
R Installation and Administration
Version 2.9.0 (2009-04-17)

R Development Core Team

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the R Development Core Team.
Copyright c© 2001–2009 R Development Core Team
ISBN 3-900051-09-7

i

Table of Contents

1 Obtaining R . 1
1.1 Getting and unpacking the sources . 1
1.2 Getting patched and development versions . 1

1.2.1 Using Subversion and rsync . 1

2 Installing R under Unix-alikes 3
2.1 Simple compilation . 3
2.2 Making the manuals . 4
2.3 Installation . 5
2.4 Uninstallation . 7
2.5 Sub-architectures . 7

2.5.1 Multilib . 8
2.6 Testing an Installation . 9

3 Installing R under Windows 10
3.1 Building from source . 10

3.1.1 Getting the tools . 10
3.1.2 Getting the source files . 10
3.1.3 Building the core files . 11
3.1.4 Building the bitmap files . 12
3.1.5 Checking the build . 12
3.1.6 Building the manuals . 12
3.1.7 Building the Inno Setup installer . 13
3.1.8 Building the MSI installer . 13
3.1.9 Cross-building on Linux . 14

3.2 Testing an Installation . 14

4 Installing R under Mac OS X. 15
4.1 Building from source on Mac OS X . 15

5 Running R . 16

6 Add-on packages . 17
6.1 Default packages . 17
6.2 Managing libraries . 17
6.3 Installing packages . 18

6.3.1 Windows . 19
6.3.2 Mac OS X . 19
6.3.3 Customizing package compilation . 19

6.4 Updating packages . 20
6.5 Removing packages . 20
6.6 Setting up a package repository . 20

ii

7 Internationalization and Localization 22
7.1 Locales . 22

7.1.1 Locales under Linux . 23
7.1.2 Locales under Windows . 23
7.1.3 Locales under Mac OS X . 23

7.2 Localization of messages . 23

8 Choosing between 32- and 64-bit builds 25
8.1 Windows . 26

9 The standalone Rmath library 27
9.1 Unix . 27
9.2 Windows . 28

Appendix A Essential and useful other programs
under Unix . 30

A.1 Essential programs . 30
A.2 Useful libraries and programs . 31

A.2.1 Tcl/Tk . 32
A.2.2 Java support . 32

A.3 Linear algebra . 33
A.3.1 BLAS . 33

A.3.1.1 ATLAS . 33
A.3.1.2 ACML . 34
A.3.1.3 Goto BLAS . 34
A.3.1.4 Intel MKL . 35
A.3.1.5 Shared BLAS . 35

A.3.2 LAPACK . 36
A.3.3 Caveats . 37

Appendix B Configuration on Unix 38
B.1 Configuration options . 38
B.2 Internationalization support . 39
B.3 Configuration variables . 39

B.3.1 Setting paper size . 40
B.3.2 Setting the browser . 40
B.3.3 Compilation flags. 40
B.3.4 Making manuals. 40

B.4 Setting the shell . 40
B.5 Using make. 41
B.6 Using FORTRAN . 41

B.6.1 Using gfortran . 42
B.7 Compile and load flags . 42

iii

Appendix C Platform notes. 44
C.1 X11 issues . 44
C.2 Linux . 45

C.2.1 Intel compilers . 46
C.2.2 PGI compilers . 47
C.2.3 SunStudio compilers . 47

C.3 Mac OS X . 48
C.3.1 64-bit builds . 48

C.4 Solaris . 49
C.4.1 Solaris 10 and Open Solaris . 49
C.4.2 Sparc Solaris 9 and earlier . 50

C.5 HP-UX . 52
C.6 IRIX . 53
C.7 Alpha/OSF1 . 54
C.8 Alpha/FreeBSD . 54
C.9 AIX . 54
C.10 Cygwin . 56
C.11 New platforms . 57

Appendix D Enabling search in HTML help . . 59
D.1 Java Virtual Machines on Linux . 59
D.2 Java Virtual Machines on Unix . 60
D.3 Java Virtual Machines on Windows . 60
D.4 Java Virtual Machines on Mac OS X . 60

Appendix E The Windows toolset 61
E.1 Perl . 62
E.2 The Microsoft HTML Help Workshop . 62
E.3 LATEX . 62
E.4 The Inno Setup installer . 63
E.5 The command line tools . 63
E.6 The MinGW compilers . 63

Function and variable index 65

Concept index . 66

Environment variable index. 67

Chapter 1: Obtaining R 1

1 Obtaining R

Sources, binaries and documentation for R can be obtained via CRAN, the “Comprehensive
R Archive Network” whose current members are listed at http://cran.r-project.org/
mirrors.html.

1.1 Getting and unpacking the sources

The simplest way is to download the most recent ‘R-x.y.z.tar.gz’ file, and unpack it with

tar xvfz R-x.y.z.tar.gz

on systems that have GNU tar installed. On other systems you need at least to have the
gzip program installed. Then you can use

gzip -dc R-x.y.z.tar.gz | tar xvf -

The pathname of the directory into which the sources are unpacked should not contain
spaces, as make (specifically GNU make 3.81) does not expect spaces.

If you want the build to be usable by a group of users, set umask before unpacking so
that the files will be readable by the target group (e.g., umask 022 to be usable by all users).
(Keep this setting of umask whilst building and installing.)

1.2 Getting patched and development versions

A patched version of the current release, ‘r-patched’ and the current development version,
‘r-devel’, are available as daily tarballs and via access to the R Subversion repository.
(For the two weeks prior to the release of a minor (2.x.0) version, ‘r-patched’ will refer to
beta/release candidates of the upcoming release, the patched version of the current release
being available only via Subversion.)

The tarballs are available from ftp://ftp.stat.math.ethz.ch/pub/Software/R/.
Download either ‘R-patched.tar.gz’ or ‘R-devel.tar.gz’ (or the ‘.tar.bz2’ versions)
and unpack as described in the previous section. They are built in exactly the same way
as distributions of R releases.

1.2.1 Using Subversion and rsync

Sources are also available via https://svn.R-project.org/R/, the R Subversion repos-
itory. If you have a Subversion client (see http://subversion.tigris.org/), you can
check out and update the current r-devel from https://svn.r-project.org/R/trunk/ and
the current r-patched from ‘https://svn.r-project.org/R/branches/R-x-y-branch/’
(where x and y are the major and minor number of the current released version of R).
E.g., use

svn checkout https://svn.r-project.org/R/trunk/ path

to check out ‘r-devel’ into directory path. The alpha, beta and RC versions of an upcoming
x.y.0 release are available from ‘https://svn.r-project.org/R/branches/R-x-y-branch/’
in the four-week period prior to the release.

Note that ‘https:’ is required, and that the SSL certificate for the Subversion server of
the R project is

http://cran.r-project.org/penalty z@ mirrors.html
http://cran.r-project.org/penalty z@ mirrors.html
ftp://ftp.stat.math.ethz.ch/penalty z@ pub/penalty z@ Software/R/
https://svn.R-project.org/R/
http://subversion.tigris.org/
https://svn.r-project.org/R/trunk/

Chapter 1: Obtaining R 2

Certificate information:
- Hostname: svn.r-project.org
- Valid: from Jul 16 08:10:01 2004 GMT until Jul 14 08:10:01 2014 GMT
- Issuer: Department of Mathematics, ETH Zurich, Zurich, Switzerland, CH
- Fingerprint: c9:5d:eb:f9:f2:56:d1:04:ba:44:61:f8:64:6b:d9:33:3f:93:6e:ad

(currently, there is no “trusted certificate”). You can accept this certificate permanently
and will not be asked about it anymore.

Note that retrieving the sources by e.g. wget -r or svn export from that URL will not
work: the Subversion information is needed to build R.

The Subversion repository does not contain the current sources for the recommended
packages, which can be obtained by rsync or downloaded from CRAN. To use rsync
to install the appropriate sources for the recommended packages, run ./tools/rsync-
recommended from the top-level of the R sources.

If downloading manually from CRAN, do ensure that you have the correct versions
of the recommended packages: if the number in the file ‘VERSION’ is ‘x.y.z ’ you need
to download the contents of ‘http://CRAN.R-project.org/src/contrib/dir ’, where dir
is ‘x.y.z/Recommended’ for r-devel or ‘x.y-patched/Recommended’ for r-patched, respec-
tively, to directory ‘src/library/Recommended’ in the sources you have unpacked. After
downloading manually you need to execute tools/link-recommended from the top level of
the sources to make the requisite links in ‘src/library/Recommended’. A suitable incan-
tation from the top level of the R sources using wget might be

wget -r -l1 --no-parent -A*.gz -nd -P src/library/Recommended \
http://CRAN.R-project.org/src/contrib/dir

./tools/link-recommended

Chapter 2: Installing R under Unix-alikes 3

2 Installing R under Unix-alikes

R will configure and build under a number of common Unix and Unix-alike platforms
including ‘cpu-*-linux-gnu’ for the ‘alpha’, ‘arm’, ‘hppa’, ‘ix86’, ‘ia64’, ‘m68k’, ‘mips’,
‘mipsel’, ‘powerpc’, ‘s390’, ‘sparc’, and ‘x86_64’ CPUs, ‘powerpc-apple-darwin’,
‘i386-apple-darwin’, ‘x86_64-apple-darwin’, ‘x86_64-sun-solaris’, and ‘powerpc-
ibm-aix6*’ as well as probably (it is tested less frequently on these platforms) ‘i386-
-freebsd’, ‘x86_64--freebsd’, ‘i386-*-netbsd’, ‘i386-*-openbsd’, ‘i386-sun-
solaris’, ‘sparc-sun-solaris’, ‘mips-sgi-irix’ and ‘alpha-dec-osf*’.

In addition, binary distributions are available for some common Linux distributions and
for Mac OS X. See the FAQ for current details. These are installed in platform-specific
ways, so for the rest of this chapter we consider only building from the sources.

2.1 Simple compilation

First review the essential and useful tools and libraries in Appendix A [Essential and useful
other programs under Unix], page 30, and install those you want or need. Ensure that the
environment variable TMPDIR is either unset (and ‘/tmp’ exists and can be written in and
executed from) or points to a valid temporary directory.

Choose a place to install the R tree (R is not just a binary, but has additional data sets,
help files, font metrics etc). Let us call this place R HOME. Untar the source code. This
should create directories ‘src’, ‘doc’, and several more. (At this point North American
readers should consult Section B.3.1 [Setting paper size], page 40.) Issue the following
commands:

./configure
make

(See Section B.5 [Using make], page 41 if your make is not called ‘make’.)
Then check the built system works correctly by

make check

Failures are not necessarily problems as they might be caused by missing functionality,1

but you should look carefully at any reported discrepancies. (Some non-fatal errors are
expected in locales that do not support Latin-1, in particular in true C locales and non-
UTF-8 non-European locales.) A failure in ‘tests/ok-errors.R’ may indicate inadequate
resource limits (see Chapter 5 [Running R], page 16).

More comprehensive testing can be done by
make check-devel

or
make check-all

see ‘tests/README’.
If the command configure and make commands execute successfully, the R binary will

be copied to ‘R_HOME/bin/exec/R’. In addition, a shell-script front-end called ‘R’ will be
created and copied to ‘R_HOME/bin’. You can copy this script to a place where users can

1 for example, if you configured R with ‘--without-iconv’ or ‘--without-recommended’.

Chapter 2: Installing R under Unix-alikes 4

invoke it, for example to ‘/usr/local/bin/R’. You could also copy the man page ‘R.1’
to a place where your man reader finds it, such as ‘/usr/local/man/man1’. If you want
to install the complete R tree to, e.g., ‘/usr/local/lib/R’, see Section 2.3 [Installation],
page 5. Note: you do not need to install R: you can run it from where it was built.

You do not necessarily have to build R in the top-level source directory (say,
‘TOP_SRCDIR ’). To build in ‘BUILDDIR ’, run

cd BUILDDIR

TOP_SRCDIR/configure
make

and so on, as described further below. This has the advantage of always keeping your
source tree “clean” and is particularly recommended when you work with a version of R
from Subversion. (You may need GNU make to allow this, and the pathname of the build
directory should not contain spaces.)

Make will also build plain text help pages as well as HTML and LATEX versions of the R
object documentation (the three kinds can also be generated separately using make help,
make html and make latex).

For those obtaining R via Subversion, one additional step is necessary:
make vignettes

which makes the grid vignettes (which are contained in the tarballs): it takes several min-
utes.

Now rehash if necessary, type R, and read the R manuals and the R FAQ (files ‘FAQ’ or
‘doc/manual/R-FAQ.html’, or http://CRAN.R-project.org/doc/FAQ/R-FAQ.html which
always has the latest version).

2.2 Making the manuals

There is a set of manuals that can be built from the sources,

‘refman’ Printed versions of the help pages for the most commonly used packages.

‘fullrefman’
Printed versions of all the help pages.

‘R-FAQ’ R FAQ

‘R-intro’ “An Introduction to R”.

‘R-data’ “R Data Import/Export”.

‘R-admin’ “R Installation and Administration”, this manual.

‘R-exts’ “Writing R Extensions”.

‘R-lang’ “The R Language Definition”.

To make these (except ‘fullrefman’), use
make dvi to create DVI versions
make pdf to create PDF versions
make info to create info files (not ‘refman’).

You will not be able to build any of these unless you have makeinfo version 4.7 or later
installed, and for DVI or PDF you must have texi2dvi and ‘texinfo.tex’ installed (which

http://CRAN.R-project.org/penalty z@ doc/penalty z@ FAQ/penalty z@ R-FAQ.html

Chapter 2: Installing R under Unix-alikes 5

are part of the GNU texinfo distribution but are, especially ‘texinfo.tex’, often made part
of the TEX package in re-distributions).

The DVI versions can be previewed and printed using standard programs such as xdvi
and dvips. The PDF versions can be viewed using any recent PDF viewer: they have
hyperlinks that can be followed. The info files are suitable for reading online with Emacs or
the standalone GNU Info. The DVI and PDF versions will be created using the papersize
selected at configuration (default ISO a4): this can be overridden by setting R_PAPERSIZE
on the make command line, or setting R_PAPERSIZE in the environment and using make
-e. (If re-making the manuals for a different papersize, you should first delete the file
‘doc/manual/version.texi’.)

There are some issues with making the reference manual, and in particular with the PDF
version ‘refman.pdf’. The help files contain both ISO Latin1 characters (e.g. in ‘text.Rd’)
and upright quotes, neither of which are contained in the standard LATEX Computer Modern
fonts. We have provided four alternatives:

times (The default for PDF.) Using standard PostScript fonts. This works well both
for on-screen viewing and for printing. The one disadvantage is that the Usage
and Examples sections may come out rather wide.

lm Using the Latin Modern fonts. These are not often installed as part of a TEX dis-
tribution, but can obtained from http://www.ctan.org/tex-archive/fonts/
ps-type1/lm/ and mirrors. This uses fonts rather similar to Computer Modern,
but is not so good on-screen as times.

cm-super Using type-1 versions of the Computer Modern fonts by Vladimir Volovich. This
is a large installation, obtainable from http://www.ctan.org/tex-archive/
fonts/ps-type1/cm-super/ and its mirrors. These type-1 fonts have poor
hinting and so are nowhere near so readable on-screen as the other three options.

ae (The default for DVI.) A package to use composites of Computer Modern fonts.
This works well most of the time, and its PDF is more readable on-screen than
the previous two options. There are three fonts for which it will need to use
bitmapped fonts, ‘tctt0900.600pk’, ‘tctt1000.600pk’ and ‘tcrm1000.600pk’.
Unfortunately, if those files are not available, Acrobat Reader will substitute
completely incorrect glyphs so you need to examine the logs carefully.

The default can be overridden by setting the environment variables R_RD4PDF and R_
RD4DVI. (On Unix, these will be picked up at install time.) The default value for R_RD4PDF
is ‘times,hyper’: omit ‘hyper’ if you do not want hyperlinks, e.g. for printing. The default
for R_RD4DVI is ‘ae’.

2.3 Installation

To ensure that the installed tree is usable by the right group of users, set umask appropriately
(perhaps to ‘022’) before unpacking the sources and throughout the build process.

After
./configure
make
make check

http://www.ctan.org/penalty z@ tex-archive/penalty z@ fonts/penalty z@ ps-type1/penalty z@ lm/
http://www.ctan.org/penalty z@ tex-archive/penalty z@ fonts/penalty z@ ps-type1/penalty z@ lm/
http://www.ctan.org/penalty z@ tex-archive/penalty z@ fonts/penalty z@ ps-type1/penalty z@ cm-super/
http://www.ctan.org/penalty z@ tex-archive/penalty z@ fonts/penalty z@ ps-type1/penalty z@ cm-super/

Chapter 2: Installing R under Unix-alikes 6

(or, when building outside the source, TOP_SRCDIR/configure, etc) have been completed
successfully, you can install the complete R tree to your system by typing

make install

This will install to the following directories:

‘prefix/bin’ or ‘bindir ’
the front-end shell script and other scripts and executables

‘prefix/man/man1’ or ‘mandir/man1’
the man page

‘prefix/LIBnn/R’ or ‘libdir/R’
all the rest (libraries, on-line help system, . . .). Here LIBnn is usually ‘lib’,
but may be ‘lib64’ on some 64-bit Linux systems. This is known as the R
home directory.

where prefix is determined during configuration (typically ‘/usr/local’) and can be set by
running configure with the option ‘--prefix’, as in

./configure --prefix=/where/you/want/R/to/go

This causes make install to install the R executable to ‘/where/you/want/R/to/go/bin’,
and so on. The prefix of the installation directories can be seen in the status message that
is displayed at the end of configure. You can install into another directory tree by using

make prefix=/path/to/here install

at least with GNU make (but not e.g. Solaris 8’s make).
More precise control is available at configure time via options: see configure --help

for details. (However, many of them are currently unused.)
Configure options ‘--bindir’ and ‘--mandir’ are supported and govern where a copy of

the R script and the man page are installed.
The configure option ‘--libdir’ controls where the main R files are installed: the default

is ‘eprefix/LIBnn ’, where eprefix is the prefix used for installing architecture-dependent
files, defaults to prefix, and can be set via the configure option ‘--exec-prefix’.

Each of bindir, mandir and libdir can also be specified on the make install command
line (at least for GNU make).

The configure or make variables rdocdir and rsharedir can be used to install
the system-independent ‘doc’ and ‘share’ directories to somewhere other than libdir.
The C header files can be installed to the value of rincludedir: note that as the
headers are not installed into a subdirectory you probably want something like
rincludedir=/usr/local/include/R-2.9.0.

If you want the R home to be something other than ‘libdir/R’, use ‘rhome’: for example
make install rhome=/usr/local/lib64/R-2.6.0

will use a version-specific R home on a Linux 64-bit system.
If you have made R as a shared/dynamic library you can install it in your system’s

library directory by
make prefix=/path/to/here install-libR

where prefix is optional, and libdir will give more precise control.

Chapter 2: Installing R under Unix-alikes 7

make install-strip

will install stripped executables, and on platforms where this is supported, stripped libraries
in directories ‘lib’ and ‘modules’ and in the standard packages.

To install DVI, info and PDF versions of the manuals, use one or more of
make install-dvi
make install-info
make install-pdf

Once again, it is optional to specify prefix, libdir or rhome (the DVI and PDF manuals
are installed under the R home directory).

More precise control is possible. For info, the setting used is that of infodir (default
‘prefix/info’, set by configure option ‘--infodir’). The DVI and PDF files are installed
into the R ‘doc’ tree, set by the make variable rdocdir.

A staged installation is possible, that it is installing R into a temporary directory in
order to move the installed tree to its final destination. In this case prefix (and so on)
should reflect the final destination, and DESTDIR should be used: see http://www.gnu.org/
prep/standards/html_node/DESTDIR.html.

You can optionally install the run-time tests that are part of make check-all by
make install-tests

which populates a ‘tests’ directory in the installation.

