X Input Device Extension Library

Mark Patrick, Ardent Computer
George Sachs
Hewlett-Packard



X Input Device Extension Library
by Mark Patrick

George Sachs

Hewlett-Packard

X Version 11, Release 7.6

Version 1.0
Copyright © 1989, 1990, 1991 Hewlett-Packard Company, Ardent Computer

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in al copies. Ardent and Hewlett-Packard make no representations about the suitability for
any purpose of the information in this document. It is provided "asis" without express or implied warranty.

Copyright © 1989, 1990, 1991, 1992 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
‘* Software' "), to deal in the Software without restriction, including without limitation the rightsto use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.




Table of Contents

1. Input EXtension .........c.ccceeveviiieviineennn,
OVEIVIEW ..ovveeiieieeeeeee e,

Design Approach ...................

Core Input Devices ................
Extension Input Devices .........
Using Extension Input Devices
Library Extension Requests .............
Window Manager Functions ....
Events .......cooeviiiii
Event Handling Functions .......

A. Input Extension Protocol Encoding .......




Chapter 1. Input Extension

Overview

This document describes an extension to the X11 server. The purpose of this extension is to support
the use of additional input devices beyond the pointer and keyboard devices defined by the core X
protocol. Thisfirst section givesan overview of theinput extension. Thefollowing sections correspond
to chapters9, 10, and 11, "Window and Session Manager Functions”, "Events', and " "Event Handling
Functions' of the " Xlib - C Language Interface" manual and describe how to use the input device
extension.

Design Approach

The design approach of the extension isto define functions and events anal ogous to the core functions
and events. This allows extension input devices and events to be individually distinguishable from
each other and from the core input devices and events. These functions and events make use of a
device identifier and support the reporting of n-dimensional motion data as well as other data that is
not currently reportable via the core input events.

Core Input Devices

The X server core protocol supports two input devices: a pointer and a keyboard. The pointer device
has two major functions. First, it may be used to generate motion information that client programs
can detect. Second, it may also be used to indicate the current location and focus of the X keyboard.
To accomplish this, the server echoes a cursor at the current position of the X pointer. Unless the X
keyboard has been explicitly focused, this cursor also shows the current location and focus of the X
keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer arereferred to in this document asthe core devices, and the input events
they generate ( KeyPress , KeyRel ease , ButtonPress , ButtonRel ease , and
Mot i onNotify ) areknown as the core input events. All other input devices are referred to as
extension input devices, and the input events they generate are referred to as extension input events.
This input extension does not change the behavior or functionality of the core input devices, core
events, or core protocol requests, with the exception of the core grab requests. These requests may
affect the synchronization of events from extension devices. See the explanation in the section titled
““Event Synchronization and Core Grabs."

Selection of the physical devices to be initially used by the server as the core devices is left
implementation dependent. Functions are defined that allow client programs to change which physical
devices are used as the core devices.

Extension Input Devices

The input extension controls access to input devices other than the X keyboard and X pointer.
It allows client programs to select input from these devices independently from each other
and independently from the core devices. Input events from these devices are of extension
types (  Devi ceKeyPress , DeviceKeyRel ease , DeviceButtonPress
Devi ceButt onRel ease , Devi ceMdtionNotify , and so on) and contain a device
identifier so that events of the same type coming from different input devices can be distinguished.

Extension input events are not limited in size by the size of the server 32-byte wire events. Extension
input events may be constructed by the server sending as many wire-sized events as necessary to return




Input Extension

the information required for that event. The library event reformatting routines are responsible for
combining these into one or more client XEvents.

Any input device that generates key, button, or motion data may be used as an extension input device.
Extension input devices may have zero or more keys, zero or more buttons, and may report zero or
more axes of motion. Motion may be reported as relative movements from a previous position or as
an absolute position. All valuators reporting motion information for a given extension input device
must report the same kind of motion information (absolute or relative).

Thisextension is designed to accommodate new types of input devicesthat may be added in the future.
The protocol requests that refer to specific characteristics of input devices organize that information
by input device classes. Server implementors may add new classes of input devices without changing
the protocol requests.

All extension input devices are treated like the core X keyboard in determining their location and
focus. The server does not track the location of these devices on an individual basis and, therefore,
does not echo a cursor to indicate their current location. Instead, their location is determined by the
location of the core X pointer. Like the core X keyboard, some may be explicitly focused. If they are
not explicitly focused, their focus is determined by the location of the core X pointer.

Input Device Classes

Some of the input extension requests divide input devices into classes based on their functionality.
Thisisintended to allow new classes of input devices to be defined at a later time without changing
the semantics of these functions. The following input device classes are currently defined:

KEY The device reports key events.

BUTTON The device reports button events.

VALUATOR The device reports valuator datain motion events.
PROXIMITY The device reports proximity events.

FOCUS The device can be focused.

FEEDBACK The device supports feedbacks.

Additional classes may be added in the future. Functions that support multiple input classes, such as
the XLi st | nput Devi ces function that lists all available input devices, organize the data they
return by input class. Client programs that use these functions should not access data unless it matches
aclass defined at the time those clients were compiled. In thisway, new classes can be added without
forcing existing clients that use these functions to be recompiled.

Using Extension Input Devices

A client that wishes to access an input device does so through the library functions defined in the
following sections. A typical sequence of requests that a client would make is as follows:

e XLi st I nput Devi ces - listsall of the available input devices. From the information returned by
this request, determine whether the desired input device is attached to the server. For a description
of the XLi st | nput Devi ces reguest, see the section entitled “"Listing Available Devices."

* XOpenDevi ce - requests that the server open the device for access by this client. This request
returns an XDevi ce structure that is used by most other input extension requests to identify
the specified device. For a description of the XQpenDevi ce request, see the section entitled
““Enabling and Disabling Extension Devices."

» Determine the event types and event classes needed to select the desired input extension events,
and identify them when they are received. This is done via macros whose name corresponds to




Input Extension

the desired event, for example, Devi ceKeyPr ess . For adescription of these macros, see the
section entitled “"Selecting Extension Device Events."

e XSel ect Ext ensi onEvent - selects the desired events from the server. For a description of
the XSel ext Ext ensi onEvent request, see the section entitled " Selecting Extension Device
Events."

» XNext Event - receivesthenext available event. Thisisthe core XNext Event function provided
by the standard X libarary.

Other requests are defined to grab and focus extension devices, to change their key, button, or modifier
mappings, to control the propagation of input extension events, to get motion history from an extension

device, and to send input extension events to another client. These functions are described in the
following sections.

Library Extension Requests

Extension input devices are accessed by client programs through the use of new protocol requests.
The following reguests are provided as extensions to Xlib. Constants and structures referenced by
these functions may befound inthefiles<X11/ ext ensi ons/ Xl . h>and <X11/ ext ensi ons/
Xl nput . h>, which are attached to this document as Appendix A.

Thelibrary will return NoSuchExt ensi on if an extension request is made to a server that does not
support the input extension.

Input extension requests cannot be used to access the X keyboard and X pointer devices.

Window Manager Functions

This section discusses the following X Input Extension Window Manager topics:
» Changing the core devices

 Event synchronization and core grabs
» Extension active grabs

 Passively grabbing a key

 Passively grabbing a button

» Thawing adevice

 Controlling device focus
 Controlling device feedback

* Ringing abell on an input device
 Controlling device encoding

« Controlling button mapping

 Obtaining the state of adevice

Changing the Core Devices

These functions are provided to change which physical deviceisused asthe X pointer or X keyboard.




Input Extension

Note

Using these functions may change the characteristics of the core devices. The new pointer
device may have adifferent number of buttons from the old one, or the new keyboard device
may have adifferent number of keys or report adifferent range of keycodes. Client programs
may be running that depend on those characteristics. For example, a client program could
allocate an array based on the number of buttons on the pointer device and then use the button
numbers received in button events asindicesinto that array. Changing the core devices could
cause such client programs to behave improperly or to terminate abnormally if they ignore
the ChangeDevi ceNot i f y event generated by these requests.

These functions change the X keyboard or X pointer device and generate an
XChangeDevi ceNot i fy event andaMappi ngNot i fy event. The specified device becomesthe
new X keyboard or X pointer device. The location of the core device does not change as a result of
this request.

These requests fail and return Al r eady Gr abbed if either the specified device or the core device it
would replace are grabbed by some other client. They fail and return G- abFr ozen if either device
is frozen by the active grab of another client.

Theserequestsfail withaBadDevi ce error if the specified deviceisinvalid, hasnot previously been
opened viaXOpenDevi ce , orisnot supported as a core device by the server implementation.

Once the device has successfully replaced one of the core devices, it is treated as a core device
until it is in turn replaced by another ChangeDevi ce request or until the server terminates. The
termination of the client that changed the device will not cause it to change back. Attemptsto use the
XCl oseDevi ce request to close the new core device will fail with aBadDevi ce error.

To change which physical deviceisused asthe X keyboard, usethe XChangeKeyboar dDevi ce
function. The specified device must support input class Keys (as reported in the
Li st | nput Devi ces request) or the request will fail with aBadMat ch error.

i nt XChangeKeyboar dDevi ce( *di splay, *device);
display Specifies the connection to the X server.
device Specifies the desired device.

If noerror occurs, XChangeKeyboar dDevi cereturnsSuccess . A ChangeDevi ceNoti fy
event with the request field set to NewKeyboar d is sent to all clients selecting that event. A
Mappi ngNot i fy event with the request field set to Mappi ngKeyboar d issent to al clients. The
requested device becomes the X keyboard, and the old keyboard becomes available as an extension
input device. The focus state of the new keyboard is the same as the focus state of the old X keyboard.

XChangeKeyboar dDevi ce cangenerate Al r eadyG abbed , BadDevi ce , Badvat ch
and G- abFr ozen errors.

To change which physical device is used as the X pointer, use the XChangePoi nt er Devi ce
function. The specified device must support input class Val uat ors (as reported in the
XLi st I nput Devi ces request) and report at least two axes of motion, or the request will fail with
aBadMat ch error. If the specified device reports more than two axes, the two specified in the xaxis
and yaxis arguments will be used. Data from other valuators on the device will beignored.

If the specified device reports absol ute positional information, and the server implementation does not
allow such adevice to be used as the X pointer, the request will fail with aBadDevi ce error.

i nt XChangePoi nt er Devi ce( *display, *device, xaxis, yaxis);

display Specifies the connection to the X server.




Input Extension

device Specifies the desired device.

Xaxis Specifies the zero-based index of the axis to be used
as the x-axis of the pointer device.

yaxis Specifies the zero-based index of the axis to be used
asthe y-axis of the pointer device.

If no error occurs, XChangePoi nt er Devi ce returnsSuccess . A ChangeDevi ceNoti fy
event with the request field set to NewPoi nt er is sent to all clients selecting that event. A
Mappi ngNot i fy event with the request field set to Mappi ngPoi nt er issent to al clients. The
requested device becomes the X pointer, and the old pointer becomes available as an extension input
device.

XChangePoi nt er Devi ce can generate Al r eadyGr abbed , BadDevi ce , BadMat ch
and G- abFr ozen errors.

Event Synchronization and Core Grabs

Implementation of the input extension requires an extension of the meaning of event synchronization
for the core grab requests. This is necessary in order to alow window managers to freeze all input
devices with asingle request.

The core grab requests require a pointer_mode and keyboard mode argument. The meaning of
these modes is changed by the input extension. For the XGr abPoi nt er and XG abBut t on
requests, pointer_mode controls synchronization of the pointer device, and keyboard_mode controls
the synchronization of all other input devices. For the XGr abKeyboar d and XGr abKey requests,
pointer_mode controls the synchronization of all input devices, except the X keyboard, while
keyboard_mode controls the synchronization of the keyboard. When using one of the core grab
requests, the synchronization of extension devicesis controlled by the mode specified for the device
not being grabbed.

Extension Active Grabs

Active grabs of extension devices are supported viathe XGr abDevi ce function in the same way
that core devices are grabbed using the core XGr abKeyboar d function, except that an extension
input device is passed as a function parameter. The XUngr abDevi ce function allows a previous
active grab for an extension device to be rel eased.

Passive grabs of buttons and keys on extension devices are supported via the
XG abDevi ceButton and XG abDevi ceKey functions. These passive grabs are released via
the XUngr abDevi ceKey and XUngr abDevi ceBut t on functions.

To grab an extension device, use the XG abDevi ce function. The device must have previously
been opened using the XQOpenDevi ce function.

int XG abDevice( *display, *device, grab_w ndow, owner_events,

event _count, *event |ist, thi s_devi ce_node, ot her _devi ce_node,
tinme);

"display" Specifies the connection to the X server.
device Specifies the desired device.
grab_window Specifies the ID of a window associated

with the device specified above.

owner_events Specifies aboolean value of either Tr ue
or Fal se .




Input Extension

event_count Specifies the number of elementsin the
event_list array.

event_list Specifies a pointer to a list of event
classes that indicate which events the
client wishes to receive. These event
classes must have been obtained using
the device being grabbed.

this_device_mode Controls further processing of events
from this device. You can pass one
of these constants. G abModeSync or
GrabMbdeAsync .

other_device_mode Controls further processing of events
from all other devices. Y ou can pass one
of these constants. G- abModeSync or
GrabMbdeAsync .

time Specifies the time. This may be either a
timestamp expressed in milliseconds or
CurrentTime .

XG abDevi ce actively grabs an extension input device and generates Devi ceFocusl n and
Devi ceFocusQut events. Further input events from this device are reported only to the grabbing
client. This function overrides any previous active grab by this client for this device.

The event_list parameter is a pointer to a list of event classes. This list indicates which events the
client wishes to receive while the grab is active. If owner_events is Fal se , input events from
this device are reported with respect to grab_window and are reported only if specified in event_list.
If owner_eventsis True , then if a generated event would normally be reported to this client, it
is reported normally. Otherwise, the event is reported with respect to the grab_window and is only
reported if specified in event_list.

The this_device_mode argument controls the further processing of events from this device, and the
other_device_mode argument controls the further processing of input events from all other devices.

« If the this device_ mode argument is G abMbdeAsync , device event processing continues
normally; if thedeviceiscurrently frozen by thisclient, then processing of device eventsisresumed.
If the this_device_mode argument is G abModeSync , the state of the grabbed device (as seen
by client applications) appears to freeze, and no further device events are generated by the server
until the grabbing client issuesareleasing XAl | owDevi ceEvent s call or until the device grab
isreleased. Actual deviceinput eventsare not lost whilethe deviceisfrozen; they are ssimply queued
for later processing.

* If the other_device_mode is G- abMbdeAsync , event processing from other input devices is
unaffected by activation of the grab. If other_device_mode is G abMbdeSync , the state of al
devices except the grabbed device (as seen by client applications) appears to freeze, and no further
events are generated by the server until the grabbing client issues areleasing XAl | owEvent s or
XAl | owDevi ceEvent s cal or until the device grab isreleased. Actual eventsare not lost while
the other devices are frozen; they are simply queued for later processing.

XG abDevi ce fails on the following conditions:
« If the deviceis actively grabbed by some other client, it returns Al r eadyGr abbed .
 If grab_window is not viewable, it returns G- abNot Vi ewabl e .

* If thespecified timeisearlier than the last-grab-timefor the specified device or later than the current
X server time, it returns G abl nval i dTi me . Otherwise, the last-grab-time for the specified
deviceis set to the specified time and Cur r ent Ti e isreplaced by the current X server time.




Input Extension

* If the device isfrozen by an active grab of another client, it returns G abFr ozen .

If agrabbed deviceisclosed by aclient while an active grab by that client isin effect, that active grab
will be released. Any passive grabs established by that client will be released. If the device is frozen
only by an active grab of the requesting client, it is thawed.

XGr abDevi ce cangenerateBadC ass , BadDevi ce , BadVal ue , andBadW ndowerrors.

Torelease agrab of an extension device, usethe XUngr abDevi ce function.

int XUngrabDevice( *display, *device, tinme);

display Specifies the connection to the X server.
device Specifies the desired device.
time Specifies the time. This may be either a timestamp

expressed in milliseconds, or Cur r ent Ti e .

XUngr abDevi ce allowsaclient to release an extension input device and any queued eventsif this
client has it grabbed from either XGr abDevi ce or XG abDevi ceKey . If any other devices
are frozen by the grab, XUngr abDevi ce thaws them. This function does not release the device
and any queued eventsif the specified timeis earlier than the last-device-grab time or islater than the
current X server time. It also generates Devi ceFocusl n and Devi ceFocusCQut events. The X
server automatically performsan  XUngr abDevi ce if the event window for an active device grab
becomes not viewable or if the client terminates without releasing the grab.

XUngr abDevi ce can generate BadDevi ce errors.

Passively Grabbing a Key

To passively grab asingle key on an extension device, use XGr abDevi ceKey . That device must
have previously been opened using the XOpenDevi ce function, or the request will fail with a
BadDevi ce error. If the specified device does not support input classKeys , therequest will fail
with aBadMat ch error.

i nt XGr abDevi ceKey( *di spl ay, *devi ce, keycode, nmodi fi ers,
*nodi fi er _devi ce, grab_w ndow, owner _events, event count,
*event _|ist, this_device_node, other_device_nopde);

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is
to be grabbed. You can pass either the
keycode or AnyKey .

modifiers Specifies the set of keymasks. This

mask is the bitwise inclusive OR of
these keymask bits: Shi ft Mask

LockMask , Control Mask
Mod1Mask ,  Mbd2Mask ,
Mod3Mask , Mod4Mask , and
Mod5Mask .

You can aso pass AnyModi fier
which is equivalent to issuing the grab
key request for all possible modifier




Input Extension

combinations (including the combination
of no modifiers).

modifier_device Specifies the device whose modifiers
are to be used. If NULL is specified,
the core X keyboard is used as the
modifier_device.

grab_window Specifies the ID of awindow associated
with the device specified above.

owner_events Specifies aboolean value of either Tr ue
or Fal se .
event_count Specifies the number of elementsin the

event_list array.

event_list Specifies a pointer to a list of event
classes that indicate which events the
client wishesto receive.

this_device_mode Controls further processing of events
from this device. You can pass one
of these constants. G- abModeSync or
GrabMbdeAsync .

other_device_mode Controls further processing of events
from all other devices. Y ou can pass one
of these constants: G abModeSync or
GrabMbdeAsync .

XGr abDevi ceKey isanaogousto the core XGr abKey function. It creates an explicit passive grab
for akey on an extension device. The XGr abDevi ceKey function establishes a passive grab on
adevice. Consequently, in the future,

 |IF the deviceis not grabbed and the specified key, which itself can be a modifier key, islogically
pressed when the specified modifier keys logically are down on the specified modifier device (and
no other keys are down),

» AND no other modifier keys logically are down,

* AND EITHER the grab window is an ancestor of (or is) the focus window or the grab window is
a descendent of the focus window and contains the pointer,

* AND a passive grab on the same device and key combination does not exist on any ancestor of
the grab window,

» THEN the device is actively grabbed, asfor XGr abDevi ce , thelast-device-grab timeisset to
the time at which the key was pressed (as transmitted in the Devi ceKeyPr ess event), and the
Devi ceKeyPr ess event isreported.

The interpretation of the remaining arguments is as for XGr abDevi ce . The active grab
is terminated automatically when the logical state of the device has the specified key released
(independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical state
if device event processing is frozen.

A modifier of AnyModi fi er is equivalent to issuing the request for al possible modifier
combinations (including the combination of no modifiers). Itisnot required that all modifiers specified




Input Extension

have currently assigned keycodes. A key of AnyKey isequivalent toissuing therequest for all possible
keycodes. Otherwise, the key must be in the range specified by min_keycode and max_keycode in
the information returned by the XLi st | nput Devi ces function. If it is not within that range,
XGr abDevi ceKey generatesaBadVal ue error.

XGr abDevi ceKey generates a BadAccess error if some other client has issued a
XG abDevi ceKey with the same device and key combination on the same window. When using
AnyModi fi er or AnyKey , therequest failscompletely and the X server generatesaBadAccess
error, and no grabs are established if there is a conflicting grab for any combination.

XG abDevi ceKey returns Success upon successful completion of the request.

XG abDevi ceKey can generate BadAccess , BadC ass , BadDevi ce , BadMatch
BadVal ue , and BadW ndowerrors.

Torelease a passive grab of asingle key on an extension device, use XUngr abDevi ceKey .

i nt XUngr abDevi ceKey( *di spl ay, *devi ce, keycode, nodi fi ers,
*nodi fier_device, ungrab_w ndow);

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is
to be ungrabbed. Y ou can pass either the
keycode or AnyKey .

modifiers Specifies the set of keymasks. This

mask is the bitwise inclusive OR of
these keymask bits: Shi ft Mask

LockMask , Control Mask ,
Mod1Mask ,  Mbd2Mask ,
Mod3Mask , Mod4Mask , and
Mod5Mask .

