
NVIDIA Accelerated Linux Driver Set
Release 40 Notes

Software Version 1.0-4191

NVIDIA Corporation
December 11, 2002

N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s

Confidential Information

Published by
NVIDIA Corporation, Inc.
2701 San Tomas Expressway
Santa Clara, CA 95050

Copyright © 2002 NVIDIA Corporation. All rights reserved.

This software may not, in whole or in part, be copied through any means, mechanical, electromechanical, or
otherwise, without the express permission of NVIDIA Corporation.

Information furnished is believed to be accurate and reliable. However, NVIDIA assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties, which
may result from its use. No License is granted by implication or otherwise under any patent or patent rights of
NVIDIA Corporation.

Specifications mentioned in the software are subject to change without notice.

NVIDIA Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

NVIDIA, the NVIDIA logo, CineFX, Digital Vibrance Control, GeForce, nfiniteFX, nForce, Quadro, RIVA, TNT,
TNT2, TwinView, and Vanta are registered trademarks or trademarks of NVIDIA Corporation in the United States
and/or other countries.

Intel and Pentium are registered trademarks of Intel. Linux is a registered trademark of Linus Torvalds. Microsoft and
Windows are registered trademarks of Microsoft Corporation. OpenGL is a registered trademark of Silicon Graphics
Inc. Red Hat, RPM, Linux Library and all Red Hat-based trademarks and logos are trademarks or registered
trademarks of Red Hat, Inc. in the United States and other countries. SPECglperf and SPECviewperf are trademarks
of the Standard Performance Evaluation Corporation.

Other company and product names may be trademarks or registered trademarks of the respective owners with which
they are associated.

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s

Table of Contents

1. Introduction
About Release Notes 1
About the NVIDIA Accelerated Linux Driver Set . 2
Minimum Operating System Requirements 2

Notes and Tips on Operating Systems 2
Supported NVIDIA Products. 3

Notes and Tips on Supported NVIDIA Products5
Features and Enhancements 6
Known Product Limitations 6

Software Issues 6
Hardware Issues 7

2. NVIDIA Linux Driver History
NVIDIA Linux Driver Versions 9
Overview of Resolved Issues and Enhancements 9

Release 40: New Features, Enhancements, and
Resolved Issues 10

Release 25: New Features, Enhancements, and
Resolved Issues 11

Release 20: New Features, Enhancements, and
Resolved Issues 13

Release 10: New Features, Enhancements, and
Resolved Issues 14

Release 6: New Features, Enhancements, and
Resolved Issues 17

3. Installing the NVIDIA Linux
Drivers

Choosing the NVIDIA Packages for Your System22
Installing the NVIDIA_kernel and NVIDIA_GLX

Packages 23
Before You Begin Driver Installation 24
Installing by RPM. 24
Upgrading by RPM 24
Installing & Upgrading by SRPM 25
Installing & Upgrading by Tar File 26

Editing Your XF86Config File 26
Installed Components 28

Installing Libraries 30

4. Configuring the NVIDIA Linux
Driver

XF86Config Options: Configuring AGP 32
AGP Chipsets Supported by NVIDIA AGP . . 33
Troubleshooting AGP Stability Problems. . . 34

XF86Config Options: Introduced in Release 40 36
Option “NoBandWidthTest” “boolean” 36
Option “Dac8Bit” “boolean” 36
Option “CIOverlay” “boolean” 36
Option “TransparentIndex” “integer” 37
Option “OverlayDefaultVisual” “boolean” . . 37

XF86Config Options: Introduced in Release 25 37
Option “NoRenderExtension” “boolean” . . 37
Option “NoTwinViewXineramaInfo” “boolean” 38
Option “UseClipIDs” “boolean”. 38
Option “Stereo” “integer” 38
Option “DigitalVibrance” “integer” 39
Option “Overlay” “boolean” 39
Option “FlatPanelProperties” “string” 40

XF86Config Options: Introduced in Release 20 41
Option “PageFlip” “boolean” 41
Option “UBB” “boolean” 41
Option “UseInt10Module” “boolean” 42
Option “WindowFlip” “boolean” 42

XF86Config Options: Introduced in Release 10 43
Option “ConnectedMonitor” “string” . . . 43
Option “CursorShadow” “boolean” 44
Option “CursorShadowAlpha” “integer” . . . 44
Option “CursorShadowXOffset” “integer” . . 45
Option “CursorShadowYOffset” “integer” . . 45
Option “HWCursor” “boolean” 45
Option “IgnoreEDID” “boolean”. 45
Option “NoDDC” “boolean” 46
Option “NoLogo” “boolean”. 46
Option “NvAGP” “integer”. 46
Option “RenderAccel” “boolean” 46
Option “SWCursor” “boolean” 46
Option “UseEdidFreqs” “boolean” 47

XF86Config TV Options: Introduced in Release 10.
47

Enabling and Configuring TV 47
XF86Config File Settings 47
Option “TVOutFormat” “string” 48
Option “TVStandard” “string”. 48

XF86Config TwinView Options: Introduced in
Release 6 49

Enabling and Configuring TwinView 49
Option “TwinView” “boolean”. 50
Option “SecondMonitorHorizSync” “range(s)” 50
N V I D I A C o r p o r a t i o n 3

S o f t w a r e V e r s i o n 1 . 0 - 4 1 9 1
Option “SecondMonitorVertRefresh” “range(s)”
50

Option “MetaModes” “string” 51
Option “TwinViewOrientation” “string” 53
Option “ConnectedMonitor” “string” 53

OpenGL Environment Variable Settings. 54
Full-Scene Antialiasing (FSAA) 54
Anisotropic Texture Filtering 55
VBLANK Synchronizing 55

Configuring a Laptop 55
Standard Functionality 56
TwinView Functionality 57
Using Hot Keys to Switch Display Devices. . 57
Non-Standard Modes on LCD Displays . . . 58
Known Laptop Issues 59

5. Frequently Asked Questions,
Troubleshooting, & Other
Resources

Frequently Asked Questions: General 60
Frequently Asked Questions: TwinView 71
Troubleshooting: ALi Chipset Users 74
Troubleshooting: NVIDIA TNT Users 74
Contacting Us 75
Additional Resources 75

A. Programming Modes
Introduction 76
Depth, Bits Per Pixel, and Pitch 77
Maximum Resolutions 78
Useful Formulas 78

Video Memory Used 78
Resolution, Pixel Clock, and Vertical Refresh

Rate . 79
Mode Validation 80
Additional Mode Constraints 81

Example Mode Line 83

B. Proc Filesystem Interface
C. XVMC Support
D. GLX Support
E. Configuring Multiple Screens on

One Graphics Card
4 N V I D I A C o r p o r a t i o n

N V I D I A C o r p o r a t i o n 5

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s

Table 1.1 Minimum Operating System Requirements . 2
Table 1.2 Supported NVIDIA Products . 3
Table 2.1 NVIDIA Linux Driver Versions . 9
Table 4.1 TV Output Formats by Country . 49
Table 4.2 Values for the __GL_FSAA_MODE Variable . 54
Table 4.3 Values for the __GL_DEFAULT_LOG_ANISO Variable . 55
Table A.1 Bits Per Pixel Used for Depth . 77
Table A.2 Maximum DAC Values . 81

List of Tables

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
C H A P T E R

INTRODUCTION
This chapter contains the following major sections:
• “About Release Notes” on page 1
• “About the NVIDIA Accelerated Linux Driver Set” on page 2
• “Minimum Operating System Requirements” on page 2
• “Supported NVIDIA Products” on page 3
• “Features and Enhancements” on page 6
• “Known Product Limitations” on page 6

About Release Notes
These Release Notes contain information about the current Release 40
NVIDIA®Accelerated Linux® Driver Set. NVIDIA provides these notes to
enable add-in-card (AIC) producers and original equipment manufacturers
(OEMS) to monitor performance improvements and software problem (bug)
resolutions in each documented version of the driver.
This guide explains how to install, configure, and use the NVIDIA Accelerated
Linux Driver Set. It also describes current and historic software problem
resolutions and software enhancements and contains Troubleshooting,
Frequently Asked Questions, and other contact and support information.
Note: Most of the contents of this guide is also available in a Readme file,

which is posted on the NVIDIA web site (www.nvidia.com) and is also
installed in /usr/share/doc/NVIDIA_GLX-1.0/ when the
NVIDIA_GLX package is installed.
1 N V I D I A C o r p o r a t i o n

C H A P T E R 1 I n t r o d u c t i o n
About the NVIDIA Accelerated Linux Driver Set
The NVIDIA Accelerated Linux Driver Set brings both accelerated 2D
functionality and high performance OpenGL support to Linux XFree86 with the
use of NVIDIA products, which are graphics processing units (GPUs). The
NVIDIA nForce product is an integrated graphics processor (IGP).
NVIDIA has a Unified Driver Architecture (UDA) model, which means that
one driver set can be used with all supported NVIDIA hardware. This driver set
provides optimized hardware acceleration of OpenGL applications through a
direct-rendering X Server.
Supported NVIDIA products are listed in Table 1.2 and supported features are
discussed in “NVIDIA Linux Driver History” on page 9.

Minimum Operating System Requirements
This release includes drivers for the Linux operating systems listed in Table 1.1.

Notes and Tips on Operating Systems
• XFree86 can be retrieved from www.xfree86.org. Software packages may

also be available through your Linux distributor.
• All official stable kernel releases from version 2.2.12 and higher are

supported.
Prerelease versions such as “2.4.3-pre2” and “development” kernels such as
2.3.x or 2.5.x are not supported.

Table 1.1 Minimum Operating System Requirements

 Module Version Determining the Version
Linux Kernel 2.2.12 # cat /proc/version
XFree86 4.0.1 # XFree86 -version
Kernel modutils 2.1.121 # insmod -V
If you need to build the NVIDIA kernel module, use the following components:
binutils 2.9.5 # size --version
GNU make 3.77 # make --version
gcc 2.91.66 # gcc --version
If you build the NVIDIA kernel module from source RPMs (Red Hat Package Manager
utility), use the following component:
spec-helper
RPM

rpm -qi spec-helper
N V I D I A C o r p o r a t i o n 2

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
The Linux kernel sources can be downloaded from www.kernel.org or one
of its mirrors.

• binutils and gcc are required only if you install the NVIDIA_kernel
package by SRPM (Source-RPM) or tar file and can be retrieved from
www.gnu.org or one of its mirrors.
Note: binutils and gcc are not required by binary RPM installations.

• If you are using XFree86, but do not have a file /var/log/XFree86.0.log,
then you probably have a version 3.x of XFree86 and must upgrade.

• If you are setting up XFree86 4.x for the first time, it is often easier to begin
with one of the open source drivers that ships with XFree86 (either “nv”,
“vga”, or “vesa”). Once XFree86 is operating properly with the open source
driver, it is easier to switch to the NVIDIA driver.

Supported NVIDIA Products
Table 1.2 lists the NVIDIA products (GPUs) supported by the current version of
the NVIDIA Accelerated Linux Driver Set.

Table 1.2 Supported NVIDIA Products

Desktop Product
Name

Workstation
Product Name

Device PCI
ID (SSDID)

Number of
Displays
Supported Per
Card

nForce™2
(GeForce™4 MX
Integrated GPU)

0x01F0 2

nForce 420/420D
nForce 220/220D
(GeForce2 Integrated
GPU)

0x01A0 1

Quadro®4 980 XGL 0x0288 2
Quadro4 780 XGL 0x0289 2
Quadro4 700 Go GL 0x028C 2

GeForce4 4200 Go 0x0286 2
GeForce4 Ti 4800 SE 0x0282 2
GeForce4 Ti 4200 with
AGP 8X

0x0281 2

GeForce4 Ti 4800 0x0280 2
3 N V I D I A C o r p o r a t i o n

C H A P T E R 1 I n t r o d u c t i o n
Quadro4 900 XGL 0x0258 2
Quadro4 750 XGL 0x0259 2
Quadro4 700 XGL 0x025B 2

GeForce4 Ti 4200 0x0253 2
GeForce4 Ti 4400 0x0251 2
GeForce4 Ti 4600 0x0250 2

Quadro® DCC 0x0203 1
GeForce3 Ti 500 0x0202 1
GeForce3 Ti 200 0x0201 1
GeForce3 0x0200 1

Quadro4 580 XGL 0x0188 2
Quadro4 380 XGL 0x018B 2
Quadro4 280 NVS 0x0181 2

GeForce4 MX 420 with
AGP 8X

0x0183 2

GeForce4 MX 440 SE
with AGP 8X

0x0182 2

GeForce4 MX 440 with
AGP 8X

0x0181 2

GeForce4 410 Go 16M 0x017D 2
Quadro4 500 Go GL 0x017C 2
Quadro4 NVS 0x017A 2/4

GeForce4 440 Go 64M 0x0179 2
Quadro4 500/550
XGL

0x0178 2

GeForce4 460 Go 0x0177 2
GeForce4 420 Go 32M 0x0176 2
GeForce4 420 Go 0x0175 2
GeForce4 440 Go 0x0174 2
GeForce4 MX 440 SE 0x0173 2
GeForce4 MX 420 0x0172 2
GeForce4 MX 440 0x0171 2
GeForce4 MX 460 0x0170 2

Table 1.2 Supported NVIDIA Products (continued)

Desktop Product
Name

Workstation
Product Name

Device PCI
ID (SSDID)

Number of
Displays
Supported Per
Card
N V I D I A C o r p o r a t i o n 4

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Notes and Tips on Supported NVIDIA Products
• RIVA 128/128ZX products are supported by the open source “nv” driver for

XFree86 but not by the NVIDIA Accelerated Linux Driver Set.
• Some NVIDIA Linux Driver features support only certain NVIDIA products,

which is indicated, where applicable.
• If you want to check the Device PCI IDs for comparison with the values

shown in Table 1.2, use one of these methods:
• “cat /proc/pci” or
• “lspci -n” . With this method, locate the device with the vendor ID of

“10de”, as in the following example:
02:00.0 Class 0300: 10de:0010 (rev 10)

GeForce2 Integrated 0x01A0 1
Quadro2 Pro 0x0153 1

GeForce2 Ultra 0x0152 1
GeForce2 Ti 0x0151 1
GeForce2 GTS/Pro 0x0150 1

Quadro2 MXR/Go 0x0113 2
Quadro2 EX 0x0113 1

GeForce2 Go 0x0112 2
GeForce2 MX 100/200 0x0111 2
GeForce2 MX/MX 400 0x0110 2

Quadro® 0x0103 1
GeForce DDR 0x0101 1
GeForce 256 0x0100 1
RIVA™ TNT™2
Family

RIVA TNT™2™
Ultra

0x0029 1

RIVA TNT2 0x0028 1
RIVA TNT2 M64 0x002D 1
RIVA TNT2 Vanta™ 0x002C 1
RIVA TNT2
(Integrated)

0x00A0 1

RIVA TNT™ 0x0020 1

Table 1.2 Supported NVIDIA Products (continued)

Desktop Product
Name

Workstation
Product Name

Device PCI
ID (SSDID)

Number of
Displays
Supported Per
Card
5 N V I D I A C o r p o r a t i o n

C H A P T E R 1 I n t r o d u c t i o n
The non-NVIDIA information presented in the above line will vary
depending of type of card you are using.

Features and Enhancements
For current and earlier history of new features and enhancements, see relevant
sections, categories by driver version number, in Chapter 2: “NVIDIA Linux
Driver History” on page 9.

Known Product Limitations

Software Issues
• “Athlon Processors: Support for Page Size Extension” on page 6
• “X Server and Changing AGP Drivers” on page 6
• “OpenGL + Xinerama” on page 6
• “OpenGL and dlopen()” on page 7
• “DPMS and TwinView” on page 7
• “DPMS and Flat Panel” on page 7
• “Multi-Card, Multi-Display” on page 7
• “Laptop Issues” on page 7
• “Full-Scene Antialiasing (FSAA)” on page 7

Athlon Processors: Support for Page Size Extension
For details, see “Support for the Processor Page Size Extension on Athlon
Processors” on page 34 under “Troubleshooting AGP Stability Problems” on
page 34.

X Server and Changing AGP Drivers
Under Linux32, after starting X twice with different AGP support, the X Server
may crash causing the system to become unusable. To work around this
problem, if you change your AGP driver, be sure to restart the system before
restarting X.

OpenGL + Xinerama
Currently, OpenGL will not display to anything other than the first display
device in an Xinerama environment.
N V I D I A C o r p o r a t i o n 6

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
OpenGL and dlopen()
There are some issues with the older version of the glibc dynamic loader (e.g.,
the version that shipped with Red Hat 7.2) and applications such as Quake3 and
Radiant that use the dlopen() function.
For further details, see “Frequently Asked Questions, Troubleshooting, & Other
Resources” on page 60.

DPMS and TwinView
DPMS (Display Power Management System) modes “suspend” and “standby”
do not work correctly on a second CRT when using TwinView. The screen
becomes blank instead of the monitor being set to the requested DPMS state.

DPMS and Flat Panel
The DPMS modes “suspend” and “standby” do not work correctly on a flat
panel display. The screen becomes blank instead of the flat panel being set to
the requested DPMS state.

Multi-Card, Multi-Display
In certain cases under a multi-card/multi-display configuration, the secondary
card may not be initialized correctly by the NVIDIA kernel module. You can
work around this by enabling the “UseInt10Module” option in the XFree86
configuration file to soft-boot all secondary cards.
For further information, see “Option “UseInt10Module” “boolean”” on page 42.

Laptop Issues
For a list of current known issues with the NVIDIA driver and laptop
computers, refer to “Known Laptop Issues” on page 59.

Full-Scene Antialiasing (FSAA)
When FSAA is enabled (i.e., the __GL_FSAA_MODE environment variable is set to
a value that enables FSAA and a multisample visual is selected), the rendering
may be corrupted when resizing the window.
For details on setting the __GL_FSAA_MODE environment variable, see “OpenGL
Environment Variable Settings” on page 54.

Hardware Issues
This section describes problems that will not be fixed. Usually, the source of the
problem is beyond the control of NVIDIA.
• “Gigabyte GA-6BX Motherboard” on page 8
7 N V I D I A C o r p o r a t i o n

C H A P T E R 1 I n t r o d u c t i o n
• “VIA KX133 and 694X Chipsets With AGP 2X” on page 8
• “Irongate Chipsets With AGP 1X” on page 8
• “ALi (Acer Laboratories Inc.) Chipsets: ALi1541 and ALi1647” on page 8

Gigabyte GA-6BX Motherboard
This motherboard uses a LinFinity regulator on the 3.3-V rail that is rated to
only 5 A — less than the AGP specification, which requires 6 A. When
diagnostics or applications are running, the temperature of the regulator rises,
causing the voltage to the NVIDIA chip to drop as low as 2.2 V. Under these
circumstances, the regulator cannot supply the current on the 3.3-V rail that the
NVIDIA chip requires.
This problem does not occur when the graphics card has a switching regulator
or when an external power supply is connected to the 3.3-V rail.