2.4 Uninstallation

You can uninstall R by
make uninstall

specifying prefix etc in the same way as specified for installation.
This will also uninstall any installed manuals. There are specific targets to uninstall

DVI, info and PDF manuals in ‘doc/manual/Makefile’.
Target uninstall-tests will uninstall any installed tests, as well as removing the di-

rectory ‘tests’ containing the test results.

2.5 Sub-architectures

Some platforms can support closely related builds of R which can share all but the exe-
cutables and dynamic objects. Examples include builds under Solaris for different chips (in
particular, 32- and 64-bit builds), 64- and 32- bit builds on ‘x86_64’ Linux and different
CPUs (‘ppc’, ‘ppc64’, ‘i386’ and ‘x86_64’) under Mac OS >= 10.4.

R supports the idea of architecture-specific builds, specified by adding ‘r_arch=name ’
to the configure line. Here name can be anything non-empty, and is used to name subdi-
rectories of ‘lib’, ‘etc’, ‘include’ and ‘libs’. Example names from other systems are the
use of ‘sparcv9’ on Sparc Solaris and ‘32’ by gcc on ‘x86_64’ Linux.

If you have two or more such builds you can install them over each other (and for 32/64-
bit builds on one architecture, one build can be done without ‘r_arch’). The space savings
can be considerable: on ‘x86_64’ Linux a basic install (without debugging symbols) took
63Mb, and adding a 32-bit build added 6Mb. If you have installed multiple builds you can
select which build to run by

http://www.gnu.org/penalty z@ prep/penalty z@ standards/penalty z@ html_node/penalty z@ DESTDIR.html
http://www.gnu.org/penalty z@ prep/penalty z@ standards/penalty z@ html_node/penalty z@ DESTDIR.html

Chapter 2: Installing R under Unix-alikes 8

R --arch=name

and just running ‘R’ will run the last build that was installed.

R CMD INSTALL will detect if more than one build is installed and try to install packages
with the appropriate library objects for each. This will not be done if the package has an
executable configure script or a ‘src/Makefile’ file. In such cases you can install for extra
builds by

R --arch=name CMD INSTALL --libs-only pkg(s)

If you want to mix sub-architectures compiled on different platforms (for example
‘x86_64’ Linux and ‘i686’ Linux), it is wise to use explicit names for each, and you may
also need to set ‘libdir’ to ensure that they install into the same place.

When sub-architectures are used the version of Rscript in e.g. ‘/usr/bin’ will
be the last installed, but architecture-specific versions will be available in e.g.
‘/usr/lib64/R/bin/execR_ARCH ’. Normally all installed architectures will run on the
platform so the architecture of Rscript does not matter.

When running post-install tests with sub-architectures, use

R --arch=name CMD make check[-devel|all]

to select a sub-architecture to check.

2.5.1 Multilib

On Linux, there is an alternative mechanism for mixing 32-bit and 64-bit libraries known as
multilib. If a Linux distribution supports multilib, then parallel builds of R may be installed
in the sub-directories ‘lib’ (32-bit) and ‘lib64’ (64-bit). The build to be run may then be
chosen using the setarch command. For example, a 32-bit build may be chosen by

setarch i686 R

The setarch command is only operational if both 32-bit and 64-bit builds are installed.
If there is only one installation of R, then this will always be run regardless of the architec-
ture specified by the setarch command.

There can be problems with installing packages on the non-native architecture. It is a
good idea to run e.g. setarch i686 R for sessions in which packages are to be installed,
even if that is the only version of R installed (since this tells the package installation code
the architecture needed).

At present there is a potential problem with packages using Java, as the post-install for
a ‘i386’ RPM on ‘x86_64’ Linux reconfigures Java and will find the ‘x86_64’ Java. If you
know where a 32-bit Java is installed you may be able to run (as root)

export JAVA_HOME=<path to jre directory of 32-bit Java>
setarch i686 R CMD javareconf

to get a suitable setting.

When this mechanism is used, the version of Rscript in e.g. ‘/usr/bin’ will be the last
installed, but an architecture-specific version will be available in e.g. ‘/usr/lib64/R/bin’.
Normally all installed architectures will run on the platform so the architecture of Rscript
does not matter.

Chapter 2: Installing R under Unix-alikes 9

2.6 Testing an Installation

Full testing is possible only if the test files have been installed with
make install-tests

which populates a ‘tests’ directory in the installation.
If this has been done, two testing routes are available. The first is to move to the home

directory of the R installation (as given by R.home()) and run
cd tests
followed by one of
../bin/R CMD make check
../bin/R CMD make check-devel
../bin/R CMD make check-all

and other useful targets are test-BasePackages and test-Recommended to the run tests
of the standard and recommmended packages (if installed) respectively.

This re-runs all the tests relevant to the installed R (including for example code in
the package vignettes), but not for example the ones checking the example code in the
manuals nor making the standalone Rmath library. This can occasionally be useful when
the operating environment has been changed, for example by OS updates or by substituting
the BLAS (see Section A.3.1.5 [Shared BLAS], page 35).

Alternatively, the installed R can be run, preferably with ‘--vanilla’. Then
library("tools")
testInstalledBasic("both")
testInstalledPackages("base")
testInstallPackages("recommended")

runs the basic tests and then all the tests on the standard and recommended packages.
These tests can be run from anywhere: they write their results in the ‘tests’ folder of the
R home directory. They run slightly fewer tests than the first approach: in particular they
do not test Internet access.

It is possible to test the installed packages (but not the package-specific tests) by
testInstallPackages even if make install-tests was not run.

Chapter 3: Installing R under Windows 10

3 Installing R under Windows

The ‘bin/windows’ directory of a CRAN site contains binaries for a base distribution and
a large number of add-on packages from CRAN to run on Windows 2000 or later on ix86
CPUs (including AMD64/EM64T chips and Windows x64).

Your file system must allow long file names (as is likely except perhaps for some network-
mounted systems).

Installation is via the installer ‘R-2.9.0-win32.exe’. Just double-click on the icon and
follow the instructions. You can uninstall R from the Control Panel. (Note that you will
probably (depending on the Windows language settings) be asked to choose a language
for installation, and that choice applies to both installation and un-installation but not to
running R itself.)

See the R Windows FAQ for more details on the binary installer.

3.1 Building from source

3.1.1 Getting the tools

If you want to build R from the sources, you will first need to collect, install and test
an extensive set of tools. See Appendix E [The Windows toolset], page 61 (and perhaps
updates in http://www.murdoch-sutherland.com/Rtools/) for details.

The ‘Rtools.exe’ executable installer described in Appendix E [The Windows toolset],
page 61 also includes some additions to the R source as noted below. You should run it
first, to obtain a working tar and other necessities. Choose a “Full installation”, and install
the extra files into your intended R source directory, e.g. ‘C:/R’. The directory name should
not contain spaces. We will call this directory R HOME below.

To avoid warnings you may need to set the environment variable CYGWIN to
‘nodosfilewarning’.

3.1.2 Getting the source files

You need to collect the following sets of files:

• Get the R source code ‘R-2.9.0.tar.gz’ from CRAN. Open a command window (or
another shell) at directory R HOME, and run

tar zxvf R-2.9.0.tar.gz

to create the source tree in R HOME. Beware: do use tar to extract the sources rather
than tools such as WinZip that do not understand about symbolic links.

It is also possible to obtain the source code using Subversion; see Chapter 1 [Obtaining
R], page 1 for details.

• If you are not using a tarball you need to obtain copies of the recommended pack-
ages from CRAN. Put the ‘.tar.gz’ files in ‘R_HOME/src/library/Recommended’ and
run make link-recommended. If you have an Internet connection, you can do this
automatically using

make rsync-recommended

http://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
http://www.murdoch-sutherland.com/penalty z@ Rtools/

Chapter 3: Installing R under Windows 11

• Optionally, you can install a version of ATLAS (http://math-atlas.sourceforge.net/)
tuned to your system for fast linear algebra routines. Pre-built ‘Rblas.dll’ for
various CPUs are available in the ‘windows/contrib/ATLAS’ area on CRAN. If you
are building R from source, there are macros USE_ATLAS and ATLAS_PATH in the file
‘MkRules’. Set USE_ATLAS = YES and ATLAS_PATH to where the ATLAS libraries are
located. You will need to make the libraries yourself1: none of the binaries we have
seen are compiled for the correct compiler. Since R has its own ‘xerbla’ it is necessary
to delete that in ATLAS by

ar d /path/to/libf77blas.a xerbla.o

There used to be support for AMD’s AMD Core Math Library (ACML) and Kazushige
Goto’s BLAS, but neither is currently available for use with the compilers used.

The following additional items are normally installed by ‘Rtools.exe’. If instead you
choose to do a completely manual build you will also need
• The Tcl/Tk support files are in a zip file at http://www.stats.ox.ac.uk/pub/

Rtools/: unzip this in R HOME, and it will add directory tree ‘R_HOME/Tcl’.
• You need libpng and jpeg sources (available, e.g., from http://www.libpng.org/,

ftp://ftp.uu.net/graphics/[png,jpeg], http://www.libtiff.org/). You will need
files ‘libpng-1.2.18.tar.gz’, ‘jpegsrc.v6b.tar.gz’, ‘tiff-3.8.0.tar.gz’ or later.
Working in the directory ‘R_HOME/src/gnuwin32/bitmap’, install the libpng and jpeg
sources in sub-directories. The libpng sub-directory must be named ‘libpng’ (as re-
quired by the libpng documentation). The jpeg sub-directory for version 6b is named
‘jpeg-6b’; if you use a different version, edit ‘Makefile’ and change the definition of
JPEGDIR.
Example:

> tar xzvf libpng-1.2.20.tar.gz
> mv libpng-1.2.20 libpng
> tar xzvf jpegsrc.v6b.tar.gz
> tar xzvf tiff-3.8.2.tar.gz
> mv tiff-3.8.2/libtiff .
> rm -rf libtiff-3.8.2

3.1.3 Building the core files

You may need to compile under a case-honouring file system: we found that a samba-
mounted file system (which maps all file names to lower case) did not work.

Open a command window at ‘R_HOME/src/gnuwin32’. Edit ‘MkRules’ to set the ap-
propriate paths as needed and to set the type(s) of help that you want built. Beware:
‘MkRules’ contains tabs and some editors (e.g., WinEdt) silently remove them. Then run

make all recommended

and sit back and wait while the basic compile takes place.
Notes:
• The file ‘bin/Rchtml.dll’ is only built if CHM help is specified in ‘MkRules’. Its source

is in the help directory, and you need the HTML Help Workshop files to build it. You
can just copy this from a binary distribution.

1 We do this using the Cygwin compilers, often with some difficulty.

http://math-atlas.sourceforge.net/
http://www.stats.ox.ac.uk/penalty z@ pub/penalty z@ Rtools/
http://www.stats.ox.ac.uk/penalty z@ pub/penalty z@ Rtools/
http://www.libpng.org/
ftp://ftp.uu.net/graphics/
http://www.libtiff.org/

Chapter 3: Installing R under Windows 12

• We have had reports that earlier versions of anti-virus software locking up the machine,
but not for several years. However, aggressive anti-virus checking such as the on-access
scanning of Sophos can slow the build down several-fold.

• By default Doug Lea’s malloc in the file ‘R_HOME/src/gnuwin32/malloc.c’ is used
for R’s internal memory allocations. You can opt out of this by commenting the line
LEA_MALLOC=YES in ‘MkRules’, in which case the malloc in ‘msvcrt.dll’ is used. This
does work but imposes a considerable performance penalty.

• You can run a parallel make by e.g.
make -j4 all
make recommended

but this is only likely to be worthwhile on a multi-core machine with ample memory.
Note that this may sometimes stop and have to be restarted.

3.1.4 Building the bitmap files

The file ‘R_HOME/bin/Rbitmap.dll’ is not built automatically.
Running make in ‘R_HOME/src/gnuwin32/bitmap’ or make bitmapdll in ‘R_HOME/

src/gnuwin32’ should build ‘Rbitmap.dll’ and install it in ‘R_HOME/bin’.

3.1.5 Checking the build

You can test a build by running make check. You may need to set TMPDIR to the absolute
path to a suitable temporary directory: the default is ‘c:/TEMP’. (Use forward slashes and
do not use a path including spaces. It will be ignored if not set to a directory.)

The recommended packages can be checked by
make check-recommended

Other levels of checking are
make check-devel

for a more thorough check of the R functionality, and
make check-all

for check-devel and check-recommended.

3.1.6 Building the manuals

The PDF manuals can be made by
make manuals

If you want to make the info versions (not the Reference Manual), use
cd ../../doc/manual
make -f Makefile.win info

To make DVI versions of the manuals use
cd ../../doc/manual
make -f Makefile.win dvi

(all assuming you have tex and latex installed and in your path).
See the Section 2.2 [Making the manuals], page 4 section in the Unix section for setting

options such as the paper size.

Chapter 3: Installing R under Windows 13

3.1.7 Building the Inno Setup installer

You need to have the files for a complete R build, including bitmap and Tcl/Tk support
and the manuals, as well as the recommended packages and Inno Setup (see Section E.4
[The Inno Setup installer], page 63).

Once everything is set up

make distribution
make check-all

will make all the pieces and the installers and put them in the ‘gnuwin32/cran’ subdirectory,
then check the build. This works by building all the parts in the sequence:

Rpwd.exe (a utility needed in the build)
rbuild (the executables, the FAQ docs etc.)
rpackage (the base packages)
htmldocs (the HTML documentation)
bitmapdll (the bitmap support files)
recommended (the recommended packages)
vignettes (the vignettes in package grid:

only needed if building from svn checkout)
manuals (the PDF manuals)
rinstaller (the install program)
crandir (the CRAN distribution directory)

The parts can be made individually if a full build is not needed, but earlier parts must
be built before later ones. (The ‘Makefile’ doesn’t enforce this dependency—some build
targets force a lot of computation even if all files are up to date.) The first four targets are
the default build if just ‘make’ is run.

If you want to customize the installation by adding extra packages, replace make
rinstaller by something like

make rinstaller EXTRA_PKGS=’pkg1 pkg2 pkg3’

An alternative way to customize the installer starting with a binary distribution is to first
make a full installation of R from the standard installer (that is, select ‘Full Installation’
from the ‘Select Components’ screen), then add packages and make other customizations
to that installation. Then in ‘src/gnuwin32/installer’ run

make myR IMAGEDIR=rootdir

where ‘rootdir’ is the path to the root of the customized installation (forward slashes and no
spaces, please). This creates an executable with the standard name, ‘R-2.9.0-win32.exe’,
so please rename it to indicate that it is customized.

The defaults for the startup parameters may also be customized. For example

make myR IMAGEDIR=rootdir MDISDI=1

will create an installer that defaults to installing R to run in SDI mode. See ‘src/
gnuwin32/installer/Makefile’ for the names and values that can be set.

3.1.8 Building the MSI installer

It is also possible to build an installer for use with Microsoft Installer. This is intended for
use by sysadmins doing automated installs, and is not recommended for casual use.

Chapter 3: Installing R under Windows 14

It makes use of the Windows Installer XML (WiX) toolkit (wersion 2.0) available from
http://wix.sourceforge.net/. (This needs the .NET 1.1 framework installed: it ran
on a vanilla Windows XP SP2 machine. Unfortunately the file format has been changed
within the same version: currently our code works with releases 2.0.4221.0 and 2.0.5805.0
– the latter is now said to be ‘production/stable’ so hopefully there will be no more format
changes.) Once WiX is installed, set the path to its home directory in ‘MkRules’.

You need to have the files for a complete R build, including bitmap and Tcl/Tk support
and the manuals, as well as the recommended packages. Then

cd installer
make msi

which will results in a file of about 40Mb with a name like ‘R-2.6.0-win32.msi’. This can
be double-clicked to be installed, but those who need it will know what to do with it.

Thanks to David del Campo (Dept of Statistics, University of Oxford) for suggesting
WiX and building a prototype installer.

3.1.9 Cross-building on Linux

Support for cross-building has been withdrawn as from R 2.9.0.

3.2 Testing an Installation

The Windows installer contains a set of test files used when building R. These are an
optional part of the installation, and if it is desired to run tests on the installation these
should be selected as well as the help source files (perhaps most easily by doing a ‘Full
Installation’).

The Rtools are not needed to run these tests. but more comprehensive analysis of errors
will be given if diff is in the path.

Once this has been done, launch either Rgui or Rterm, preferably with ‘--vanilla’.
Then

library("tools")
testInstalledBasic("both")
testInstalledPackages("base")
testInstallPackages("recommended")

runs the basic tests and then all the tests on the standard and recommended packages.
These tests can be run from anywhere: they write their results in the ‘tests’ folder of the
R home directory (as given by R.home()).

http://wix.sourceforge.net/

Chapter 4: Installing R under Mac OS X 15

4 Installing R under Mac OS X

The ‘bin/macosx’ directory of a CRAN site contains binaries for Mac OS X for a base
distribution and a large number of add-on packages from CRAN to run on Mac OS X
version 10.4.4 or higher.

The simplest way is to use ‘R-2.9.0.dmg’. Just double-click on the icon and the disk
image file will be mounted. Read the ‘ReadMe.txt’ inside the disk image and follow the
instructions.

See the R for Mac OS X FAQ for more details.

4.1 Building from source on Mac OS X

If you want to build this port from the sources, you can read the above mentioned R for
Mac OS X FAQ for full details. You will need to collect and install some tools as explained
in the document. Then you have to expand the R sources and configure R appropriately,
for example

tar zxvf R-2.9.0.tar.gz
cd R-2.9.0
./configure --with-blas=’-framework vecLib’ --with-lapack --with-ICU \
--with-aqua --enable-R-framework

make

and then sit back and wait. The first two options are the default (and strongly recom-
mended), and with some toolsets have been essential. Selecting ‘--with-ICU’ replaces
Apple’s wcscoll with one1 that works correctly in UTF-8 locales, and is the default as
from R 2.9.0.

The second line of options is also default on Mac OS X, but needed only if you want
to build R for use with R.app Console, and imply ‘--enable-R-shlib’ to build R as a
shared/dynamic library. These options configure R to be built and installed as a framework
called ‘R.framework’. The default path for ‘R.framework’ is ‘/Library/Frameworks’ but
this can be changed at configure time by specifying the flag ‘--enable-R-framework[=DIR]’
or at install time as

make prefix=/where/you/want/R.framework/to/go install

(the ‘R.framework’ directory should not be included in the path).
For compatibility with the CRAN distribution you may need to specify

‘--with-included-gettext’ to avoid linking against a ‘libintl’ dynamic library you
may have available, for example in ‘/usr/local/lib’.

Note that building the ‘R.app’ GUI console is a separate project: see the FAQ for details.

1 It makes use of an Apple-supplied modified ICU library, and is known to work with Mac OS >= 10.4.

http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html
http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html
http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html

Chapter 5: Running R 16

5 Running R

How to start R and what command-line options are available is discussed in section “In-
voking R” in An Introduction to R.

You should ensure that the shell has set adequate resource limits: R expects a stack size
of at least 8MB and to be able to open at least 256 file descriptors. (Any modern OS will
have default limits at least as large as these, but apparently NetBSD does not.)

R makes use of a number of environment variables, the default values of many of which
are set in file ‘R_HOME/etc/Renviron’ (there are none set by default on Windows and
hence no such file). These are set at configure time, and you would not normally want to
change them – a possible exception is R_PAPERSIZE (see Section B.3.1 [Setting paper size],
page 40). The paper size will be deduced from the ‘LC_PAPER’ locale category if it exists
and R_PAPERSIZE is unset, and this will normally produce the right choice from ‘a4’ and
‘letter’ on modern Unix-alikes (but can always be overridden by setting R_PAPERSIZE).

Various environment variables can be set to determine where R creates its per-session
temporary directory. The environment variables TMPDIR, TMP and TEMP are searched in turn
and the first one which is set and points to a writable area is used. If none do, the final
default is ‘/tmp’ on Unix-alikes and the value of R_USER on Windows.