You can aso pass AnyModi fier
which is equivalent to issuing the ungrab
key request for all possible modifier
combinations (including the combination
of no modifiers).

modifier_device Specifies the device whose modifiers
are to be used. If NULL is specified,
the core X keyboard is used as the
modifier_device.

ungrab_window Specifies the ID of awindow associated
with the device specified above.

XUngr abDevi ceKey isanalogousto thecore XUngr abKey function. It releasesan explicit passive
grab for akey on an extension input device.

XUngr abDevi ceKey can generate BadAl | oc , BadDevi ce , BadMat ch , BadVal ue ,
and BadW ndowerrors.

Passively Grabbing a Button

To establish apassive grab for asingle button on an extension device, use XGr abDevi ceBut t on .
The specified device must have previously been opened using the XOpenDevi ce function, or




Input Extension

the request will fail with a BadDevi ce error. If the specified device does not support input class

Butt ons , therequest will fail withaBadMat ch error.

i nt XGrabDevi ceButton( *di spl ay, *devi ce, but t on, nodi fi ers,
, grab_w ndow, owner _events, event count, *event |ist,

thi s_devi ce_node, other_devi ce_node);

display
device

button

modifiers

modifier_device

grab_window

owner_events

event_count

event_list

this_device_mode

other_device_mode

Specifies the connection to the X server.
Specifies the desired device.

Specifies the code of the button that is
to be grabbed. You can pass either the
button or AnyBut t on .

Specifies the set of keymasks. This
mask is the hitwise inclusive OR of
these keymask bhits: Shi ft Mask
LockMask , Control Mask ,
Mod1Mask ,  Mod2Mask ,
Mod3Mask , Mod4Mask , and
Mod5Mask .

You can aso pass AnyModi fier
which is equivalent to issuing the
grab request for al possible modifier
combinations (including the combination
of no modifiers).

Specifies the device whose modifiers
are to be used. If NULL is specified,
the core X keyboard is used as the
modifier_device.

Specifies the ID of awindow associated
with the device specified above.

Specifies aboolean value of either Tr ue
or Fal se .

Specifies the number of elements in the
event_list array.

Specifies a list of event classes that
indicates which device events are to be
reported to the client.

Controls further processing of events
from this device. You can pass one
of these constants. G- abModeSync or
GrabMbdeAsync .

Controls further processing of events
from al other devices. Y ou can pass one
of these constants. G abModeSync or
GrabMbdeAsync .

XG abDevi ceBut t on is analogous to the core XGr abBut t on function. It creates an explicit
passive grab for a button on an extension input device. Because the server does not track extension
devices, no cursor is specified with thisrequest. For the same reason, thereisno confine_to parameter.
The device must have previously been opened usingthe XQOpenDevi ce function.

10



Input Extension

The XGrabDevi ceBut t on function establishes a passive grab on adevice. Consequently, in the
future,

* |IFthedeviceisnot grabbed and the specified button islogically pressed when the specified modifier
keys logically are down (and no other buttons or modifier keys are down),

* AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab window is
a descendent of the focus window and contains the pointer,

» AND apassive grab on the same device and button/key combination does not exist on any ancestor
of the grab window,

* THEN the device is actively grabbed, as for XGr abDevi ce , the last-grab time is set to the
time at which the button was pressed (as transmitted in the Devi ceBut t onPr ess event), and
the Devi ceBut t onPr ess event isreported.

The interpretation of the remaining arguments is as for XGrabDevi ce . The active grab is
terminated automatically when logical state of the device has all buttons released (independent of the
logical state of the modifier keys).

Note that the logical state of adevice (as seen by means of the X protocol) may lag the physical state
if device event processing is frozen.

A modifier of AnyModi fi er is equivalent to issuing the request for al possible modifier
combinations (including the combination of no modifiers). Itisnot required that all modifiers specified
have currently assigned keycodes. A button of AnyBut t on isequivalent to issuing the request for all
possible buttons. Otherwise, it isnot required that the specified button be assigned to aphysical button.

XG abDevi ceButt on generates a BadAccess error if some other client has issued a
XGr abDevi ceBut t on with the same device and button combination on the same window. When
using AnyModi fi er or AnyButton , therequest fails completely and the X server generates a
BadAccess error and no grabs are established if there is a conflicting grab for any combination.

XG abDevi ceButt on can generate BadAccess BadCl ass , BadDevice
BadMat ch , BadVal ue , and BadW ndowerrors.

To release a passive grab of abutton on an extension device, use XUngr abDevi ceBut t on .

int XuUngrabDeviceButton( *display, *device, button, nodifiers,
*nodi fier_device, ungrab_w ndow);

display Specifies the connection to the X server.
device Specifies the desired device.
button Specifies the code of the button that is

to be ungrabbed. You can pass either a
button or AnyBut t on .

modifiers Specifies the set of keymasks. This
mask is the bitwise inclusive OR of
these keymask bits: Shi ft Mask

LockMask , Control Mask
Mod1Mask ,  Mdd2Mask ,
Mod3Mask , Mod4Mask , and
Mod5Mask .

You can aso pass AnyModi fier
which is equivalent to issuing the ungrab
key request for all possible modifier

11



Input Extension

combinations (including the combination
of no modifiers).

modifier_device Specifies the device whose modifiers
are to be used. If NULL is specified,
the core X keyboard is used as the
modifier_device.

ungrab_window Specifies the ID of awindow associated
with the device specified above.

XUngr abDevi ceBut t on is analogous to the core XUngr abBut t on function. It releases an
explicit passive grab for a button on an extension device. That device must have previously been
opened using the XOpenDevi ce function, or aBadDevi ce error will result.

A modifier of AnyModi fi er is equivalent to issuing the request for al possible modifier
combinations (including the combination of no modifiers).

XUngr abDevi ceBut t on can generate BadAl | oc BadDevi ce , Badvatch ,
BadVal ue , and BadW ndowerrors.

Thawing a Device

To adlow further events to be processed when a device has been frozen, use
XAl | owDevi ceEvents .

int XAlIlowbDeviceEvents( *display, *device, event_node, tine);

display Specifies the connection to the X server.
device Specifies the desired device.
event_mode Specifies the event mode. Y ou can pass one

of these constants. AsyncThi sDevi ce
SyncThi sDevi ce ,
AsyncQt her Devi ces ,
Repl ayThi sDevi ce , AsyncAll , or
SyncAl |

time Specifies the time. This may be either
a timestamp expressed in milliseconds, or
CurrentTime .

XAl | owDevi ceEvent s releases some queued eventsif the client has caused a device to freeze. It
has no effect if the specified timeisearlier than thelast-grab time of the most recent active grab for the
client and device, or if the specified timeislater than the current X server time. Thefollowing describes
the processing that occurs depending on what constant you pass to the event_mode argument:

* AsyncThi sDevi ce

 If the specified device is frozen by the client, event processing for that continues as usual.
If the device is frozen multiple times by the client on behalf of multiple separate grabs,
AsyncThi sDevi ce thawsfor al. AsyncThi sDevi ce has no effect if the specified deviceis
not frozen by the client, but the device need not be grabbed by the client.

e SyncThi sDevi ce

« If the specified device isfrozen and actively grabbed by the client, event processing for that device
continues normally until the next key or button event is reported to the client. At this time, the
specified device again appears to freeze. However, if the reported event causes the grab to be

12



Input Extension

released, the specified device does not freeze. SyncThi sDevi ce has no effect if the specified
deviceis not frozen by the client or is not grabbed by the client.

* Repl ayThi sDevi ce

« |If the specified deviceis actively grabbed by the client and isfrozen as the result of an event having
been sent to the client (either from the activation of a Gr abDevi ceBut t on or from a previous
Al | owDevi ceEvent s with mode SyncThi sDevi ce , butnotfromaG ab ), thegrab
is released and that event is completely reprocessed. This time, however, the request ignores any
passive grabs at or above (toward the root) the grab-window of the grab just released. The request
has no effect if the specified device is not grabbed by the client or if it is not frozen as the result
of an event.

e AsyncQt her Devi ces

« If the remaining devices are frozen by the client, event processing for them continues as usual.
If the other devices are frozen multiple times by the client on behalf of multiple separate grabs,
AsyncQt her Devi ces “thaws' for al. AsyncQ her Devi ces hasno effect if the devicesare
not frozen by the client, but those devices need not be grabbed by the client.

* SyncAll

« If all devicesarefrozen by the client, event processing (for all devices) continues normally until the
next button or key event isreported to the client for agrabbed device, at whichtimethe devicesagain
appear to freeze. However, if the reported event causes the grab to be released, then the devices do
not freeze (but if any deviceisstill grabbed, then asubsequent event for it will still cause all devices
tofreeze). SyncAl | hasno effect unlessall devices arefrozen by theclient. If any deviceisfrozen
twice by the client on behalf of two separate grabs, SyncAl | "thaws" for both (but a subsequent
freeze for SyncAl | will freeze each device only once).

* AsyncAl |

« If al devices are frozen by the client, event processing (for al devices) continues normally. If
any device is frozen multiple times by the client on behalf of multiple separate grabs, AsyncAl |
““thaws "for al. If any device is frozen twice by the client on behalf of two separate grabs,
AsyncAl | “thaws' for both. AsyncAl | has no effect unless all devices are frozen by the client.

AsyncThi sDevi ce , SyncThi sDevi ce , and Repl ayThi sDevi ce have no effect on
the processing of events from the remaining devices. AsyncQt her Devi ces has no effect on the
processing of events from the specified device. When theevent_modeisSyncAl | or AsyncAl | ,
the device parameter isignored.

It is possible for several grabs of different devices (by the same or different clients) to be active
simultaneously. If adevice is frozen on behalf of any grab, no event processing is performed for the
device. It is possible for a single device to be frozen because of several grabs. In this case, the freeze
must be released on behalf of each grab before events can again be processed.

XAl | owDevi ceEvent s can generate BadDevi ce and BadVal ue errors.

Controlling Device Focus

The current focus window for an extension input device can be determined using the
XGet Devi ceFocus function. Extension devices are focused using the XSet Devi ceFocus
function in the same way that the keyboard is focused using the core XSet | nput Focus
function, except that a device ID is passed as a function parameter. One additional focus state,
Fol | owKeyboard , isprovided for extension devices.

To get the current focus state, revert state, and focus time of an extension device, use
XCet Devi ceFocus .

13



Input Extension

i nt XGet Devi ceFocus(  *di spl ay, *devi ce, *focus_return,
*revert _to_return, *focus_time_return);

display Specifies the connection to the X server.
device Specifies the desired device.
focus_return Specifies the address of a variable

into which the server can return the
ID of the window that contains the
device focus or one of the constants
None , Poi nt er Root , or
Fol | owKeyboard .

revert_to_return Specifies the address of a variable into
which the server can return the current
revert to status for the device.

focus_time return Specifies the address of a variable into
whichthe server can returnthefocustime
last set for the device.

XCGet Devi ceFocus returns the focus state, the revert-to state, and the last-focus-time for an
extension input device.

XGet Devi ceFocus can generate BadDevi ce and BadMat ch errors.
To set the focus of an extension device, use XSet Devi ceFocus .

i nt XSetDevi ceFocus( *display, *device, focus, revert _to, tine);

display Specifies the connection to the X server.
device Specifies the desired device.
focus Specifies the ID of the window to which

the device's focus should be set. This may
be a window ID, or Poi nt er Root ,
Fol | owKeyboard , or None .

revert_to Specifies to which window the focus
of the device should revert if the
focus window becomes not viewable.
One of the following constants may
be passed: Revert ToParent ,
Revert ToPoi nt er Root ,
Revert ToNone , or
Revert ToFol | owKeyboard .

time Specifies the time. You can pass either
a timestamp, expressed in milliseconds, or
CurrentTime .

XSet Devi ceFocus changesthefocusfor an extensioninput device and the last-focus-change-time.
It has no effect if the specified timeisearlier than the last-focus-change-time or islater than the current
X server time. Otherwise, the last-focus-change-time is set to the specified time. This function causes
the X server to generate Devi ceFocusl n and Devi ceFocusQut events.

The action taken by the server when this function is requested depends on the value of the focus
argument:

14



Input Extension

* If the focus argument is None , all input events from this device will be discarded until a new
focuswindow is set. In this case, the revert_to argument isignored.

* |If thefocus argument isawindow ID, it becomes the focus window of the device. If an input event
from the device would normally be reported to this window or to one of its inferiors, the event is
reported normally. Otherwise, the event is reported relative to the focus window.

« If the focus argument is Poi nt er Root , the focus window is dynamically taken to be the root
window of whatever screen the pointer ison at each input event. Inthiscase, therevert_to argument
isignored.

* If thefocusargumentisFol | owKeyboard , thefocuswindow isdynamicaly taken to bethe
same as the focus of the X keyboard at each input event.

The specified focuswindow must beviewableat thetime XSet Devi ceFocus iscalled. Otherwise,
it generatesaBadMat ch error. If thefocuswindow later becomesnot viewable, the X server evaluates
the revert_to argument to determine the new focus window.

* If therevert_to argument isRevert ToPar ent , the focus reverts to the parent (or the closest
viewable ancestor), and the new revert_to valueistaken to be Revert ToNone .

* If therevert_toargumentisRevert ToPoi nt er Root , Revert ToFol | owKeyboard , or
Revert ToNone , thefocusrevertsto that value.

When the focus reverts, the X server generates Devi ceFocusl n and Devi ceFocusQut events,
but the last-focus-change time is not affected.

XSet Devi ceFocus cangenerateBadDevi ce , Badivat ch , BadVal ue , andBadW ndow
errors.

Controlling Device Feedback

To determine the current feedback settings of an extension input device, use
XCGet FeedbackCont r ol

XFeedbackState * XGet FeedbackControl ( *di spl ay, *devi ce,

*num f eedbacks_return);

display Specifies the connection to the X server.

device Specifies the desired device.

num_feedbacks return Returns the number of feedbacks
supported by the device.

XCGet FeedbackCont r ol returnsalist of FeedbackSt at e structuresthat describe the feedbacks
supported by the specified device. There is an XFeedbackSt at e structure for each class of
feedback. These are of variable length, but the first three members are common to all.

typedef struct {

Xl D cl ass;
int length;
XIDid;

} XFeedbacksSt at e;

The common members are as follows:

15



Input Extension

The class member identifies the class of feedback. It may be compared to constants defined
in the file < X11/ extensi ons/ Xl . h >. Currently defined feedback constants include:
KbdFeedbackd ass Pt r FeedbackCd ass , StringFeedbackd ass
I nt eger FeedbackC ass , LedFeedbackd ass , andBel | Feedbackd ass .

The length member specifies the length of the FeedbackSt at e structure and can be used by
clientsto traverse thelist.

The id member uniquely identifies a feedback for a given device and class. This alows a device
to support more than one feedback of the same class. Other feedbacks of other classes or devices
may have the same ID.

Those feedbacks equivalent to those supported by the core keyboard are reported in class
KbdFeedback using the XKbdFeedbackSt at e structure, which is defined as follows:

typedef struct {

}

XI D cl ass;

int length;

XIDid;

int click;

nt percent;

nt pitch;

nt duration;

nt | ed _mask;

nt gl obal _auto_repeat;
char auto_repeats[32];

XKbdFeedbackSt at e;

The additional members of the XKbdFeedbackSt at e structure report the current state of the
feedback:

The click member specifiesthe key-click volume and has avaluein the range 0 (off) to 100 (loud).
The percent member specifies the bell volume and has a value in the range 0 (off) to 100 (loud).

The pitch member specifies the bell pitch in Hz. The range of the value is implementation-
dependent.

The duration member specifies the duration in milliseconds of the bell.

The led_mask member is a bit mask that describes the current state of up to 32 LEDs. A value of
linabit indicates that the corresponding LED ison.

The global auto repeat member has a vaue of AutoRepeat ModeOn or
Aut oRepeat ModeX f

The auto_repeats member is a bit vector. Each bit set to 1 indicates that auto-repeat is enabled for
the corresponding key. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for
keys 8N to 8N + 7, with the least significant bit in the byte representing key 8N.

Those feedbacks equivalent to those supported by the core pointer are reported in class
Pt r Feedback using the XPt r FeedbackSt at e structure, which is defined as follows:

typedef struct {

16



Input Extension

Xl D cl ass;
int length;
XIDid;

i nt accel Num

i nt accel Denom

int threshold;
} XPtrFeedbackSt at e;

The additional members of the XPt r FeedbackSt at e structure report the current state of the
feedback:

» The accelNum member returns the numerator for the acceleration multiplier.
» The accel Denom member returns the denominator for the acceleration multiplier.
» The accel Denom member returns the threshold for the acceleration.

Integer feedbacks are those capable of displaying integer numbers and reported via the
Xl nt eger FeedbackSt at e structure. The minimum and maximum values that they can display
are reported.

typedef struct {
XI D cl ass;
int Iength;
XIDid;
int resolution;
int mnVval;
i nt maxVal ;
} Xl nteger FeedbackSt at e;

The additional members of the XI nt eger FeedbackSt at e structure report the capabilities of the
feedback:

* The resolution member specifies the number of digits that the feedback can display.

e TheminVa member specifies the minimum value that the feedback can display.

* ThemaxVal specifies the maximum value that the feedback can display.

String feedbacks are those that can display character information and are reported via the
XSt ri ngFeedbackSt at e structure. Clients set these feedbacks by passing a list of KeySyns
to be displayed. The XGet FeedbackCont r ol function returns the set of key symbols that

the feedback can display, as well as the maximum number of symbols that can be displayed. The
XSt ri ngFeedbacksSt at e structure is defined as follows:

typedef struct {

Xl D cl ass;
int length;
XIDid;

i nt max_synbol s;

int numsyns_supported;

KeySym *syns_support ed;
} XStringFeedbackSt at e;

17



Input Extension

The additional members of the XSt r i ngFeedbackSt at e structure report the capabilities of the
feedback:

» The max_symbols member specifies the maximum number of symbols that can be displayed.
e The syms_supported member is a pointer to the list of supported symbols.
e Thenum_syms supported member specifies the length of the list of supported symbols.

Bell feedbacks are those that can generate a sound and are reported viathe XBel | FeedbackSt at e
structure. Some implementations may support a bell as part of a KbdFeedback feedback. Class
Bel | Feedback is provided for implementations that do not choose to do so and for devices that
support multiple feedbacks that can produce sound. The meaning of the members is the same as that
of the corresponding fields in the XKbdFeedback St at e structure.

typedef struct ({
XI D cl ass;
int Iength;
XIDid;
i nt percent;
int pitch;
int duration;
} XBel | FeedbacksSt at e;

Led feedbacks are those that can generate a light and are reported via the XLedFeedbackSt at e
structure. Up to 32 lights per feedback are supported. Each bit in led mask corresponds to one
supported light, and the corresponding bit in led_values indicates whether that light is currently on
(2) or off (0). Some implementations may support leds as part of a KbdFeedback feedback. Class
LedFeedback is provided for implementations that do not choose to do so and for devices that
support multiple led feedbacks.

typedef struct {

Xl D cl ass;
int length;
XIDid;

Mask | ed_val ues;
Mask | ed_mask;
} XLedFeedbacksSt at e;
XGet FeedbackCont r ol can generate BadDevi ce and BadMVat ch errors.

To free the information returned by the XCGet FeedbackCont rol function, use
XFr eeFeedbackLi st

void XFreeFeedbackList( *list);

list Specifies the pointer to the XFeedbackSt at e structure
returned by aprevious call to XGet FeedbackCont r ol

XFr eeFeedbackLi st freesthelist of feedback control information.

To change the settings of afeedback on an extension device, use XChangeFeedbackCont r ol
Thisfunction modifiesthe current control values of the specified feedback using information passed in

18



Input Extension

theappropriate XFeedbackCont r ol structurefor thefeedback. Which valuesare modified depends
on the valuemask passed.

i nt XChangeFeedbackControl ( *di spl ay, *device, valuenask, *value);

display Specifies the connection to the X server.
device Specifies the desired device.
valuemask Specifiesonevaluefor each bit in the mask (least

to most significant bit). Thevaluesare associated
with the feedbacks for the specified device.

value Specifies a pointer to the
XFeedbackCont r ol structure.