VIA KX133 and 694X Chipsets With AGP 2X
On Athlon motherboards with the VIA KX133 or 694X chipset, such as the
ASUS K7V motherboard, NVIDIA drivers default to AGP 2x mode to work
around insufficient drive strength on one of the signals.
You can force AGP 4x by setting NVreg_EnableVia4x to 1. However, note
that doing so may cause the system to become unstable.

Irongate Chipsets With AGP 1X
AGP 1X transfers are used on Athlon motherboards with the Irongate chipset to
work around a problem with the signal integrity of the chipset.

ALi (Acer Laboratories Inc.) Chipsets: ALi1541 and ALi1647
On ALi1541 and ALi1647 chipsets, NVIDIA drivers disable AGP to work
around timing issues and signal integrity issues. You can force AGP to be
enabled on these chipsets by setting NVreg_EnableALiAGP to 1. However,
note that doing so may cause the system to become unstable.
N V I D I A C o r p o r a t i o n 8

C H A P T E R 2 N V I D I A L i n u x D r i v e r H i s t o r y
C H A P T E R

NVIDIA LINUX DRIVER HISTORY
This chapter contains the following major sections:
• “NVIDIA Linux Driver Versions” on page 9
• “Overview of Resolved Issues and Enhancements” on page 9

NVIDIA Linux Driver Versions
Release 40 is the latest release of the NVIDIA Accelerated Linux Driver Set.
Table 2.1 contains a summary of driver releases and the versions associated
with them.Some versions listed may not have been released outside of NVIDIA.

Overview of Resolved Issues and Enhancements
This section contains key software enhancements and resolved issues in the
following releases of the NVIDIA Linux drivers:
• “Release 40: New Features, Enhancements, and Resolved Issues” on page 10
• “Release 25: New Features, Enhancements, and Resolved Issues” on page 11

Table 2.1 NVIDIA Linux Driver Versions

Driver Versions Comments
Release 40 1.0-4000 through 1.0-4191 Releases ongoing
Release 25 1.0-2802 through 1.0-3123 Releases ongoing
Release 20 1.0-2312 through 1.0-2313
Release 10 1.0-1101 through 1.0-1541
Release 6 0.9-1 through 0. 9-769
9 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
• “Release 20: New Features, Enhancements, and Resolved Issues” on page 13
• “Release 10: New Features, Enhancements, and Resolved Issues” on page 14
• “Release 6: New Features, Enhancements, and Resolved Issues” on page 17

Release 40: New Features, Enhancements, and Resolved
Issues

Version 1.0-4191 (current release)
• Support for OpenGL 1.4 with CineFX™ architecture
• Support for GLX 1.3
• Support for AGP 8X (AGP 3.0)
• Improved support for nForce2 IGP
• Support for TwinView Clone Mode stereo
• Added support for FSAA with Unified Back Buffer (UBB).
• Fixed bug where there was corruption at the borders of a PBuffer
• More complete acceleration for the XRENDER extension. Due to the

experimental nature, RENDER acceleration is now disabled by default (Option
“RenderAccel” enables RENDER acceleration. (See “Option “RenderAccel”
“boolean”” on page 46 for details.)

• The driver no longer uses the XFree86 Acceleration Architecture (XAA), but
provides its own 2D acceleration architecture to better accommodate the
needs of simultaneous 3D and 2D rendering.

• Added color index overlay emulation on Quadro4 GPUs.
• Added support for separate X screens on a single GPU-based graphics card.

This feature is supported by all GPUs that support TwinView.
• Fixed: PBuffer X crash
• Fixed: Floating point application crashing
• Fixed: Performance drops on pixel zoom value of less than 1.0.
• Fixed: GLX_SGI_video_sync functions differently on NVIDIA hardware

compared to SGI hardware.
• Fixed: Corruption occurs at borders of data read from PBuffer
N V I D I A C o r p o r a t i o n 10

C H A P T E R 2 N V I D I A L i n u x D r i v e r H i s t o r y
Release 25: New Features, Enhancements, and Resolved
Issues

Version 1.0-3123
• Added support for the NVIDIA product category that features the Quadro4

580 XGL and GeForce4 MX and GeForce4 4200
• Added support for the family of NVIDIA products that includes Quadro4 580

XGL and GeForce4 MX and the product line that includes Quadro4 980
XGL, GeForce4 4200 Go, and GeForce4 Ti 4800 SE. (See Table 1.2 in
Chapter 1 for the categories of NVIDIA products.)

• Added Quadbuffered stereo visuals support for Quadro2-based, Quadro4-
based, and Quadro DCC graphics cards.

• Improved Viewperf numbers.
• Added support for up to sixteen display devices (monitors).
• Added support for the IBM T221 digital flat panel.
• Added support for RGB (red-green-blue) OpenGL overlays in TwinView

mode for graphics cards based on the most recent two NVIDIA product
families. They include Quadro4 980 XGL, Quadro4 700 Go GL, GeForce
4200 Go, GeForce4 Ti 4200, Quadro4 900 XGL, GeForce4 Ti 4400, and
others. In Table 1.2 in Chapter 1, these two categories are shown right after
the first nForce product cateory.

• Added support for hardware clip IDs on NVIDIA Quadro4-based products.
The configuration option “UseClipIDs” enables them, as explained in
“Option “UseClipIDs” “boolean”” on page 38.

Version 1.0-2960
• Fixed problem with loading the GLX extension in multi-head environments

with non-NVIDIA-based graphics cards.
• Significant performance improvements in Viewperf on Quadro-based

graphics cards.
• Added the configuration option “NoRenderExtension” to disable the

RENDER extension. This is useful when running in 8 bpp (bits per pixel)
where the RENDER extension preallocates a large portion of the default
colormap and thus corrupts many legacy applications. See “Option
“NoRenderExtension” “boolean”” on page 37.

• Fixed a regression where I420 XvImages had the chroma planes swapped.
• Fixed some problems with moving overlay windows.
11 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
• Added a dynamic XvMC library “libXvMCNVIDIA_dynamic.so” so that
applications can dynamically load the vendor-specific core XvMC support.

• Added XvMC motion-compensation acceleration for the Quadro4 XGL (700/
750/900)-based and GeForce4 Ti (4200/4600)-based cards.

• Fixed certain issues with XvMC support under the NVIDIA GeForce4/
Quadro4-based graphics cards.

• Fixed some problems with FSAA modes failing.

Version 1.0-2880
• Fixed rendering problems which occurred in some cases when

GL_SYNC_TO_VBLANK was enabled.
• Fixed problem where the maximum pixel clock was set too low.
• Fixed a problem with image flicker when running full-screen applications

with GeForce4-based graphics cards.
• Fixed a pixmap cache corruption problem when using GeForce3.
• Fixed some issues running multiple NVIDIA graphics cards simultaneously.

Version 1.0-2802
• Improved support for NVIDIA nForce.

• Added support for the GeForce4-based and Quadro4-based family of
NVIDIA GPUs

• Added support for anisotropic filtering.
• Added the configuration option “DigitalVibrance” to enable Digital

Vibrance Control™, which is a mechanism for controlling color separation
and intensity that boosts the color saturation of an image. For details, see
“Option “DigitalVibrance” “integer”” on page 39.

• Added the configuration option “Flat Panel Properties” to adjust
dithering and scaling when X is started. See “Option “FlatPanelProperties”
“string”” on page 40.

• Added support for SoftEDIDs. When this option is enabled, the driver
generates an EDID based on the video BIOS instead of performing a table
lookup. For further information, see “Standard Functionality” on page 56
under “Configuring a Laptop” on page 55.

• Added libXvMCNVIDIA.a, which is an implementation of XvMC 1.0. This
allows MPEG acceleration on NVIDIA GeForce4-based and Quadro4-based
graphics cards.
N V I D I A C o r p o r a t i o n 12

C H A P T E R 2 N V I D I A L i n u x D r i v e r H i s t o r y
• Added RGB workstation overlays for Quadro4-based graphics cards. These
are double-buffered, Z-buffered 16-bit visuals. The transparency key is
0x0000 hex.

• Added an 8:8:8:8 XRGB XvImage format to the video blitter.
• Fixed problem of using SGIX_fbconfig and SGIX_PBuffer with indirect

rendering, which was caused by an incorrect protocol.
• Fixed problem where the driver would fail on systems with 1GB or more of

memory and a kernel configured to use all the memory.

Release 20: New Features, Enhancements, and Resolved
Issues
Note: The NVIDIA Linux Release 20 driver does not support features that are

new in Release 25.

Version 1.0-2313
• Support for NVIDIA nForce (IGP 220D/IGP 420D)
• Unified Back Buffer (UBB). See “Option “UBB” “boolean”” on page 41.
• Page Flipping. See “Option “PageFlip” “boolean”” on page 41.
• Window Flipping. See “Option “WindowFlip” “boolean”” on page 42.
• Support for OpenGL 1.3 (the current ARB-approved version of OpenGL)
• PBuffer and fbconfig extensions provide support for accelerated off-screen

rendering.

Version 1.0-2312
• Improved performance of SPECviewperf, Quake, and immediate mode

applications.
• Improved driver stability on AMD platforms.
• Fixed TwinView problem that caused garbage to appear on the screen when

starting X with a null option on head 0.
• Added workaround for XAA bug that caused systems to hang when Lisa

Screensaver is run. The workaround is to add the following line to the
“Device” section of the XF86Config file:
Option “XaaNoSolidFillTrap”.
This option prevents XAA from breaking wide lines (and polygons) into
trapezoids and avoids an XAA clipping problem.
13 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
• Fixed a system hang that occurred on some GPUs when taking the X server
down (after having run once successfully) and restarting it while using the
DVI-I connected to a flat panel.

• Fixed problem where the performer application Perfly would hang when run
in forked-draw mode.

• Fixed problem where the X driver would segfault when given an invalid
MetaMode.

• Fixed problem where the console was not restored properly after entering X
and returning to the console.

• Fixed problem where X did not redraw completely after a screen blank on
GeForce2 Go and Quadro2 Go.

• Fixed problem with initializing the secondary card. In most cases, the
secondary card is posted correctly. In the cases where it isn't, a workaround
was created to initialize the card via X. (See “Multi-Card, Multi-Display” on
page 7.)

• Added workarounds to enable AGP on ALi chipsets and enable 4X AGP on
VIA chipsets. (See “VIA KX133 and 694X Chipsets With AGP 2X” on
page 8 and “ALi (Acer Laboratories Inc.) Chipsets: ALi1541 and ALi1647”
on page 8.)

Release 10: New Features, Enhancements, and Resolved
Issues
Note: The NVIDIA Linux Release 10 driver does not support features that are

new in Release 20.

GeForce 3
Release 10 is the first driver release to fully support the GeForce3 nfiniteFX™
engine in OpenGL using Texture and Vertex programs. Developers can now
expose the full functionality of GeForce3 under Linux.

GeForce2 Go and Quadro2 Go
The Release 10 driver also added support for mobile (laptop) platforms with the
GeForce2 Go and Quadro2 Go products, hot key switching, and improved
driver stability on mobile platforms.

TV Output Feature
Graphics cards based on an NVIDIA GPU with a TV-Out (S-Video) connector
can be used to send the display to a television as another display device, such as
a CRT (monitor) or a digital flat panel (DFP) display. The TV can be used by
N V I D I A C o r p o r a t i o n 14

C H A P T E R 2 N V I D I A L i n u x D r i v e r H i s t o r y
itself, or (on appropriate graphics cards) in conjunction with another display
device in a TwinView™ configuration.
If a TV is the only display device connected to your graphics card, it will be
used as the primary display when you start up your system; that is, the display
will come up on the TV just as if it was a CRT.

Release 10: Resolved Issues and Enhancements
Resolved Issues and enhancements are categorized by the following versions:
“Version 1.0-1541” on page 15
“Version 1.0-1512” on page 15
“Version 1.0-1450” on page 15
“Version 1.0-1420” on page 16
“Version 1.0-1251” on page 17

Version 1.0-1541
Fixed problem where starting X on GeForce3 caused screen corruption (e.g., red
vertical lines).

Version 1.0-1512
• Fixed problem where garbage appears on the screen and the LCD blooms

when X is started on the Toshiba 3000 series laptops.
• Changed behavior of the X server so that the NVIDIA splash screen only

appears on the first run of X. The splash screen can also be disabled by
setting an option in the XF86Config file; see “Option “NoLogo” “boolean””
on page 46 for details.

• Fixed problem where OpenGL applications would sometimes leave portions
of their rendering behind when the window was closed using the “x” button
on the window banner.

• Fixed problem on mobile where X would respond to the wrong hot key event
under certain conditions.

• Fixed several more problems with indirect rendering.
• Fixed problem on SMP machines that occurred when VT switching while

running gloss and gears with indirect rendering.
• Fixed problem where /proc/nv/card0 did not report Quadro DCC correctly.

Version 1.0-1450
• Fixed problem on TNT2, where the driver would only support up to four

threads per process.
15 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
• Fixed X Server crash that occurred when running two X Servers with
AGPGART.

• Fixed some problems in GLX that occurred when running multi-threaded
applications.

• Fixed problems with window borders picking up color values when moved
across active OpenGL applications.

• Fixed problems so that the X Server detects a Quadro DCC-based card and
properly initializes.

• Fixed problem so that Red Hat 7.1 SMP RPMs can correctly uninstall with
the “rpm -e” command while X Server is running.

• Corrected default OpenGL state when indirect rendering..

Version 1.0-1420
• Added xf86XVOffscresenImage support so the V4L module can use the

hardware scaler on YUV surfaces.

• Added support for hot key switching on mobile platforms, i.e., laptop
computers.

• Fixed a hang on mobile that occurred after starting, stopping, and then
restarting X.

• Fixed a problem on mobile platforms that prevented DVDs from displaying.
• Fixed a problem that caused OpenGL programs to segfault when using a

graphical login with xdm/kdm, and doing the following sequence: login,
mode switch, logout, log in and run an OpenGL application.

• Fixed some indirect rendering problems.
• Fixed a problem that caused XF86Config file to fail on NVIDIA drivers.
• Fixed a crash that occurred when X forwarding over SSH.
• Fixed OpenGL front buffer clipping bug.
• Improved X-Render acceleration.
• Fixed a problem that prevented X-Render acceleration on GeForce3.
• The NvAGP option now defaults to“3”, which causes the driver to use AGP

GART, if it is available, and NVIDIA AGP, otherwise.
• Fixed issue with GeForce 256/DDR where Linux PCI adapter did not

correctly initialize with AGP card installed.
• Fixed typo in error format string which caused error messages to report “%”

when it should have printed one of several error messages.
N V I D I A C o r p o r a t i o n 16

C H A P T E R 2 N V I D I A L i n u x D r i v e r H i s t o r y
Version 1.0-1251
• Added preliminary GeForce2 Go support.
• Added support for GeForce3 OpenGL and GLX extensions.
• Fixed many SMP issues.
• Added TV-Out support.
• Fixed DGA depth change problem.
• Rewrote 2D off screen memory allocation.
• Fixed X-Video in TwinView.
• Added acceleration for X-Render extension.
• Fixed GLXPixmap rendering.
• Fixed problem with glXMakeCurrent() to same drawable but different

display.
• Fixed problem in which OpenGL caused a segfault when reading X atoms.
• Fixed issues so that X now gets the dots per inch (dpi) from the monitor's

EDID (Extended Display Identification Data) instead of defaulting to 75
dpi.
• All DPMS modes are now supported. Some DPMS issues remain for flat

panels and the second display in a TwinView configuration.
• Fixed support for AGP on systems with 1 GB or more of memory.

Release 6: New Features, Enhancements, and Resolved
Issues

TwinView
Note: The TwinView feature is only supported on NVIDIA products that

support dual-display functionality, such as GeForce2 MX, GeForce2 Go,
Quadro2 MXR, Quadro2 Go, and any of the GeForce4 or Quadro4 family
of GPUs. You may want to consult with your graphics card vendor to
confirm that TwinView is supported on your card.

TwinView is a mode of operation where two display devices can display the
contents of a single X screen in any arbitrary configuration. TwinView supports
a variety of display options, such as digital flat panels, RGB monitors, TVs, and
analog flat panels. This method of using multiple displays has several distinct
advantages over other techniques (such as Xinerama), as outlined here:
17 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
• A single X screen is used. The NVIDIA driver conceals all information
about multiple display devices from the X Server, which only
acknowledges one screen.

• Both display devices share one frame buffer. Thus, all the functionality
present on a single display (e.g. accelerated OpenGL) is available in
TwinView.

• No additional overhead is needed to emulate having a single desktop.
Note: If you are interested in using each display device as a separate X screen,

see “Configuring Multiple Screens on One Graphics Card” on page 88.

Release 6: Resolved Issues and Enhancements
Resolved Issues and enhancements are categorized by the following versions:
“Version 0.9-769” on page 18
“Version 0.96” on page 19

“Version 0.95” on page 19
“Version 0.94” on page 20
“Version 0.9-3” on page 20
“Version 0.9-2” on page 20
“Version 0.9-1” on page 21

Version 0.9-769
• Fixed problem where an old version of the release documentation was being

installed instead of the current one.
• Fixed problem where direct rendering applications were allowed to continue

rendering after “xkill” was called.
• Fixed problem where Tribes 2 crashed when compressed (s3tc) textures were

used.
• Some drawable leaks were fixed in X and GLX.
• Fixed problem where the application would hang when calling

“glXMakeCurrent()” while holding the X Server grab.
• BIOS posting problems with GeForce2 GTS and GeForce Ultra were fixed.

These problem caused a significant performance loss.
• Added support for the X Render extension.
• TwinView functionality was enhanced for each display to pan independently.
N V I D I A C o r p o r a t i o n 18

C H A P T E R 2 N V I D I A L i n u x D r i v e r H i s t o r y
• Fixed problem on TNT and TNT2 where “Xv(Shm)PutImage” returned
“BadAlloc” in high resolutions when there was not enough video bandwidth
to correctly display the YUV video overlay. This works now but the resulting
display has artifacts.

• Fixed problem with cursor hangs in X.
• Fixed problem with X console not restoring on some monitors.
• Fixed problem with fork() and OpenGL rendering
• Fixed problem with X driver module, nvidia_drv.o, being stripped when

RPM was rebuilt.
• Added missing PCI device IDs for some TNT2 variants and GeForce3.
• Fixed problem where the kernel would often hang during X and/or OpenGL

operation when on an SMP machine and using the version 2.4 kernel.
• Fixed SYNC_TO_VBLANK hang with 2.4 kernels.
• Fixed DPMS so that it is possible to set the “off” option. DPMS options

“suspend” and “standby” are not fully supported; these options simply blank
the screen.
Note: Be sure to include Option “DPMS” in your XF86Config file. Refer

to the XF86Config man page for detailed information.

