle-Vendor: SpringSource Inc.
Bundle-SymbolicName: com.springsource.bundlor
Bundle-Version: 0

</manifestTemplate>
</configuration>

</execution>

See Chapter 5, Manifest Templates for details.

Inline OSGi Profile

OSGI profiles can be optionally specified inline instead of as an external file using the
<osgiProfile/> element.

<execution>
<id>bundlor</id>
<goals>

<goal>bundlor</goal>

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 16

</goals>
<configuration>

<osgiProfile>
org.osgi.framework.system.packages = \
javax.accessibility,\
javax.activation,\
javax.activation;version="1.1.0",\
javax.activity,\
javax.annotation,\

...

org.osgi.framework.bootdelegation = \
com_cenqua_clover,\
com.cenqua.*,\
com.yourkit.*,\

...
</osgiProfile>

</configuration>
</execution>

See Chapter 6, OSGI Profiles and Bundlor for details.

Inline Property Values

Property substitution values can be optionally specified inline instead of as an external file using the
<properties/> element.

<project>
...
<properties>

<bundle.name>${project.name}</bundle.name>
<bundle.version>2.0.0.RELEASE</bundle.version>

</properties>
...

</project>

See Section 5.3, “Specifying property placeholders” for details.

Maven Plugin Examples

Creating a manifest

<project>
...
<build>

<plugins>
<plugin>
<groupId>com.springsource.bundlor</groupId>
<artifactId>com.springsource.bundlor.maven</artifactId>
<executions>

<execution>
<id>bundlor</id>
<goals>

<goal>bundlor</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 17

</build>
...
</project>

Creating a manifest with placeholder replacement

<project>
...
<properties>

<bundle.name>${project.name}</bundle.name>
<bundle.version>2.0.0.RELEASE</bundle.version>

</properties>
...
<build>

<plugins>
<plugin>
<groupId>com.springsource.bundlor</groupId>
<artifactId>com.springsource.bundlor.maven</artifactId>
<executions>

<execution>
<id>bundlor</id>
<goals>

<goal>bundlor</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
...
</project>

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 18

5. Manifest Templates

5.1 Introduction

A manifest template is a file that Bundlor uses during the generation of OSGi-compliant manifest entries
in a JAR's manifest. The format of the manifest template is the same as that of a standard Java manifest
file, i.e. a series of 'key: value' pairs.

From this template, Bundlor recognizes a specific set of directives and uses them to generate the
OSGi-compliant manifest entries. Bundlor will also add any other headers that are specified in the
template to the generated manifest. This is typically used to specify things like the bundle's symbolic
name and version.

You can also specify property placeholders, or variables, in your manifest template that Bundlor
substitutes with real values at runtime. With this feature, your manifest templates become more dynamic
and useful across a variety of your projects. A particularly useful use case for this feature is to tell
Bundlor to automatically expand versions of imports based on a pattern of your choosing. See
Section 5.3, “Specifying property placeholders” for details.

5.2 Manifest Template Format

The following table lists the headers you can add to the manifest template, in addition to the standard
manifest headers.

Table 5.1. Headers for Manifest Template

Header Description

Excluded-Exports A comma-separated list of packages that must not
be added to the manifest's Export-Package
header.

Excluded-Imports By default, Bundlor adds imports for every
package that Bundlor determines is referenced by
the code or for special files in the jar. Use this
header to specify a comma-separated list of
packages for which imports Bundlor will not
generate.

Export-Template By default, Bundlor versions all exported packages
at the specified Bundle-Version. Use this
header to specify that individual exported
packages be exported at different versions. For
example, Export-Template

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 19

Header Description

com.foo.*;version="1.5" results in
Bundlor versioning any Export-Package
entries for com.foo or its subpackages at 1.5.

Ignored-Existing-Headers If the JAR for which you are generating a manifest
already contains an OSGi-compliant manifest, use
this template header to list headers in the original
manifest which Bundlor should ignore.

Import-Template Use this header to augment package imports that
Bundlor generates via bytecode and special file
analysis. Typically you use the header to version
the import and, in some cases, to mark them as
optional. When you use this header to version the
import, you can optionally specify a version
expansion pattern so that Bundlor sets the version
to a range rather than a single version. To use the
header, set its value to a comma-separated list of
package names and attributes.