Some Unix-alike systems are set up to remove files and directories periodically from
‘/tmp’, for example by a cron job running tmpwatch. Set TMPDIR to another directory
before running long-running jobs on such a system.

Note that TMPDIR will be used to execute configure scripts when installing packages,
so if /tmp has been mounted as ‘noexec’, TMPDIR needs to be set to a directory from which
execution is allowed.

Chapter 6: Add-on packages 17

6 Add-on packages

It is helpful to use the correct terminology. A package is loaded from a library by the
function library(). Thus a library is a directory containing installed packages; the main
library is ‘R_HOME/library’, but others can be used, for example by setting the environment
variable R_LIBS or using the R function .libPaths().

6.1 Default packages

The set of packages loaded on startup is by default

> getOption("defaultPackages")
[1] "datasets" "utils" "grDevices" "graphics" "stats" "methods"

(plus, of course, base) and this can be changed by setting the option in startup code (e.g.
in ‘~/.Rprofile’). It is initially set to the value of the environment variable R_DEFAULT_
PACKAGES if set (as a comma-separated list). Setting R_DEFAULT_PACKAGES=NULL ensures
that only package base is loaded.

Changing the set of default packages is normally used to reduce the set for speed when
scripting: in particular not using methods will reduce the start-up time by a factor of two
or more (and this is done by Rscript). But it can also be used to customize R, e.g. for
class use.

6.2 Managing libraries

R packages are installed into libraries, which are directories in the file system containing a
subdirectory for each package installed there.

R comes with a single library, ‘R_HOME/library’ which is the value of the R object
‘.Library’ containing the standard and recommended1 packages. Both sites and users
can create others and make use of them (or not) in an R session. At the lowest level
‘.libPaths()’ can be used to add paths to the collection of libraries or to report the
current collection.

R will automatically make use of a site-specific library ‘R_HOME/site-library’ if this
exists (it does not in a vanilla R installation). This location can be overridden by setting2

‘.Library.site’ in ‘R_HOME/etc/Rprofile.site’, or (not recommended) by setting the
environment variable R_LIBS_SITE. Like ‘.Library’, the site libraries are always included
by ‘.libPaths()’.

Users can have one or more libraries, normally specified by the environment variable
R_LIBS_USER. This has a default value (use ‘Sys.getenv("R_LIBS_USER")’ within an R
session to see what it is), but only is used if the corresponding directory actually exists
(which by default it will not).

Both R_LIBS_USER and R_LIBS_SITE can specify multiple library paths, separated by
colons (semicolons on Windows).

1 unless they were excluded in the build.
2 its binding is looked once that files has been read, so users cannot easily change it.

Chapter 6: Add-on packages 18

6.3 Installing packages

Packages may be distributed in source form or compiled binary form. Installing source
packages requires that compilers and tools (including Perl 5.8.0 or later) be installed. Binary
packages are platform-specific and generally need no special tools to install, but see the
documentation for your platform for details.

Note that you need to specify implicitly or explicitly the library to which the package is
to be installed. This is only an issue if you have more than one library, of course.

If installing packages to be used by other users, ensure that the system umask is set to
give sufficient permissions (see also Sys.umask in R).

For most users it suffices to call ‘install.packages(pkgname)’ or its GUI equivalent
if the intention is to install a CRAN package and internet access is available.3 On most
systems ‘install.packages()’ will allow packages to be selected from a list box.

To install packages from source in Unix use

R CMD INSTALL -l /path/to/library pkg1 pkg2 ...

The part ‘-l /path/to/library’ can be omitted, in which case the first library in R_LIBS
is used if set, otherwise the main library ‘R_HOME/library’ is used. (R_LIBS is looked for in
the environment: note that ‘.Renviron’ is not read by R CMD.) Ensure that the environment
variable TMPDIR is either unset (and ‘/tmp’ exists and can be written in and executed from)
or points to a valid temporary directory.

There are a number of options available: use R CMD INSTALL --help to see the current
list.

Alternatively, packages can be downloaded and installed from within R. First set the
option CRAN to your nearest CRAN mirror using chooseCRANmirror(). Then download and
install packages pkg1 and pkg2 by

> install.packages(c("pkg1", "pkg2"))

The essential dependencies of the specified packages will also be fetched. Unless the library
is specified (argument lib) the first library in the library search path is used: if this is not
writable, R will ask the user (in an interactive session) if the default user library should be
created, and if allowed to will install the packages there.

If you want to fetch a package and all those it depends on that are not already installed,
use e.g.

> install.packages("Rcmdr", dependencies = TRUE)

install.packages can install a source package from a local ‘.tar.gz’ file by setting
argument repos to NULL: this will be selected automatically if the name given is a single
‘.tar.gz’ file.

install.packages can look in several repositories, specified as a character vector by
the argument repos: these can include a CRAN mirror, Bioconductor, Omegahat, local
archives, local files, . . .). Function setRepositories() can select amongst those the R
installation is aware of.

3 If a proxy needs to be set, see ?download.file.

Chapter 6: Add-on packages 19

6.3.1 Windows

What install.packages does by default is different on Unix-alikes (except Mac OS X)
and Windows. On Unix-alikes it consults the list of available source packages on CRAN
(or other repository/ies), downloads the latest version of the package sources, and installs
them (via R CMD INSTALL). On Windows it looks (by default) at the list of binary versions of
packages available for your version of R and downloads the latest versions (if any), although
optionally it will also download and install a source package by setting the type argument.

On Windows install.packages can also install a binary package from a local ‘zip’ file
by setting argument repos to NULL. Rgui.exe has a menu Packages with a GUI interface
to install.packages, update.packages and library.

R CMD INSTALL works in Windows to install source packages if you have the source-code
package files (option “Source Package Installation Files” in the installer) and toolset (see
Appendix E [The Windows toolset], page 61) installed. Installation of binary packages must
be done by install.packages. R CMD INSTALL --help will tell you the current options
under Windows (which differ from those on a Unix-alike): in particular there is a choice of
the types of documentation to be installed.

If you have only a source package that is known to work with current R and just
want a binary Windows build of it, you could make use of the building service offered
at http://win-builder.r-project.org/.

6.3.2 Mac OS X

On Mac OS X install.packages works as it does on other Unix-like systems, but there is
an additional type mac.binary (the default in the CRAN distribution) that can be passed
to install.packages in order to download and install binary packages from a suitable
repository, and is the default for CRAN builds of R. These Macintosh binary package files
have the extension ‘tgz’. The R GUI provides for installation of either binary or source
packages, from CRAN or local files.

6.3.3 Customizing package compilation

The R system and package-specific compilation flags can be overridden or added to by set-
ting the appropriate Make variables in the personal file ‘HOME/.R/Makevars-R_PLATFORM ’
(but ‘HOME/.R/Makevars.win’ on Windows), or if that does not exist, ‘HOME/.R/Makevars’,
where ‘R_PLATFORM’ is the platform for which R was built, as available in the platform com-
ponent of the R variable R.version.

Package developers are encouraged to use this mechanism to enable a reasonable amount
of diagnostic messaging (“warnings”) when compiling, such as e.g. ‘-Wall -pedantic’ for
tools from GCC, the Gnu Compiler Collection.

Note that this mechanism can also be used when it necessary to change the optimization
level for a particular package. For example

for C code
CFLAGS=-g -O
for C++ code
CXXFLAGS=-g -O
for Fortran code
FFLAGS=-g -O

http://win-builder.r-project.org/

Chapter 6: Add-on packages 20

for Fortran 95 code
FCFLAGS=-g -O

6.4 Updating packages

The command update.packages() is the simplest way to ensure that all the packages on
your system are up to date. Set the repos argument as in the previous section. The
update.packages() downloads the list of available packages and their current versions,
compares it with those installed and offers to fetch and install any that have later versions
on the repositories.

An alternative interface to keeping packages up-to-date is provided by the command
packageStatus(), which returns an object with information on all installed packages and
packages available at multiple repositories. The print and summary methods give an over-
view of installed and available packages, the upgrade method offers to fetch and install the
latest versions of outdated packages.

6.5 Removing packages

Packages can be removed in a number of ways. From a command prompt they can be
removed by

R CMD REMOVE -l /path/to/library pkg1 pkg2 ...

From a running R process they can be removed by
> remove.packages(c("pkg1", "pkg2"),

lib = file.path("path", "to", "library"))

Finally, in most installations one can just remove the package directory from the library
(but for a package from a bundle, be sure to remove the whole bundle).

6.6 Setting up a package repository

Utilities such as install.packages can be pointed at any CRAN-style repository, and
R users may want to set up their own. The ‘base’ of a repository is a URL such as
http://www.omegahat.org/R/: this must be an URL scheme that download.packages
supports (which also includes ‘ftp://’ and ‘file://’). Under that base URL there should
be directory trees for one or more of the following types of package distributions:
• "source": located at ‘src/contrib’ and containing ‘.tar.gz’ files.
• "win.binary": located at ‘bin/windows/contrib/x.y ’ for R versions x.y.z and con-

taining ‘.zip’ files.
• "mac.binary": located at ‘bin/macosx/universal/contrib/x.y ’ for R versions x.y.z

and containing ‘.tgz’ files. If the repository contains only packages for a specific
architecture, the package distribution type can be set to "mac.binary.xxx" where xxx
specifies the architecture, replacing universal by xxx in the path above.

Each terminal directory must also contain a ‘PACKAGES’ file. This can be a concatenation
of the ‘DESCRIPTION’ files of the packages separated by blank lines (provided there are no
bundles), but only a few of the fields are needed. The simplest way to set up such a file is
to use function write_PACKAGES in the tools package, and its help explains which fields are
needed. Optionally there can also be a ‘PACKAGES.gz’ file, a gzip-compressed version of

http://www.omegahat.org/R/

Chapter 6: Add-on packages 21

‘PACKAGES’—as this will be downloaded in preference to ‘PACKAGES’ it should be included
for large repositories.

To add your repository to the list offered by setRepositories(), see the help file for
that function.

A repository can contain subdirectories, when the descriptions in the ‘PACKAGES’ file of
packages in subdirectories must include a line of the form

Path: path/to/subdirectory

Chapter 7: Internationalization and Localization 22

7 Internationalization and Localization

Internationalization refers to the process of enabling support for many human languages,
and localization to adapting to a specific country and language.

Historically R worked in the ISO Latin-1 8-bit character set and so covered English and
most Western European languages (if not necessarily their currency symbols). Since R 2.1.0
it has supported (where possible) multi-byte character sets such as UTF-8 and others used
in Chinese, Japanese and Korean.

Full internationalization of the character sets is enabled unless R is built under Unix-
alikes using configure option ‘--disable-mbcs’ provided the OS can support it: see Ap-
pendix B [Configuration on Unix], page 38. Under Windows, support for Windows’ own
MBCS is always included.

All builds of R support all single-byte character sets that the underlying OS can handle.
These are interpreted according to the current locale, a sufficiently complicated topic to
merit a separate section. Fully internationalized builds can also handle most multi-byte
locales, in which a single character is represented by one, two or more consecutive bytes:
examples of such locales are those using UTF-8 (becoming standard under Linux but non-
existent under Windows) and those for Chinese, Japanese and Korean.

The other aspect of the internationalization is support of the translation of messages.
This is enabled in almost all builds of R.

7.1 Locales

A locale is a description of the local environment of the user, including the preferred lan-
guage, the encoding of characters, the currency used and its conventions, and so on. Aspects
of the locale are accessed by the R functions Sys.getlocale and Sys.localeconv.

The system of naming locales is OS-specific. There is quite wide agreement on schemes,
but not on the details of their implementation. A locale needs to specify

• A human language. These are generally specified by a lower-case two-character abbre-
viation following ISO 639 (see e.g. http://en.wikipedia.org/wiki/ISO_639-1).

• A ‘territory’, used mainly to specify the currency. These are generally specified
by an upper-case two-character abbreviation following ISO 3166 (see e.g. http://
en.wikipedia.org/wiki/ISO_3166). Sometimes the combination of language
and territory is used to specify the encoding, for example to distinguish between
traditional and simplified Chinese.

• A charset encoding, which determines both how a byte stream should be divided into
characters, and which characters the subsequences of bytes represent.

• Optionally, a modifier, for example to indicate that Austria is to be considered pre- or
post-Euro.

R is principally concerned with the first (for translations) and third. Note that the
charset may be deducible from the language, as some OSes offer only one charset per
language, and most OSes have only one charset each for many languages. Note too the
remark above about Chinese.

http://en.wikipedia.org/wiki/ISO_639-1
http://penalty z@ en.wikipedia.org/wiki/ISO_3166
http://penalty z@ en.wikipedia.org/wiki/ISO_3166

Chapter 7: Internationalization and Localization 23

7.1.1 Locales under Linux

Modern Linux uses the XPG locale specifications which have the form ‘en_GB’,
‘en_GB.utf8’, ‘aa_ER.utf8@saaho’, ‘de_AT.iso885915@euro’, the components being in
the order listed above. (See man locale and locale -a for more details.) Similar schemes
(but often in different cases) are used by most Unix-alikes: some use ‘.UTF-8’ rather than
‘.utf8’.

7.1.2 Locales under Windows

Windows also uses locales, but specified in a rather less concise way. Most users will
encounter locales only via drop-down menus, but more information and lists can be
found at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt_language_and_country_strings.asp.

It offers only one encoding per language.

7.1.3 Locales under Mac OS X

Mac OS X supports locales in its own particular way, but the R GUI tries to make this eas-
ier for users. See http://developer.apple.com/documentation/MacOSX/Conceptual/
BPInternational/ for how users can set their locales. As with Windows, end users will
generally only see lists of languages/territories. Users of R in a terminal may need to set
the locale to something like ‘en_GB.UTF-8’ if it defaults to ‘C’.

Internally Mac OS X uses a form similar to Linux but without specifying the encoding
(which is UTF-8). It is based on ICU locales (http://icu.sourceforge.net/userguide/locale.html)
and not POSIX ones.

7.2 Localization of messages

The preferred language for messages is by default taken from the locale. This can be
overridden first by the setting of the environment variable LANGUAGE and then1 by the
environment variables LC_ALL, LC_MESSAGES and LANG. (The last three are normally used
to set the locale and so should not be needed, but the first is only used to select the
language for messages.) The code tries hard to map locales to languages, but on some
systems (notably Windows) the locale names needed for the environment variable LC_ALL
do not all correspond to XPG language names and so LANGUAGE may need to be set. (One
example is ‘LC_ALL=es’ on Windows which sets the locale to Estonian and the language to
Spanish.)

It is usually possible to change the language once R is running via (not Windows)
Sys.setlocale("LC_MESSAGES", "new_locale"), or by setting an environment variable
such as LANGUAGE, provided2 the language you are changing to can be output in the current
character set.

Messages are divided into domains, and translations may be available for some or all
messages in a domain. R makes use of the following domains.
• Domain R for basic C-level error messages.

1 On some systems setting LC_ALL or LC_MESSAGES to ‘C’ disables LANGUAGE.
2 If you try changing from French to Russian except in a UTF-8 locale, you will find messages change to

English.

http://msdn.microsoft.com/penalty z@ library/penalty z@ default.asp?penalty z@ url=penalty z@ /library/penalty z@ en-us/penalty z@ vccore98/penalty z@ html/penalty z@ _crt_language_and_country_strings.asp
http://msdn.microsoft.com/penalty z@ library/penalty z@ default.asp?penalty z@ url=penalty z@ /library/penalty z@ en-us/penalty z@ vccore98/penalty z@ html/penalty z@ _crt_language_and_country_strings.asp
http://developer.apple.com/penalty z@ documentation/penalty z@ MacOSX/penalty z@ Conceptual/penalty z@ BPInternational/
http://developer.apple.com/penalty z@ documentation/penalty z@ MacOSX/penalty z@ Conceptual/penalty z@ BPInternational/
http://icu.sourceforge.net/userguide/locale.html

Chapter 7: Internationalization and Localization 24

• Domain R-pkg for the R stop, warning and message messages in each package, in-
cluding R-base for the base package.

• Domain pkg for the C-level messages in each package.
• Domain RGui for the menus etc of the R for Windows GUI front-end.

Dividing up the messages in this way allows R to be extensible: as packages are loaded,
their message translation catalogues can be loaded too.

Translations are looked for by domain according to the currently specified language,
as specifically as possible, so for example an Austrian (‘de_AT’) translation catalogue will
be used in preference to a generic German one (‘de’) for an Austrian user. However, if
a specific translation catalogue exists but does not contain a translation, the less specific
catalogues are consulted. For example, R has catalogues for ‘en_GB’ that translate the
Americanisms (e.g., ‘gray’) in the standard messages into English. Two other examples:
there are catalogues for ‘es’, which is Spanish as written in Spain and these will by default
also be used in Spanish-speaking Latin American countries, and also for ‘pt_BR’, which are
used for Brazilian locales but not for locales specifying Portugal.

Translations in the right language but the wrong charset be made use of by on-the-fly
re-encoding (on almost all systems). The LANGUAGE variable (only) can be a colon-separated
list, for example ‘se:de’, giving a set of languages in decreasing order of preference. One
special value is ‘en@quot’, which can be used in a UTF-8 locale to have English/American
error messages with pairs of quotes translated to Unicode directional quotes.

If no suitable translation catalogue is found or a particular message is not translated in
any suitable catalogue, ‘English’3 is used.

See http://developer.r-project.org/Translations.html for how to prepare and
install translation catalogues.

3 with Americanisms.

http://developer.r-project.org/penalty z@ Translations.html

Chapter 8: Choosing between 32- and 64-bit builds 25

8 Choosing between 32- and 64-bit builds

Many current CPUs have both 32- and 64-bit sets of instructions: this has long been true for
UltraSparc and more recently for MIPS, PPC and ‘x86_64’ (AMD Opteron and Athlon64,
Intel Xeon and Pentium/’Core’ supporting EM64T). Many OSes running on such CPUs
offer the choice of building a 32-bit or a 64-bit version of R (and details are given below
under specific OSes). For most a 32-bit version is the default, but for some (e.g., ‘x86_64’
Linux) 64-bit is.

All current versions of R use 32-bit integers and IEC 605591 double-precision reals, and
so compute to the same precision2 and with the same limits on the sizes of numerical
quantities. The principal difference is in the size of the pointers.

64-bit builds have both advantages and disadvantages:
• The total virtual memory space made available to a 32-bit process3 is limited to 4GB,

and on most OSes to 3GB (or even 2GB). The limits for 64-bit processes are much
larger.
R allocates memory for large objects as needed, and removes any unused ones at garbage
collection. When the sizes of objects become an appreciable fraction of the address
limit, fragmentation of the address space becomes an issue and there may be no hole
available that is the size requested. This can cause more frequent garbage collection
or the inability to allocate large objects. As a guide, this will become an issue with
objects more than 10% of the size of the address space (around 300Mb) or when the
total size of objects in use is around one third (around 1Gb).

• 32-bit OSes by default limit file sizes to 2GB. This can often be worked around: and
configure selects suitable defines if this is possible. (We have also largely worked
around that limit on Windows.) 64-bit builds have much larger limits.

• Because the pointers are larger, R’s basic structure (the cons cell) is larger (normally
twice the size). This means that R objects take more space and (usually) more time
to manipulate. So 64-bit versions of R will typically run slower than 32-bit versions.
(On Sparc Solaris the difference was 15-20%, on Linux on Opteron around 10%. The
pattern is not universal, as on Intel Core 2 Duo the vanilla 64-bit version is around
10% faster on both Linux and Mac OS X — this can be reduced by tuning the compile
to that chip.)

So, for speed you may want to use a 32-bit build, but to handle large datasets (and
perhaps large files) a 64-bit build. You can build both and install them in the same place:
See Section 2.5 [Sub-architectures], page 7.

Even on 64-bit builds of R there are limits on the size of R objects (see help("Memory-
limits"), some of which stem from the use of 32-bit integers (especially in FORTRAN
code). On all versions of R, the maximum length (number of elements) of a vector is
231 − 1, about 2 billion, and on 64-bit systems the size of a block of memory allocated is
limited to 234 − 1 bytes (8GB). It is anticipated these will be raised eventually but routine
use of 8GB objects is (when this was written in 2005) several years off.

