Title: Discrete Hankel Transforms

1 Class Methods

GSL::Dht.alloc(size)
GSL::Dht.alloc(size, nu, xmax)
These methods allocate a Discrete Hankel transform object GSL::Dht of size size. If three arguments are given, the object is initialized with the values of nu, xmax.

2 Methods

GSL::Dht#init(nu, xmax)
This initializes the transform self for the given values of nu and xmax.
GSL::Dht#apply(vin, vout)
GSL::Dht#apply(vin)
This applies the transform self to the vector vin whose size is equal to the size of the transform.
GSL::Dht#x_sample(n)
This method returns the value of the n'th sample point in the unit interval, (j_{nu,n+1}/j_{nu,M}) X. These are the points where the function f(t) is assumed to be sampled.
GSL::Dht#k_sample(n)
This method returns the value of the n'th sample point in "k-space", j_{nu,n+1}/X.
GSL::Dht#size
Returns the size of the sample arrays to be transformed
GSL::Dht#nu
Returns the Bessel function order
GSL::Dht#xmax
Returns the upper limit to the x-sampling domain
GSL::Dht#kmax
Returns the upper limit to the k-sampling domain
GSL::Dht#j
Returns an array of computed J_nu zeros, j_{nu,s} = j[s] as a GSL::Vector::View.
GSL::Dht#Jjj
Returns an array of transform numerator, J_nu(j_i j_m / j_N) as a GSL::Vector::View.
GSL::Dht#J2
Returns an array of transform numerator, J_nu(j_i j_m / j_N).
GSL::Dht#coef
GSL::Dht#coef(n, m)
Return the (n,m)-th transform coefficient.

prev next

Reference index top