Version 0.96
• Fixed many SMP problems.
• Fixed memory management problems that arose with large RAM systems

(500 MB plus).
• Added multi-monitor OpenGL support.
• Added TwinView support.
• Fixed more mode-line handling issues and added double-scan support.
• Fixed BIOS-posting problems with TNT2 M64 and GeForce2 MX.
• Added dynamic run-time selection between NVAGP and AGPGART.
• Fixed TNT2 OpenGL slowdowns, which were noticeable in UT.

Version 0.95
• Improved XFree86 version 4.0.1 support.
• Re-fixed console switch lockup.
• Fixed some AGP regressions resulting in better detection/support of

AGPGART.
19 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
• Fixed color palette problems (Xgamma, direct color visuals).
• Added BIOS-posting override to help with NVIDIA products such as TNT2

M64.
• Update included version 2.4 support to newest test kernels.

Version 0.94
• Added support for XFree86 version 4.0.1.
• Fixed mode-setting problem.
• Added AGPGART support (NVAGPGART version 0.5-5).
• Added GeForce2 MX support.
• Fixed various hangs.
• Added FSAA support.
• Fixed problem where an OpenGL application malfunctioning during a

console switch would crash the X Server.

Version 0.9-3
• Allowed mode-line directives in the XF86Config file to override NVIDIA

auto-detection of monitor resolutions and refresh rates.
• Implemented “correct” fix for TNT memory-type problems.
• Fixed VT switch lockups.
• Fixed general ALi chipset lockups.
• Added and documented some registry keys. Check os-registry.c in the

kernel source directory for more details and options.
• Implemented workaround for Quake3 mode switch problem that caused

system to crash. Note that this was a problem in the dlopen()function.
• Implemented major improvement in multi-threading behavior.
• Display list sharing with glXCreateContext now works.
• Added faster implementation of glTexImage/glTexSubImage and

glCopyTexImage/glCopytexSubImage calls.
• Fixed kernel memory leak, which was related to threaded OpenGL This

problem was most noticeable with XMMS.
• Fixed build problems with older version 2.2.x kernels (Red Hat 6.0)

Version 0.9-2
• Fixed problem initializing TNT with SGRAM.
N V I D I A C o r p o r a t i o n 20

C H A P T E R 2 N V I D I A L i n u x D r i v e r H i s t o r y
• Added better logging and messages for tracking problems.
• Added dynamic, rather than static, allocation of client data in kernel.
• Incorporated *unsupported* version 2.3 kernel changes for completeness.
• Makefile updates add “-D_LOOSE_KERNEL_NAMES” and default to “make

install”.
• Improved mode switching in Quake3.
• Changed installation name of libraries. Added revision .1.0.1 to the libraries.
• Temporarily forced disabling of AGP fast writes for all chips.
• Fixed monitor issues and allowed overriding of synchronization polarities.

Version 0.9-1
Initial Release
21 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
C H A P T E R

INSTALLING THE NVIDIA LINUX DRIVERS
This chapter contains the following major topics:
• “Choosing the NVIDIA Packages for Your System” on page 22
• “Installing the NVIDIA_kernel and NVIDIA_GLX Packages” on page 23
• “Editing Your XF86Config File” on page 26
• “Installed Components” on page 28

Choosing the NVIDIA Packages for Your System
The NVIDIA Accelerated Linux Driver Set consists of two packages that you
need to download and install:
• NVIDIA_GLX package contains the OpenGL libraries and the XFree86 driver.
• NVIDIA_kernel package contains the NVIDIA kernel module required by the

X driver and OpenGL libraries in the NVIDIA_GLX package.
For detailed description of the components of each package, see “Installed
Components” on page 28.
Note: You must install both packages with matching version numbers; i.e.,

NVIDIA_GLX-1.0-2960 should only be used with NVIDIA_kernel-1.0-
2960 and not NVIDIA_kernel-1.0-2880.
N V I D I A C o r p o r a t i o n 22

C H A P T E R 3 I n s t a l l i n g t h e N V I D I A L i n u x D r i v e r s
The packages are available in these three formats:
• RPM
• SRPM
• Tar file
Installation of each package type is described in the sections that follow.
The package type is largely a matter of personal preference, though note that the
binary RPMs are for use only with the kernel shipped with a particular
distribution; i.e., NVIDIA_kernel-1.0-2960.rh73up.i386.rpm should only be
used with the uni-processor kernel shipped with Red Hat version 7.3.
Where appropriate, NVIDIA has provided separate RPMs for the distinct SMP
and uni-processor kernels of each distribution. If you have upgraded your kernel
(either manually, or through a distribution upgrade) or a specific
NVIDIA_kernel RPM is not available for your distribution, then please use
either the NVIDIA_kernel SRPM or tar file.
In the case where distributors ship multiple kernels (as is often the case with
uni-processor and SMP systems), multiple RPMs are available, for example,
NVIDIA_kernel-1.0-2960.rh73up.i686.rpm and NVIDIA_kernel-1.0-
2960.rh73smp.i686.rpm.

The NVIDIA_GLX RPM, however, is not dependent upon the kernel version, and
therefore an SRPM is not required. Install the NVIDIA_GLX package either by
RPM or tar file.
Note: If you are not certain about the files to download, you can use the script

‘NVchooser.sh’ available on the driver download page. To run the
script, type “sh NVchooser.sh”.

Installing the NVIDIA_kernel and NVIDIA_GLX Packages
This section contains the following sections:
• “Before You Begin Driver Installation” on page 24
• “Installing by RPM” on page 24
• “Upgrading by RPM” on page 24
• “Installing & Upgrading by SRPM” on page 25
• “Installing & Upgrading by Tar File” on page 26
23 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Before You Begin Driver Installation
Before beginning the driver installation, it is recommended that you follow
these steps.
1 Exit the X Server.
2 Set your default run level so you will boot to console and not start up X.
3 If you are unsure about how to perform the previous step, refer to the

documentation that came with your Linux distribution. This will make it
easier to recover if there is a problem during the installation.

Note: The package revision numbers have been omitted in the installation
instructions to make them as general as possible. For example, if the
directions are NVIDIA_kernel.tar.gz, replace that with the name of
the driver version you are installing; for example: "NVIDIA_kernel.1.0-
2960.tar.gz".

Installing by RPM

Commands
$ rpm -ivh NVIDIA_kernel.i386.rpm

$ rpm -ivh NVIDIA_GLX.i386.rpm

Commands Explained
1 Before installing from RPM, be sure you have downloaded the

NVIDIA_kernel RPM that is appropriate for your kernel.
2 Once you have verified that you have the correct RPM, install

NVIDIA_kernel with this command:
$ rpm -ivh NVIDIA_kernel.i386.rpm

3 Next, install the NVIDIA_GLX RPM with this command:
$ rpm -ivh NVIDIA_GLX.i386.rpm

Upgrading by RPM

Commands
$ rpm -Uvh NVIDIA_kernel.i386.rpm

$ rpm -e NVIDIA_GLX

$ rpm -ivh NVIDIA_GLX.i386.rpm
N V I D I A C o r p o r a t i o n 24

C H A P T E R 3 I n s t a l l i n g t h e N V I D I A L i n u x D r i v e r s
Commands Explained
Before upgrading from RPM, be sure that you have downloaded the
NVIDIA_kernel RPM that is appropriate for your kernel. Once you have verified
that you have the correct RPM, upgrade the NVIDIA_kernel package using this
command:

$ rpm -Uvh NVIDIA_kernel.i386.rpm

Note: Do not use the “-U” option to upgrade the NVIDIA_GLX RPM because a
problem in the uninstall section of older NVIDIA RPMs will cause
some files to be incorrectly removed. Instead, use “-e” to remove the
old NVIDIA_GLX RPM and then install the new one using these
commands:

$ rpm -e NVIDIA_GLX

$ rpm -ivh NVIDIA_GLX.i386.rpm

Installing & Upgrading by SRPM

Commands
$ rpm --rebuild NVIDIA_kernel.src.rpm

$ rpm -ivh /path/to/rpms/RPMS/i386/NVIDIA_kernel.i386.rpm

$ rpm -ivh NVIDIA_GLX.i386.rpm

Commands Explained
To build a custom NVIDIA_kernel rpm for your system, first ensure that the
headers for your kernel are installed (Red Hat, for example includes the kernel
headers in an rpm called “kernel-source”). Then, pass rpm the “--rebuild” flag,
as in the following example:

$ rpm --rebuild NVIDIA_kernel.src.rpm

Note: More recent versions of rpm no longer support the “--rebuild” option,
in which case you need to run the following command instead:

$ rpmbuild --rebuild NVIDIA_kernel.src.rpm

Look for the line that looks something like (the path may be different):
Wrote: /usr/src/redhat/RPMS/i386/NVIDIA_kernel.i386.rpm

and use that as input for RPM to install:
$ rpm -ivh /usr/src/redhat/RPMS/i386/NVIDIA_kernel.i386.rpm

or upgrade:
$ rpm -Uvh /usr/src/redhat/RPMS/i386/NVIDIA_kernel.i386.rpm
25 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
To install the NVIDIA_GLX package, follow the instructions above for either
installing or upgrading NVIDIA_GLX from RPM.

Installing & Upgrading by Tar File

Commands
$ tar xvzf NVIDIA_kernel.tar.gz

$ tar xvzf NVIDIA_GLX.tar.gz

$ cd NVIDIA_kernel

$ make install

$ cd ../NVIDIA_GLX

$ make install

Commands Explained
To install from tar file, follow these steps:
1 Unpack each file with these commands:

$ tar xvzf NVIDIA_kernel.tar.gz

$ tar xvzf NVIDIA_GLX.tar.gz

2 Usint the commands below:
$ cd NVIDIA_kernel

$ make install

change to the NVIDIA_kernel directory. Then use the “make install”
command, which compiles the kernel interface to the NVIDIA kernel
module, links the kernel interface, copies the kernel interface into place, and
attempts to load the kernel interface into the running kernel.

3 Move into the NVIDIA_GLX directory by using the “make install” command
to copy required OpenGL and XFree86 files into place.
$ cd ../NVIDIA_GLX

$ make install

Editing Your XF86Config File
Note: This document uses “XF86Config” to refer to your configuration file;

you may have a different name for the file.
When XFree86 4.0 was released, it used a slightly different XF86Config file
syntax than the 3.x series used. Therefore, to allow both 3.x and 4.x versions of
N V I D I A C o r p o r a t i o n 26

C H A P T E R 3 I n s t a l l i n g t h e N V I D I A L i n u x D r i v e r s
XFree86 to co-exist on the same system, it was decided that XFree86 4.x will
use the configuration file /etc/X11/XF86Config-4, if this file exists. If this
file does not exit, XFree86 4.x will use /etc/X11/XF86Config.
Note: X searches a large path to find the Config (configuration) files. For a

complete description of the search path, it is strongly recommended that
you refer to the XF86Config man page.

1 Verify the configuration file that XFree86 is using.
To do so, you can locate a line beginning with “==) Using config file:”
in your XFree86 log file (”/var/log/XFree86.0.log”).

2 If you do not have a working XF86Config file, there are several ways to
begin:
• Refer to the sample configuration file is included with XFree86.
• Refer to the sample configuration file is included in the NVIDIA_GLX

package and installed in /usr/share/doc/NVIDIA_GLX-1.0.
• You can also use a program such as xf86config. Some distributions

provide their own tool for generating an XF86Config file. (For details on
the XF86Config file syntax, refer to the man page.)

3 If you already have an XF86Config file working with a different driver,
such as the “nv” or “vesa” driver, then follow these steps:
a Find the relevant Device section and replace the line:

Driver "nv" (or Driver "vesa")
with
Driver "nvidia"

b In the Module section, verify that you have:
Load "glx"

c Remove the following lines, if they exist:
Load "dri"

Load "GLcore"

Note: There are many options that you can add to the XF86Config file to fine
tune the NVIDIA XFree86 driver. (See “Configuring the NVIDIA
Linux Driver” on page 32 for a complete list of these options.)

4 Once you have configured your XF86Config file, you are ready to restart X
and begin using the accelerated OpenGL libraries.

5 After you restart X, you can run any OpenGL application, which will
automatically use the new NVIDIA libraries. If you encounter any problems,
27 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
see “Frequently Asked Questions, Troubleshooting, & Other Resources” on
page 60.

Installed Components
The NVIDIA Accelerated Linux Driver Set consists of several components:

• The XFree86 driver, GLX module, libGL, libGLcore, and XmVC
components are included in the NVIDIA_GLX package.

• The NVIDIA kernel module component is included in the NVIDIA_kernel
package.

• Documentation and the OpenGL and GLX header files are part of the
NVIDIA_GLX package and are installed in:
/usr/share/doc/NVIDIA_GLX-1.0

Note: The file shown in parenthesis is the full name of the component after
installation. x.y.z denotes the current version — appropriate symlinks
are created during installation.

XFree86 Driver
(/usr/X11R6/lib/modules/drivers/nvidia_drv.o)
is required by XFree86 to make use of your NVIDIA hardware. The
nvidia_drv.o driver is binary compatible with XFree86 version 4.0.1 and
higher.

GLX Extension Module
(/usr/X11R6/lib/modules/extensions/libglx.so.x.y.z)
is used by XFree86 to provide server-side GLX support.

OpenGL library
(/usr/lib/libGL.so.x.y.z)
provides the API entry points for all OpenGL and GLX function calls. At run-
time, OpenGL applications link to this library.

OpenGL Core Library
(/usr/lib/libGLcore.so.x.y.z)
is implicitly used by libGL and libglx and contains the core accelerated 3D
functionality.
Note: Do not explicitly load the OpenGL core library in your XF86Config file;

this task is performed by libglx.
N V I D I A C o r p o r a t i o n 28

C H A P T E R 3 I n s t a l l i n g t h e N V I D I A L i n u x D r i v e r s
XvMC (X-Video Motion Compensation) Libraries
A static library and a shared library (/user/X11R6/lib/libXvMCNVIDIA.a, /
usr/X11R6/lib/libXmMCNVIDIA.so.x.y.z). For details, see “XVMC
Support” on page 86.

Kernel Module
(/lib/modules/‘uname -r’/video/nvidia.o) or (/lib/modules/
‘uname -r’/kernel/drivers/video/nvidia.o)
This kernel module provides low-level access to your NVIDIA hardware for all
of the above components. It is generally loaded into the kernel when the X
Server is started and is used by the XFree86 driver and OpenGL.
nvidia.o has two components:

• the binary-only core
• a kernel interface that must be compiled specifically for your kernel

version.
Note: The Linux kernel does not have a consistent binary interface such as

XFree86, so it is important that this kernel interface is matched to the
version of the kernel that you are using. You can accomplish this by
compiling yourself or using precompiled binaries provided for the kernels
shipped with some of the more common Linux distributions.

OpenGL and GLX Header Files
(/usr/share/doc/NVIDIA_GLX-1.0/include/GL/gl.h)
(/usr/share/doc/NVIDIA_GLX-1.0/include/GL/glx.h)
In most cases, the system-supplied headers in /usr/include/GL will suffice
for OpenGL development. But NVIDIA provided these headers because they
contain the most up-to-date versions of the NVIDIA OpenGL extensions. If you
want to use these headers, it is recommended that you copy them to /usr/
include/GL.
29 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Installing Libraries
Note: Problems will arise if applications use the wrong version of a library,

which can occur if either old libGL libraries or obsolete symlinks exist. If
you have reason to believe that your installation may encounter problems,
check that the following files are in place; these files are part of the
NVIDIA Accelerated Linux Driver Set and include their symlinks:

/usr/X11R6/lib/modules/drivers/nvidia_drv.o

/usr/X11R6/lib/modules/extensions/libglx.so.x.y.z

/usr/X11R6/lib/modules/extensions/libglx.so -> libglx.so.x.y.z

/usr/lib/libGL.so.x.y.z
/usr/lib/libGL.so.x -> libGL.so.x.y.z
/usr/lib/libGL.so -> libGL.so.x

/usr/lib/libGLcore.so.x.y.z
/usr/lib/libGLcore.so.x -> libGLcore.so.x.y.z

/lib/modules/`uname -r`/video/nvidia.o, or

/lib/modules/`uname -r`/kernel/drivers/video/nvidia.o

Installing the NVIDIA_kernel package also creates the /dev files:
crw-rw-rw- 1 root root 195, 0 Feb 15 17:21 nvidia0

crw-rw-rw- 1 root root 195, 1 Feb 15 17:21 nvidia1

crw-rw-rw- 1 root root 195, 2 Feb 15 17:21 nvidia2
crw-rw-rw- 1 root root 195, 3 Feb 15 17:21 nvidia3

crw-rw-rw- 1 root root 195, 255 Feb 15 17:21 nvidiactl

If there are other libraries with a “soname” that conflicts with that of the
NVIDIA libraries, “ldconfig” may create the wrong symlinks. In this case, it
is recommended that you follow these steps:
1 Manually remove or rename conflicting libraries. (See the Note at the end of

these steps.)
Note: Be sure to rename clashing libraries to a name that “ldconfig” will not

identify; for example, you can prepend “xxx” to a library name.)
2 Rerun “ldconfig” and check that the correct symlinks were made. Some

libraries that often create conflicts are
/usr/X11R6/lib/libGL.so* and
/usr/X11R6/lib/libGLcore.so*.
N V I D I A C o r p o r a t i o n 30

C H A P T E R 3 I n s t a l l i n g t h e N V I D I A L i n u x D r i v e r s
3 Once you’ve verified the libraries, then verify that the application is using the
correct libraries.
For example, to check that the application /usr/X11R6/bin/gears is
using the NVIDIA libraries, you would issue the following command:
$ ldd /usr/X11R6/bin/gears

libglut.so.3 => /usr/lib/libglut.so.3 (0x40014000)

libGLU.so.1 => /usr/lib/libGLU.so.1 (0x40046000)

libGL.so.1 => /usr/lib/libGL.so.1 (0x40062000)
libc.so.6 => /lib/libc.so.6 (0x4009f000)

libSM.so.6 => /usr/X11R6/lib/libSM.so.6 (0x4018d000)

libICE.so.6 => /usr/X11R6/lib/libICE.so.6 (0x40196000)
libXmu.so.6 => /usr/X11R6/lib/libXmu.so.6 (0x401ac000)

libXext.so.6 => /usr/X11R6/lib/libXext.so.6 (0x401c0000)

libXi.so.6 => /usr/X11R6/lib/libXi.so.6 (0x401cd000)
libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x401d6000)

libGLcore.so.1 => /usr/lib/libGLcore.so.1 (0x402ab000)

libm.so.6 => /lib/libm.so.6 (0x4048d000)
libdl.so.2 => /lib/libdl.so.2 (0x404a9000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

libXt.so.6 => /usr/X11R6/lib/libXt.so.6 (0x404ac000)

Note: If the files being used for libGL and libGLcore are not NVIDIA
libraries, you need to either remove the libraries that are getting in the
way, or adjust your “ld” search path. If you are not familiar with this
process, you may want to read the man pages for "ldconfig" and
"ldd" for pointers.