1 also known as IEC 559 and IEEE 754
2 at least when storing quantities: the on-FPU precision is allowed to vary
3 until recently this limit applied to all processes, not just to one process

Chapter 8: Choosing between 32- and 64-bit builds 26

8.1 Windows

Currently the Windows build of R from CRAN is a 32-bit executable. This runs happily on
Windows 64 on AMD64 and EM64T, but is limited to an address space of 2 to 4GB (see
the ‘R for Windows FAQ’ for details). It will not be possible fro the R project to provide
a native version for Windows 64 until suitable non-commercial compilers are available, and
currently (early 2009) the experimental version of MinGW for 64-bit Windows is not yet
good enough to build a working R. Commercial 64-bit compilers have been used, and R
can be be built with such compilers with minimal changes to the sources (and constructing
suitable project files).

Chapter 9: The standalone Rmath library 27

9 The standalone Rmath library

The routines supporting the distribution and special1 functions in R and a few others are
declared in C header file ‘Rmath.h’. These can be compiled into a standalone library for
linking to other applications. (Note that they are not a separate library when R is built,
and the standalone version differs in several ways.)

The makefiles and other sources needed are in directory ‘src/nmath/standalone’, so the
following instructions assume that is the current working directory (in the build directory
tree on Unix if that is separate from the sources).

‘Rmath.h’ contains ‘R_VERSION_STRING’, which is a character string containing the cur-
rent R version, for example "2.6.0".

There is full access to R’s handling of NaNs, Inf and -Inf via special versions of the
macros and functions

ISNAN, R_FINITE, R_log, R_pow and R_pow_di

and (extern) constants R_PosInf, R_NegInf and NA_REAL.

There is no support for R’s notion of missing values, in particular not for NA_INTEGER
nor the distinction between NA and NaN for doubles.

A little care is needed to use the random-number routines. You will need to supply the
uniform random number generator

double unif_rand(void)

or use the one supplied (and with a shared library or DLL you will have to use the one
supplied, which is the Marsaglia-multicarry with an entry point

set_seed(unsigned int, unsigned int)

to set its seeds).

The facilties to change the normal random number generator are available through the
constant N01 kind. This takes values from the enumeration type

typedef enum {
BUGGY_KINDERMAN_RAMAGE,
AHRENS_DIETER,
BOX_MULLER,
USER_NORM,
INVERSION,
KINDERMAN_RAMAGE

} N01type;

(and ‘USER_NORM’ is not available).

9.1 Unix

If R has not already be made in the directory tree, configure must tbe run as described
in the main build instructions.

Then

1 e.g. Bessel, beta and gamma function

Chapter 9: The standalone Rmath library 28

make

will make standalone libraries ‘libRmath.a’ and ‘libRmath.so’. ‘make static’ and make
shared will create just one of them.

NB: certain compilers are unable to do compile-time IEEE-754 arithmetic and so cannot
compile ‘mlutils.c’ and several other files. The known example is old versions of Sun’s cc
(e.g. Forte 6 and 7).

To use the routines in your own C or C++ programs, include
#define MATHLIB_STANDALONE
#include <Rmath.h>

and link against ‘-lRmath’ (and ‘-lm’ if needed on your OS). The example file ‘test.c’
does nothing useful, but is provided to test the process (via make test. Note that you will
probably not be able to run it unless you add the directory containing ‘libRmath.so’ to
the LD_LIBRARY_PATH environment variable.

The targets
make install
make uninstall

will (un)install the header ‘Rmath.h’ and shared and static libraries (if built). Both prefix=
and DESTDIR are supported, together with more precise control as described for the main
build.

‘make install’ installs a file for pkg-config to use by e.g.
$(CC) ‘pkg-config --cflags libRmath‘ -c test.c
$(CC) ‘pkg-config --libs libRmath‘ test.o -o test

On some systems ‘make install-strip’ will install a stripped shared library.

9.2 Windows

You need to set up almost all the tools to make R and then run (in a Unix-like shell)
(cd ../../include; make -f Makefile.win config.h Rconfig.h Rmath.h)
make -f Makefile.win

For ‘cmd.exe’ use
cd ../../include
make -f Makefile.win config.h Rconfig.h Rmath.h
cd ../nmath/standalone
make -f Makefile.win

This creates a static library ‘libRmath.a’ and a DLL ‘Rmath.dll’. If you want an import
library ‘libRmath.dll.a’ (you don’t need one), use

make -f Makefile.win shared implib

To use the routines in your own C or C++ programs using MinGW, include
#define MATHLIB_STANDALONE
#include <Rmath.h>

and link against ‘-lRmath’. This will use the first found of ‘libRmath.dll.a’, ‘libRmath.a’
and ‘Rmath.dll’ in that order, so the result depends on which files are present. You should
be able to force static or dynamic linking via

Chapter 9: The standalone Rmath library 29

-Wl,-Bstatic -lRmath -Wl,dynamic
-Wl,-Bdynamic -lRmath

or by linking to explicit files (as in the ‘test’ target in ‘Makefile.win’: this makes two
executables, ‘test.exe’ which is dynamically linked, and test-static, which is statically
linked).

It is possible to link to ‘Rmath.dll’ using other compilers, either directly or via an import
library: if you make a MinGW import library as above, you will create a file ‘Rmath.def’
which can be used (possibly after editing) to create an import library for other systems
such as Visual C++.

If you make use of dynamic linking you should use
#define MATHLIB_STANDALONE
#define RMATH_DLL
#include <Rmath.h>

to ensure that the constants like NA_REAL are linked correctly. (Auto-import will probably
work with MinGW, but it is better to be sure. This is likely to also work with VC++,
Borland and similar compilers.)

Appendix A: Essential and useful other programs under Unix 30

Appendix A Essential and useful other programs
under Unix

This appendix gives details of programs you will need to build R on Unix-like platforms, or
which will be used by R if found by configure.

Remember that some package management systems (such as RPM and deb) make a
distinction between the user version of a package and the development version. The latter
usually has the same name but with the extension ‘-devel’ or ‘-dev’: you need both versions
installed.

A.1 Essential programs

You need a means of compiling C and FORTRAN 77 (see Section B.6 [Using FORTRAN],
page 41). Some add-on packages also need a C++ compiler. Your C compiler should be
IEC 600591, POSIX 1003.1 and C99-compliant if at all possible. R tries to choose suitable
flags for the C compilers it knows about, but you may have to set CC or CFLAGS suitably.
For recent versions of gcc with glibc this means including ‘-std=gnu99’2. If the compiler
is detected as gcc, ‘-std=gnu99’ will be appended to CC unless it conflicts with a setting of
CFLAGS.

Unless you do not want to view graphs on-screen you need ‘X11’ installed, including its
headers and client libraries. For recent Fedora distributions it means (at least) ‘libX11’,
‘libX11-devel’, ‘libXt’ and ‘libXt-devel’. On Debian we recommend the meta-package
‘xorg-dev’. If you really do not want these you will need to explicitly configure R without
X11, using ‘--with-x=no’.

The command-line editing depends on the readline library available from any GNU
mirror: version 4.2 or later is needed for all the features to be enabled. Otherwise you will
need to configure with ‘--with-readline=no’ (or equivalent).

The use of multi-byte characters, conversion between encodings (including for trans-
lated messages) and the R iconv function depend on having the system iconv function:
this is part of recent versions of glibc and many Unixes. You can also install GNU
libiconv (which is not the same as that in glibc), possibly as a plug-in replacement:
see http://www.gnu.org/software/libiconv/. Note that the R usage requires iconv to
be able to translate between "latin1" and "UTF-8", to recognize "" as the current encoding
and to translate to and from the Unicode wide-character formats "UCS-[24][BL]E" — this
is not true of most commercial Unixes. This is regarded as essential from R 2.5.0: if you do
not have it will need to configure with ‘--without-iconv’ (or equivalent), and make check
(and other checks) are likely to fail.

Perl version 5.8.0 or later, available via http://www.perl.com/CPAN/, is essential.
You will not be able to build most of the manuals unless you have makeinfo version 4.7

or later installed, and if not some of the HTML manuals will be linked to CRAN. (Version
4.6 is known to create incorrect HTML files.) To make DVI or PDF versions of the manuals
you will also need ‘texinfo.tex’ installed (which is part of the GNU ‘texinfo’ distribution
but is often made part of the TEX package in re-distributions) as well as texi2dvi (part of
the GNU texinfo distribution).

1 also known as IEEE 754
2 ‘-std=c99’ excludes POSIX functionality, but ‘config.h’ will turn on all GNU extensions to include the

POSIX functionality.

http://www.gnu.org/penalty z@ software/penalty z@ libiconv/
http://www.perl.com/CPAN/

Appendix A: Essential and useful other programs under Unix 31

The DVI and PDF documentation and building vignettes needs tex and latex, or
pdftex and pdflatex.

If you want to build from the R Subversion repository you need both makeinfo and
pdflatex.

A.2 Useful libraries and programs

The ability to use translated messages makes use of gettext and most likely needs GNU
gettext: you do need this to work with new translations, but otherwise the version con-
tained in the R sources will be used if no suitable external gettext is found.

The ‘modern’ version of X11, jpeg(), png() and tiff() uses the cairo and (optionally)
Pango libraries. Cairo version 1.0 or later is required3, and some features require 1.2 or later
(and may not work before 1.4). Pango needs to be at least version 1.10, and 1.12 is the
earliest version we have tested. (For Fedora users we believe the pango-devel RPM and
its dependencies suffice.) R checks for pkg-config, and uses that to check first that the
‘pangocairo’ package is installed (and if not, ‘cairo’) and if additional flags are needed for
the ‘cairo-xlib’ package, then if suitable code can be compiled. These tests will fail if pkg-
config is not installed, and are likely to fail if cairo was built statically (unusual). Most
systems with Gtk+ 2.8 or later installed will have suitable libraries, but some (e.g. Solaris
10) may need cairo added separately. Mac OS X comes with none of these libraries, but
cairo support has been added to the binary distribution.

For the best font experience with these devices you need suitable fonts installed: Linux
users will want the urw-fonts package. Another useful set of fonts is the ‘liberation’ true-
type fonts available at https://www.redhat.com/promo/fonts/, which cover the Latin,
Greek and Cyrillic alphabets plus a fair range of signs. These share metrics with Arial,
Times New Roman and Courier New, and contain fonts rather similar to the first two
(http://en.wikipedia.org/wiki/Liberation_fonts).

The bitmapped graphics devices jpeg(), png() and tiff() need the appropriate headers
and libraries installed: jpeg (version 6b or later) or libpng (version 1.2.3 or later) and zlib
(version 1.1.3 or later) or libtiff (any recent version – 3.8.2 was tested) respectively.

The bitmap and dev2bitmap devices and also embedFonts() use ghostscript
(http://www.cs.wisc.edu/~ghost).

If you have them installed (including the appropriate headers and of recent enough
versions), zlib, libbz2 and PCRE will be used if specified by ‘--with-system-zlib’,
‘--with-system-bzlib’ or ‘--with-system-pcre’: otherwise versions in the R sources will
be compiled in. As the latter suffice and are tested with R you should not need to change
this. In particular, the version of zlib 1.2.3 in the R sources has enhancements to work
with large file systems on 32-bit platforms.

Use of the X11 clipboard selection requires the Xmu headers and libraries. These are
normally part of an X11 installation (e.g. the Debian meta-package ‘xorg-dev’), but some
distributions have split this into smaller parts, so for example recent versions of Fedora
require the ‘libXmu’ and ‘libXmu-devel’ RPMs.

Some systems (notably Mac OS X and at least some FreeBSD systems) have
inadequate support for collation in multibyte locales. It is possible to replace the

3 We recommend that people with cairo 1.0.x, install 1.4.x or later from the sources, which works well

https://www.redhat.com/penalty z@ promo/penalty z@ fonts/
http://en.wikipedia.org/penalty z@ wiki/penalty z@ Liberation_fonts
http://www.cs.wisc.edu/penalty z@ ~ghost

Appendix A: Essential and useful other programs under Unix 32

OS’s collation support by that from ICU (International Components for Unicode,
http://www.icu-project.org/), and this provides much more precise control over
collation on all systems. ICU is available as sources and as binary distributions for (at
least) most Linux distributions, Solaris 9/10, AIX and Windows, usually as libicu or
icu4c. It will be used by default where available (including on Mac OS X >= 10.4).

A.2.1 Tcl/Tk

The tcltk package needs Tcl/Tk >= 8.3 installed: the sources are available at http://
www.tcl.tk/. To specify the locations of the Tcl/Tk files you may need the configuration
options

‘--with-tcltk’
use Tcl/Tk, or specify its library directory

‘--with-tcl-config=TCL_CONFIG ’
specify location of ‘tclConfig.sh’

‘--with-tk-config=TK_CONFIG ’
specify location of ‘tkConfig.sh’

or use the configure variables TCLTK_LIBS and TCLTK_CPPFLAGS to specify the flags needed
for linking against the Tcl and Tk libraries and for finding the ‘tcl.h’ and ‘tk.h’ headers,
respectively. If you have both 32- and 64-bit versions of Tcl/Tk installed, setting the paths
to the correct config files may be necessary to avoid confusion between them.

Versions of Tcl/Tk from 8.3.x to 8.5.6 have been used successfully.

A.2.2 Java support

configure looks for Java support on the host system, and if it finds it sets some settings
which are useful for Java-using packages. JAVA_HOME can be set during the configure run
to point to a specific JRE/JDK.

Principal amongst these are some library paths to the Java libraries and JVM, which are
stored in environment variable R_JAVA_LD_LIBRARY_PATH in file ‘R_HOME/etc/ldpaths’ (or
a sub-architecture-specific version). A typical setting for Sun Java is

/usr/java/jdk1.5.0_06/jre/lib/amd64/server:/usr/java/jdk1.5.0_06/jre/lib/amd64

Note that this unfortunately depends on the exact version of the JRE/JDK installed,
and so will need updating if the Java installation is updated. This can be done by running
R CMD javareconf. The script re-runs Java detection in a manner similar to that of the
configure script and updates settings in both ‘Makeconf’ and ‘R_HOME/etc/ldpaths’. See
R CMD javareconf --help for details.

Another alternative of overriding those setting is to set R_JAVA_LD_LIBRARY_PATH (e.g.
in ‘~/.Renviron’), or use ‘/etc/ld.so.conf’ to specify the Java runtime library paths to
the system. Other settings are recorded in ‘etc/Makeconf’ (or a sub-architecture-specific
version), e.g.

JAVA = /usr/bin/java

JAVAC = /usr/bin/javac

JAVA_HOME = /usr/java/jdk1.5.0_06/jre

JAVA_LD_LIBRARY_PATH = $(JAVA_HOME)/lib/amd64/server:$(JAVA_HOME)/lib/amd64:\

$(JAVA_HOME)/../lib/amd64:/usr/local/lib64

JAVA_LIBS = -L$(JAVA_HOME)/lib/amd64/server -L$(JAVA_HOME)/lib/amd64

http://www.icu-project.org/
http://penalty z@ www.tcl.tk/
http://penalty z@ www.tcl.tk/

Appendix A: Essential and useful other programs under Unix 33

-L$(JAVA_HOME)/../lib/amd64 -L/usr/local/lib64 -ljvm

where ‘JAVA_LIBS’ contains flags necessary to link JNI programs. Some of the above vari-
ables can be queried using R CMD config.

A.3 Linear algebra

A.3.1 BLAS

The linear algebra routines in R can make use of enhanced BLAS (Basic Linear Algebra
Subprograms, http://www.netlib.org/blas/faq.html) routines. However, these have to
be explicitly requested at configure time: R provides an internal BLAS which is well-tested
and will be adequate for most uses of R.

You can specify a particular BLAS library via a value for the configuration option
‘--with-blas’ and not to use an external BLAS library by ‘--without-blas’ (the default).
If ‘--with-blas’ is given with no, its value is taken from the environment variable BLAS_
LIBS, set for example in ‘config.site’. If neither the option nor the environment variable
supply a value, a search is made for a suitable BLAS. If the value is not obviously a linker
command (starting with a dash or giving the path to a library), it is prefixed by ‘-l’, so

--with-blas="foo"

is an instruction to link against ‘-lfoo’ to find an external BLAS (which needs to be found
both at link time and run time).

The configure code checks that the external BLAS is complete (it must include all dou-
ble precision and double complex routines4, as well as LSAME), and appears to be usable.
However, an external BLAS has to be usable from a shared object (so must contain position-
independent code), and that is not checked.

Some enhanced BLASes are compiler-system-specific (libsunperf on Sun Sparc5,
libessl on IBM, vecLib on Mac OS X). The correct incantation for these is usually
found via ‘--with-blas’ with no value on the appropriate platforms.

Some of the external BLASes are multi-threaded. One issue is that R profiling (which
uses the SIGPROF signal) may cause problems, and you may want to disable profiling if you
use a multi-threaded BLAS. Note that using a multi-threaded BLAS can result in taking
more CPU time and even more elapsed time (occasionally dramatically so) than using a
similar single-threaded BLAS.

Note that under Unix (but not under Windows) if R is compiled against a non-default
BLAS and ‘--enable-BLAS-shlib’ is not used, then all BLAS-using packages must also
be. So if R is re-built to use an enhanced BLAS then packages such as quantreg will need
to be re-installed.

A.3.1.1 ATLAS

ATLAS (http://math-atlas.sourceforge.net/) is a “tuned” BLAS that runs on a wide
range of Unix-alike platforms. Unfortunately it is usually built as a static library that on
some platforms cannot be used with shared libraries such as are used in R packages. Be

4 unless FORTRAN double complex is not supported on the platform
5 Using the Sun Ceres cc and f95 compilers

http://www.netlib.org/penalty z@ blas/penalty z@ faq.html
http://math-atlas.sourceforge.net/

Appendix A: Essential and useful other programs under Unix 34

careful when using pre-built versions of ATLAS (they seem to work on ‘ix86’ platforms,
but not on ‘x86_64’ ones).

The usual way to specify ATLAS will be via
--with-blas="-lf77blas -latlas"

if the libraries are in the library path, otherwise by
--with-blas="-L/path/to/ATLAS/libs -lf77blas -latlas"

For systems with multiple processors it is possible to use a multi-threaded version of ATLAS,
by specifying

--with-blas="-lptf77blas -lpthread -latlas"

Consult its file ‘INSTALL.txt’ for how to build ATLAS with position-independent code
(at least on version 3.8.0): this also describes how to build ATLAS as a shared library.

ATLAS can also be used on Windows: see see Section 3.1.2 [Getting the source files],
page 10 when building from source, and R Windows FAQ for adding pre-compiled support
to binary versions.

A.3.1.2 ACML

For ‘x86_64’ processors under Linux and Solaris 10 there is the AMD Core Math Library
(ACML) http://www.amd.com/acml. For the gcc version we could use

--with-blas="-lacml"

if the appropriate library directory (such as ‘/opt/acml4.2.0/gfortran64/lib’) is in the
LD_LIBRRARY_PATH. For other compilers, see the ACML documentation. There is a multi-
threaded Linux version of ACML available for gfortran which needs gcc >= 4.2.0 (or some
RedHat versions of 4.1.x). To make use of this you will need something like

--with-blas="-L/opt/acml4.2.0/gfortran64_mp/lib -lacml_mp"

See see Section A.3.1.5 [Shared BLAS], page 35 for an alternative (and in many ways
preferable) way to use ACML.

A.3.1.3 Goto BLAS

Dr Kazushige Goto has written another tuned BLAS which is available for several processors
and OSes.

This has been made available in several formats, but is currently available only
as source code. For academic use only (after registering) it can be obtained via
http://www.tacc.utexas.edu/resources/software/software.php. Once this is built
and installed, it can be used by configuring with

--with-blas="-lgoto"

See see Section A.3.1.5 [Shared BLAS], page 35 for an alternative (and in many ways
preferable) way to use recent versions of the Goto BLAS.

