[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Here are the possible CPU types:
1750a, a29k, alpha, arm, cn, clipper, dsp16xx, elxsi, h8300, hppa1.0, hppa1.1, i370, i386, i486, i586, i860, i960, m32r, m68000, m68k, m88k, mips, mipsel, mips64, mips64el, ns32k, powerpc, powerpcle, pyramid, romp, rs6000, sh, sparc, sparclite, sparc64, vax, we32k.
Here are the recognized company names. As you can see, customary abbreviations are used rather than the longer official names.
acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus, sequent, sgi, sony, sun, tti, unicom, wrs.
The company name is meaningful only to disambiguate when the rest of the information supplied is insufficient. You can omit it, writing just `cpu-system', if it is not needed. For example, `vax-ultrix4.2' is equivalent to `vax-dec-ultrix4.2'.
Here is a list of system types:
386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff, ctix, cxux, dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, linux-gnu, hiux, hpux, iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos, nindy, ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix.
You can omit the system type; then `configure' guesses the operating system from the CPU and company.
You can add a version number to the system type; this may or may not make a difference. For example, you can write `bsd4.3' or `bsd4.4' to distinguish versions of BSD. In practice, the version number is most needed for `sysv3' and `sysv4', which are often treated differently.
If you specify an impossible combination such as `i860-dg-vms', then you may get an error message from `configure', or it may ignore part of the information and do the best it can with the rest. `configure' always prints the canonical name for the alternative that it used. GNU CC does not support all possible alternatives.
Often a particular model of machine has a name. Many machine names are recognized as aliases for CPU/company combinations. Thus, the machine name `sun3', mentioned above, is an alias for `m68k-sun'. Sometimes we accept a company name as a machine name, when the name is popularly used for a particular machine. Here is a table of the known machine names:
3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn, crds, decstation-3100, decstation, delta, encore, fx2800, gmicro, hp7nn, hp8nn, hp9k2nn, hp9k3nn, hp9k7nn, hp9k8nn, iris4d, iris, isi68, m3230, magnum, merlin, miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, sun4, symmetry, tower-32, tower.
Remember that a machine name specifies both the cpu type and the company name. If you want to install your own homemade configuration files, you can use `local' as the company name to access them. If you use configuration `cpu-local', the configuration name without the cpu prefix is used to form the configuration file names.
Thus, if you specify `m68k-local', configuration uses files `m68k.md', `local.h', `m68k.c', `xm-local.h', `t-local', and `x-local', all in the directory `config/m68k'.
Here is a list of configurations that have special treatment or special things you must know:
The MIL-STD-1750A cross configuration produces output for
as1750
, an assembler/linker available under the GNU Public
License for the 1750A. as1750
can be obtained at
ftp://ftp.fta-berlin.de/pub/crossgcc/1750gals/.
A similarly licensed simulator for
the 1750A is available from same address.
You should ignore a fatal error during the building of libgcc (libgcc is not yet implemented for the 1750A.)
The as1750
assembler requires the file `ms1750.inc', which is
found in the directory `config/1750a'.
GNU CC produced the same sections as the Fairchild F9450 C Compiler, namely:
Normal
Static
Konst
Init
The smallest addressable unit is 16 bits (BITS_PER_UNIT is 16). This means that type `char' is represented with a 16-bit word per character. The 1750A's "Load/Store Upper/Lower Byte" instructions are not used by GNU CC.
GNU CC writes a `.verstamp' directive to the assembler output file unless it is built as a cross-compiler. It gets the version to use from the system header file `/usr/include/stamp.h'. If you install a new version of DEC Unix, you should rebuild GCC to pick up the new version stamp.
Note that since the Alpha is a 64-bit architecture, cross-compilers from 32-bit machines will not generate code as efficient as that generated when the compiler is running on a 64-bit machine because many optimizations that depend on being able to represent a word on the target in an integral value on the host cannot be performed. Building cross-compilers on the Alpha for 32-bit machines has only been tested in a few cases and may not work properly.
make compare
may fail on old versions of DEC Unix unless you add
`-save-temps' to CFLAGS
. On these systems, the name of the
assembler input file is stored in the object file, and that makes
comparison fail if it differs between the stage1
and
stage2
compilations. The option `-save-temps' forces a
fixed name to be used for the assembler input file, instead of a
randomly chosen name in `/tmp'. Do not add `-save-temps'
unless the comparisons fail without that option. If you add
`-save-temps', you will have to manually delete the `.i' and
`.s' files after each series of compilations.
GNU CC now supports both the native (ECOFF) debugging format used by DBX and GDB and an encapsulated STABS format for use only with GDB. See the discussion of the `--with-stabs' option of `configure' above for more information on these formats and how to select them.