For information on troubleshooting the NVIDIA Accelerated Linux Driver Set,
see “Frequently Asked Questions, Troubleshooting, & Other Resources” on
page 60.
31 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
C H A P T E R

CONFIGURING THE NVIDIA LINUX DRIVER
This chapter contains the following major topics:
• “XF86Config Options: Configuring AGP” on page 32
• “XF86Config Options: Introduced in Release 40” on page 36
• “XF86Config Options: Introduced in Release 25” on page 37
• “XF86Config Options: Introduced in Release 20” on page 41
• “XF86Config Options: Introduced in Release 10” on page 43
• “XF86Config TV Options: Introduced in Release 10” on page 47
• “XF86Config TwinView Options: Introduced in Release 6” on page 49
• “OpenGL Environment Variable Settings” on page 54
• “Configuring a Laptop” on page 55
Note: This documentation uses “XF86Config” to refer to your configuration

file; you may be using a different file name.

XF86Config Options: Configuring AGP
The “NvAgp” option in your XF86Config file provides several ways to
configure the use of AGP by the NVIDIA kernel module.
1 You can use either the NVIDIA AGP module (NvAGP) or the AGP module

that comes with the Linux kernel (AGPGART).
Option “NvAgp” “0” ... disables AGP support
Option “NvAgp” “1” . . . use NVAGP, if possible
N V I D I A C o r p o r a t i o n 32

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
Option "NvAgp" "2" ... use AGPGART, if possible
Option "NvAgp" "3" ... try AGPGART; if that fails, try NVAGP
Default: "3"
(The default was "1" through NVIDIA Linux driver version 1.0-1251.)

2 It is recommended that you use the AGP module that works best with your
AGP chipset. If you are experiencing problems with stability, you may
want to start by disabling AGP and observing if that solves the problems.
You can then experiment with either of the other AGP modules.

3 You can query the current AGP status at any time using the /proc file
system interface. For further details, see “Proc Filesystem Interface” on
page 84.

4 To use the Linux AGPGART module, you must compile it with your kernel,
either statically linked in or built as a module.
Note: NVIDIA AGP support cannot be used if AGPGART is loaded in the

kernel. It is recommended that you compile AGPGART as a module
and verify that it is not loaded when trying to use NVIDIA AGP. Note
that changing AGP drivers generally requires restarting your computer
before the changes actually take effect.

5 Rebuild and reinstall the new driver using “make”, which forces the driver to
ignore the BIOS of the NVIDIA product and use your values.

AGP Chipsets Supported by NVIDIA AGP
The following AGP chipsets are supported by the NVIDIA AGP module; for all
other chipsets, it is recommended that you use the AGPGART module,

ALi 1621 ALi 1631 ALi 1647 ALi 1651 ALi 1671
AMD 751
(“Irongate”)

AMD 761
(“IGD4”)

AMD 762 (“IGD4
MP”)

Intel 440LX Intel 440BX

Intel 440GX Intel 815
(“Solano”)

Intel 820
(“Camino”)

Intel 830 Intel 840
(“Carmel”)

Intel 845
(“Brookdale”)

Intel 845G Intel 850
(“Tehama”)

Intel 860
(“Colusa”)

Micron
SAMDDR
(“Samurai”)

Micron SCIDDR
(“Scimitar”)

nForce AGP RCC 6585HE VIA 8371 VIA 82C694X

VIA KT133 VIA KT266 SiS 630 SiS 633 SiS 635
SiS 645 SiS 730 SiS 733 SiS 735 SiS 745
33 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Troubleshooting AGP Stability Problems
If you are experiencing AGP stability problems, note the following issues:

Support for the Processor Page Size Extension on Athlon
Processors
Some Linux kernels have a conflicting cache attribute bug that is exposed by
advanced speculative caching in newer AMD Athlon family processors (AMD
Athlon XP, AMD Athlon 4, AMD Athlon MP, and Models 6 and above AMD
Duron). This kernel issue is usually encountered under heavy use of accelerated
3D graphics with an AGP graphics card.
Linux distributions based on kernel 2.4.19 and later “should” incorporate the fix
for this issue. However, older kernels require help from the user in ensuring that
a small portion of advanced speculative caching is disabled (normally done
through a kernel patch) and a boot option is specified in order to apply the entire
fix.

Note: The NVIDIA driver automatically disables the small portion of advanced
speculative caching for the affected AMD processors without the need to
patch the kernel; it can be used on kernels that already incorporate the
kernel bug fix.

Additionally, for older kernels, the user needs to perform the startup (boot)
option portion of the fix by explicitly disabling 4MB pages. This can be
done from the startup command line by specifying:
mem=nopentium

Or by adding the following line to etc/lilo.conf:
append = "mem=nopentium"

AGP Drive Strength BIOS Setting (Via-based Motherboards)
Many Via-based motherboards allow adjusting the AGP drive strength in the
system BIOS.
Note: The setting of this option largely affects system stability; the range

between 0xEA and 0xEE seems to work best for NVIDIA hardware.
Setting either nibble to 0xF generally results in severe stability problems.

Caution: If you decide to experiment with this setting and, as a result, use
improper settings, be advised that you may cause your system
to be unbootable. In that case, you will need to reset to a working
value by using either a PCI graphics card or by resetting the BIOS
to its default values.
N V I D I A C o r p o r a t i o n 34

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
System BIOS Version
Make sure you have the latest system BIOS provided by the graphics card
manufacturer.

AGP Rate
You may want to decrease the AGP rate setting if you are seeing lockups with
the value you are currently using. You can do so with the NVreg_ReqAGPRate
NVIDIA kernel module parameter.
• If you are inserting the module manually, enter one of the following lines:

insmod nvidia NVreg_ReqAGPRate=2 # force AGP Rate to 2x
insmod nvidia NVreg_ReqAGPRate=1 # force AGP Rate to 1x

• If you are using modprobe (/etc/modules.conf), enter the following lines:

alias char-major-195 nvidia
options nvidia NVreg_ReqAGPRate=2 # force AGP Rate to 2x

or

alias char-major-195 nvidia
options nvidia NVreg_ReqAGPRate=1 # force AGP Rate to 1x

Athlon Motherboards with the VIA KX133 or 694X Chipset
Athlon motherboards with the VIA KX133 or 694X chip set such as the ASUS
K7V motherboard, NVIDIA drivers default to AGP 2x mode to work around
insufficient drive strength on one of the signals. You can force AGP 4x by
setting NVreg_EnableVia4x to 1.
Note: This procedure may cause the driver to become unstable.

ALi1541 and ALi1647 Chipsets
On ALi1541 and ALi1647 chipsets, NVIDIA drivers disable AGP to work
around timing issues and signal integrity issues. You can force AGP to be
enabled on these chipsets by setting NVreg_EnableALiAGP to 1.
Note: This procedure may cause the driver to become unstable.
35 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
XF86Config Options: Introduced in Release 40
The following options are supported by the NVIDIA XFree86 driver for
Release 40 and need to be included in your XF86Config configuration file:
Note: These Release 40 features are not supported by Release 25 or older

NVIDIA Linux drivers.
• “Option “NoBandWidthTest” “boolean”” on page 36
• “Option “Dac8Bit” “boolean”” on page 36
• “Option “CIOverlay” “boolean”” on page 36
• “Option “TransparentIndex” “integer”” on page 37
• “Option “OverlayDefaultVisual” “boolean”” on page 37

Option “NoBandWidthTest” “boolean”
As part of mode validation, the X driver tests whether a given mode fits
within the constraints of the hardware's memory bandwidth. This option
disables the test.
Default: The memory bandwidth test is performed.

Option “Dac8Bit” “boolean”
Most NVIDIA Quadro-based processors, by default, use a 10-bit color look-up
table (LUT).
Enabling this option (specifying “on” in the below statement) forces the
NVIDIA GPU to use an 8-bit LUT.
Default: Option “Dac8Bit” “off” forces the use of a 10-bit LUT, when
available.

Option “CIOverlay” “boolean”
When this option is enabled, the X server provides Color Index workstation
overlay visuals both with and without a transparency key.
Note: When enabled, the Color Index workstation overlay visuals have the

same limitations as described in Option “Overlay” “boolean” in the
previous section.

Default: Option “CIOverlay” “off” disables Color Index workstation
overlay visuals.
N V I D I A C o r p o r a t i o n 36

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
Option “TransparentIndex” “integer”
When color index overlays are enabled, this option allows the user to choose the
pixel that is used for the transparent pixel in visuals featuring transparent pixels.
This value is clamped between 0 and 255.
Note: Some applications such as Alias/Wavefront’s Maya require this option to

be set to “0” (zero) in order to work correctly.
Default: Option “TransparentIndex” “0” disables
TransparentIndex.

Option “OverlayDefaultVisual” “boolean”
When overlays are used and this option is enabled (the above statement is set to
“on”), this option sets the default visual to an overlay visual thereby putting the
root window in the overlay.
Note: This option is not recommended for RGB overlays.
Default: Option “OverlayDefaultVisual” “off”.

XF86Config Options: Introduced in Release 25
The following options are supported by the NVIDIA XFree86 driver for
Release 25 and need to be included in your XF86Config configuration file:
Note: These Release 25 features are not supported by Release 20 or older

NVIDIA Linux drivers.
• “Option “NoRenderExtension” “boolean”” on page 37
• “Option “NoTwinViewXineramaInfo” “boolean”” on page 38
• “Option “UseClipIDs” “boolean”” on page 38
• “Option “Stereo” “integer”” on page 38
• “Option “DigitalVibrance” “integer”” on page 39
• “Option “Overlay” “boolean”” on page 39
• “Option “FlatPanelProperties” “string”” on page 40

Option “NoRenderExtension” “boolean”
This option, when specified, disables the Render extension.
37 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Other than recompiling the X-server, XFree86 doesn’t seem to have another
way of disabling the Render extension. Because the NVIDIA Linux driver can
control this functionality, this option is exported, which is useful in depth 8
where Render would normally utilize most of the default color map.
Default: RENDER is offered, when possible.

Option “NoTwinViewXineramaInfo” “boolean”
Default: Option “NoTwinViewXineramaInfo” “on” means that
TwinView Xinerama information is provided.
When in TwinView, the NVIDIA X driver normally provides a Xinerama
extension that allows X clients (such as window managers) to call
XineramaQueryScreens() to detect the current TwinView configuration.
Because some window mangers cannot properly this process, this option is
provided to disable this process.

Option “UseClipIDs” “boolean”
Note: This feature is only supported on Quadro4-based GPUs when UBB is

enabled.
Enabling this feature sets aside a small amount of video RAM for the clip ID
surfaces, which is typically less than two megabytes.
Example: Option “UseClipIDs” “on” enables usage of hardware clip ID
buffers to improve rendering performance to drawables that are clipped in a
complex way.
Default: Option “UseClipIDs” “off” means that clip ID surfaces are
not used.

Option “Stereo” “integer”
Default: Option “Stereo” “0”. Stereo is not enabled.
Example: Option “Stereo” “1”
This option enables support of quadbuffered stereo visuals on Quadro-based
graphics cards.The “integer” indicates the type of stereo glasses being used, as
explained below:
1 - DDC glasses: The synchronization signal is sent to the glasses through the
DDC signal to the display device (monitor), which usually involve a pass-
through cable between the display device and the graphics card.
N V I D I A C o r p o r a t i o n 38

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
2 - “Blueline” glasses: These usually involve a pass-through cable between the
display device and the graphics card. The glasses can detect the eye to display
based on the length of a blue line visible at the bottom of the screen. When in
this mode, the root window dimensions are one pixel shorter in the Y dimension
than requested. This mode does not work with virtual root window sizes larger
than the visible root window size (desktop panning).
3 - Onboard stereo support: This feature is usually only found on professional
graphics cards. The glasses connect through a DIN connector on the back of the
graphics card.
4 - TwinView Clone Mode Stereo: On NVIDIA GPU-based graphics cards
that support TwinView, the left eye is displayed on the first display and the right
eye is displayed on the second display. This is normally used in conjunction
with special projectors to produce two polarized images, which can then be
viewed with polarized glasses.
Note: To use this stereo mode, you must also configure TwinView in Clone

mode with the same resolution, panning offset, and panning domains on
each display.

Note: Stereo is only available on Quadro-based cards and is not supported in
TwinView (with the exception of TwinView Clone Mode Stereo - option
#4 above).

Note: Currently, stereo operation may not work properly on the original Quadro
(NV10) processor and left-right flipping may be erratic. This issue will be
resolved in a future release of the NVIDIA Linux driver.

Option “DigitalVibrance” “integer”
Digital Vibrance, a mechanism for controlling color separation and intensity,
boosts the color saturation of an image.
Note: This feature is not supported on NVIDIA products that are older than

GeForce2.
Default: Option “DigitalVibrance” “0” disables Digital Vibrance.
The integer value can be must be in the range from 0 through 25, where 25 is
the highest level of digital vibrance.

Option “Overlay” “boolean”
Note: This feature is supported on NVIDIA Quadro4 (Quadro4 200/400 NVS

excluded) family GPUs in depth 24.
Default: Option “Overlay” “off” disables overlay.
39 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
To enable the option, specify “on” in the above statement.
This option does the following:
• Enables RGB workstation overlay visuals.
• Causes the server to advertise the SERVER_OVERLAY_VISUALS root window

property and GLX to report single and double-buffered Z-buffered 16-bit
overlay visuals.

Also note the following:
• The transparency key is pixel 0x0000 (hex).
• There is no gamma correction support in the overlay plane.
• This feature requires XFree86 version 4.1.0 or newer.
• NVIDIA Quadro-based prdocuts that are older than the family that includes

Quadro4 900XGL, Quadro4 750XGL and GeForce4 Ti 4400 have additional
limitations; i.e., overlays are not supported in TwinView mode or with virtual
desktops larger than 2046 x 2047 in any dimension. For example, overlays
are not supported in 2048 x 1536 resolutions.
Quadro-based products that include Quadro4 900XGL, Quadro4 750XGL
and GeForce4 Ti 4400 (and newer product lines) do not have this limitation.
See Table 1.2 in Chapter 1 for categories of NVIDIA products.

Option “FlatPanelProperties” “string”
This feature requests particular properties of any connected flat panels as a
comma-separated list of “property = value” pairs.
Currently, the only two available properties are “Scaling” and “Dithering”,
which can have any of the following values:
• Scaling

• default: The driver will use that scaling state that is current.
• native: The driver will use the flat panel's scaler, if there is one.
• scaled: The driver will use the NVIDIA scaler, if possible.
• centered: The driver will center the image, if possible.
• aspect-scaled: The driver will scale with the NVIDIA scaler, but keep the

aspect ratio correct.
• Dithering

• default: The driver determines when to dither.
• native: The driver will always dither, when possible.
N V I D I A C o r p o r a t i o n 40

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
• disabled: The driver will never dither.
• Example: An example properties string is:

Option “FlatPanelProperties” “Scaling = centered,
Dithering = enabled”

XF86Config Options: Introduced in Release 20
Note: These Release 20 features are also supported by Release 25 and newer

releases; they are not supported by Release 10 or older NVIDIA Linux
drivers.

The following options are supported by the NVIDIA XFree86 driver for
Release 20 and need to be included in your XF86Config configuration file:
• “Option “PageFlip” “boolean”” on page 41
• “Option “UBB” “boolean”” on page 41
• “Option “UseInt10Module” “boolean”” on page 42
• “Option “WindowFlip” “boolean”” on page 42
Unified Back Buffer (UBB), Page Flipping, and Window Flipping features
provide performance gains under certain conditions.

Option “PageFlip” “boolean”
Note: The Page Flipping feature is available on all NVIDIA GeForce or newer

hardware, which excludes TNT/TNT2 products.
Default: Option “PageFlip” “on” enables Page Flipping.
To disable the option, specify “off” in the above statement.
Page Flipping is enabled (by default) in the case of a single full-screen
unobscured OpenGL application when synchronizing to VBLANK. Buffer
swapping is done by changing the buffer rather than copying the back buffer
contents to the front buffer.
This mechanism allows for a much higher performance and non-tearing
swapping during the retrace (when __GL_SYNC_TO_VBLANK is set).

Option “UBB” “boolean”
Note: The Unified Back Buffer (UBB) feature is only available when using the

Quadro family of NVIDIA GPUs, with the exception of Quadro4 200/400
NVS products.
41 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Default: Option “UBB” “on” enables UBB.
To disable UBB, specify “off” in the above statement.
UBB is enabled by default when there is sufficient video memory available so
that all windows share the same back, stencil, and depth buffer. When there are
many windows, the back, stencil, and depth buffer usage will never exceed the
size of that used by a full-screen window.
Note: For a single small window, the back, stencil, and depth buffer usage

equals that of a full-screen window. In this case, the video RAM may be
used more efficiently when UBB is disabled.

Option “UseInt10Module” “boolean”
Default: Option “UseInt10Module” “off”
In this “default” condition, POSTing the cards is done through the NVIDIA
kernel module.
To enable use of the XFree86 Int10 module to soft-boot all secondary cards
rather than POSTing the cards through the NVIDIA kernel module, specify
“on” in the above statement.