Note that currently a multi-threaded Goto BLAS will be built by default if and only if
the building is on a multi-processor system (counting multiple cores and hyperthreading),
and at run time the default number of threads is the number of CPUs detected.

It has been reported that on some RedHat-based Linux systems it is necessary to set
GOTO_NUM_THREADS=1 or OMP_NUM_THREADS=1 (to disable multiple threads) in the environ-
ment when using a multi-threaded Goto BLAS, but ours run happily with multiple threads.

http://CRAN.R-project.org/bin/windows/rw-FAQ.html
http://www.amd.com/penalty z@ acml
http://www.tacc.utexas.edu/penalty z@ resources/penalty z@ software/penalty z@ software.php

Appendix A: Essential and useful other programs under Unix 35

A.3.1.4 Intel MKL

For Intel processors under Linux, there is Intel’s Math Kernel Library
(http://www.intel.com/software/products/mkl/). You are strongly encour-
aged to read the MKL User’s Guide, which is installed with the library, before attempting
to link to MKL.

Version 10 of MKL supports two linking models: the default model, which is backward
compatible with version 9 (see below), and the pure layered model. The layered model
gives the user fine-grained control over four different library layers: interface, threading,
computation, and run-time library support. Some examples of linking to MKL using this
layered model are given below. These examples are for GCC compilers on ‘x86_64’. The
choice of interface layer is important on ‘x86_64’ since the Intel Fortran compiler returns
complex values differently from the GNU fortran compiler. You must therefore use the
interface layer that matches your compiler (mkl_intel* or mkl_gf*).

R can be linked to a sequential version of MKL by

MKL_LIB_PATH=/opt/intel/mkl/10.0.3.020/lib/em64t/
export LD_LIBRARY_PATH=$MKL_LIB_PATH
MKL="-L${MKL_LIB_PATH} -lmkl_gf_lp64 -lmkl_sequential -lmkl_lapack -lmkl_core"
./configure --with-blas="$MKL" --with-lapack

The order of the libraries is important. The option ‘--with-lapack’ is used since MKL
contains a copy of LAPACK as well as BLAS (see Section A.3.2 [LAPACK], page 36).

Threaded MKL may be used by replacing the line defining the variable MKL with

MKL="-L${MKL_LIB_PATH} -lmkl_gf_lp64 -lmkl_gnu_thread \
-lmkl_lapack -lmkl_core -liomp5 -lpthread"

The default number of threads will be chosen by the OpenMP* software, but can be con-
trolled by setting OMP_NUM_THREADS or MKL_NUM_THREADS.

Static MKL may be used with

MKL=" -L${MKL_LIB_PATH} \
-Wl,--start-group \

${MKL_LIB_PATH}/libmkl_gf_lp64.a \
${MKL_LIB_PATH}/libmkl_gnu_thread.a \
${MKL_LIB_PATH}/libmkl_core.a \

-Wl,--end-group \
-lgomp -lpthread"

(Thanks to Ei-Ji Nakama).

The default linking model, which is also used by version 9 of MKL, can be used by

--with-blas="-lmkl -lguide -lpthread"

This is multi-threaded, but in version 9 the number of threads defaults to 1. It can be
increased by setting OMP_NUM_THREADS. (Thanks to Andy Liaw for the information.)

A.3.1.5 Shared BLAS

Note that the BLAS library will be used for many of the add-on packages as well as for
R itself. This means that it is better to use a shared/dynamic BLAS library, as most of a
static library will be compiled into the R executable and each BLAS-using package.

http://www.intel.com/penalty z@ software/penalty z@ products/penalty z@ mkl/

Appendix A: Essential and useful other programs under Unix 36

R offers the option of compiling the BLAS into a dynamic library libRblas stored in
‘R_HOME/lib’ and linking both R itself and all the add-on packages against that library.

This is the default on all platforms except AIX unless an external BLAS is specified and
found: for the latter it can be used by specifying the option ‘--enable-BLAS-shlib’, and
it can always be disabled via ‘--disable-BLAS-shlib’.

This has both advantages and disadvantages.

• It saves space by having only a single copy of the BLAS routines, which is helpful if
there is an external static BLAS such as is standard for ATLAS.

• There may be performance disadvantages in using a shared BLAS. Probably the most
likely is when R’s internal BLAS is used and R is not built as a shared library, when
it is possible to build the BLAS into ‘R.bin’ (and ‘libR.a’) without using position-
independent code. However, experiments showed that in many cases using a shared
BLAS was as fast, provided high levels (e.g., ‘-O3’) of compiler optimization are used.

• It is easy to change the BLAS without making to re-install R and all the add-on
packages, since all references to the BLAS go through libRblas, and that can be
replaced. Note though that any dynamic libraries the replacement links to will need to
be found by the linker: this may need the library path to be changed in ‘etc/ldpaths’.

Another option to change the BLAS in use is to symlink a dynamic BLAS library (such
as ACML or Goto’s) to ‘R_HOME/lib/libRblas.so’. For example, just

mv R_HOME/lib/libRblas.so R_HOME/lib/libRblas.so.keep
ln -s /opt/acml4.0.1/gfortran64_mp/lib/libacml_mp.so R_HOME/lib/libRblas.so

will change the BLAS in use to multithreaded ACML. A similar link works for recent
versions of the Goto BLAS and for MKL (provided the appropriate ‘lib’ directory is in the
run-time library path or ld.so cache).

A.3.2 LAPACK

Provision is made for using an external LAPACK library, principally to cope with BLAS
libraries which contain a copy of LAPACK (such as libsunperf on Solaris, vecLib on Mac
OS X and ACML on ‘ix86’/‘x86_64’ Linux and Solaris). However, the likely performance
gains are thought to be small (and may be negative), and the default is not to search
for a suitable LAPACK library, and this is definitely not recommended. You can specify
a specific LAPACK library or a search for a generic library by the configuration option
‘--with-lapack’. The default for ‘--with-lapack’ is to check the BLAS library and then
look for an external library ‘-llapack’. Sites searching for the fastest possible linear algebra
may want to build a LAPACK library using the ATLAS-optimized subset of LAPACK. To
do so specify something like

--with-lapack="-L/path/to/libs -llapack -lcblas"

since the ATLAS subset of LAPACK depends on libcblas. A value for ‘--with-lapack’
can be set via the environment variable LAPACK_LIBS, but this will only be used if
‘--with-lapack’ is specified (as the default value is no) and the BLAS library does not
contain LAPACK.

Since ACML contains a full LAPACK, if selected as the BLAS it can be used as the
LAPACK via ‘--with-lapack’.

Appendix A: Essential and useful other programs under Unix 37

If you do use ‘--with-lapack’, be aware of potential problems with bugs in the LAPACK
3.0 sources (or in the posted corrections to those sources). In particular, bugs in DGEEV and
DGESDD have resulted in error messages such as

DGEBRD gave error code -10

(seen with the Debian ‘-llapack’ which was current in late 2002, Fedora Core 4 Extras
‘-llapack’ in September 2005 and 64-bit libsunperf in Forte 7). Other potential problems
are incomplete versions of the libraries: for example libsunperf from Sun Forte 6.x was
missing the entry point for DLANGE and vecLib has omitted the BLAS routine LSAME. For
problems compiling LAPACK using recent versions of gcc on ‘ix86’ Linux, see Section C.11
[New platforms], page 57.

Please do bear in mind that using ‘--with-lapack’ is ‘definitely not recommended’: it
is provided only because it is necessary on some platforms.

A.3.3 Caveats

As with all libraries, you need to ensure that they and R were compiled with compatible
compilers and flags. For example, this has meant that on Sun Sparc using the native
compilers the flag ‘-dalign’ is needed so libsunperf can be used.

On some systems it is necessary that an external BLAS/LAPACK was built with the
same FORTRAN compiler used to build R: known problems are with R built with gfortran,
see Section B.6.1 [Using gfortran], page 42.

Appendix B: Configuration on Unix 38

Appendix B Configuration on Unix

B.1 Configuration options

configure has many options: running

./configure --help

will give a list. Probably the most important ones not covered elsewhere are (defaults in
brackets)

‘--with-x’
use the X Window System [yes]

‘--x-includes=DIR ’
X include files are in DIR

‘--x-libraries=DIR ’
X library files are in DIR

‘--with-readline’
use readline library (if available) [yes]

‘--enable-R-profiling’
attempt to compile support for Rprof() [yes]

‘--enable-R-shlib’
build R as a shared/dynamic library [no]

‘--enable-BLAS-shlib’
build the BLAS as a shared/dynamic library [no]

You can use ‘--without-foo’ or ‘--disable-foo’ for the negatives.

You will want to use ‘--disable-R-profiling’ if you are building a profiled executable
of R (e.g. with ‘-pg)’.

Flag ‘--enable-R-shlib’ causes the make process to build R as a dynamic (shared)
library, typically called ‘libR.so’, and link the main R executable ‘R.bin’ against that
library. This can only be done if all the code (including system libraries) can be compiled
into a dynamic library, and there may be a performance1 penalty. So you probably only
want this if you will be using an application which embeds R. Note that C code in packages
installed on an R system linked with ‘--enable-R-shlib’ is linked against the dynamic
library and so such packages cannot be used from an R system built in the default way.
Also, because packages are linked against R they are on some OSes also linked against the
dynamic libraries R itself is linked against, and this can lead to symbol conflicts.

If you need to re-configure R with different options you may need to run make clean or
even make distclean before doing so.

1 We have measured 15–20% on i686 Linux and around 10% on ‘x86_64’ Linux.

Appendix B: Configuration on Unix 39

B.2 Internationalization support

R can be compiled with support for multi-byte character sets (MBCS), in particular for
UTF-8 locales (which are usually identified by suffix ‘.utf8’ or ‘UTF-8’, something like
‘en_GB.utf8’). UTF-8 is an encoding of Unicode and in principle covers all human languages
simultaneously: however, a given system may not have fonts capable of displaying more than
a few of these languages.

Support for MBCS is selected if possible at configure time (unless disabled with
‘--disable-mbcs’). This will check for a large number of features, notably support for
the C99/UNIX98 wide character functions, for UTF-8 or MBCS support in X11 and for
iconv with a rich enough functionality. If enough of these are found, MBCS will be listed as
one of the “Additional capabilities”. Then if R is started in a UTF-8 locale it assumes that
the terminal will supply and display UTF-8-encoded characters2. If run in a single-byte
locale, R behaves almost exactly as if it was configured with ‘--disable-mbcs’.

A version of R built with MBCS support can also be run in other multi-byte locales, for
example those using the EUC-JP, EUC-KR and EUC-TW encodings on Unix-alikes and
the code pages for Chinese, Japanese and Korean on Windows.

Translation of messages is supported via GNU gettext unless disabled by the configure
option ‘--disable-nls’ or the underlying OS has insufficiently standard C functions to
support it. The configure report will show NLS as one of the ‘Additional capabilities’ if
support has been compiled in, and running in an English locale (but not the C locale) will
include

Natural language support but running in an English locale

in the greeting on starting R.

B.3 Configuration variables

If you need or want to set certain configure variables to something other than their default,
you can do that by either editing the file ‘config.site’ (which documents all the variables
you might want to set) or on the command line as

./configure VAR=value

If you are building in a directory different from the sources, there can be copies of
‘config.site’ in the source and the build directories, and both will be read (in that
order). To force a single file to be read, set the environment variable CONFIG_SITE to the
location of the file.

These variables are precious, implying that they do not have to be exported to the
environment, are kept in the cache even if not specified on the command line and checked
for consistency between two configure runs (provided that caching is used), and are kept
during automatic reconfiguration as if having been passed as command line arguments, even
if no cache is used.

See the variable output section of configure --help for a list of all these variables.
If you find you need to alter configure variables, it is worth noting that some settings

may be cached in the file ‘config.cache’, and it is a good idea to remove that file (if it

2 You may have to set this with luit, but it should be the default in a window manager session started
in UTF-8.

Appendix B: Configuration on Unix 40

exists) before re-configuring. Note that caching is turned off by default: use the command
line option ‘--config-cache’ (or ‘-C’) to enable caching.

B.3.1 Setting paper size

One common variable to change is R_PAPERSIZE, which defaults to ‘a4’, not ‘letter’. (Valid
values are ‘a4’, ‘letter’, ‘legal’ and ‘executive’.)

This is used both when configuring R to set the default, and when running R to override
the default. It is also used to set the papersize when making DVI and PDF manuals.

The configure default will most often be ‘a4’ if R_PAPERSIZE is unset. (If the (Debian
Linux) program paperconf is found or the environment variable PAPERSIZE is set, these
are used to produce the default.)

B.3.2 Setting the browser

Another precious variable is R_BROWSER, the default browser, which should take a value of
an executable in the user’s path or specify a full path.

B.3.3 Compilation flags

If you have libraries and header files, e.g., for GNU readline, in non-system directories,
use the variables LDFLAGS (for libraries, using ‘-L’ flags to be passed to the linker) and
CPPFLAGS (for header files, using ‘-I’ flags to be passed to the C/C++ preprocessors),
respectively, to specify these locations. These default to ‘-L/usr/local/lib’ (LDFLAGS,
‘-L/usr/local/lib64’ on most 64-bit Linux OSes) and ‘-I/usr/local/include’
(CPPFLAGS) to catch the most common cases. If libraries are still not found, then maybe
your compiler/linker does not support re-ordering of ‘-L’ and ‘-l’ flags (this has been
reported to be a problem on HP-UX with the native cc). In this case, use a different
compiler (or a front end shell script which does the re-ordering).

These flags can also be used to build a faster-running version of R. On most
platforms using gcc, having ‘-O3’ in CFLAGS produces worthwhile performance gains.
On systems using the GNU linker (especially those using R as a shared library), it
is likely that including ‘-Wl,-O1’ in LDFLAGS is worthwhile, and on recent systems3

‘’-Bdirect,--hash-style=both,-Wl,-O1’’ is recommended at http://lwn.net/
Articles/192624/. Tuning compilation to a specific CPU family (e.g. ‘-mtune=core2’
for gcc) can give worthwhile performance gains, especially on older architectures such as
‘ix86’.

B.3.4 Making manuals

The default settings for making the manuals are controlled by R_RD4PDF, R_RD4DVI and
R_PAPERSIZE.

B.4 Setting the shell

By default the shell scripts such as ‘R’ will be ‘#!/bin/sh’ scripts (or using the SHELL chosen
by ‘configure’). This is almost always satisfactory, but on a few systems ‘/bin/sh’ is not
a Bourne shell or clone, and the shell to be used can be changed by setting the configure
variable R_SHELL to a suitable value (a full path to a shell, e.g. ‘/usr/local/bin/bash’).

3 e.g. Fedora Core 6 and later

http://lwn.net/penalty z@ Articles/penalty z@ 192624/
http://lwn.net/penalty z@ Articles/penalty z@ 192624/

Appendix B: Configuration on Unix 41

B.5 Using make

To compile R, you will most likely find it easiest to use GNU make. On Solaris 2.6/7/8 in
particular, you need a version of GNU make different from 3.77; 3.79.1 and later work fine,
as does the Sun make. The native make is reported to fail on SGI Irix 6.5 and Alpha/OSF1
(aka Tru64).

To build in a separate directory you need a make that uses the VPATH variable, for
example GNU make, or Sun make on Solaris 2.7 or later.

dmake has also been used. e.g, on Solaris 10.

If you want to use a make by another name, for example if your GNU make is called
‘gmake’, you need to set the variable MAKE at configure time, for example

./configure MAKE=gmake

Note the comment in Section 2.3 [Installation], page 5 about using a parallel make.

B.6 Using FORTRAN

To compile R, you need a FORTRAN compiler. The default is to search for f95, fort,
xlf95, ifort, ifc, efc, pgf95 lf95, gfortran, ftn, g95, f90, xlf90, pghpf, pgf90,
epcf90, g77, f77, xlf, frt, pgf77, cf77, fort77, fl32, af77 (in that order)4, and use
whichever is found first; if none is found, R cannot be compiled. However, if CC is gcc, the
matching FORTRAN compiler (g77 for gcc 3 and gfortran for gcc 4) is used if available.

The search mechanism can be changed using the configure variable F77 which specifies
the command that runs the FORTRAN 77 compiler. If your FORTRAN compiler is in
a non-standard location, you should set the environment variable PATH accordingly before
running configure, or use the configure variable F77 to specify its full path.

If your FORTRAN libraries are in slightly peculiar places, you should also look at LD_
LIBRARY_PATH or your system’s equivalent to make sure that all libraries are on this path.

Note that only FORTRAN compilers which convert identifiers to lower case are sup-
ported.

You must set whatever compilation flags (if any) are needed to ensure that FORTRAN
integer is equivalent to a C int pointer and FORTRAN double precision is equivalent
to a C double pointer. This is checked during the configuration process.

Some of the FORTRAN code makes use of COMPLEX*16 variables, which is a Fortran 90
extension. This is checked for at configure time5, but you may need to avoid compiler flags6

asserting FORTRAN 77 compliance.

For performance reasons7 you may want to choose a FORTRAN 90/95 compiler.

It is possible to use f2c, the FORTRAN-to-C converter (http://www.netlib.org/f2c),
via a script. (An example script is given in ‘scripts/f77_f2c’: this can be customized by
setting the environment variables F2C, F2CLIBS, CC and CPP.) You may need to ensure that
the FORTRAN type integer is translated to the C type int. Normally ‘f2c.h’ contains

4 On HP-UX fort77 is the POSIX compliant FORTRAN compiler, and comes after g77.
5 as well as its equivalence to the Rcomplex structure defined in ‘R_ext/Complex.h’.
6 In particular, avoid g77’s ‘-pedantic’, which gives confusing error messages.
7 e.g., to use an optimized BLAS on Sun/Sparc

http://www.netlib.org/penalty z@ f2c

Appendix B: Configuration on Unix 42

‘typedef long int integer;’, which will work on a 32-bit platform but not on a 64-bit
platform. If your compiler is not gcc you will need to set FPICFLAGS appropriately.

B.6.1 Using gfortran

gfortran is the F95 compiler that is part of gcc 4.x.y. There were problems compiling R
with the first release (gcc 4.0.0) and more with pre-releases, but these are resolved in later
versions.

On Linux ‘x86_64’ systems there is an incompatibility in the return conventions for
double-complex functions between gfortran and g77 which results in the final example
in example(eigen) hanging or segfaulting under external BLASs built under g77. This
should be detected by a configure test.

The default FFLAGS chosen (by autoconf) for a GNU FORTRAN compiler is ‘-g -O2’.
This seems not to be documented for gfortran, and has caused problems (segfaults and
infinite loops) on ‘x86_64’ Linux (and the optimizer will be shared with other platforms on
that CPU type). A maximum optimization of ‘-O’ is recommended there.

B.7 Compile and load flags

A wide range of flags can be set in the file ‘config.site’ or as configure variables on the
command line. We have already mentioned

CPPFLAGS header file search directory (‘-I’) and any other miscellaneous options for the
C and C++ preprocessors and compilers

LDFLAGS path (‘-L’), stripping (‘-s’) and any other miscellaneous options for the linker

and others include

CFLAGS debugging and optimization flags, C

MAIN_CFLAGS
ditto, for compiling the main program

SHLIB_CFLAGS
for shared libraries

FFLAGS debugging and optimization flags, FORTRAN

SAFE_FFLAGS
ditto for source files which need exact floating point behaviour

MAIN_FFLAGS
ditto, for compiling the main program

SHLIB_FFLAGS
for shared libraries

MAIN_LDFLAGS
additional flags for the main link

SHLIB_LDFLAGS
additional flags for linking the shared libraries

LIBnn the primary library directory, ‘lib’ or ‘lib64’

Appendix B: Configuration on Unix 43

CPICFLAGS
special flags for compiling C code to be turned into a shared library

FPICFLAGS
special flags for compiling Fortran code to be turned into a shared library

CXXPICFLAGS
special flags for compiling C++ code to be turned into a shared library

FCPICFLAGS
special flags for compiling Fortran 95 code to be turned into a shared library

DEFS defines to be used when compiling C code in R itself

Library paths specified as ‘-L/lib/path’ in LDFLAGS are collected together and prepended
to LD_LIBRARY_PATH (or your system’s equivalent), so there should be no need for ‘-R’ or
‘-rpath’ flags.