Version-Patterns Use this header to declare one or more version
expansion patterns and give each one a name. You
can then use these named patterns in the
Import-Template header if you want to
specify an expansion pattern for the version of
an imported package. This feature is described in
detail later in this section.

A wilcard '*' at the end of the package name is supported to match multiple packages. For example, the
header Import-Template:
com.foo;version=[1.0,2.0);resolution:=optional,com.bar.*;version="[1.5,1.6)"
will cause any import generated for the com.foo package to be versioned at 1.0 (inclusive) to 2.0
(exclusive) and to be considered optional, and for any import of com.bar or its sub-packages to be
versioned at 1.5 (inclusive) to 1.6 (exclusive).

5.3 Specifying property placeholders

To specify a property placeholder in your manifest template, use the form ${property.name}, where
property.name refers to the name of the property placeholder. The method in which the manifest
template actually gets the value of the property placeholder at runtime depends on the Bundlor front end
you use (command line, ANT, or Maven); the details are described later.

The following example shows how to use a property placeholder for the Bundle-Name manifest header

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 20

rather than a literal.

Bundle-Name: ${bundle.name}

5.4 Specifying automatic version expansion of imported
packages based on a pattern

When you use the Import-Template template header to augment package imports that Bundlor
generates in the manifest file, you use the version directive to specify a version or version range of the
imported package.

Import-Template:
com.springsource.kernel*;version="[1.2.0, 2.0.0)"
org.apache.commons.logging;version="[1.1.1, 2.0.0)"

The preceding example specifies that Bundlor should version the com.springsource.* packages at
[2.5.4.A, 3.0.0) and the org.apache.commons.logging package at [1.1.1, 2.0.0)
in the generated manifest file. This works just fine for many use cases, but sometimes the use of literal
versions in this manner can be restrictive.

In order to make the manifest template more dynamic and useful, you can specify that Bundlor
automatically expand the package version into a version range using an expansion pattern of your
choosing. The pattern uses as a base a property placeholder that you define (as described in Section 5.3,
“Specifying property placeholders”) and set to a valid OSGI version number. Then, based on the
expansion pattern you specify, Bundlor generates a version range using the 4 parts of an OSGI version:
major, minor, micro, and qualifier.

The way to tell Bundlor to automatically expand a package import version is to specify the property
placeholder to the right of the version directive of the package in the Import-Template header,
and then within the property placeholder, specify the pattern for both sides of the version range. The
following manifest template snippet shows how to use this feature; the example is described in detail after
the table.

Import-Template:
com.springsource.kernel.*;version="${com.springsource.kernel:[=.=.=.=, +1.0.0)}",
org.apache.commons.logging.*;version="${org.apache.commons.logging:[=.=.=.=, =.=.+1)}"

The following table lists the symbols you can use in the expansion pattern.

Table 5.2. Expansion Pattern Symbols

Symbol Description Location Allowed

= Use the same value from the
variable.

Valid only in the first three
segments (major, minor, micro)
of the version pattern.

[+/-]n Adjust the value from the Valid only in the first three

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 21

Symbol Description Location Allowed

variable by this amount. For
example, +1 means to add 1 to
the value from the variable.

segments (major, minor, micro)
of the version pattern.

-n Substitute this value for the one
in the variable. Typically you
only use this for putting in a 0.

Valid only in the first three
segments (major, minor, micro)
of the version pattern.

Any legal qualifier value Substitute this value for the one
in the variable.

Valid only in the fourth
(qualifier) segment of the version
pattern.

Based on the descriptions of the symbols, we can now understand how the examples above work. First
assume that you have set the property ${com.springsource.kernel} to the value 1.2.0. Based
on the expansion pattern, Bundlor sets the version range of the imported
com.springsource.kernel.* packages to [1.2.0, 2.0.0). The pattern in this case first
specifies that the beginning of the version range stay exactly the same as the value of the property. The
pattern then specifies that at the end of the version range, the major part of the version should be one
integer larger than what the property is originally set to (1); the pattern then specifies that the minor and
micro segments of the version both be set to 0.

Similarly, assume that you set the ${org.apache.commons.logging} property to 1.4.0.
Bundlor generates a version range of [1.4.0, 1.4.1). Again, the beginning of the range is exactly
the same as the property value. The pattern specifies that, in the end of the range, only the micro segment
of the version increase by one; the major and minor segments stay the same.