Option “WindowFlip” “boolean”
Note: Window Flipping is a feature that requires UBB and therefore only

available on Quadro and Quadro2 family products.
Default: Option “WindowFlip” “off” disables Window Flipping.
To enable Window Flipping:
1 Confirm that UBB is enabled. (See “Option “UBB” “boolean”” on page 41 in

the previous section.)
2 Include this line in your configuration file:

Option “WindowFlip” “on”.
Window Flipping only works when there is a single OpenGL window. This
OpenGL windows’s buffers can be swapped by changing the buffer rather than
copying the contents of the back buffer to the front buffer. This is similar to the
Page Flipping functionality but removes the restriction that the window must be
unobscured and full-screen in order for the feature to work.
N V I D I A C o r p o r a t i o n 42

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
XF86Config Options: Introduced in Release 10
The following options are supported by the NVIDIA XFree86 driver and should
be specified in your XF86Config file.
Note: These Release 10 options are supported by Release 20 or newer NVIDIA

Linux drivers; they are not supported by older NVIDIA Linux drivers.
• “Option “ConnectedMonitor” “string”” on page 43
• “Option “CursorShadow” “boolean”” on page 44
• “Option “CursorShadowAlpha” “integer”” on page 44
• “Option “CursorShadowXOffset” “integer”” on page 45
• “Option “CursorShadowYOffset” “integer”” on page 45
• “Option “HWCursor” “boolean”” on page 45
• “Option “IgnoreEDID” “boolean”” on page 45
• “Option “NoDDC” “boolean”” on page 46
• “Option “NoLogo” “boolean”” on page 46
• “Option “NvAGP” “integer”” on page 46
• “Option “RenderAccel” “boolean”” on page 46
• “Option “SWCursor” “boolean”” on page 46
• “Option “UseEdidFreqs” “boolean”” on page 47

Option “ConnectedMonitor” “string”
Default: String is NULL.
Examples:

Option “ConnectedMonitor” “TV”

Option “ConnectedMonitor” “CRT”

Option “ConnectedMonitor” “CRT,DFP”

Option “ConnectedMonitor” “CRT,TV”

Note: As in all XF86Config entries, spaces are ignored and all entries are case
insensitive.

This option allows you to override the device that the NVIDIA kernel module
detects as connected to your graphics card.
This feature may be useful under these circumstances:
43 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
• If any of your display devices does not support detection using Display Data
Channel (DDC) protocols

• If you use a KVM (keyboard/video/mouse) switch and you are switched
away when X is started. In such a situation, the NVIDIA kernel module
cannot detect the display devices that are connected and the NVIDIA X
driver assumes you have a single CRT connected.

• If you use a digital flat panel instead of a CRT, use this option to explicitly
communicate to the NVIDIA X driver the device that is connected.

• Valid values for this option are:
• "CRT" (cathode ray tube / analog monitor)
• “DFP” (digital flat panel)
• "TV" (television)

• If using TwinView, this option may be a comma-separated list of display
devices; for example:
• “CRT,CRT”

• “CRT,DFP”

• “CRT,TV”

For details on configuring TwinView, see “Enabling and Configuring
TwinView” on page 49.

Option “CursorShadow” “boolean”
This option is only available on GeForce2 or later hardware, which includes
everything except TNT/TNT2, GeForce 256, GeForce DDR and Quadro.
Default: Option “CursorShadow” “off”
This option enables (“on”) or disables (“off”) use of a shadow with the
hardware accelerated cursor. The shadow is a black translucent replica of your
cursor shape at a given offset from the real cursor.

Option “CursorShadowAlpha” “integer”
Default: Option “CursorShadowAlpha” “64”
Integer must be in the range [0, 255].

0: Completely transparent
255: Completely opaque
N V I D I A C o r p o r a t i o n 44

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
Note: This option defines the alpha value to use for the cursor shadow and is
applicable only if CursorShadow is enabled.

Option “CursorShadowXOffset” “integer”
Default: Option “CursorShadowXOffset” “4”
Integer must be in the range [0, 32].
This option defines the offset, in pixels, that the shadow image will be shifted to
the right from the real cursor image. This option is only applicable if
CursorShadow is enabled.

Option “CursorShadowYOffset” “integer”
Default: Option “CursorShadowYOffset” “2”
Integer must be in the range [0, 32].
This option defines the offset, in pixels, that the shadow image will be shifted
down from the real cursor image. This option is only applicable if
CursorShadow is enabled.

Option “HWCursor” “boolean”
Default: Option "HWCursor" "on"
This option enables or disables (with the "off" setting) hardware rendering of
the X cursor.

Option “IgnoreEDID” “boolean”
Default: Option "IgnoreEDID" "off" means EDIDs are used to validate
modes.
This option disables (“on”) or enables ("off") probing of EDIDs from your
monitor. Requested modes are compared against values obtained from your
monitor EDIDs (if any) during mode validation.

Caution: Some monitors may not provide accurate information about its
physical capabilities. However, ignoring the values that the monitor
provides (i.e., setting the option to “on”) may help to validate a
certain mode but could result in serious problems and, therefore,
should be used with extreme care.
45 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Option “NoDDC” “boolean”
Synonym for Option “IgnoreEDID” “boolean”.

Option “NoLogo” “boolean”
Default: Option “NoLogo” “off” enables the NVIDIA logo splash screen
when the X server is started.
To disable the splash screen during X start-up, specify the “on” setting.

Option “NvAGP” “integer”
Default: Option “NvAGP” “3”
Note: The default was 1 through NVIDIA Linux driver version 1.0-1251.
This option configures AGP support; integer value can be one of:

0: Disable AGP.
1: Use the NVIDIA internal AGP support, if possible.
2: Use AGPGART, if possible.
3: Use any AGP support (try AGPGART, then the NVIDIA AGP).

Note: The NVIDIA internal AGP support cannot work if AGPGART is either
statically compiled into your kernel or is built as a module and loaded
into your kernel. (Some distributions load AGPGART into the kernel
during system start-up.)

Option “RenderAccel” “boolean”
Default: Option “RenderAccel” “off” disables hardware acceleration of
the RENDER extension.
To enable hardware acceleration of the RENDER extension, specify “on” in the
above statement.

Option “SWCursor” “boolean”
Default: Option “SWCursor” “off” disables software rendering of the X
cursor.
To enable software rendering of the X cursor, specify “on” in the above
statement.
N V I D I A C o r p o r a t i o n 46

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
Option “UseEdidFreqs” “boolean”
Default: Option “UseEdidFreqs” “off” means that the frequencies
provided by the display device’s EDID will not be used.
When “on” is specified in the above command, the X server uses the
HorizSync and VertRefresh ranges given in a display device's EDID, if any.
EDID-supplied range information will override the HorizSync and
VertRefresh ranges specified in the “Monitor” section of the XFree86
configuration file.
If a display device does not provide an EDID, or the EDID does not specify an
HSync or VRefresh range, then the X server will default to the HorizSync and
VertRefresh ranges specified in the “Monitor” section of the XFree86
configuration file.

XF86Config TV Options: Introduced in Release 10

Enabling and Configuring TV
This sections contains the following topics:
• “XF86Config File Settings” on page 47
• “Option “TVOutFormat” “string”” on page 48
• “Option “TVStandard” “string”” on page 48
A TV monitor can be connected to an NVIDIA product-based graphics card
with a TV-Out (S-Video) connector so that the TV functions as any other
display device, such as a CRT or digital flat panel (DFP). The TV can be used
by itself, or (on appropriate graphics cards) in conjunction with another display
device in a TwinView configuration. (For TwinView features, see the previous
section “Configuring a Laptop” on page 55).
If a TV is the only display device connected to your graphics card, the TV will
be used as the primary display when you start-up your system; that is, the
console will come up on the TV just as if it were a CRT.

XF86Config File Settings
To use your TV with X, note the following settings in your XF86Config file:
• VertRefresh and HorizSync values in the “Monitor” section of the

XF86Config file; confirm that the values are appropriate for your television.
Values are generally:
47 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
• HorizSync 30-50

• VertRefresh 60

• Valid modes for TV in the “Screen” section of the XF86Config file are:
• 640x480
• 800x600

• 1024x768 (if the TV encoder on your graphics card is a BrookTree 871)
Note: Your XFree86 log file should indicate the encoder that you have;

locate the line: (--) NVIDIA(0): TV Encoder detected as
• “TV Standard” is an option that you need to add to the “Screen” section

of your XF86Config file. See “Option “TVStandard” “string”” on page 48.
• Use the “ConnectedMonitor” option (“Option “ConnectedMonitor”

“string”” on page 53) to tell X to use the TV for display. This option is
required only if your TV is not detected by the graphics card, or you normally
use a CRT or digital flat panel as your start-up display but want to redirect X
to use the TV.
Example command line in your XF86Config file:

Option "ConnectedMonitor" "TV"

• “TVOutFormat” is an option that you can use to force S-Video or
Composite output.

Option “TVOutFormat” “string”
Add the “TVOutFormat” option to force S-Video or Composite output.
Without this option, the driver auto-detects the output format but may not do so
correctly. The output format can be forced with one of these options:

Option “TVOutFormat” “SVIDEO”

or
Option “TVOutFormat” “COMPOSITE”

Option “TVStandard” “string”
Add the “TVStandard” option to the “Screen” section of your XF86Config
file. Replace “string” with a valid TV output format, as listed in Table 4.1. A
sample line in the XF86Config file is:

Option “TVStandard” “NTSC-M”

If you don't specify a TVStandard, or you specify an invalid value, the default
“NTSC-M” value is used.
N V I D I A C o r p o r a t i o n 48

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
Default: “NTSC-M”
Note: If your country is not in the list of countries, select the country closest to

your location.

XF86Config TwinView Options: Introduced in Release 6

Enabling and Configuring TwinView
This section contains the following topics:
• “Option “TwinView” “boolean”” on page 50.

For a description of the TwinView feature, see “Release 6: New Features,
Enhancements, and Resolved Issues” on page 17.

• “Option “SecondMonitorHorizSync” “range(s)”” on page 50
• “Option “SecondMonitorVertRefresh” “range(s)”” on page 50
• “Option “MetaModes” “string”” on page 51
• “Option “TwinViewOrientation” “string”” on page 53
• “Option “ConnectedMonitor” “string”” on page 53

Table 4.1 TV Output Formats by Country

TV Output Format Country Where Used
PAL-B Belgium, Denmark, Finland, Germany, Guinea, Hong Kong, India,

Indonesia, Italy, Malaysia, The Netherlands, Norway, Portugal,
Singapore, Spain, Sweden, and Switzerland

PAL-D China and North Korea
PAL-G Denmark, Finland, Germany, Italy, Malaysia, The Netherlands,

Norway, Portugal, Spain, Sweden, and Switzerland
PAL-H Belgium
PAL-I Hong Kong and United Kingdom
PAL-K1 Guinea
PAL-M Brazil
PAL-N France, Paraguay, and Uruguay
PAL-NC Argentina
NTSC-J Japan
NTSC-M Canada, Chile, Colombia, Costa Rica, Ecuador, Haiti, Honduras,

Mexico, Panama, Puerto Rico, South Korea, Taiwan, United States
of America, and Venezuela
49 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
To enable TwinView, you must specify the following options in the “Screen”
section of your XF86Config file.

You may also use any of the following options, though they are not required.

Descriptions of the options are provided in the sections that follow.

Option “TwinView” “boolean”
Default: Option “TwinView” “off” (TwinView is disabled.)
To enable TwinView, you must enable this option with the “on” setting as
shown below; otherwise all other TwinView related options are ignored.
Option “TwinView” “on”

Option “SecondMonitorHorizSync” “range(s)”
Default: None
This option is similar to the “HorizSync” entry in the “Monitor” section of
your XF86Config file, but applies to the second monitor when using TwinView.
According to the XF86Config man page, the “ranges” may be a comma-
separated list of distinct values and/or ranges of values, where a range is given
by two distinct values separated by a dash. The HorizSync value is given in
KHz.
If you trust the EDID of your display device, you may want to use the
“UseEdidFreqs” option instead of this option. (For details, see “Option
“UseEdidFreqs” “boolean”” on page 47.)

Option “SecondMonitorVertRefresh” “range(s)”
Default: None

Option "TwinView"
Option "SecondMonitorHorizSync" “<hsync range(s)>”
Option “SecondMonitorVertRefresh” “<vrefresh range(s)>”
Option "MetaModes" "<list of metamodes>"

Option
"TwinViewOrientation"

"<relationship of head
(display) 1 to head (display)
0>"

Option "ConnectedMonitor" "<list of connected display
devices>"
N V I D I A C o r p o r a t i o n 50

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
This option is similar to the “VertRefresh” entry in the “Monitor” section
of your XF86Config file, but applies to the second monitor when using
TwinView.
According to the XF86Config man page, the “ranges” may be a comma-
separated list of distinct values and/or ranges of values, where a range is given
by two distinct values separated by a dash. The VertRefresh value is given in
Hz.
If you trust the EDID of your display device, you may want to use the
“UseEdidFreqs” option instead of this option. (For details, see “Option
“UseEdidFreqs” “boolean”” on page 47.)

Option “MetaModes” “string”
Default: None
A single MetaMode describes the mode that should be used on each display
device at a given time. Multiple MetaModes list the combinations of modes and
the sequence in which they should be used. When the NVIDIA driver
communicates the available modes to X, it is really the minimal bounding box
of the MetaMode that is communicated, while the “per display device” mode is
kept internal to the NVIDIA driver. In MetaMode syntax, modes within a
MetaMode are separated by a comma and multiple MetaModes are separated by
semicolons. For example:
"<mode name 0>, <mode name 1>; <mode name 2>, <mode name
3>; ..."

Where <mode name 0> is the name of the mode to be used on display device 0
concurrently with <mode name 1> used on display device 1. A mode switch
will then cause <mode name 2> to be used on display device 0 and <mode
name 3> to be used on display device 1.
• An actual MetaMode entry from the XF86Config TwinView sample

configuration file is as follows:
Option “MetaModes” “1280x1024,1280x1024;
1024x768,1024x768”

• If you do not want a display device to be active for a certain MetaMode,
you can use the mode name "NULL", or simply omit the mode name entirely,
as follows:

“1600x1200, NULL; NULL, 1024x768”

or
“1600x1200; , 1024x768”
51 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
• Optionally, mode names can be followed by “offset” information to
control the positioning of the display devices within the virtual screen space;
for example:
“1600x1200 +0+0, 1024x768 +1600+0; ..."

Offset descriptions follow the conventions used in the X “-geometry”
command line option; i.e. both positive and negative offsets are valid, though
negative offsets are only allowed when a virtual screen size is explicitly
given in the XF86Config file.
When no offsets are given for a MetaMode, the offsets are computed
following the value of the ”TwinViewOrientation” option. (See “Option
“TwinViewOrientation” “string”” on page 53.)
Note: If offsets are given for any one of the modes in a single MetaMode,

then offsets are expected for all modes within that single MetaMode; in
such a case, offsets are assumed to be +0+0 when not given.

When not explicitly given, the virtual screen size is computed as the
bounding box of all MetaMode bounding boxes.
MetaModes with a bounding box larger than an explicitly given virtual
screen size are discarded.

• A MetaMode string can be further modified with a “panning domain”
specification; for example:
“1024x768 @1600x1200, 800x600 @1600x1200”

A panning domain is the area in which a display device’s viewport is panned
to follow the mouse.
Panning takes place on two levels under TwinView:
• First, an individual display device's viewport is panned within its panning

domain, as long as the viewport is contained by the bounding box of the
MetaMode.

• Second, once the mouse leaves the bounding box of the MetaMode, the
entire MetaMode (i.e., all display devices) is panned to follow the mouse
within the virtual screen.

Note: The panning domains of the display devices default to being clamped
to the position of the display devices’ viewports. Therefore, the default
functionality is that viewports remain “locked” together and only
perform the second type of panning.

The most beneficial use of panning domains is to eliminate dead areas,
which are regions of the virtual screen that are inaccessible due to display
devices with different resolutions. For example:
N V I D I A C o r p o r a t i o n 52

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
• Specifying “1600x1200, 1024x768” produces an inaccessible region
below the 1024x768 display.

• Specifying “1600x1200, 1024x768 @1024x1200” as a panning
domain for the second display device: provides access to that dead area by
allowing you to pan the 1024x768 viewport up and down in the
1024x1200 panning domain.

• Offsets can be used in conjunction with panning domains to position the
panning domains in the virtual screen space. The offset describes the panning
domain and only affects the viewport in that the viewport must be contained
within the panning domain. For example, the following line describes two
modes, each with a panning domain width of 1900 pixels where the second
display is positioned below the first:

“1600x1200 @1900x1200 +0+0, 1024x768 @1900x768 +0+1200”

Note: If a MetaMode string is not specified, then the X driver uses the modes
listed in the relevant “Display” subsection of the XF86Config file,
attempting to place matching modes on each display device.

Option “TwinViewOrientation” “string”
Default: Option “TwinViewOrientation” “RightOf”
Valid values are:
• "RightOf"

• “LeftOf”

• "Above"

• "Below"

• "Clone"

This option controls the positioning of the second display device relative to the
first within the virtual X screen, when offsets are not explicitly given in the
MetaModes.
Note: Under the TwinView Clone option, both display devices are assigned

offsets of 0,0.

Option “ConnectedMonitor” “string”
See “Option “ConnectedMonitor” “string”” on page 53 for application to
TwinView.
53 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
OpenGL Environment Variable Settings
The following topics are discussed in this section:
• “Full-Scene Antialiasing (FSAA)” on page 54
• “Anisotropic Texture Filtering” on page 55
• “VBLANK Synchronizing” on page 55

Full-Scene Antialiasing (FSAA)
Anti-aliasing is a technique used to smooth the edges of objects in a scene to
reduce the jagged “stairstep” effect that sometimes appears in images.
Full-scene antialiasing is supported on GeForce2 (Quadro2) family and newer
NVIDIA GPUs.
Several antialiasing methods are available and you can select among them by
setting the __GL_FSAA_MODE environment variable. Table 4.2 describes the
possible values for __GL_FSAA_MODE and their effect on various NVIDIA
GPUs.

Notes
• Increasing the number of samples taken during FSAA rendering may

decrease performance.

Table 4.2 Values for the __GL_FSAA_MODE Variable

Value

GeForce, GeForce2,
Quadro, and
Quadro2 Pro

GeForce4 MX,
GeForce4 4xxx Go,
Quadro4 380, 550,
580 XGL, and
Quadro4 NVS

GeForce3, Quadro
DCC, GeForce4 Ti,
GeForce4 4200 Go, and
Quadro4 700, 750, 780,
900, 980 XGL

0 FSAA is disabled. FSAA is disabled. FSAA is disabled.
1 FSAA is disabled. 2x Bilinear Multi

sampling
2x Bilinear Multisampling

2 FSAA is disabled. 2x Quincunx
Multisampling

2x Quincunx Multisampling

3 1.5 x 1.5
Supersampling FSAA disabled FSAA is disabled.

4
2 x 2 Supersampling 2 x 2 Supersampling

4x Bilinear
Multisampling

5 FSAA is disabled. FSAA is disabled. 4x Gaussian Multisampling
N V I D I A C o r p o r a t i o n 54

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
• When FSAA is enabled (i.e., the __GL_FSAA_MODE environment variable is
set to a value that enables FSAA and a multisample visual is chosen), the
rendering may be corrupted when resizing the window.

Anisotropic Texture Filtering
Automatic anisotropic texture filtering can be enabled by setting the
environment variable __GL_DEFAULT_LOG_ANISO.
Table 4.3 describes the possible values for __GL_DEFAULT_LOG_ANISO and
their effect on various NVIDIA GPUs.