Variables such as CPICFLAGS are determined where possible by configure. Some systems
allows two types of PIC flags, for example ‘-fpic’ and ‘-fPIC’, and if they differ the first
allows only a limited number of symbols in a shared library. Since R as a shared library
has about 6200 symbols, if in doubt use the larger version.

To compile a profiling version of R, one might for example want to use
‘MAIN_CFLAGS=-pg’, ‘MAIN_FFLAGS=-pg’, ‘MAIN_LDFLAGS=-pg’ on platforms where ‘-pg’
cannot be used with position-independent code.

Beware: it may be necessary to set CFLAGS and FFLAGS in ways compatible with the
libraries to be used: one possible issue is the alignment of doubles, another is the way
structures are passed.

On some platforms configure will select additional flags for CFLAGS, CPPFLAGS, FFLAGS,
CXXFLAGS and LIBS in R_XTRA_CFLAGS (and so on). These are for options which are always
required, for example to force IEC 60559 compliance.

Appendix C: Platform notes 44

Appendix C Platform notes

This section provides some notes on building R on different Unix-like platforms. These
notes are based on tests run on one or two systems in each case with particular sets of
compilers and support libraries. Success in building R depends on the proper installation
and functioning of support software; your results may differ if you have other versions of
compilers and support libraries.

C.1 X11 issues

The ‘X11()’ graphics device is the one started automatically on Unix-alikes when plotting.
As its name implies, it displays on a (local or remote) X server, and relies on the services
and in particular the fonts provided by the X server. So if you sometimes use R at a console
and sometimes remotely from an X11 session running on a Windows machine, you may
have to setup the fonts differently for the two usages.

The ‘modern’ version of the ‘X11()’ device is based on ‘cairo’ graphics and uses
‘fontconfig’ to pick and render fonts. This is done on the server, and although there can
be selection issues, they are more amenable than the issues with ‘X11()’ discussed in the
rest of this section.

When X11 was designed, most displays were around 75dpi, whereas today they are of
the order of 100dpi or even higher. If you find that X11() is reporting1 missing font sizes,
especially larger ones, it is likely that you are not using scalable fonts and have not installed
the 100dpi versions of the X11 fonts. The names and details differ by system, but will likely
have something like Fedora’s

xorg-x11-fonts-75dpi
xorg-x11-fonts-100dpi
xorg-x11-fonts-truetype
xorg-x11-fonts-Type1
xorg-x11-fonts-cyrillic

and you need to ensure that the ‘-100dpi’ versions are installed and on the X11 font path
(check via xset -q). The ‘X11()’ device does try to set a pointsize and not a pixel size:
laptop users may find the default setting of 12 too large (although very frequently laptop
screens are set to a fictitious dpi to appear like a scaled-down desktop screen).

More complicated problems can occur in non-Western-European locales, so if you are
using one, the first thing to check is that things work in the C locale. The likely issues are
a failure to find any fonts or glyphs being rendered incorrectly (often as a pair of ASCII
characters). X11 works by being asked for a font specification and coming up with its idea
of a close match. For text (as distinct from the symbols used by plotmath), the specification
is the first element of the option "X11fonts" which defaults to

"-adobe-helvetica-%s-%s-*-*-%d-*-*-*-*-*-*-*"

If you are using a single-byte encoding, for example ISO 8859-2 in Eastern Europe or
KOI8-R in Russian, use xlsfonts to find an appropriate family of fonts in your encoding
(the last field in the listing). If you find none, it is likely that you need to install further
font packages, such as ‘xorg-x11-fonts-cyrillic’ shown in the listing above.

1 for example, X11 font at size 14 could not be loaded.

Appendix C: Platform notes 45

Multi-byte encodings (most commonly UTF-8) are even more complicated. There are
few fonts in ‘iso10646-1’, the Unicode encoding, and they only contain a subset of the
available glyphs (and are often fixed-width designed for use in terminals). In such locales
fontsets are used, made up of fonts encoded in other encodings. If the locale you are using
has an entry in the ‘XLC_LOCALE’ directory (typically ‘/usr/X11R6/lib/X11/locale’, it is
likely that all you need to do is to pick a suitable font specification that has fonts in the
encodings specified there. If not, you may have to get hold of a suitable locale entry for
X11. This may mean that, for example, Japanese text can be displayed when running in
‘ja_JP.utf8’ but not when running in ‘en_GB.utf8’ on the same machine (although on
some systems many UTF-8 X11 locales are aliased to ‘en_US.utf8’ which covers several
character sets, e.g. ISO 8859-1 (Western European), JISX0208 (Kanji), KSC5601 (Korean),
GB2312 (Chinese Han) and JISX0201 (Kana)).

On some systems scalable fonts are available covering a wide range of glyphs. One source
is TrueType fonts, and these can provide high coverage. Another is Type 1 fonts: the URW
set of Type 1 fonts provides standard typefaces such as Helvetica with a larger coverage of
Unicode glyphs than the standard X11 bitmaps, including Cyrillic. These are generally not
part of the default install, and the X server may need to be configured to use them. They
might be under the X11 ‘fonts’ directory or elsewhere, for example,

/usr/share/fonts/default/Type1
/usr/share/fonts/ja/TrueType

C.2 Linux

Linux is the main development platform for R, so compilation from the sources is normally
straightforward with the standard compilers.

Remember that some package management systems (such as RPM and deb) make a
distinction between the user version of a package and the developer version. The latter
usually has the same name but with the extension ‘-devel’ or ‘-dev’: you need both
versions installed. So please check the configure output to see if the expected features
are detected: if for example ‘readline’ is missing add the developer package. (On most
systems you will also need ‘ncurses’ and its developer package, although these should be
dependencies of the ‘readline’ package(s).)

When R has been installed from a binary distribution there are sometimes problems
with missing components such as the FORTRAN compiler. Searching the ‘R-help’ archives
will normally reveal what is needed.

It seems that ‘ix86’ Linux accepts non-PIC code in shared libraries, but this is not
necessarily so on other platforms, in particular for 64-bit CPUs such as ‘x86_64’. So care
can be needed with BLAS libraries and when building R as a shared library to ensure
that position-independent code is used in any static libraries (such as the Tcl/Tk libraries,
libpng, libjpeg and zlib) which might be linked against. Fortunately these are normally
built as shared libraries with the exception of the ATLAS BLAS libraries.

For platforms with both 64- and 32-bit support, it is likely that

LDFLAGS="-L/usr/local/lib64 -L/usr/local/lib"

is appropriate since most (but not all) software installs its 64-bit libraries in
‘/usr/local/lib64’. To build a 32-bit version of R on ‘x86_64’ with Fedora 8 we used

Appendix C: Platform notes 46

CC="gcc -m32"
CXXFLAGS="-m32 -O2 -g"
FFLAGS="-m32 -O2 -g"
FCFLAGS="-m32 -O2 -g"
LDFLAGS="-L/usr/local/lib"
LIBnn=lib

64-bit versions of Linux are built with support for files > 2Gb, and 32-bit versions will
be if possible unless ‘--disable-largefile’ is specified.

R used to include the compiler flag ‘-mieee-fp’, but it seems this was really an
alias for the linker flag ‘-lieee’. Neither are needed for a modern Linux (e.g. using
glibc 2.2/3/4) but could conceivably be needed on an older version. glibc 2.1 required
‘-D__NO_MATH_INLINES’ to achieve IEC 60059-compliance for exp, and this is included in
R_XTRA_CFLAGS if required.

There are known problems with several early versions of gcc 4, but gcc 4.1.0 and later
seem to cause no special difficulties.

To build a 64-bit version of R on ‘ppc64’ (also known as ‘powerpc64’) with gcc 4.1.1,
Ei-Ji Nakama used

CC="gcc -m64"
CXX="gxx -m64"
F77="gfortran -m64"
FC="gfortran -m64"
CFLAGS="-mminimal-toc -fno-optimize-sibling-calls -g -O2"
FFLAGS="-mminimal-toc -fno-optimize-sibling-calls -g -O2"

the additional flags being needed to problems linking against ‘libnmath.a’ and when linking
R as a shared library.

On some earlier2 glibc systems, ‘-fgnu89-inline’ needs to be added to ‘CFLAGS’ when
using gcc 4.3.x, since ‘wchar.h’ is not set up properly for C99-style inlines.

C.2.1 Intel compilers

Intel compilers have been used under ‘ix86’ and ‘x86_64’ Linux and R contains code to
set the FPU options suitably. Brian Ripley tried version 9.0 of the compilers for ‘ix86’ on
Fedora Core 3 via

CC=icc
F77=ifort
CXX=icpc
ICC_LIBS=/opt/compilers/intel/cc/9.0/lib
IFC_LIBS=/opt/compilers/intel/fc/9.0/lib
LDFLAGS="-L$ICC_LIBS -L$IFC_LIBS -L/usr/local/lib"
SHLIB_CXXLD=icpc

and adding optimization flags failed: at least ‘src/main/regex.c’ and ‘src/modules/
lapack/dlamc.f’ needed to be compiled without optimization. For ‘x86_64’ on Fedora
Core 5 he used

2 e.g. Fedora Core 5

Appendix C: Platform notes 47

CC=icc
CFLAGS="-g -O3 -wd188 -ip"
F77=ifort
FLAGS="-g -O3"
CXX=icpc
CXXFLAGS="-g -O3"
FC=ifort
FCFLAGS="-g -O3 -mp"
ICC_LIBS=/opt/compilers/intel/cce/9.1.039/lib
IFC_LIBS=/opt/compilers/intel/fce/9.1.033/lib
LDFLAGS="-L$ICC_LIBS -L$IFC_LIBS -L/usr/local/lib64"
SHLIB_CXXLD=icpc

configure will add ‘-c99’ to CC for C99-compliance. This causes warnings with icc 10,
so use CC="icc -std=c99" there. R will add ‘-mp’ in R_XTRA_{C,F,CXX}FLAGS to maintain
correct IEC 60559 arithmetic. The flag ‘-wd188’ suppresses a large number of warnings
about the enumeration type ‘Rboolean’. Because the Intel C compiler sets ‘__GNUC__’
without complete emulation of gcc, we suggest adding CPPFLAGS=-no-gcc.

For some comments on building on an Itanium (‘ia64’) Linux system with gcc or the
Intel compilers see http://www.nakama.ne.jp/memo/ia64_linux/.

C.2.2 PGI compilers

Jennifer Lai used the Portland Group compilers on ‘x86_64’ to build pre-2.2.0. Updated
versions of the settings she used are

PG_HOME=/usr/pgi/linux86-64/6.0
CC=pgcc
CFLAGS="-g -O2 -Kieee"
CPPFLAGS="-I$PG_HOME/include -I$PG_HOME/include/CC"
F77=pgf77
FFLAGS="-g -O2 -Kieee"
CXX=pgCC
CXXFLAGS="-g -O2 -Kieee"
FC=pgf95
FCFLAGS="-g -O2 -Kieee"
SHLIB_CXXLDFLAGS=-shared
SHLIB_LDFLAGS=-shared
LDFLAGS="-L$PG_HOME/libso -L/usr/lib64"

Note particularly the last, which is needed to ensure that a shared version of libc is found.
The flag ‘-Kieee’ ensures strict compliance to IEC60659. Also, http://www.amd.com/
us-en/assets/content_type/DownloadableAssets/dwamd_PGI_nov603.pdf suggests
that ‘-pc64’ may be desirable.

C.2.3 SunStudio compilers

Brian Ripley tested the SunStudio 12 (aka Sun Ceres) compilers (http://developers.sun.com/
sunstudio/index.jsp) on ‘x86_64’ Linux with

CC=suncc

http://www.nakama.ne.jp/penalty z@ memo/penalty z@ ia64_linux/
http://penalty z@ www.amd.com/penalty z@ us-en/penalty z@ assets/penalty z@ content_type/penalty z@ DownloadableAssets/penalty z@ dwamd_PGI_nov603.pdf
http://penalty z@ www.amd.com/penalty z@ us-en/penalty z@ assets/penalty z@ content_type/penalty z@ DownloadableAssets/penalty z@ dwamd_PGI_nov603.pdf
http://developers.sun.com/penalty z@ sunstudio/penalty z@ index.jsp
http://developers.sun.com/penalty z@ sunstudio/penalty z@ index.jsp

Appendix C: Platform notes 48

CFLAGS="-xO5 -xc99 -xlibmil -nofstore"
CPICFLAGS=-Kpic
F77=sunf95
FFLAGS="-O5 -libmil -nofstore"
FPICFLAGS=-Kpic
CXX=sunCC
CXXFLAGS="-xO5 -xlibmil -nofstore"
CXXPICFLAGS=-Kpic
FC=sunf95
FCFLAGS=$FFLAGS
FCPICFLAGS=-Kpic
LDFLAGS=-L/opt/sunstudio12/lib/amd64
SHLIB_LDFLAGS=-shared
SHLIB_CXXLDFLAGS="-G -lCstd"
SHLIB_FCLDFLAGS=-G
SAFE_FFLAGS="-O5 -libmil"

‘-m64’ could be added, but was the default. Do not use ‘-fast’: see the warnings under
Solaris.

The resulting build of R was not quite as fast as that built with gcc 4.3.2 at ‘-O3’.

C.3 Mac OS X

You can build R as a Unix application on Mac OS X using the Apple Developer Tools
(‘Xcode’) and g77 or gfortran. You will also need to install an X sub-system or configure
with ‘--without-x’. The X window manager is part of the standard Mac OS X distribution
since Mac OS X version 10.3 (Panther), but it is typically not pre-installed prior to 10.5
(Leopard).

For more information on how to find these tools please read the R for Mac OS X FAQ.
If you use the X window manager and prefer Terminal.app to xterm, you should be

aware that R, like many Unix tools, uses the existence of a DISPLAY environment variable
to determine whether an X system is running. This affects the default graphics device for
the command-line version of R and the behaviour of the png and jpeg devices.

The vecLib library can be used via the (default) configuration options
--with-blas="-framework vecLib" --with-lapack

to provide higher-performance versions of the BLAS and LAPACK routines. Building R
without these options via

--without-blas --without-lapack

can be done (and is provided as an alternative in the binary distribution).

C.3.1 64-bit builds

64-bit builds are supported on 10.5.x (Leopard) only. All that is needed is to select suitable
compiler options, e.g. for recent Intel Macs

CC=’gcc -arch x86_64’
CXX=’g++ -arch x86_64’
F77=’gfortran -arch x86_64’

http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html

Appendix C: Platform notes 49

FC=’gfortran -arch x86_64’
OBJC=’gcc -arch x86_64’

in ‘config.site’ or on the configure command line.

C.4 Solaris

C.4.1 Solaris 10 and Open Solaris

R has been built successfully on Solaris 10 (both Sparc and ‘x86’) using gcc 3/g77,
gcc 4/gfortran and the (zero cost) Sun Studio (aka Ceres) 11/12 compilers. Sun packages
for R are available from http://www.sunfreeware.com/ for both architectures. (Recent
Sun machines are Opterons (‘x86-64’) rather than ‘x86’, but 32-bit ‘x86’ executables are
the default.)

There are also reports of success on OpenSolaris (aka Solaris Express Community Edi-
tion, and sometimes as Solaris 11) on ‘x86’.

The Solaris versions of several of the tools needed to build R (e.g. make, ar and ld) are
in ‘/usr/ccs/bin’, so if using those tools ensure this is in your path.

Modern Solaris systems allow a large selection of Open Source software to be installed
from http://www.opencsw.org (formerly http://www.blastwave.org) via pkg-get: a
Sparc Solaris 10 system came with libreadline and libiconv and a choice of gcc3 and
gcc4 compilers, installed under ‘/opt/csw’. (You will need GNU libiconv: the Solaris
version of iconv is not sufficiently powerful.)

If using gcc, do ensure that the compiler was compiled for the version of Solaris in use.
(This can be ascertained from gcc -v.) gcc makes modified versions of some header files,
and several reports of problems were due to using gcc compiled on one version of Solaris
on a later version. A version of gcc optimized for Sparc (using technology from Sun’s
compilers) is available from Sun.3

When using the Sun compilers4 do not specify ‘-fast’, as this disables IEEE arithmetic
and make check will fail.

Jeff Long reported problems if R is built as a shared library and ‘libintl’
was installed via pkg-get: in particular segfaults using read.spss from package
foreign: this can be avoided by not building R as a shared library or configuring with
‘--with-included-gettext’.

To compile for a 64-bit Sparc target with gcc 4 we used

CC="gcc -m64"
F77="gfortran -m64"
CXX="g++ -m64"
FC="gfortran -m64"
LDFLAGS="-L/opt/csw/gcc4/lib/sparcv9 -L/opt/csw/lib/sparcv9"

replacing ‘gfortran’ with ‘g77’ for gcc 3.x.y. Note that paths such as
‘/opt/csw/gcc4/lib/sparcv9’ may need to be in the LD_LIBRARY_PATH during
configuration.

3 http://www.sun.com/download/index.jsp?cat=Application%20Development&tab=3&subcat=Development%20Tools
4 including gcc for Sparc from Sun.

http://www.sunfreeware.com/
http://www.opencsw.org
http://www.blastwave.org
http://www.sun.com/download/index.jsp?penalty z@ cat=Application%20Development&tab=3&subcat=Development%20Tools

Appendix C: Platform notes 50

For the Sun Studio compilers a little juggling of paths was needed to ensure GNU
libiconv is used rather than the Solaris iconv: we used

CC="cc -xc99"
CPPFLAGS=-I/opt/csw/include
CFLAGS="-O -xlibmieee"
F77=f95
FFLAGS=-O4
CXX=CC
CXXFLAGS=-O
FC=f95
FCFLAGS=$FFLAGS
LDFLAGS=-L/opt/csw/lib
SHLIB_CXXLDFLAGS="-G -lCstd"

to ensure that the libiconv version of ‘iconv.h’ was found. For a 64-bit target add
‘-xarch=v9’ (or v9b, or amd64) to each of the compiler commands, or for Sun Studio 12
add ‘-m64’. You can target specific Sparc architectures for (slightly) higher performance:
Sun recommend

32-bit: -xtarget=ultra3 -xarch=v8plusa
64-bit: -xtarget=ultra3 -xarch=v9a

(in CFLAGS etc.) as a good compromise for recent Sparc chipsets.
By default the Sun Studio compilers do not conform to the C99 standard (appendix F

8.9) on the return values of functions such as log: use ‘-xlibmieee’ to ensure this. Also,
errors have been reported on ‘x86_64’ if ‘-xc99’ is omitted.

On ‘x86’ you will get marginally higher performance via
CFLAGS="-xO5 -xc99 -xlibmieee -xlibmil -nofstore"
FFLAGS="-O5 -libmil -nofstore"
CXXFLAGS="-xO5 -xlibmil -nofstore"
SAFE_FFLAGS="-O5 -libmil -fstore"

Building on ‘x86’ with gcc 4 failed make check in the complex LAPACK tests: using
Sun Studio 11 worked correctly.

There is limited support for ‘x86_64’ builds in the pre-built GNU software repositories,
with 64-bit libraries (which are installed in ‘/opt/csw/lib/amd64’ and so on) being scarce
(and not including the gcc support libraries). The Sun Studio compilers do support 64-bit
builds via ‘-xarch=amd64’ (or, for version 12, ‘-m64’).

The Sun performance library libsunperf is available with the Sun Studio compilers. If
selected as a BLAS, it must also be selected as LAPACK via

./configure --with-blas=sunperf --with-lapack

However, our tests were none too successful: Sparc 64-bit builds crashed.

C.4.2 Sparc Solaris 9 and earlier

These are now obsolete operating systems, so this subsection refers to equally old compiler
versions.