Re-using version patterns

If you use the same version expansion pattern for several imports, you can name the pattern using the
Version-Patterns header in the manifest template, and then use this name in the particular import
of Import-Template.

Use the form pattern.name;pattern="pattern" to specify a named pattern, where
pattern.name is the name of the pattern and pattern is the pattern, such as [=.=.=.=,
+1.0.0).

Version-Patterns:
apache;pattern="[=.=.=.=, +1.0.0)",
hibernate;pattern="[=.=.=.=, =.=.+1)"

The preceding example shows two named patterns: apache and hibernate. The apache pattern
specifies a version range from the one provided in the property up to but not including the next major
version. The hibernate pattern specifies a version range of the one provided up to but not including
the next micro version.

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 22

To use a named pattern, simply substitute it in the Import-Template header in the place where you
would put the in-line pattern.

Import-Template:
org.apache.commons.codec.*;version="${org.apache.commons.codec:apache}",
org.apache.commons.logging.*;version="${org.apache.commons.logging:apache}",
org.hibernate.*;version="${org.hibernate:hibernate}"
org.myorg.*;version="${org.myorg:(=.=.=.=, =.+1.0.=]}"

In the example, the apache named pattern is used twice, for the two org.apache imports, and the
hibernate pattern is used once. Also note that you can also include an import whose version is
specified with an in-line pattern. The in-line pattern shows a more unusual usage. It will create a version
range from, but not including, the provided version up to and including the next minor version with the
same qualifier.

5.5 Example Bundlor Manifest Template

The following shows a simple example of a Bundlor manifest template file, with a description after the
sample.

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.springframework.binding
Bundle-Name: ${bundle.name}
Bundle-Vendor: SpringSource
Import-Package:
ognl;version="[2.6.9, 3.0.0)";resolution:=optional,
org.jboss.el;version="[2.0.0, 3.0.0)";resolution:=optional

Import-Template:
org.springframework.*;version="[2.5.4.A, 3.0.0)",
org.apache.commons.logging;version="[1.1.1, 2.0.0)",
javax.el;version="[2.1.0, 3.0.0)";resolution:=optional,
ognl;version="[2.6.9, 3.0.0)";resolution:=optional,
org.jboss.el;version="[2.0.0, 3.0.0)";resolution:=optional

The headers marked in bold are required in all manifest templates unless the jar already contains a
manifest with those headers.

• Bundle-ManifestVersion: This should always be 2

• Bundle-SymbolicName: specifies a unique name for the bundle of
org.springframework.binding

• Bundle-Name: specifies a human-readable name for the bundle. The example shows how to use a
property placeholder ${bundle.name}, which at runtime Bundlor will substitute with an actual
value, such as Spring Binding.

• Bundle-Vendor: specifies the bundle's vendor

• Import-Package: hard-codes two packages that will be imported (ognl and org.jboss.el in

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 23

the generated manifest. Bundlor isn't infallible; this lets you add imports that it misses.

• Import-Template: specifies the versions for the package imports that Bundlor generates, marking
javax.el, ognl, and org.jboss.el optional.

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 24

6. OSGI Profiles and Bundlor
When managing and transforming the many bundles included in the SpringSource Enterprise Bundle
Repository, it can become difficult to remember which packages are boot delegated, which are exported
from the system bundle, and which are from other bundles in your system. This information is important
because you typically do not want to import packages into your own application that are boot delegated,
you want to import system bundle packages at version 0, and you want to define custom imports for all
the rest of the bundles. Trying to keep track of which packages are in each of these categories can be error
prone; similarly, defining template entries for them in your manifest template can be time-consuming and
tedious.

To solve this problem, you can specify that Bundlor take an Section 6.1, “Overview of OSGI profiles” as
input and automatically add template entries for boot delegated packages and system bundles. These
import entries would ignore boot-delegated packages and set the version of system bundles to
version="0". This feature is available for all Bundlor front ends: command-line, ANT and Maven.

6.1 Overview of OSGI profiles

An OSGi profile defines the packages that a particular OSGI runtime (such as dm Server) exports from
the system bundle and the packages that it delegates to the boot class loader. An OSGI profile isn't an
actual file; rather, it is two properties that are well known to an OSGi runtime. However, when you pass
these properties to Bundlor, you pass them as a file, as described in the next section. The properties that
make up an OSGI profile are as follows.

• The org.osgi.framework.system.packages property defines the packages exported from
the system bundle.