XChangeFeedbackControl controls the device -characteristics described by the

XFeedbackCont r ol structure. There is an XFeedbackCont r ol structure for each class of
feedback. Theseare of variablelength, but thefirst three membersarecommonto all and areasfollows:

typedef struct {

XI D cl ass;
int length;
XIDid;

} XFeedbackControl ;

Feedback classKbdFeedback controls feedbacks equivalent to those provided by the core keyboard
using the KbdFeedbackCont r ol structure, which is defined as follows..

t ypedef struct {
XI D cl ass;
int length;
XIDid;
int click;
nt percent;
nt pitch;
nt duration;
nt | ed_nask;
nt | ed val ue;
nt key;
nt auto_repeat node;
} XKbdFeedbackControl ;

This class controls the device characteristics described by the XKbdFeedbackCont r ol structure.
Theseincludethekey click percent, global_auto repeat, and individual key auto-repeat. Valid modes
are Aut oRepeat MbdeOn , Aut oRepeat ModeOF f |, and Aut oRepeat ModeDef aul t

Valid masks are as follows:

#def i ne DvKeyd i ckPer cent (1><<0)
#def i ne DvPer cent (1><<0)
#def i ne DvPi tch (1><<0)

19



Input Extension

#def i ne DvDur ati on (1><<0)
#def i ne DvLed (1><<0)
#def i ne DvLedMode (1><<0)
#define  DvKey (1><<0)
#def i ne DvAut oRepeat Mode (1><<0)

Feedback class Pt r Feedback controls feedbacks equivalent to those provided by the core pointer
using the Pt r FeedbackCont r ol structure, which is defined as follows:

typedef struct {

XI D cl ass;
int length;
XIDid;

int accel Num
i nt accel Denom
int threshold;

} XPtrFeedbackControl;

Which values are modified depends on the valuemask passed.

Valid masks are as follows:

#def i ne DvAccel num (1L<<0)
#defi ne DvAccel Denom (1L<<1)
#defi ne DvThreshol d (1L<<2)

The acceleration, expressed as a fraction, is a multiplier for movement. For example, specifying 3/1
means that the device movesthree times as fast as normal. The fraction may be rounded arbitrarily by
the X server. Acceleration takes effect only if the device moves more than threshold pixelsat once and
applies only to the amount beyond the value in the threshold argument. Setting a value to -1 restores
the default. The values of the accelNumerator and threshold fields must be nonzero for the pointer
valuesto be set. Otherwise, the parameterswill be unchanged. Negative values generateaBadVal ue
error, as does a zero value for the accel Denominator field.

This request fails with a BadMat ch error if the specified device is not currently reporting relative
motion. If adevicethat is capable of reporting both relative and absol ute motion hasits mode changed
fromRel ati ve to Absol ut e by an XSet Devi ceMbde request, valuator control values will be
ignored by the server while the device isin that mode.

Feedback class | nt eger Feedback controls integer feedbacks displayed on input devices and are
reported viathe | nt eger FeedbackCont r ol structure, which is defined as follows:

typedef struct {

Xl D cl ass;
int length;
XIDid;

int int_to_display;
} Xl nteger FeedbackControl ;

Valid masks are as follows:

20



Input Extension

#def i ne Dvl nt eger (1L<<0)

Feedback class St r i ngFeedback controlsstring feedbacks displayed on input devices and reported
viathe St ri ngFeedbackCont r ol structure, which is defined as follows:

t ypedef struct {

XI D cl ass;
int length;
XIDid;

i nt num keysyns;
KeySym *syns_t o_di spl ay;
} XStringFeedbackControl;

Valid masks are as follows:

#defi ne DvString (1L<<0)

Feedback class Bel | Feedback controls a bell on an input device and is reported via the
Bel | FeedbackCont r ol structure, which is defined as follows:

typedef struct {
XI D cl ass;
int Iength;
XIDid;
int percent;
int pitch;
int duration;
} XBel | FeedbackControl ;

Valid masks are as follows:

#defi ne DvPer cent (1L<<1)
#defi ne DvPi t ch (1L<<2)
#def i ne DvDur ati on (1L<<3)

Feedback class LedFeedback controls lights on an input device and are reported via the
LedFeedbackCont r ol structure, which is defined as follows:

t ypedef struct {

XI D cl ass;
int length;
XIDid;

int | ed_mask;
int |ed_ val ues;
} XLedFeedbackControl ;

Valid masks are as follows:

21



Input Extension

#define  DvlLed (1L<<4)
#def i ne DvLedMode (1L<<5)

XChangeFeedbackCont r ol can generate BadDevi ce , BadFeedBack , BadMatch
and BadVal ue errors.

Ringing a Bell on an Input Device
Toring abell on an extension input device, use XDevi ceBel |

int XDeviceBell( *display, *device, feedbackid, percent);

display Specifies the connection to the X server.
device Specifies the desired device.
feedbackclass Specifies the feedbackclass. Valid

values are KbdFeedbackd ass and
Bel | Feedbackd ass .

feedbackid Specifies the ID of the feedback that has
the bell.

percent Specifies the volume in the range -100
(quiet) to 100 percent (loud).

XDevi ceBel | isanalogousto the core XBel | function. It rings the specified bell on the specified
input device feedback, using the specified volume. The specified volumeisrelative to the base volume
for the feedback. If the value for the percent argument is not in the range -100 to 100 inclusive, a
BadVal ue error results. Thevolumeat which thebell ringswhen the percent argument isnonnegative
is

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]
To change the base volume of the bell, use XChangeFeedbackCont r ol

XDevi ceBel | can generate BadDevi ce and BadVal ue errors.

Controlling Device Encoding

To get the key mapping of an extension device that supports input class Keys , use
XGet Devi ceKeyMappi ng .

KeySym * XGet Devi ceKeyMappi ng( *di spl ay, *devi ce,

first_keycode wanted, keycode count, *keysyns_per_keycode return);

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycode wanted Specifies the first keycode that is to be
returned.

22



Input Extension

keycode_count Specifiesthe number of keycodesthat are
to be returned.

keysyms per_keycode return Returns the number of keysyms per
keycode.

XGet Devi ceKeyMappi ng isanalogoustothecore XGet Keyboar dMappi ng function. It returns
the symbols for the specified number of keycodes for the specified extension device.

XCGet Devi ceKeyMappi ng returns the symbols for the specified number of keycodes for the
specified extension device, starting with the specified keycode. The first_keycode wanted must be

greater than or equal to min-keycode as returned by the XLi st | nput Devi ces request (else a
BadVal ue error results). The following value:

first_keycode wanted + keycode_count - 1

must be less than or equal to max-keycode asreturned by the XLi st | nput Devi ces request (else
aBadVal ue eror results).

The number of elementsin the keysymslist isasfollows:

keycode_count * keysyns_per _keycode_return

And KEY SYM number N (counting from zero) for keycode K has an index (counting from zero), in
keysyms, of the following:

(K - first_keycode_wanted) * keysyns_per_keycode_ return + N
Thekeysyms per_keycode returnvalueischosen arbitrarily by the server to belarge enough to report
al requested symbols. A specia KEYSYM value of NoSynbol is used to fill in unused elements
for individual keycodes.

To free the data returned by this function, use XFr ee.

If the specified device has not first been opened by thisclient viaXOpenDevi ce , thisrequest will
fail with aBadDevi ce error. If that device does not support input class Keys , this request will
fail with aBadMat ch error.

XCGet Devi ceKeyMappi ng can generate BadDevi ce , Badivat ch , and BadVal ue errors.

To change the keyboard mapping of an extension device that supports input class Keys , use
XChangeDevi ceKeyMappi ng .

i nt XChangeDevi ceKeyMappi ng( *di spl ay, *devi ce, first_keycode,
keysyns_per _keycode, *keysyns, num codes);

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycode Specifies the first keycode that is to be
changed.

keysyms per_keycode Specifiesthe keysymsthat are to be used.

keysyms Specifies a pointer to an array of
keysyms.

23



Input Extension

num_codes Specifiesthe number of keycodesthat are
to be changed.

XChangeDevi ceKeyMappi ng isanalogousto the core XChangeKeyboar dVappi ng function.
It defines the symbols for the specified number of keycodes for the specified extension keyboard
device.

If the specified device has not first been opened by this client via XOpenDevi ce , this request
will fail with aBadDevi ce error. If the specified device does not support input class Keys , this
request will fail with aBadMat ch error.

The number of elementsin the keysymslist must be amultiple of keysyms per_keycode. Otherwise,
XChangeDevi ceKeyMappi ng generates a BadLengt h error. The specified first_keycode must
be greater than or equal to the min_keycode value returned by theLi st | nput Devi ces request, or
this request will fail with aBadVal ue error. In addition, if the following expression is not less than
the max_keycode value returned by the Li st | nput Devi ces request, the request will fail with a
BadVal ue error:

first_keycode + (numcodes / keysyms_per_keycode) - 1

XChangeDevi ceKeyMappi ng can generate BadAl | oc , BadDevi ce , BadMvatch , and
BadVal ue errors.

To obtain the keycodes that are used as modifiers on an extension device that supports input class
Keys , useXGet Devi ceModi fi er Mappi ng .

XModi fierKeymap * XGet Devi ceModi fi er Mappi ng( *di spl ay, *device);
display Specifies the connection to the X server.

device Specifiesthe desired device.

XGet Devi ceModi f i er Mappi ng isanalogous to the core XGet Modi f i er Mappi ng function.
The XGet Devi ceModi fi er Mappi ng function returns a newly created XModi f i er Keymap
structure that contains the keys being used as modifiers for the specified device. The structure should
be freed after use with XFr eeMbdi fi er Mappi ng . If only zero values appear in the set for any
modifier, that modifier is disabled.

XCGet Devi ceModi fi er Mappi ng can generate BadDevi ce and BadMVat ch errors.

To set which keycodes are to be used as modifiers for an extension device, use
XSet Devi ceModi fi er Mappi ng .

i nt XSetDeviceMdifierMpping( *display, *device, *nodnap);

display Specifies the connection to the X server.

device Specifies the desired device.

modmap Specifies a pointer to the XModi fi er Keynmap
structure.

XSet Devi ceModi f i er Mappi ng isanalogous to the core XSet Modi f i er Mappi ng function.
The XSet Devi ceModi fi er Mappi ng function specifies the keycodes of the keys, if any, that
are to be used as modifiers. A zero value means that no key should be used. No two arguments
can have the same nonzero keycode value. Otherwise,  XSet Devi ceMbdi fi er Mappi ng
generates a BadVal ue error. There are eight modifiers, and the modifiermap member of the
XModi fi er Keymap structure contains eight sets of max_keypermod keycodes, one for each
modifier in the order Shi ft , Lock , Control , Mbdl , Mbd2 , Mod3 , Mbd4 , and

24



Input Extension

Mod5 . Only nonzero keycodes have meaning in each set, and zero keycodes areignored. In addition,
all of the nonzero keycodes must bein the range specified by min_keycode and max_keycode reported
by the  XLi st nput Devi ces function. Otherwise, XSet Modi fi er Mappi ng generates a
BadVal ue error. No keycode may appear twice in the entire map. Otherwise, it generates a
BadVal ue error.

A X server can impose restrictions on how modifiers can be changed, for example, if certain keys
do not generate up transitions in hardware or if multiple modifier keys are not supported. If some
such restriction is violated, the status reply is Mappi ngFai | ed , and none of the modifiers
are changed. If the new keycodes specified for a modifier differ from those currently defined and
any (current or new) keys for that modifier are in the logically down state, the status reply is
Mappi ngBusy , and none of the modifiers are changed. XSet Modi f i er Mappi ng generates
aDevi ceMappi ngNot i fy event on aMappi ngSuccess status.

XSet Devi ceModi fi er Mappi ng can generate BadAl | oc , BadDevi ce , Badwvatch ,
and BadVal ue errors.

Controlling Button Mapping
To set the mapping of the buttons on an extension device, use XSet Devi ceBut t onMappi ng .

int XSetDeviceButtonMappi ng( *di splay, *device, map[], nnap);

display Specifies the connection to the X server.

device Specifies the desired device.

map Specifies the mapping list.

nmap Specifies the number of itemsin the mapping list.

XSet Devi ceBut t onMappi ng sets the mapping of the buttons on an extension
device. If it succeeds, the X server generates a Devi ceMappi ngNotify event, and
XSet Devi ceBut t onMappi ng returns Mappi ngSuccess . Elements of the list are indexed
starting from one. The length of the list must be the sasme as XGet Devi ceBut t onMappi ng
would return, or a BadVal ue error results. The index is a button number, and the element of the
list defines the effective number. A zero element disables a button, and elements are not restricted
in value by the number of physical buttons. However, no two elements can have the same nonzero
value, or aBadVal ue error results. If any of the buttons to be altered are logically in the down state,
XSet Devi ceBut t onMappi ng returns Mappi ngBusy , and the mapping is not changed.

XSet Devi ceBut t onMappi ng can generate BadDevi ce , BadMatch , and BadVal ue
errors.

To get the button mapping, use XGet Devi ceBut t onMappi ng .

i nt XGet Devi ceBut t onMappi ng( *di spl ay, *devi ce, map_return[],

nmap) ;

display Specifies the connection to the X server.
device Specifies the desired device.

map_return Specifies the mapping list.

nmap Specifies the number of items in the mapping

list.

XGet Devi ceBut t onMappi ng returns the current mapping of the specified extension device.
Elements of the list are indexed starting from one. XGet Devi ceBut t onMappi ng returns the

25



Input Extension

number of physical buttons actually on the pointer. The nominal mapping for the buttonsistheidentity
mapping: map[i]=i. The nmap argument specifies the length of the array where the button mapping is
returned, and only the first nmap elements are returned in map_return.

XGet Devi ceBut t onMappi ng can generate BadDevi ce and BadMat ch errors.

Obtaining the State of a Device

To obtaininformation that describesthe state of the keys, buttons, and valuators of an extension device,
use XQuer yDevi ceState .

XDevi ceState * XQueryDeviceState( *display, *device);
display Specifies the connection to the X server.
device Specifiesthe desired device.

XQuer yDevi ceSt at e returns apointer to an XDevi ceSt at e structure, which pointsto alist of
structures that describe the state of the keys, buttons, and valuators on the device:

t ypedef struct {
XI D devi ce_i d;
i nt num cl asses;
Xl nput C ass *dat a;
} XDevi ceSt at e;

The structures are of variable length, but the first two members are common to all and are asfollows:

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
} Xl nputd ass;

The class member contains a class identifier. This identifier can be compared with constants defined
in the file < X11/ extensions/ Xl. h >. Currently defined constants are: KeyCl ass ,
Butt ond ass , andVal uat or d ass .

The length member contains the length of the structure and can be used by clientsto traverse thelist.

The XVal uat or St at e structure describes the current state of the valuators on the device. The
num_valuators member contains the number of valuators on the device. The mode member is a mask
whose bits report the data mode and other state information for the device. The following bits are

currently defined:
Devi ceMode 1<<0 Rel ative = 0, Absolute =1
ProxintyState 1 <1 InProximty =0, QuOProximty =1

The valuators member contains a pointer to an array of integers that describe the current value of the
valuators. If themodeisRel at i ve , thesevalues are undefined.

26



Input Extension

typedef struct {
unsi gned char cl ass;
unsi gned char | ength;
unsi gned char numval uat ors;
unsi gned char node;
int *val uators;
} Xval uator State

The XKey St at e structure describes the current state of the keys on the device. Byte N (from Q)
contains the bits for key 8N to 8N + 7 with the least significant bit in the byte representing key 8N.

typedef struct {
unsi gned char cl ass;
unsi gned char | ength;
short num keys;
char keys[32];

} XKeySt at e;

The XBut t onSt at e structure describes the current state of the buttons on the device. Byte N (from

0) containsthe bitsfor button 8N to 8N + 7 with the least significant bit in the byte representing button
8N.

typedef struct {
unsi gned char cl ass;
unsi gned char | ength;
short num buttons;
char buttons[32];

} XButtonStat e;

XQuer yDevi ceSt at e can generate BadDevi ce errors.
To free the data returned by this function, use XFr eeDevi ceSt at e .
void XFreeDeviceState( *state);

state Specifiesthe pointer to the XDevi ceSt at e datareturned
by apreviouscall to XQuer yDevi ceSt ate .

XFr eeDevi ceSt at e freesthe device state data.

Events

The input extension creates input events analogous to the core input events. These extension input
events are generated by manipulating one of the extension input devices. The remainder of this section
discusses the following X Input Extension event topics:

» Event types

» Event classes

* Event structures

27



Input Extension

Event Types

Event types are integer numbers that a client can use to determine what kind of event it has received.
The client compares the type field of the event structure with known event types to make this
determination.

The coreinput event types are constants and are defined in the header file< X11/ X. h >. Extension
event types are not constants. I nstead, they are dynamically allocated by the extension's request to the
X server when the extension is initialized. Because of this, extension event types must be obtained
by the client from the server.

The client program determines the event type for an extension event by using theinformation returned
by the XOpenDevi ce request. This type can then be used for comparison with the type field of
events received by the client.

Extension events propagate up the window hierarchy in the same manner as core events. If awindow
is not interested in an extension event, it usually propagates to the closest ancestor that is interested,
unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set of windows
that receive a particular extension event.

The following table lists the event category and its associated event type or types.

Event Category Event Type
Device key Devi ceKeyPr ess

Devi ceKeyRel ease

Device motion Devi ceBut t onPr ess

Devi ceBut t onRel ease
Devi ceMot i onNoti fy

Device input focus Devi ceFocuslin
Devi ceFocusQut
Device state notification Devi ceStateNotify
Device proximity Proximtyln
Proxi m t yQut
Device mapping Devi ceMappi ngNot i fy
Device change ChangeDevi ceNot i fy

Event Classes

Event classes are integer numbers that are used in the same way as the core event masks. They are
used by aclient program to indicate to the server which events that client program wishes to receive.

Thecoreinput event masksare constants and are defined inthe header file< X11/ X. h >. Extension
event classesare not constants. I nstead, they aredynamically allocated by the extension'srequest to the
X server when the extension is initialized. Because of this, extension event classes must be obtained
by the client from the server.

The event class for an extension event and device is obtained from information returned by the
XOpenDevi ce function. Thisclass canthen beusedinan XSel ect Ext ensi onEvent request
to ask that events of that type from that device be sent to the client program.

For Devi ceBut t onPr ess events, the client may specify whether or not an implicit passive grab
should be done when the button is pressed. If the client wants to guarantee that it will receive
a Devi ceBut t onRel ease event for each Devi ceBut t onPr ess event it receives, it should

28



Input Extension

specify the Devi ceBut t onPressG ab class in addition to the Devi ceBut t onPr ess class.
This restricts the client in that only one client at atime may request Devi ceBut t onPr ess events
from the same device and window if any client specifies this class.

If any client has specified the Devi ceBut t onPressGrab class, any requests by any other
client that specify the same device and window and specify either Devi ceButt onPress or
Devi ceBut t onPressG ab will cause an Access error to be generated.

If only the Devi ceBut t onPr ess class is specified, no implicit passive grab will be done when
a button is pressed on the device. Multiple clients may use this class to specify the same device and
window combination.

The client may also select Devi ceMot i on events only when a button is down. It does this by
specifying theevent classesDevi ceBut t on1Mbt i on throughDevi ceBut t on5Moti on . An
input device will support only as many button motion classes as it has buttons.

Event Structures

Each extension event type has a corresponding structure declared in < X11/ ext ensi ons/
Xl nput . h >, All event structures have the following common members:

type Set to the event type number that uniquely
identifies it. For example, when the X
server reports a Devi ceKeyPr ess event
to a client application, it sends an
XDevi ceKeyPr essEvent structure.

serial Set from the seria number reported in the
protocol but expanded from the 16-bit least
significant bitsto afull 32-bit value.

send_event Set to True if the event came from an
XSendEvent request.

display Set to a pointer to a structure that defines the
display on which the event was read.

Extension event structures report the current position of the X pointer. In addition, if the devicereports
motion data and is reporting absolute data, the current value of any valuators the device contains is
also reported.

Device Key Events

Key eventsfrom extension devices contain all theinformation that is contained in akey event from the
X keyboard. In addition, they contain adevice ID and report the current value of any valuators on the
device, if that device is reporting absolute data. If data for more than six valuatorsis being reported,
more than one key event will be sent. The axes_count member contains the number of axes that are
being reported. The server sends as many of these events as are needed to report the device data. Each
event contains the total number of axes reported in the axes_count member and the first axis reported
in the current event in the first_axis member. If the device supportsinput classVal uat ors , but
is not reporting absolute mode data, the axes_count member contains zero (0).

Thelocation reported in the x, y and x_root, y_root membersis the location of the core X pointer.

The XDevi ceKeyEvent structureis defined as follows:

29



Input Extension

typedef struct {

int type; /* of event */

unsi gned | ong serial; [* # of |ast request processed */

Bool send_event; /[* true if from SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from*/
W ndow wi ndow; /* "event" wi ndow reported relative to */
XI D devi cei d;

W ndow r oot ; /* root window event occurred on */

W ndow subwi ndow; /* child wi ndow */

Tinme tinme; /[* mlliseconds */

int x, vy; /* X, y coordinates in event w ndow */
int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */
unsi gned int state; /* key or button mask */

unsi gned i nt keycode; [* detail */

Bool sane_screen; /* sane screen flag */

unsi gned i nt device_state; /* device key or button nask */

unsi gned char axes_count;
unsi gned char first_axis;
int axis_data[6];

} XDevi ceKeyEvent ;

t ypedef XDevi ceKeyEvent XDevi ceKeyPressedEvent;
t ypedef XDevi ceKeyEvent XDevi ceKeyRel easedEvent;

Device Button Events

Button events from extension devices contain al the information that is contained in a button event
from the X pointer. In addition, they contain adevice ID and report the current value of any valuators
on the device if that device is reporting absolute data. If data for more than six valuators is being
reported, more than one button event may be sent. The axes_count member contains the number of
axes that are being reported. The server sends as many of these events as are needed to report the
device data. Each event contains the total number of axes reported in the axes_count member and
the first axis reported in the current event in the first_axis member. If the device supports input class
Val uators , butisnot reporting absolute mode data, the axes_count member contains zero (0).