Sun packages for R are available from http://www.sunfreeware.com/ for both Sparc
and ‘x86’.

http://www.sunfreeware.com/

Appendix C: Platform notes 51

R 2.6.2 was built successfully on Sparc Solaris 8 (aka Solaris 2.8 aka SunOS 5.8) using
gcc 3/g77, gcc 4/gfortran and the ‘Sun ONE Studio 7 Compiler Suite’ (aka Forte 7).

The Solaris versions of several of the tools needed to build R (e.g. make, ar and ld) are
in ‘/usr/ccs/bin’, so if using those tools ensure this is in your path.

gcc 3.2.1 and 3.2.2 generate incorrect code on 32-bit Solaris builds with optimization,
but versions 3.2.3 and later work correctly. (The symptom was that make check failed at
the first attempt to plot.)

If using gcc, do ensure that the compiler was compiled for the version of Solaris in use.
(This can be ascertained from gcc -v.) gcc makes modified versions of some header files,
and so (for example) gcc compiled under Solaris 2.6 will not compile R under Solaris 2.7.
Also, do ensure that it was compiled for the assembler/loader in use: if you download gcc
from http://www.sunfreeware.com/ then you need to download binutils too. To avoid
all these pitfalls we recommended you compile gcc from the sources yourself.

It was reported by Mike Pacey that Sun Forte 9 requires ‘-xopenmp=stubs’ added to
LDFLAGS.

When using the Sun compilers do not specify ‘-fast’, as this disables IEEE arithmetic
and make check will fail. The maximal set of optimization options known to work on Sparc
Solaris 8 is

-xlibmil -xO5 -dalign

(‘x86’ versions do not need ‘-dalign’, and some do not support it.) To get correct results
for log requires ‘-xlibmieee’, but R works around that.

We have found little performance difference between gcc and cc but considerable benefit
from using a SunPro Fortran compiler: the gcc/f77 combination worked well. For many
C++ applications Forte 7 requires ‘-lCstd’, which the configure script will add to SHLIB_
CXXLDFLAGS if it identifies the compiler correctly.

To compile for a 64-bit target on Sparc Solaris (which needs an UltraSparc chip and for
support to be enabled in the OS) with the Forte 7 compilers we used

CC="cc -xarch=v9 -xc99"
CFLAGS="-xO5 -xlibmil -dalign"
F77="f95 -xarch=v9"
FFLAGS="-xO5 -xlibmil -dalign"
CXX="CC -xarch=v9"
CXXFLAGS="-xO5 -xlibmil -dalign"
FC="f95 -xarch=v9"
FCFLAGS="-xO5 -xlibmil -dalign"

in ‘config.site’.

For 64-bit compilation with gcc 3.4.x we used

CC="gcc -m64"
F77="g77 -m64"
CXX="g++ -m64"
FC="gfortran -m64"
LDFLAGS="-L/usr/local/lib/sparcv9 -L/usr/local/lib"

http://www.sunfreeware.com/

Appendix C: Platform notes 52

replacing ‘g77’ with ‘gfortran’ for gcc 4.x.y. Note that ‘/usr/local/lib/sparcv9’
may need to be in the LD_LIBRARY_PATH during configuration. (configure will append
‘-std=gnu99’ to CC.)

Solaris on Sparc CPUs need ‘PIC’ and not ‘pic’ versions of CPICFLAGS and FPICFLAGS
since the ‘pic’ version only allows 1024 symbols on a 64-bit build (and 2048 on a 32-bit
build).

Note that using f95 allows the Sun performance library libsunperf to be selected: it
may not work5 with f77, and will not with g77. libsunperf contains both BLAS and
LAPACK code, and ‘--with-lapack’ may be required if you use it. On our test system
using libsunperf failed for 64-bit builds with both Forte 7 and Sun Studio 11, albeit in
different ways. Our experience has been that ATLAS’s BLAS is faster than libsunperf,
especially for complex numbers.

For a 64-bit build, 64-bit libraries must be used. As the configuration process by default
sets LDFLAGS to ‘-L/usr/local/lib’, you may need to set it to avoid finding 32-bit addons
(as in the gcc -m64 example above). It is possible to build Tcl/Tk as 64-bit libraries with
the configure option --enable-64bit, but only with the Sun compilers (and not with gcc)
as of Tcl/Tk 8.4.5.

There have been alignment issues, with Sun libraries requiring 8-byte alignment of dou-
bles (which gcc generated by default, but cc did not).

C.5 HP-UX

Fan Long built R 2.6.0 on HP-UX 11.23 on ‘ia64’ using the native compilers via
CC=cc
CFLAGS="+z +DD64"
CXX=aCC
CXXFLAGS="-b -lxnet +z +DD64"
FC=f90
FCFLAGS=+DD64
F77=f90
FFLAGS=+DD64
LDFLAGS="-L/usr/lib/hpux64 -L/opt/fortran90/lib"

Here ‘+z’ selects PIC code and +DD64 a 64-bit build.
He found that ‘stdbool.h’ was detected but was non-standard, so ‘HAVE_STDBOOL_H’

had to be undefined in ‘src/include/config.h’. In addition, the compiler objected to
static const pthread_once_t fresh_once = {PTHREAD_ONCE_INIT};

(line 362 of ‘src/extra/intl/lock.c’) and needed the braces removed.
The remaining reports on HP-UX here predate R 2.0.0.
R has been built successfully on HP-UX 11.0 using both native compilers and gcc. By

default, R is configured to use gcc and g77 on HP-UX (if available). Some installations
of g77 only install a static version of the g2c library that cannot be linked into a shared
library since its files have not been compiled with the appropriate flag for producing position
independent code (PIC). This will result in make failing with a linker error similar to

5 recent versions have f77 as a wrapper for f95, and these do work.

Appendix C: Platform notes 53

ld: CODE_ONE_SYM fixup to non-code subspace in file foo.o -
shared library must be position independent. Use +z or +Z to recompile.

(‘+z’ and ‘+Z’ are the PIC flags for the native compiler cc.) If this is the case you either
need to modify your g77 installation or configure with

F77=fort77

to specify use of the native POSIX-compliant FORTRAN 77 compiler.
You may find that configure detects other libraries that R needs to use as shared

libraries but are only available as static libraries. If you cannot install shared versions you
will need to tell configure not to use these libraries, or make sure they are not in the
library path. The symptom will be the linker error shown in the last paragraph. Static
libraries that might be found and would cause problems are

BLAS use ‘--without-blas’
Tcl/Tk use ‘--without-tcltk’
libpng use ‘--without-libpng’
jpeg use ‘--without-jpeglib’
zlib use ‘--without-system-zlib’

and bzip2 and pcre are problematic when building ‘libR.so’, only. These can be avoided
by ‘--without-system-bzlib’ and ‘--without-system-pcre’ respectively, but these are
the defaults.

Some versions of gcc may contain what appears to be a bug at the ‘-O2’ optimization
level that causes

> 2 %/% 2
[1] 1
> 1:2 %/% 2
[1] 0 0 # wrong!!

which will cause make check to fail. If this is the case, you should use CFLAGS to specify
‘-O’ as the optimization level to use.

You can configure R to use both the native cc and fort77 with
./configure CC=cc F77=fort77

f90 insists on linking against a static ‘libF90.a’ which typically resides in a non-
standard directory (e.g., ‘/opt/fortran90/lib’). Hence, to use f90 one needs to add this
directory to the linker path via the configure variable LDFLAGS (e.g., ./configure F77=f90
LDFLAGS=/opt/fortran90/lib).

C.6 IRIX

R 2.1.0 has been successfully built on IRIX64 6.5 using both gcc and the native (MipsPro
7.4) compiler. However, neither version has passed make check due to a problem with time
zones (see below). A 64-bit executable has not been successfully built.

It appears that some (but not all) versions of IRIX have broken wide-character header
files and so may need ‘--disable-mbcs’.

To build R with gcc use something like the following configuration flags
CPPFLAGS="-I/usr/freeware/include"
LDFLAGS="-L/usr/freeware/lib32"

Appendix C: Platform notes 54

To build the Tcl/Tk package you will most likely need to add
--with-tclconfig=/usr/freeware/lib/tclConfig.sh
--with-tkconfig=/usr/freeware/lib/tkConfig.sh

since these configuration scripts are not on your path.
To build R with the native compilers, use something like the following configuration flags

CC=cc F77=f77 CXX=CC
CPPFLAGS="-I/usr/freeware/include" LDFLAGS="-L/usr/freeware/lib32"
CFLAGS="-O2" FFLAGS="-O2" CXXFLAGS="-O2"
--with-system-bzlib=yes

The MipsPro compiler will not build the bzlib library, so you must use the external one
provided by SGI as a freeware package.

After configuration, it is necessary to use gmake instead of the native make to build R.
There is a problem with the time zones on IRIX (originally reported by George N. White

III for 1.9.0) which will cause the strptime tests to fail unless Arthur Olson’s timezone
data ftp://elsie.nci.nih.gov/pub/ has been installed (see also http://cspry.co.uk/
computing/Indy_admin/TIMEZONE.html) and ‘-ltz’ is added to the list of libraries (for
example, in environment variable LIBS).

The flag ‘-OPT:IEEE_NaN_inf=ON’ is added for the native compilers.

C.7 Alpha/OSF1

R has been built successfully on an Alpha running OSF1 V4.0 / V5.1 using gcc/g77 and
cc/f77. Mixing cc and g77 fails to configure. The configure option ‘--without-blas’
was used since the native blas seems not to have been built with the flags needed to suppress
SIGFPE’s. Currently R does not set a signal handler for SIGFPE on platforms that support
IEEE arithmetic, so these are fatal.

At some point in the past using cc required ‘-std1’ to be set so ‘__STDC__’ was defined.
As far as we know this is no longer needed, and configure no longer sets it, but it does set
‘-ieee_with_inexact’ for the C compiler and ‘-fpe3’ for the FORTRAN compiler (and
‘-mieee-with-inexact’ and ‘-mieee’ for gcc/g77) (in the appropriate R_XTRA_* flags).

C.8 Alpha/FreeBSD

Attempts to build R on an Alpha with FreeBSD 4.3 have been only partly successful.
Configuring with ‘-mieee’ added to both CFLAGS and FFLAGS builds successfully, but tests
fail with SIGFPE’s. It would appear that ‘-mieee’ only defers these rather than suppressing
them entirely. Advice on how to complete this port would be greatly appreciated.

C.9 AIX

We no longer support AIX prior to 4.2, and configure will throw an error on such systems.
Ei-ji Nakama was able to build under AIX 5.2 on ‘powerpc’ with GCC 4.0.3 in several

configurations. 32-bit bit versions could be configured with ‘--without-iconv’ as well as
‘--enable-R-shlib’. For 64-bit versions he used

OBJECT_MODE=64
CC="gcc -maix64"

ftp://elsie.nci.nih.gov/penalty z@ pub/
http://cspry.co.uk/penalty z@ computing/penalty z@ Indy_admin/penalty z@ TIMEZONE.html
http://cspry.co.uk/penalty z@ computing/penalty z@ Indy_admin/penalty z@ TIMEZONE.html

Appendix C: Platform notes 55

CXX="g++ -maix64"
F77="gfortran -maix64"
FC="gfortran -maix64"

and was also able to build with the IBM xlc and Hitachi f90 compilers by
OBJECT_MODE=64
CC="xlc -q64"
CXX="g++ -maix64"
F77="f90 -cpu=pwr4 -hf77 -parallel=0 -i,L -O3 -64"
FC="f90 -cpu=pwr4 -hf77 -parallel=0 -i,L -O3 -64"
FLIBS="-L/opt/ofort90/lib -lhf90vecmath -lhf90math -lf90"

Some systems have f95 as an IBM compiler that does not by default accept FORTRAN
77. It needs the flag ‘-qfixed=72’, or to be invoked as xlf_r.

The AIX native iconv does not support encodings ‘latin1’ nor ‘""’ and so cannot be
used. (As far as we know GNU libiconv could be installed.)

Fan Long reports success on AIX 5.3 using
OBJECT_MODE=64
LIBICONV=/where/libiconv/installed
CC="xlc_r -q64"
CFLAGS="-O -qstrict"
CXX="xlC_r -q64"
CXXFLAGS="-O -qstrict"
F77="xlf_r -q64"
AR="ar -X64"
CPPFLAGS="-I$LIBICONV/include -I/usr/lpp/X11/include/X11"
LDFLAGS="-L$LIBICONV/lib -L/usr/lib -L/usr/X11R6/lib"

On one AIX 6.x system it was necessary to use R_SHELL to set the default shell to be
Bash rather than Zsh.

Kurt Hornik and Stefan Theussl at WU (Wirtschaftsuniversität Wien) successfully
built R on a ‘powerpc’ (8-CPU Power6 system) on AIX 6.1, configuring with or without
‘--enable-R-shlib’ (Ei-Ji Nakama’s support is gratefully acknowledged).

It helps to describe the WU build environment first. A small part of the software
needed to build R and/or install packages is available directly from the AIX Installation
DVDs, e.g., Java 6, X11, or Perl. Additional open source software (OSS) is packaged for
AIX in ‘.rpm’ files and available from both IBM’s “AIX Toolbox for Linux Applications”
(http://www-03.ibm.com/systems/power/software/aix/linux/) and http://www.
oss4aix.org/download/. The latter website typically offers more recent versions of
the available OSS. All tools needed and libraries downloaded from these repositories
(e.g., GCC, Make, libreadline, etc.) are typically installed to ‘/opt/freeware’, hence
corresponding executables are found in ‘/opt/freeware/bin’ which thus needs to be
in PATH for using these tools. Like on other Unix systems one needs GNU libiconv as
the AIX version of iconv is not sufficiently powerful. Additionally, for proper Unicode
compatibility one should install the corresponding package from the ICU project
(http://www.icu-project.org/download/), which offers pre-compiled binaries for
various platforms which in case of AIX can be installed via unpacking the tarball to the
root file system. For full LATEX support one can install the TEX Live DVD distribution

http://www-03.ibm.com/systems/power/software/aix/linux/
http://www.penalty z@ oss4aix.org/download/
http://www.penalty z@ oss4aix.org/download/
http://www.icu-project.org/download/

Appendix C: Platform notes 56

(http://www.tug.org/texlive/): it is recommended to update the distribution using
the tlmgr update manager. For 64-bit R builds supporting Tcl/Tk this needs to installed
from the sources as available pre-compiled binaries supply only 32-bit shared objects.

The recent WU testing was done using compilers from both the GNU Compiler Col-
lection (version 4.2.4) which is available from one of the above OSS repositories, and
the IBM C/C++ (XL C/C++ 10.01) as well as FORTRAN (XL Fortran 12.01) compilers
(http://www14.software.ibm.com/webapp/download/byproduct.jsp#X).

To compile for a 64-bit ‘powerpc’ (Power6 CPU) target one can use

CC ="gcc -maix64 -pthread"
CXX="g++ -maix64 -pthread"
FC="gfortran -maix64 -pthread"
F77="gfortran -maix64 -pthread"
CFLAGS="-O2 -g -mcpu=power6"
FFLAGS="-O2 -g -mcpu=power6"
FCFLAGS="-O2 -g -mcpu=power6"

for the GCC and

CC=xlc
CXX=xlc++
FC=xlf
F77=xlf
CFLAGS="-qarch=auto -qcache=auto -qtune=auto -O3 -qstrict -ma"
FFLAGS="-qarch=auto -qcache=auto -qtune=auto -O3 -qstrict"
FCFLAGS="-qarch=auto -qcache=auto -qtune=auto -O3 -qstrict"
CXXFLAGS="-qarch=auto -qcache=auto -qtune=auto -O3 -qstrict"

for the IBM XL compilers. For the latter, it is important to note that the decision for
generating 32-bit or 64-bit code is done by setting the OBJECT_MODE environment variable
appropriately (recommended) or using an additional compiler flag (‘-q32’ or ‘-q64’). By
default the IBM XL compilers produce 32 bit code. Thus, to build R with 64-bit support
one needs to either export OBJECT_MODE=64 in the environment or, alternatively, use the
‘-q64’ compiler options.

It is strongly recommended to install Bash and use it as the configure shell, e.g., via
setting CONFIG_SHELL=/usr/bin/bash in the environment, and to use GNU Make (e.g., via
(MAKE=/opt/freeware/bin/make).

Further installation instructions to set up a proper R development environment can be
found in the “R on AIX” project on R-Forge (http://R-Forge.R-project.org/projects/aix/).

C.10 Cygwin

The Cygwin emulation layer on Windows can be treated as a Unix-alike OS. This is unsup-
ported, but experiments have been conducted and a few workarounds added for R 2.6.0.

Only building as a shared library works,6 so use

./configure --disable-nls --disable-mbcs --enable-R-shlib
make

6 Windows DLLs need to have all links resolved at build time and so cannot resolve against ‘R.bin’.

http://www.tug.org/texlive/
http://www14.software.ibm.com/webapp/download/byproduct.jsp#X
http://R-Forge.R-project.org/projects/aix/

Appendix C: Platform notes 57

MBCS does not work—wcstod is missing—but would only be of any use in a CJK locale.
NLS does work, although ‘--with-included-gettext’ is preferable. You will see many
warnings about the use of auto-import.

Note that this gives you a command-line application using readline for command
editing. The ‘X11’ graphics device will work if a suitable X server is running, and the
standard Unix-alike ways of installing source packages work. There was a bug in the
‘/usr/lib/tkConfig.sh’ script in the version we looked at, which needs to have

TK_LIB_SPEC=’-ltk84’

The overhead of using shell scripts makes this noticeably slower than a native build of
R on Windows.

C.11 New platforms

There are a number of sources of problems when installing R on a new hardware/OS plat-
form. These include

Floating Point Arithmetic: R requires arithmetic compliant with IEC 60559, also know
as IEEE 754. This mandates the use of plus and minus infinity and NaN (not a number)
as well as specific details of rounding. Although almost all current FPUs can support
this, selecting such support can be a pain. The problem is that there is no agreement on
how to set the signalling behaviour; Sun/Sparc, SGI/IRIX and ‘ix86’ Linux require no
special action, FreeBSD requires a call to (the macro) fpsetmask(0) and OSF1 requires
that computation be done with a ‘-ieee_with_inexact’ flag etc. On a new platform you
must find out the magic recipe and add some code to make it work. This can often be done
via the file ‘config.site’ which resides in the top level directory.

Beware of using high levels of optimization, at least initially. On many compilers these
reduce the degree of compliance to the IEEE model. For example, using ‘-fast’ on the
Solaris SunPro compilers causes R’s NaN to be set incorrectly.

Shared Libraries: There seems to be very little agreement across platforms on what
needs to be done to build shared libraries. there are many different combinations of flags
for the compilers and loaders. GNU libtool cannot be used (yet), as it currently does not
fully support FORTRAN: one would need a shell wrapper for this). The technique we
use is to first interrogate the X window system about what it does (using xmkmf), and
then override this in situations where we know better (for tools from the GNU Compiler
Collection and/or platforms we know about). This typically works, but you may have to
manually override the results. Scanning the manual entries for cc and ld usually reveals
the correct incantation. Once you know the recipe you can modify the file ‘config.site’
(following the instructions therein) so that the build will use these options.

It seems that gcc 3.4.x and later on ‘ix86’ Linux defeat attempts by the
LAPACK code to avoid computations entirely in extended-precision registers, so file
‘src/modules/lapack/dlamc.f’ may need to be compiled without optimization. Set the
configure variable SAFE_FFLAGS to the flags to be used for this file. If configure detects
GNU FORTRAN it adds flag ‘-ffloat-store’ to FFLAGS. (Other settings are needed
when using icc on ‘ix86’ Linux, for example.)

If you do manage to get R running on a new platform please let us know about it so we
can modify the configuration procedures to include that platform.

Appendix C: Platform notes 58

If you are having trouble getting R to work on your platform please feel free to use the
‘R-devel’ mailing list to ask questions. We have had a fair amount of practice at porting
R to new platforms . . .

