SELinux Support for Userspace
Object Managers

Eamon Walsh
NSA

ewalsh@epoch.ncsc.mil
Initial: May 2004, Last revised: May 2004

Table of Contents

1. Introduction 1
2. Architecture 2
3. Tips 3
4. Example Usage 4

1. Introduction

The Security-Enhanced Linux project has long focused on implementing mandatory access control using
the Flask architecture in the Linux kernel. The sample security server in the kernel is aware of a wide
variety of object classes, including processes, files, and sockets. Policy can be written governing access
to these objects.

Modern Linux systems, however, have a number of security-relevant userspace daemons and utilities
which manage objects and provide services independently of the kernel. Examples include the X Window
System server, which manages the display, and the D-BUS daemon, a message-passing utility. Recent
research has focused on making these programs “SELinux aware” by having them label internal objects
with security contexts and enforce policy over them, querying the kernel to obtain policy decisions.

Starting with version 1.9, libselinux includes a userspace AVC which provides supporting functionality
for userspace object managers. This paper gives an overview of its architecture and includes sample code
showing proper usage of the library.

The full API for the userspace AVC is documented in the header file selinux/avc.h. Additionally,
man pages are included with libselinux starting with version 1.13. avc_init(3) is a good starting point
when using the man pages.

SELinux Support for Userspace Object Managers

2. Architecture

The SELinux pseudo-filesystem includes a file access which is used to obtain policy decisions from the
kernel. The libselinux routine security_compute_av encapsulates this functionality. However, this
routine has the overhead of a kernel trap on each call.

The userspace AVC is essentially a cache built on top of security_compute_av. It provides a cleaner
interface to the caller, including:

« Optional user-provided callbacks for auditing, memory allocation, and threading.

« A mapping of security contexts to opaque, reference-counted “security ID’s” (SIDs).
« Automatic monitoring of permissive vs. enforcing mode.

« Automatic cache flushing on policy changes.

» Tracking of cache statistics.

« Convenience functions for converting between string representations of security classes and access
permissions and their actual numeric policy values.

After initialization, a userspace program passes security contexts to avc_context_to_sid to obtain
SIDs. SIDs are reference-counted; in addition to avc_context_to_sid, which increments the
reference count, the functions sidget and sidput increment and decrement the count, respectively.
The function avc_sid_to_context returns a copy of the context corresponding to a given SID.

Policy decisions are determined using avc_has_perm, which takes subject and object SIDs, the object
class, and the requested access permissions. The return value of avc_has_perm is zero on grant,
nonzero (with errno set) otherwise. The function also takes a cache entry reference that speeds cache
lookups on repeated queries, and a pointer to supplementary audit data associated with the security class.
avc_has_perm makes a call to avc_audit; use avc_has_perm_noaudit if you wish to separate
these two actions.

avc_audit prints the familiar ave “denied” messages on a policy denial. The default is to print them on
standard error. However, userspace programs can provide a printf-style callback to handle the messages
themselves — via syslog, for example. Userspace programs can also provide a callback to interpret the
extra auditing data passed to avc_has_perm and avc_audit. This can make the audit messages easier
to track and interpret.

Starting with version 2.6.4, the Linux kernel supports netlink notification of policy and enforcing-mode
changes. The userspace AVC listens for these notifications and takes the appropriate action (e.g. cache
flush) automatically. In the default, single-threaded mode, the userspace AVC must check the netlink
socket during each call to avc_has_permx. Performance-critical programs can provide threading and
locking callbacks to the userspace AVC which will be used to start a dedicated thread to wait on the
socket. The example code below shows how to set up the threading callbacks using the pthread library.

SELinux Support for Userspace Object Managers

The userspace AVC provides three functions for obtaining statistics. The first two, avc_av_stats and
avc_sid_stats, produce audit messages that indicate the status of the hash tables storing access
vectors and SID’s, respectively. The messages contain the number of entries, number of hash buckets
used, and longest chain of entries in a single bucket. The third statistics function, avc_cache_stats,
populates an avc_cache_stats structure whose fields describe access vector cache activity (number of
lookups performed, hit rate, etc.)