Thelocation reported in the x, y and X_root, y_root membersis the location of the core X pointer.

t ypedef struct {

int type; /* of event */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if froma SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from*/

W ndow wi ndow; /* "event" wi ndow reported relative to */
XI D devi cei d;

W ndow r oot ; /* root window that the event occurred on *
W ndow subwi ndow; /* child wi ndow */

Tinme tinme; [* milliseconds */

int x, vy; /* X, y coordinates in event w ndow */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsi gned int state; /* key or button mask */

unsi gned int button; [* detail */

Bool sane_screen; /* sane screen flag */

unsi gned int device_state; /* device key or button nmask */

unsi gned char axes_count;

30



Input Extension

unsi gned char first_axis;
int axis_data[6];
} XDevi ceButtonEvent;

t ypedef XDevi ceButtonEvent XDevi ceButtonPressedEvent;
t ypedef XDevi ceButtonEvent XDevi ceButtonRel easedEvent;

Device Motion Events

Mation events from extension devices contain al the information that is contained in a motion event
fromthe X pointer. In addition, they contain adevice ID and report the current value of any valuators
on the device.

The location reported in the X, y and x_root, y_root members is the location of the core X pointer,
and so is 2-dimensional.

Extension motion devices may report motion data for a variable number of axes. The axes _count
member contains the number of axesthat are being reported. The server sends as many of these events
as are needed to report the device data. Each event contains the total number of axes reported in the
axes_count member and the first axis reported in the current event in the first_axis member.

typedef struct {

int type; /* of event */

unsi gned | ong seri al ; /* # of last request processed by serve
Bool send_event; /* true if froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow; /* "event" wi ndow reported relative to
XI D devi cei d;

W ndow r oot ; /* root wi ndow that the event occurred
W ndow subwi ndow, /[* child wi ndow */

Time time; /* mlliseconds */

int x, vy; /* X, y coordinates in event w ndow */
int x_root; /* coordinates relative to root */

int y root; /* coordinates relative to root */

unsi gned int state; /* key or button nmask */

char is_hint; /[* detail */

Bool sane_screen; /* same screen flag */

unsi gned int device_state; /* device key or button mask */

unsi gned char axes_count;
unsi gned char first_axis;
int axis_data[6];

} XDevi ceMoti onEvent;

Device Focus Events

These events are equivalent to the core focus events. They contain the same information, with the
addition of adevice ID to identify which device has had a focus change, and a timestamp.

Devi ceFocusl n and Devi ceFocusQut events are generated for focus changes of extension
devicesin the same manner as core focus events are generated.

typedef struct {
int type; /* of event */

31



Input Extension

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this came froma SendEvent reque
Di spl ay *di spl ay; /* Display the event was read from*/

W ndow wi ndow; /* "event" window it is reported relative t
XI D devi cei d;

i nt node; /* NotifyNormal, NotifyGab, NotifyUngrab *
int detail;

*
* NotifyAncestor, NotifyVirtual, Notifylnf
* NotifyNonLi near, Noti fyNonLi nearVirtual, |
* Noti fyPointerRoot, NotifyDetail None

*

Tinme tinme;
} XDevi ceFocusChangeEvent ;

t ypedef XDevi ceFocusChangeEvent XDevi ceFocusl nEvent;
t ypedef XDevi ceFocusChangeEvent XDevi ceFocusQut Event;

Device StateNotify Event

This event is analogous to the core keymap event but reports the current state of the device for each
input class that it supports. It is generated after every Devi ceFocusl n event and Ent er Not i fy
event and is delivered to clients who have selected XDevi ceSt at eNot i fy events.

If the device supports input class Val uat ors , the mode member in the XVal uat or St at us
structure is a bitmask that reports the device mode, proximity state, and other state information. The
following bits are currently defined:

0x01 Rel ative = 0, Absolute =1
0x02 InProximty =0, QuOProximty =1
If the device supports more valuators than can be reported in a single XEvent , multiple

XDevi ceSt at eNot i fy eventswill be generated.

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
} Xl nputd ass;

typedef struct {

int type;

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /[* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from*/

W ndow wi ndow;
XI D devi cei d;
Time tinme;
i nt num cl asses;
char dat a[ 64];
} XDeviceStateNotifyEvent;

typedef struct {
unsi gned char cl ass;

32



Input Extension

unsi gned char | ength;
unsi gned char numval uat ors;
unsi gned char node;
int val uators[6];
} Xval uat or St at us;

typedef struct {
unsi gned char cl ass;
unsi gned char | ength;
short num keys;
char keys[ 32];

} XKeySt at us;

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
short num buttons;
char buttons[32];

} XButtonStatus;

Device Mapping Event

This event is equivalent to the core Mappi ngNot i fy event. It notifies client programs when the
mapping of keys, modifiers, or buttons on an extension device has changed.

typedef struct {
int type;
unsi gned | ong serial;
Bool send_event;
Di spl ay *di spl ay;
W ndow wi ndow;
XI D devi cei d;
Time tinme;
i nt request;
int first_keycode;
i nt count;

} XDevi ceMappi ngEvent ;

ChangeDeviceNotify Event

This event has no equivaent in the core protocol. It notifies client programs when one of the core
devices has been changed.

typedef struct {
int type;
unsi gned | ong serial;
Bool send_event;
Di spl ay *di spl ay;
W ndow wi ndow;
XI D devi cei d;
Time tinme;
i nt request;
} XChangeDevi ceNoti f yEvent ;

33



Input Extension

Proximity Events

These events have no equivalent in the core protocol. Some input devices such as graphics tablets or
touchscreens may send these events to indicate that a stylus has moved into or out of contact with a
positional sensing surface.

The event contains the current value of any valuators on the device if that device is reporting absolute
data. If data for more than six valuators is being reported, more than one proximity event may be
sent. Theaxes_count member containsthe number of axesthat are being reported. The server sendsas
many of these events as are needed to report the device data. Each event contains the total number of
axesreported inthe axes_count member and thefirst axisreported in the current event inthefirst_axis
member. If the device supportsinput classVal uat ors , but isnot reporting absolute mode data,
the axes_count member contains zero (0).

typedef struct {

int type; /[* Proximtyln or ProximtyQut */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /[* true if this cane froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow,
XI D devi cei d;
W ndow r oot ;
W ndow subwi ndow;
Time tine;
int x, vy;
int x_root, y_root;
unsi gned int state;
Bool sane_screen;
unsi gned int device_state; /* device key or button mask */
unsi gned char axes_count;
unsi gned char first_axis;
int axis_data[6];
} XProximtyNotifyEvent;

typedef XProximtyNotifyEvent XProximtylnEvent;
typedef XProximtyNotifyEvent XProximtyQutEvent;

Event Handling Functions

This section discusses the X Input Extension event handling functions that allow you to:
+ Determine the extension version

* List theavailable devices

» Enable and disable extension devices

» Change the mode of a device

* Initialize valuators on an input device

 Get input device controls

» Change input device controls

» Select extension device events




Input Extension

» Determine selected device events
 Control event propogation
* Send an event

» Get motion history

Determining the Extension Version
XExt ensi onVersi on * XGet Ext ensi onVersi on( *di splay, *nane);
display Specifies the connection to the X server.
name Specifies the name of the desired extension.

XGet Ext ensi onVer si on alows a client to determine whether a server supports the desired
version of the input extension.

The XExt ensi onVer si on structure returns information about the version of the extension
supported by the server and is defined as follows:

typedef struct {
Bool present;
short maj or _version;
short m nor_version;
} XExt ensi onVer si on;

The major and minor versions can be compared with constants defined in the header file < X11/
ext ensi ons/ Xl . h >. Eachversionisasuperset of the previous versions.

Y ou should use XFr ee. to free the data returned by this function.

Listing Available Devices

A client program that wishes to access a specific device must first determine whether that device is
connected to the X server. Thisis done through the XLi st | nput Devi ces function, which will
return alist of all devices that can be opened by the X server. The client program can use one of the
names defined inthe < X11/ ext ensi ons/ Xl . h > header filein an Xl nt er nAt omrequest to
determine the device type of the desired device. Thistype can then be compared with the device types
returned by the XLi st | nput Devi ces request.

XDevi cel nfo * XLi st nput Devi ces( *di splay, *ndevices);
display Specifies the connection to the X server.

ndevices Specifies the address of a variable into which
the server can return the number of input devices
available to the X server.

XLi st I nput Devi ces allows a client to determine which devices are available for X input and
information about those devices. An array of XDevi cel nf o structuresis returned, with one element
in the array for each device. The number of devicesis returned in the ndevices argument.

The X pointer device and X keyboard device are reported, as well as all available extension input
devices. The use member of the XDevi cel nf o structure specifies the current use of the device.
If the value of this member is| sXPoi nt er , the deviceis the X pointer device. If the value is
| sXKeyboard , thedeviceisthe X keyboard device. If thevalueis| sXExt ensi onDevi ce
the deviceis available for use as an extension input device.

35



Input Extension

Each XDevi cel nf o entry contains a pointer to alist of structuresthat describe the characteristics of
each class of input supported by that device. The num_classes member contains the number of entries
inthat list.

If the device supports input class Val uators , one of the structures pointed to by the
XDevi cel nf o structurewill be an XVal uat or | nf o structure. The axes member of that structure
contains the address of an array of XAxi sl| nf o structures. There is one element in this array for
each axis of motion reported by the device. The number of elements in this array is contained in the
num_axes element of the XVal uat or | nf o structure. The size of the motion buffer for the deviceis
reported in the motion_buffer member of the XVal uat or | nf o structure.

The XDevi cel nf o structure is defined as follows:

typedef struct _XDevicelnfo {

XIDid,;

Atom type;

char *nane;

i nt num cl asses;

int use;

XAnyC assPtr inputcl assi nfo;
} XDevi cel nf o;

The structures pointed to by the XDevi cel nf o structure are defined as follows:

typedef struct _XKeylnfo {
XI D cl ass;
int length;
unsi gned short m n_keycode;
unsi gned short nax_keycode;
unsi gned short num keys;

} XKeyl nf o;

typedef struct _XButtonlnfo {
XI D cl ass;
int length;
short num buttons;

} XButtonl nf o;

typedef struct _XValuatorlnfo {
XI D cl ass;
int length;
unsi gned char num axes;
unsi gned char node;
unsi gned | ong notion_buffer;
XAxi sl nfoPtr axes;

} Xval uat or | nf o;

The XAxi sl nf o structure pointed to by the XVal uat or | nf o structure is defined as follows:

typedef struct _XAxislInfo {
int resolution;

36



Input Extension

int mn_val ue;
i nt max_val ue;
} XAxi sl nfo;

The following atom names are defined inthe < X11/ ext ensi ons/ Xl . h > header file.

MOUSE QUADRATURE
TABLET SPACEBALL
KEYBOARD DATAGLOVE
TOUCHSCREEN EYETRACKER
TOUCHPAD CURSORKEYS
BUTTONBOX FOOTMOUSE
BARCODE | D_MODULE
KNOB_BOX ONE_KNOB
TRACKBALL NI NE_KNOB\ s+1

These names can be used in an Xl nt er nAt om request to return an atom that can be used for
comparison with the type member of the XDevi cel nf o structure.

XLi st | nput Devi ces returns NULL if there are no input devicesto list.
To free the datareturned by XLi st | nput Devi ces , use XFr eeDevi celLi st
void XFreeDeviceList( *list);

list Specifiesthe pointer to the XDevi cel nf o array returned by
apreviouscal to XLi st | nput Devi ces .

XFreeDevi ceLi st freesthelist of input device information.

Enabling and Disabling Extension Devices

Each client program that wishes to access an extension device must request that the server open that
device by callingthe XOpenDevi ce function.

XDevice * XOpenDevice( *display, device id);
display Specifies the connection to the X server.

device_id Specifies the ID that uniquely identifies the
deviceto be opened. ThisID isobtained from the
XLi st | nput Devi ces request.

XOpenDevi ce opens the device for the requesting client and, on success, returns an XDevi ce
structure, which is defined as follows:

t ypedef struct {

XI D devi ce_i d;

i nt num cl asses;

Xl nput Cl assl nfo *cl asses;
} XDevi ce;

The XDevi ce structure contains a pointer to an array of Xl nput Cl assl nf o structures. Each
element in that array contains information about events of a particular input class supported by the
input device.

37



Input Extension

The XI nput C assl nf o structureis defined as follows:

typedef struct {
unsi gned char input_cl ass;
unsi gned char event type_base;
} Xl nput d assl nfo;

A client program can determine the event type and event class for a given event by using macros
defined by the input extension. The name of the macro correspondsto the desired event, and the macro
is passed the structure that describes the device from which input is desired, for example:

Devi ceKeyPress( XDevi ce *devi ce, event _type, event_cl ass)

The macro will fill in the values of the event classto beusedinan XSel ect Ext ensi onEvent
request to select the event and the event type to be used in comparing with the event types of events
received via XNext Event .

XOpenDevi ce can generate BadDevi ce errors.

Before terminating, the client program should request that the server close the device by calling the
XCl oseDevi ce function.

int XO oseDevice( *display, *device);
display Specifies the connection to the X server.
device Specifies the device to be closed.

XCl oseDevi ce closes the device for the requesting client and frees the associated XDevi ce
structure.

A client may open the same extension device more than once. Reguests after the first successful one
return an additional XDevi ce structure with the same information as the first, but otherwise have no
effect. A single XCl oseDevi ce request will terminate that client's access to the device.

Closing adevicereleases any active or passive grabsthe requesting client has established. If the device
isfrozen only by an active grab of the requesting client, any queued events are released.

If aclient program terminates without closing a device, the server will automatically close that device
on behalf of the client. This does not affect any other clients that may be accessing that device.

XCl oseDevi ce can generate BadDevi ce errors.

Changing the Mode of a Device

Some devices are capable of reporting either relative or absolute motion data. To change the mode of
adevice from relative to absolute, use XSet Devi ceMbde .

int XSetDeviceMdde( *display, *device, node);

display Specifies the connection to the X server.

device Specifies the device whose mode should be changed.

mode Specifies the mode. You can pass Absol ute or
Rel ative .

38



Input Extension

XSet Devi ceMode alowsaclient to request the server to change the mode of adevicethat iscapable
of reporting either absolute positional data or relative motion data. If the device is invalid or if the
client has not previously requested that the server open the device viaan XOpenDevi ce request,
thisrequest will fail withaBadDevi ce error. If the device does not support input classVal uat or s
or if it is not capable of reporting the specified mode, the request will fail with aBadMat ch error.

This request will fail and return Devi ceBusy if another client has already opened the device and
requested a different mode.

XSet Devi ceMode can generate BadDevi ce , BadMat ch , BadMbde , and Devi ceBusy
errors.

Initializing Valuators on an Input Device

Some devices that report absolute positional data can be initialized to a starting value. Devices that
are capabl e of reporting relative motion or absolute positional datamay require that their valuators be
initialized to a starting value after the mode of the device is changed to Absol ut e .

Toinitialize the valuators on such adevice, use XSet Devi ceVal uators .
Status XSet Devi ceVal uat ors( *di splay, *device, numyvaluators);
display Specifies the connection to the X server.

device Specifies the device whose valuators
should be initialized.

valuators Specifies the values to which each
valuator should be set.

first_valuator Specifies the first valuator to be set.

num valuators Specifies the number of valuators to be
Set.

XSet Devi ceVal uat or s initializesthe specified valuators on the specified extension input device.
Valuatorsare numbered beginning with zero. Only thevaluatorsin the range specified by first_valuator
and num_valuators are set. A BadVal ue error results if the number of valuators supported by the
device isless than the following expression:

first_valuator + numval uators

If the request succeeds, Success isreturned. If the specified device is grabbed by some other client,
the request will fail and a status of Al r eady Gr abbed will be returned.

XSet Devi ceVal uat or s can generate BadDevi ce , BadLength , BadMatch , and
BadVal ue errors.

Getting Input Device Controls

Some input devices support various configuration controls that can be queried or changed by clients.
The set of supported controlswill vary from oneinput device to another. Requests to manipulate these
controls will fail if either the target X server or the target input device does not support the requested
device control.

Each device control has a unique identifier. Information passed with each device control variesin
length and is mapped by data structures unique to that device control.

39



Input Extension

To query adevice control, use XGet Devi ceCont r ol
XDevi ceControl * XGetDeviceControl ( *di splay, *device, control);
display Specifies the connection to the X server.

device Specifies the device whose configuration control
statusis to be returned.

control Identifies the specific device control to be queried.

XCet Devi ceCont r ol returnsthe current state of the specified device contral. If thetarget X server
does not support that device control, a BadVal ue error is returned. If the specified device does not
support that device control, aBadMat ch error is returned.

If the request is successful, a pointer to a generic XDevi ceSt at e structure is returned. The
information returned varies according to the specified control and is mapped by a structure appropriate
for that control. The first two members are common to all device controls and are defined as follows:

typedef struct {
XID control;
int length;
} XDevi ceSt at €;
\fP

The control may be compared to constants defined in the file < X11/ ext ensi ons/ Xl. h >,
Currently defined device controlsinclude DEVICE_RESOLUTION.

The information returned for the DEVICE RESOLUTION control is defined in the
XDevi ceResol uti onSt at e structure, which is defined as follows:

typedef struct {
XI D control
int length;
i nt num val uat ors;
int *resolutions;
int *m n_resol utions;
int *max_resol utions;
} XDevi ceResol uti onSt at e

This device control returns a list of valuators and the range of valid resolutions allowed for each.
Vauators are numbered beginning with zero (0). Resolutions for all valuators on the device are
returned. For each valuator i on the device, resolutiong|i] returns the current setting of the resolution,
min_resolutiong]i] returns the minimum valid setting, and max_resolutiongi] returns the maximum
valid setting.

When thiscontrol isspecified, XCGet Devi ceCont r ol failswithaBadMat ch error if the specified
device has no valuators.

XGet Devi ceCont r ol can generate BadVat ch and BadVal ue errors.
Changing Input Device Controls

Some input devices support various configuration controls that can be changed by clients. Typically,
this would be done to initiaize the device to a known state or configuration. The set of supported

40



Input Extension

controls will vary from one input device to another. Requests to manipulate these controls will fail
if either the target X server or the target input device does not support the requested device control.
Setting the device control will also fail if the target input deviceis grabbed by another client or is open
by another client and has been set to a conflicting state.

Each device control has a unique identifier. Information passed with each device control variesin
length and is mapped by data structures unique to that device control.

To change adevice control, use XChangeDevi ceCont r ol
Status XChangeDevi ceControl ( *di splay, *device, control, *value);
display Specifies the connection to the X server.

device Specifies the device whose configuration control
statusis to be modified.

control I dentifies the specific device control to be changed.

value Specifies a pointer to an XDevi ceCont r ol
structure that describeswhich control isto be changed
and how it is to be changed.

XChangeDevi ceCont r ol changes the current state of the specified device contral. If the target
X server does not support that device control, a BadVal ue error is returned. If the specified device
does not support that device control, a BadMat ch error is returned. If another client has the target
device grabbed, astatus of Al r eadyGr abbed isreturned. If another client has the device open and
has set it to aconflicting state, astatus of Devi ceBusy isreturned. If the request failsfor any reason,
the device control will not be changed.

If therequest issuccessful, the device control will be changed and astatusof Success isreturned. The
information passed varies according to the specified control and is mapped by a structure appropriate
for that control. The first two members are common to all device controls:

typedef struct {
XI D control;
int |ength;

} XDevi ceControl;

The control may be set using constants defined inthe < X11/ ext ensi ons/ Xl . h > header file.
Currently defined device controlsinclude DEVICE_RESOLUTION.

The information that can be changed by the DEVICE_RESOLUTION control is defined in the
XDevi ceResol uti onCont r ol structure, which is defined as follows:

typedef struct {
XID control;
int length;
int first_valuator;
i nt numval uat ors;
int *resol utions;
} XDevi ceResol uti onControl;

This device control changes the resolution of the specified valuators on the specified extension input
device. Vauators are numbered beginning with zero. Only the valuators in the range specified by

41



Input Extension

first_valuator and num_valuators are set. A value of -1 in the resolutions list indicates that the
resolution for this valuator is not to be changed. The num_valuators member specifies the number of
valuators in the resolutions list.