VBLANK Synchronizing
Setting the environment variable __GL_SYNC_TO_VBLANK to a non-zero value
forces glXSwapBuffers to synchronize to your monitor's vertical refresh rate.
This implies that the code performs a swap only during the vertical blanking
period on GeForce or newer hardware (i.e., any NVIDIA product except any in
the TNT and TNT2 families).
Note: This option is available only on NVIDIA “3D” products, such as those in

the GeForce/GeForce2/GeForce3 and equivalent workstation family.

Configuring a Laptop
This section contains the following topics:
• “Standard Functionality” on page 56
• “TwinView Functionality” on page 57
• “Using Hot Keys to Switch Display Devices” on page 57
• “Non-Standard Modes on LCD Displays” on page 58
• “Known Laptop Issues” on page 59

Table 4.3 Values for the __GL_DEFAULT_LOG_ANISO Variable

Value
GeForce/Geforce2/Geforce4 MX
Description

GeForce3/GeForce4 Ti
Description

0 No anisotropic filtering. No anisotropic filtering.
1 Enable automatic anisotropic filtering. Low anisotropic filtering
2 Medium anisotropic filtering
3 Maximum anisotropic filtering.
55 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Standard Functionality
Installation and configuration of the NVIDIA Accelerated Linux Driver Set on a
laptop is the same as for any desktop environment, with a few minor exceptions,
listed below.
Starting with the NVIDIA Linux driver version 1.0-2802, information about the
internal flat panel for use in initializing the display is, by default, generated on
the fly from data stored in the Video BIOS.
• This information can be disabled by setting the “SoftEDIDs” kernel option

to “0”.
• If “SoftEDIDs” is turned off, then hardcoded data will be chosen from a

table, based on the value of the “Mobile” kernel option.
• The “Mobile” kernel option can be set to any of the following values:

Again, the “Mobile” kernel option is only needed if SoftEDIDs is disabled;
when it is used, it is usually safest to let the kernel module auto-detect the
correct value, which is the default functionality.
If you need to alter either of these options, you can use any of the following
methods:
• Edit os-registry.c in the NVIDIA_kernel package.
• Set the value on the modprobe command line. For example:

modprobe nvidia NVreg_SoftEDIDs=0 NVreg_Mobile=3

• Add an “options” line to your module configuration file, which is usually
/etc/modules.conf. For example:
options nvidia NVreg_Mobile=5

Value Description
0xFFFFFFFF Lets the kernel module auto detect the correct value
1 Dell laptops
2 Toshiba laptops that are not Compal
3 All other laptops
4 Compal Toshiba laptops
5 Gateway laptops
N V I D I A C o r p o r a t i o n 56

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
TwinView Functionality
All mobile NVIDIA GPUs support TwinView.
TwinView on a laptop can be configured in the same way as on a desktop
computer. (See “Configuring a Laptop” on page 55.)
In a TwinView configuration, when using the laptop's internal flat panel and an
external CRT:
• The CRT is the primary display device. Specify the CRT’s HorizSync and

VertRefresh values in the “Monitor” section of your XF86Config file.
• The flat panel is the secondary display device. Specify the flat panel’s

HorizSync and VertRefresh values using the
“SecondMonitorHorizSync” and “SecondMonitorVertRefresh”
options. (See “Option “SecondMonitorHorizSync” “range(s)”” on page 50
and “Option “SecondMonitorVertRefresh” “range(s)”” on page 50.)
You can also use the “UseEdidFreqs” option to obtain the HorizSync and
VertRefresh values from the EDID of each display device, in which case,
you don’t have to set these values in your XF86Config file.
Note: Use this method of obtaining HorizSync and VertRefresh values

only if you if you trust the reported EDIDs of your display device. For
details, see “Option “UseEdidFreqs” “boolean”” on page 47.

Using Hot Keys to Switch Display Devices
Laptop computers using GeForce2 Go (or higher level product) can react to an
LCD/CRT hot key event, toggling between each of the connected display
devices and each possible combination of the connected display devices
Note: Only two display devices may be active at a time.
Note: TwinView, as configured in your XF86Config file, and hot key

functionality are mutually exclusive; that is, if you enable TwinView in
your XF86Config file, then the NVIDIA X driver ignores hot key events.

Besides TwinView, mobile NVIDIA products can also react to an LCD/CRT
hot key event, toggling between each of the connected display devices and each
possible combination of the connected display devices; note that only two
display devices may be active at a time.
The hot key functionality lets you dynamically connect and remove display
devices to/from your laptop and hot key to them without restarting X.
When using this feature, it is a good idea to use the “UseEdidFreqs” option so
that the HorizSync and VertRefresh values for each display device can be
57 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
retrieved from its EDID. Otherwise, the “Monitor” section of the XF86Config
file will be interpreted differently with each hot key event.
When X is started, or when a change is detected in the list of connected display
devices, a new hot key sequence list is constructed, which shows the display
devices to be used with each hot key event.
When a hot key event occurs, then the next hot key state in the sequence is
chosen. Each mode requested in the XF86Config file is validated against each
display device's constraints, and the resulting modes are made available for that
display device.
If multiple display devices are to be active at once, then the modes from each
display device are paired together. If an exact match (same resolution) is not
found, then the closest fit is used and the display device with the lower
resolution is panned within the resolution of the other display device.
When VT-switching away from X, the VGA console will always be restored on
the display device on which it was present when X was started. Similarly, when
VT-switching back into X, the same display device configuration will be used

Non-Standard Modes on LCD Displays
Some users have had difficulty programming a 1400x1050 mode (the native
resolution of some laptop LCDs). In version 4.0.3, XFree86 added several
1400x1050 modes to its database of default modes, but if you're using an older
version of XFree86, here is a modeline that you can use.

-- 1400x1050 --

1400x1050 @ 60Hz, 65.8 kHz hsync

Modeline "1400x1050" 129 1400 1464 1656 1960

1050 1051 1054 1100 +HSync +VSync
N V I D I A C o r p o r a t i o n 58

C H A P T E R 4 C o n f i g u r i n g t h e N V I D I A L i n u x D r i v e r
Known Laptop Issues
The following issues currently exist when NVDIA drivers are used with laptop
computers:
• Power Management is currently not supported on laptop computers.
• The TwinView feature is currently not supported on Toshiba Satellite 2800

series laptops.
• LCD/CRT hot key switching is not currently functioning on any Toshiba

laptops, with the exception of the Toshiba Satellite 3000 series.
• The video overlay only works on the first display device on which you

started X.
For example, if you perform these steps, the video will not appear on the
second display device:
a Start X on the internal LCD.
b Run a video application that uses the video overlay (i.e., the “Video

Overlay” adaptor advertised through the XV extension).
c Hot key switch to add a second display device.
Note: To work around this problem, you can either configure the video

application to use the “Video Blitter” adaptor advertised through the
XV extension (this is always available) or hot key switch to the display
device on which you want to use the video overlay before starting X.
59 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
C H A P T E R

FREQUENTLY ASKED QUESTIONS,
TROUBLESHOOTING, & OTHER

RESOURCES
This chapter contains the following major sections:
• “Frequently Asked Questions: General” on page 60
• “Frequently Asked Questions: TwinView” on page 71
• “Troubleshooting: ALi Chipset Users” on page 74
• “Troubleshooting: NVIDIA TNT Users” on page 74
• “Contacting Us” on page 75
• “Additional Resources” on page 75

Frequently Asked Questions: General
Question: Where should I start when diagnosing display problems?
Answer: One of the most useful tools for diagnosing problems is the XFree86
log file in /var/log; the file is named:

/var/log/XFree86.<#>.log

where <#> is the server number -- usually “0” (zero).
Note the following about this log file:
• Lines that begin with “(II)” are informational.
• Lines that begin with “(WW)” are warnings.
N V I D I A C o r p o r a t i o n 60

C H A P T E R 5 F r e q u e n t l y A s k e d Q u e s t i o n s , T r o u b l e s h o o t i n g , & O t h e r R e s o u r c e s
• Lines that begin with “(EE)” are errors.
• Verify that the correct configuration file (i.e., the configuration file you

are editing) is being used; find the line that begins with:
(==) Using config file:

• Important: Verify that the NVIDIA driver is being used instead of the
“nv” or “vesa” driver by locating the line:
(II) LoadModule: “nvidia”
Lines from the driver should begin with: (II) NVIDIA(0)

Question: How can I increase the amount of data printed in the XFree86 log
file?
Answer: By default, the NVIDIA X driver prints relatively few messages to
stderr and the XFree86 log file.
If you need to troubleshoot, it may be helpful to enable more verbose output by
using the XFree86 command line options “-verbose” and “-logverbose”,
which can be used to set the verbosity level for the stderr and log file
messages, respectively.
The NVIDIA X driver outputs more messages when the verbosity level is at or
above 5. (XFree86 defaults to verbosity level 1 for stderr and level 3 for the
log file.) Therefore, to enable verbose messaging from the NVIDIA X driver to
both the log file and stderr, you can start X by using the following command:

startx -- -verbose 5 -logverbose 5

Question: Why does my X server fail to start?
Answer: My X server fails to start and my XFree86 log file contains the error:
“(EE) NVIDIA(0): Failed to initialize the NVIDIA kernel module!”
What’s wrong?
Nothing will work if the NVIDIA kernel module doesn't function properly.
• If you see a line in the X log file such as:

(EE) NVIDIA(0): Failed to initialize the NVIDIA kernel module!

then, most likely, a problem exists with the NVIDIA kernel module. Follow
these troubleshooting guidelines:
a Verify that, if you installed from RPM, that the RPM was built specifically

for the kernel you are using.
61 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
b Check that the module “/sbin/lsmod” is loaded; if it is not loaded, try
loading it explicitly with “insmod” or “modprobe”. (Be sure to exit the X
Server before installing a new kernel module.)

• If you receive errors about unresolved symbols, the kernel module has most
likely been built using header files for a different kernel revision than what
you are running. You can explicitly control the kernel header files that are
used by building the NVIDIA kernel module from the NVIDIA_kernel tar
file by using the command:

make install SYSINCLUDE=/path/to/kernel/headers

Note: The convention for the location of kernel header files is in a state of
transition, as is the location of kernel modules. If the kernel module
fails to load properly, modprobe/insmod may be attempting to load an
older kernel module, assuming you've upgraded. Changing to the
directory with the new kernel module and using the command “insmod
./nvidia.o” may help.

• Another cause could be that the /dev/nvidia* device files may be missing.
• Finally, the NVIDIA kernel module may print error messages indicating a

problem. To view these messages, check /var/log/messages, or where
syslog has been directed to place kernel messages. These messages are
prepended with “NVRM”.

Question: My X Server starts but why do OpenGL applications terminate
immediately?
Answer: Most likely a problem exists with other libraries that are in the way or
the presence of obsolete symlinks. (See “Installed Components” on page 28.)
Note: You may be able to fix this problem by rerunning “ldconfig”.
1 Use “xdpyinfo” to verify that the following (correct) extensions are present:

GLX

NV-GLX

NVIDIA-GLX

If these three extensions are not present, then there is most likely a problem
with the loading of the glx module or its inability to implicitly load GLcore.

2 Check your XF86Config file to verify that you are loading glx. (See
“Editing Your XF86Config File” on page 26.)
If your XF86Config file is correct, then check the XFree86 log file for
warnings and errors pertaining to glx. Also check that all of the necessary
symlinks are in place. (See “Installed Components” on page 28.)
N V I D I A C o r p o r a t i o n 62

C H A P T E R 5 F r e q u e n t l y A s k e d Q u e s t i o n s , T r o u b l e s h o o t i n g , & O t h e r R e s o u r c e s
Question: When installing/upgrading by SRPM, the following command only
prints out a list of RPM command line options:
rpm --rebuild NVIDIA_kernel-1.0-2802.src.rpm

Answer: In most cases you can resolve this problem by installing the RPM
Development package for your distribution. Alternatively, you can install/
upgrade by tar file since the tar files do not require RPM.

Question: When installing/upgrading by SRPM, the following command:

rpm --rebuild NVIDIA_kernel-1.0-2802.src.rpm

reports the error:
NVIDIA_kernel-.src.rpm:no such file or directory

Answer: You need to install the rpm-build package for your distribution.
Alternatively, you can install/upgrade by tar file as the tar files don't require
RPM.

Question: Why does installing the NVIDIA_kernel module result in an error
message such as:

#error Modules should never use kernel-headers system headers

#error but headers from an appropriate kernel-source

Answer: You need to install the source for the Linux kernel. In most cases, your
can fix this problem by installing the kernel-source package for your
distribution.

Question: Why do OpenGL applications exit with this error message?

Error: Could not open /dev/nvidiactl because the permissions
are too restrictive. Please see the TROUBLESHOOTING section of
/usr/share/doc/NVIDIA_GLX-1.0/README for steps to correct.

Answer: It is likely that a security module for the Linux-PAM (Pluggable
Authentication Modules for Linux) system may be changing the permissions
on the NVIDIA device files.
Note: To correct the problem, it is recommended that you disable this security

feature by following the steps below. Different Linux distributions have
different files to control. Please consult with your distributor for the
correct method of disabling this security feature.

As an example:
a If your system has the file/etc/security/console.perms, edit the file by

removing the line that starts with "<dri>" (we have also received reports
63 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
that additional references to <dri> in console.perms must be removed, but
this has not been verified by NVIDIA).

b If your system has the file /etc/logindevperms, edit the file by removing
the line that lists /dev/nvidiactl.
The above steps will prevent the PAM security system from modifying the
permissions on the NVIDIA device files.

c Next, you will need to reset the permissions on the device files back to
their original permissions and owner. You can do that with the following
command:
chmod 0666 /dev/nvidia* chown root /dev/nvidia*

Question: Why do OpenGL applications crash and print out the following
warning:

WARNING: Your system is running with a buggy dynamic loader.
This may cause crashes in certain applications. If you
experience crashes you can try setting the environment variable
__GL_SINGLE_THREADED. For more information please consult (sec-
04) TROUBLESHOOTING in the file /usr/share/doc/NVIDIA_GLX-1.0/
README.

Answer: The dynamic loader on your system has a software problem, which
will cause applications to crash under these conditions:
• The application is linked with the pthreads library and
• The application calls the dlopen() function to open the library libGL.so

multiple times during its execution and
• The system has a version of the Linux loader with the software problem.
This problem is present in older versions of the dynamic loader. Distributions
that shipped with this loader include but are not limited to Red Hat Linux 6.2
and Mandrake Linux 7.1.
If the crashing application is single-threaded then setting the environment
variable
__GL_SINGLE_THREADED to any value will prevent the crash.
• In the bash shell, use the export__GL_SINGLE_THREADED command.
• In csh and derivatives, use the setenv __GL_SINGLE_THREADED command.
Previous releases of the NVIDIA Accelerated Linux Driver Set attempted to
work around this problem; however, the workaround caused problems with
other applications and was removed after version 1.0-1541.

N V I D I A C o r p o r a t i o n 64

C H A P T E R 5 F r e q u e n t l y A s k e d Q u e s t i o n s , T r o u b l e s h o o t i n g , & O t h e r R e s o u r c e s
Question: Why does Quake3 crash when changing video modes?
Answer: You are probably experiencing the problem described above. Check
the text output for the "WARNING" message shown previously.
To resolve the problem, before running Quake3, set __GL_SINGLE_THREADED as
described above.

Question: When I start X server, why does it fail? My XFree86 log file contains
the following messages:
II) LoadModule: "nvidia"

II) Loading /usr/X11R6/lib/modules/drivers/nvidia_drv.o

No symbols found in this module

EE) Failed to load /usr/X11R6/lib/modules/drivers/nvidia_drv.o

(II) UnloadModule: "nvidia"

EE) Failed to load module "nvidia" (loader failed, 256) ...

(EE) No drivers available.

Answer: The nvidia_drv.o X driver has been stripped of needed symbols;
some versions of RPM (incorrectly) strip object files while installing. You
probably need to upgrade your version of RPM. Or, you can install the
NVIDIA_GLX package from tar file.

Question: My system runs but seems unstable. What’s wrong?
Answer: Your stability problems may be AGP-related. (See “XF86Config
Options: Configuring AGP” on page 32 for details.)
__
Question: The kernel module doesn't get loaded dynamically when X starts; I
always have to do “modprobe nvidia” first. What’s wrong?
Answer: Verify that the line “alias char-major-195 nvidia” appears in
your module configuration file, which usually is one of the following:
• /etc/conf.modules

• /etc/modules.conf

• /etc/modutils/alias

For details, consult the documentation that came with your distribution.

Question: I can't build the NVIDIA kernel module, or I can build the NVIDIA
kernel module but modprobe/insmod fails to load the module into my kernel.
What's wrong?
65 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Answer: These problems are generally caused by the build using the wrong
kernel header files; i.e., header files for a different kernel version than the one
you are running.
The previous convention was that kernel header files are stored in:
/usr/include/linux/

but that is being deprecated in favor of:
/lib/modules/‘uname -r‘/build/include.

The NVIDIA_kernel Makefile can determine the location on your system.
However, if you encounter a problem, you can force the build to use certain
header files by using this command:
make SYSINCLUDE=/path/to/kernel/headers

Of course, for this process to work, you need the appropriate kernel header files
installed on your system.
Note: Consult the documentation that came with your distribution; some

distributions do not install the kernel header files by default, or they
install headers that do not work properly with the kernel you are running.

Question: Why do OpenGL applications run so slowly?
Answer: The application is probably using a different library (that still remains
on your system) instead of the NVIDIA-supplied OpenGL library.
For details, see “Installed Components” on page 28.

Question: Why are there are problems running Quake2.
Answer: Quake2 requires minor setup to get it started.

d First, in the Quake2 directory, the installation program creates a symlink
called “libGL.so” that points to “libMesaGL.so.” Remove or rename this
symlink.

e Then, to run Quake2 in OpenGL mode, use this command:
 quake2 +set vid_ref glx +set gl_driver libGL.so

Quake2 does not seem to support any kind of full-screen mode but you can
run your X Server at the resolution on which Quake2 runs in order to
emulate full-screen mode.