3. Tips

« The context returned by avc_sid_to_context must be freed by the caller using freecon.

+ Remember that avc_context_to_sid increments SID reference counts. If you pass the same
context three times to this function, the SID for that context will have a count of 3. This behavior
supports obtaining SIDs to assign to newly created objects.

« libselinux has facilities for converting from security classes and access vectors into strings and vice
versa.

+ avc_has_perm_noaudit can be used to perform a permission check without auditing. The decision
returned by this function can be passed to avc_audit to produce the message. See the
implementation of avc_has_perm.

« When experimenting with new policy, note that avc_has_perm* will return -1 with errno set to
EINVAL on an invalid security context or security class (this is what security_compute_av
returns). No audit message is logged in this case.

« If a netlink socket error occurs in single-threaded mode, avc_has_permx will log a message and
return with errno set to whatever the socket routine returned. Note that this value might be EACCES
(the “normal” errno value for a policy denial).

« If a netlink socket error occurs in threaded mode, the netlink thread will log a message and then
terminate. At this point, avc_has_permx will return EINVAL until the userspace AVC is destroyed
and reinitialized.

+ The userspace AVC produces a log message whenever a netlink notification is processed. Note that in
non-threaded mode netlink messages are not processed until the next call to avc_has_permx.

+ In addition to SIDs, consider storing an avc_entry_ref structure in each managed object. These
structures are passed to avc_has_perm and can increase performance on repeated permission checks.
Remember to initialize the structures with the ave_entry_ref_init macro.

« avc_cleanup can be called periodically to free up memory in the userspace AVC.

SELinux Support for Userspace Object Managers

+ avc_reset will flush all cached access decisions and reset the userspace AVC’s internal statistics.
The SID table, however, is not affected. A call to this function is made internally when a netlink policy
change notification arrives.

4. Example Usage

The following example application illustrates the use of the userspace AVC. The program reads file
pathnames on standard input and checks for read, write, and delete access. The pthread library is used for
threading and locking. All output, including audit messages, is printed on standard output.

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

#include <pthread.h>

#include <selinux/flask.h>

#include <selinux/selinux.h>
#include <selinux/avc.h>

#include <selinux/av_permissions.h>

[* mmmmm auditing callbacks —————————- %/
void audit_print (const char *fmt, ...)
{
/+ we use stdout instead of the default stderr =/
va_list ap;
va_start (ap, fmt);
vprintf (fmt, ap);
va_end(ap) ;

void audit_interp(void xdata, security_class_t class,
char xbuf, size_t buflen)

/* data is a filename =*/
snprintf (buf, buflen, (charx)data);

[* —mmmm————— threading callbacks —————————- */
voidx create_thread_helper (void xarg)
{
/+ arg is the function we need to run =*/
void (*run) (void) = (void (%) (void))arg;

SELinux Support for Userspace Object Managers

/* set ourself to immediate cancel mode =/
pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

/% go do our work =%/
run();

/+ should never get here =/

return NULL;

vold* create_thread(void (xrun) (void))

{

int rc;
pthread_t *t = (pthread_t*)malloc(sizeof (pthread_t));
if ('t) |

puts ("create_thread: out of memory");

exit (99);

}

/+ have the new thread run the helper function above */
rc = pthread_create(t, NULL, create_thread_helper, (voidx)run);
if (rc) {
puts ("create_thread failed");
exit (2);
}

return t;

void stop_thread(void xthread)

{
int rc = pthread_cancel (x ((pthread_t«*)thread));

if (rc) |
puts ("trouble stopping thread");
exit (2);

}

free (thread);

[x —mmmmm—— locking callbacks —————————-— */
void* alloc_lock (void)

{

int rc;

pthread_mutexattr_t pma;

pthread_mutex_t »*m = (pthread_mutex_tx)malloc(sizeof (pthread_mutex_t));
if (!'m) |

puts("alloc_lock: out of memory");

SELinux Support for Userspace Object Managers

exit (99);