When this control is specified, XChangeDevi ceCont rol failswith a BadMat ch error if the
specified device has no valuators. If aresolution is specified that is not within the range of valid values
(asreturned by XGet Devi ceControl ), XChangeDevi ceContr ol failswithaBadVal ue
error. A BadVal ue error results if the number of valuators supported by the device is less than the
following expression:

first _valuator + numval uators,

XChangeDevi ceCont r ol can generate BadMat ch and BadVal ue errors.

Selecting Extension Device Events

To select device input events, use XSel ect Ext ensi onEvent . The parameters passed are a
pointer to alist of classes that define the desired event types and devices, a count of the number of
elementsin the list, and the ID of the window from which events are desired.

i nt XSel ect Ext ensi onEvent ( *di spl ay, Wi ndow, *event |ist,
event count);

display Specifies the connection to the X server.

window Specifiesthe ID of the window from which
the client wishes to receive events.

event_list Specifies a pointer to an array of event
classes that specify which events are
desired.

event_count Specifies the number of elements in the
event_list.

XSel ect Ext ensi onEvent requests the server to send events that match the events and devices
described by the event list and that come from the requested window. The elements of the
XEvent Cl ass array arethe event_class values obtained by invoking a macro with the pointer to an
XDevi ce structurereturned by the XOpenDevi ce request. For example, the Devi ceKeyPr ess
macro would return the XEvent Cl ass for Devi ceKeyPr ess events from the specified device if
it were invoked in the following form:

Devi ceKeyPress (XDevice *device, event_type, event_ cl ass)

Macros are defined for the following event classes:

Devi ceKeyPr ess

Devi ceKeyRel ease
Devi ceBut t onPress
Devi ceBut t onRel ease
Devi ceMot i onNoti fy
Devi ceFocusl n

Devi ceFocusQut

42



Input Extension

Proxi mtyln

Pr oxi ni t yQut

Devi ceSt at eNoti fy

Devi ceMappi ngNot i fy
ChangeDevi ceNoti fy
Devi cePoi nt er Mot i onHi nt
Devi ceButt on1Moti on
Devi ceBut t on2Mot i on
Devi ceBut t on3Mbt i on,
Devi ceBut t on4Mot i on
Devi ceBut t on5Mot i on
Devi ceBut t onMot i on,
Devi ceOwner Gr abBut t on
Devi ceBut t onPressG ab

To get the next available event from within a client program, use the core XNext Event function.
This returns the next event whether it came from a core device or an extension device.

Succeeding XSel ect Ext ensi onEvent requests using event classes for the same device aswas
specified on a previous request will replace the previous set of selected events from that device with
the new set.

XSel ect Ext ensi onEvent can generate BadAccess , BadC ass , BadLength , and
BadW ndowerrors.

Determining Selected Device Events

To determine which extension events are currently selected from a given window, use
XCet Sel ect edExt ensi onEvents .

i nt XGet Sel ect edExt ensi onEvent s( *di spl ay, wi ndow,
*this_client_count, **this_client, *all _clients_count,
**all _clients);

display Specifies the connection to the X server.

window Specifies the ID of the window from
which the client wishesto receive events.

this_client_count Returns the number of elements in the
this _client list.

this client Returns alist of XEvent Cl asses that
specify which events are selected by this
client.

all_clients_count Returns the number of elements in the
al_clientslist.

all_clients Returns alist of XEvent Cl asses that
specify which events are selected by all
clients.

XGet Sel ect edExt ensi onEvent s returns pointers to two event class arrays. One lists the
extension events selected by this client from the specified window. The other lists the extension
events selected by all clients from the specified window. This information is analogous to that
returned inyour_event_mask and all_event_masks of the XW ndowAt t r i but es structure when an
XGet W ndowAt t ri but es request is made. To free the two arrays returned by this function, use
XFr ee.

XCet Sel ect edExt ensi onEvent s can generate BadW ndow errors.

43



Input Extension

Controlling Event Propagation

Extension events propagate up the window hierarchy in the same manner as core events. If awindow
is not interested in an extension event, it usually propagates to the closest ancestor that is interested,
unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set of windows
that receive a particular extension event.

Client programs may control event propagation through the use of the following two functions:
XChangeDevi ceDont Pr opagat eLi st and XGet Devi ceDont Pr opagat eLi st

i nt XChangeDevi ceDont Propagat eLi st ( *di spl ay, w ndow, event_count,
*events, node);

display Specifies the connection to the X server.

window Specifies the desired window.

event_count Specifies the number of elements in the
eventslist.

events Specifies a pointer to the list of

XEventClasses.

mode Specifies the mode. You can pass
AddTolLi st or Del et eFronii st

XChangeDevi ceDont Pr opagat eLi st adds an event to or deletes an event from the
do_not_propagate list of extension events for the specified window. There is one list per window,
and the list remains for the life of the window. The list is not altered if a client that changed the list
terminates.

Suppression of event propagation isnot allowed for all events. If aspecified XEvent Cl ass isinvalid
because suppression of that event is not allowed, aBadC ass error results.

XChangeDevi ceDont Pr opagat eLi st can generate BadCl ass , Badvbde , and

BadW ndowerrors.

XEvent Cl ass * XCGet Devi ceDont Propagat eLi st( *di spl ay, wi ndow,

*event _count);

display Specifies the connection to the X server.

window Specifies the desired window.

event_count Returnsthe number of elementsin the array
returned by this function.

XCet Devi ceDont Propagat eLi st alows a client to determine the do_not_propagate list

of extension events for the specified window. It returns an array of XEvent C ass , each

XEvent C ass representing a device/event type pair. To free the data returned by this function, use

XFr ee.

XCet Devi ceDont Pr opagat eLi st can generate BadW ndow errors.

Sending an Event
To send an extension event to another client, use XSendExt ensi onEvent

i nt XSendExt ensi onEvent ( *di splay, *device, w ndow, propagate,
event _count, *event list, *event);

display Specifies the connection to the X server.




Input Extension

device Specifies the device whose ID is recorded
in the event.
window Specifies the destination window ID. You

can pass awindow ID, Poi nt er W ndow
or | nput Focus .

propagate Specifies a boolean value that is either
True or Fal se .

event_count Specifies the number of elements in the
event_list array.

event_list Specifies a pointer to an array of
XEvent C ass .

event Specifies a pointer to the event that isto be
sent.

XSendExt ensi onEvent identifies the destination window, determines which clients should
receive the specified event, and ignores any active grabs. It requires alist of XEvent Cl ass to be
specified. These are obtained by opening an input device withthe XOpenDevi ce request.

XSendExt ensi onEvent usesthewindow argument to identify the destination window asfollows:
* If you pass Poi nt er W ndow , the destination window is the window that contains the pointer.

* If you pass | nput Focus and if the focus window contains the pointer, the destination window
is the window that contains the pointer. If the focus window does not contain the pointer, the
destination window is the focus window.

To determine which clients should receive the specified events, XSendExt ensi onEvent uses
the propagate argument as follows:

» If propagate is Fal se , the event is sent to every client selecting from the destination window
any of the events specified in the event_list array.

 If propagateis Tr ue and no clients have selected from the destination window any of the events
specified in the event_list array, the destination is replaced with the closest ancestor of destination
for which some client has selected one of the specified events and for which no intervening window
has that event in its do_not_propagate mask. If no such window exists, or if the window is an
ancestor of the focus window, and | nput Focus was originally specified as the destination, the
event isnot sent to any clients. Otherwise, the event isreported to every client selecting on the final
destination any of the events specified in event_list.

The event in the XEvent structure must be one of the events defined by the input extension, so that
the X server can correctly byte swap the contents as necessary. The contents of the event are otherwise
unaltered and unchecked by the X server except to force send_event to Tr ue in the forwarded event
and to set the sequence number in the event correctly.

XSendExt ensi onEvent returns zero if the conversion-to-wire protocol failed; otherwise, it
returns nonzero.

XSendExt ensi onEvent can generate BadCl ass , BadDevice , BadValue , and
BadW ndowerrors.

Getting Motion History

XDevi ceTi neCoord * XCet Devi ceMoti onEvents( axi s_count_return),
*di spl ay, *devi ce, st op, *nevent s_return, *node_return,
*axi s_count_return);

45



Input Extension

display Specifies the connection to the X server.
device Specifies the desired device.

start Specifiesthe start time.

stop Specifies the stop time.

nevents return Returns the number of positions in the

motion buffer returned for this request.

mode return Returns the mode of the nevents
information. The mode will be one of the
following: Absol ut e or Rel ati ve .

axis_count_return Returns the number of axes reported in
each of the positions returned.

XCet Devi ceMot i onEvent s returns al positions in the device's motion history buffer that fall
between the specified start and stop times inclusive. If the start time is in the future or is later than
the stop time, no positions are returned.

Thereturn type for this function isan XDevi ceTi neCoor d structure, which is defined as follows:

t ypedef struct {

Time tinme;

unsi gned int *data;
} XDevi ceTi neCoor d;

The data member is a pointer to an array of dataitems. Each item is of typeint, and there is one data
item per axis of motion reported by the device. The number of axes reported by the device isreturned
in the axis_count variable.

The value of the data items depends on the mode of the device. The mode is returned in the mode
variable. If themodeisAbsol ut e , thedataitemsaretheraw values generated by the device. These
may be scaled by the client program using the maximum values that the device can generate for each
axis of motion that it reports. The maximum value for each axisis reported in the max_val member of
the XAxi sl nf o structure, which ispart of theinformation returned by the XLi st | nput Devi ces
request.

If themodeisRel ati ve , thedataitemsarethe relative values generated by the device. The client
program must choose an initial position for the device and maintain acurrent position by accumulating
these relative values.

Consecutive callsto  XGet Devi ceMot i onEvent s can return data of different modes, that is, if
some client program has changed the mode of the deviceviaan XSet Devi ceMbde request.

XCet Devi ceMot i onEvent s can generate BadDevi ce and BadMat ch errors.

To free the data retuned by XGetDevi ceMdtionEvents , use
XFr eeDevi ceMbti onEvents .

void XFreeDevi ceMotionEvents( *events);

events Specifies the pointer to the XDevi ceTi meCoor d
aray returned by a previous cal to
XCet Devi ceMot i onEvents .

46



Input Extension

XFreeDevi ceMot i onEvent s freesthe specified array of motion information. Appendi x A

The following information is contained in the <X11/ ext ensi ons/ Xl nput . h> and <X11/
ext ensi ons/ Xl . h> header files:

/* Definitions used by the library and client */

#i fndef _XI NPUT_H_
#define _XI NPUT_H_

#ifndef _XLIB H_
#i ncl ude <X11/ Xli b. h>
#endi f

#i fndef _XI_H_
#i ncl ude "Xl . h"
#endi f

#def i
#def i

#def i
#def i

#def i

#def i
#def i

#def i
#def i

#def i
#def i
#def i

#def i
{

f

#def i ne Devi ceKeyPress(d,

ne
ne

ne
ne

ne

ne
ne

ne
ne

ne
ne
ne

ne

_devi ceKeyPress
_devi ceKeyRel ease

_devi ceButt onPress
_devi ceBut t onRel ease

_devi ceMdtionNotify

_devi ceFocusln
_devi ceFocusQut

_proximtyln
_proximtyQut

_deviceStateNotify
_devi ceMappi ngNot i fy
_changeDevi ceNoti fy

Fi ndTypeAndd ass(d, type,

int i; Xlinputdasslnfo

type = 0; class = 0; \

(i=0, ip= ((XDevice *) d)->classes; \

i< ((XDPevice *) d)->numcl asses; \

i ++, ip++) \

(i p->input_class == classid) \

{type = ip->event_type_ base + offset; \
class = ((XDevice *) d)->device_id << 8 | type;}}

or

i f

type,

1
0

1
2

*ip; \

class, classid,

class) \

of fset) \

KeyC ass, _devi ceKeyPress)

Fi ndTypeAndd ass(d, type, class,
#def i ne Devi ceKeyRel ease(d, type, class) \
Fi ndTypeAndd ass(d, type, class,

#def i ne Devi ceButtonPress(d,
Fi ndTypeAndd ass(d, type,

KeyC ass, _devi ceKeyRel ease)

type, class) \

cl ass,

Butt ond ass,

_devi ceButt onPress)

47



Input Extension

#def i ne Devi ceButtonRel ease(d, type, class) \
Fi ndTypeAndd ass(d, type, class, ButtonC ass, _devi ceButtonRel ease)

#def i ne Devi ceMoti onNotify(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Valuatord ass, _deviceMtionNotify)

#def i ne Devi ceFocusln(d, type, class) \
Fi ndTypeAndd ass(d, type, class, FocusC ass, _deviceFocusln)

#def i ne Devi ceFocusQut (d, type, class) \
Fi ndTypeAndd ass(d, type, class, FocusC ass, _deviceFocusQut)

#define Proximtyln(d, type, class) \
Fi ndTypeAndd ass(d, type, class, ProximtyC ass, _proxinityln)

#define ProximtyQut(d, type, class) \
Fi ndTypeAndd ass(d, type, class, ProximtyC ass, _proxinityQut)

#def i ne DeviceStateNotify(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Oherd ass, _deviceStateNotify)

#def i ne Devi ceMappi ngNoti fy(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Qherd ass, _deviceMappi ngNotify)

#def i ne ChangeDevi ceNoti fy(d, type, class) \
Fi ndTypeAndd ass(d, type, class, OQherd ass, _changeDeviceNotify)

#def i ne Devi cePoi nterMtionH nt(d, type, class) \
{ class ((XDevice *) d)->device_id << 8 | _devicePointerMtionH nt;}

#def i ne Devi ceButtonlMtion(d, type, class) \
{ class ((XDevice *) d)->device_id << 8 | _deviceButtonlMtion;}

#def i ne Devi ceButton2Mtion(d, type, class) \
{ class ((XDevice *) d)->device_id << 8 | _deviceButton2Mtion;}

#def i ne Devi ceButton3Mdtion(d, type, class) \
{ class ((XDevice *) d)->device_id << 8 | _deviceButton3Mtion;}

#def i ne Devi ceButtondMtion(d, type, class) \
{ class ((XDevice *) d)->device_id << 8 | _deviceButton4Motion;}

#def i ne Devi ceButton5Motion(d, type, class) \
{ class ((XDevice *) d)->device_id << 8 | _deviceButton5Mtion;}

#def i ne Devi ceButtonhtion(d, type, class) \
{ class ((XDevice *) d)->device_id << 8 | _deviceButtonMWtion;}

#def i ne Devi ceOnmner GrabButton(d, type, class) \
{ class ((XDevice *) d)->device_id << 8 | _devi ceOmer G abButton;}

#def i ne Devi ceButtonPressGrab(d, type, class) \
{ class = ((XDevice *) d)->device_ id << 8 | _deviceButtonG ab;}

#def i ne NoExt ensi onEvent (d, type, class) \
{ class = ((XDevice *) d)->device_id << 8 | _noExtensionEvent;}

48



Input Extension

#def i ne BadDevi ce(dpy, error) _xibaddevice(dpy, &error)
#def i ne BadC ass(dpy, error) _xibadcl ass(dpy, &error)
#def i ne BadEvent (dpy, error) _xi badevent (dpy, &error)
#def i ne BadMode(dpy, error) _xi badnode(dpy, &error)
#def i ne Devi ceBusy(dpy, error) _xidevicebusy(dpy, &error)

/***************************************************************

* DeviceKey events. These events are sent by input devices that
* support input class Keys.

* The location of the X pointer is reported in the coordi nate

* fields of the x,y and x_root,y root fields.

*/

t ypedef struct
{
i nt type; /* of event */
unsi gned |l ong serial; [* # of |ast request processed */
Bool send_event; /[* true if from SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from*/
W ndow wi ndow, /* "event" w ndow reported relative to */
Xl D devi cei d;
W ndow root; /* root wi ndow event occured on */
W ndow subwi ndow; /* child wi ndow */
Ti me tinme; /[* mlliseconds */
i nt X, Y; /* X, y coordinates in event w ndow */
i nt X_root; /* coordinates relative to root */
i nt y_root; /* coordinates relative to root */
unsi gned i nt state; /* key or button mask */
unsi gned i nt keycode; [* detail */
Bool same_screen; [* sane screen flag */

unsi gned i nt device_state; /* device key or button nask */
unsi gned char axes_count;

unsi gned char first_axis;

i nt axi s_dat a[ 6] ;

} XDevi ceKeyEvent;

t ypedef XDevi ceKeyEvent XDevi ceKeyPressedEvent;
t ypedef XDevi ceKeyEvent XDevi ceKeyRel easedEvent;

/*******************************************************************

*

* DeviceButton events. These events are sent by extension devices
* that support input class Buttons.

*

*/
t ypedef struct {
i nt type; /* of event */
unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from*/
W ndow wi ndow, /* "event" w ndow reported relative to */

49



Input Extension

Xl D devi cei d;

W ndow root; /* root window that the event occured on */
W ndow subwi ndow; /* child wi ndow */

Ti me tinme; /[* mlliseconds */

i nt X, Y; /* X, y coordinates in event w ndow */

i nt X_root; /* coordinates relative to root */

i nt y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int button; [* detail */

Bool same_screen; [* sane screen flag */

unsigned int device state; /* device key or button nask */
unsi gned char axes_count;

unsi gned char first_axis;

i nt axi s_dat a[ 6] ;

} XDevi ceButtonEvent;

t ypedef XDevi ceButtonEvent XDevi ceButtonPressedEvent;
t ypedef XDevi ceButtonEvent XDevi ceButtonRel easedEvent;

/*******************************************************************

*

* DeviceMdtionNotify event. These events are sent by extension devices
* that support input class Val uators.

*

*/
t ypedef struct
{
i nt type; /* of event */
unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from*/
W ndow wi ndow, /* "event" wi ndow reported relative to */
Xl D devi cei d;
W ndow root; /* root window that the event occured on */
W ndow subwi ndow; /* child wi ndow */
Ti me tinme; /[* mlliseconds */
i nt X, Y; /* X, y coordinates in event w ndow */
i nt X_root; /* coordinates relative to root */
i nt y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
char is_hint; [* detail */
Bool same_screen; /* same screen flag */

unsigned int device state; /* device key or button nask */
unsi gned char axes_count;

unsi gned char first_axis;

i nt axi s_dat a[ 6] ;

} XDevi ceMoti onEvent;

/*******************************************************************

*

* Devi ceFocusChange events. These events are sent when the focus
* of an extension device that can be focused is changed.

*

*/

t ypedef struct
{

50



Input Extension

i nt type; /* of event */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if froma SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from*/

W ndow Wi ndow, /* "event" wi ndow reported relative to */

Xl D devi cei d;

i nt node; /* NotifyNormal, NotifyGab, NotifyUngrab */
i nt detail;

/*

* NotifyAncestor, NotifyVirtual, Notifylnferior,
* NotifyNonLi near, Noti fyNonLi nearVirtual, NotifyPointer,
* Noti fyPoi nterRoot, NotifyDetail None
*/
Ti me tinme;
} XDevi ceFocusChangeEvent ;

t ypedef XDevi ceFocusChangeEvent XDevi ceFocusl nEvent;
t ypedef XDevi ceFocusChangeEvent XDevi ceFocusQut Event;

/*******************************************************************

*

* ProximtyNotify events. These events are sent by those absol ute
* positioning devices that are capable of generating proxinity information.

*

*/
t ypedef struct
{
i nt type; /[* Proximtyln or ProxinmityQut */
unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this canme froma SendEvent request *
Di spl ay *display; /* Display the event was read from */
W ndow wi ndow,
Xl D devi cei d;
W ndow root;
W ndow subwi ndow;
Ti me tinme;
i nt X, Y;
i nt X_root, y_root;
unsi gned i nt state;
Bool same_screen;
unsi gned int device_state; /* device key or button nask */

unsi gned char axes_count;

unsi gned char first_axis;

i nt axi s_dat a[ 6] ;

} XProximtyNotifyEvent;
t ypedef XProximnityNotifyEvent XProximtylnEvent;
typedef XProxim tyNotifyEvent XProxinityQutEvent;

/*******************************************************************

*

* DeviceStateNotify events are generated on Enter Wndow and Focusln
* for those clients who have sel ected Devi ceState.

*

*/

t ypedef struct
{

51



Input Extension

unsi gned char
unsi gned char
} Xl nputd ass;

typedef struct {
i nt
unsi gned | ong
Bool
Di spl ay
W ndow
Xl D
Ti me
i nt
char

} XDevi ceSt at eNot

typedef struct {
unsi gned char
unsi gned char
unsi gned char
unsi gned char
i nt

} Xval uat or St at us;

typedef struct {
unsi gned char
unsi gned char
short
char

} XKeySt at us;

typedef struct {
unsi gned char
unsi gned char
short
char

} XButtonStatus;

cl ass;
| engt h;

type;

seri al
send_event;
*di spl ay;

Wi ndow,

devi cei d;
tinme;
num cl asses;

dat a[ 64] ;

fyEvent;

cl ass;

| engt h;

num val uat or s

node;
val uat or s[

cl ass;

| engt h;
num keys;

keys[ 32];

cl ass;

| engt h;
num but t ons;

butt ons[ 32];

/* # of

| ast request

6];

processed by server */
/* true if this cane froma SendEvent
/* Display the event was read from */

request

/*******************************************************************

*

* Devi ceMappi ngNotify event.