Question: There are problems running Heretic II. What can I do?
Answer: Heretic II also installs, by default, a symlink called libGL.so in the
application directory. You can remove or rename this symlink, since the system
N V I D I A C o r p o r a t i o n 66

C H A P T E R 5 F r e q u e n t l y A s k e d Q u e s t i o n s , T r o u b l e s h o o t i n g , & O t h e r R e s o u r c e s
will then find the default libGL.so, which the NVIDIA drivers install in
/usr/lib. From within Heretic II, you can then set your render mode to
OpenGL in the video menu.
A patch is also available for Heretic II from lokigames at:

http://www.lokigames.com/products/heretic2/updates.php3

Question: Where can I get gl.h or glx.h so I can compile OpenGL programs?
Answer: Most systems come with these headers installed. However, NVIDIA
has provided its own gl.h and glx.h files in case your system does not have
them or in case you want to develop OpenGL applications that use the new
NVIDIA OpenGL extensions. These files have been installed in:

/usr/share/doc/NVIDIA_GLX-1.0/include/GL
to avoid conflicting with the system-installed versions. To use these headers,
copy them to /usr/include/GL.
__
Question: Can I receive E-mail notification of new NVIDIA Accelerated Linux
Driver Set releases?
Answer: Yes. Complete the form at:

http://www.nvidia.com/view.asp?FO=driver_update

Question: Why does my system hang when VT-switching if I have rivafb
enabled?
Answer: Currently, you cannot use both rivafb and the NVIDIA kernel
module simultaneously due to software limitations.
Note: In general, using two independent software drivers to drive the same

piece of hardware is not recommended.

Question: Why do I receive the following error message when compiling the
NVIDIA kernel module?

You appear to be compiling the NVIDIA kernel module with a
compiler different from the one that was used to compile the
running kernel. This may be perfectly fine, but there are cases
where this can lead to unexpected behavior and system crashes.

If you know what you are doing and want to override this check,
you can do so by setting IGNORE_CC_MISMATCH.

In any other case, set the CC environment variable to the name
of the compiler that was used to compile the kernel.
67 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Answer: You should compile the NVIDIA kernel module with the same
compiler version that was used to compile your kernel. Some Linux kernel data
structures are dependent on the version of gcc used to compile them; for
example, in include/linux/spinlock.h:

.
* Most gcc versions have a nasty bug with empty initializers.

*/

#if (__GNUC__ > 2)

typedef struct { } rwlock_t;

#define RW_LOCK_UNLOCKED (rwlock_t) { }

#else

typedef struct { int gcc_is_buggy; } rwlock_t;

#define RW_LOCK_UNLOCKED (rwlock_t) { 0 }

#endif

If the kernel is compiled with gcc 2.x, but gcc 3.x is used when the open files in
the NVIDIA_kernel package are built (or vice versa), the size of rwlock_t will
vary and internal function calls such as ioremap will fail.
To verify the version of gcc that was used to compile your kernel, you can
examine the output of:

cat /proc/version

To verify the version of gcc that is currently in your $PATH, you can examine the
output of:

gcc -v

Question: Why does X fail with error "Failed to allocate LUT context
DMA"?

Answer: This is one of the possible consequences of compiling the open files in
the NVIDIA_kernel package with a different gcc version than used to compile
the Linux kernel (see above).

Question: NVIDIA_kernel RPMs are not available for release N from <insert
your favorite distro here>. I tried installing the RPM for version N-1, but that
didn't work. What should I do?
Answer: As explained in “Choosing the NVIDIA Packages for Your System”
on page 22, if a specific NVIDIA_kernel RPM is not available for your
distribution, then use either the NVIDIA_kernel SRPM or tar file.

N V I D I A C o r p o r a t i o n 68

C H A P T E R 5 F r e q u e n t l y A s k e d Q u e s t i o n s , T r o u b l e s h o o t i n g , & O t h e r R e s o u r c e s
Question: The following messages appear when I install the NVIDIA_GLX
package.

The above file(s) possibly belong to a conflicting MESA rpm.

--- They have been renamed to xxx.<originalFile>.RPMSAVE to

--- avoid conflicting with the files contained within this

--- package.

--- Please see FREQUENTLY ASKED QUESTIONS section of

--- /usr/share/doc/NVIDIA_GLX-1.0/README for more details

What's wrong?
Answer: This is an informational message stating that conflicting files have
been moved aside to ensure that your applications find the newly installed
OpenGL libraries. If you uninstall the NVIDIA_GLX package, the original files
will be automatically restored.

Question: What is NVIDIA's policy towards development series Linux
kernels?
Answer: NVIDIA does not officially support development series kernels.
However, all the kernel module source code that interfaces with the Linux
kernel is available in the NVIDIA_kernel package and NVIDIA encourages
members of the Linux community to develop patches to these source files to
support development series kernels. A “Google.com” search will most likely
yield several community supported patches.

Question: I recently updated various libraries on my system using my Linux
distributor's update utility, and the NVIDIA graphics driver no longer works.
What's wrong?
Answer: Conflicting libraries may have been installed by your distribution's
update utility.
For further details on how to diagnose this problem, see “Installed Components”
on page 28.

Question: “rpm --rebuild” gives an error “unknown option”.
Answer: Recent versions of rpm no longer support the “--rebuild” option. If
you have such a version of rpm, use the following command instead:

rpmbuild --rebuild
The rpmbuild executable is provided by the rpm-build package.

69 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Question: I am using either nForce or nForce2 internal graphics, and I see
warnings such as the following in my XFree86.0.log file:

Not using mode "1600x1200" (exceeds valid memory bandwidth
usage)

Answer: Integrated graphics have stricter memory bandwidth limitations that
restrict the resolution and refresh rate of the modes you request.
To work around this limitation, you can reduce the maximum refresh rate by
lowering the higher value of the “VertRefresh” range in the “Monitor” section
of your XF86Config file.
Note: Though not recommended, you can disable the memory bandwidth test

with the "NoBandWidthTest" XF86Config file option.

Question: I've rebuilt the NVIDIA_kernel module, but when I try to insert it, a
message indicates that I have unresolved symbols.
Answer: Unresolved symbols are most often caused by a mismatch between
your kernel sources and your running kernel. They must match for the
NVIDIA_kernel module to build correctly. Please make sure your kernel
sources are installed and configured to match your running kernel.

Question: How do I know whether I have my kernel sources installed?
Answer: If you are running on a distro that uses RPM (Red Hat, Mandrake,
SuSE, etc), then you can use RPM to indicate whether you have the kernel
sources installed. Follow this procedure:
At a shell prompt, type: `rpm -qa | grep kernel`and look at the output.
You should see a package that corresponds to your kernel (often named
something like kernel-2.4.18-3) and a kernel source package with the same
version (often named something like kernel-source-2.4.18-3).
• If none of the lines seem to correspond to a source package, then you'll

probably need to install it.
• If the versions listed mismatch (ex: kernel-2.4.18-10 vs. kernel-source-

2.4.18-3), then you'll need to update the kernel-source package to match the
installed kernel.

• If you have multiple kernels installed, you need to install the kernel-source
package that corresponds to your *running* kernel (or make sure your
installed source package matches the running kernel). You can do this by
looking at the output of 'uname -r' and matching versions.
N V I D I A C o r p o r a t i o n 70

C H A P T E R 5 F r e q u e n t l y A s k e d Q u e s t i o n s , T r o u b l e s h o o t i n g , & O t h e r R e s o u r c e s
Frequently Asked Questions: TwinView
Question: Nothing gets displayed on my second monitor; what's wrong?
Answer: Monitors (including most older monitors) that do not support monitor
detection using DDC protocols cannot be detected by your NVIDIA product.
You need to explicitly tell the NVIDIA XFree86 driver the type of device that is
connected by using the "ConnectedMonitor" option; for example:

Option "ConnectedMonitor" "CRT, CRT"

For additional details on using this option, see “Option “ConnectedMonitor”
“string”” on page 43.
__
Question: Will window managers be able to appropriately place windows (i.e.,
avoid placing windows across both display devices or in inaccessible regions of
the virtual desktop)?
Answer: Yes. The NVIDIA X driver provides a Xinerama extension that allows
X clients (such as window managers) to call XineramaQueryScreens() to
detect the current TwinView configuration.
Note: The Xinerama protocol doesn’t provide a way to inform clients when a

configuration change occurs. So, if you modeswitch to a different
MetaMode, your window manager will continue to detect the previous
configuration. By using the Xinerama extension in conjunction with the
XF86VidMode extension to get modeswitch events, window managers
should be able to determine the TwinView configuration at any given
time.

Note: The data provided by XineramaQueryScreens() appears to confuse
some window managers. To workaround such an issue, you can disable
communication of the TwinView screen layout with the
"NoTwinViewXineramaInfo" XF86Config Option. See “Option
“NoTwinViewXineramaInfo” “boolean”” on page 38.

Note: Be aware that the NVIDIA driver cannot provide the Xinerama extension
if XFree86’s own Xinerama extension is being used. Explicitly
specifying Xinerama in the XF86Config file or on the XFree86 command
line will prevent NVIDIA’s Xinerama extension from installing.
Therefore, confirm that XFree86’s /va/log/XFree86.0.log is not reporting:
(++) Xinerama: enabled
if you want the NVIDIA driver to provide the Xinerama extension while in
TwinView.
71 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Another solution is to use panning domains to eliminate inaccessible
regions of the virtual screen. (See “Option “MetaModes” “string”” on
page 51.)
A third solution is to use two separate X screens, rather than use
TwinView. (See “Configuring Multiple Screens on One Graphics Card”
on page 88.)

Question: Why can’t I get a resolution of 1600x1200 on the second display
device when using a GeForce2 MX GPU?
Answer: Since the second display device was designed to be a digital flat panel,
the Pixel Clock for the second display device is only 150 MHz. This effectively
limits the resolution on the second display device to somewhere around
1280x1024. This constraint is not present on GeForce4 GPUs since the
maximum pixel clock is the same on both heads.
Note: For a description of how Pixel Clock frequencies limit the programmable

modes, see the XFree86 Video Timings How To documentation.

Question: Do video overlays work across both display devices?
Answer: Hardware video overlays only work on the first display device. The
current solution is that blitted video is used on TwinView configuration.

Question: How are virtual screen dimensions determined in TwinView?
Answer: After all requested modes have been validated, and the offsets for the
viewport for each MetaMode have been computed, the NVIDIA driver
computes the bounding box of the viewports for each MetaMode. The
maximum bounding box width and height is then figured.
Note: A side effect of this process is that the virtual width and virtual height

may come from different MetaModes. Given the following MetaMode
string:

“1600x1200,NULL; 1024x768+0+0, 1024x768+0+768”,
the resulting virtual screen size will be 1600 x 1536.

Question: Can I play full-screen games across both display devices?
Answer: Yes. While the details of configuration will vary among games, the
basic idea is that a MetaMode presents X with a mode whose resolution is the
bounding box of the viewports for that MetaMode. For example, the following
lines:
N V I D I A C o r p o r a t i o n 72

C H A P T E R 5 F r e q u e n t l y A s k e d Q u e s t i o n s , T r o u b l e s h o o t i n g , & O t h e r R e s o u r c e s
Option "MetaModes" "1024x768,1024x768; 800x600,800x600"

Option "TwinViewOrientation" "RightOf"

produce two modes: one with a resolution of 2048x768 and another with a
resolution of 1600x600. Games such as Quake 3 Arena use the VidMode
extension to discover the resolutions of the modes currently available.
To configure Quake 3 Arena to use the above MetaMode string, add the
following lines to your q3config.cfg file:

seta r_customaspect "1"

seta r_customheight "600"

seta r_customwidth "1600"

seta r_fullscreen "1"

seta r_mode "-1"

Note: Given the above configuration, there is no mode with a resolution of
800x600 (remember that the MetaMode 800x600, 800x600 has a
resolution of 1600x600), so if you change Quake 3 Arena to use a
resolution of 800x600, it will display in the lower left corner of your
screen with the rest of the screen grayed out.

To have single-display modes also available, an appropriate MetaMode
string could be:
"800x600,800x600; 1024x768,NULL; 800x600,NULL; 640x480,NULL"

More precise configuration information for specific games is beyond the scope
of this document. However, the above examples coupled with numerous online
sources can point you in the right direction.
73 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Troubleshooting: ALi Chipset Users
The NVIDIA Driver for Linux, Version 0.9-3, fixed the majority of problems
with ALi chipsets, though some problems still exist. The following tips help
stabilize problematic systems.

Troubleshooting: NVIDIA TNT Users
The NVIDIA Linux Driver (Version 0.9-3) corrected the problem with
SGRAM/SDRAM TNT products.
Note: In the rare case that your NVIDIA TNT-based card has the wrong BIOS

installed, the driver will fail.
If the driver fails, follow these steps:
1 Watch your monitor as the system starts up. The very first, brief screen will

identify the type of video memory for your card, which will be either
SGRAM or SDRAM.

2 Obtain the most recent NVIDIA_kernel tar file.
3 Edit the file os-registry.c from the kernel module sources.
4 Locate the variable NVreg_VideoMemoryTypeOverride and set the value of

this variable to the type of memory you have. (Numerically, see the line just
above it).

5 Since this variable is not normally used, change the “#if 0” (about 10 lines
above the variable) to “#if 1”.

Tips: • Disable TURBO AGP MODE in the BIOS.
• When using a P5A, upgrade to BIOS Revision 1002 BETA 2.
• When using 1007, 1007A, or 1009, adjust the IO Recovery Time

to 4 cycles.
• AGP is disabled by default on some ALi chipsets (e.g, ALi1541

and ALi1647) to work around severe system stability problems
(e.g., timing and signal integrity issues) that occur when using
these chipsets. You can force AGP on for these chipsets by
enabling NVreg_EnableALiAGP in os-registry.c and
rebuilding the NVIDIA kernel module. (See the comments for
NVreg_EnableALiAGP in os-registry.c to force AGP on.).
Note: Forcing AGP on may cause the driver to become unstable

on these chipsets.
N V I D I A C o r p o r a t i o n 74

C H A P T E R 5 F r e q u e n t l y A s k e d Q u e s t i o n s , T r o u b l e s h o o t i n g , & O t h e r R e s o u r c e s
6 Rebuild and reinstall the new driver using the “make” command.

Contacting Us
You can access the NVIDIA Linux Driver web forum by going to:

www.nvnews.net
and following the “Forum” and “Linux Discussion Area” links. This is the
preferable tool for seeking help; users can post questions, answer other users'
questions, and search the archives of previous postings.
Note: If all else fails, you can contact NVIDIA for support at:

linux-bugs@nvidia.com

But please only send E-mail to this address after you've browsed the
“Frequently Asked Questions” sections in this chapter and have requested
help on the nvnews.net web forum.

Additional Resources
• Linux OpenGL ABI

http://oss.sgi.com/projects/ogl-sample/ABI/

• NVIDIA Linux HowTo
http://www.tldp.org/HOWTO/XFree86-Video-Timings-HOWTO/
index.html

• OpenGL: www.opengl.org
• The XFree86 Project: www.xfree86.org
• #nvidia (irc.openprojects.net)
75 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
A P P E N D I X

PROGRAMMING MODES
This appendix contains the following major topics:
• “Introduction” on page 76
• “Depth, Bits Per Pixel, and Pitch” on page 77
• “Maximum Resolutions” on page 78
• “Useful Formulas” on page 78
• “Mode Validation” on page 80
• “Additional Mode Constraints” on page 81

Introduction
The NVIDIA Accelerated Linux Driver Set supports all standard VGA and
VESA modes, as well as most user-written custom mode lines.
Note: Double-scan modes are supported on all hardware, and interlaced modes

are supported on GeForce 256, GeForce DDR, Quadro, GeForce2 GTS/
GeForce2 Pro, GeForce2 Ti, GeForce2 Ultra, Quadro2 Pro, and all TNT
products.

In general, your display device (such as a CRT, DFP, or TV) can be a greater
constraint on usable modes than either your NVIDIA product-based graphics
card or the NVIDIA Accelerated Linux Driver Set.
To request one or more standard modes for use in X, you can add a “Modes”
line, as shown below, in the appropriate “Display” subsection of your
XF86Config file:

Modes "1600x1200" "1024x768" "640x480"
N V I D I A C o r p o r a t i o n 76

A P P E N D I X A P r o g r a m m i n g M o d e s
(Refer to the XF86Config(4/5) man page for further details.)
Note: The documentation that follows is primarily of interest if you create your

own custom mode lines, experiment with xvidtune(1), or are simply
interested in further knowledge. This document is neither an explanation
nor a guide to crafting custom mode lines for XFree86, which is offered
in documents such as the XFree86 Video Timings HowTo; refer to the
www.tdlp.org web site.

Depth, Bits Per Pixel, and Pitch
The bits used per pixel is an important issue when considering the maximum
programmable resolution, though not a direct concern when programming
modes. A discussion of the terms “depth” vs. “bits per pixel” follows.
Depth is the number of bits of data are stored per pixel. Supported depths are 8,
15, 16, and 24. Most video hardware, however, stores pixel data in sizes of 8,
16, or 32 bits; this is the amount of memory allocated per pixel. When you
specify the depth, X selects the bits per pixel (bpp) size in which to store the
data.
Table A.1 lists the bits per pixel used for each supported depth. .

The pitch is the number of bytes in the linear frame buffer between the data of
one pixel and the data of the pixel immediately below that one. Pitch can be
represented by the formula:
Pitch = HR * (bpp/8)

Note: In practice, the pitch may be greater than this product because video
hardware often requires the pitch to be a multiple of a certain value.

Table A.1 Bits Per Pixel Used for Depth

Depth Bits Per Pixel
8 8
15 16
16 16
24 32

Pitch = Horizontal Resolution (HR) multiplied by the Bytes Per Pixel
Bytes Per Pixel = Bits Per Pixel (bpp) divided by 8
77 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Maximum Resolutions
The NVIDIA Accelerated Linux Driver Set and NVIDIA product-based
graphics cards support resolutions up to 2048x1536, though the maximum
resolution that your system can support is also limited by the amount of video
memory (referenced in Useful Formulas in the next section) and the maximum
supported resolution of your display device (i.e., CRT, DFP, or TV).
Note: While use of a video overlay does not limit the maximum resolution or

refresh rate, video memory bandwidth used by a programmed mode does
affect the quality of the overlay.

Useful Formulas

Video Memory Used
The maximum resolution is a function of the amount of video memory and the
bits per pixel (bpp) that you want to use, as represented by the formula:
Amount of Video Memory Used = HR * VR * (bpp/8)

Note: Technically, the Video Memory Used = (Pitch * Vertical Resolution)
where the Pitch may be slightly greater than “HR * (bpp/8)” to
accommodate hardware requirements that specify the pitch to be a
multiple of a certain value.

This discussion only refers to memory usage for the frame buffer; video
memory is also used by other operations, such as OpenGL or pixmap caching.