/+ set the lock to error checking mode for debugging purposes =/
rc = pthread_mutexattr_init (&pma);

rc |= pthread_mutexattr_settype (&pma, PTHREAD_MUTEX_ERRORCHECK_NP) ;
rc |= pthread_mutex_init (m, &pma);
rc |= pthread_mutexattr_destroy (&pma) ;

if (rc) {
puts ("trouble initializing lock");
exit (3);

}

return m;

void get_lock (void xlock)
{
int rc = pthread_mutex_lock ((pthread_mutex_t=x)lock);
if (rc) |
puts ("trouble obtaining lock");
exit (3);

void release_lock (void =*lock)
{
int rc = pthread_mutex_unlock ((pthread_mutex_tx*)lock);
if (rc) {
puts ("trouble releasing lock");
exit (3);

void free_lock (void =lock)
{
int rc = pthread_mutex_destroy ((pthread_mutex_tx)lock);
if (rc) {
puts ("trouble destroying lock");
exit (3);
}

free(lock);

[x —mm—m————— main routine —————————- */
int main (int argc, char *xargv) {
security_context_t scon, fcon;

SELinux Support for Userspace Object Managers

security_id_t ssid, fsid;
char buf[1024];

struct avc_entry_ref aeref;
struct avc_cache_stats acs;
int rc, short_of_memory = 0;

/* logging callbacks */

struct avc_log_callback alc = {
audit_print,
audit_interp

}i

/* thread callbacks «/

struct avc_thread_callback atc = {
create_thread,
stop_thread

}i

/+ locking callbacks */
struct avc_lock_callback akc = {
alloc_lock,
get_lock,
release_lock,
free_lock
}i

avc_entry_ref_init (&aeref);

/+ use standard malloc/free for the memory callbacks =*/
if (avc_init ("myprog", NULL, &alc, &atc, &akc) < 0) {
puts ("could not initialize avc");
exit (1) ;

/* get our process security context and a SID for it */
if (getcon(&scon) < 0) {
puts ("could not get self context");
exit (5);
}
if (avc_context_to_sid(scon, &ssid) < 0) {
puts ("could not get self sid");
exit (5);

/+ read filenames from stdin =/

SELinux Support for Userspace Object Managers

while (scanf("%s", buf) != EOF)

{

/+ force unused cache entries to be freed if necessary =/
if (short_of_memory)
avc_cleanup () ;

/* get security context and SID for file x/

if (getfilecon(buf, &fcon) < 0) {
printf ("couldn’t get file context for ’%s’\n", buf);
continue;

if (avc_context_to_sid(fcon, &fsid) < 0) {
printf ("could not get file sid for ’'%s’\n", buf);
exit (5);

/+ see if we can do some things to file x/

errno = 0;

rc = avc_has_perm(ssid, fsid, SECCLASS_FILE,
FILE_ READ | FILE_ WRITE | FILE_ UNLINK,
&aeref, buf);

if (rc == 0)

printf ("%$s: granted\n", buf);
else 1f (errno == EACCES)

printf ("%s: denied\n", buf);
else

printf ("$s: unexpected error: %$s\n", buf, strerror (errno));

/% print out statistics x/
avc_av_stats () ;
avc_sid_stats();

avc_cache_stats (&acs);
printf ("entry_lookups:\t%d\n", acs.entry_lookups);
printf ("entry_hits:\t%d\n", acs.entry_hits);

printf ("entry_misses:\t%d\n", acs.entry_misses);
printf ("entry_discards:\t%d\n", acs.entry_discards);

printf ("cav_hits:\t%d\n", acs.cav_hits);
printf ("cav_probes:\t%d\n", acs.cav_probes);

(
(
(
printf ("cav_lookups:\t%d\n", acs.cav_lookups);
(
(
(

printf ("cav_misses:\t%d\n", acs.cav_misses);

/+x free all AVC resources x/

avc_destroy () ;

SELinux Support for Userspace Object Managers

return 0;

SELinux Support for Userspace Object Managers

10

	Table of Contents
	1. Introduction
	2. Architecture
	3. Tips
	4. Example Usage