Thi s

* nodi fier mapping, or
*/
typedef struct {

i nt type;
unsi gned | ong serial; /*
Bool send_event; /*
Di spl ay *di spl ay; [*
W ndow wi ndow, [*
Xl D devi cei d;
Ti me tinme;
i nt request; [*
i nt first_keycode;/*
i nt count; [*

} XDevi ceMappi ngEvent ;

# of

event

| ast request

is sent when the key nmappi ng,
button mappi ng of an extension device is changed.

processed by server */
true if this came froma SendEvent

request

Di splay the event was read from */

unused */

one of Mappi nghbdi fier,

Mappi ngPoi nter */
first keycode */

defines range of change w.

Mappi hgKeyboar d,

first_keycode*/

52



Input Extension

/*******************************************************************

*

* ChangeDevi ceNoti fy event.

*

*/

typedef struct {
i nt type;
unsi gned | ong seri al
Bool send_event;
Di spl ay *di spl ay;
W ndow wi ndow,
Xl D devi cei d;
Ti me tinme;
i nt request;

} XChangeDevi ceNoti f yEvent;

Thi s event
* XChangeKeyboard or XChangePoi nt er

/* # of
/*
/*
/*

/*

is sent when an

request

| ast

NewPoi nt er

i's made.

request

true if this came froma SendEvent
Di splay the event was read from */
unused */

or

processed by server */
request

NewKeyboard */

/*******************************************************************

*

* Control structures for
* Feedback.

* XChangeFeedbackControl functions.
*
*/
typedef struct {
XI D cl ass;
i nt | engt h;
Xl D id;
} XFeedbacksSt at e;
typedef struct {
Xl D cl ass;
i nt | engt h;
Xl D id;
i nt click;
i nt percent;
i nt pitch;
i nt durati on;
i nt | ed_mask;
i nt gl obal _auto_repeat;
char aut o_repeat s[ 32];

} XKbdFeedbacksSt at e;

typedef struct {

Xl D cl ass;

i nt | engt h;

XI D i d;

i nt accel Num

i nt accel Denom
i nt t hr eshol d;

} XPtrFeedbackSt at e;

t ypedef struct {
Xl D cl ass;
i nt | engt h;

i nput devices that support
These are used by the XGet FeedbackContr ol

i nput cl ass
and

53

*

|



Input Extension

XI D i d;

i nt resol ution;
i nt m nVal ;

i nt maxVal ;

} Xl nteger FeedbacksSt at e;

typedef struct {

Xl D cl ass;

i nt | engt h;

Xl D id;

i nt max_synbol s;

i nt num syms_support ed;

KeySym *syns_supported;
} XStringFeedbackSt at e;

typedef struct {

Xl D cl ass;

i nt | engt h;
Xl D id;

i nt per cent;
i nt pitch;

i nt durati on;

} XBel | FeedbacksSt at e;

typedef struct {

Xl D cl ass;

i nt | engt h;

Xl D id;

i nt | ed_val ues;
i nt | ed_mask;

} XLedFeedbacksSt at e;

typedef struct {

Xl D cl ass;
i nt | engt h;
XI D i d;

} XFeedbackControl ;

typedef struct {

Xl D cl ass;

i nt | engt h;

XI D i d;

i nt accel Num

i nt accel Denom
i nt t hreshol d;

} XPtrFeedbackControl ;

typedef struct {

Xl D cl ass;

i nt | engt h;

Xl D id;

i nt click;

i nt percent;

i nt pitch;

i nt durati on;
i nt | ed_mask;
i nt | ed_val ue;
i nt key;




Input Extension

i nt aut o_r epeat _node;
} XKbdFeedbackControl ;

typedef struct {

Xl D cl ass;

i nt | engt h;

XI D i d;

i nt num keysynmns;

KeySym *syns_to_di spl ay;
} XStringFeedbackControl;

typedef struct {

Xl D cl ass;

i nt | engt h;

XI D i d;

i nt i nt_to_display;

} Xl nteger FeedbackControl ;

typedef struct {

Xl D cl ass;

i nt | engt h;
XI D i d;

i nt per cent;
i nt pitch;

i nt durati on;

} XBel | FeedbackControl ;

typedef struct {

Xl D cl ass;

i nt | engt h;

Xl D id;

i nt | ed_mask;

i nt | ed_val ues;

} XLedFeedbackControl ;

/*******************************************************************
*

* Device control structures.

*

*/

typedef struct {
Xl D control;
i nt | engt h;
} XDeviceControl;

typedef struct {

Xl D control;

i nt | engt h;

i nt first_val uator;
i nt num val uat ors;
i nt *resol utions;

} XDevi ceResol uti onControl;

t ypedef struct {

Xl D control;
i nt | engt h;
i nt num val uat ors;

55



Input Extension

i nt *resol utions;
i nt *m n_resol utions;
i nt *max_resol utions;

} XDevi ceResol utionSt at e;

/*******************************************************************

*

* An array of XDeviceList structures is returned by the

* XLi st | nput Devi ces function. Each entry contains information

* about one input device. Anpbng that information is an array of
* pointers to structures that describe the characteristics of

* the input device.

*/
typedef struct _XAnyd assinfo *XAnyC assPtr;
typedef struct _XAnyd assinfo {
Xl D cl ass;
i nt | engt h;
} XAnyd assl nf o;
typedef struct _XDevi cel nfo *XDevi cel nfoPtr;

typedef struct _XDevicel nfo

{

Xl D id;

At om type;

char *nane,;

i nt num cl asses;
i nt use;

XAnyd assPtr i nput cl assi nf o;

} XDevi cel nf o;
t ypedef struct _XKeylnfo *XKeylnfoPtr;

typedef struct _XKeylnfo

{

XI D cl ass;

i nt | engt h;

unsi gned short nm n_keycode;
unsi gned short max_keycode;
unsi gned short num keys;

} XKeyl nf o;

typedef struct _XButtonlnfo *XButtonlnfoPtr;

typedef struct _XButtonlnfo {

XI D cl ass;
i nt | engt h;
short num but t ons;

} XButtonl nfo;
typedef struct _XAxislnfo *XAxislnfoPtr;
typedef struct _XAxislInfo {

i nt resol ution;
i nt nm n_val ue;

56



Input Extension

i nt max_val ue;
} XAxi sl nfo;

typedef struct _XVal uatorlnfo *Xval uatorlnfoPtr

t ypedef struct _Xval uatorlinfo
{
XI D cl ass;
i nt | engt h;
unsi gned char num axes;
unsi gned char node;
unsi gned | ong noti on_buf fer
XAxi sl nf oPtr axes;

} XVval uat or | nf o;

/*******************************************************************

*

* An XDevice structure is returned by the XOpenDevice function

* |t contains an array of pointers to Xl nputd asslnfo structures.

* Each contains information about a class of input supported by the

* device, including a pointer to an array of data for each type of event
* the device reports.

*

*/

typedef struct {
unsi gned char i nput _cl ass;
unsi gned char event _type_base;
} Xl nput d assl nfo;

typedef struct {

Xl D device_i d;
i nt num cl asses;
Xl nput C assl nfo *cl asses;

} XDevi ce;

/*******************************************************************

*

* The following structure is used to return information for the
* XGet Sel ect edExt ensi onEvents function

*

*/

typedef struct {
XEvent d ass event _type
Xl D devi ce;

} XEventLi st;

/*******************************************************************

*

* The following structure is used to return notion history data from
* an input device that supports the input class Val uators.
* This information is returned by the XGetDevi ceMdtionEvents function

*

*/

57



Input Extension

typedef struct {

Ti me tine;
i nt *dat a

} XDevi ceTi meCoor d;

/*******************************************************************

*

* Device state structure.
* This is returned by the XQueryDeviceState request.

*

*/

typedef struct {
Xl D
i nt
Xl nput C ass

} XDeviceState

device_i d;
num cl asses;
*dat a;

/*******************************************************************

* Note that the node field is a bitfield that
* status of the device as well

as the node.

reports the Proximty
The node field should

* be ORd with the nask Devi ceMode and conpared with the val ues
* Absol ute and Relative to deternine the node, and should be OR d

* with the mask ProximtyState and conpared with the values InProxinmty

* and QutOFProximty to determine the proxinity state.

typedef struct {
unsi gned char
unsi gned char
unsi gned char
unsi gned char
i nt

} Xval uat or St at e

typedef struct {
unsi gned char
unsi gned char
short
char

} XKeySt at e;

typedef struct {
unsi gned char
unsi gned char
short
char

} XButtonState

cl ass;

| engt h;

num val uat or s;

node;
*val uat ors;

cl ass;

| engt h;
num keys;

keys[ 32];

cl ass;

| engt h;
num but t ons;

butt ons[ 32];

/*******************************************************************

*

* Function definitions.

*

*/

58



Input Extension

_ XFUNCPROTOBEGI N

extern int XChangeKeyboar dDevi ce(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* [* device */
#endi f
);
extern int XChangePoi nt er Devi ce(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* /* device */,
i nt /* xaxis */,
i nt /* yaxis */
#endi f
);
extern int XG abDevi ce(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* /* device */,
W ndow /* grab_w ndow */,
Bool /* owner Events */,
i nt /* event count */,
XEvent C ass* /* event list */,
i nt /* this_device_node */,
i nt /* other_devi ces_node */,
Ti me [* time */
#endi f
);
extern int XUngr abDevi ce(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* /* device */,
Ti me [* time */
#endi f
);
extern int XGr abDevi ceKey(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* /* device */,
unsi gned i nt [* key */,
unsi gned i nt /* nmodifiers */,
XDevi ce* /* nodifier_device */,
W ndow /* grab_wi ndow */,
Bool /* owner_events */,
unsi gned i nt /* event_count */,
XEvent C ass* /* event list */,
i nt /* this_device_node */,
i nt /* other_devi ces_node */
#endi f
);
extern int XUngr abDevi ceKey(

59



Input Extension

#i f NeedFuncti onPr ot ot ypes

Di spl ay* [* display */,
XDevi ce* /* device */,
unsi gned i nt [* key */,
unsi gned i nt /* nmodifiers */,
XDevi ce* /* nodifier_dev */,
W ndow /* grab_wi ndow */

#endi f

);

extern int XGr abDevi ceBut t on(

#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* /* device */,
unsi gned i nt /* button */,
unsi gned i nt /* nmodifiers */,
XDevi ce* /* nodifier_device */,
W ndow /* grab_w ndow */,
Bool /* owner_events */,
unsi gned i nt /* event_count */,
XEvent C ass* /* event list */,
i nt /* this_device_node */,
i nt /* other_devi ces_node */

#endi f

);

extern int XUngr abDevi ceBut t on(

#i f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
unsi gned i nt /* button */,
unsi gned i nt /* nmodifiers */,
XDevi ce* /* nodifier_dev */,
W ndow /* grab_wi ndow */

#endi f

);

extern int XAl | owDevi ceEvent s(

#i f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
i nt /* event node */,
Ti me [* time */

#endi f

);

extern int XGet Devi ceFocus(

#i f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
W ndow* /* focus */,
i nt* /* revert _to */,
Ti nme* [* time */

#endi f

);

extern int XSet Devi ceFocus(

#i f NeedFuncti onPr ot ot ypes

60



Input Extension

Di spl ay* [* display */,
XDevi ce* /* device */,
W ndow /* focus */,
i nt /* revert _to */,
Ti me [* time */
#endi f
);
extern XrFeedbackSt at e * XGet FeedbackCont r ol (
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* /* device */,
i nt* /* num f eedbacks */
#endi f
);
extern int XFr eeFeedbackLi st (
#i f NeedFuncti onPr ot ot ypes
XFeedbackSt at e* [* list */
#endi f
);
extern int XChangeFeedbackCont r ol (
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* /* device */,
unsi gned | ong [* mask */,
XFeedbackCont r ol * [* f */
#endi f
);
extern int XDevi ceBel | (
#i f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
Xl D /* feedbackcl ass */,
Xl D /* feedbackid */,
i nt /* percent */
#endi f
);
extern KeySym * XGet Devi ceKeyMappi ng(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
#i f NeedW dePr ot ot ypes
unsi gned i nt [* first */,
#el se
KeyCode [* first */,
#endi f
i nt /* keycount */,
i nt* /* syms_per _code */
#endi f
);
extern int XChangeDevi ceKeyMappi ng(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,

61



Input Extension

XDevi ce* /* device */,
i nt [* first */,
i nt /* synms_per _code */,
Key Sy [ * keysyns */,
i nt /* count */
#endi f
)
extern XModifi er Keynmap * XGet Devi ceModi fi er Mappi ng(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* /* device */
#endi f
)
extern int XSet Devi ceModi fi er Mappi ng(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
XModi f i er Keymap* /* nmodmap */
#endi f
)
extern int XSet Devi ceBut t onMappi ng(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
unsi gned char* /* map[] */,
i nt /* nmap */
#endi f
)
extern int XGet Devi ceBut t onMappi ng(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* /[* display */,
XDevi ce* /* device */,
unsi gned char* /* map[] */,
unsi gned i nt [* nmap */
#endi f
)
extern XDeviceState *XQuer yDevi ceSt at e(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */
#endi f
)
extern int XFr eeDevi ceSt at e(
#i f NeedFuncti onPr ot ot ypes
XDevi ceSt at e* [* list */
#endi f
)

ext ern XExt ensi onVersi on * XCGet Ext ensi onVer si on(
#i f NeedFuncti onPr ot ot ypes

Di spl ay* /* display */,

_Xconst char* [* nane */

62



Input Extension

#endi f
);
extern XDevi cel nfo *XLi st | nput Devi ces(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
i nt* /* ndevices */
#endi f
);
extern int XFr eeDevi celLi st (
#i f NeedFuncti onPr ot ot ypes
XDevi cel nf o* [* list */
#endi f
);
ext ern XDevi ce *XOpenDevi ce(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XI D [*id */
#endi f
);
extern int XCl oseDevi ce(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* /* device */
#endi f
);
extern int XSet Devi ceMode(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* /* device */,
i nt /* nmode */
#endi f
);
extern int XSet Devi ceVal uat or s(
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* /* device */,
i nt* /* valuators */,
i nt /* first_valuator */,
i nt /* numval uators */
#endi f
);
ext ern XDevi ceContr ol * XCGet Devi ceCont r ol (
#i f NeedFuncti onPr ot ot ypes
Di spl ay* [* display */,
XDevi ce* /* device */,
i nt /* control */
#endi f
);
extern int XChangeDevi ceCont rol (

#i f NeedFuncti onPr ot ot ypes

63



Input Extension

Di spl ay*

XDevi ce*

i nt

XDevi ceControl *
#endi f

)

extern int

/* display */,

/* device */,

/* control */,
[* d */

XSel ect Ext ensi onEvent (

#i f NeedFuncti onPr ot ot ypes

Di spl ay*
W ndow
XEvent O ass*
i nt

#endi f

)

extern int

/* display */,

[* w*/,
/* event list */,

/* count */

#i f NeedFuncti onPr ot ot ypes

Di spl ay* [* display */,

W ndow [* w*/,

i nt* /* this_client_count
XEvent Cl ass** /* this_client_list
i nt* /* all _clients_count

XEvent Cl ass**
#endi f

)

extern int

/* all _clients_list

#i f NeedFuncti onPr ot ot ypes

Di spl ay*
W ndow
i nt
XEvent C ass*
i nt

#endi f

)

extern XEvent d ass

Di spl ay*
W ndow

int* /*

#endi f
)

extern Status

/* display */,
/* wi ndow */,
/* count */,
/* events */,
/* nmode */

XGet Sel ect edExt ensi onEvent s(

/)

*/

XChangeDevi ceDont Pr opagat eLi st (

* XCGet Devi ceDont Pr opagat eLi st (
#i f NeedFuncti onPr ot ot ypes

/* display */,
/* w ndow */,
count */

XSendExt ensi onEvent (

#i f NeedFuncti onPr ot ot ypes

Di spl ay* [* display */,

XDevi ce* /* device */,

W ndow /* dest */,

Bool /* prop */,

i nt /* count */,

XEvent O ass* [* list */,

XEvent * /* event */
#endi f

)

extern XDevi ceTi meCoord

* XCGet Devi ceMbt i onEvent s(




Input Extension

#i f NeedFuncti onPr ot ot ypes

Di spl ay* [* display */,
XDevi ce* /* device */,
Ti e /* start */,
Ti me [* stop */,
int* /* nEvents */,
int* /* nmode */,
i nt* /* axis_count */
#endi f
)
extern int XFr eeDevi ceMbt i onEvent s(
#i f NeedFuncti onPr ot ot ypes
XDevi ceTi neCoor d* /* events */
#endi f
)
extern int XFr eeDevi ceCont r ol (
#i f NeedFuncti onPr ot ot ypes
XDevi ceContr ol * /* control */
#endi f
)
_ XFUNCPROTCEND

#endif /* XINPUT_H_ */
/* Definitions used by the server, library and client */
#i fndef _XI_H_

#define _Xl_H_
#defi ne sz_xGCet Ext ensi onVer si onReq 8
#def i ne sz_xGCet Ext ensi onVer si onRepl y 32
#define sz_xLi stl nput Devi cesReq 4
#define sz_xLi stl nput Devi cesRepl y 32
#define sz_xOpenDevi ceReq 8

#define sz_xQOpenDevi ceReply 32
#def i ne sz_xC oseDevi ceReq 8

#def i ne sz_xSet Devi ceMbdeReq 8
#def i ne sz_xSet Devi ceMbdeRepl y 32
#define sz_xSel ect Ext ensi onEvent Req 12
#define sz_xGCet Sel ect edExt ensi onEvent sReq 8
#def i ne sz_xCet Sel ect edExt ensi onEvent sReply 32
#def i ne sz_xChangeDevi ceDont Propagat eLi st Req 12
#def i ne sz_xGCet Devi ceDont Propagat eLi st Req 8
#def i ne sz_xGCet Devi ceDont Propagat eLi st Reply 32
#define sz_xGCet Devi ceMoti onEvent sReq 16
#def i ne sz_xCet Devi ceMoti onEvent sRepl y 32
#def i ne sz_xChangeKeyboar dDevi ceReq 8
#def i ne sz_xChangeKeyboar dDevi ceRepl y 32
#defi ne sz_xChangePoi nt er Devi ceReq 8
#defi ne sz_xChangePoi nt er Devi ceRepl y 32
#define sz_xG abDevi ceReq 20

#defi ne sz_xG abDevi ceReply 32
#def i ne sz_xUngrabDevi ceReq 12
#def i ne sz_xG abDevi ceKeyReq 20

65



Input Extension

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

sz_xG abDevi ceKeyRepl y

sz_xUngr abDevi ceKeyReq

sz_xG& abDevi ceButt onReq

sz_xG abDevi ceBut t onRepl y
sz_xUngr abDevi ceBut t onReq
sz_xAl | owDevi ceEvent sReq
sz_xCet Devi ceFocusReq

sz_xCet Devi ceFocusRepl y

sz_xSet Devi ceFocusReq

sz_xCet FeedbackCont r ol Req
sz_xCet FeedbackCont r ol Repl y
sz_xChangeFeedbackCont r ol Req
sz_xCet Devi ceKeyMappi ngReq
sz_xCet Devi ceKeyMappi ngRepl y
sz_xChangeDevi ceKeyMappi ngReq
sz_xCet Devi ceModi fi er Mappi ngReq
sz_xSet Devi ceModi fi er Mappi ngReq

sz_xSet Devi ceModi fi er Mappi ngRepl y

sz_xCet Devi ceBut t onMappi ngReq
sz_xCet Devi ceBut t onMappi ngRepl y
sz_xSet Devi ceBut t onMappi ngReq
sz_xSet Devi ceBut t onMappi ngRepl y
sz_xQueryDevi ceSt at eReq
sz_xQueryDevi ceSt at eRepl y
sz_xSendExt ensi onEvent Req
sz_xDevi ceBel | Req

sz_xSet Devi ceVal uat or sReq
sz_xSet Devi ceVal uat or sRepl y
sz_xCet Devi ceCont r ol Req

sz_xCet Devi ceCont r ol Reply
sz_xChangeDevi ceCont r ol Req
sz_xChangeDevi ceCont r ol Repl y

| NANE
XI _KEYBOARD " KEYBOARD"
Xl _MOUSE " MOUSE"

XI _TABLET " TABLET"

XI _TOUCHSCREEN " TOUCHSCREEN"

Xl _TQOUCHPAD " TOUCHPAD"
Xl _BARCCDE " BARCODE"