Appendix D: Enabling search in HTML help 59

Appendix D Enabling search in HTML help

There is a search engine available from the front page of the HTML help system, the page
that is displayed by help.start(). The search engine is written in Java and invoked by
Javascript code, so the first thing to do is to ensure that both are enabled in your favourite
browser. Then try it and see: with most browsers you should see

Applet SearchEngine started

displayed in the status bar. (Internet Explorer shows Applet started.) Then click on one
of the keywords and after a short delay (several seconds) you should see a page of search
results.

If this fails you should double-check that Java is enabled in your browser by visiting a
page such as http://www.java.com/en/download/help/testvm.jsp. Java 1.4 or later is
needed.

On Mozilla-based browsers the links on the results page will become inactive if you
return to it: to work around this you can open a link in a new tab or window.

There is a known issue with Firefox 3.0 up to 3.0.6 (it was fixed in 3.0.7). The
links in the results page may point to the wrong directory level. This is a bug in the
way Firefox is interpreting relative URLs, and can be circumvented by opening the
HTML search page (‘.../doc/html/SearchEngine.html’) directly rather than from
‘.../doc/html/index.html’ as shown by help.start().

Many thanks to Marc Schwartz in tracking down many of these issues with enabling the
Java search engine.

D.1 Java Virtual Machines on Linux

We are aware of problems with certain older Java installations: Sun’s Java Run-time En-
vironment version 1.5.0 or later is strongly recommended for Mozilla-based browsers. In
particular, Sun’s Java Run-time Environment j2re 1.4.2 02 to 05 do not work under ‘ix86’
Linux.

There is a Sun Java plugin (as of version 1.6.0_u12 for 64-bit browsers on ‘x86_64’
Linux: but 32-bit browsers are often used on that platform.

Marc Schwartz reports that the ‘OpenJDK’ (formerly called ‘IcedTea’)
JVM that ships with Fedora 8, 9 and 10 does not work with the search
applet. (The bug report is part of https://bugzilla.redhat.com/show_
bug.cgi?id=304021.) The Sun JRE and plugin can be installed: see
http://www.fedorafaq.org/#java. (See also http://www.mjmwired.net/resources/
mjm-fedora-f8.html#java, http://www.mjmwired.net/resources/mjm-fedora-f9.
html#java and http://www.mjmwired.net/resources/mjm-fedora-f10.html#java.)

Older but still useful links are for Firefox/Mozilla, http://plugindoc.mozdev.org/
faqs/java.html, for Konqueror http://www.konqueror.org/javahowto/, for Opera
http://www.opera.com/support/search/supsearch.dml?index=459 and for Debian
GNU/Linux http://www.debian.org/doc/manuals/debian-java-faq/.

http://www.java.com/penalty z@ en/penalty z@ download/penalty z@ help/penalty z@ testvm.jsp
https://bugzilla.redhat.com/penalty z@ show_bug.cgi?id=304021
https://bugzilla.redhat.com/penalty z@ show_bug.cgi?id=304021
http://www.fedorafaq.org/#java
http://www.mjmwired.net/penalty z@ resources/penalty z@ mjm-fedora-f8.penalty z@ html#java
http://www.mjmwired.net/penalty z@ resources/penalty z@ mjm-fedora-f8.penalty z@ html#java
http://www.mjmwired.net/penalty z@ resources/penalty z@ mjm-fedora-f9.penalty z@ html#java
http://www.mjmwired.net/penalty z@ resources/penalty z@ mjm-fedora-f9.penalty z@ html#java
http://www.mjmwired.net/penalty z@ resources/penalty z@ mjm-fedora-f10.penalty z@ html#java
http://plugindoc.mozdev.org/penalty z@ faqs/penalty z@ java.html
http://plugindoc.mozdev.org/penalty z@ faqs/penalty z@ java.html
http://www.penalty z@ konqueror.org/penalty z@ javahowto/
http://www.opera.com/penalty z@ support/penalty z@ search/penalty z@ supsearch.dml?penalty z@ index=459
http://www.debian.org/penalty z@ doc/penalty z@ manuals/penalty z@ debian-java-faq/

Appendix D: Enabling search in HTML help 60

D.2 Java Virtual Machines on Unix

We have much less experience than under Linux, but we do know that Sun’s Run-time
Environment j2re 1.4.2 03 does not work under Sparc Solaris 8, whereas jre 1.5.0 and
j2re 1.4.2 01 (available from http://java.sun.com/products/archive/) do.

D.3 Java Virtual Machines on Windows

We have not seen any problems on Windows provided a Java Virtual Machine has been
installed and is operational: Sun’s current j2re 1.6.0 works in Internet Explorer, Mozilla 1.7
and Mozilla Firefox on Windows XP/Vista. Note that a recent Windows system may not
have a JVM installed at all. Visit http://java.sun.com/getjava/manual.html to install
a Sun JVM. Which (if any) JVM is enabled can be set in ‘Set Program Access and Defaults’
in Windows XP (SP1 or later), and which JVM is used by browser plugins may also be
controlled by the Sun Java applet in the Control Panel.

Recent versions of Internet Explorer may block the use of Java applets and need the
block removed via the information bar. Also, we have seen cases in which the search results
come up as a blank page: go back one page in the browser history to find the real results
page.

Apple’s Safari 3.0.4 also works.

D.4 Java Virtual Machines on Mac OS X

Java 1.5.0 ships with recent versions of Mac OS X, and the HTML search engine works with
Safari under Mac OS 10.5.

http://java.sun.com/penalty z@ products/penalty z@ archive/
http://java.sun.com/penalty z@ getjava/penalty z@ manual.html

Appendix E: The Windows toolset 61

Appendix E The Windows toolset

If you want to build R or add-on packages from source in Windows, you will need to col-
lect, install and test an extensive set of tools. See http://www.murdoch-sutherland.com/
Rtools/ for the current locations and other updates to these instructions. (Most Windows
users will not need to build add-on packages from source; see Chapter 6 [Add-on packages],
page 17 for details.)

Only building with gcc 4.y.z is supported, and that compiler set works out-of-the-box
on Windows Vista.

We have found that the build process for R is quite sensitive to the choice of tools: please
follow our instructions exactly, even to the choice of particular versions of the tools.1 The
build process for add-on packages is somewhat more forgiving, but we recommend using
the exact toolset at first, and only substituting other tools once you are familiar with the
process.

This section contains a lot of prescriptive comments. They are here as a result of bit-
ter experience. Please do not report problems to R-help unless you have followed all the
prescriptions.

We have collected most of the necessary tools (unfortunately not all, due to license
or size limitations) into an executable installer named ‘Rtools.exe’, available from
http://www.murdoch-sutherland.com/Rtools/. You should download and run it,
choosing the default “Package authoring installation” to build add-on packages, or the
“full installation” if you intend to build R.

You will need the following items to build R and packages. See the subsections below
for detailed descriptions.

• Perl (in ‘Rtools.exe’)
• The command line tools (in ‘Rtools.exe’)
• The MinGW compilers (in ‘Rtools.exe’)

For building simple packages containing data or R source but no compiled code, only
the first two of these are needed.

A complete build of R including compiled HTML help files and PDF manuals, and
producing the standalone installer ‘R-2.9.0-win32.exe’ will also need the following:

• The Microsoft HTML Help Workshop
• LATEX
• The Inno Setup installer

It is important to set your PATH properly. The ‘Rtools.exe’ optionally sets the path to
components that it installs.

Your PATH may include ‘.’ first, then the ‘bin’ directories of the tools, Perl, MinGW and
LATEX, as well as the Help Workshop directory. Do not use filepaths containing spaces: you
can always use the short forms (found by dir /x at the Windows command line). Network
shares (with paths starting \\) are not supported. For example, all on one line,

1 For example, the Cygwin version of make 3.81 fails to work correctly.

http://www.murdoch-sutherland.com/penalty z@ Rtools/
http://www.murdoch-sutherland.com/penalty z@ Rtools/
http://www.murdoch-sutherland.com/penalty z@ Rtools/

Appendix E: The Windows toolset 62

PATH=c:\Rtools\bin;c:\Rtools\perl\bin;c:\Rtools\MinGW\bin;c:\texmf\miktex\bin;

c:\progra~1\htmhe~1;c:\R\bin;c:\windows;c:\windows\system32

It is essential that the directory containing the command line tools comes first or second
in the path: there are typically like-named tools in other directories, and they will not work.
The ordering of the other directories is less important, but if in doubt, use the order above.

Edit ‘R_HOME/src/gnuwin32/MkRules’ to set the appropriate paths as needed and to
set the type(s) of help that you want built. Beware: ‘MkRules’ contains tabs and some
editors (e.g., WinEdt) silently remove them.

Set the appropriate environment variables.

Our toolset contains copies of Cygwin DLLs that may conflict with other ones on your
system if both are in the path at once. The normal recommendation is to delete the older
ones; however, at one time we found our tools did not work with a newer version of the
Cygwin DLLs, so it may be safest not to have any other version of the Cygwin DLLs in
your path.

E.1 Perl

You will need a Windows port of perl5 (but only the basic functionality, not any of the
third-party Win32 extensions). The Vanilla Perl package is included in ‘Rtools.exe’. A
more full- featured distribution is available from http://www.activestate.com/Products/
ActivePerl/, and this was used in releases of R up to R 2.5.1. Alternatives are listed at
http://win32.perl.org/.

Beware: you do need a Windows port and not the Cygwin one. Users of 64-bit Windows
can use a Win64 Perl (such as that from ActiveState) if they prefer.

E.2 The Microsoft HTML Help Workshop

To make compiled html (‘.chm’) files you will need the Microsoft HTML Help Work-
shop, currently available for download at http://msdn.microsoft.com/library/en-us/
htmlhelp/html/hwmicrosofthtmlhelpdownloads.asp and http://www.microsoft.com/
office/ork/xp/appndx/appa06.htm. This is not included in ‘Rtools.exe’.

If this is not installed, Rcmd INSTALL will skip compiled HTML help (with a mes-
sage). However, to build R itself without CHM help, you need to set USE_CHM = FALSE
in ‘src/gnuwin32/MkRules’.

E.3 LATEX

The ‘MiKTeX’ (http://www.miktex.org/) distribution of LATEX includes a suitable
port of pdftex. The ‘basic’ version of ‘MiKTeX’ almost suffices (the grid vignettes need
‘fancyvrb.sty’), but it will install the 15Mb ‘lm’ package if allowed to (although that is
not actually used). The ‘Rtools.exe’ installer does not include any version of LATEX.

Please read Section 2.2 [Making the manuals], page 4 about how to make ‘refman.pdf’
and set the environment variables R_RD4DVI and R_RD4PDF suitably; ensure you have the
required fonts installed.

http://www.activestate.com/penalty z@ Products/penalty z@ ActivePerl/
http://www.activestate.com/penalty z@ Products/penalty z@ ActivePerl/
http://win32.perl.org/
http://msdn.microsoft.com/penalty z@ library/penalty z@ en-us/penalty z@ htmlhelp/penalty z@ html/penalty z@ hwmicrosofthtmlhelpdownloads.asp
http://msdn.microsoft.com/penalty z@ library/penalty z@ en-us/penalty z@ htmlhelp/penalty z@ html/penalty z@ hwmicrosofthtmlhelpdownloads.asp
http://www.microsoft.com/penalty z@ office/penalty z@ ork/penalty z@ xp/penalty z@ appndx/penalty z@ appa06.htm
http://www.microsoft.com/penalty z@ office/penalty z@ ork/penalty z@ xp/penalty z@ appndx/penalty z@ appa06.htm
http://www.miktex.org/

Appendix E: The Windows toolset 63

E.4 The Inno Setup installer

To make the installer package (‘R-2.9.0-win32.exe’) we require Inno Setup 5.1.7 or later
(including 5.2.x) from http://jrsoftware.org/. This is not included in ‘Rtools.exe’.

Edit file ‘src/gnuwin32/MkRules’ and change ISDIR to the location where Inno Setup
was installed.

E.5 The command line tools

This item and the next are installed by the ‘Rtools.exe’ installer.

If you choose to install these yourself, you will need suitable versions of at least basename,
cat, cmp, comm, cp, cut, diff, echo, egrep, expr, find, gawk, grep, gzip, head, ls, make,
makeinfo, mkdir, mv, rm, rsync, sed, sh, sort, texindex and touch; we use those from
the Cygwin distribution (http://www.cygwin.com/) or compiled from the sources. You
will also need zip and unzip from the Info-ZIP project (http://www.info-zip.org/). All
of these tools are in ‘Rtools.exe’.

Beware: ‘Native’ ports of make are not suitable (including that at the mingw site).
There were also problems with several earlier versions of the cygwin tools and DLLs. To
avoid frustration, please use our tool set, and make sure it is at the front of your path
(including before the Windows system directories). If you are using a Windows shell, type
PATH at the prompt to find out.

E.6 The MinGW compilers

This version of R is set up to use gcc 4.2.1 for which MinGW compilers were released in
August 2007. The ‘Rtools.exe’ installer currently includes the -sjlj version of 4.2.1 of
the MinGW port of gcc from http://sourceforge.net/project/showfiles.php?group_
id=2435.

If you would like to install your own copy, we recommed downloading from the URL
above, as the download links from http://www.mingw.org/ have led to obsolete versions.
See the notes on http://www.murdoch-sutherland.com/Rtools/ for updates.

To download the components individually, currently you need

mingw-runtime-3.13.tar.gz
w32api-3.10.tar.gz
binutils-2.17.50-20060824-1.tar.gz
gcc-core-4.2.1-sjlj-2.tar.gz
gcc-g++-4.2.1-sjlj-2.tar.gz
gcc-gfortran-4.2.1-sjlj-2.tar.gz

(and gcc-objc-4.2.1-sjlj-2.tar.gz if you want Objective C support). Unpack
these into the same directory (using tar zxf tarball_name). (You may need to
copy ‘bin/gcc-sjlj.exe’ to ‘bin/gcc.exe’ and a few badly-written packages need
‘bin/g++-sjlj.exe’ copied to ‘bin/g++.exe’.) This compiler should work on Windows
Vista without any workarounds.

Note that mingw-runtime-3.13.tar.gz or later and gcc-4.2.1 or later are needed to
get a correct build of R itself. (The ‘Snapshot’ binutils-2.17.50-20070129-1.tar.gz
has also be tested.) There are known problems with using other compiler sets on Windows

http://jrsoftware.org/
http://www.cygwin.com/
http://www.info-zip.org/
http://sourceforge.net/penalty z@ project/penalty z@ showfiles.php?penalty z@ group_id=2435
http://sourceforge.net/penalty z@ project/penalty z@ showfiles.php?penalty z@ group_id=2435
http://www.mingw.org/
http://www.murdoch-sutherland.com/penalty z@ Rtools/

Appendix E: The Windows toolset 64

Vista (http://www.nabble.com/environment-hosed-during-upgrade-tf3305745
.html#a9195667) and that a suitable PATH needs to be set to include the path to ‘cc1’.

Other builds of gcc 4 are available from http://gcc.gnu.org/wiki/GFortranBinaries/
and http://www.tdragon.net/recentgcc/: these need the PATH workaround on Vista.

http://www.nabble.com/penalty z@ environment-penalty z@ hosed-penalty z@ during-penalty z@ upgrade-penalty z@ tf3305745penalty z@ .html#a9195667
http://www.nabble.com/penalty z@ environment-penalty z@ hosed-penalty z@ during-penalty z@ upgrade-penalty z@ tf3305745penalty z@ .html#a9195667
http://gcc.gnu.org/wiki/GFortranBinaries/
http://www.tdragon.net/recentgcc/

Function and variable index 65

Function and variable index

C
configure . 3, 4, 5, 6, 39, 41

I
install.packages . 18

M
make . 41

R

R_HOME . 3

remove.packages . 20

U

update.packages . 20

Concept index 66

Concept index

A
AIX . 54

B
BLAS library 33, 41, 48, 50, 52

F
FORTRAN . 41

H
Help pages . 4
HP-UX . 52

I
Installation . 5
Installing under Unix-alikes . 3
Installing under Windows . 10
Internationalization . 22
IRIX. 53

L
LAPACK library 36, 48, 50, 52
Libraries . 17
Libraries, managing . 17
Libraries, site . 17
Libraries, user . 17
Linux. 3, 45
Locale . 22
Localization . 22

M
Mac OS X . 3, 15, 48
Manuals . 4
Manuals, installing . 7

O
Obtaining R . 1

P
Packages . 17
Packages, default . 17
Packages, installing . 18
Packages, removing . 20
Packages, updating . 20

R
Rbitmap.dll . 12
Repositories . 20

S
Site libraries. 17
Solaris . 49
Sources for R . 1
Subversion . 1, 4, 31

U
User libraries . 17

V
Vignettes . 4, 30

Environment variable index 67

Environment variable index

B
BLAS_LIBS . 33

C
CONFIG_SITE . 39

D
DISPLAY . 48

J
JAVA_HOME . 32

L
LANG . 23
LANGUAGE . 23
LAPACK_LIBS . 36
LC_ALL . 23
LC_MESSAGES . 23

LD_LIBRARY_PATH 41, 43, 49, 52
LD_LIBRRARY_PATH . 34
LIBS . 54

P
PAPERSIZE . 40

R
R_BROWSER . 40
R_DEFAULT_PACKAGES . 17
R_JAVA_LD_LIBRARY_PATH . 32
R_LIBS . 17, 18
R_LIBS_SITE . 17
R_LIBS_USER . 17
R_PAPERSIZE . 5, 40
R_RD4DVI . 5, 40, 62
R_RD4PDF . 5, 40, 62

T
TMPDIR . 3, 12, 16, 18

	Obtaining R
	Getting and unpacking the sources
	Getting patched and development versions
	Using Subversion and rsync

	Installing R under Unix-alikes
	Simple compilation
	Making the manuals
	Installation
	Uninstallation
	Sub-architectures
	Multilib

	Testing an Installation

	Installing R under Windows
	Building from source
	Getting the tools
	Getting the source files
	Building the core files
	Building the bitmap files
	Checking the build
	Building the manuals
	Building the Inno Setup installer
	Building the MSI installer
	Cross-building on Linux

	Testing an Installation

	Installing R under Mac OS X
	Building from source on Mac OS X

	Running R
	Add-on packages
	Default packages
	Managing libraries
	Installing packages
	Windows
	Mac OS X
	Customizing package compilation

	Updating packages
	Removing packages
	Setting up a package repository

	Internationalization and Localization
	Locales
	Locales under Linux
	Locales under Windows
	Locales under Mac OS X

	Localization of messages

	Choosing between 32- and 64-bit builds
	Windows

	The standalone Rmath library
	Unix
	Windows

	Essential and useful other programs under Unix
	Essential programs
	Useful libraries and programs
	Tcl/Tk
	Java support

	Linear algebra
	BLAS
	ATLAS
	ACML
	Goto BLAS
	Intel MKL
	Shared BLAS

	LAPACK
	Caveats

	Configuration on Unix
	Configuration options
	Internationalization support
	Configuration variables
	Setting paper size
	Setting the browser
	Compilation flags
	Making manuals

	Setting the shell
	Using make
	Using FORTRAN
	Using gfortran

	Compile and load flags

	Platform notes
	X11 issues
	Linux
	Intel compilers
	PGI compilers
	SunStudio compilers

	Mac OS X
	64-bit builds

	Solaris
	Solaris 10 and Open Solaris
	Sparc Solaris 9 and earlier

	HP-UX
	IRIX
	Alpha/OSF1
	Alpha/FreeBSD
	AIX
	Cygwin
	New platforms

	Enabling search in help
	Java Virtual Machines on Linux
	Java Virtual Machines on Unix
	Java Virtual Machines on Windows
	Java Virtual Machines on Mac OS X

	The Windows toolset
	Perl
	The Microsoft Help Workshop
	LaTeX{}
	The Inno Setup installer
	The command line tools
	The MinGW compilers

	Function and variable index
	Concept index
	Environment variable index

