[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

55. interpol


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

55.1 Introduction to interpol

Package interpol defines de Lagrangian, the linear and the cubic splines methods for polynomial interpolation.

For comments, bugs or suggestions, please contact me at 'mario AT edu DOT xunta DOT es'.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

55.2 Definitions for interpol

Function: lagrange (points)
Function: lagrange (points, option)

Computes the polynomial interpolation by the Lagrangian method. Argument points must be either:

In the first two cases the pairs are ordered with respect to the first coordinate before making computations.

With the option argument it is possible to select the name for the independent variable, which is 'x by default; to define another one, write something like varname='z.

Examples:

 
(%i1) load("interpol")$
(%i2) p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$
(%i3) lagrange(p);
                 4        3         2
             73 x    701 x    8957 x    5288 x   186
(%o3)        ----- - ------ + ------- - ------ + ---
              420     210       420      105      5
(%i4) f(x):=''%;
                     4        3         2
                 73 x    701 x    8957 x    5288 x   186
(%o4)    f(x) := ----- - ------ + ------- - ------ + ---
                  420     210       420      105      5
(%i5) /* Evaluate the polynomial at some points */
      map(f,[2.3,5/7,%pi]);
                             919062
(%o5)  [- 1.567534999999992, ------,
                             84035
                         4          3           2
                   73 %pi    701 %pi    8957 %pi    5288 %pi   186
                   ------- - -------- + --------- - -------- + ---]
                     420       210         420        105       5
(%i6) %,numer;
(%o6) [- 1.567534999999992, 10.9366573451538, 2.89319655125692]
(%i7) /* Plot the polynomial together with points */
      plot2d([f(x),[discrete,p]],[x,0,10],
           [gnuplot_curve_styles,
                 ["with lines","with points pointsize 3"]])$
(%i8) /* Change variable name */
      lagrange(p, varname=w);
                 4        3         2
             73 w    701 w    8957 w    5288 w   186
(%o8)        ----- - ------ + ------- - ------ + ---
              420     210       420      105      5
Function: charfun2 (x, a, b)

Returns true if number x belongs to the interval [a, b), and false otherwise.

Function: linearinterpol (points)
Function: linearinterpol (points, option)

Computes the polynomial interpolation by the linear method. Argument points must be either:

In the first two cases the pairs are ordered with respect to the first coordinate before making computations.

With the option argument it is possible to select the name for the independent variable, which is 'x by default; to define another one, write something like varname='z.

Examples:

 
(%i1) load("interpol")$
(%i2) p: matrix([7,2],[8,3],[1,5],[3,2],[6,7])$
(%i3) linearinterpol(p);
        13   3 x
(%o3)  (-- - ---) charfun2(x, minf, 3)
        2     2
 + (x - 5) charfun2(x, 7, inf) + (37 - 5 x) charfun2(x, 6, 7)
    5 x
 + (--- - 3) charfun2(x, 3, 6)
     3

(%i4) f(x):=''%;
                13   3 x
(%o4)  f(x) := (-- - ---) charfun2(x, minf, 3)
                2     2
 + (x - 5) charfun2(x, 7, inf) + (37 - 5 x) charfun2(x, 6, 7)
    5 x
 + (--- - 3) charfun2(x, 3, 6)
     3
(%i5)  /* Evaluate the polynomial at some points */
       map(f,[7.3,25/7,%pi]);
                            62  5 %pi
(%o5)                 [2.3, --, ----- - 3]
                            21    3
(%i6) %,numer;
(%o6)  [2.3, 2.952380952380953, 2.235987755982989]
(%i7)  /* Plot the polynomial together with points */
       plot2d(['(f(x)),[discrete,args(p)]],[x,-5,20],
           [gnuplot_curve_styles,
                 ["with lines","with points pointsize 3"]])$
(%i8)  /* Change variable name */
       linearinterpol(p, varname='s);
       13   3 s
(%o8) (-- - ---) charfun2(s, minf, 3)
       2     2
 + (s - 5) charfun2(s, 7, inf) + (37 - 5 s) charfun2(s, 6, 7)
    5 s
 + (--- - 3) charfun2(s, 3, 6)
     3
Function: cspline (points)
Function: cspline (points, option1, option2, ...)

Computes the polynomial interpolation by the cubic splines method. Argument points must be either:

In the first two cases the pairs are ordered with respect to the first coordinate before making computations.

There are three options to fit specific needs:

Examples:

 
(%i1) load("interpol")$
(%i2) p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$
(%i3) /* Unknown first derivatives at the extremes
         is equivalent to natural cubic splines */
      cspline(p);
              3         2
        1159 x    1159 x    6091 x   8283
(%o3)  (------- - ------- - ------ + ----) charfun2(x, minf, 3)
         3288      1096      3288    1096
            3         2
      2587 x    5174 x    494117 x   108928
 + (- ------- + ------- - -------- + ------) charfun2(x, 7, inf)
       1644       137       1644      137
          3          2
    4715 x    15209 x    579277 x   199575
 + (------- - -------- + -------- - ------) charfun2(x, 6, 7)
     1644       274        1644      274
            3         2
      3287 x    2223 x    48275 x   9609
 + (- ------- + ------- - ------- + ----) charfun2(x, 3, 6)
       4932       274      1644     274

(%i4) f(x):=''%$
(%i5) /* Some evaluations */
      map(f,[2.3,5/7,%pi]), numer;
(%o5) [1.991460766423356, 5.823200187269903, 2.227405312429507]
(%i6) /* Plotting interpolating function */
      plot2d(['(f(x)),[discrete,p]],[x,0,10],
          [gnuplot_curve_styles,
               ["with lines","with points pointsize 3"]])$
(%i7) /* New call, but giving values at the derivatives */
      cspline(p,d1=0,dn=0);
              3          2
        1949 x    11437 x    17027 x   1247
(%o7)  (------- - -------- + ------- + ----) charfun2(x, minf, 3)
         2256       2256      2256     752
            3          2
      1547 x    35581 x    68068 x   173546
 + (- ------- + -------- - ------- + ------) charfun2(x, 7, inf)
        564       564        141      141
         3          2
    607 x    35147 x    55706 x   38420
 + (------ - -------- + ------- - -----) charfun2(x, 6, 7)
     188       564        141      47
            3         2
      3895 x    1807 x    5146 x   2148
 + (- ------- + ------- - ------ + ----) charfun2(x, 3, 6)
       5076       188      141      47
(%i8) /* Defining new interpolating function */
      g(x):=''%$
(%i9) /* Plotting both functions together */
      plot2d(['(f(x)),'(g(x)),[discrete,p]],[x,0,10],
           [gnuplot_curve_styles,
              ["with lines","with lines","with points pointsize 3"]])$

[ << ] [ >> ]           [Top] [Contents] [Index] [ ? ]

This document was generated by Robert Dodier on May, 2 2007 using texi2html 1.76.