XI _BUTTONBOX
Xl _KNOB_BOX
XI _ONE_KNOB
Xl _NI NE_KNOB
Xl _TRACKBALL
XI _QUADRATURE
Xl 1 D_MODULE
XI _SPACEBALL
XI _DATAGLOVE
XI _EYETRACKER
Xl _CURSORKEYS
XI _FOOTMOUSE

Dont _Check

" BUTTONBOX"
" KNOB_BOX"
" ONE_KNOB"
" NI NE_KNOB"
" TRACKBALL"
" QUADRATURE"
"| D_MODULE"
" SPACEBALL"
" DATAGLOVE"
" EYETRACKER"
" CURSORKEYS"
" FOOTMOUSE"

0

Xl nput _Initial _Rel ease
Xl nput _Add_XDevi ceBel |
Xl nput _Add_XSet Devi ceVal uat or s

" XI nput Ext ensi on"

66



Input Extension

#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i

#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne

ne
ne

ne
ne

ne
ne

ne
ne

ne
ne

ne

ne

ne
ne

ne
ne

ne
ne

ne

ne
ne
ne

ne
ne
ne
ne
ne
ne

ne
ne

ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne

Xl nput _Add_XChangeDevi ceCont r ol
XI _Absent 0
Xl _Present 1

Xl _I'nitial _Rel ease_Mj or
Xl _Initial _Rel ease_M nor

XI _Add_XDevi ceBel | _Mj or
XI _Add_XDevi ceBel | _M nor

XI _Add_XSet Devi ceVal uat or s_Mj or
XI _Add_XSet Devi ceVal uat ors_M nor

XI _Add_XChangeDevi ceCont r ol _Maj or
XI _Add_XChangeDevi ceCont r ol _M nor
DEVI CE_RESOLUTI ON 1

NoSuchExt ensi on 1

CQUNT 0

CREATE 1

NewPoi nt er 0

NewKeyboar d 1

XPA NTER 0

XKEYBQOARD 1

UseXKeyboar d OxFF

| sXPoi nt er 0

| sXKeyboar d 1

| sXExt ensi onDevi ce 2

AsyncThi sDevi ce 0
SyncThi sDevi ce 1

Repl ayThi sDevi ce 2

AsyncQt her Devi ces 3

AsyncAl | 4

SyncAl | 5

Fol | owKeyboard 3

Revert ToFol | owKeyboard 3
DvAccel Num (1L << 0)
DvAccel Denom (1L << 1)
DvThreshol d (1L << 2)
DvKeyd i ckPer cent (1L<<0)
DvPer cent (1L<<1)

DvPi t ch (1L<<2)
DvDur ati on (1L<<3)

DvlLed (1L<<4)
DvLedMode (1L<<5)

DvKey (1L<<6)

DvAut oRepeat Mode (1L<<7)

4

67



Input Extension

#define DvString (1L << 0)
#def i ne Dvl nt eger (1L << 0)
#defi ne Devi ceMdde

(
#define Rel ative 0
#def i ne Absol ute 1

1L << 0)

#define ProxinityState (1L << 1)
#define InProxinity (0L << 1)
#define QutOf Proximity (1L << 1)

#defi ne AddToLi st 0
#def i ne Del et eFronlLi st 1

#def i ne Keyd ass 0
#defi ne ButtonC ass 1
#defi ne Val uatord ass 2
#defi ne Feedbackd ass 3
#defi ne Proxi mtyd ass 4
#defi ne Focusd ass 5
#define O herd ass 6

#defi ne KbdFeedbackd ass 0
#defi ne PtrFeedbackd ass 1
#defi ne StringFeedbackd ass 2
#def i ne | nt eger Feedbackd ass 3
#defi ne LedFeedbackd ass 4
#defi ne Bel | Feedbackd ass 5

#defi ne _devi cePoi nterMtionH nt O

#def i ne _devi ceButtonlMoti on 1
#def i ne _devi ceButton2Moti on 2
#def i ne _devi ceButton3Moti on 3
#def i ne _devi ceButton4Moti on 4
#def i ne _devi ceButton5Moti on 5
#def i ne _devi ceButtonhbtion 6
#def i ne _devi ceButtonG ab 7
#defi ne _devi ceOwner G abButton 8
#defi ne _noExt ensi onEvent 9
#defi ne Xl _BadDevi ce 0

#defi ne Xl _BadEvent 1

#def i ne Xl _BadMode 2

#define Xl _Devi ceBusy 3

#def i ne Xl _Badd ass 4

t ypedef unsi gned | ong XEvent Cl ass;

/*******************************************************************

*

* Ext ension version structure.

*

*/

t ypedef struct {
i nt present;

68



Input Extension

short maj or _ver si on;
short m nor _ver si on;
} XExt ensi onVer si on;

#endif /* XI_H_ */

69



Appendix A. Input Extension Protocol
Encoding

Syntactic Conventions
All numbers arein decimal, unless prefixed with #x, in which case they are in hexadecimal (base 16).
The general syntax used to describe requests, replies, errors, events, and compound typesis:

Naneof Thi ng
encode-form

encode-form
Each encode-form describes a single component.

For components described in the protocol as:

name: TYPE

the encode-formiis;

N TYPE nane

N is the number of bytes occupied in the data stream, and TY PE is the interpretation of those bytes.
For example,

dept h: CARD8

becomes:

1 CARD8 depth

For components with a static numeric value the encode-formis:

N val ue nane

The value is always interpreted as an N-byte unsigned integer. For example, the first two bytes of a
Window error are always zero (indicating an error in general) and three (indicating the Window error
in particular):

70



Input Extension Protocol Encoding

1 0 Error
1 3 code

For components described in the protocol as:

nane: {Nanel, ..., Nanel}

the encode-formis;

N nane
val uel Nanmel

val uel Nanel
The value is dways interpreted as an N-byte unsigned integer. Note that the size of N is sometimes
larger than that strictly required to encode the values. For example:

class: {lnputQutput, |InputOnly, CopyFronParent}

becomes:

2 cl ass
0 CopyFr onPar ent
1 I nput Qut put
2 InputOnly

For components described in the protocol as:

NAME: TYPE or Alternativel ... or Alternativel

the encode-formis;

N TYPE NAME
val uel Alternativel

val uel Alternativel

The alternative values are guaranteed not to conflict with the encoding of TY PE. For example:

destinati on: W NDOW or Poi nt er Wndow or | nput Focus

becomes:

4 W NDOW destination
0 Poi nt er W ndow

71



Input Extension Protocol Encoding

1 I nput Focus

For components described in the protocol as:

val ue- mask: BI TMASK

the encode-formis:

N Bl TMASK val ue- nask
maskl mask- nanel

maskl mask- nanel

The individual bits in the mask are specified and named, and N is 2 or 4. The most-significant bit
inaBITMASK isreserved for use in defining chained (multiword) bitmasks, as extensions augment
existing corerequests. The preciseinterpretation of thishit isnot yet defined here, although aprobable
mechanism isthat a 1-bit indicates that another N bytes of bitmask follows, with bitswithin the overall
mask still interpreted from least-significant to most-significant with an N-byte unit, with N-byte units
interpreted in stream order, and with the overall mask being byte-swapped in individual N-byte units.

For LISTofVALUE encodings, the request is followed by a section of the form:

VALUEs
encode-form

encode-form

listing an encode-form for each VALUE. The NAME in each encode-form keys to the corresponding
BITMASK bit. The encoding of a VALUE aways occupies four bytes, but the number of bytes
specified in the encoding-form indicates how many of the least-significant bytes are actually used; the
remaining bytes are unused and their values do not matter.

Invarious cases, the number of bytes occupied by acomponent will be specified by alowercase single-
letter variable name instead of a specific numeric value, and often some other component will have its
value specified as a simple numeric expression involving these variables. Components specified with
such expressions are aways interpreted as unsigned integers. The scope of such variables is aways
just the enclosing request, reply, error, event, or compound type structure. For example:

2 3+n request length
4n LI STof PO NT points

For unused bytes (the values of the bytes are undefined and do not matter), the encode-formiis:

N unused

If the number of unused bytesis variable, the encode-form typically is:

72



Input Extension Protocol Encoding

p unused, p=pad(E)

where E is some expression, and pad(E) is the number of bytes needed to round E up to a multiple
of four.

pad(E) = (4 - (E nod 4)) nod 4
Comon Types
LISTofFOO

* In this document the LISTof notation strictly means some number of repetitions of the FOO
encoding; the actual length of thelist is encoded el sewhere.

SETofFOO

» A setisawaysrepresented by a bitmask, with a 1-bit indicating presence in the set.
BITMASK: CARD32
WINDOW: CARD32

BYTE: 8-hit value

INTS8: 8-hit signed integer

INT16: 16-bit signed integer
INT32: 32-bit signed integer
CARDS: 8-hit unsigned integer
CARD16: 16-bit unsigned integer
CARD32: 32-hit unsigned integer
TIMESTAMP: CARD32

EVENTCLASS: CARD32

| NPUTCLASS

0 Keyd ass

1 Buttond ass

2 Val uat ord ass

3 Feedbackd ass
4 Proximtyd ass
5 Focusd ass
6 O herd ass

| NPUTCLASS

73



Input Extension Protocol Encoding

KbdFeedbackd ass
Pt r Feedbackd ass
StringFeedbackd ass
I nt eger Feedbackd ass
LedFeedbackd ass
Bel | Feedbackd ass

a b~ wWwNEFLO

I NPUTI NFO
0 KEYI NFO
1 BUTTONI NFO
2 VALUATORI NFO

DEVI CEMODE
0 Rel ative
1 Absol ute

PROXI M TYSTATE
O InProximty
1 QutOrProximty

BOOL
0 Fal se
1 True

KEYSYM: CARD32
KEY CODE: CARDS

BUTTON: CARDS8

SETof KEYBUTNMASK
#x0001 Shift
#x0002 Lock
#x0004 Contr ol
#x0008 Mbodl
#x0010 Mod2
#x0020 Mod3
#x0040 Mbd4
#x0080 Mod5
#x0100 Buttonl
#x0200 Button2
#x0400 Button3
#x0800 Button4
#x1000 Buttonb5

74



Input Extension Protocol Encoding

#xe000 unused but nust be zero

SETof KEYMASK
encodi ngs are the sane as for SETof KEYBUTMASK, except with
#xff00 wunused but mnust be zero

STRINGS: LISTof CARDS

STR
1 n length of nane in bytes
n STRINGS nane

Errors

Request
10 Error
11 code
2 CARD16 sequence nunber
4 unused
2 CARD16 m nor opcode
1 CARD8 mmjor opcode
21 unused

Val ue
10 Error
1 2 code

2 CARD16 sequence number
4 <32-bits> bad val ue

2 CARD16 mi nor opcode

1 CARD8 rmmjor opcode

21 unused

W ndow
10 Error
1 3 code
2 CARD16 sequence nunber
4 CARD32 bad resource id
2 CARD16 m nor opcode
1 CARD8 mmjor opcode
21 unused

Mat ch

75



Input Extension Protocol Encoding

O Error
8 code
CARD16 sequence numnber
unused
CARD16 minor opcode
CARD8 nmj or opcode
1 unused

NFEFNRANREPR

Access
10 Error
1 10 code
2 CARD16 sequence number
4 unused
2 CARD16 m nor opcode
1 CARD8 mmjor opcode
21 unused

Al oc

O Error

11 code

CARD16 sequence nunber
unused

CARD16 minor opcode

CARD8 nmj or opcode

1 unused

NEFENANRE PR

3

O Error
15 code
CARD16 sequence number
unused
CARD16 minor opcode
CARD8 nmj or opcode
1 unused

l\)l—‘l\)hl\)l—‘l—‘g

Devi ce

0O Error

CARD8 code

CARD16 sequence numnber
unused

CARD16 m nor opcode

CARD8 nmj or opcode

1 unused

NEFENANRE P

76



Input Extension Protocol Encoding

Event

10 Error

1 CARD8 code

2 CARD16 sequence numnber
4 unused

2 CARD16 mi nor opcode

1 CARD8 mmjor opcode

21 unused

Mode

0O Error

CARD8 code

CARD16 sequence number
unused

CARD16 minor opcode

CARD8 nmj or opcode

1 unused

NEFENANREPRP

d ass

O Error

CARD8 code

CARD16 sequence numnber
unused

CARD16 mi nor opcode

CARD8 nmj or opcode

1 unused

NEFENANREPRP

Keyboards

KEY CODE values are aways greater than 7 (and less than 256).

KEY SYM values with the bit #x10000000 set are reserved as vendor-specific.

The names and encodings of the standard KEY SY M values are contained in appendix F.
Pointers

BUTTON values are numbered starting with one.

Requests

Get Ext ensi onVer si on
CARD8 i nput extension opcode
1 Get Ext ensi onVersi on opcode
2+(n+p)/4 request length
n |length of nane

unused
STRIN&G nane

unused, p=pad(n)

T S NDNNNPEFP -

77



Input Extension Protocol Encoding

\Y

1 Reply
1 Get Ext ensi onVersi on opcode
CARD16 sequence numnber
0 reply length
CARD16 mmj or version
CARD16 minor version
BOOL present
9 unused

PRPNNRARNEEI

Li st I nput Devi ces

1 CARD8 input extension opcode
1 2 ListlnputDevices opcode

2 1 request length

=>

11 Repl y

12 Li st | nput Devi ces opcode

2 CARD16 sequence nunber

4 (n+p)/4 reply length

1 CARD8 nunber of input devices

23 unused

n LI STof DEVI CEI NFO i nfo for each input device
p unused, p=pad(n)

DEVI CElI NFO
4 CARD32 device type
1 CARD8 device id
1 CARD8 nunber of input classes this device reports
1 CARD8 device use
0 I sXPoi nter
1 | sXKeyboard
2 | sXExt ensi onDevi ce
1 unused
n LI STof I NPUTINFO input info for each input class
m STR  nane
p unused, p=pad(m

I NPUTI NFO KEYI NFO or BUTTONI NFO or VALUATORI NFO

KEY! NFO
10 class id

78



Input Extension Protocol Encoding

18 length

1 KEYCODE mini num keycode
1 KEYCODE nmaxi hnum keycode
2 CARD16 nunber of keys

2 unused

BUTTONI NFO

11 class id

14 length

2 CARD16 nunber of buttons

VALUATORI NFO

12 classid

1 8+12n length

1 n nunber of axes

1 SETof DEVI CEMODE node

4 CARD32 size of notion buffer

12n LI STof AXI SINFO valuator limts

AXI SI NFO
4 CARD32 resolution
4 CARD32 m ni num val ue
4 CARD32 maxi num val ue

OpenDevi ce

1 CARD8 input extension opcode
1 3 OpenDevice opcode

2 2 request length

1 CARD8 device id

3 unused

=>

11 Reply

13 OpenDevi ce opcode

2 CARD16 sequence nunber

4 (n+p)/4 reply length

1 CARD8 nunber of input classes

23 unused

n LI STof | NPUTCLASSI NFO i nput cl ass information
p unused, p=pad(n)

79



Input Extension Protocol Encoding

| NPUTCLASSI NFO
1 CARD8 input class id
KEY
BUTTON
VALUATOR
FEEDBACK
PROXIM TY
FOCUS
OTHER
1 CARD8 event type base code for this class

OO WNEO

Cl oseDevi ce

1 CARD8 input extension opcode
1 4 C oseDevice opcode

2 2 request length

1 CARD8 device id

3 unused

Set Devi ceMode
1 CARD8 input extension opcode
1 5 SetDeviceMde opcode
2 2 request length
1 CARD8 device id
1 CARD8 node
2 unused

=>
11 Reply

15 Set Devi ceMbde opcode
2 CARD16 sequence nunber
4 0 reply length

1 CARD8 status

0 Success

1 Al readyG abbed

3 + first_error DeviceBusy
23 unused

Sel ect Ext ensi onEvent

1 CARD8 i nput extensi on opcode
16 Sel ect Ext ensi onEvent opcode
2 3+n request length

4 Wndow event w ndow

2 CARD16 count

2 unused

4n LI STof EVENTCLASS desired events

80



Input Extension Protocol Encoding

CGet Sel ect edExt ensi onEvent s

1 CARD8 input extension opcode

1 7 GetSel ect edExt ensi onEvents opcode
2 2 request length

4 Wndow event w ndow

=>

11 Reply

1 7 GCetSel ect eExt ensi onEvents opcode
2 CARD16 sequence number

4 n+m reply length

2n this client count

2 m all clients count

20 unused

4n LI STof EVENTCLASS this client |ist
4m LI STof EVENTCLASS all clients |i st

ChangeDevi ceDont Pr opagat eLi st
1 CARD8 i nput extensi on opcode
18 ChangeDevi ceDont Pr opagat eLi st opcode
2 3+n request |length
W ndow event wi ndow
2n count of events
1 node
0 AddTolLi st
1 Del et eFronlLi st
1 unused
4n LI STof EVENTCLASS desired events

N

CGet Devi ceDont Pr opagat eLi st

1 CARD8 input extension opcode

1 9 GetDeviceDont PropagatelLi st opcode
2 2 request length

4 Wndow event w ndow

=>

11 Reply

19 Get Devi ceDont Propagat eLi st opcode
2 CARD16 sequence nunber

4 n reply length

2n count of events

22 unused

4n LI STof EVENTCLASS don't propagate |i st

81



Input Extension Protocol Encoding

CGet Devi ceMbt i onEvent s
1 CARD8 input extension opcode
1 10 CetDeviceMtionEvents opcode
2 4 request length
4 TI MESTAMP start
0 CurrentTinme
4 TI MESTAMP stop
0 CurrentTinme
1 CARD8 device id
3 unused

\

1 Reply

10 Get Devi ceMdti onEvents opcode
CARD16 sequence nunber

(ml)n reply length

n nunber of DEVI CETI MECOORDs in events
m nunber of valuators per event
CARD8 npde of the device
0 Absol ute

1 Rel ative
18 unused
(4m+4) n LI STof DEVI CETI MECOORD event s

PR RANPRR

DEVI CETI MECOORD
4 TI MESTAMP tine
4m LI STof I NT32 val uators

ChangeKeyboar dDevi ce

1 CARD8 input extension opcode

1 11 ChangeKeyboar dDevi ce opcode
2 2 request length

1 CARD8 device id

3 unused

=>
11 Reply
1 11 ChangeKeyboar dDevi ce opcode
2 CARD16 sequence number
4 0 reply length
1 st at us
0 Success
1 Al readyG abbed
2 Devi ceFrozen
23 unused

82



Input Extension Protocol Encoding

ChangePoi nt er Devi ce

1 CARD8 input extension opcode
1 12 ChangePoi nt er Devi ce opcode
2 2 request length

1 CARD8 x-axis

1 CARD8 y-axis

1 CARD8 device id

1 unused

=>

11 Reply

1 12 ChangePoi nt er Devi ce opcode
2 CARD16 sequence numnber
40 reply length
1 status
0 Success
1 Al readyG abbed
2 Devi ceFrozen
23 unused

GrabDevi ce
1 CARD8 input extension opcode
1 13 GrabDevice opcode
2 5+n request length
4 W NDOW gr ab-w ndow
4 TI MESTAMP tinme
0 CurrentTinme
2 n count of events
1 t hi s- devi ce- node
0 Synchronous
1 Asynchronous
1 ot her - devi ces- node
0 Synchronous
1 Asynchronous
1 BOOL owner-events
1 CARD8 device id
2 unused
4n LI STof EVENTCLASS event i st

=>

11 Reply

1 13 G abDevice opcode
2 CARD16 sequence number
4 0 reply length

1 st at us

0 Success

1 Al readyG abbed

83



Input Extension Protocol Encoding

2 InvalidTine
3 Not Vi ewabl e
4 Frozen

23 unused

Ungr abDevi ce
1 CARD8 input extension opcode
1 14 UngrabDevi ce opcode
2 3 request length
4 TI MESTAMP tinme
0 CurrentTine
1 CARD8 device id
3 unused

G abDevi ceKey

1 CARD8 input extension opcode
1 15 G abDevi ceKey opcode
2 5+n request length

W NDOW gr ab-wi ndow

n count of events

SETof KEYMASK nodi fiers
#x8000 AnyModi fi er

1 CARD8 nodifier device
#X0FF UseXKeyboard

1 CARD8 grabbed device

1 KEYCODE key

0 AnyKey

1 t hi s- devi ce- node

0 Synchronous

1 Asynchronous

1 ot her - devi ces- node

0 Synchronous

1 Asynchronous

1 BOOL owner-events
2 unused
4n LI STof EVENTCLASS event i st

N

2
2

Ungr abDevi ceKey

1 CARD8 input extension opcode
1 16 UngrabDevi ceKey opcode
2 4 request length

4 W NDOW gr ab-w ndow

2 SETof KEYMASK nodifiers
#x8000 AnyMbdi fi er

1 CARD8 nodifier device
#X0FF UseXKeyboard

1 KEYCODE key
0 AnyKey

1 CARD8 grabbed device

3 unused




Input Extension Protocol Encoding

GrabDevi ceButt on

CARD8 i nput extension opcode
17 G abDevi ceButton opcode
5+n request length

W NDOW gr ab-w ndow

CARD8 grabbed devi ce

CARD8 nodifier device
#X0FF UseXKeyboard
2 n count of desired events
2 SETof KEYMASK nodifiers
1 t hi s- devi ce- node