There is a bug in DEC's assembler that produces incorrect line numbers for ECOFF format when the `.align' directive is used. To work around this problem, GNU CC will not emit such alignment directives while writing ECOFF format debugging information even if optimization is being performed. Unfortunately, this has the very undesirable side-effect that code addresses when `-O' is specified are different depending on whether or not `-g' is also specified.
To avoid this behavior, specify `-gstabs+' and use GDB instead of DBX. DEC is now aware of this problem with the assembler and hopes to provide a fix shortly.
You may need to make a variant of the file `arm.h' for your particular configuration.
You will need to install GNU `sed' before you can run configure.
You may need to make a variant of the file `a29k.h' for your particular configuration.
The MIPS C compiler needs to be told to increase its table size
for switch statements with the `-Wf,-XNg1500' option in
order to compile `cp/parse.c'. If you use the `-O2'
optimization option, you also need to use `-Olimit 3000'.
Both of these options are automatically generated in the
`Makefile' that the shell script `configure' builds.
If you override the CC
make variable and use the MIPS
compilers, you may need to add `-Wf,-XNg1500 -Olimit 3000'.
mrs@cygnus.com
for more details.
The calling convention and structure layout has changed in release 2.6. All code must be recompiled. The calling convention now passes the first three arguments in function calls in registers. Structures are no longer a multiple of 2 bytes.
`-g' does not work on HP-UX, since that system uses a peculiar debugging format which GNU CC does not know about. However, `-g' will work if you also use GAS and GDB in conjunction with GCC. We highly recommend using GAS for all HP-PA configurations.
You should be using GAS-2.6 (or later) along with GDB-4.16 (or later). These can be retrieved from all the traditional GNU ftp archive sites.
On some versions of HP-UX, you will need to install GNU `sed'.
You will need to be install GAS into a directory before /bin
,
/usr/bin
, and /usr/ccs/bin
in your search path. You
should install GAS before you build GNU CC.
To enable debugging, you must configure GNU CC with the `--with-gnu-as' option before building.
GNU CC can generate COFF binaries if you specify `-mcoff' or ELF binaries, the default. A full `make bootstrap' is recommended so that an ELF compiler that builds ELF is generated.
You must have TLS597 from ftp://ftp.sco.com/TLS installed for ELF C++ binaries to work correctly on releases before 5.0.4.
The native SCO assembler that is provided with the OS at no charge is normally required. If, however, you must be able to use the GNU assembler (perhaps you have complex asms) you must configure this package `--with-gnu-as'. To do this, install (cp or symlink) gcc/as to your copy of the GNU assembler. You must use a recent version of GNU binutils; version 2.9.1 seems to work well. If you select this option, you will be unable to build COFF images. Trying to do so will result in non-obvious failures. In general, the "--with-gnu-as" option isn't as well tested as the native assembler.
NOTE: If you are building C++, you must follow the instructions about invoking `make bootstrap' because the native OpenServer compiler may build a `cc1plus' that will not correctly parse many valid C++ programs. You must do a `make bootstrap' if you are building with the native compiler.
In ISC version 4.1, `sed' core dumps when building `deduced.h'. Use the version of `sed' from version 4.0.
See 3.5 Installing GNU CC on the Sun, for information on installing GNU CC on Sun systems.
Installing GNU CC for NT builds a wrapper linker, called `ld.exe', which mimics the behaviour of Unix `ld' in the specification of libraries (`-L' and `-l'). `ld.exe' looks for both Unix and Microsoft named libraries. For example, if you specify `-lfoo', `ld.exe' will look first for `libfoo.a' and then for `foo.lib'.
You may install GNU CC for Windows NT in one of two ways, depending on whether or not you have a Unix-like shell and various Unix-like utilities.
configure winnt
from an MSDOS console window or from the
program manager dialog box. `configure.bat' assumes you have
already installed and have in your path a Unix-like `sed' program
which is used to create a working `Makefile' from `Makefile.in'.
`Makefile' uses the Microsoft Nmake program maintenance utility and the Visual C/C++ V8.00 compiler to build GNU CC. You need only have the utilities `sed' and `touch' to use this installation method, which only automatically builds the compiler itself. You must then examine what `fixinc.winnt' does, edit the header files by hand and build `libgcc.a' manually.
law@cygnus.com
to get binaries of GNU CC for bootstrapping.
configure
.
Note the C compiler that comes
with this system cannot compile GNU CC. You can find binaries of GNU CC
for bootstrapping on jagubox.gsfc.nasa.gov
.
You will also a patched version of `/bin/ld' there that
raises some of the arbitrary limits found in the original.