• The org.osgi.framework.bootdelegation property defines the packages that are boot
delegated.

If you are using dm Server as your OSGI runtime, see the file
DM_SERVER_HOME/lib/java6-server.profile for its OSGI profile, where
DM_SERVER_HOME refers to the main installation directory of dm Server. If you are using another OSGI
runtime, such as Equinox, then see their documentation for their OSGI profile.

For additional information about the syntax of the values of these properties, see sections 3.8.3 and 3.8.5
of the OSGI specification.

6.2 Using OSGI profiles with Bundlor

The first step in using OSGI profiles with Bundlor is to create a file that contains a textual representation
of the two properties that make up an OSGI profile: org.osgi.framework.system.packages

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 25

http://www.osgi.org/Specifications/HomePage

and org.osgi.framework.bootdelegation. What you include in this file is up to you, but
typically you start with the OSGI profile of the OSGI runtime you are using, and then customize it to fit
your environment.

If you are using dm Server as your OSGI runtime, you can start by copying the section of the file
$DM_SERVER_HOME/lib/java6-server.profile that refers to the two properties and pasting it
into your text file. If you are using another runtime, consult their documentation.

The following snippet shows a partial OSGI profile for dm Server; for clarity only a few packages are
shown. The example shows the format in which you should create your own OSGI profile file.

org.osgi.framework.system.packages = \
javax.accessibility,\
javax.activation,\
javax.activation;version="1.1.0",\
javax.activity,\
javax.annotation,\

...

org.osgi.framework.bootdelegation = \
com_cenqua_clover,\
com.cenqua.*,\
com.yourkit.*,\

...

Once you've created your OSGI profile file, the method of passing it to Bundlor depends on the front end
you are using to generate a manifest. For detailed information about using the various front ends, see
Chapter 4, Usage.

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 26

7. Detecting Manifest Requirements
Bundlor's main function is to scan an existing JAR file and determine its runtime dependencies. With this
information it can then generate the OSGi-compliant manifest headers needed for proper runtime
operation. This analysis is comprised of looking for class references and class names in Java classes and
certain well-known file types.

7.1 Java Detection Criteria

Bundlor scans any Java class it can find in the artifact created by the underlying build system. This means
that if a build process has custom behavior (i.e. weaving with AspectJ or jarjaring), Bundlor will be
able to see and analyze the changes made by that process as long as the changes are in the artifact created
by the build system.

There are a number of places in a Java class that another Java type can be referenced from. Bundlor
detects these references and adds manifest requirements for them.

Export Package

Bundlor exports any package that contains a class.

Import Package

The following is a list of the places that Bundlor will search for type names

• Declared Type Superclass Types

• Declared Type Implemented Interfaces Types

• Declared Type Annotation Types

• Declared Field Types

• Declared Field Values Types

• Declared Method Argument Types

• Declared Method Return Types

• Declared Method Exception Types

• Declared Method Annotation Types

• Reference To Field Owner Type

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 27

• Reference To Field Type

• Declared Local Variable Type

• Reference to Method Declaring Type

• Reference to Method Return Type

• Reference to Method Argument Types

• Allocation of Array Type

• Declared Parameter Annotation Types

• Caught Exception Type

• Instantiated Type

• Cast Target Type

• Instanceof Type

• Declared Constant Type

7.2 Spring Context Configuration Detection Criteria

Bundlor scans for Spring context configuration files. If it detects this file type, it scans the file for a
number of values that contain class names.

Spring Context Values

Using XPath syntax, the following is a list of values searched for type names

• //beans:bean/@class

• //aop:declare-parents/@implement-interface

• //aop:declare-parents/@default-impl

• //context:load-time-weaver/@weaver-class

• //context:component-scan/@name-generator

• //context:component-scan/@scope-resolver

• //jee:jndi-lookup/@expected-type

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 28

• //jee:jndi-lookup/@proxy-interface

• //jee:remote-slsb/@home-interface

• //jee:remote-slsb/@business-interface

• //jee:local-slsb/@business-interface

• //jms:listener-container/@container-class

• //lang:jruby/@script-interfaces

• //lang:bsh/@script-interfaces

• //oxm:class-to-be-bound/@name

• //oxm:jibx-marshaller/@target-class

• //osgi:reference/@interface

• //osgi:service/@interface

• //util:list/@list-class

• //util:map/@map-class

• //util:set/@set-class

• //webflow:flow-builder/@class

• //webflow:attribute/@type

• //osgi:service/osgi:interfaces/beans:value

• //osgi:reference/osgi:interfaces/beans:value

• //context:component-scan/@base-package

7.3 Blueprint Service Configuration Detection Criteria

Bundlor scans for Blueprint Service configuration files. If it detects this file type, it scans the file for a
number of values that contain class names.