0 Synchronous

1 Asynchronous
1 ot her - devi ce- node

0 Synchronous

1 Asynchronous
1 BUTTON button

0 AnyButton
1 BOOL owner-events

#x8000 AnyModi fi er
2 unused
4n LI STof EVENTCLASS event i st

PR RANR PR

Ungr abDevi ceBut t on
1 CARD8 input extension opcode
1 18 UngrabDevi ceButton opcode
2 4 request length
4 W NDOW gr ab-w ndow
2 SETof KEYMASK nodifiers
#x8000 AnyMbdi fi er
1 CARD8 nodifier device
#X0FF UseXKeyboard
1 BUTTON button
0 AnyButton
1 CARD8 grabbed device
3 unused

Al | owDevi ceEvent s
1 CARD8 input extension opcode
1 19 Al owbevi ceEvents opcode
2 3 request length
4 TI MESTAMP tinme
0 CurrentTime
1 node
0 AsyncThi sDevi ce
1 SyncThi sDevi ce
2 Repl ayThi sDevi ce
3 AsyncQt her Devi ces

85



Input Extension Protocol Encoding

4 AsyncAl

5 SyncAl

1 CARD8 device id
2 unused

CGet Devi ceFocus

1 CARD8 input extension opcode
1 20 CetDevi ceFocus opcode

2 2 request length

1 CARD8 device

3 unused

=>
11 Reply
1 20 CetDevi ceFocus opcode
2 CARD16 sequence numnber
4 0 reply length
4 W NDOW focus
0 None
1 Poi nt er Root
3 Fol | owKeyboard
4 TI MESTAMP focus tinme
1 revert-to
0 None
1 Poi nt er Root
2 Parent
3 Fol | owKeyboard
15 unused

Set Devi ceFocus

1 CARD8 input extension opcode
1 21 SetDevi ceFocus opcode
2 4 request length

4 W NDOW focus

0 None

1 Poi nt er Root

3 Fol | owkeyboard

4 TI MESTAMP tinme

0O CurrentTine

1 revert-to

0 None

1 Poi nt er Root

2 Parent

3 Fol | owkeyboard

1 CARD8 device

2 unused

86



Input Extension Protocol Encoding

Get FeedbackCont r ol

1 CARD8 input extension opcode
1 22 Cet FeedbackControl opcode
2 2 request length

1 CARD8 device id

3 unused

=>

11 Reply

1 22 Cet FeedbackControl opcode

2 CARD16 sequence number

4 m4 reply length

2 n nunber of feedbacks supported
22 unused

m LI STof FEEDBACKSTATE f eedbacks

FEEDBACKSTATE KBDFEEDBACKSTATE, PTRFEEDBACKSTATE, | NTEGERFEEDBACKSTATE
STRI NGFEEDBACKSTATE, BELLFEEDBACKSTATE, or LEDFEEDBACKSTATE

KBDFEEDBACKSTATE
1 0 feedback class id
1 CARD8 id of this feedback
2 20 length
2 CARD16 pitch
2 CARD16 duration
4 CARD32 | ed nask
4 CARD32 | ed val ues
1 gl obal _aut o_r epeat
0 Of
1 On
1 CARD8 click
1 CARD8 percent
1 unused
32 LI STof CARD8 auto_repeats

PTRFEEDBACKSTATE

0 feedback class id
CARD8 id of this feedback
12 length

unused

CARD16 accel erati on-nuner at or
CARD16 accel erati on-denoni nat or
CARD16 threshold

NNNNDNREP PP

87



Input Extension Protocol Encoding

| NTEGERFEEDBACKSTATE
0 feedback class id
CARD8 id of this feedback
16 length
CARD32 resol ution
I NT32 m ni mum val ue
I NT32 maxi num val ue

A BRABANREFPFR

STRI NGFEEDBACKSTATE
11 feedback class id
1 CARD8 id of this feedback
2 4n+8 length
2 CARD16 max_synbol s
2n nunber of keysyns supported
4n LI STof KEYSYM key synbol s supported

BELLFEEDBACKSTATE

11 feedback class id
1 CARD8 id of this feedback
2 12 length

1 CARD8 percent
3 unused

2 CARD16 pitch

2 CARD16 duration

LEDFEEDBACKSTATE

11 feedback class id

1 CARD8 id of this feedback
2 12 length
4 CARD32 |ed _nask
4 BI TMASK | ed_val ues

#x0001 On

#x0002 O f

ChangeFeedbackCont r ol
1 CARD8 input extension opcode
1 23 ChangeFeedbackControl opcode
2 3+n/4 request length
4 BI TMASK val ue-mask (has n bits set to 1)
#x0001 keycl i ck- percent
#x0002 bel | - per cent
#x0004 bel | -pitch
#x0008 bel | -duration
#x0010 | ed
#x0020 | ed- node
#x0040 key
#x0080 aut o-r epeat - nnde

88



Input Extension Protocol Encoding

#x0001 string

#x0001 i nt eger

#x0001 accel erati on- nuner at or
#x0002 accel erati on-denomi nat or
#x0004 accel erati on-threshol d
1 CARD8 device id

1 CARD8 feedback class id

2 unused

n FEEDBACKCLASS

FEEDBACKCLASS KBDFEEDBACKCTL, PTRFEEDBACKCTL, | NTEGERFEEDBACKCTL,
STRI NGFEEDBACKCTL, BELLFEEDBACKCTL, or LEDFEEDBACKCTL

KBDFEEDBACKCTL
1 0 feedback class id
1 CARD8 id of this feedback
2 20 length
1 KEYCODE key
1 aut o- r epeat - node

0 Of
1 On
2 Default
1 INT8 key-click-percent
1 INT8 bell-percent
2 INT16 bell-pitch
2 INT16 bell-duration
4 CARD32 |ed_nask
4 CARD32 |ed val ues

PTRFEEDBACKCTL

1 feedback class id

CARD8 id of this feedback
12 length

unused

I NT16 numerat or

I NT16 denom nat or

INT16 threshold

NNNNDNPRE P

STRI NGCTL
1 2 feedback class id
1 CARD8 id of this feedback
2 4n+8 length
2 unused
2 n nunber of keysyns to display
4n LI STof KEYSYM |ist of key symbols to display

89



Input Extension Protocol Encoding

| NTEGERCTL
1 3 feedback class id
1 CARD8 id of this feedback
2 8 length
4 | NT32 integer to display

LEDCTL

1 4 feedback class id

1 CARD8 id of this feedback
2 12 length
4 CARD32 | ed_nmsk
4 BITMASK | ed val ues

#x0001 On

#x0002 O f

BELLCTL

5 feedback class id

CARD8 id of this feedback
8 length

I NT8 percent

unused
INT16 pitch
I NT16 duration

NNWEFENR P

CGet Devi ceKeyMappi ng
1 CARD8 input extension opcode
1 24 CetDevi ceKeyMappi ng opcode
2 2 request length

1 CARD8 device

1 KEYCODE first-keycode

1 CARD8 count

1 unused

=>

11 Reply

1 24 CetDevi ceKeyMappi ng opcode

2 CARD16 sequence nunber

4 nm reply length (m= count field fromthe request)
1 n keysyns-per-keycode

23 unused

4nm LI STof KEYSYM keysyns

90



Input Extension Protocol Encoding

ChangeDevi ceKeyMappi ng
1 CARD8 input extension opcode
1 25 ChangeDevi ceKeyMappi ng opcode
2 2+nm request |ength
1 CARD8 device
1 KEYCODE first-keycode
1 m Kkeysyns-per-keycode
1 n keycode-count
4nm LI STof KEYSYM keysyns

CGet Devi ceMbdi fi er Mappi ng

1 CARD8 input extension opcode

1 26 CetDeviceMdifierMppi ng opcode
2 2 request length

1 CARD8 device

3 unused

=>

11 Reply

1 26 CetDeviceMdifierMppi ng opcode
2 CARD16 sequence nunber

4 2n reply length

1 n keycodes-per-nodifier

23 unused

8n LI STof KEYCODE keycodes

Set Devi ceMbdi fi er Mappi ng
1 CARD8 input extension opcode
27 Set Devi ceModi fi er opcode
2+2n request length
CARD8 devi ce
n keycodes-per-nodifier
unused

1
2
1
1
2
8n LI STof KEYCODE keycodes

=>
11 Reply
1 27 SetDevi ceMdifierMappi ng opcode
2 CARD16 sequence nunber
4 0 reply length
1 stat us
0 Success
1 Busy
2 Failed
23 unused

91



Input Extension Protocol Encoding

Get Devi ceBut t onMappi ng

1 CARD8 input extension opcode

1 28 CetDevi ceButtonMappi ng opcode
2 2 request length

1 CARD8 device

3 unused

=>

11 Reply

1 28 CetDevi ceButtonMappi ng opcode
2 CARD16 sequence number

4 (n+p)/4 reply length

1 n nunber of elenents in map |i st
23 unused

n LI STof CARDS map

p unused, p=pad(n)

Set Devi ceBut t onMappi ng
1 CARD8 input extension opcode

1 29 SetDevi ceButtonMappi ng opcode
2 2+(n+p)/4 request length

1 CARD8 device

1 n length of map

2 unused

n LI STof CARDS nap

p unused, p=pad(n)

=>

11 Reply

1 29 SetDevi ceButtonMappi ng opcode
2 CARD16 sequence number
4 0 reply length
1 status
0 Success
1 Busy
23 unused

QueryDevi ceState

1 CARD8 input extension opcode
1 30 QueryDeviceState opcode

2 2 request length

1 CARD8 device

3 unused

92



Input Extension Protocol Encoding

=>

11 Reply

1 30 QueryDevi ceSt at e opcode

2 CARD16 sequence nunber

4 nl4 reply length

1n nunber of input classes
23 unused

m LI STof | NPUTSTATE

| NPUTSTATE KEYSTATE or BUTTONSTATE or VALUATORSTATE

KEYSTATE
1 CARD8 key input class id
1 36 length
1 CARD8 num keys
1 unused
32 LI STof CARD8 status of keys

BUTTONSTATE

1 CARD8 button input class id

1 36 length

1 CARD8 num buttons

1 unused

32 LI STof CARD8 status of buttons

VALUATORSTATE

1 CARD8 valuator input class id

14n + 4 length

1 n nunber of valuators

1 node

#x01 DeviceMdde (0 = Relative, 1 = Absol ute)

#x02 ProximtyState (0 = InProximty, 1 = QutOProximty)
4n LI STof CARD32 status of valuators

SendExt ensi onEvent

CARDS i nput extension opcode
31 SendExt ensi onEvent opcode
4 + 8n + m request length

W NDOW destination

CARDS devi ce

BOOL pr opagat e

CARD16 event cl ass count

NFPRANRERE

93



Input Extension Protocol Encoding

1 CARD8 num event s

3 unused

32n LI STof EVENTS events to send
4m LI STof EVENTCLASS desired events

Devi ceBel

1 CARD8 input extension opcode
1 32 DeviceBell opcode

2 2 request length

1 CARD8 device id

1 CARD8 feedback id

1 CARD8 feedback class

1 INT8 percent

Set Devi ceVal uat ors
1 CARD8 input extension opcode
1 33 SetDeviceVal uators opcode
2 2 +n request length
1 CARD8 device id
1 CARD8 first valuator
1n nunber of valuators
1 unused
4n LI STof I NT32 val uator val ues to set

=>
11 Reply
1 33 Set Devi ceVal uat ors opcode
2 CARD16 seqguence nunber
4 0 reply length
1 CARD8 status
0 Success
1 Al readyG abbed
23 unused

Cet Devi ceCont r ol

1 CARD8 input extension opcode
1 34 GetDeviceControl opcode

2 2 request length

2 CARD16 device control type

1 CARD8 device id

1 unused

=>

11 Reply

94



Input Extension Protocol Encoding

1 34 CGet Devi ceCont rol opcode
2 CARD16 sequence nunber
4 nl4 reply length
1 CARDS st at us

0 Success

1 Al readyG abbed

3 + first_error DeviceBusy
23 unused
n DEVI CESTATE

DEVI CESTATE DEVI CERESCLUTI ONSTATE

DEVI CERESOLUTI ONSTATE
2 0 control type
2 8 + 12n length
4 n num val uat or s
4n LI STOF CARD32 resol ution val ues
4n LI STOF CARD32 resol ution m n_val ues
4n LI STOF CARD32 resol uti on nmax_val ues

ChangeDevi ceCont r ol

1 CARD8 input extension opcode
35 ChangeDevi ceControl opcode
2+n/ 4 request length
CARD16 control type
CARD8 device id

unused

DEVI CECONTROL

S FEFEPDNDNPE

DEVI CECONTROL  DEVI CERESOLUTI ONCTL

DEVI CERESOLUTI ONCTL
2 1 control type
2 8+ 4n length
1 CARD8 first_valuator
1n num val uat or s
2 unused
4n LI STOF CARD32 resol ution val ues

95



Input Extension Protocol Encoding

1 Reply

35 ChangeDevi ceCont rol opcode
CARD16 sequence nunber

0 reply length

CARDS st at us

0 Success

1 Al readyG abbed

3 + first_error DeviceBusy

23 unused

P ANR R

Events

DeviceKeyPress, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, Proximityln,
ProximityOut, and DeviceStateNotify events may befollowed by zero or more DeviceV aluator events.
DeviceMotionNotify events will be followed by one or more DeviceValuator events.

Devi ceVal uat or

1 CARD8 code

1 CARD8 device id

2 CARD16 sequence numnber

2 SETof KEYBUTMASK st ate

1 n nunber of valuators this device reports
1 m nunber of first valuator in this event
24 LI STof | NT32 val uators

Devi ceKeyPr ess

CARD8 code

KEYCODE det ai |

CARD16 sequence numnber
TI MESTAMP tinme

W NDOW r oot

W NDOW event

W NDOW child

0 None

I NT16 root-x

I NT16 root-y

I NT16 event-x

I NT16 event-y

SETof KEYBUTMASK st ate
BOOL sane-screen
CARD8 device id

#x80 MORE_EVENTS fol | ow

o N N L S )

P EPNNMNNDNDN

Devi ceKeyRel ease

CARD8 code

KEYCODE det ai |

CARD16 sequence number
TI MESTAMP tine

W NDOW r oot

W NDOW event

A BRABANREFPF

96



Input Extension Protocol Encoding

4 WNDOW child
0 None
I NT16 root-x
I NT16 root-y
I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK  state
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

P FEPDNNNNDN

Devi ceBut t onPress
CARD8 code
BUTTON detail
CARD16 sequence numnber
TI MESTAMP tine
W NDOW r oot
W NDOW event
W NDOW child
0 None
I NT16 root-x
I NT16 root-y
I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK state
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

ArBADMADNRERLPEP

P FEPDNNNNDN

Devi ceBut t onRel ease
CARD8 code
BUTTON detail
CARD16 sequence numnber
TI MESTAMP tine
W NDOW r oot
W NDOW event
W NDOW child
0 None
I NT16 root-x
I NT16 root-y
I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK st ate
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

ArADMADNRERLPE

P FEPDNNNDNDN

Devi ceMot i onNoti fy
1 CARD8 code
1 det ai |

97



Input Extension Protocol Encoding

0 Nor nal

1 Hnt

CARD16 sequence numnber
TI MESTAMP tinme

W NDOW r oot

W NDOW event

W NDOW child

0 None

I NT16 root-x

I NT16 root-y

I NT16 event-x

I NT16 event-y

SETof KEYBUTMASK st ate
BOOL sane-screen
CARD8 device id

#x80 MORE_EVENTS fol | ow

A A DMDDN

P FEPDNNNDNDN

Devi ceFocusl n

1 CARD8 code

1 detail
Ancest or
Vi rtual

I nferior
Nonl i near
Nonl i near Vi rt ual
Poi nt er
Poi nt er Root
None
2 CARD16 sequence numnber
4 TI MESTAMP tine
4 W NDOW event
1 node

0 Nor nal

1 Gab

2 Ungrab

3 Wi | eG abbed
1 CARD8 device id
18 unused

No ahr~WwWNEO

Devi ceFocusQut
1 CARD8 code
1 detail
Ancest or
Vi rtual
I nferior
Nonl i near
Nonl i near Vi rt ual
Poi nt er
Poi nt er Root
None
2 CARD16 sequence numnber
4 TI MESTAMP tine

No oahr~WwWNEO

98



Input Extension Protocol Encoding

4 W NDOW event

1 node

0 Nor nal

1 Gab

2 Ungrab

3 Wi | eG abbed

1 CARD8 device id
18 unused

Proximtyln
1 CARD8 code
unused
CARD16 sequence nunber
TI MESTAMP tinme
W NDOW r oot
W NDOW event
W NDOW child
0 None
INT16 root-x
I NT16 root-y
I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK  state
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

ARDNANPR

P EPDNNNDNDN

Pr oxi nmi t yQut
1 CARD8 code
unused
CARD16 sequence numnber
TI MESTAMP tine
W NDOW r oot
W NDOW event
W NDOW child
0 None
I NT16 root-x
I NT16 root-y
I NT16 event-x
I NT16 event-y
SETof KEYBUTNMASK state
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

ArADMDNPR

P FEPDNNNDNDN

DeviceStateNotify events may be immediately followed by zero or one DeviceK eyStateNotify and/
or zero or more DeviceValuator events.

Devi ceSt at eNoti fy
1 CARD8 code

99



Input Extension Protocol Encoding

1 CARD8 device id
#x80 MORE_EVENTS fol | ow
2 CARD16 sequence numnber
4 TI MESTAMP tinme
1 CARD8 num keys
1 CARD8 num buttons
1 CARD8 numval uators
1 CARD8 valuator npde and i nput classes reported
#x01 reporting keys
#x02 reporting buttons
#x04 reporting val uators
#x40 device node (0 = Relative, 1 = Absol ute)
#x80 proximty state (0 = InProximty, 1 = QutOFProxinity)
4 LI STof CARD8 first 32 keys (if reported)
4 LI STof CARD8 first 32 buttons (if reported)
12 LI STof CARD32 first 3 valuators (if reported)

Devi ceKeySt at eNot i fy
1 CARD8 code
1 CARD8 device id
#x80 MORE_EVENTS fol | ow
2 CARD16 sequence nunber
28 LI STof CARD8 state of keys 33-255

Devi ceButt onSt at eNot i fy
1 CARD8 code
1 CARD8 device id
#x80 MORE_EVENTS fol | ow
2 CARD16 sequence numnber
28 LI STof CARD8 state of buttons 33-255

Devi ceVal uat or

1 CARD8 code

1 CARD8 device id

2 CARD16 sequence nunber

2 SETof KEYBUTMASK st ate

1 n nunber of valuators this device reports
1 n nunber of first valuator in this event
24 LI STof I NT32 val uators

Devi ceMappi ngNot i fy
1 CARD8 code
1 CARD8 device id
2 CARD16 sequence number
1 request
0 Mappi nghbdi fi er
1 Mappi ngKeyboard

100



Input Extension Protocol Encoding

2 Mappi ngPoi nt er

1 KEYCODE first-keycode
1 CARD8 count

1 unused

4 TI MESTAMP tinme

20 unused

ChangeDevi ceNot i fy
1 CARD8 code
1 CARD8 id of device specified on change request
2 CARD16 sequence number
4 TI MESTAMP tine
1 r equest
0 NewPoi nt er
1 NewKeyboard
23 unused

101



	X Input Device Extension Library
	Table of Contents
	Chapter 1. Input Extension
	Overview
	Design Approach
	Core Input Devices
	Extension Input Devices
	Input Device Classes

	Using Extension Input Devices

	Library Extension Requests
	Window Manager Functions
	Changing the Core Devices
	Event Synchronization and Core Grabs
	Extension Active Grabs
	Passively Grabbing a Key
	Passively Grabbing a Button
	Thawing a Device
	Controlling Device Focus
	Controlling Device Feedback
	Ringing a Bell on an Input Device
	Controlling Device Encoding
	Controlling Button Mapping
	Obtaining the State of a Device

	Events
	Event Types
	Event Classes
	Event Structures
	Device Key Events
	Device Button Events
	Device Motion Events
	Device Focus Events
	Device StateNotify Event
	Device Mapping Event
	ChangeDeviceNotify Event
	Proximity Events


	Event Handling Functions
	Determining the Extension Version
	Listing Available Devices
	Enabling and Disabling Extension Devices
	Changing the Mode of a Device
	Initializing Valuators on an Input Device
	Getting Input Device Controls
	Changing Input Device Controls
	Selecting Extension Device Events
	Determining Selected Device Events
	Controlling Event Propagation
	Sending an Event
	Getting Motion History



	Appendix A. Input Extension Protocol Encoding