Installing GNU CC on the 3b1 is difficult if you do not already have GNU CC running, due to bugs in the installed C compiler. However, the following procedure might work. We are unable to test it.
obstack_free
in the file
`tree.c' with _obstack_free
.
make
to get the first-stage GNU CC.
F.Pierresteguy@frcl.bull.fr
.
The Unos assembler is named casm
instead of as
. For some
strange reason linking `/bin/as' to `/bin/casm' changes the
behavior, and does not work. So, when installing GNU CC, you should
install the following script as `as' in the subdirectory where
the passes of GCC are installed:
#!/bin/sh casm $* |
The default Unos library is named `libunos.a' instead of `libc.a'. To allow GNU CC to function, either change all references to `-lc' in `gcc.c' to `-lunos' or link `/lib/libc.a' to `/lib/libunos.a'.
When compiling GNU CC with the standard compiler, to overcome bugs in
the support of alloca
, do not use `-O' when making stage 2.
Then use the stage 2 compiler with `-O' to make the stage 3
compiler. This compiler will have the same characteristics as the usual
stage 2 compiler on other systems. Use it to make a stage 4 compiler
and compare that with stage 3 to verify proper compilation.
(Perhaps simply defining ALLOCA
in `x-crds' as described in
the comments there will make the above paragraph superfluous. Please
inform us of whether this works.)
Unos uses memory segmentation instead of demand paging, so you will need a lot of memory. 5 Mb is barely enough if no other tasks are running. If linking `cc1' fails, try putting the object files into a library and linking from that library.
In addition, if you wish to use gas `--with-gnu-as' you must use gas version 2.1 or later, and you must use the GNU linker version 2.1 or later. Earlier versions of gas relied upon a program which converted the gas output into the native HP-UX format, but that program has not been kept up to date. gdb does not understand that native HP-UX format, so you must use gas if you wish to use gdb.
See 3.5 Installing GNU CC on the Sun, for information on installing GNU CC on Sun systems.
It is best, however, to use an older version of GNU CC for bootstrapping if you have one.
If you do not specify a configuration name, `configure' guesses the configuration based on the current software development environment.
memcpy
, memcmp
, and memset
. If your system lacks
these, you must remove or undo the definition of
TARGET_MEM_FUNCTIONS
in `mips-bsd.h'.
The MIPS C compiler needs to be told to increase its table size
for switch statements with the `-Wf,-XNg1500' option in
order to compile `cp/parse.c'. If you use the `-O2'
optimization option, you also need to use `-Olimit 3000'.
Both of these options are automatically generated in the
`Makefile' that the shell script `configure' builds.
If you override the CC
make variable and use the MIPS
compilers, you may need to add `-Wf,-XNg1500 -Olimit 3000'.
CC
make variable and use the MIPS
compilers, you may need to add `-Wf,-XNg1500 -Olimit 3000'.
MIPS computers running RISC-OS can support four different personalities: default, BSD 4.3, System V.3, and System V.4 (older versions of RISC-OS don't support V.4). To configure GCC for these platforms use the following configurations:
rev
'
rev
.
rev
bsd'
rev
.
rev
sysv4'
rev
.
rev
sysv'
rev
.
The revision rev
mentioned above is the revision of
RISC-OS to use. You must reconfigure GCC when going from a
RISC-OS revision 4 to RISC-OS revision 5. This has the effect of
avoiding a linker
bug (see 7.2 Installation Problems, for more details).
In order to compile GCC on an SGI running IRIX 5, the "compiler_dev.hdr" subsystem must be installed from the IDO CD-ROM supplied by Silicon Graphics.
make compare
may fail on version 5 of IRIX unless you add
`-save-temps' to CFLAGS
. On these systems, the name of the
assembler input file is stored in the object file, and that makes
comparison fail if it differs between the stage1
and
stage2
compilations. The option `-save-temps' forces a
fixed name to be used for the assembler input file, instead of a
randomly chosen name in `/tmp'. Do not add `-save-temps'
unless the comparisons fail without that option. If you do you
`-save-temps', you will have to manually delete the `.i' and
`.s' files after each series of compilations.
The MIPS C compiler needs to be told to increase its table size
for switch statements with the `-Wf,-XNg1500' option in
order to compile `cp/parse.c'. If you use the `-O2'
optimization option, you also need to use `-Olimit 3000'.
Both of these options are automatically generated in the
`Makefile' that the shell script `configure' builds.
If you override the CC
make variable and use the MIPS
compilers, you may need to add `-Wf,-XNg1500 -Olimit 3000'.
On Irix version 4.0.5F, and perhaps on some other versions as well, there is an assembler bug that reorders instructions incorrectly. To work around it, specify the target configuration `mips-sgi-irix4loser'. This configuration inhibits assembler optimization.