Blueprint Configuration Values

Using XPath syntax, the following is a list of values searched for type names

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 29

• //bp:bean/bp:argument/@type

• //bp:bean/@class

• //bp:service/@interface

• //bp:reference/@interface

• //bp:reference-list/@interface

• //bp:map/@key-type

• //bp:map/@value-type

• //bp:list/@value-type

• //bp:set/@value-type

• //bp:array/@value-type

• //bp:interfaces/bp:value

7.4 Web Application File Detection Criteria

Bundlor scans for the Servlet web.xml file located in the WEB-INF directory. If it detects this file, it
scans the file for a number of values that contain class names.

web.xml Values

Using XPath syntax, the following is a list of values searched for type names

• //context-param/param-values

• //filter/filter-classs

• //filter/init-param/param-values

• //listener/listener-classs

• //servlet/servlet-classs

• //servlet/init-param/param-values

• //error-page/exception-types

• //env-entry/env-entry-types

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 30

• //ejb-ref/homes

• //ejb-ref/remotes

• //ejb-local-ref/local-homes

• //ejb-local-ref/locals

• //service-ref/service-interfaces

• //resource-ref/res-types

• //resource-env-ref/resource-env-ref-types

• //message-destination-ref/message-destination-type

7.5 Bundle-Classpath File Detection Criteria

Bundlor scans for JAR files located anywhere in the bundle. If it detects this file, it runs the entire set of
analyzers against it. The imports and exports of the JAR file are added to the outer bundle's manifest and
the JAR file is placed on the outer bundle's Bundle-Classpath.

7.6 JPA Detection Criteria

Bundlor scans for the JPA persistence.xml files located in the META-INF directory. If it detects
this file it scans the file for a number of values that contain class names.

persistence.xml Values

Using XPath syntax, the following is a list of values searched for type names

• //persistence-unit/provider

• //persistence-unit/class

7.7 Hibernate Mapping File Detection Criteria

Bundlor scans for any file that ends with a .hbm extension. If it detects one of these files it scans the file
for a number of attributes that can contain class names. If the class name is unqualified (i.e. has no '.' in
it), the classname is prepended with the hibernate-mapping tags' package attribute. Many of the
attributes that can contain class names can also contain Hibernate keywords corresponding to
Hibernate-known types. When these are detected, no manifest requirements are added.

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 31

Hibernate Attributes

Using XPath syntax, the following is a list of attributes searched for type names

• //class/@name

• //id/@type

• //generator/@class

• //composite-id/@class

• //discriminator/@type

• //property/@type

• //many-to-one/@class

• //one-to-one/@class

• //one-to-many/@class

• //many-to-many/@class

• //version/@type

• //component/@class

• //dynamic-component/@class

• //subclass/@name

• //joined-subclass/@name

• //union-subclass/@name

• //import/@class

Hibernate Keywords

The following is a list of reserved Hibernate keywords that will not trigger the addition of manifest
requirements

• assigned

• big_decimal

• big_integer

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 32

• binary

• blob

• boolean

• byte

• calendar

• calendar_date

• character

• class

• clob

• currency

• date

• double

• float

• foreign

• guid

• hilo

• identity

• imm_binary

• imm_calendar

• imm_calendar_date

• imm_date

• imm_serializable

• imm_time

• imm_timestamp

• increment

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 33

• integer

• locale

• long

• native

• select

• seqhilo

• sequence

• sequence-identity

• serializable

• short

• string

• text

• time

• timestamp

• timezone

• true_false

• uuid

• yes_no

7.8 JSP File Detection Criteria

Bundlor scans for the JSP files. If it detects this file, it scans the file for a number of values that contain
class names.

JSP Values

Using Regular expression syntax, the following is a list of values searched for type names

• <%@ page.*import=\"(.*?)\".*%>

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 34

7.9 Log4J Configuration Detection Criteria

Bundlor scans for Log4J configuration files. If it detects this file type, it scans the file for a number of
values that contain class names.

Log4J Configuration Values

Using XPath syntax, the following is a list of values searched for type names

• //appender/@class

• //layout/@class

7.10 Static Resource Detection Criteria

Bundlor scans for any static resource and exports that package.

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 35

8. Detecting Manifest Issues
Bundlor's second function is to scan an existing manifest and identify any potential issues with it.

8.1 Import Version Range Warning Criteria

Bundlor checks that all entries in the Import-Package header have a sensible version range declared.
This ensures that there are no version ranges that are reversed ([2, 1)), and no version ranges that are
exclusive ([1, 1]).

8.2 Import of Exported Packages Warning Criteria

Bundlor checks that the manifest does not import any package that it exports. This behavior is usually
indicative of a package split between two bundles.

8.3 Signed JAR Warning Criteria

Bundlor checks that the manifest does not contain headers indicating that it is from a signed JAR.
Running Bundlor against a signed JAR will render that JAR invalid as the manifest will have changed
from the when it was signed.

8.4 Versioned Imports Warning Criteria

Bundlor checks that all entries in the Import-Package header have a version declared.

8.5 Versioned Exports Warning Criteria

Bundlor checks that all entries in the Export-Package header have a version declared.

8.6 Bundle-SymbolicName Warning Criteria

Bundlor checks that the manifest contains a Bundle-SymbolicName header.

8.7 Manifest-Version Warning Criteria

Bundlor checks that the manifest contains a Bundle-ManifestVersion header with a value of 2.

SpringSource Bundlor

1.0.0.RELEASE Bundlor User Guide 36

	Bundlor User Guide
	Table of Contents
	Copyright
	License
	1. Introduction to Bundlor
	1.1 About Bundlor

	2. Getting Bundlor
	2.1 Getting the Bundlor ZIP
	2.2 Getting Bundlor with Ivy
	2.3 Getting Bundlor with Maven

	3. Quickstart
	3.1 Command Line Quickstart
	3.2 Apache ANT Quickstart
	3.3 Apache Maven Quickstart

	4. Usage
	4.1 Command-Line Usage
	Command Syntax
	Command Line Reference
	Command Line Parameters
	Command Line Property Values

	ANT Task Examples
	Creating a manifest
	Creating a manifest with placeholder replacement

	4.2 Apache ANT Usage
	ANT Setup
	ANT Task Reference
	Task Attributes
	Inline Manifest Template
	Inline OSGi Profile
	Inline Property Values

	ANT Task Examples
	Creating a manifest
	Creating a manifest with placeholder replacement

	4.3 Apache Maven Usage
	Maven Setup
	Maven Plugin Reference
	Plugin Configuration
	Inline Manifest Template
	Inline OSGi Profile
	Inline Property Values

	Maven Plugin Examples
	Creating a manifest
	Creating a manifest with placeholder replacement

	5. Manifest Templates
	5.1 Introduction
	5.2 Manifest Template Format
	5.3 Specifying property placeholders
	5.4 Specifying automatic version expansion of imported packages based on a pattern
	Re-using version patterns

	5.5 Example Bundlor Manifest Template

	6. OSGI Profiles and Bundlor
	6.1 Overview of OSGI profiles
	6.2 Using OSGI profiles with Bundlor

	7. Detecting Manifest Requirements
	7.1 Java Detection Criteria
	Export Package
	Import Package

	7.2 Spring Context Configuration Detection Criteria
	Spring Context Values

	7.3 Blueprint Service Configuration Detection Criteria
	Blueprint Configuration Values

	7.4 Web Application File Detection Criteria
	web.xml Values

	7.5 Bundle-Classpath File Detection Criteria
	7.6 JPA Detection Criteria
	persistence.xml Values

	7.7 Hibernate Mapping File Detection Criteria
	Hibernate Attributes
	Hibernate Keywords

	7.8 JSP File Detection Criteria
	JSP Values

	7.9 Log4J Configuration Detection Criteria
	Log4J Configuration Values

	7.10 Static Resource Detection Criteria

	8. Detecting Manifest Issues
	8.1 Import Version Range Warning Criteria
	8.2 Import of Exported Packages Warning Criteria
	8.3 Signed JAR Warning Criteria
	8.4 Versioned Imports Warning Criteria
	8.5 Versioned Exports Warning Criteria
	8.6 Bundle-SymbolicName Warning Criteria
	8.7 Manifest-Version Warning Criteria