Amount of Video Memory Used = Horizontal Resolution (HR) multiplied by the
Vertical Resolution (VR) multiplied by the
Bytes Per Pixel

Bytes Per Pixel = Bits Per Pixel (bpp) divided by 8
N V I D I A C o r p o r a t i o n 78

A P P E N D I X A P r o g r a m m i n g M o d e s
Resolution, Pixel Clock, and Vertical Refresh Rate
The relationship between resolution, pixel clock (i.e., dot clock), and vertical
refresh rate can be described by this formula:
RR = PCLK / (HFL * VFL)

The frame length in VFL refers to the actual frame length and not simply the
visible resolution.
As described in the XFree86 Video Timings HowTo documentation, the above
formula may be rewritten as:
PCLK = RR * HFL * VFL
Given a maximum pixel clock, you can adjust the RR, HFL and VFL as needed.
The pixel clock is reported in the log file when you run X with verbose logging,
as shown below:

startx -- -logverbose 5

Your XFree86.0.log should contain several lines (as shown below) to indicate
the maximum pixel clock at each bit per pixel size.
(--) NVIDIA(0): Display Device 0: maximum pixel clock at 8 bpp:
350 MHz

(--) NVIDIA(0): Display Device 0: maximum pixel clock at 16 bpp:
350 MHz

(--) NVIDIA(0): Display Device 0: maximum pixel clock at 32 bpp:
300 MHz

Refresh Rate (RR) = Pixel Clock (PCLK) divided by the Total Number of
Pixels

Total Number of Pixels = Horizontal Frame Length (HFL) multiplied by the
Vertical Frame Length (VFL).
79 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Mode Validation
During the pre-initialization phase of the X Server, the NVIDIA X driver
validates all requested modes using these steps:
1 Takes the intersection of the HorizSync and VertRefresh ranges provided

by the user in the XF86Config file with the ranges reported by the monitor in
the EDID. This function can be disabled by using the “IgnoreEDID” option,
in which case the X driver will accept the HorizSync and VertRefresh
provided by the user.

2 Calls the xf86ValidateModes() helper function, which finds modes with
the user-specified names in the XF86Config file, pruning out modes with:
• invalid horizontal sync frequencies or vertical refresh rates,
• pixel clocks larger than the maximum pixel clock for the graphics card,

and
• resolutions larger than the virtual screen size, if a virtual screen size was

specified in the XF86Config file.
Several other constraints are applied to this mode search. (See xc/programs/
Xserver/hw/xfree86/common/xf86Mode.c:xf86ValidateModes().)

3 All modes returned from xf86ValidateModes() are then examined to ensure
that their resolutions are not greater than the highest mode reported by the
monitor's EDID. (As explained earlier, this function may be disabled with the
"IgnoreEDID" option.)
If the display is a TV, each mode is checked to ensure that it has a resolution
that is supported by the TV encoder. Usually, only resolutions of 800x600
and 640x480 are supported by the encoder.

4 All modes are also tested to confirm that they fit within the constraints of the
hardware's memory bandwidth. You can disable this test with the
NoBandWidthTest XF86Config file option. See “Option
“NoBandWidthTest” “boolean”” on page 36.

5 All remaining modes are then checked to ensure sure they pass the
constraints described in “Additional Mode Constraints” on page 81.

Note: In order to catch potentially invalid modes submitted by
XF86VidModeExtension (e.g., xvidtune(1)), the last two steps are also
performed when each mode is programmed.

Note: Under TwinView configuration, the above validation is performed for the
requested modes for each display device.
N V I D I A C o r p o r a t i o n 80

A P P E N D I X A P r o g r a m m i n g M o d e s
Additional Mode Constraints
Following is a list of additional constraints on the mode parameters: In some
cases these are specific to particular chips, as shown in Table A.2. The Mode
column values are explained in the text that follows the table..

• The Horizontal Resolution (HR) must be a multiple of 8 and be less than or
equal to the value in Table A.2.

• The Horizontal Blanking Width (HBW) must be a multiple of 8 and be less
than or equal to the value in Table A.2.The formula is:
HBW = max(HFL,HSE) – min(HR,HSS)

• The Horizontal Sync Start (HSS) value must be a multiple of 8 and be less
than or equal to the value in Table A.2.

• The Horizontal Sync Width (HSW) must be a multiple of 8 and less than or
equal to the value in Table A.2.The formula is:

Table A.2 Maximum DAC Values

Mode

Family of GPUs

GeForce and TNT GeForce2 and GeForce3 GeForce4 (or later)
HR 4096 4096 8192
HBW 1016 1016 2040
HSS 4088 4088 8224
HSW 256 256 512
HFL 4128 4128 8224
VR 2048 4096 8192
VBW 128 128 256
VSS 2047 4095 8192
VSW 16 16 16
VFL 2049 4097 8192

max = maximum of
HFL, = Horizontal Frame Length and
HSE = Horizontal Sync End

– = minus
min = minimum of
HR, = Horizontal Resolution and
HSS = Horizontal Sync Start
81 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
HSW = HSE – HSS

• The Horizontal Frame Length (HFL) must be a multiple of 8, must be
greater than or equal to 40, and must be less than or equal to the value in
Table A.2.

• The Vertical Resolution (VR) must be less than or equal to the value in
Table A.2.

• The Vertical Blanking Width (VBW) must be less than or equal to the
value in Table A.2. The formula is:

VBW = max(VFL,VSE) – min(VR,VSS)

• The Vertical Sync Start (VSS) value must be less than or equal to the value
in Table A.2.

• The Vertical Sync Width (VSW) must be less than or equal to the value in .
The formula is:
VBW = VSE - VSS

• The Vertical Frame Length (VFL) must be greater than or equal to 2 and
less than or equal to the value in Table A.2.

HSE = Horizontal Sync End
– = minus

HSS = Horizontal Sync Start

max = maximum of
VFL, = Vertical Frame Length and
VSE = Vertical Sync End

– = minus
min = minimum of
VR, = Vertical Resolution and
VSS = Vertical Sync Start

VSE = Vertical Sync End
– = minus

VSS = Vertical Sync Start
N V I D I A C o r p o r a t i o n 82

A P P E N D I X A P r o g r a m m i n g M o d e s
Example Mode Line
The following is an example mode line that contains each abbreviation that is
used in the constraints listed above:
Custom Mode line for the SGI 1600SW Flatpanel
name PCLK HR HSS HSE HFL VR VSS VSE VFL
Modeline "sgi1600x1024" 106.9 1600 1632 1656 1672 1024 1027 1030
1067

Note: An XFree86 modeline generator conforming to the GTF Standard has
been posted to the XFree86 Xpert mailing list:
http://www.xfree86.org/pipermail/xpert/2001-October/
012070.html

For additional modeline generators, search for “Modeline” on
freshmeat.net.
83 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
A P P E N D I X

PROC FILESYSTEM INTERFACE
The /proc filesystem interface allows you to obtain run-time information about
the driver, any installed NVIDIA graphics cards, and the AGP status. This
information is contained in several files in /proc/driver/nvidia.
The following are brief descriptions of each one of these files:
• version

Lists the installed driver revision and the version of the GNU C compiler
used to build the Linux kernel module.

• cards/0...3
Provides information about each of the installed NVIDIA graphics adapters
(model name, IRQ, BIOS version, Bus Type). Please note that the BIOS
version is only available while X is running.

• agp/card
Provides information about the installed AGP card's AGP capabilities.

• agp/host-bridge
Provides information about the host bridge (model and AGP capabilities).

• agp/status
Provides information about the current AGP status. If AGP support has been
enabled on your system, the AGP driver being used, the AGP rate, and
information about the status of AGP Fast Writes and Side Band Addressing
is shown.
The AGP driver is either one of NVIDIA (NVIDIA's built-in AGP driver) or
AGPGART (the Linux kernel's agpgart.o driver). If you see “inactive” next
N V I D I A C o r p o r a t i o n 84

A P P E N D I X B P r o c F i l e s y s t e m I n t e r f a c e
to AGPGART, then this means that the AGP chipset was programmed by
AGPGART, but is not currently in use.
SBA and Fast Writes indicate whether either one of the features is currently
in use. Please note that several factors decide if support for either will be
enabled. First of all, both the AGP card and the host bridge must support the
feature. Even if both do support it, the driver may decide not to use it in favor
of system stability. This is particularly true of AGP Fast Writes.
85 N V I D I A C o r p o r a t i o n

N V I D I A C o r p o r a t i o n 86

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s

A P P E N D I X

XVMC SUPPORT
Note: This release of the NVIDIA Linux Driver Set includes support for the X-

Video Motion Compensation (XvMC) version 1.0 API on only
GeForce4-based graphics cards.

There is a static library “libXvMCNVIDIA.a” and a dynamic one
“libXvMCNVIDIA_dynamic.so” which is suitable for dlopening.
• GeForce4 MX products support both XvMC’s “IDCT” and “motion-

compensation” levels of acceleration.
• GeForce4 Ti products only support the motion-compensation level.
• AI44 and IA44 subpictures are supported.
• 4:2:0 Surfaces up to 2032 x 2032 are supported.
• libXvMCNVIDIA observes the XVMC_DEBUG environment variable and will

provide some debug output to stderr when set to an appropriate integer value.
• “0” disables debug output.
• “1” enables debug output for failure conditions.
• “2” or higher enables output of warning messages.

87 N V I D I A C o r p o r a t i o n

A P P E N D I X D G L X S u p p o r t

A P P E N D I X

GLX SUPPORT

This release of the NVIDIA Linux Driver Set supports GLX 1.3 with the fol-
lowing extensions:

• GLX_EXT_visual_info

• GLX_EXT_visual_rating

• GLX_SGIX_fbconfig

• GLX_SGIX_pbuffer

• GLX_ARB_get_proc_address

For a description of these extensions, refer to the OpenGL extension registry at
the following web site:

http://oss.sgi.com/projects/ogl-sample/registry/index.html

Note: Some of the above extensions exist as part of core GLX 1.3 functionality
and are also exported as extensions for backwards compatibility.

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
A P P E N D I X

CONFIGURING MULTIPLE SCREENS ON
ONE GRAPHICS CARD

NVIDIA GPUs that support TwinView can also be configured to treat each
connected display device as a separate X screen.
While there are several disadvantages to this approach as compared to
TwinView (e.g., windows cannot be dragged between X screens and hardware
accelerated OpenGL cannot span the two X screens), it offers several
advantages over TwinView:

• If each display device is a separate X screen, properties (such as, depth,
root window size, and so on) that may vary between X screens may also
vary between displays.

• Hardware that can only be used on one display at a time (for example,
video overlays and hardware accelerated RGB overlays) and,
consequently, cannot be used at all in TwinView configuration, can be
exposed on the first X screen when each display is a separate X screen.

• Some applications require the one-to-one association of display devices to
X screens as a benefit for doing this. I'm not sure the design of X is the
right thing to point out here

To configure two separate X screens to share one NVIDIA GPU-based card,
follow these steps:
1 First, create two separate Device sections, each listing the BusID of the

graphics card to be shared and listing the driver as "nvidia". Assign each a
separate screen:
Section "Device"

Identifier "nvidia0"
N V I D I A C o r p o r a t i o n 88

A P P E N D I X E C o n f i g u r i n g M u l t i p l e S c r e e n s o n O n e G r a p h i c s C a r d
Driver "nvidia"

Edit the BusID with the location of your graphics card

BusID "PCI:2:0:0"

Screen 0

EndSection

Section "Device"

Identifier "nvidia1"

Driver "nvidia"

Edit the BusID with the location of your graphics card

BusId "PCI:2:0:0"

Screen 1

EndSection

2 Create two Monitor sections, one describing the capabilities of each display
device.
Section "Monitor"

Identifier "Monitor0"

Replace these values with those appropriate for your
monitor.

HorizSync "50-110"

VertRefresh “60-120"

EndSection

Section "Monitor"

Identifier "Monitor1"

Replace these values with those appropriate for your
monitor.

HorizSync "50-110"

VertRefresh “60-120"

EndSection

3 Then, create two Screen sections, each using one of the Device sections:
Section "Screen"

Identifier "Screen0"

Device "nvidia0"

Monitor "Monitor0"

DefaultDepth 24
89 N V I D I A C o r p o r a t i o n

N V I D I A A c c e l e r a t e d L i n u x D r i v e r S e t R e l e a s e 4 0 N o t e s
Subsection "Display"

Depth 24

Modes "1600x1200" "1024x768" "800x600" "640x480"

EndSubsection

EndSection

Section "Screen"

Identifier "Screen1"

Device "nvidia1"

Monitor "Monitor1"

DefaultDepth 24

Subsection "Display"

Depth 24

Modes "1600x1200" "1024x768" "800x600" "640x480"

EndSubsection

EndSection

4 Create a second “Monitor” section.
5 Finally, update the ServerLayout section to use and position both Screen

sections:
Section "ServerLayout"

...

Screen 0 "Screen0"

Screen 1 "Screen1" leftOf "Screen0"

...

EndSection

6 For further details, refer to the XF86Config manpage.
N V I D I A C o r p o r a t i o n 90

	Release 40 Notes
	Table of Contents
	List of Tables

	Introduction
	About Release Notes
	About the NVIDIA Accelerated Linux Driver Set
	Minimum Operating System Requirements
	Notes and Tips on Operating Systems

	Supported NVIDIA Products
	Notes and Tips on Supported NVIDIA Products

	Features and Enhancements
	Known Product Limitations
	Software Issues
	Athlon Processors: Support for Page Size Extension
	X Server and Changing AGP Drivers
	OpenGL + Xinerama
	OpenGL and dlopen()
	DPMS and TwinView
	DPMS and Flat Panel
	Multi-Card, Multi-Display
	Laptop Issues
	Full-Scene Antialiasing (FSAA)

	Hardware Issues
	Gigabyte GA-6BX Motherboard
	VIA KX133 and 694X Chipsets With AGP 2X
	Irongate Chipsets With AGP 1X
	ALi (Acer Laboratories Inc.) Chipsets: ALi1541 and ALi1647

	NVIDIA Linux Driver History
	NVIDIA Linux Driver Versions
	Overview of Resolved Issues and Enhancements
	Release 40: New Features, Enhancements, and Resolved Issues
	Version 1.0-4191 (current release)

	Release 25: New Features, Enhancements, and Resolved Issues
	Version 1.0-3123
	Version 1.0-2960
	Version 1.0-2802

	Release 20: New Features, Enhancements, and Resolved Issues
	Version 1.0-2313
	Version 1.0-2312

	Release 10: New Features, Enhancements, and Resolved Issues
	GeForce 3
	GeForce2 Go and Quadro2 Go
	TV Output Feature
	Release 10: Resolved Issues and Enhancements

	Release 6: New Features, Enhancements, and Resolved Issues
	TwinView
	Release 6: Resolved Issues and Enhancements

	Installing the NVIDIA Linux Drivers
	Choosing the NVIDIA Packages for Your System
	Installing the NVIDIA_kernel and NVIDIA_GLX Packages
	Before You Begin Driver Installation
	Installing by RPM
	Commands
	Commands Explained

	Upgrading by RPM
	Commands
	Commands Explained

	Installing & Upgrading by SRPM
	Commands
	Commands Explained

	Installing & Upgrading by Tar File
	Commands
	Commands Explained

	Editing Your XF86Config File
	Installed Components
	XFree86 Driver
	GLX Extension Module
	OpenGL library
	OpenGL Core Library
	XvMC (X-Video Motion Compensation) Libraries
	Kernel Module
	OpenGL and GLX Header Files
	Installing Libraries

	Configuring the NVIDIA Linux Driver
	XF86Config Options: Configuring AGP
	AGP Chipsets Supported by NVIDIA AGP
	Troubleshooting AGP Stability Problems
	Support for the Processor Page Size Extension on Athlon Processors
	AGP Drive Strength BIOS Setting (Via-based Motherboards)
	System BIOS Version
	AGP Rate
	Athlon Motherboards with the VIA KX133 or 694X Chipset
	ALi1541 and ALi1647 Chipsets

	XF86Config Options: Introduced in Release 40
	Option “NoBandWidthTest” “boolean”
	Option “Dac8Bit” “boolean”
	Option “CIOverlay” “boolean”
	Option “TransparentIndex” “integer”
	Option “OverlayDefaultVisual” “boolean”

	XF86Config Options: Introduced in Release 25
	Option “NoRenderExtension” “boolean”
	Option “NoTwinViewXineramaInfo” “boolean”
	Option “UseClipIDs” “boolean”
	Option “Stereo” “integer”
	Option “DigitalVibrance” “integer”
	Option “Overlay” “boolean”
	Option “FlatPanelProperties” “string”

	XF86Config Options: Introduced in Release 20
	Option “PageFlip” “boolean”
	Option “UBB” “boolean”
	Option “UseInt10Module” “boolean”
	Option “WindowFlip” “boolean”

	XF86Config Options: Introduced in Release 10
	Option “ConnectedMonitor” “string”
	Option “CursorShadow” “boolean”
	Option “CursorShadowAlpha” “integer”
	Option “CursorShadowXOffset” “integer”
	Option “CursorShadowYOffset” “integer”
	Option “HWCursor” “boolean”
	Option “IgnoreEDID” “boolean”
	Option “NoDDC” “boolean”
	Option “NoLogo” “boolean”
	Option “NvAGP” “integer”
	Option “RenderAccel” “boolean”
	Option “SWCursor” “boolean”
	Option “UseEdidFreqs” “boolean”

	XF86Config TV Options: Introduced in Release 10
	Enabling and Configuring TV
	XF86Config File Settings
	Option “TVOutFormat” “string”
	Option “TVStandard” “string”

	XF86Config TwinView Options: Introduced in Release 6
	Enabling and Configuring TwinView
	Option “TwinView” “boolean”
	Option “SecondMonitorHorizSync” “range(s)”
	Option “SecondMonitorVertRefresh” “range(s)”
	Option “MetaModes” “string”
	Option “TwinViewOrientation” “string”
	Option “ConnectedMonitor” “string”

	OpenGL Environment Variable Settings
	Full-Scene Antialiasing (FSAA)
	Notes

	Anisotropic Texture Filtering
	VBLANK Synchronizing

	Configuring a Laptop
	Standard Functionality
	TwinView Functionality
	Using Hot Keys to Switch Display Devices
	Non-Standard Modes on LCD Displays
	Known Laptop Issues

	Frequently Asked Questions, Troubleshooting, & Other Resources
	Frequently Asked Questions: General
	Frequently Asked Questions: TwinView
	Troubleshooting: ALi Chipset Users
	Troubleshooting: NVIDIA TNT Users
	Contacting Us
	Additional Resources

	Programming Modes
	Introduction
	Depth, Bits Per Pixel, and Pitch
	Maximum Resolutions
	Useful Formulas
	Video Memory Used
	Resolution, Pixel Clock, and Vertical Refresh Rate

	Mode Validation
	Additional Mode Constraints
	Example Mode Line

	Proc Filesystem Interface
	XVMC Support
	GLX Support
	Configuring Multiple Screens on One Graphics Card