In a compiler configured with target `mips-sgi-irix4', you can turn off assembler optimization by using the `-noasmopt' option. This compiler option passes the option `-O0' to the assembler, to inhibit reordering.
The `-noasmopt' option can be useful for testing whether a problem is due to erroneous assembler reordering. Even if a problem does not go away with `-noasmopt', it may still be due to assembler reordering--perhaps GNU CC itself was miscompiled as a result.
To enable debugging under Irix 5, you must use GNU as 2.5 or later, and use the `--with-gnu-as' configure option when configuring gcc. GNU as is distributed as part of the binutils package.
alloca
and malloc
; you must get the compiled versions of these from GNU
Emacs.
hc
, the Metaware compiler, it will work, but you will get
mismatches between the stage 2 and stage 3 compilers in various files.
These errors are minor differences in some floating-point constants and
can be safely ignored; the stage 3 compiler is correct.
Release 4.3.0 of AIX and ones prior to AIX 3.2.4 include a version of the IBM assembler which does not accept debugging directives: assembler updates are available as PTFs. Also, if you are using AIX 3.2.5 or greater and the GNU assembler, you must have a version modified after October 16th, 1995 in order for the GNU C compiler to build. See the file `README.RS6000' for more details on any of these problems.
GNU CC does not yet support the 64-bit PowerPC instructions.
Objective C does not work on this architecture because it makes assumptions that are incompatible with the calling conventions.
AIX on the RS/6000 provides support (NLS) for environments outside of the United States. Compilers and assemblers use NLS to support locale-specific representations of various objects including floating-point numbers ("." vs "," for separating decimal fractions). There have been problems reported where the library linked with GNU CC does not produce the same floating-point formats that the assembler accepts. If you have this problem, set the LANG environment variable to "C" or "En_US".
Due to changes in the way that GNU CC invokes the binder (linker) for AIX 4.1, you may now receive warnings of duplicate symbols from the link step that were not reported before. The assembly files generated by GNU CC for AIX have always included multiple symbol definitions for certain global variable and function declarations in the original program. The warnings should not prevent the linker from producing a correct library or runnable executable.
By default, AIX 4.1 produces code that can be used on either Power or PowerPC processors.
You can specify a default version for the `-mcpu='cpu_type switch by using the configure option `--with-cpu-'cpu_type.
You can specify a default version for the `-mcpu='cpu_type switch by using the configure option `--with-cpu-'cpu_type.
You can specify a default version for the `-mcpu='cpu_type switch by using the configure option `--with-cpu-'cpu_type.
You can specify a default version for the `-mcpu='cpu_type switch by using the configure option `--with-cpu-'cpu_type.
You can specify a default version for the `-mcpu='cpu_type switch by using the configure option `--with-cpu-'cpu_type.
You can specify a default version for the `-mcpu='cpu_type switch by using the configure option `--with-cpu-'cpu_type.
You can specify a default version for the `-mcpu='cpu_type switch by using the configure option `--with-cpu-'cpu_type.
You can specify a default version for the `-mcpu='cpu_type switch by using the configure option `--with-cpu-'cpu_type. Beta versions of the Sun 4.0 compiler do not seem to be able to build GNU CC correctly. There are also problems with the host assembler and linker that are fixed by using the GNU versions of these tools.
You can specify a default version for the `-mcpu='cpu_type switch by using the configure option `--with-cpu-'cpu_type.
You can specify a default version for the `-mcpu='cpu_type switch by using the configure option `--with-cpu-'cpu_type.
vcc
). It produces incorrect code
in some cases (for example, when alloca
is used).
Meanwhile, compiling `cp/parse.c' with pcc does not work because of an internal table size limitation in that compiler. To avoid this problem, compile just the GNU C compiler first, and use it to recompile building all the languages that you want to run.
Don't use `-g' when compiling with the system's compiler. The system's linker seems to be unable to handle such a large program with debugging information.
The system's compiler runs out of capacity when compiling `stmt.c' in GNU CC. You can work around this by building `cpp' in GNU CC first, then use that instead of the system's preprocessor with the system's C compiler to compile `stmt.c'. Here is how:
mv /lib/cpp /lib/cpp.att cp cpp /lib/cpp.gnu echo '/lib/cpp.gnu -traditional ${1+"$@"}' > /lib/cpp chmod +x /lib/cpp |
The system's compiler produces bad code for some of the GNU CC optimization files. So you must build the stage 2 compiler without optimization. Then build a stage 3 compiler with optimization. That executable should work. Here are the necessary commands:
make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g" make stage2 make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -O" |
You may need to raise the ULIMIT setting to build a C++ compiler, as the file `cc1plus' is larger than one megabyte.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |