
GNUPLOT
An Interactive Plotting Program

Thomas Williams & Colin Kelley
Version 4.0 organized by: Lars Hecking
Major contributors (alphabetic order):

Hans-Bernhard Broeker
John Campbell

Robert Cunningham
David Denholm
Gershon Elber
Roger Fearick

Carsten Grammes
Lucas Hart

Lars Hecking
Thomas Koenig

David Kotz
Ed Kubaitis
Russell Lang

Alexander Lehmann
Alexander Mai
Ethan Merritt
Petr Mikulik

Carsten Steger
Tom Tkacik

Jos Van der Woude
Alex Woo

James R. Van Zandt
Johannes Zellner

Copyright (C) 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley

Mailing list for comments: gnuplot-info@lists.sourceforge.net
Mailing list for bug reports: gnuplot-bugs@lists.sourceforge.net

10 August 2006

-2-

This manual was prepared by Dick Crawford.
3 December 1998

1. Gnuplot

2. Copyright

Copyright (C) 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley

Permission to use, copy, and distribute this software and its documentation for any purpose with
or without fee is hereby granted, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation.

Permission to modify the software is granted, but not the right to distribute the complete modi-
fied source code. Modifications are to be distributed as patches to the released version. Permis-
sion to distribute binaries produced by compiling modified sources is granted, provided you

1. distribute the corresponding source modifications from the
released version in the form of a patch file along with the binaries,

2. add special version identification to distinguish your version
in addition to the base release version number,

3. provide your name and address as the primary contact for the
support of your modified version, and

4. retain our contact information in regard to use of the base
software.

Permission to distribute the released version of the source code along with corresponding source
modifications in the form of a patch file is granted with same provisions 2 through 4 for binary
distributions.

This software is provided "as is" without express or implied warranty to the extent permitted by
applicable law.

AUTHORS

Original Software:
Thomas Williams, Colin Kelley.

Gnuplot 2.0 additions:
Russell Lang, Dave Kotz, John Campbell.

Gnuplot 3.0 additions:
Gershon Elber and many others.

Gnuplot 4.0 additions:

GNUPLOT 4.0 2

See list of contributors at head of this document.

3. Introduction

gnuplot is a command-driven interactive function and data plotting program. It is case sensitive
(commands and function names written in lowercase are not the same as those written in CAPS).
All command names may be abbreviated as long as the abbreviation is not ambiguous. Any num-
ber of commands may appear on a line (with the exception that load or call must be the final
command), separated by semicolons (;). Strings are indicated with quotes. They may be either
single or double quotation marks, e.g.,

load "filename"
cd ’dir’

although there are some subtle differences (see syntax for more details).

Any command-line arguments are assumed to be names of files containing gnuplot commands,
with the exception of standard X11 arguments, which are processed first. Each file is loaded with
the load command, in the order specified. gnuplot exits after the last file is processed. When no
load files are named, gnuplot enters into an interactive mode. The special filename "-" is used to
denote standard input. See "help batch/interactive" for more details.

Many gnuplot commands have multiple options. These options must appear in the proper order,
although unwanted ones may be omitted in most cases. Thus if the entire command is "command
a b c", then "command a c" will probably work, but "command c a" will fail.

Commands may extend over several input lines by ending each line but the last with a backslash
(\). The backslash must be the last character on each line. The effect is as if the backslash and
newline were not there. That is, no white space is implied, nor is a comment terminated. There-
fore, commenting out a continued line comments out the entire command (see comments). But
note that if an error occurs somewhere on a multi-line command, the parser may not be able to
locate precisely where the error is and in that case will not necessarily point to the correct line.

In this document, curly braces ({}) denote optional arguments and a vertical bar (|) separates
mutually exclusive choices. gnuplot keywords or help topics are indicated by backquotes or
boldface (where available). Angle brackets (<>) are used to mark replaceable tokens. In many
cases, a default value of the token will be taken for optional arguments if the token is omitted, but
these cases are not always denoted with braces around the angle brackets.

For on-line help on any topic, type help followed by the name of the topic or just help or ? to get
a menu of available topics.

The new gnuplot user should begin by reading about plotting (if on-line, type help plotting).

See the simple.dem demo, also available together with other demos on the web page
http://www.gnuplot.info/demo/simple.html

GNUPLOT 4.0 3

4. Seeking-assistance

There is a mailing list for gnuplot users. Note, however, that the newsgroup
comp.graphics.apps.gnuplot

is identical to the mailing list (they both carry the same set of messages). We prefer that you
read the messages through the newsgroup rather than subscribing to the mailing list. Instructions
for subscribing to gnuplot mailing lists may be found via the gnuplot development website on
SourceForge

http://sourceforge.net/projects/gnuplot

The address for mailing to list members is:
gnuplot-info@lists.sourceforge.net

Bug reports and code contributions should be mailed to:
gnuplot-bugs@lists.sourceforge.net

The list of those interested in beta-test versions is:
gnuplot-beta@lists.sourceforge.net

There is also the canonical (if occassionally out-of-date) gnuplot web page at

http://www.gnuplot.info

Before seeking help, please check the

FAQ (Frequently Asked Questions) list.

When posting a question, please include full details of the version of gnuplot, the machine, and
operating system you are using. A small script demonstrating the problem may be useful.
Function plots are preferable to datafile plots. If email-ing to gnuplot-info, please state whether or
not you are subscribed to the list, so that users who use news will know to email a reply to you.
There is a form for such postings on the WWW site.

5. What is New in Version 4.0

The previous official release of gnuplot was version 3.7, with subversions up to 3.7.3. Gnuplot ver-
sion 4.0 contains many new features, which were gradually introduced into a series of development
snapshots 3.8a through 3.8k. This section lists major additions and gives a partial list of changes
and minor new features. Sample gnuplot scripts demonstrating many of these features are pro-
vided in the gnuplot distribution, and are referred to here by name.

5.1. Mouse and hotkey support in interactive terminals

Interaction with the current plot via mouse and hotkeys is supported for the X11, OS/2 Pre-
sentation Manager, ggi and Windows terminals. See mouse input for more information on

GNUPLOT 4.0 4

mousing. See help for bind for information on hotkeys. Also see the documentation for indi-
vidual mousing terminals ggi, pm, windows and x11.

Here are briefly some useful hotkeys. Hit ’h’ in the interactive interval for help. Hit ’m’ to
switch mousing on/off. Hit ’g’ for grid, ’l’ for log and ’e’ for replot. Hit ’r’ for ruler to mea-
sure peak distances (linear scale) or peak ratios (log scale), and ’5’ for polar coordinates
inside a map. Zoom by mouse (MB3), and move in the zoom history by ’p’, ’u’, ’n’; hit ’a’
for autoscale. Use other mouse buttons to put current mouse coordinates to clipboard (dou-
ble click of MB1), add temporarily or permanently labels to the plot (middle mouse button
MB2). Rotate a 3D surface by mouse. Hit spacebar to switch to the gnuplot command win-
dow.

Sample script: mousevariables.dem

5.2. New terminal features

aqua: New terminal for Mac OS X. Requires AquaTerm 1.0 or later.

epslatex: New terminal. Prepares eps figures for inclusion in LaTeX documents.

gif: Support for this terminal has been dropped in favour of the png format for legal rea-
sons; under usual configure conditions, old scripts that request gif will work but will produce
a png file instead.

ggi: New full-screen interactive terminal for Linux. Interface to the General Graphics Inter-
face Library.

pdf: New terminal exporting Adobe Portable Document Format. Requires libpdf.

png and jpeg: Support for both PNG and JPEG image output is provided by a new driver
via libgd. The new driver supports many more features than the old png driver, including
TrueType fonts. Requires libgd.

postscript: The PostScript driver now provides an oblique symbol font, and allows run-time
inclusion of embedded PostScript fonts. It also supports additional character encodings. See
postscript fontfile and set encoding.

Sample script: fontfile.dem

svg: New terminal exporting Scalable Vector Graphics.

x11: The X-windows driver now allows you to specify fonts, see set term x11 x11 fonts.
There is no longer a limit to the number of x11 plot windows opened simultaneously, and
each plot window can be given its own title. See set term x11.

GNUPLOT 4.0 5

5.3. New plot style ‘pm3d‘

The splot command is now capable of plotting 2D maps and 3D surfaces colored by
greyscale or color palettes. See help for set pm3d, set palette, set cbrange, set view
map, set colorbox and test palette.

Sample scripts: pm3d.dem pm3dcolors.dem pm3dgamma.dem

5.4. New plot style ‘filledcurves‘

The style filledcurves allows to fill an area between the drawn curve and a horizontal line.

Sample script: fillcrvs.dem

5.5. Filled boxes

A solid color or patterned fill style can be set for any plot style that contains boxes. See
boxes, boxerrorbars, boxxyerrorbars, candlesticks, set style fill.

Sample scripts: fillstyle.dem candlesticks.dem

5.6. New plot option smooth frequency

Input data can be filtered through several built-in routines for interpolation or approxima-
tion of data. See smooth, frequency, unique.

Sample scripts: step.dem mgr.dem

5.7. Improved text options

Most gnuplot plot commands that produce text labels now accept modifiers to specify text
color, font, size, and rotation angle. See set label. Not all terminal types support these
options, however. The enhanced text mode previously available for the postscript and pm
terminals has been extended to other terminal types as well. Terminal types currently sup-
ported include dumb, jpeg, pdf, pm, png, postscript, and x11. See enhanced text.

GNUPLOT 4.0 6

Sample scripts: textcolor.dem textrotate.dem

5.8. More text encodings

Several terminals, including postscript, x11 and pm, support additional text encodings:
ISO 8859-1 (Latin 1), ISO 8859-2 (Latin 2), ISO 8859-15 (variant of 8859-1 with Euro sign),
KOI8-R (cyrillic), and miscellaneous codepages. See encoding for more details.

5.9. Arrows

Single- or double-ended arrows can be placed on a plot individually from the command line
or from a data file via the plot with vectors style. See set style arrow, plotting styles
vectors.

Sample script: arrowstyle.dem

5.10. Data file format

The new set datafile command can be used to specify information about the format of
input data files, including the characters used to separate fields, to indicate comment lines,
and to specify missing data. Gnuplot now attempts to recognize text fields with embedded
blanks as single entities based on the datafile format settings. This allows input from csv
(comma-separated value) files such as those exported by spreadsheet programs. See set
datafile.

5.11. Other changes and additions

The preferred syntax to undo a command set <something> is now unset <something>
rather than set no<something>. The older form has been deprecated. Version 4.0 contin-
ues to allow the older syntax, but such backwards compatibility may be lost in future ver-
sions.

Commands of the form set <something> <style> also are deprectated in favor of the
more general form set style <something> <options>. Many more plot elements now
have style options of their own, including arrows, filled areas, lines, and points. There are
also style settings for input data and formatting. Please see set style, set decimalsign,

GNUPLOT 4.0 7

and set datafile.

Improved 2D and 3D clipping (hidden lines).

More consistent point styles and other default formatting styles across all terminals. Please
use the test command to check default styles and plotting capabilities for the currently
selected terminal type.

The set label command supports associated points, and allows you to specify point style
and text style (font, rotation, etc). User variables can be included in labels via format speci-
fiers in the label text. See set label.

New command set view map to select top-view 2D projection of 3D surface plot.

New commands set term push and set term pop to achieve platform independent restor-
ing of the terminal after printing,

The load and save commands accept piped input and output, respectively.

The history command (for gnuplot with its own readline, not with GNU readline) now
includes several useful options.

The built-in function rand(x) has been modified to allow explicit seeding of the pseudo-ran-
dom number generator. See random.

The MS Windows package includes an additional executable pgnuplot.exe to support pip-
ing command through standard input, which is otherwise not available for graphical applica-
tions on this system.

5.12. Accompanying documentation

In directory docs/psdocs/ you may find new information in the gnuplot output postscript
file guide, list of postscript symbols in different encodings.

Improved FAQ. Please read it before asking your question in a public forum.

There are plenty of new demos *.dem in the demo/ directory. Please run them, for example
by

load "all.dem"
before asking for help. Plots produced by the demo scripts can also be viewed at
http://www.gnuplot.info/demo/

6. Batch/Interactive Operation

gnuplot may be executed in either batch or interactive modes, and the two may even be mixed
together on many systems.

GNUPLOT 4.0 8

Any command-line arguments are assumed to be names of files containing gnuplot commands
(with the exception of standard X11 arguments, which are processed first). Each file is loaded
with the load command, in the order specified. gnuplot exits after the last file is processed.
When no load files are named, gnuplot enters into an interactive mode. The special filename "-"
is used to denote standard input.

Both the exit and quit commands terminate the current command file and load the next one,
until all have been processed.

Examples:

To launch an interactive session:
gnuplot

To launch a batch session using two command files "input1" and "input2":
gnuplot input1 input2

To launch an interactive session after an initialization file "header" and followed by another com-
mand file "trailer":

gnuplot header - trailer

7. Command-line-editing

Command-line editing is supported by the Unix, Atari, VMS, MS-DOS and OS/2 versions of gnu-
plot. Also, a history mechanism allows previous commands to be edited and re-executed. After
the command line has been edited, a newline or carriage return will enter the entire line without
regard to where the cursor is positioned.

(The readline function in gnuplot is not the same as the readline used in GNU Bash and GNU
Emacs. If the GNU version is desired, it may be selected instead of the gnuplot version at com-
pile time.)

The editing commands are as follows:

GNUPLOT 4.0 9

Character Function
Line Editing

ˆB move back a single character.
ˆF move forward a single character.
ˆA move to the beginning of the line.
ˆE move to the end of the line.

ˆH, DEL delete the previous character.
ˆD delete the current character.
ˆK delete from current position to the end of line.

ˆL, ˆR redraw line in case it gets trashed.
ˆU delete the entire line.
ˆW delete from the current word to the end of line.

History
ˆP move back through history.
ˆN move forward through history.

On the IBM PC, the use of a TSR program such as DOSEDIT or CED may be desired for line
editing. The default makefile assumes that this is the case; by default gnuplot will be compiled
with no line-editing capability. If you want to use gnuplot’s line editing, set READLINE in the
makefile and add readline.obj to the link file. The following arrow keys may be used on the IBM
PC and Atari versions if readline is used:

Arrow key Function
Left Arrow same as ˆB.

Right Arrow same as ˆF.
Ctrl Left Arrow same as ˆA.

Ctrl Right Arrow same as ˆE.
Up Arrow same as ˆP.

Down Arrow same as ˆN.

The Atari version of readline defines some additional key aliases:

Key Function
Undo same as ˆL.
Home same as ˆA.

Ctrl Home same as ˆE.
Esc same as ˆU.
Help help plus return.

Ctrl Help help .

GNUPLOT 4.0 10

8. Comments

Comments are supported as follows: a # may appear in most places in a line and gnuplot will
ignore the rest of the line. It will not have this effect inside quotes, inside numbers (including
complex numbers), inside command substitutions, etc. In short, it works anywhere it makes sense
to work.

See also set datafile commentschars for specifying comment characters in data files.

9. Coordinates

The commands set arrow, set key, and set label allow you to draw something at an arbitrary
position on the graph. This position is specified by the syntax:

{<system>} <x>, {<system>} <y> {,{<system>} <z>}

Each <system> can either be first, second, graph or screen.

first places the x, y, or z coordinate in the system defined by the left and bottom axes; second
places it in the system defined by the second axes (top and right); graph specifies the area within
the axes---0,0 is bottom left and 1,1 is top right (for splot, 0,0,0 is bottom left of plotting area; use
negative z to get to the base---see set ticslevel); and screen specifies the screen area (the entire
area---not just the portion selected by set size), with 0,0 at bottom left and 1,1 at top right.

If the coordinate system for x is not specified, first is used. If the system for y is not specified,
the one used for x is adopted.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time
string according to the timefmt format string. See set xdata and set timefmt. gnuplot will
also accept an integer expression, which will be interpreted as seconds from 1 January 2000.

10. Environment

A number of shell environment variables are understood by gnuplot. None of these are required,
but may be useful.

If GNUTERM is defined, it is used as the name of the terminal type to be used. This overrides
any terminal type sensed by gnuplot on start-up, but is itself overridden by the .gnuplot (or
equivalent) start-up file (see start-up) and, of course, by later explicit changes.

On Unix, AmigaOS, AtariTOS, MS-DOS and OS/2, GNUHELP may be defined to be the path-
name of the HELP file (gnuplot.gih).

On VMS, the logical name GNUPLOT$HELP should be defined as the name of the help library
for gnuplot. The gnuplot help can be put inside any system help library, allowing access to help
from both within and outside gnuplot if desired.

On Unix, HOME is used as the name of a directory to search for a .gnuplot file if none is found in

GNUPLOT 4.0 11

the current directory. On AmigaOS, AtariTOS, MS-DOS, Windows and OS/2, GNUPLOT is
used. On Windows, the NT-specific variable USERPROFILE is tried, too. VMS, SYS$LOGIN: is
used. Type help start-up.

On Unix, PAGER is used as an output filter for help messages.

On Unix, AtariTOS and AmigaOS, SHELL is used for the shell command. On MS-DOS and
OS/2, COMSPEC is used for the shell command.

On MS-DOS, if the BGI or Watcom interface is used, PCTRM is used to tell the maximum reso-
lution supported by your monitor by setting it to S<max. horizontal resolution>. E.g. if your
monitor’s maximum resolution is 800x600, then use:

set PCTRM=S800
If PCTRM is not set, standard VGA is used.

FIT SCRIPT may be used to specify a gnuplot command to be executed when a fit is inter-
rupted---see fit. FIT LOG specifies the default filename of the logfile maintained by fit.

GNUPLOT LIB may be used to define additional search directories for data and command files.
The variable may contain a single directory name, or a list of directories separated by a platform-
specific path separator, eg. ’:’ on Unix, or ’;’ on DOS/Windows/OS/2/Amiga platforms. The con-
tents of GNUPLOT LIB are appended to the loadpath variable, but not saved with the save
and save set commands.

Several gnuplot terminal drivers access TrueType fonts via the gd library. For these drivers the
font search path is controlled by the environmental variable GDFONTPATH. Furthermore, a
default font for these drivers may be set via the environmental variable GNU-
PLOT DEFAULT GDFONT.

The postscript terminal uses its own font search path. It is controlled by the environmental vari-
able GNUPLOT FONTPATH. The format is the same as for GNUPLOT LIB. The contents of
GNUPLOT FONTPATH are appended to the fontpath variable, but not saved with the save
and save set commands.

11. Expressions

In general, any mathematical expression accepted by C, FORTRAN, Pascal, or BASIC is valid.
The precedence of these operators is determined by the specifications of the C programming lan-
guage. White space (spaces and tabs) is ignored inside expressions.

Complex constants are expressed as {<real>,<imag>}, where <real> and <imag> must be
numerical constants. For example, {3,2} represents 3 + 2i; {0,1} represents ’i’ itself. The curly
braces are explicitly required here.

Note that gnuplot uses both "real" and "integer" arithmetic, like FORTRAN and C. Integers are
entered as "1", "-10", etc; reals as "1.0", "-10.0", "1e1", 3.5e-1, etc. The most important differ-
ence between the two forms is in division: division of integers truncates: 5/2 = 2; division of reals
does not: 5.0/2.0 = 2.5. In mixed expressions, integers are "promoted" to reals before evaluation:
5/2e0 = 2.5. The result of division of a negative integer by a positive one may vary among com-
pilers. Try a test like "print -5/2" to determine if your system chooses -2 or -3 as the answer.

GNUPLOT 4.0 12

The integer expression "1/0" may be used to generate an "undefined" flag, which causes a point
to ignored; the ternary operator gives an example.

The real and imaginary parts of complex expressions are always real, whatever the form in which
they are entered: in {3,2} the "3" and "2" are reals, not integers.

11.1. Functions

The functions in gnuplot are the same as the corresponding functions in the Unix math
library, except that all functions accept integer, real, and complex arguments, unless other-
wise noted.

For those functions that accept or return angles that may be given in either degrees or radi-
ans (sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(x) and arg(z)), the unit may be
selected by set angles, which defaults to radians.

GNUPLOT 4.0 13

Function Arguments Returns
abs(x) any absolute value of x , |x |; same type
abs(x) complex length of x ,

√
real(x)2 + imag(x)2

acos(x) any cos−1 x (inverse cosine)
acosh(x) any cosh−1 x (inverse hyperbolic cosine) in radians
arg(x) complex the phase of x
asin(x) any sin−1 x (inverse sin)
asinh(x) any sinh−1 x (inverse hyperbolic sin) in radians
atan(x) any tan−1 x (inverse tangent)

atan2(y,x) int or real tan−1(y/x) (inverse tangent)
atanh(x) any tanh−1 x (inverse hyperbolic tangent) in radians
besj0(x) int or real j0 Bessel function of x , in radians
besj1(x) int or real j1 Bessel function of x , in radians
besy0(x) int or real y0 Bessel function of x , in radians
besy1(x) int or real y1 Bessel function of x , in radians
ceil(x) any dxe, smallest integer not less than x (real part)
cos(x) radians cos x , cosine of x
cosh(x) any cosh x , hyperbolic cosine of x in radians
erf(x) any erf (real(x)), error function of real (x)
erfc(x) any erfc(real(x)), 1.0 - error function of real (x)
exp(x) any ex , exponential function of x
floor(x) any bxc, largest integer not greater than x (real part)

gamma(x) any Γ(real(x)), gamma function of real (x)
ibeta(p,q,x) any ibeta(real(p,q , x)), ibeta function of real (p,q ,x)

inverf(x) any inverse error function real(x)
igamma(a,x) any igamma(real(a, x)), igamma function of real (a,x)

imag(x) complex imaginary part of x as a real number
invnorm(x) any inverse normal distribution function real(x)

int(x) real integer part of x , truncated toward zero
lambertw(x) real Lambert W function
lgamma(x) any lgamma(real(x)), lgamma function of real (x)

log(x) any ln x , natural logarithm (base e) of x
log10(x) any log10 x , logarithm (base 10) of x
norm(x) any norm(x), normal distribution function of real(x)
rand(x) any rand(x), pseudo random number generator
real(x) any real part of x
sgn(x) any 1 if x > 0, -1 if x < 0, 0 if x = 0. imag(x) ignored
sin(x) any sin x , sine of x
sinh(x) any sinh x , hyperbolic sine of x in radians
sqrt(x) any

√
x , square root of x

tan(x) any tan x , tangent of x
tanh(x) any tanh x , hyperbolic tangent of x in radians

A few additional functions are also available.

GNUPLOT 4.0 14

Function Arguments Returns
column(x) int column x during datafile manipulation.
defined(X) variable name returns 1 if a variable X is defined, 0 otherwise.
tm hour(x) int the hour
tm mday(x) int the day of the month
tm min(x) int the minute
tm mon(x) int the month
tm sec(x) int the second

tm wday(x) int the day of the week
tm yday(x) int the day of the year
tm year(x) int the year

valid(x) int test validity of column(x) during datafile manip.

See also airfoil.dem: use of functions and complex variables for airfoils demo.

11.1.1. Random number generator

The behavior of the built-in function rand(x) has changed as of version 3.8l. Older
scripts that expected rand(x>0) to produce sequential pseudo-random numbers from
the same seeded sequence must be changed to call rand(0) instead. The current
behavior is as follows:
‘rand(0)‘ returns a pseudo random number in the interval [0:1] generated

from the current value of two internal 32-bit seeds.
‘rand(-1)‘ resets both seeds to a standard value.
‘rand(x)‘ for x>0 sets both seeds to a value based on the value of x.
‘rand({x,y})‘ for x>0 sets seed1 to x and seed2 to y.

11.2. Operators

The operators in gnuplot are the same as the corresponding operators in the C program-
ming language, except that all operators accept integer, real, and complex arguments, unless
otherwise noted. The ** operator (exponentiation) is supported, as in FORTRAN.

Parentheses may be used to change order of evaluation.

11.2.1. Unary

The following is a list of all the unary operators and their usages:

GNUPLOT 4.0 15

Symbol Example Explanation
- -a unary minus
+ +a unary plus (no-operation)
˜ ˜a * one’s complement
! !a * logical negation
! a! * factorial
$ $3 * call arg/column during ‘using‘ manipulation

(*) Starred explanations indicate that the operator requires an integer argument.

Operator precedence is the same as in Fortran and C. As in those languages, parentheses may be
used to change the order of operation. Thus -2**2 = -4, but (-2)**2 = 4.

The factorial operator returns a real number to allow a greater range.

11.2.2. Binary

The following is a list of all the binary operators and their usages:

Symbol Example Explanation
** a**b exponentiation
* a*b multiplication
/ a/b division
% a%b * modulo
+ a+b addition
- a-b subtraction

== a==b equality
!= a!=b inequality
< a<b less than

<= a<=b less than or equal to
> a>b greater than

>= a>=b greater than or equal to
& a&b * bitwise AND
ˆ aˆb * bitwise exclusive OR
| a|b * bitwise inclusive OR

&& a&&b * logical AND
|| a||b * logical OR

(*) Starred explanations indicate that the operator requires integer arguments.

Logical AND (&&) and OR (||) short-circuit the way they do in C. That is, the second && oper-
and is not evaluated if the first is false; the second || operand is not evaluated if the first is true.

GNUPLOT 4.0 16

11.2.3. Ternary

There is a single ternary operator:

Symbol Example Explanation
?: a?b:c * ternary operation

The ternary operator behaves as it does in C. The first argument (a), which must be an integer,
is evaluated. If it is true (non-zero), the second argument (b) is evaluated and returned; otherwise
the third argument (c) is evaluated and returned.

The ternary operator is very useful both in constructing piecewise functions and in plotting points
only when certain conditions are met.

Examples:

Plot a function that is to equal sin(x) for 0 <= x < 1, 1/x for 1 <= x < 2, and undefined else-
where:

f(x) = 0<=x && x<1 ? sin(x) : 1<=x && x<2 ? 1/x : 1/0
plot f(x)

Note that gnuplot quietly ignores undefined values, so the final branch of the function (1/0) will
produce no plottable points. Note also that f(x) will be plotted as a continuous function across
the discontinuity if a line style is used. To plot it discontinuously, create separate functions for
the two pieces. (Parametric functions are also useful for this purpose.)

For data in a file, plot the average of the data in columns 2 and 3 against the datum in column 1,
but only if the datum in column 4 is non-negative:

plot ’file’ using 1:($4<0 ? 1/0 : ($2+$3)/2)

Please see plot datafile using for an explanation of the using syntax.

11.3. User-defined

New user-defined variables and functions of one through five variables may be declared and
used anywhere, including on the plot command itself.

User-defined function syntax:
<func-name>(<dummy1> {,<dummy2>} ... {,<dummy5>}) = <expression>

where <expression> is defined in terms of <dummy1> through <dummy5>.

User-defined variable syntax:
<variable-name> = <constant-expression>

Examples:

GNUPLOT 4.0 17

w = 2
q = floor(tan(pi/2 - 0.1))
f(x) = sin(w*x)
sinc(x) = sin(pi*x)/(pi*x)
delta(t) = (t == 0)
ramp(t) = (t > 0) ? t : 0
min(a,b) = (a < b) ? a : b
comb(n,k) = n!/(k!*(n-k)!)
len3d(x,y,z) = sqrt(x*x+y*y+z*z)
plot f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, f(x)

Note that the variable pi is already defined. But it is in no way magic; you may redefine it
to be whatever you like.

Valid names are the same as in most programming languages: they must begin with a letter,
but subsequent characters may be letters, digits, "$", or " ". Note, however, that the fit
mechanism uses several variables with names that begin "FIT ". It is safest to avoid using
such names. "FIT LIMIT", however, is one that you may wish to redefine. See the docu-
mentation on fit for details.

See show functions, show variables, and fit.

12. Glossary

Throughout this document an attempt has been made to maintain consistency of nomenclature.
This cannot be wholly successful because as gnuplot has evolved over time, certain command and
keyword names have been adopted that preclude such perfection. This section contains explana-
tions of the way some of these terms are used.

A "page" or "screen" is the entire area addressable by gnuplot. On a monitor, it is the full
screen; on a plotter, it is a single sheet of paper.

A screen may contain one or more "plots". A plot is defined by an abscissa and an ordinate,
although these need not actually appear on it, as well as the margins and any text written
therein.

A plot contains one "graph". A graph is defined by an abscissa and an ordinate, although these
need not actually appear on it.

A graph may contain one or more "lines". A line is a single function or data set. "Line" is also a
plotting style. The word will also be used in sense "a line of text". Presumably the context will
remove any ambiguity.

The lines on a graph may have individual names. These may be listed together with a sample of
the plotting style used to represent them in the "key", sometimes also called the "legend".

The word "title" occurs with multiple meanings in gnuplot. In this document, it will always be
preceded by the adjective "plot", "line", or "key" to differentiate among them.

A 2-d graph may have up to four labelled axes. The names of the four axes for these usages are

GNUPLOT 4.0 18

"x" for the axis along the bottom border of the plot, "y" for the left border, "x2" for the top bor-
der, and "y2" for the right border.

A 3-d graph may have up to three labelled axes -- "x", "y" and "z". It is not possible to say
where on the graph any particular axis will fall because you can change the direction from which
the graph is seen with set view.

When discussing data files, the term "record" will be resurrected and used to denote a single line
of text in the file, that is, the characters between newline or end-of-record characters. A "point"
is the datum extracted from a single record. A "datablock" is a set of points from consecutive
records, delimited by blank records. A line, when referred to in the context of a data file, is a
subset of a datablock.

13. Mouse input

The x11, pm, windows, and ggi terminals allow interaction with the current plot using the
mouse. They also support the definition of hotkeys to activate pre-defined functions by hitting a
single key while the mouse focus is in the active plot window. It is even possible to combine
mouse input with batch command scripts, by invoking the command pause mouse and then
using the mouse variables returned by mouse clicking as parameters for subsequent scripted
actions. See bind and mouse variables. See also the command set mouse.

13.1. Bind

The bind allows defining or redefining a hotkey, i.e. a sequence of gnuplot commands which
will be executed when a certain key or key sequence is pressed while the driver’s window has
the input focus. Note that bind is only available if gnuplot was compiled with mouse sup-
port and it is used by all mouse-capable terminals. Bindings overwrite the builtin bindings
(like in every real editor), except <space> and ’q’ which cannot be rebound. Mouse buttons
cannot be rebound.

Note that multikey-bindings with modifiers have to be quoted.

Syntax:
bind [<key-sequence>] ["<gnuplot commands>"]
bind!

Examples:

- set bindings:

bind a "replot"
bind "ctrl-a" "plot x*x"
bind "ctrl-alt-a" ’print "great"’
bind Home "set view 60,30; replot"

- show bindings:

GNUPLOT 4.0 19

bind "ctrl-a" # shows the binding for ctrl-a
bind # shows all bindings

- remove bindings:
bind "ctrl-alt-a" "" # removes binding for ctrl-alt-a

(note that builtins cannot be removed)
bind! # installs default (builtin) bindings

- bind a key to toggle something:
v=0
bind "ctrl-r" "v=v+1;if(v%2)set term x11 noraise; else set term x11 raise"

Modifiers (ctrl / alt) are case insensitive, keys not:
ctrl-alt-a == CtRl-alT-a
ctrl-alt-a != ctrl-alt-A

List of modifiers (alt == meta):
ctrl, alt

List of supported special keys:

"BackSpace", "Tab", "Linefeed", "Clear", "Return", "Pause", "Scroll Lock",
"Sys Req", "Escape", "Delete", "Home", "Left", "Up", "Right", "Down",
"PageUp", "PageDown", "End", "Begin",

"KP Space", "KP Tab", "KP Enter", "KP F1", "KP F2", "KP F3", "KP F4",
"KP Home", "KP Left", "KP Up", "KP Right", "KP Down", "KP PageUp",
"KP PageDown", "KP End", "KP Begin", "KP Insert", "KP Delete", "KP Equal",
"KP Multiply", "KP Add", "KP Separator", "KP Subtract", "KP Decimal",
"KP Divide",

"KP 1" - "KP 9", "F1" - "F12"

See also help for mouse and if.

13.2. Mouse variables

When mousing is active, clicking in the active window will set several user variables that can
be accessed from the gnuplot command line. The coordinates of the mouse at the time of the
click are stored in MOUSE X MOUSE Y MOUSE X2 and MOUSE Y2. The mouse button
clicked, and any meta-keys active at that time, are stored in MOUSE BUTTON
MOUSE SHIFT MOUSE ALT and MOUSE CTRL. These variables are set to undefined
at the start of every plot, and only become defined in the event of a mouse click in the
active plot window. To determine from a script if the mouse has been clicked in the active
plot window, it is sufficient to test for any one of these variables being defined.

plot ’something’
set pause mouse
if (defined(MOUSE BUTTON)) call ’something else’; \
else print "No mouse click."

GNUPLOT 4.0 20

14. Plotting

There are three gnuplot commands which actually create a plot: plot, splot and replot. plot
generates 2-d plots, splot generates 3-d plots (actually 2-d projections, of course), and replot
appends its arguments to the previous plot or splot and executes the modified command.

Much of the general information about plotting can be found in the discussion of plot; informa-
tion specific to 3-d can be found in the splot section.

plot operates in either rectangular or polar coordinates -- see set polar for details of the latter.
splot operates only in rectangular coordinates, but the set mapping command allows for a few
other coordinate systems to be treated. In addition, the using option allows both plot and splot
to treat almost any coordinate system you’d care to define.

plot also lets you use each of the four borders -- x (bottom), x2 (top), y (left) and y2 (right) -- as
an independent axis. The axes option lets you choose which pair of axes a given function or data
set is plotted against. A full complement of set commands exists to give you complete control
over the scales and labelling of each axis. Some commands have the name of an axis built into
their names, such as set xlabel. Other commands have one or more axis names as options, such
as set logscale xy. Commands and options controlling the z axis have no effect on 2-d graphs.

splot can plot surfaces and contours in addition to points and/or lines. In addition to splot, see
set isosamples for information about defining the grid for a 3-d function; splot datafile for
information about the requisite file structure for 3-d data values; and set contour and set cntr-
param for information about contours.

In splot, control over the scales and labels of the axes are the same as with plot, except that
commands and options controlling the x2 and y2 axes have no effect whereas of course those con-
trolling the z axis do take effect.

splot allows plotting of binary and matrix data, but only for specific data formats. See splot for
details.

15. Start-up

When gnuplot is run, it looks for an initialization file to load. This file is called .gnuplot on
Unix and AmigaOS systems, and GNUPLOT.INI on other systems. If this file is not found in
the current directory, the program will look for it in the HOME directory (under AmigaOS,
Atari(single)TOS, MS-DOS, Windows and OS/2, the environment variable GNUPLOT should
contain the name of this directory; on Windows NT, it will use USERPROFILE if GNUPLOT
isn’t defined). Note: if NOCWDRC is defined during the installation, gnuplot will not read from
the current directory.

If the initialization file is found, gnuplot executes the commands in it. These may be any legal
gnuplot commands, but typically they are limited to setting the terminal and defining frequently-
used functions or variables.

GNUPLOT 4.0 21

16. Substitution

Command-line substitution is specified by a system command enclosed in backquotes. This com-
mand is spawned and the output it produces replaces the name of the command (and backquotes)
on the command line. Some implementations also support pipes; see plot datafile special-file-
names.

Command-line substitution can be used anywhere on the gnuplot command line, except inside
strings delimited by single quotes.

Example:

This will run the program leastsq and replace leastsq (including backquotes) on the command
line with its output:

f(x) = ‘leastsq‘

or, in VMS
f(x) = ‘run leastsq‘

These will generate labels with the current time and userid:
set label "generated on ‘date +%Y-%m-%d‘by ‘whoami‘" at 1,1
set timestamp "generated on %Y-%m-%d by ‘whoami‘"

17. Syntax

The general rules of syntax and punctuation in gnuplot are that keywords and options are order-
dependent. Options and any accompanying parameters are separated by spaces whereas lists and
coordinates are separated by commas. Ranges are separated by colons and enclosed in brackets [],
text and file names are enclosed in quotes, and a few miscellaneous things are enclosed in paren-
theses. Braces {} are used for a few special purposes.

Commas are used to separate coordinates on the set commands arrow, key, and label; the list of
variables being fitted (the list after the via keyword on the fit command); lists of discrete con-
tours or the loop parameters which specify them on the set cntrparam command; the arguments
of the set commands dgrid3d, dummy, isosamples, offsets, origin, samples, size, time, and
view; lists of tics or the loop parameters which specify them; the offsets for titles and axis labels;
parametric functions to be used to calculate the x, y, and z coordinates on the plot, replot and
splot commands; and the complete sets of keywords specifying individual plots (data sets or func-
tions) on the plot, replot and splot commands.

Parentheses are used to delimit sets of explicit tics (as opposed to loop parameters) and to indi-
cate computations in the using filter of the fit, plot, replot and splot commands.

(Parentheses and commas are also used as usual in function notation.)

Brackets are used to delimit ranges, whether they are given on set, plot or splot commands.

Colons are used to separate extrema in range specifications (whether they are given on set, plot
or splot commands) and to separate entries in the using filter of the plot, replot, splot and fit
commands.

GNUPLOT 4.0 22

Semicolons are used to separate commands given on a single command line.

Braces are used in text to be specially processed by some terminals, like postscript. They are
also used to denote complex numbers: {3,2} = 3 + 2i.

Text may be enclosed in single- or double-quotes. Backslash processing of sequences like \n (new-
line) and \345 (octal character code) is performed for double-quoted strings, but not for single-
quoted strings.

The justification is the same for each line of a multi-line string. Thus the center-justified string
"This is the first line of text.\nThis is the second line."

will produce
This is the first line of text.

This is the second line.
but

’This is the first line of text.\nThis is the second line.’
will produce

This is the first line of text.\nThis is the second line.

Filenames may be entered with either single- or double-quotes. In this manual the command
examples generally single-quote filenames and double-quote other string tokens for clarity.

At present you should not embed \n inside {} when using the enhanced postscript terminal.

The EEPIC, Imagen, Uniplex, LaTeX, and TPIC drivers allow a newline to be specified by \\ in a
single-quoted string or \\\\ in a double-quoted string.

Back-quotes are used to enclose system commands for substitution.

18. Time/Date data

gnuplot supports the use of time and/or date information as input data. This feature is acti-
vated by the commands set xdata time, set ydata time, etc.

Internally all times and dates are converted to the number of seconds from the year 2000. The
command set timefmt defines the format for all inputs: data files, ranges, tics, label posi-
tions---in short, anything that accepts a data value must receive it in this format. Since only one
input format can be in force at a given time, all time/date quantities being input at the same time
must be presented in the same format. Thus if both x and y data in a file are time/date, they
must be in the same format.

The conversion to and from seconds assumes Universal Time (which is the same as Greenwich
Standard Time). There is no provision for changing the time zone or for daylight savings. If all
your data refer to the same time zone (and are all either daylight or standard) you don’t need to
worry about these things. But if the absolute time is crucial for your application, you’ll need to
convert to UT yourself.

Commands like show xrange will re-interpret the integer according to timefmt. If you change
timefmt, and then show the quantity again, it will be displayed in the new timefmt. For that
matter, if you give the deactivation command (like set xdata), the quantity will be shown in its
numerical form.

GNUPLOT 4.0 23

The command set format defines the format that will be used for tic labels, whether or not the
specified axis is time/date.

If time/date information is to be plotted from a file, the using option must be used on the plot
or splot command. These commands simply use white space to separate columns, but white
space may be embedded within the time/date string. If you use tabs as a separator, some trial-
and-error may be necessary to discover how your system treats them.

The following example demonstrates time/date plotting.

Suppose the file "data" contains records like

03/21/95 10:00 6.02e23

This file can be plotted by

set xdata time
set timefmt "%m/%d/%y"
set xrange ["03/21/95":"03/22/95"]
set format x "%m/%d"
set timefmt "%m/%d/%y %H:%M"
plot "data" using 1:3

which will produce xtic labels that look like "03/21".

See the descriptions of each command for more details.

19. Commands

This section lists the commands acceptable to gnuplot in alphabetical order. Printed versions of
this document contain all commands; on-line versions may not be complete. Indeed, on some sys-
tems there may be no commands at all listed under this heading.

Note that in most cases unambiguous abbreviations for command names and their options are
permissible, i.e., "p f(x) w li" instead of "plot f(x) with lines".

In the syntax descriptions, braces ({}) denote optional arguments and a vertical bar (|) separates
mutually exclusive choices.

20. Cd

The cd command changes the working directory.

Syntax:
cd ’<directory-name>’

The directory name must be enclosed in quotes.

GNUPLOT 4.0 24

Examples:
cd ’subdir’
cd ".."

DOS users must use single-quotes---backslash [\] has special significance inside double-quotes.
For example,

cd "c:\newdata"
fails, but

cd ’c:\newdata’
works as expected.

21. Call

The call command is identical to the load command with one exception: you can have up to ten
additional parameters to the command (delimited according to the standard parser rules) which
can be substituted into the lines read from the file. As each line is read from the called input file,
it is scanned for the sequence $ (dollar-sign) followed by a digit (0--9). If found, the sequence is
replaced by the corresponding parameter from the call command line. If the parameter was speci-
fied as a string in the call line, it is substituted without its enclosing quotes. $ followed by any
character other than a digit will be that character. E.g. use $$ to get a single $. Providing more
than ten parameters on the call command line will cause an error. A parameter that was not pro-
vided substitutes as nothing. Files being called may themselves contain call or load commands.

The call command must be the last command on a multi-command line.

Syntax:
call "<input-file>" <parameter-0> <parm-1> ... <parm-9>

The name of the input file must be enclosed in quotes, and it is recommended that parameters are
similarly enclosed in quotes (future versions of gnuplot may treat quoted and unquoted arguments
differently).

Example:

If the file ’calltest.gp’ contains the line:
print "p0=$0 p1=$1 p2=$2 p3=$3 p4=$4 p5=$5 p6=$6 p7=x$7x"

entering the command:
call ’calltest.gp’ "abcd" 1.2 + "’quoted’" -- "$2"

will display:
p0=abcd p1=1.2 p2=+ p3=’quoted’ p4=- p5=- p6=$2 p7=xx

NOTE: there is a clash in syntax with the datafile using callback operator. Use $$n or col-
umn(n) to access column n from a datafile inside a called datafile plot.

22. Clear

GNUPLOT 4.0 25

The clear command erases the current screen or output device as specified by set output. This
usually generates a formfeed on hardcopy devices. Use set terminal to set the device type.

For some terminals clear erases only the portion of the plotting surface defined by set size, so for
these it can be used in conjunction with set multiplot to create an inset.

Example:
set multiplot
plot sin(x)
set origin 0.5,0.5
set size 0.4,0.4
clear
plot cos(x)
unset multiplot

Please see set multiplot, set size, and set origin for details of these commands.

23. Exit

The commands exit and quit and the END-OF-FILE character will exit the current gnuplot
command file and load the next one. See "help batch/interactive" for more details.

Each of these commands will clear the output device (as does the clear command) before exiting.

24. Fit

The fit command can fit a user-defined function to a set of data points (x,y) or (x,y,z), using an
implementation of the nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm. Any user-
defined variable occurring in the function body may serve as a fit parameter, but the return type
of the function must be real.

Syntax:
fit {[xrange] {[yrange]}} <function> ’<datafile>’

{datafile-modifiers}
via ’<parameter file>’ | <var1>{,<var2>,...}

Ranges may be specified to temporarily limit the data which is to be fitted; any out-of-range data
points are ignored. The syntax is

[{dummy variable=}{<min>}{:<max>}],
analogous to plot; see plot ranges.

<function> is any valid gnuplot expression, although it is usual to use a previously user-defined
function of the form f(x) or f(x,y).

<datafile> is treated as in the plot command. All the plot datafile modifiers (using, every,...)
except smooth and the deprecated thru are applicable to fit. See plot datafile.

The default data formats for fitting functions with a single independent variable, y=f(x), are {x:}y
or x:y:s; those formats can be changed with the datafile using qualifier. The third item (a

GNUPLOT 4.0 26

column number or an expression), if present, is interpreted as the standard deviation of the corre-
sponding y value and is used to compute a weight for the datum, 1/s**2. Otherwise, all data
points are weighted equally, with a weight of one. Note that if you don’t specify a using option
at all, no y deviations are read from the datafile even if it does have a third column, so you’ll
always get unit weights.

To fit a function with two independent variables, z=f(x,y), the required format is using with four
items, x:y:z:s. The complete format must be given---no default columns are assumed for a missing
token. Weights for each data point are evaluated from ’s’ as above. If error estimates are not
available, a constant value can be specified as a constant expression (see plot datafile using),
e.g., using 1:2:3:(1).

Multiple datasets may be simultaneously fit with functions of one independent variable by making
y a ’pseudo-variable’, e.g., the dataline number, and fitting as two independent variables. See fit
multi-branch.

The via qualifier specifies which parameters are to be adjusted, either directly, or by referencing a
parameter file.

Examples:
f(x) = a*x**2 + b*x + c
g(x,y) = a*x**2 + b*y**2 + c*x*y
FIT LIMIT = 1e-6
fit f(x) ’measured.dat’ via ’start.par’
fit f(x) ’measured.dat’ using 3:($7-5) via ’start.par’
fit f(x) ’./data/trash.dat’ using 1:2:3 via a, b, c
fit g(x,y) ’surface.dat’ using 1:2:3:(1) via a, b, c

After each iteration step, detailed information about the current state of the fit is written to the
display. The same information about the initial and final states is written to a log file, "fit.log".
This file is always appended to, so as to not lose any previous fit history; it should be deleted or
renamed as desired. By using the command set fit logfile, the name of the log file can be
changed.

If gnuplot was built with this option, and you activated it using set fit errorvariables, the error
for each fitted parameter will be stored in a variable named like the parameter, but with " err"
appended. Thus the errors can be used as input for further computations.

The fit may be interrupted by pressing Ctrl-C (any key but Ctrl-C under MSDOS and Atari Mul-
titasking Systems). After the current iteration completes, you have the option to (1) stop the fit
and accept the current parameter values, (2) continue the fit, (3) execute a gnuplot command as
specified by the environment variable FIT SCRIPT. The default for FIT SCRIPT is replot, so if
you had previously plotted both the data and the fitting function in one graph, you can display
the current state of the fit.

Once fit has finished, the update command may be used to store final values in a file for subse-
quent use as a parameter file. See update for details.

24.1. Adjustable parameters

GNUPLOT 4.0 27

There are two ways that via can specify the parameters to be adjusted, either directly on
the command line or indirectly, by referencing a parameter file. The two use different means
to set initial values.

Adjustable parameters can be specified by a comma-separated list of variable names after
the via keyword. Any variable that is not already defined is created with an initial value of
1.0. However, the fit is more likely to converge rapidly if the variables have been previously
declared with more appropriate starting values.

In a parameter file, each parameter to be varied and a corresponding initial value are speci-
fied, one per line, in the form

varname = value

Comments, marked by ’#’, and blank lines are permissible. The special form
varname = value # FIXED

means that the variable is treated as a ’fixed parameter’, initialized by the parameter file,
but not adjusted by fit. For clarity, it may be useful to designate variables as fixed parame-
ters so that their values are reported by fit. The keyword # FIXED has to appear in
exactly this form.

24.2. Short introduction

fit is used to find a set of parameters that ’best’ fits your data to your user-defined function.
The fit is judged on the basis of the sum of the squared differences or ’residuals’ (SSR)
between the input data points and the function values, evaluated at the same places. This
quantity is often called ’chisquare’ (i.e., the Greek letter chi, to the power of 2). The algo-
rithm attempts to minimize SSR, or more precisely, WSSR, as the residuals are ’weighted’
by the input data errors (or 1.0) before being squared; see fit error estimates for details.

That’s why it is called ’least-squares fitting’. Let’s look at an example to see what is meant
by ’non-linear’, but first we had better go over some terms. Here it is convenient to use z as
the dependent variable for user-defined functions of either one independent variable, z=f(x),
or two independent variables, z=f(x,y). A parameter is a user-defined variable that fit will
adjust, i.e., an unknown quantity in the function declaration. Linearity/non-linearity refers
to the relationship of the dependent variable, z, to the parameters which fit is adjusting, not
of z to the independent variables, x and/or y. (To be technical, the second {and higher} de-
rivatives of the fitting function with respect to the parameters are zero for a linear least-
squares problem).

For linear least-squares (LLS), the user-defined function will be a sum of simple functions,
not involving any parameters, each multiplied by one parameter. NLLS handles more com-
plicated functions in which parameters can be used in a large number of ways. An example
that illustrates the difference between linear and nonlinear least-squares is the Fourier series.
One member may be written as

z=a*sin(c*x) + b*cos(c*x).
If a and b are the unknown parameters and c is constant, then estimating values of the
parameters is a linear least-squares problem. However, if c is an unknown parameter, the
problem is nonlinear.

GNUPLOT 4.0 28

In the linear case, parameter values can be determined by comparatively simple linear alge-
bra, in one direct step. However LLS is a special case which is also solved along with more
general NLLS problems by the iterative procedure that gnuplot uses. fit attempts to find
the minimum by doing a search. Each step (iteration) calculates WSSR with a new set of
parameter values. The Marquardt-Levenberg algorithm selects the parameter values for the
next iteration. The process continues until a preset criterion is met, either (1) the fit has
"converged" (the relative change in WSSR is less than FIT LIMIT), or (2) it reaches a pre-
set iteration count limit, FIT MAXITER (see fit control variables). The fit may also be
interrupted and subsequently halted from the keyboard (see fit).

Often the function to be fitted will be based on a model (or theory) that attempts to
describe or predict the behaviour of the data. Then fit can be used to find values for the
free parameters of the model, to determine how well the data fits the model, and to estimate
an error range for each parameter. See fit error estimates.

Alternatively, in curve-fitting, functions are selected independent of a model (on the basis of
experience as to which are likely to describe the trend of the data with the desired resolution
and a minimum number of parameters*functions.) The fit solution then provides an ana-
lytic representation of the curve.

However, if all you really want is a smooth curve through your data points, the smooth
option to plot may be what you’ve been looking for rather than fit.

24.3. Error estimates

In fit, the term "error" is used in two different contexts, data error estimates and parameter
error estimates.

Data error estimates are used to calculate the relative weight of each data point when deter-
mining the weighted sum of squared residuals, WSSR or chisquare. They can affect the
parameter estimates, since they determine how much influence the deviation of each data
point from the fitted function has on the final values. Some of the fit output information,
including the parameter error estimates, is more meaningful if accurate data error estimates
have been provided.

The ’statistical overview’ describes some of the fit output and gives some background for the
’practical guidelines’.

24.3.1. Statistical overview

The theory of non-linear least-squares (NLLS) is generally described in terms of a nor-
mal distribution of errors, that is, the input data is assumed to be a sample from a
population having a given mean and a Gaussian (normal) distribution about the mean
with a given standard deviation. For a sample of sufficiently large size, and knowing
the population standard deviation, one can use the statistics of the chisquare distribu-
tion to describe a "goodness of fit" by looking at the variable often called "chisquare".
Here, it is sufficient to say that a reduced chisquare (chisquare/degrees of freedom,
where degrees of freedom is the number of datapoints less the number of parameters

GNUPLOT 4.0 29

being fitted) of 1.0 is an indication that the weighted sum of squared deviations
between the fitted function and the data points is the same as that expected for a ran-
dom sample from a population characterized by the function with the current value of
the parameters and the given standard deviations.

If the standard deviation for the population is not constant, as in counting statistics
where variance = counts, then each point should be individually weighted when com-
paring the observed sum of deviations and the expected sum of deviations.

At the conclusion fit reports ’stdfit’, the standard deviation of the fit, which is the rms
of the residuals, and the variance of the residuals, also called ’reduced chisquare’ when
the data points are weighted. The number of degrees of freedom (the number of data
points minus the number of fitted parameters) is used in these estimates because the
parameters used in calculating the residuals of the datapoints were obtained from the
same data.

To estimate confidence levels for the parameters, one can use the minimum chisquare
obtained from the fit and chisquare statistics to determine the value of chisquare corre-
sponding to the desired confidence level, but considerably more calculation is required
to determine the combinations of parameters which produce such values.

Rather than determine confidence intervals, fit reports parameter error estimates
which are readily obtained from the variance-covariance matrix after the final itera-
tion. By convention, these estimates are called "standard errors" or "asymptotic stan-
dard errors", since they are calculated in the same way as the standard errors (stan-
dard deviation of each parameter) of a linear least-squares problem, even though the
statistical conditions for designating the quantity calculated to be a standard deviation
are not generally valid for the NLLS problem. The asymptotic standard errors are
generally over-optimistic and should not be used for determining confidence levels, but
are useful for qualitative purposes.

The final solution also produces a correlation matrix, which gives an indication of the
correlation of parameters in the region of the solution; if one parameter is changed,
increasing chisquare, does changing another compensate? The main diagonal elements,
autocorrelation, are all 1; if all parameters were independent, all other elements would
be nearly 0. Two variables which completely compensate each other would have an
off-diagonal element of unit magnitude, with a sign depending on whether the relation
is proportional or inversely proportional. The smaller the magnitudes of the off-diago-
nal elements, the closer the estimates of the standard deviation of each parameter
would be to the asymptotic standard error.

24.3.2. Practical guidelines

If you have a basis for assigning weights to each data point, doing so lets you make use
of additional knowledge about your measurements, e.g., take into account that some
points may be more reliable than others. That may affect the final values of the
parameters.

Weighting the data provides a basis for interpreting the additional fit output after the
last iteration. Even if you weight each point equally, estimating an average standard
deviation rather than using a weight of 1 makes WSSR a dimensionless variable, as

GNUPLOT 4.0 30

chisquare is by definition.

Each fit iteration will display information which can be used to evaluate the progress
of the fit. (An ’*’ indicates that it did not find a smaller WSSR and is trying again.)
The ’sum of squares of residuals’, also called ’chisquare’, is the WSSR between the
data and your fitted function; fit has minimized that. At this stage, with weighted
data, chisquare is expected to approach the number of degrees of freedom (data points
minus parameters). The WSSR can be used to calculate the reduced chisquare
(WSSR/ndf) or stdfit, the standard deviation of the fit, sqrt(WSSR/ndf). Both of
these are reported for the final WSSR.

If the data are unweighted, stdfit is the rms value of the deviation of the data from the
fitted function, in user units.

If you supplied valid data errors, the number of data points is large enough, and the
model is correct, the reduced chisquare should be about unity. (For details, look up
the ’chi-squared distribution’ in your favourite statistics reference.) If so, there are
additional tests, beyond the scope of this overview, for determining how well the model
fits the data.

A reduced chisquare much larger than 1.0 may be due to incorrect data error esti-
mates, data errors not normally distributed, systematic measurement errors, ’outliers’,
or an incorrect model function. A plot of the residuals, e.g., plot ’datafile’ using
1:($2-f($1)), may help to show any systematic trends. Plotting both the data points
and the function may help to suggest another model.

Similarly, a reduced chisquare less than 1.0 indicates WSSR is less than that expected
for a random sample from the function with normally distributed errors. The data
error estimates may be too large, the statistical assumptions may not be justified, or
the model function may be too general, fitting fluctuations in a particular sample in
addition to the underlying trends. In the latter case, a simpler function may be more
appropriate.

You’ll have to get used to both fit and the kind of problems you apply it to before you
can relate the standard errors to some more practical estimates of parameter uncer-
tainties or evaluate the significance of the correlation matrix.

Note that fit, in common with most NLLS implementations, minimizes the weighted
sum of squared distances (y-f(x))**2. It does not provide any means to account for
"errors" in the values of x, only in y. Also, any "outliers" (data points outside the
normal distribution of the model) will have an exaggerated effect on the solution.

24.4. Fit controlling

There are a number of gnuplot variables that can be defined to affect fit. Those which can
be defined once gnuplot is running are listed under ’control variables’ while those defined
before starting gnuplot are listed under ’environment variables’.

GNUPLOT 4.0 31

24.4.1. Control variables

The default epsilon limit (1e-5) may be changed by declaring a value for
FIT LIMIT

When the sum of squared residuals changes between two iteration steps by a factor less
than this number (epsilon), the fit is considered to have ’converged’.

The maximum number of iterations may be limited by declaring a value for
FIT MAXITER

A value of 0 (or not defining it at all) means that there is no limit.

If you need even more control about the algorithm, and know the Marquardt-Leven-
berg algorithm well, there are some more variables to influence it. The startup value of
lambda is normally calculated automatically from the ML-matrix, but if you want to,
you may provide your own one with

FIT START LAMBDA
Specifying FIT START LAMBDA as zero or less will re-enable the automatic selec-
tion. The variable

FIT LAMBDA FACTOR
gives the factor by which lambda is increased or decreased whenever the chi-squared
target function increased or decreased significantly. Setting FIT LAMBDA FACTOR
to zero re-enables the default factor of 10.0.

Other variables with the FIT prefix may be added to fit, so it is safer not to use that
prefix for user-defined variables.

The variables FIT SKIP and FIT INDEX were used by earlier releases of gnuplot
with a ’fit’ patch called gnufit and are no longer available. The datafile every modi-
fier provides the functionality of FIT SKIP. FIT INDEX was used for multi-branch
fitting, but multi-branch fitting of one independent variable is now done as a
pseudo-3D fit in which the second independent variable and using are used to specify
the branch. See fit multi-branch.

24.4.2. Environment variables

The environment variables must be defined before gnuplot is executed; how to do so
depends on your operating system.

FIT LOG
changes the name (and/or path) of the file to which the fit log will be written from the
default of "fit.log" in the working directory. The default value can be overwritten using
the command set fitlogfile.

FIT SCRIPT
specifies a command that may be executed after an user interrupt. The default is
replot, but a plot or load command may be useful to display a plot customized to
highlight the progress of the fit.

GNUPLOT 4.0 32

24.5. Multi-branch

In multi-branch fitting, multiple data sets can be simultaneously fit with functions of one
independent variable having common parameters by minimizing the total WSSR. The func-
tion and parameters (branch) for each data set are selected by using a ’pseudo-variable’, e.g.,
either the dataline number (a ’column’ index of -1) or the datafile index (-2), as the second
independent variable.

Example: Given two exponential decays of the form, z=f(x), each describing a different data
set but having a common decay time, estimate the values of the parameters. If the datafile
has the format x:z:s, then

f(x,y) = (y==0) ? a*exp(-x/tau) : b*exp(-x/tau)
fit f(x,y) ’datafile’ using 1:-1:2:3 via a, b, tau

For a more complicated example, see the file "hexa.fnc" used by the "fit.dem" demo.

Appropriate weighting may be required since unit weights may cause one branch to predomi-
nate if there is a difference in the scale of the dependent variable. Fitting each branch sepa-
rately, using the multi-branch solution as initial values, may give an indication as to the rel-
ative effect of each branch on the joint solution.

24.6. Starting values

Nonlinear fitting is not guaranteed to converge to the global optimum (the solution with the
smallest sum of squared residuals, SSR), and can get stuck at a local minimum. The routine
has no way to determine that; it is up to you to judge whether this has happened.

fit may, and often will get "lost" if started far from a solution, where SSR is large and
changing slowly as the parameters are varied, or it may reach a numerically unstable region
(e.g., too large a number causing a floating point overflow) which results in an "undefined
value" message or gnuplot halting.

To improve the chances of finding the global optimum, you should set the starting values at
least roughly in the vicinity of the solution, e.g., within an order of magnitude, if possible.
The closer your starting values are to the solution, the less chance of stopping at another
minimum. One way to find starting values is to plot data and the fitting function on the
same graph and change parameter values and replot until reasonable similarity is reached.
The same plot is also useful to check whether the fit stopped at a minimum with a poor fit.

Of course, a reasonably good fit is not proof there is not a "better" fit (in either a statistical
sense, characterized by an improved goodness-of-fit criterion, or a physical sense, with a
solution more consistent with the model.) Depending on the problem, it may be desirable to
fit with various sets of starting values, covering a reasonable range for each parameter.

24.7. Tips

Here are some tips to keep in mind to get the most out of fit. They’re not very organized,
so you’ll have to read them several times until their essence has sunk in.

GNUPLOT 4.0 33

The two forms of the via argument to fit serve two largely distinct purposes. The via
"file" form is best used for (possibly unattended) batch operation, where you just supply
the startup values in a file and can later use update to copy the results back into another
(or the same) parameter file.

The via var1, var2, ... form is best used interactively, where the command history mecha-
nism may be used to edit the list of parameters to be fitted or to supply new startup values
for the next try. This is particularly useful for hard problems, where a direct fit to all
parameters at once won’t work without good starting values. To find such, you can iterate
several times, fitting only some of the parameters, until the values are close enough to the
goal that the final fit to all parameters at once will work.

Make sure that there is no mutual dependency among parameters of the function you are fit-
ting. For example, don’t try to fit a*exp(x+b), because a*exp(x+b)=a*exp(b)*exp(x).
Instead, fit either a*exp(x) or exp(x+b).

A technical issue: the parameters must not be too different in magnitude. The larger the
ratio of the largest and the smallest absolute parameter values, the slower the fit will con-
verge. If the ratio is close to or above the inverse of the machine floating point precision, it
may take next to forever to converge, or refuse to converge at all. You will have to adapt
your function to avoid this, e.g., replace ’parameter’ by ’1e9*parameter’ in the function defi-
nition, and divide the starting value by 1e9.

If you can write your function as a linear combination of simple functions weighted by the
parameters to be fitted, by all means do so. That helps a lot, because the problem is no
longer nonlinear and should converge with only a small number of iterations, perhaps just
one.

Some prescriptions for analysing data, given in practical experimentation courses, may have
you first fit some functions to your data, perhaps in a multi-step process of accounting for
several aspects of the underlying theory one by one, and then extract the information you
really wanted from the fitting parameters of those functions. With fit, this may often be
done in one step by writing the model function directly in terms of the desired parameters.
Transforming data can also quite often be avoided, though sometimes at the cost of a more
difficult fit problem. If you think this contradicts the previous paragraph about simplifying
the fit function, you are correct.

A "singular matrix" message indicates that this implementation of the Marquardt-Levenberg
algorithm can’t calculate parameter values for the next iteration. Try different starting val-
ues, writing the function in another form, or a simpler function.

Finally, a nice quote from the manual of another fitting package (fudgit), that kind of sum-
marizes all these issues: "Nonlinear fitting is an art!"

25. Help

The help command displays on-line help. To specify information on a particular topic use the
syntax:

help {<topic>}

GNUPLOT 4.0 34

If <topic> is not specified, a short message is printed about gnuplot. After help for the
requested topic is given, a menu of subtopics is given; help for a subtopic may be requested by
typing its name, extending the help request. After that subtopic has been printed, the request
may be extended again or you may go back one level to the previous topic. Eventually, the gnu-
plot command line will return.

If a question mark (?) is given as the topic, the list of topics currently available is printed on the
screen.

26. History

history command lists or saves previous entries in the history of the command line editing, or
executes an entry.

Here you find ’usage by examples’:

history # show the complete history
history 5 # show last 5 entries in the history
history quiet 5 # show last 5 entries without entry numbers
history "hist.gp" # write the complete history to file hist.gp
history "hist.gp" append # append the complete history to file hist.gp
history 10 "hist.gp" # write last 10 commands to file hist.gp
history 10 "|head -5 >>diary.gp" # write 5 history commands using pipe
history ?load # show all history entries starting with "load"
history ?"set c" # like above, several words enclosed in quotes
hi !reread # execute last entry starting with "reread"
hist !"set xr" # like above, several words enclosed in quotes
hi !hi # guess yourself :-))

On systems which support a popen function (Unix), the output of history can be piped through
an external program by starting the file name with a ’|’, as one of the above examples demon-
strates.

27. If

The if command allows commands to be executed conditionally.

Syntax:
if (<condition>) <command-line> [; else if (<condition>) ...; else ...]

<condition> will be evaluated. If it is true (non-zero), then the command(s) of the <command-
line> will be executed. If <condition> is false (zero), then the entire <command-line> is ignored
until the next occurrence of else. Note that use of ; to allow multiple commands on the same line
will not end the conditionalized commands.

Examples:
pi=3
if (pi!=acos(-1)) print "?Fixing pi!"; pi=acos(-1); print pi

will display:

GNUPLOT 4.0 35

?Fixing pi!
3.14159265358979

but
if (1==2) print "Never see this"; print "Or this either"

will not display anything.

else:
v=0
v=v+1; if (v%2) print "2" ; else if (v%3) print "3"; else print "fred"

(repeat the last line repeatedly!)

See reread for an example of how if and reread can be used together to perform a loop.

28. Load

The load command executes each line of the specified input file as if it had been typed in interac-
tively. Files created by the save command can later be loaded. Any text file containing valid
commands can be created and then executed by the load command. Files being loaded may
themselves contain load or call commands. See comments for information about comments in
commands. To load with arguments, see call.

The load command must be the last command on a multi-command line.

Syntax:
load "<input-file>"

The name of the input file must be enclosed in quotes.

The special filename "-" may be used to load commands from standard input. This allows a
gnuplot command file to accept some commands from standard input. Please see "help
batch/interactive" for more details.

On some systems which support a popen function (Unix), the load file can be read from a pipe by
starting the file name with a ’<’.

Examples:
load ’work.gnu’
load "func.dat"
load "< loadfile generator.sh"

The load command is performed implicitly on any file names given as arguments to gnuplot.
These are loaded in the order specified, and then gnuplot exits.

29. Pause

The pause command displays any text associated with the command and then waits a specified
amount of time or until the carriage return is pressed. pause is especially useful in conjunction
with load files.

GNUPLOT 4.0 36

Syntax:
pause <time> {"<string>"}
pause mouse {"<string>"}

<time> may be any constant or expression. Choosing -1 will wait until a carriage return is hit,
zero (0) won’t pause at all, and a positive number will wait the specified number of seconds. The
time is rounded to an integer number of seconds if subsecond time resolution is not supported by
the given platform. pause 0 is synonymous with print.

If the current terminal supports mousing, then pause mouse will terminate on either a mouse
click or on ctrl-C. For all other terminals, or if mousing is not active, pause mouse is equivalent
to pause -1.

Note: Since pause communicates with the operating system rather than the graphics, it may
behave differently with different device drivers (depending upon how text and graphics are
mixed).

Examples:
pause -1 # Wait until a carriage return is hit
pause 3 # Wait three seconds
pause -1 "Hit return to continue"
pause 10 "Isn’t this pretty? It’s a cubic spline."
pause mouse "Click mouse on selected data point"

30. Plot

plot is the primary command for drawing plots with gnuplot. It creates plots of functions and
data in many, many ways. plot is used to draw 2-d functions and data; splot draws 2-d projec-
tions of 3-d surfaces and data. plot and splot contain many common features; see splot for dif-
ferences. Note specifically that splot’s binary and matrix options do not exist for plot, and
plot’s axes option does not exist for splot.

Syntax:
plot {<ranges>}

{<function> | {"<datafile>" {datafile-modifiers}}}
{axes <axes>} {<title-spec>} {with <style>}
{, {definitions,} <function> ...}

where either a <function> or the name of a data file enclosed in quotes is supplied. A function is
a mathematical expression or a pair of mathematical expressions in parametric mode. The expres-
sions may be defined completely or in part earlier in the stream of gnuplot commands (see user-
defined).

It is also possible to define functions and parameters on the plot command itself. This is done
merely by isolating them from other items with commas.

There are four possible sets of axes available; the keyword <axes> is used to select the axes for
which a particular line should be scaled. x1y1 refers to the axes on the bottom and left; x2y2 to
those on the top and right; x1y2 to those on the bottom and right; and x2y1 to those on the top
and left. Ranges specified on the plot command apply only to the first set of axes (bottom left).

GNUPLOT 4.0 37

Examples:
plot sin(x)
plot f(x) = sin(x*a), a = .2, f(x), a = .4, f(x)
plot [t=1:10] [-pi:pi*2] tan(t), \

"data.1" using (tan($2)):($3/$4) smooth csplines \
axes x1y2 notitle with lines 5

See also show plot.

30.1. Data-file

Discrete data contained in a file can be displayed by specifying the name of the data file
(enclosed in single or double quotes) on the plot command line.

Syntax:
plot ’<file name>’ {index <index list>}

{every <every list>}
{thru <thru expression>}
{using <using list>}
{smooth <option>}

The modifiers index, every, thru, using, and smooth are discussed separately. In brief,
index selects which data sets in a multi-data-set file are to be plotted, every specifies which
points within a single data set are to be plotted, using determines how the columns within
a single record are to be interpreted (thru is a special case of using), and smooth allows
for simple interpolation and approximation. (splot has a similar syntax, but does not sup-
port the smooth and thru options.)

Data files should contain at least one data point per record (using can select one data point
from the record). Records beginning with # (and also with ! on VMS) will be treated as
comments and ignored. Each data point represents an (x,y) pair. For plots with error bars
or error bars with lines (see set style errorbars or set style errorlines), each data point
is (x,y,ydelta), (x,y,ylow,yhigh), (x,y,xdelta), (x,y,xlow,xhigh), or
(x,y,xlow,xhigh,ylow,yhigh).

In all cases, the numbers of each record of a data file must be separated by white space (one
or more blanks or tabs) unless a format specifier is provided by the using option. This white
space divides each record into columns. However, whitespace inside a pair of double quotes is
ignored when counting columns, so the following datafile line has three columns:

1.0 "second column" 3.0

Data may be written in exponential format with the exponent preceded by the letter e, E, d,
D, q, or Q.

Only one column (the y value) need be provided. If x is omitted, gnuplot provides integer
values starting at 0.

In datafiles, blank records (records with no characters other than blanks and a newline
and/or carriage return) are significant---pairs of blank records separate indexes (see plot
datafile index). Data separated by double blank records are treated as if they were in sep-
arate data files.

GNUPLOT 4.0 38

Single blank records designate discontinuities in a plot; no line will join points separated by
a blank records (if they are plotted with a line style).

If autoscaling has been enabled (set autoscale), the axes are automatically extended to
include all datapoints, with a whole number of tic marks if tics are being drawn. This has
two consequences: i) For splot, the corner of the surface may not coincide with the corner of
the base. In this case, no vertical line is drawn. ii) When plotting data with the same x
range on a dual-axis graph, the x coordinates may not coincide if the x2tics are not being
drawn. This is because the x axis has been autoextended to a whole number of tics, but the
x2 axis has not. The following example illustrates the problem:

reset; plot ’-’, ’-’ axes x2y1
1 1
19 19
e
1 1
19 19
e

To avoid this, you can use the fixmin/fixmax feature of the set autoscale command,
which turns off the automatic extension of the axis range upto the next tic mark.

30.1.1. Every

The every keyword allows a periodic sampling of a data set to be plotted.

In the discussion a "point" is a datum defined by a single record in the file; "block"
here will mean the same thing as "datablock" (see glossary).

Syntax:
plot ’file’ every {<point incr>}

{:{<block incr>}
{:{<start point>}
{:{<start block>}
{:{<end point>}
{:<end block>}}}}}

The data points to be plotted are selected according to a loop from <start point> to
<end point> with increment <point incr> and the blocks according to a loop from
<start block> to <end block> with increment <block incr>.

The first datum in each block is numbered ’0’, as is the first block in the file.

Note that records containing unplottable information are counted.

Any of the numbers can be omitted; the increments default to unity, the start values
to the first point or block, and the end values to the last point or block. If every is
not specified, all points in all lines are plotted.

Examples:
every :::3::3 # selects just the fourth block (’0’ is first)

GNUPLOT 4.0 39

every :::::9 # selects the first 10 blocks
every 2:2 # selects every other point in every other block
every ::5::15 # selects points 5 through 15 in each block

See , , and .

30.1.2. Example datafile

This example plots the data in the file "population.dat" and a theoretical curve:

pop(x) = 103*exp((1965-x)/10)
plot [1960:1990] ’population.dat’, pop(x)

The file "population.dat" might contain:

Gnu population in Antarctica since 1965
1965 103
1970 55
1975 34
1980 24
1985 10

30.1.3. Index

The index keyword allows only some of the data sets in a multi-data-set file to be
plotted.

Syntax:
plot ’file’ index <m>{{:<n>}:<p>}

Data sets are separated by pairs of blank records. index <m> selects only set <m>;
index <m>:<n> selects sets in the range <m> to <n>; and index
<m>:<n>:<p> selects indices <m>, <m>+<p>, <m>+2<p>, etc., but stopping
at <n>. Following C indexing, the index 0 is assigned to the first data set in the file.
Specifying too large an index results in an error message. If index is not specified, all
sets are plotted as a single data set.

Example:
plot ’file’ index 4:5

30.1.4. Smooth

gnuplot includes a few general-purpose routines for interpolation and approximation
of data; these are grouped under the smooth option. More sophisticated data

GNUPLOT 4.0 40

processing may be performed by preprocessing the data externally or by using fit with
an appropriate model.

Syntax:
smooth {unique | frequency | csplines | acsplines | bezier | sbezier}

unique and frequency plot the data after making them monotonic. Each of the
other routines uses the data to determine the coefficients of a continuous curve
between the endpoints of the data. This curve is then plotted in the same manner as a
function, that is, by finding its value at uniform intervals along the abscissa (see set
samples) and connecting these points with straight line segments (if a line style is
chosen).

If autoscale is in effect, the ranges will be computed such that the plotted curve lies
within the borders of the graph.

If autoscale is not in effect, and the smooth option is either acspline or cspline, the
sampling of the generated curve is done across the intersection of the x range covered
by the input data and the fixed abscissa range as defined by set xrange.

If too few points are available to allow the selected option to be applied, an error mes-
sage is produced. The minimum number is one for unique and frequency, four for
acsplines, and three for the others.

The smooth options have no effect on function plots.

30.1.4.1. Acsplines

The acsplines option approximates the data with a "natural smoothing spline".
After the data are made monotonic in x (see smooth unique), a curve is piece-
wise constructed from segments of cubic polynomials whose coefficients are found
by the weighting the data points; the weights are taken from the third column in
the data file. That default can be modified by the third entry in the using list,
e.g.,

plot ’data-file’ using 1:2:(1.0) smooth acsplines

Qualitatively, the absolute magnitude of the weights determines the number of
segments used to construct the curve. If the weights are large, the effect of each
datum is large and the curve approaches that produced by connecting consecu-
tive points with natural cubic splines. If the weights are small, the curve is com-
posed of fewer segments and thus is smoother; the limiting case is the single seg-
ment produced by a weighted linear least squares fit to all the data. The
smoothing weight can be expressed in terms of errors as a statistical weight for a
point divided by a "smoothing factor" for the curve so that (standard) errors in
the file can be used as smoothing weights.

Example:
sw(x,S)=1/(x*x*S)
plot ’data file’ using 1:2:(sw($3,100)) smooth acsplines

GNUPLOT 4.0 41

30.1.4.2. Bezier

The bezier option approximates the data with a Bezier curve of degree n (the
number of data points) that connects the endpoints.

30.1.4.3. Csplines

The csplines option connects consecutive points by natural cubic splines after
rendering the data monotonic (see smooth unique).

30.1.4.4. Sbezier

The sbezier option first renders the data monotonic (unique) and then applies
the bezier algorithm.

30.1.4.5. Unique

The unique option makes the data monotonic in x; points with the same x-value
are replaced by a single point having the average y-value. The resulting points
are then connected by straight line segments. demos

30.1.4.6. Frequency

The frequency option makes the data monotonic in x; points with the same x-
value are replaced by a single point having the summed y-values. The resulting
points are then connected by straight line segments.

30.1.5. Special-filenames

A special filename of ’-’ specifies that the data are inline; i.e., they follow the com-
mand. Only the data follow the command; plot options like filters, titles, and line
styles remain on the plot command line. This is similar to << in unix shell script,
and $DECK in VMS DCL. The data are entered as though they are being read from
a file, one data point per record. The letter "e" at the start of the first column termi-
nates data entry. The using option can be applied to these data---using it to filter
them through a function might make sense, but selecting columns probably doesn’t!

’-’ is intended for situations where it is useful to have data and commands together,
e.g., when gnuplot is run as a sub-process of some front-end application. Some of the
demos, for example, might use this feature. While plot options such as index and
every are recognized, their use forces you to enter data that won’t be used. For exam-
ple, while

GNUPLOT 4.0 42

plot ’-’ index 0, ’-’ index 1
2
4
6

10
12
14
e
2
4
6

10
12
14
e

does indeed work,

plot ’-’, ’-’
2
4
6
e
10
12
14
e

is a lot easier to type.

If you use ’-’ with replot, you may need to enter the data more than once (see
replot).

A blank filename (’’) specifies that the previous filename should be reused. This can
be useful with things like

plot ’a/very/long/filename’ using 1:2, ’’ using 1:3, ’’ using 1:4

(If you use both ’-’ and ’’ on the same plot command, you’ll need to have two sets of
inline data, as in the example above.)

On some computer systems with a popen function (Unix), the datafile can be piped
through a shell command by starting the file name with a ’<’. For example,

pop(x) = 103*exp(-x/10)
plot "< awk ’{print $1-1965, $2}’ population.dat", pop(x)

would plot the same information as the first population example but with years since
1965 as the x axis. If you want to execute this example, you have to delete all

GNUPLOT 4.0 43

comments from the data file above or substitute the following command for the first
part of the command above (the part up to the comma):

plot "< awk ’$0 !˜ /ˆ#/ {print $1-1965, $2}’ population.dat"

While this approach is most flexible, it is possible to achieve simple filtering with the
using or thru keywords.

30.1.6. Thru

The thru function is provided for backward compatibility.

Syntax:
plot ’file’ thru f(x)

It is equivalent to:

plot ’file’ using 1:(f($2))

While the latter appears more complex, it is much more flexible. The more natural

plot ’file’ thru f(y)

also works (i.e. you can use y as the dummy variable).

thru is parsed for splot and fit but has no effect.

30.1.7. Using

The most common datafile modifier is using.

Syntax:
plot ’file’ using {<entry> {:<entry> {:<entry> ...}}} {’format’}

If a format is specified, each datafile record is read using the C library’s ’scanf’ func-
tion, with the specified format string. Otherwise the record is read and broken into
columns at spaces or tabs. A format cannot be specified if time-format data is being
used (this must be done by set data time).

The resulting array of data is then sorted into columns according to the entries. Each
<entry> may be a simple column number, which selects the datum, an expression
enclosed in parentheses, or empty. The expression can use $1 to access the first item
read, $2 for the second item, and so on. It can also use column(x) and valid(x)
where x is an arbitrary expression resulting in an integer. column(x) returns the x’th
datum; valid(x) tests that the datum in the x’th column is a valid number. A col-
umn number of 0 generates a number increasing (from zero) with each point, and is
reset upon encountering two blank records. A column number of -1 gives the dataline
number, which starts at 0, increments at single blank records, and is reset at double
blank records. A column number of -2 gives the index number, which is incremented

GNUPLOT 4.0 44

only when two blank records are found. An empty <entry> will default to its order in
the list of entries. For example, using ::4 is interpreted as using 1:2:4.

N.B.---the call command also uses $’s as a special character. See call for details about
how to include a column number in a call argument list.

If the using list has but a single entry, that <entry> will be used for y and the data
point number is used for x; for example, "plot ’file’ using 1" is identical to "plot
’file’ using 0:1". If the using list has two entries, these will be used for x and y.
Additional entries are usually errors in x and/or y. See set style for details about
plotting styles that make use of error information, and fit for use of error information
in curve fitting.

’scanf’ accepts several numerical specifications but gnuplot requires all inputs to be
double-precision floating-point variables, so lf is the only permissible specifier. ’scanf’
expects to see white space---a blank, tab ("\t"), newline ("\n"), or formfeed
("\f")---between numbers; anything else in the input stream must be explicitly
skipped.

Note that the use of "\t", "\n", or "\f" requires use of double-quotes rather than sin-
gle-quotes.

Examples:

This creates a plot of the sum of the 2nd and 3rd data against the first: The format
string specifies comma- rather than space-separated columns. The same result could
be achieved by specifying set datafile separator ",".

plot ’file’ using 1:($2+$3) ’%lf,%lf,%lf’

In this example the data are read from the file "MyData" using a more complicated
format:

plot ’MyData’ using "%*lf%lf%*20[ˆ\n]%lf"

The meaning of this format is:

%*lf ignore a number
%lf read a double-precision number (x by default)
%*20[ˆ\n] ignore 20 non-newline characters
%lf read a double-precision number (y by default)

One trick is to use the ternary ?: operator to filter data:

plot ’file’ using 1:($3>10 ? $2 : 1/0)

which plots the datum in column two against that in column one provided the datum
in column three exceeds ten. 1/0 is undefined; gnuplot quietly ignores undefined
points, so unsuitable points are suppressed.

In fact, you can use a constant expression for the column number, provided it doesn’t
start with an opening parenthesis; constructs like using 0+(complicated expres-
sion) can be used. The crucial point is that the expression is evaluated once if it
doesn’t start with a left parenthesis, or once for each data point read if it does.

GNUPLOT 4.0 45

If timeseries data are being used, the time can span multiple columns. The starting
column should be specified. Note that the spaces within the time must be included
when calculating starting columns for other data. E.g., if the first element on a line is
a time with an embedded space, the y value should be specified as column three.

It should be noted that plot ’file’, plot ’file’ using 1:2, and plot ’file’ using
($1):($2) can be subtly different: 1) if file has some lines with one column and some
with two, the first will invent x values when they are missing, the second will quietly
ignore the lines with one column, and the third will store an undefined value for lines
with one point (so that in a plot with lines, no line joins points across the bad point);
2) if a line contains text at the first column, the first will abort the plot on an error,
but the second and third should quietly skip the garbage.

In fact, it is often possible to plot a file with lots of lines of garbage at the top simply
by specifying

plot ’file’ using 1:2

However, if you want to leave text in your data files, it is safer to put the comment
character (#) in the first column of the text lines. Feeble using demos.

30.2. Errorbars

Error bars are supported for 2-d data file plots by reading one to four additional columns (or
using entries); these additional values are used in different ways by the various errorbar
styles.

In the default situation, gnuplot expects to see three, four, or six numbers on each line of
the data file---either

(x, y, ydelta),
(x, y, ylow, yhigh),
(x, y, xdelta),
(x, y, xlow, xhigh),
(x, y, xdelta, ydelta), or
(x, y, xlow, xhigh, ylow, yhigh).

The x coordinate must be specified. The order of the numbers must be exactly as given
above, though the using qualifier can manipulate the order and provide values for missing
columns. For example,

plot ’file’ with errorbars
plot ’file’ using 1:2:(sqrt($1)) with xerrorbars
plot ’file’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

The last example is for a file containing an unsupported combination of relative x and abso-
lute y errors. The using entry generates absolute x min and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x, yhigh). If ydelta is specified
instead of ylow and yhigh, ylow = y - ydelta and yhigh = y + ydelta are derived. If there
are only two numbers on the record, yhigh and ylow are both set to y. The x error bar is a

GNUPLOT 4.0 46

horizontal line computed in the same fashion. To get lines plotted between the data points,
plot the data file twice, once with errorbars and once with lines (but remember to use the
notitle option on one to avoid two entries in the key). Alternately, use the errorlines com-
mand (see errorlines).

The error bars have crossbars at each end unless set bars is used (see set bars for details).

If autoscaling is on, the ranges will be adjusted to include the error bars. See also errorbar
demos.

See plot using, plot with, and set style for more information.

30.3. Errorlines

Lines with error bars are supported for 2-d data file plots by reading one to four additional
columns (or using entries); these additional values are used in different ways by the various
errorlines styles.

In the default situation, gnuplot expects to see three, four, or six numbers on each line of
the data file---either

(x, y, ydelta),
(x, y, ylow, yhigh),
(x, y, xdelta),
(x, y, xlow, xhigh),
(x, y, xdelta, ydelta), or
(x, y, xlow, xhigh, ylow, yhigh).

The x coordinate must be specified. The order of the numbers must be exactly as given
above, though the using qualifier can manipulate the order and provide values for missing
columns. For example,

plot ’file’ with errorlines
plot ’file’ using 1:2:(sqrt($1)) with xerrorlines
plot ’file’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines

The last example is for a file containing an unsupported combination of relative x and abso-
lute y errors. The using entry generates absolute x min and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x, yhigh). If ydelta is specified
instead of ylow and yhigh, ylow = y - ydelta and yhigh = y + ydelta are derived. If there
are only two numbers on the record, yhigh and ylow are both set to y. The x error bar is a
horizontal line computed in the same fashion.

The error bars have crossbars at each end unless set bars is used (see set bars for details).

If autoscaling is on, the ranges will be adjusted to include the error bars.

See plot using, plot with, and set style for more information.

GNUPLOT 4.0 47

30.4. Parametric

When in parametric mode (set parametric) mathematical expressions must be given in
pairs for plot and in triplets for splot.

Examples:
plot sin(t),t**2
splot cos(u)*cos(v),cos(u)*sin(v),sin(u)

Data files are plotted as before, except any preceding parametric function must be fully
specified before a data file is given as a plot. In other words, the x parametric function
(sin(t) above) and the y parametric function (t**2 above) must not be interrupted with
any modifiers or data functions; doing so will generate a syntax error stating that the para-
metric function is not fully specified.

Other modifiers, such as with and title, may be specified only after the parametric function
has been completed:

plot sin(t),t**2 title ’Parametric example’ with linespoints

See also Parametric Mode Demos.

30.5. Ranges

The optional ranges specify the region of the graph that will be displayed.

Syntax:
[{<dummy-var>=}{{<min>}:{<max>}}]
[{{<min>}:{<max>}}]

The first form applies to the independent variable (xrange or trange, if in parametric
mode). The second form applies to the dependent variable yrange (and xrange, too, if in
parametric mode). <dummy-var> is a new name for the independent variable. (The
defaults may be changed with set dummy.) The optional <min> and <max> terms can
be constant expressions or *.

In non-parametric mode, the order in which ranges must be given is xrange and yrange.

In parametric mode, the order for the plot command is trange, xrange, and yrange. The
following plot command shows setting the trange to [-pi:pi], the xrange to [-1.3:1.3] and
the yrange to [-1:1] for the duration of the graph:

plot [-pi:pi] [-1.3:1.3] [-1:1] sin(t),t**2

Note that the x2range and y2range cannot be specified here---set x2range and set
y2range must be used.

Ranges are interpreted in the order listed above for the appropriate mode. Once all those
needed are specified, no further ones must be listed, but unneeded ones cannot be
skipped---use an empty range [] as a placeholder.

GNUPLOT 4.0 48

* can be used to allow autoscaling of either of min and max. See also set autoscale.

Ranges specified on the plot or splot command line affect only that graph; use the set
xrange, set yrange, etc., commands to change the default ranges for future graphs.

With time data, you must provide the range (in the same manner as the time appears in the
datafile) within quotes. gnuplot uses the timefmt string to read the value---see set
timefmt.

Examples:

This uses the current ranges:
plot cos(x)

This sets the x range only:
plot [-10:30] sin(pi*x)/(pi*x)

This is the same, but uses t as the dummy-variable:
plot [t = -10 :30] sin(pi*t)/(pi*t)

This sets both the x and y ranges:
plot [-pi:pi] [-3:3] tan(x), 1/x

This sets only the y range, and turns off autoscaling on both axes:
plot [] [-2:sin(5)*-8] sin(x)**besj0(x)

This sets xmax and ymin only:
plot [:200] [-pi:] exp(sin(x))

This sets the x range for a timeseries:
set timefmt "%d/%m/%y %H:%M"
plot ["1/6/93 12:00":"5/6/93 12:00"] ’timedata.dat’

See also ranges demo.

30.6. Title

A line title for each function and data set appears in the key, accompanied by a sample of
the line and/or symbol used to represent it. It can be changed by using the title option.

Syntax:
title "<title>" | notitle

where <title> is the new title of the line and must be enclosed in quotes. The quotes will
not be shown in the key. A special character may be given as a backslash followed by its
octal value ("\345"). The tab character "\t" is understood. Note that backslash processing
occurs only for strings enclosed in double quotes---use single quotes to prevent such process-
ing. The newline character "\n" is not processed in key entries in either type of string.

The line title and sample can be omitted from the key by using the keyword notitle. A null
title (title ’’) is equivalent to notitle. If only the sample is wanted, use one or more blanks

GNUPLOT 4.0 49

(title ’ ’).

If key autotitles is set (which is the default) and neither title nor notitle are specified the
line title is the function name or the file name as it appears on the plot command. If it is a
file name, any datafile modifiers specified will be included in the default title.

The layout of the key itself (position, title justification, etc.) can be controlled by set key.
Please see set key for details.

Examples:

This plots y=x with the title ’x’:
plot x

This plots x squared with title "xˆ2" and file "data.1" with title "measured data":
plot x**2 title "xˆ2", ’data.1’ t "measured data"

This puts an untitled circular border around a polar graph:
set polar; plot my function(t), 1 notitle

30.7. With

Functions and data may be displayed in one of a large number of styles. The with keyword
provides the means of selection.

Syntax:
with <style> { {linestyle | ls <line style>}

| {{linetype | lt <line type>}
{linewidth | lw <line width>}
{pointtype | pt <point type>}
{pointsize | ps <point size>}
{fill | fs <fillstyle>}
{palette}}

}

where <style> is either lines, points, linespoints, impulses, dots, steps, fsteps, his-
teps, errorbars, xerrorbars, yerrorbars, xyerrorbars, errorlines, xerrorlines, yer-
rorlines, xyerrorlines, boxes, filledcurves, boxerrorbars, boxxyerrorbars, finance-
bars, candlesticks, vectors or pm3d. Some of these styles require additional information.
See plotting styles for details of each style. fill is relevant only to certain 2D plots (cur-
rently boxes boxxyerrorbars and candlesticks). Note that filledcurves and pm3d can
take an additional option not listed above (the latter only when used in the splot com-
mand)---see their help or examples below for more details.

Default styles are chosen with the set style function and set style data commands.

By default, each function and data file will use a different line type and point type, up to
the maximum number of available types. All terminal drivers support at least six different
point types, and re-use them, in order, if more are required. The LaTeX driver supplies an
additional six point types (all variants of a circle), and thus will only repeat after 12 curves
are plotted with points. The PostScript drivers (postscript) supplies a total of 64.

GNUPLOT 4.0 50

If you wish to choose the line or point type for a single plot, <line type> and <point type>
may be specified. These are positive integer constants (or expressions) that specify the line
type and point type to be used for the plot. Use test to display the types available for your
terminal.

You may also scale the line width and point size for a plot by using <line width> and
<point size>, which are specified relative to the default values for each terminal. The
pointsize may also be altered globally---see set pointsize for details. But note that both
<point size> as set here and as set by set pointsize multiply the default point size---their
effects are not cumulative. That is, set pointsize 2; plot x w p ps 3 will use points
three times default size, not six.

If you have defined specific line type/width and point type/size combinations with set style
line, one of these may be selected by setting <line style> to the index of the desired style.

If gnuplot was built with pm3d support, the special keyword palette is allowed for smooth
color change of lines, points and dots in splots. The color is chosen from a smooth palette
which was set previously with the command set palette. The color value corresponds to the
z-value of the point coordinates or to the color coordinate if specified by the 4th parameter
in using. The 2d plot command ignores this option.

The keywords may be abbreviated as indicated.

Note that the linewidth, pointsize and palette options are not supported by all termi-
nals.

Examples:

This plots sin(x) with impulses:
plot sin(x) with impulses

This plots x with points, x**2 with the default:
plot x w points, x**2

This plots tan(x) with the default function style, file "data.1" with lines:
plot [] [-2:5] tan(x), ’data.1’ with l

This plots "leastsq.dat" with impulses:
plot ’leastsq.dat’ w i

This plots the data file "population" with boxes:
plot ’population’ with boxes

This plots "exper.dat" with errorbars and lines connecting the points (errorbars require
three or four columns):

plot ’exper.dat’ w lines, ’exper.dat’ notitle w errorbars

Another way to plot "exper.dat" with errorlines (errorbars require three or four columns):
plot ’exper.dat’ w errorlines

This plots sin(x) and cos(x) with linespoints, using the same line type but different point
types:

plot sin(x) with linesp lt 1 pt 3, cos(x) with linesp lt 1 pt 4

GNUPLOT 4.0 51

This plots file "data" with points of type 3 and twice usual size:
plot ’data’ with points pointtype 3 pointsize 2

This plots two data sets with lines differing only by weight:
plot ’d1’ t "good" w l lt 2 lw 3, ’d2’ t "bad" w l lt 2 lw 1

This plots filled curve of x*x and a color stripe:
plot x*x with filledcurve closed, 40 with filledcurve y1=10

This plots x*x and a color box:
plot x*x, (x>=-5 && x<=5 ? 40 : 1/0) with filledcurve y1=10 lt 8

This plots a surface with color lines:
splot x*x-y*y with line palette

This plots two color surfaces at different altitudes:
splot x*x-y*y with pm3d, x*x+y*y with pm3d at t

See set style to change the default styles. See also styles demos.

31. Print

The print command prints the value of <expression> to the screen. It is synonymous with
pause 0. <expression> may be anything that gnuplot can evaluate that produces a number, or
it can be a string.

Syntax:
print <expression> {, <expression>, ...}

See expressions. The output file can be set with set print.

32. Pwd

The pwd command prints the name of the working directory to the screen.

33. Quit

The exit and quit commands and END-OF-FILE character will exit gnuplot. Each of these
commands will clear the output device (as does the clear command) before exiting.

34. Replot

The replot command without arguments repeats the last plot or splot command. This can be
useful for viewing a plot with different set options, or when generating the same plot for several

GNUPLOT 4.0 52

devices.

Arguments specified after a replot command will be added onto the last plot or splot command
(with an implied ’,’ separator) before it is repeated. replot accepts the same arguments as the
plot and splot commands except that ranges cannot be specified. Thus you can use replot to
plot a function against the second axes if the previous command was plot but not if it was splot,
and similarly you can use replot to add a plot from a binary file only if the previous command
was splot.

N.B.---use of

plot ’-’ ; ... ; replot

is not recommended. gnuplot does not store the inline data internally, so since replot appends
new information to the previous plot and then executes the modified command, the ’-’ from the
initial plot will expect to read inline data again.

Note that replot does not work in multiplot mode, since it reproduces only the last plot rather
than the entire screen.

See also command-line-editing for ways to edit the last plot (splot) command.

See also show plot to show the whole current plotting command, and the possibility to copy it
into the history.

35. Reread

The reread command causes the current gnuplot command file, as specified by a load command
or on the command line, to be reset to its starting point before further commands are read from
it. This essentially implements an endless loop of the commands from the beginning of the com-
mand file to the reread command. (But this is not necessarily a disaster---reread can be very
useful when used in conjunction with if. See if for details.) The reread command has no effect if
input from standard input.

Examples:

Suppose the file "looper" contains the commands
a=a+1
plot sin(x*a)
pause -1
if(a<5) reread

and from within gnuplot you submit the commands
a=0
load ’looper’

The result will be four plots (separated by the pause message).

Suppose the file "data" contains six columns of numbers with a total yrange from 0 to 10; the first
is x and the next are five different functions of x. Suppose also that the file "plotter" contains the
commands

c p = c p+1
plot "$0" using 1:c p with lines linetype c p

GNUPLOT 4.0 53

if(c p < n p) reread
and from within gnuplot you submit the commands

n p=6
c p=1
unset key
set yrange [0:10]
set multiplot
call ’plotter’ ’data’
unset multiplot

The result is a single graph consisting of five plots. The yrange must be set explicitly to guaran-
tee that the five separate graphs (drawn on top of each other in multiplot mode) will have exactly
the same axes. The linetype must be specified; otherwise all the plots would be drawn with the
same type. See also Reread Animation Demo (animate.dem).

36. Reset

The reset command causes all graph-related options that can be set with the set command to
take on their default values. This command is useful, e.g., to restore the default graph settings at
the end of a command file, or to return to a defined state after lots of settings have been changed
within a command file. Please refer to the set command to see the default values that the various
options take.

The following set commands do not change the graph status and are thus left unchanged: the ter-
minal set with set term, the output file set with set output and directory paths set with set
loadpath and set fontpath.

37. Save

The save command saves user-defined functions, variables, the set term status, all set options,
or all of these, plus the last plot (splot) command to the specified file.

Syntax:
save {<option>} ’<filename>’

where <option> is functions, variables, terminal or set. If no option is used, gnuplot saves
functions, variables, set options and the last plot (splot) command.

saved files are written in text format and may be read by the load command. For save with the
set option or without any option, the terminal choice and the output filename are written out
as a comment, to get an output file that works in other installations of gnuplot, without changes
and without risk of unwillingly overwriting files.

save terminal will write out just the terminal status, without the comment marker in front of
it. This is mainly useful for switching the terminal setting for a short while, and getting back to
the previously set terminal, afterwards, by loading the saved terminal status. Note that for a sin-
gle gnuplot session you may rather use the other method of saving and restoring current terminal
by the commands set term push and set term pop, see set term.

The filename must be enclosed in quotes.

GNUPLOT 4.0 54

The special filename "-" may be used to save commands to standard output. On systems which
support a popen function (Unix), the output of save can be piped through an external program by
starting the file name with a ’|’. This provides a consistent interface to gnuplot’s internal set-
tings to programs which communicate with gnuplot through a pipe. Please see "help
batch/interactive" for more details.

Examples:
save ’work.gnu’
save functions ’func.dat’
save var ’var.dat’
save set ’options.dat’
save term ’myterm.gnu’
save ’-’
save ’|grep title >t.gp’

38. Set-show

The set command can be used to set lots of options. No screen is drawn, however, until a plot,
splot, or replot command is given.

The show command shows their settings; show all shows all the settings.

Options changed using set can be returned to the default state by giving the corresponding unset
command. See also the reset command, which returns all settable parameters to default values.

If a variable contains time/date data, show will display it according to the format currently
defined by set timefmt, even if that was not in effect when the variable was initially defined.

38.1. Angles

By default, gnuplot assumes the independent variable in polar graphs is in units of radians.
If set angles degrees is specified before set polar, then the default range is [0:360] and
the independent variable has units of degrees. This is particularly useful for plots of data
files. The angle setting also applies to 3-d mapping as set via the set mapping command.

Syntax:
set angles {degrees | radians}
show angles

The angle specified in set grid polar is also read and displayed in the units specified by set
angles.

set angles also affects the arguments of the machine-defined functions sin(x), cos(x) and
tan(x), and the outputs of asin(x), acos(x), atan(x), atan2(x), and arg(x). It has no effect
on the arguments of hyperbolic functions or Bessel functions. However, the output argu-
ments of inverse hyperbolic functions of complex arguments are affected; if these functions
are used, set angles radians must be in effect to maintain consistency between input and
output arguments.

GNUPLOT 4.0 55

x={1.0,0.1}
set angles radians
y=sinh(x)
print y #prints {1.16933, 0.154051}
print asinh(y) #prints {1.0, 0.1}

but
set angles degrees
y=sinh(x)
print y #prints {1.16933, 0.154051}
print asinh(y) #prints {57.29578, 5.729578}

See also poldat.dem: polar plot using set angles demo.

38.2. Arrow

Arbitrary arrows can be placed on a plot using the set arrow command.

Syntax:
set arrow {<tag>} {from <position>} {to|rto <position>}

{ {arrowstyle | as <arrow style>}
| {nohead | head | heads}
{size <length>,<angle>}
{filled | nofilled}
{front | back}
{ {linestyle | ls <line style>}
| {linetype | lt <line type>}
{linewidth | lw <line width} } }

unset arrow {<tag>}
show arrow {<tag>}

<tag> is an integer that identifies the arrow. If no tag is given, the lowest unused tag value
is assigned automatically. The tag can be used to delete or change a specific arrow. To
change any attribute of an existing arrow, use the set arrow command with the appropriate
tag and specify the parts of the arrow to be changed.

The <position>s are specified by either x,y or x,y,z, and may be preceded by first, second,
graph, or screen to select the coordinate system. Unspecified coordinates default to 0.
The endpoints can be specified in one of four coordinate systems---first or second axes,
graph or screen. See coordinates for details. A coordinate system specifier does not
carry over from the "from" position to the "to" position. Arrows outside the screen bound-
aries are permitted but may cause device errors. If the endpoint is specified by "rto"
instead of "to" it is drawn relatively to the start point.

Specifying nohead produces an arrow drawn without a head---a line segment. This gives
you yet another way to draw a line segment on the plot. By default, arrows have heads.
Specifying heads draws arrow heads on both ends of the line.

Head size can be controlled by size <length>,<angle>, where <length> defines length of
each branch of the arrow head and <angle> the angle (in degrees) they make with the
arrow. <Length> is in x-axis units; this can be changed by first, second, graph or screen
before the <length>; see coordinates for details.

GNUPLOT 4.0 56

Specifying filled produces filled arrow heads (if heads are used). Filling is supported on
filled-polygon capable terminals, see help of pm3d for their list, otherwise the arrow heads
are closed but not filled. Further, filling is obviously not supported on terminals drawing
arrows by their own specific routines, like fig, metafont, metapost, latex or tgif.

The line style may be selected from a user-defined list of line styles (see set style line) or
may be defined here by providing values for <line type> (an index from the default list of
styles) and/or <line width> (which is a multiplier for the default width).

Note, however, that if a user-defined line style has been selected, its properties (type and
width) cannot be altered merely by issuing another set arrow command with the appropri-
ate index and lt or lw.

If front is given, the arrow is written on top of the graphed data. If back is given (the
default), the arrow is written underneath the graphed data. Using front will prevent an
arrow from being obscured by dense data.

Examples:

To set an arrow pointing from the origin to (1,2) with user-defined style 5, use:
set arrow to 1,2 ls 5

To set an arrow from bottom left of plotting area to (-5,5,3), and tag the arrow number 3,
use:

set arrow 3 from graph 0,0 to -5,5,3

To change the preceding arrow to end at 1,1,1, without an arrow head and double its width,
use:

set arrow 3 to 1,1,1 nohead lw 2

To draw a vertical line from the bottom to the top of the graph at x=3, use:
set arrow from 3, graph 0 to 3, graph 1 nohead

To draw a vertical arrow with T-shape ends, use:
set arrow 3 from 0,-5 to 0,5 heads size screen 0.1,90

To draw an arrow relatively to the start point, where the relative distances are given in
graph coordinates, use:

set arrow from 0,-5 rto graph 0.1,0.1

To delete arrow number 2, use:
unset arrow 2

To delete all arrows, use:
unset arrow

To show all arrows (in tag order), use:
show arrow

See also arrows demos.

GNUPLOT 4.0 57

38.3. Autoscale

Autoscaling may be set individually on the x, y or z axis or globally on all axes. The default
is to autoscale all axes.

Syntax:
set autoscale {<axes>{|min|max|fixmin|fixmax|fix} | fix | keepfix}
unset autoscale {<axes>}
show autoscale

where <axes> is either x, y, z, cb, x2, y2 or xy. A keyword with min or max appended
(this cannot be done with xy) tells gnuplot to autoscale just the minimum or maximum of
that axis. If no keyword is given, all axes are autoscaled.

A keyword with fixmin, fixmax or fix appended tells gnuplot to disable extension of the
axis range to the next tic mark position, for autoscaled axes using equidistant tics; set
autoscale fix sets this for all axes. Command set autoscale keepfix autoscales all axes
while keeping the fix settings.

When autoscaling, the axis range is automatically computed and the dependent axis (y for a
plot and z for splot) is scaled to include the range of the function or data being plotted.

If autoscaling of the dependent axis (y or z) is not set, the current y or z range is used.

Autoscaling the independent variables (x for plot and x,y for splot) is a request to set the
domain to match any data file being plotted. If there are no data files, autoscaling an inde-
pendent variable has no effect. In other words, in the absence of a data file, functions alone
do not affect the x range (or the y range if plotting z = f(x,y)).

Please see set xrange for additional information about ranges.

The behavior of autoscaling remains consistent in parametric mode, (see set parametric).
However, there are more dependent variables and hence more control over x, y, and z axis
scales. In parametric mode, the independent or dummy variable is t for plots and u,v for
splots. autoscale in parametric mode, then, controls all ranges (t, u, v, x, y, and z) and
allows x, y, and z to be fully autoscaled.

Autoscaling works the same way for polar mode as it does for parametric mode for plot,
with the extension that in polar mode set dummy can be used to change the independent
variable from t (see set dummy).

When tics are displayed on second axes but no plot has been specified for those axes,
x2range and y2range are inherited from xrange and yrange. This is done before xrange
and yrange are autoextended to a whole number of tics, which can cause unexpected results.
You can use the fixmin or fixmax options to avoid this.

Examples:

This sets autoscaling of the y axis (other axes are not affected):
set autoscale y

This sets autoscaling only for the minimum of the y axis (the maximum of the y axis and
the other axes are not affected):

GNUPLOT 4.0 58

set autoscale ymin

This disables extension of the x2 axis tics to the next tic mark, thus keeping the exact range
as found in the plotted data and functions:

set autoscale x2fixmin
set autoscale x2fixmax

This sets autoscaling of the x and y axes:
set autoscale xy

This sets autoscaling of the x, y, z, x2 and y2 axes:
set autoscale

This disables autoscaling of the x, y, z, x2 and y2 axes:
unset autoscale

This disables autoscaling of the z axis only:
unset autoscale z

38.3.1. Parametric mode

When in parametric mode (set parametric), the xrange is as fully scalable as the y
range. In other words, in parametric mode the x axis can be automatically scaled to
fit the range of the parametric function that is being plotted. Of course, the y axis
can also be automatically scaled just as in the non-parametric case. If autoscaling on
the x axis is not set, the current x range is used.

Data files are plotted the same in parametric and non-parametric mode. However,
there is a difference in mixed function and data plots: in non-parametric mode with
autoscaled x, the x range of the datafile controls the x range of the functions; in para-
metric mode it has no influence.

For completeness a last command set autoscale t is accepted. However, the effect of
this "scaling" is very minor. When gnuplot determines that the t range would be
empty, it makes a small adjustment if autoscaling is true. Otherwise, gnuplot gives
an error. Such behavior may, in fact, not be very useful and the command set
autoscale t is certainly questionable.

splot extends the above ideas as you would expect. If autoscaling is set, then x, y,
and z ranges are computed and each axis scaled to fit the resulting data.

38.3.2. Polar mode

When in polar mode (set polar), the xrange and the yrange are both found from the
polar coordinates, and thus they can both be automatically scaled. In other words, in
polar mode both the x and y axes can be automatically scaled to fit the ranges of the
polar function that is being plotted.

GNUPLOT 4.0 59

When plotting functions in polar mode, the rrange may be autoscaled. When plotting
data files in polar mode, the trange may also be autoscaled. Note that if the trange is
contained within one quadrant, autoscaling will produce a polar plot of only that sin-
gle quadrant.

Explicitly setting one or two ranges but not others may lead to unexpected results.
See also polar demos.

38.4. Bars

The set bars command controls the tics at the ends of error bars, and also the width of the
boxes in plot styles candlesticks and financebars.

Syntax:
set bars {small | large | <size>}
unset bars
show bars

small is a synonym for 0.0, and large for 1.0. The default is 1.0 if no size is given.

38.5. Bmargin

The command set bmargin sets the size of the bottom margin. Please see set margin for
details.

38.6. Border

The set border and unset border commands control the display of the graph borders for
the plot and splot commands. Note that the borders do not necessarily coincide with the
axes; with plot they often do, but with splot they usually do not.

Syntax:
set border {<integer> { {linestyle | ls <line style>}

| {linetype | lt <line type> }
{linewidth | lw <line width>} } }

unset border
show border

With a splot displayed in an arbitrary orientation, like set view 56,103, the four corners
of the x-y plane can be referred to as "front", "back", "left" and "right". A similar set of
four corners exist for the top surface, of course. Thus the border connecting, say, the back
and right corners of the x-y plane is the "bottom right back" border, and the border con-
necting the top and bottom front corners is the "front vertical". (This nomenclature is
defined solely to allow the reader to figure out the table that follows.)

The borders are encoded in a 12-bit integer: the bottom four bits control the border for plot

GNUPLOT 4.0 60

and the sides of the base for splot; the next four bits control the verticals in splot; the top
four bits control the edges on top of the splot. In detail, <integer> should be the sum of
the appropriate entries from the following table:

Bit plot splot
1 bottom bottom left front
2 left bottom left back
4 top bottom right front
8 right bottom right back
16 no effect left vertical
32 no effect back vertical
64 no effect right vertical
128 no effect front vertical
256 no effect top left back
512 no effect top right back
1024 no effect top left front
2048 no effect top right front

Various bits or combinations of bits may be added together in the command.

The default is 31, which is all four sides for plot, and base and z axis for splot.

Using the optional <line style>, <line type> and <line width> specifiers, the way the border
lines are drawn can be influenced (limited by what the current terminal driver supports).

For plot, tics may be drawn on edges other than bottom and left by enabling the second axes --
see set xtics for details.

If a splot draws only on the base, as is the case with "unset surface; set contour base", then
the verticals and the top are not drawn even if they are specified.

The set grid options ’back’, ’front’ and ’layerdefault’ also control the order in which the border
lines are drawn with respect to the output of the plotted data.

Examples:

Draw default borders:
set border

Draw only the left and bottom (plot) or both front and back bottom left (splot) borders:
set border 3

Draw a complete box around a splot:
set border 4095

Draw a topless box around a splot, omitting the front vertical:
set border 127+256+512 # or set border 1023-128

GNUPLOT 4.0 61

Draw only the top and right borders for a plot and label them as axes:
unset xtics; unset ytics; set x2tics; set y2tics; set border 12

See also borders demo.

38.7. Boxwidth

The set boxwidth command is used to set the default width of boxes in the boxes, boxer-
rorbars and candlesticks styles.

Syntax:
set boxwidth {<width>} {absolute|relative}
show boxwidth

If a data file is plotted without the width being specified in the third, fourth, or fifth column
(or using entry), or if a function is plotted, the width of each box is set by the set
boxwidth command. (If a width is given both in the file and by the set boxwidth com-
mand, the one in the file is used.) If the width is not specified in one of these ways, the
width of each box will be calculated automatically so that it touches the adjacent boxes.
relative indicates, that the specified boxwidth is a scaling factor for the automatically cal-
culated boxwidth, otherwise the boxwidth is taken as an absolute value (which is the
default). In a four-column data set, the fourth column will be interpreted as the box width
unless the width is set to -2.0, in which case the width will be calculated automatically. See
set style boxerrorbars for more details.

To set the box width to automatic use the command
set boxwidth

or, for four-column data,
set boxwidth -2

The same effect can be achieved with the using keyword in plot:
plot ’file’ using 1:2:3:4:(-2)

To set the box width to half of the automatic size use
set boxwidth 0.5 relative

To set the box width to an absolute value of 2 use
set boxwidth 2 absolute

or, if you didn’t specify a relative boxwidth before,
set boxwidth 2

38.8. Clabel

gnuplot will vary the linetype used for each contour level when clabel is set. When this
option on (the default), a legend labels each linestyle with the z level it represents. It is not
possible at present to separate the contour labels from the surface key.

GNUPLOT 4.0 62

Syntax:
set clabel {’<format>’}
unset clabel
show clabel

The default for the format string is %8.3g, which gives three decimal places. This may pro-
duce poor label alignment if the key is altered from its default configuration.

The first contour linetype, or only contour linetype when clabel is off, is the surface linetype
+1; contour points are the same style as surface points.

See also set contour.

38.9. Clip

gnuplot can clip data points and lines that are near the boundaries of a graph.

Syntax:
set clip <clip-type>
unset clip <clip-type>
show clip

Three clip types for points and lines are supported by gnuplot: points, one, and two. One,
two, or all three clip types may be active for a single graph. Note that clipping of color
filled quadrangles drawn by pm3d maps and surfaces is not controlled by this command,
but by set pm3d clip1in and set pm3d clip4in.

The points clip type forces gnuplot to clip (actually, not plot at all) data points that fall
within but too close to the boundaries. This is done so that large symbols used for points
will not extend outside the boundary lines. Without clipping points near the boundaries,
the plot may look bad. Adjusting the x and y ranges may give similar results.

Setting the one clip type causes gnuplot to draw a line segment which has only one of its
two endpoints within the graph. Only the in-range portion of the line is drawn. The alter-
native is to not draw any portion of the line segment.

Some lines may have both endpoints out of range, but pass through the graph. Setting the
two clip-type allows the visible portion of these lines to be drawn.

In no case is a line drawn outside the graph.

The defaults are noclip points, clip one, and noclip two.

To check the state of all forms of clipping, use
show clip

For backward compatibility with older versions, the following forms are also permitted:
set clip
unset clip

set clip is synonymous with set clip points; unset clip turns off all three types of

GNUPLOT 4.0 63

clipping.

38.10. Cntrparam

set cntrparam controls the generation of contours and their smoothness for a contour plot.
show contour displays current settings of cntrparam as well as contour.

Syntax:
set cntrparam { { linear

| cubicspline
| bspline
| points <n>
| order <n>
| levels { auto {<n>} | <n>

| discrete <z1> {,<z2>{,<z3>...}}
| incremental <start>, <incr> {,<end>}

}
}

}
show contour

This command has two functions. First, it sets the values of z for which contour points are
to be determined (by linear interpolation between data points or function isosamples.) Sec-
ond, it controls the way contours are drawn between the points determined to be of equal z.
<n> should be an integral constant expression and <z1>, <z2> ... any constant expres-
sions. The parameters are:

linear, cubicspline, bspline---Controls type of approximation or interpolation. If linear,
then straight line segments connect points of equal z magnitude. If cubicspline, then piece-
wise-linear contours are interpolated between the same equal z points to form somewhat
smoother contours, but which may undulate. If bspline, a guaranteed-smoother curve is
drawn, which only approximates the position of the points of equal-z.

points---Eventually all drawings are done with piecewise-linear strokes. This number con-
trols the number of line segments used to approximate the bspline or cubicspline curve.
Number of cubicspline or bspline segments (strokes) = points * number of linear segments.

order---Order of the bspline approximation to be used. The bigger this order is, the
smoother the resulting contour. (Of course, higher order bspline curves will move further
away from the original piecewise linear data.) This option is relevant for bspline mode
only. Allowed values are integers in the range from 2 (linear) to 10.

levels--- Selection of contour levels, controlled by auto (default), discrete, incremental,
and <n>, number of contour levels, limited to
MAX DISCRETE LEVELS as defined in plot.h (30 is standard.)

For auto, <n> specifies a nominal number of levels; the actual number will be adjusted to
give simple labels. If the surface is bounded by zmin and zmax, contours will be generated
at integer multiples of dz between zmin and zmax, where dz is 1, 2, or 5 times some power
of ten (like the step between two tic marks).

GNUPLOT 4.0 64

For levels discrete, contours will be generated at z = <z1>, <z2> ... as specified; the
number of discrete levels sets the number of contour levels. In discrete mode, any set
cntrparam levels <n> are ignored.

For incremental, contours are generated at values of z beginning at <start> and increasing
by <increment>, until the number of contours is reached. <end> is used to determine the
number of contour levels, which will be changed by any subsequent set cntrparam levels
<n>.

If the command set cntrparam is given without any arguments specified, the defaults are
used: linear, 5 points, order 4, 5 auto levels.

Examples:
set cntrparam bspline
set cntrparam points 7
set cntrparam order 10

To select levels automatically, 5 if the level increment criteria are met:
set cntrparam levels auto 5

To specify discrete levels at .1, .37, and .9:
set cntrparam levels discrete .1,1/exp(1),.9

To specify levels from 0 to 4 with increment 1:
set cntrparam levels incremental 0,1,4

To set the number of levels to 10 (changing an incremental end or possibly the number of
auto levels):

set cntrparam levels 10

To set the start and increment while retaining the number of levels:
set cntrparam levels incremental 100,50

See also set contour for control of where the contours are drawn, and set clabel for con-
trol of the format of the contour labels and linetypes.

See also contours demo (contours.dem) and contours with user defined levels demo (dis-
crete.dem).

38.11. Color box

The color scheme, i.e. the gradient of the smooth color with min z and max z values of
pm3d’s palette, is drawn in a color box unless unset colorbox.

set colorbox
set colorbox {

{ vertical | horizontal }
{ default | user }
{ origin x, y }
{ size x, y }

GNUPLOT 4.0 65

{ noborder | bdefault | border [line style] }
}

show colorbox
unset colorbox

Colorbox position can be default or user. If the latter is specified the values as given with
the origin and size subcommands are used.

vertical and horizontal switches the orientation of the color gradient.

origin x, y and size x, y are used only in combination with the user option. The x and y
values must be given in screen coordinates (as everything else did not seem to make sense)
that is between [0 - 1]. Try for example:

set colorbox horiz user origin .1,.02 size .8,.04
which will draw a horizontal gradient somewhere at the bottom of the graph.

border turns the border on (this is the default). noborder turns the border off. If an posi-
tive integer argument is given after border, it is used as a line style tag which is used for
drawing the border, e.g.:

set style line 2604 linetype -1 linewidth .4
set colorbox border 2604

will use line style 2604, a thin line with the default border color (-1) for drawing the border.
bdefault (which is the default) will use the default border line style for drawing the border
of the color box.

The axis of the color box is called cb and it is controlled by means of the usual axes com-
mands, i.e. set/unset/show with cbrange, [m]cbtics, format cb, grid [m]cb, cblabel,
and perhaps even cbdata, [no]cbdtics, [no]cbmtics.

set colorbox without any parameter switches the position to default. unset colorbox
resets the default parameters for the colorbox and switches the colorbox off.

See also help for set pm3d, set palette, x11 pm3d, and set style line.

38.12. Contour

set contour enables contour drawing for surfaces. This option is available for splot only.

Syntax:
set contour {base | surface | both}
unset contour
show contour

The three options specify where to draw the contours: base draws the contours on the grid
base where the x/ytics are placed, surface draws the contours on the surfaces themselves,
and both draws the contours on both the base and the surface. If no option is provided,
the default is base.

See also set cntrparam for the parameters that affect the drawing of contours, and set
clabel for control of labelling of the contours.

GNUPLOT 4.0 66

The surface can be switched off (see set surface), giving a contour-only graph. Though it
is possible to use set size to enlarge the plot to fill the screen, more control over the output
format can be obtained by writing the contour information to a file, and rereading it as a
2-d datafile plot:

unset surface
set contour
set cntrparam ...
set term table
set out ’filename’
splot ...
set out
contour info now in filename
set term <whatever>
plot ’filename’

In order to draw contours, the data should be organized as "grid data". In such a file all
the points for a single y-isoline are listed, then all the points for the next y-isoline, and so
on. A single blank line (a line containing no characters other than blank spaces and a car-
riage return and/or a line feed) separates one y-isoline from the next. See also splot
datafile.

If contours are desired from non-grid data, set dgrid3d can be used to create an appropri-
ate grid. See set dgrid3d for more information. See also contours demo (contours.dem)
and contours with user defined levels demo (discrete.dem).

38.13. Data style

This form of the command is deprecated. Please see set style data.

38.14. Datafile

The set datafile command options control interpretation of fields read from input data files
by the plot, splot, and fit commands. Three such options are currently implemented.

38.14.1. Set datafile missing

The set datafile missing command allows you to tell gnuplot what character string
is used in a data file to denote missing data. Exactly how this missing value will be
treated depends on the using specifier of the plot or splot command.

Syntax:
set datafile missing {"<string>"}
show datafile missing
unset datafile

GNUPLOT 4.0 67

Example:
Ignore entries containing IEEE NaN ("Not a Number") code
set datafile missing "NaN"

Example:
set datafile missing "?"
set style data lines
plot ’-’

1 10
2 20
3 ?
4 40
5 50
e

plot ’-’ using 1:2
1 10
2 20
3 ?
4 40
5 50
e

plot ’-’ using 1:($2)
1 10
2 20
3 ?
4 40
5 50
e

The first plot will recognize only the first datum in the "3 ?" line. It will use the sin-
gle-datum-on-a-line convention that the line number is "x" and the datum is "y", so
the point will be plotted (in this case erroneously) at (2,3).

The second plot will correctly ignore the middle line. The plotted line will connect
the points at (2,20) and (4,40).

The third plot will also correctly ignore the middle line, but the plotted line will not
connect the points at (2,20) and (4,40).

There is no default character for missing, but in many cases any non-parsible string of
characters found where a numerical value is expected will be treated as missing data.

38.14.2. Set datafile separator

The command set datafile separator "<char>" tells gnuplot that data fields in
subsequent input files are separated by <char> rather than by whitespace. The most
common use is to read in csv (comma-separated value) files written by spreadsheet or
database programs. By default data fields are separated by whitespace.

Syntax:

GNUPLOT 4.0 68

set datafile separator {"<char>" | whitespace}

Examples:
Input file contains tab-separated fields
set datafile separator "\t"

Input file contains comma-separated values fields
set datafile separator ","

38.14.3. Set datafile commentschars

The set datafile commentschars command allows you to tell gnuplot what charac-
ters are used in a data file to denote comments. Gnuplot will ignore rest of the line
behind the specified characters if either of them is the first non-blank character on the
line.

Syntax:
set datafile commentschars {"<string>"}
show datafile commentschars
unset commentschars

Default value of the string is "#!" on VMS and "#" otherwise.

Then, the following line in a data file is completely ignored
1 2 3 4

but the following
1 # 3 4

produces rather unexpected plot unless
set datafile missing ’#’

is specified as well.

Example:
set datafile commentschars "#!%"

38.15. Decimalsign

The set decimalsign command selects a decimal sign for numbers printed into tic labels or
set label strings.

Syntax:
set decimalsign {<value>}
unset decimalsign
show decimalsign

The argument <value> is the string to be used in place of the usual decimal point. Typical
choices include the period, ’.’, and the comma, ’,’, but others may be useful, too. If you
omit the <value> argument, the decimal separator is not modified from the usual default,
which is a period. Unsetting decimalsign has the same effect as omitting <value>.

GNUPLOT 4.0 69

Example:

Correct typesetting in most European countries requires:
set decimalsign ’,’

38.16. Dgrid3d

The set dgrid3d command enables, and can set parameters for, non-grid to grid data map-
ping.

Syntax:
set dgrid3d {<row size>} {,{<col size>} {,<norm>}}
unset dgrid3d
show dgrid3d

By default dgrid3d is disabled. When enabled, 3-d data read from a file are always treated
as a scattered data set. A grid with dimensions derived from a bounding box of the scat-
tered data and size as specified by the row/col size parameters is created for plotting and
contouring. The grid is equally spaced in x (rows) and in y (columns); the z values are com-
puted as weighted averages of the scattered points’ z values.

The third parameter, norm, controls the weighting: Each data point is weighted inversely by
its distance from the grid point raised to the norm power. (Actually, the weights are given
by the inverse of dxˆnorm + dyˆnorm, where dx and dy are the components of the separa-
tion of the grid point from each data point. For some norms that are powers of two, specifi-
cally 4, 8, and 16, the computation is optimized by using the Euclidean distance in the
weight calculation, (dxˆ2+dyˆ2)ˆnorm/2. However, any non-negative integer can be used.)

The closer the data point is to a grid point, the more effect it has on that grid point and the
larger the value of norm the less effect more distant data points have on that grid point.

The dgrid3d option is a simple low pass filter that converts scattered data to a grid data
set. More sophisticated approaches to this problem exist and should be used to preprocess
the data outside gnuplot if this simple solution is found inadequate.

(The z values are found by weighting all data points, not by interpolating between nearby
data points; also edge effects may produce unexpected and/or undesired results. In some
cases, small norm values produce a grid point reflecting the average of distant data points
rather than a local average, while large values of norm may produce "steps" with several
grid points having the same value as the closest data point, rather than making a smooth
transition between adjacent data points. Some areas of a grid may be filled by extrapola-
tion, to an arbitrary boundary condition. The variables are not normalized; consequently
the units used for x and y will affect the relative weights of points in the x and y directions.)

Examples:
set dgrid3d 10,10,1 # defaults
set dgrid3d ,,4

The first specifies that a grid of size 10 by 10 is to be constructed using a norm value of 1 in
the weight computation. The second only modifies the norm, changing it to 4. See also
scatter.dem: dgrid3d demo.

GNUPLOT 4.0 70

38.17. Dummy

The set dummy command changes the default dummy variable names.

Syntax:
set dummy {<dummy-var>} {,<dummy-var>}
show dummy

By default, gnuplot assumes that the independent, or "dummy", variable for the plot com-
mand is "t" if in parametric or polar mode, or "x" otherwise. Similarly the independent
variables for the splot command are "u" and "v" in parametric mode (splot cannot be
used in polar mode), or "x" and "y" otherwise.

It may be more convenient to call a dummy variable by a more physically meaningful or
conventional name. For example, when plotting time functions:

set dummy t
plot sin(t), cos(t)

At least one dummy variable must be set on the command; set dummy by itself will gener-
ate an error message.

Examples:
set dummy u,v
set dummy ,s

The second example sets the second variable to s.

38.18. Encoding

The set encoding command selects a character encoding. Syntax:
set encoding {<value>}
show encoding

Valid values are
default - tells a terminal to use its default encoding
iso 8859 1 - the most common Western European font used by many

Unix workstations and by MS-Windows. This encoding is
known in the PostScript world as ’ISO-Latin1’.

iso 8859 2 - used in Central and Eastern Europe
iso 8859 15 - a variant of iso 8859 1 that includes the Euro symbol
cp850 - codepage for OS/2
cp852 - codepage for OS/2
cp437 - codepage for MS-DOS
koi8r - popular Unix cyrillic encoding

Generally you must set the encoding before setting the terminal type. Note that encoding is
not supported by all terminal drivers and that the device must be able to produce the
desired non-standard characters. The PostScript and X11 terminals support all encodings.
OS/2 Presentation Manager switches automatically to codepage 912 for iso 8859 2.

GNUPLOT 4.0 71

38.19. Fit

The fit setting defines where the fit command writes its output. If this option was built
into your version of gnuplot, it also controls whether parameter errors from the fit will be
written into variables.

Syntax:
set fit {logfile {"<filename>"}} {{no}errorvariables}
unset fit
show fit

The <filename> argument must be enclosed in single or double quotes.

If no filename is given or unset fit is used the log file is reset to its default value "fit.log" or
the value of the environmental variable FIT LOG.

Users of DOS-like platforms should note that the \ character has special significance in dou-
ble-quoted strings, so single-quotes should be used for filenames in different directories, or
you have to write \\ for each \. Or you can just use forward slashes, even though this is
DOS.

If the given logfile name ends with a / or \, it is interpreted to be a directory name, and the
actual filename will be "fit.log" in that directory.

If the errorvariables option is turned on, the error of each fitted parameter computed by
fit will be copied to a user-defined variable whose name is formed by appending " err" to
the name of the parameter itself. This is useful mainly to put the parameter and its error
onto a plot of the data and the fitted function, for reference, as in:

set fit errorvariables
fit f(x) ’datafile’ using 1:2 via a, b
print "error of a is:", a err
set label ’a=%6.2f’, a, ’+/- %6.2f’, a err
plot ’datafile’ using 1:2, f(x)

38.20. Fontpath

The fontpath setting defines additional locations for font files searched when including font
files. Currently only the postscript terminal supports fontpath. If a file cannot be found in
the current directory, the directories in fontpath are tried. Further documentation concern-
ing the supported file formats is included in the terminal postscript section of the docu-
mentation.

Syntax:
set fontpath {"pathlist1" {"pathlist2"...}}
show fontpath

Path names may be entered as single directory names, or as a list of path names separated
by a platform-specific path separator, eg. colon (’:’) on Unix, semicolon (’;’) on DOS/Win-
dows/OS/2/Amiga platforms. The show fontpath, save and save set commands replace
the platform-specific separator with a space character (’ ’) for maximum portability. If a

GNUPLOT 4.0 72

directory name ends with an exclamation mark (’ !’) also the subdirectories of this directory
are searched for font files.

If the environmental variable GNUPLOT FONTPATH is set, its contents are appended to
fontpath. If it is not set, a system dependent default value is used. It is set by testing sev-
eral directories for existence when using the fontpath the first time. Thus, the first call of
set fontpath, show fontpath, save fontpath, plot, or splot with embedded font files
takes a little more time. If you want to save this time you may set the environmental vari-
able GNUPLOT FONTPATH since probing is switched off, then. You can find out which is
the default fontpath by using show fontpath.

However, show fontpath prints the contents of user defined fontpath and system fontpath
separately. Also, the save and save set commands save only the user specified parts of
fontpath, for portability reasons.

Many other terminal drivers access TrueType fonts via the gd library. For these drivers the
font search path is controlled by the environmental variable GDFONTPATH.

38.21. Format

The format of the tic-mark labels can be set with the set format command.

Syntax:
set format {<axes>} {"<format-string>"}
set format {<axes>} {’<format-string>’}
show format

where <axes> is either x, y, z, cb, xy, x2, y2 or nothing (which is the same as xy). The
length of the string representing a tic mark (after formatting with ’printf’) is restricted to
100 characters. If the format string is omitted, the format will be returned to the default
"%g". For LaTeX users, the format "$%g$" is often desirable. If the empty string "" is
used, no label will be plotted with each tic, though the tic mark will still be plotted. To
eliminate all tic marks, use unset xtics or unset ytics.

Newline (\n) is accepted in the format string. Use double-quotes rather than single-quotes
to enable such interpretation. See also syntax.

The default format for both axes is "%g", but other formats such as "%.2f" or "%3.0em"
are often desirable. Anything accepted by ’printf’ when given a double precision number,
and accepted by the terminal, will work. Some other options have been added. If the for-
mat string looks like a floating point format, then gnuplot tries to construct a reasonable
format.

Characters not preceded by "%" are printed verbatim. Thus you can include spaces and
labels in your format string, such as "%g m", which will put " m" after each number. If you
want "%" itself, double it: "%g %%".

See also set xtics for more information about tic labels, and set decimalsign for how to
use non-default decimal separators in numbers printed this way. See also electron demo
(electron.dem).

GNUPLOT 4.0 73

38.21.1. Format specifiers

The acceptable formats (if not in time/date mode) are:

Format Explanation
%f floating point notation

%e or %E exponential notation; an "e" or "E" before the power
%g or %G the shorter of %e (or %E) and %f
%x or %X hex
%o or %O octal

%t mantissa to base 10
%l mantissa to base of current logscale
%s mantissa to base of current logscale; scientific power
%T power to base 10
%L power to base of current logscale
%S scientific power
%c character replacement for scientific power
%P multiple of pi

A ’scientific’ power is one such that the exponent is a multiple of three. Character replacement of
scientific powers ("%c") has been implemented for powers in the range -18 to +18. For numbers
outside of this range the format reverts to exponential.

Other acceptable modifiers (which come after the "%" but before the format specifier) are "-",
which left-justifies the number; "+", which forces all numbers to be explicitly signed; "#", which
places a decimal point after floats that have only zeroes following the decimal point; a positive
integer, which defines the field width; "0" (the digit, not the letter) immediately preceding the
field width, which indicates that leading zeroes are to be used instead of leading blanks; and a
decimal point followed by a non-negative integer, which defines the precision (the minimum num-
ber of digits of an integer, or the number of digits following the decimal point of a float).

Some releases of ’printf’ may not support all of these modifiers but may also support others; in
case of doubt, check the appropriate documentation and then experiment.

Examples:
set format y "%t"; set ytics (5,10) # "5.0" and "1.0"
set format y "%s"; set ytics (500,1000) # "500" and "1.0"
set format y "+-12.3f"; set ytics(12345) # "+12345.000 "
set format y "%.2t*10ˆ%+03T"; set ytic(12345)# "1.23*10ˆ+04"
set format y "%s*10ˆ{%S}"; set ytic(12345) # "12.345*10ˆ{3}"
set format y "%s %cg"; set ytic(12345) # "12.345 kg"
set format y "%.0P pi"; set ytic(6.283185) # "2 pi"
set format y "%.0f%%"; set ytic(50) # "50%"

set log y 2; set format y ’%l’; set ytics (1,2,3)
#displays "1.0", "1.0" and "1.5" (since 3 is 1.5 * 2ˆ1)

There are some problem cases that arise when numbers like 9.999 are printed with a format that

GNUPLOT 4.0 74

requires both rounding and a power.

If the data type for the axis is time/date, the format string must contain valid codes for the ’strf-
time’ function (outside of gnuplot, type "man strftime"). See set timefmt for a list of the
allowed input format codes.

38.21.2. Time/date specifiers

In time/date mode, the acceptable formats are:

Format Explanation
%a abbreviated name of day of the week
%A full name of day of the week

%b or %h abbreviated name of the month
%B full name of the month
%d day of the month, 1--31
%D shorthand for "%m/%d/%y"

%H or %k hour, 0--24
%I or %l hour, 0--12

%j day of the year, 1--366
%m month, 1--12
%M minute, 0--60
%p "am" or "pm"
%r shorthand for "%I:%M:%S %p"
%R shorthand for %H:%M"
%S second, 0--60
%T shorthand for "%H:%M:%S"
%U week of the year (week starts on Sunday)
%w day of the week, 0--6 (Sunday = 0)
%W week of the year (week starts on Monday)
%y year, 0-99
%Y year, 4-digit

Except for the non-numerical formats, these may be preceded by a "0" ("zero", not "oh") to pad
the field length with leading zeroes, and a positive digit, to define the minimum field width (which
will be overridden if the specified width is not large enough to contain the number). There is a
24-character limit to the length of the printed text; longer strings will be truncated.

Examples:

Suppose the text is "76/12/25 23:11:11". Then
set format x # defaults to "12/25/76" \n "23:11"
set format x "%A, %d %b %Y" # "Saturday, 25 Dec 1976"
set format x "%r %D" # "11:11:11 pm 12/25/76"

Suppose the text is "98/07/06 05:04:03". Then

GNUPLOT 4.0 75

set format x "%1y/%2m/%3d %01H:%02M:%03S" # "98/ 7/ 6 5:04:003"

38.22. Function style

This form of the command is deprecated. Please see set style function.

38.23. Functions

The show functions command lists all user-defined functions and their definitions.

Syntax:
show functions

For information about the definition and usage of functions in gnuplot, please see expres-
sions. See also splines as user defined functions (spline.dem) and use of functions and com-
plex variables for airfoils (airfoil.dem).

38.24. Grid

The set grid command allows grid lines to be drawn on the plot.

Syntax:
set grid {{no}{m}xtics} {{no}{m}ytics} {{no}{m}ztics}

{{no}{m}x2tics} {{no}{m}y2tics}
{{no}{m}cbtics}
{polar {<angle>}}
{layerdefault | front | back}
{ {linestyle <major linestyle>}
| {linetype | lt <major linetype>}
{linewidth | lw <major linewidth>}

{ , {linestyle | ls <minor linestyle>}
| {linetype | lt <minor linetype>}
{linewidth | lw <minor linewidth>} } }

unset grid
show grid

The grid can be enabled and disabled for the major and/or minor tic marks on any axis, and
the linetype and linewidth can be specified for major and minor grid lines, also via a prede-
fined linestyle, as far as the active terminal driver supports this.

Additionally, a polar grid can be selected for 2-d plots---circles are drawn to intersect the
selected tics, and radial lines are drawn at definable intervals. (The interval is given in
degrees or radians, depending on the set angles setting.) Note that a polar grid is no
longer automatically generated in polar mode.

The pertinent tics must be enabled before set grid can draw them; gnuplot will quietly

GNUPLOT 4.0 76

ignore instructions to draw grid lines at non-existent tics, but they will appear if the tics are
subsequently enabled.

If no linetype is specified for the minor gridlines, the same linetype as the major gridlines is
used. The default polar angle is 30 degrees.

If front is given, the grid is drawn on top of the graphed data. If back is given, the grid is
drawn underneath the graphed data. Using front will prevent the grid from being obscured
by dense data. The default setup, layerdefault, is equivalent to back for 2d plots. In 3D
plots the default is to split up the grid and the graph box into two layers: one behind, the
other in front of the plotted data and functions. Since hidden3d mode does its own sorting,
it ignores all grid drawing order options and passes the grid lines through the hidden line
removal machinery instead. These options actually affect not only the grid, but also the lines
output by set border and the various ticmarks (see set xtics).

Z grid lines are drawn on the bottom of the plot. This looks better if a partial box is drawn
around the plot---see set border.

38.25. Hidden3d

The set hidden3d command enables hidden line removal for surface plotting (see splot).
Some optional features of the underlying algorithm can also be controlled using this com-
mand.

Syntax:
set hidden3d {defaults} |

{ {{offset <offset>} | {nooffset}}
{trianglepattern <bitpattern>}
{{undefined <level>} | {noundefined}}
{{no}altdiagonal}
{{no}bentover} }

unset hidden3d
show hidden3d

In contrast to the usual display in gnuplot, hidden line removal actually treats the given
function or data grids as real surfaces that can’t be seen through, so parts behind the sur-
face will be hidden by it. For this to be possible, the surface needs to have ’grid structure’
(see splot datafile about this), and it has to be drawn with lines or with linespoints.

When hidden3d is set, both the hidden portion of the surface and possibly its contours
drawn on the base (see set contour) as well as the grid will be hidden. Each surface has its
hidden parts removed with respect to itself and to other surfaces, if more than one surface is
plotted. Contours drawn on the surface (set contour surface) don’t work. Labels and
arrows are always visible and are unaffected. The key is also never hidden by the surface.

Functions are evaluated at isoline intersections. The algorithm interpolates linearly between
function points or data points when determining the visible line segments. This means that
the appearance of a function may be different when plotted with hidden3d than when plot-
ted with nohidden3d because in the latter case functions are evaluated at each sample.
Please see set samples and set isosamples for discussion of the difference.

GNUPLOT 4.0 77

The algorithm used to remove the hidden parts of the surfaces has some additional features
controllable by this command. Specifying defaults will set them all to their default set-
tings, as detailed below. If defaults is not given, only explicitly specified options will be
influenced: all others will keep their previous values, so you can turn on/off hidden line
removal via set {no}hidden3d, without modifying the set of options you chose.

The first option, offset, influences the linestyle used for lines on the ’back’ side. Normally,
they are drawn in a linestyle one index number higher than the one used for the front, to
make the two sides of the surface distinguishable. You can specify a different line style offset
to add instead of the default 1, by offset <offset>. Option nooffset stands for offset 0,
making the two sides of the surface use the same linestyle.

Next comes the option trianglepattern <bitpattern>. <bitpattern> must be a number
between 0 and 7, interpreted as a bit pattern. Each bit determines the visibility of one edge
of the triangles each surface is split up into. Bit 0 is for the ’horizontal’ edges of the grid,
Bit 1 for the ’vertical’ ones, and Bit 2 for the diagonals that split each cell of the original
grid into two triangles. The default pattern is 3, making all horizontal and vertical lines vis-
ible, but not the diagonals. You may want to choose 7 to see those diagonals as well.

The undefined <level> option lets you decide what the algorithm is to do with data
points that are undefined (missing data, or undefined function values), or exceed the given
x-, y- or z-ranges. Such points can either be plotted nevertheless, or taken out of the input
data set. All surface elements touching a point that is taken out will be taken out as well,
thus creating a hole in the surface. If <level> = 3, equivalent to option noundefined, no
points will be thrown away at all. This may produce all kinds of problems elsewhere, so you
should avoid this. <level> = 2 will throw away undefined points, but keep the out-of-range
ones. <level> = 1, the default, will get rid of out-of-range points as well.

By specifying noaltdiagonal, you can override the default handling of a special case can
occur if undefined is active (i.e. <level> is not 3). Each cell of the grid-structured input
surface will be divided in two triangles along one of its diagonals. Normally, all these diago-
nals have the same orientation relative to the grid. If exactly one of the four cell corners is
excluded by the undefined handler, and this is on the usual diagonal, both triangles will be
excluded. However if the default setting of altdiagonal is active, the other diagonal will be
chosen for this cell instead, minimizing the size of the hole in the surface.

The bentover option controls what happens to another special case, this time in conjunc-
tion with the trianglepattern. For rather crumply surfaces, it can happen that the two
triangles a surface cell is divided into are seen from opposite sides (i.e. the original quadran-
gle is ’bent over’), as illustrated in the following ASCII art:

C----B
original quadrangle: A--B displayed quadrangle: |\ |

("set view 0,0") | /| ("set view 75,75" perhaps) | \ |
|/ | | \ |
C--D | \|

A D

If the diagonal edges of the surface cells aren’t generally made visible by bit 2 of the <bit-
pattern> there, the edge CB above wouldn’t be drawn at all, normally, making the resulting
display hard to understand. Therefore, the default option of bentover will turn it visible in
this case. If you don’t want that, you may choose nobentover instead. See also hidden
line removal demo (hidden.dem) and complex hidden line demo (singulr.dem).

GNUPLOT 4.0 78

38.26. Historysize

Note: the command set historysize is only available when compiled with the gnu readline.

Syntax:
set historysize <int>
unset historysize

When leaving gnuplot, the value of historysize is used for truncating the history to at most
that much lines. The default is 500. unset historysize will disable history truncation and
thus allow an infinite number of lines to be written to the history file.

38.27. Isosamples

The isoline density (grid) for plotting functions as surfaces may be changed by the set
isosamples command.

Syntax:
set isosamples <iso 1> {,<iso 2>}
show isosamples

Each function surface plot will have <iso 1> iso-u lines and <iso 2> iso-v lines. If you only
specify <iso 1>, <iso 2> will be set to the same value as <iso 1>. By default, sampling is
set to 10 isolines per u or v axis. A higher sampling rate will produce more accurate plots,
but will take longer. These parameters have no effect on data file plotting.

An isoline is a curve parameterized by one of the surface parameters while the other surface
parameter is fixed. Isolines provide a simple means to display a surface. By fixing the u
parameter of surface s(u,v), the iso-u lines of the form c(v) = s(u0,v) are produced, and by
fixing the v parameter, the iso-v lines of the form c(u) = s(u,v0) are produced.

When a function surface plot is being done without the removal of hidden lines, set sam-
ples controls the number of points sampled along each isoline; see set samples and set
hidden3d. The contour algorithm assumes that a function sample occurs at each isoline
intersection, so change in samples as well as isosamples may be desired when changing the
resolution of a function surface/contour.

38.28. Key

The set key enables a key (or legend) describing plots on a plot.

The contents of the key, i.e., the names given to each plotted data set and function and sam-
ples of the lines and/or symbols used to represent them, are determined by the title and
with options of the {s}plot command. Please see plot title and plot with for more infor-
mation.

Syntax:
set key {on|off} {default}

GNUPLOT 4.0 79

{left | right | top | bottom | outside | below | <position>}
{Left | Right} {{no}reverse}
{samplen <sample length>} {spacing <vertical spacing>}
{width <width increment>}
{height <height increment>}
{{no}autotitles}
{title "<text>"} {{no}enhanced}
{{no}box { {linestyle | ls <line style>}

| {linetype | lt <line type>}
{linewidth | lw <line width>}}}

unset key
show key

By default the key is placed in the upper right corner of the graph. The keywords left,
right, top, bottom, outside and below may be used to place the key in the other corners
inside the graph or to the right (outside) or below the graph. They may be given alone or
combined.

Plots may be drawn with no visible key by requesting set key off or unset key.

Justification of the labels within the key is controlled by Left or Right (default is Right).
The text and sample can be reversed (reverse) and a box can be drawn around the key
(box {...}) in a specified linetype and linewidth, or a user-defined linestyle. Note that
not all terminal drivers support linewidth selection, though.

The length of the sample line can be controlled by samplen. The sample length is com-
puted as the sum of the tic length and <sample length> times the character width. sam-
plen also affects the positions of point samples in the key since these are drawn at the mid-
point of the sample line, even if the sample line itself is not drawn.

The vertical spacing between lines is controlled by spacing. The spacing is set equal to the
product of the pointsize, the vertical tic size, and <vertical spacing>. The program will
guarantee that the vertical spacing is no smaller than the character height.

The <width increment> is a number of character widths to be added to or subtracted from
the length of the string. This is useful only when you are putting a box around the key and
you are using control characters in the text. gnuplot simply counts the number of charac-
ters in the string when computing the box width; this allows you to correct it.

The <height increment> is a number of character heights to be added to or subtracted from
the height of the key box. This is useful mainly when you are putting a box around the key,
otherwise it can be used to adjust the vertical shift of automatically chosen key position by
<height increment>/2.

All plotted curves of plots and splots are titled according to the default option autotitles.
The automatic generation of titles can be suppressed by noautotitles; then only those titles
explicitly defined by (s)plot ... title ... will be drawn.

A title can be put on the key (title "<text>")---see also syntax for the distinction
between text in single- or double-quotes. The key title uses the same justification as do the
plot titles.

An explicitly given title is typeset using enhanced text properties on terminals supporting

GNUPLOT 4.0 80

this, see enhanced text for more details. This default behavior can be switched off by the
noenhanced option.

The defaults for set key are on, right, top, Right, noreverse, samplen 4, spacing
1.25, title "", and nobox. The default <linetype> is the same as that used for the plot
borders. Entering set key default returns the key to its default configuration.

The <position> can be a simple x,y,z as in previous versions, but these can be preceded by
one of four keywords (first, second, graph, screen) which selects the coordinate system in
which the position of the first sample line is specified. See coordinates for more details.

The key is drawn as a sequence of lines, with one plot described on each line. On the right-
hand side (or the left-hand side, if reverse is selected) of each line is a representation that
attempts to mimic the way the curve is plotted. On the other side of each line is the text
description (the line title), obtained from the plot command. The lines are vertically
arranged so that an imaginary straight line divides the left- and right-hand sides of the key.
It is the coordinates of the top of this line that are specified with the set key command. In
a plot, only the x and y coordinates are used to specify the line position. For a splot, x, y
and z are all used as a 3-d location mapped using the same mapping as the graph itself to
form the required 2-d screen position of the imaginary line.

Some or all of the key may be outside of the graph boundary, although this may interfere
with other labels and may cause an error on some devices. If you use the keywords outside
or below, gnuplot makes space for the keys and the graph becomes smaller. Putting keys
outside to the right, they occupy as few columns as possible, and putting them below, as
many columns as possible (depending of the length of the labels), thus stealing as little
space from the graph as possible.

When using the TeX or PostScript drivers, or similar drivers where formatting information
is embedded in the string, gnuplot is unable to calculate correctly the width of the string
for key positioning. If the key is to be positioned at the left, it may be convenient to use the
combination set key left Left reverse. The box and gap in the grid will be the width of
the literal string.

If splot is being used to draw contours, the contour labels will be listed in the key. If the
alignment of these labels is poor or a different number of decimal places is desired, the label
format can be specified. See set clabel for details.

Examples:

This places the key at the default location:
set key default

This disables the key:
unset key

This places a key at coordinates 2,3.5,2 in the default (first) coordinate system:
set key 2,3.5,2

This places the key below the graph:
set key below

This places the key in the bottom left corner, left-justifies the text, gives it a title, and

GNUPLOT 4.0 81

draws a box around it in linetype 3:
set key left bottom Left title ’Legend’ box 3

38.29. Label

Arbitrary labels can be placed on the plot using the set label command.

Syntax:
set label {<tag>}

{ {"<label text>"{,<value>}} {, ...}} }
{at <position>}
{left | center | right}
{norotate | rotate {by <degrees>}}
{font "<name>{,<size>}"}
{front | back}
{textcolor <colorspec>}
{point <pointstyle> {offset x, y} | nopoint}

unset label {<tag>}
show label

The <position> is specified by either x,y or x,y,z, and may be preceded by first, second,
graph, or screen to select the coordinate system. See coordinates for details.

The tag is an integer that is used to identify the label. If no <tag> is given, the lowest
unused tag value is assigned automatically. The tag can be used to delete or modify a spe-
cific label. To change any attribute of an existing label, use the set label command with
the appropriate tag, and specify the parts of the label to be changed.

The <label text> can optionally contain numbers, generated by replacement of printf()-like
format specifiers contained in <label text>. The number to be used is given by the
<value> following the text. The same formatting capabilities as for tic labels are available.
See the help on format specifiers for details. To display more than one distinct <value>
with a single label, several pairs of <label text> and <value> may be given. Note that
<value> is treated as a constant expression, i.e. if it contains variables, the label text will
not change if the variable values are modified, later on. The set decimalsign option, if
active, overrides the decimal separator character of numbers entered into label texts.

By default, the text is placed flush left against the point x,y,z. To adjust the way the label
is positioned with respect to the point x,y,z, add the justification parameter, which may be
left, right or center, indicating that the point is to be at the left, right or center of the
text. Labels outside the plotted boundaries are permitted but may interfere with axis labels
or other text.

If rotate is given, the label is written vertically (if the terminal can do so, of course). If
rotate by <degrees> is given, conforming terminals will try to write the text at the speci-
fied angle; non-conforming terminals will treat this as vertical text.

Font and its size can be chosen explicitly by font "<name>{,<size>}" if the terminal sup-
ports font settings. Otherwise the default font of the terminal will be used.

If front is given, the label is written on top of the graphed data. If back is given (the

GNUPLOT 4.0 82

default), the label is written underneath the graphed data. Using front will prevent a label
from being obscured by dense data.

Textcolor <colorspec> changes the color of the label text. <colorspec> is either a line-
type or a mapping onto the pm3d color palette (available only in splot), see help for set
palette.

‘textcolor‘ may be abbreviated ‘tc‘.
‘tc default‘ resets the text color to its default state.
‘tc lt <n>‘ sets the text color to that of line type <n>.
‘tc palette z‘ selects a palette color corresponding to the label z position.
‘tc palette cb <val>‘ selects a color corresponding to <val> on the colorbar.
‘tc palette fraction <val>‘, with 0<=val<=1, selects a color corresponding to

the mapping [0:1] to grays/colors of the ‘palette‘.

If a <pointstyle> is given, using keywords lt, pt and ps, see style, a point with the given
style and color of the given line type is plotted at the label position and the text of the label
is displaced slightly. The displacement defaults to 1, 1 in pointsize units and can be con-
trolled by the optional offset x, y. Example: offset 2, -3 would displace the labels 2 *
pointsize horizontally and -3 * pointsize vertically from the actual coordinate point as given
by position. The size of the point depends also on the setting of pointsize. This option is
used by default for placing labels in mouse enhanced terminals. Use nopoint to turn off
the drawing of a point near the label (this is the default).

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted
time string according to the timefmt format string. See set xdata and set timefmt.

The EEPIC, Imagen, LaTeX, and TPIC drivers allow \\ in a string to specify a newline.

Examples:

To set a label at (1,2) to "y=x", use:
set label "y=x" at 1,2

To set a Sigma of size 24, from the Symbol font set, at the center of the graph, use:
set label "S" at graph 0.5,0.5 center font "Symbol,24"

To set a label "y=xˆ2" with the right of the text at (2,3,4), and tag the label as number 3,
use:

set label 3 "y=xˆ2" at 2,3,4 right

To change the preceding label to center justification, use:
set label 3 center

To delete label number 2, use:
unset label 2

To delete all labels, use:
unset label

To show all labels (in tag order), use:
show label

To set a label on a graph with a timeseries on the x axis, use, for example:

GNUPLOT 4.0 83

set timefmt "%d/%m/%y,%H:%M"
set label "Harvest" at "25/8/93",1

To display a freshly fitted parameter on the plot with the data and the fitted function, do
this after the fit, but before the plot:

set label ’a = %3.5g’,par a at 30, 15
set label ’b = %s*10ˆ%S’,par b at 30, 20

To set a label displaced a little bit from a small point:
set label ’origin’ at 0,0 point lt 1 pt 2 ps 3 offset 1,-1

To set a label whose color matches the z value (in this case 5.5) of some point on a 3D splot
colored using pm3d:

set label ’text’ at 0,0,5.5 tc palette z

38.30. Lmargin

The command set lmargin sets the size of the left margin. Please see set margin for
details.

38.31. Loadpath

The loadpath setting defines additional locations for data and command files searched by
the call, load, plot and splot commands. If a file cannot be found in the current directory,
the directories in loadpath are tried.

Syntax:
set loadpath {"pathlist1" {"pathlist2"...}}
show loadpath

Path names may be entered as single directory names, or as a list of path names separated
by a platform-specific path separator, eg. colon (’:’) on Unix, semicolon (’;’) on DOS/Win-
dows/OS/2/Amiga platforms. The show loadpath, save and save set commands replace
the platform-specific separator with a space character (’ ’) for maximum portability.

If the environment variable GNUPLOT LIB is set, its contents are appended to loadpath.
However, show loadpath prints the contents of user defined loadpath and system loadpath
separately. Also, the save and save set commands save only the user specified parts of
loadpath, for portability reasons.

38.32. Locale

The locale setting determines the language with which {x,y,z}{d,m}tics will write the
days and months.

GNUPLOT 4.0 84

Syntax:
set locale {"<locale>"}

<locale> may be any language designation acceptable to your installation. See your system
documentation for the available options. The default value is determined from the LANG
environment variable.

38.33. Logscale

Log scaling may be set on the x, y, z, x2 and/or y2 axes.

Syntax:
set logscale <axes> <base>
unset logscale <axes>
show logscale

where <axes> may be any combinations of x, y, z, and cb in any order, or x2 or y2 and
where <base> is the base of the log scaling. If <base> is not given, then 10 is assumed. If
<axes> is not given, then all axes are assumed. unset logscale turns off log scaling for the
specified axes.

Examples:

To enable log scaling in both x and z axes:
set logscale xz

To enable scaling log base 2 of the y axis:
set logscale y 2

To enable z and color log axes for a pm3d plot:
set logscale zcb

To disable z axis log scaling:
unset logscale z

38.34. Mapping

If data are provided to splot in spherical or cylindrical coordinates, the set mapping com-
mand should be used to instruct gnuplot how to interpret them.

Syntax:
set mapping {cartesian | spherical | cylindrical}

A cartesian coordinate system is used by default.

For a spherical coordinate system, the data occupy two or three columns (or using entries).
The first two are interpreted as the azimuthal and polar angles theta and phi (or "longi-
tude" and "latitude"), in the units specified by set angles. The radius r is taken from the
third column if there is one, or is set to unity if there is no third column. The mapping is:

GNUPLOT 4.0 85

x = r * cos(theta) * cos(phi)
y = r * sin(theta) * cos(phi)
z = r * sin(phi)

Note that this is a "geographic" spherical system, rather than a "polar" one (that is, phi is
measured from the equator, rather than the pole).

For a cylindrical coordinate system, the data again occupy two or three columns. The first
two are interpreted as theta (in the units specified by set angles) and z. The radius is
either taken from the third column or set to unity, as in the spherical case. The mapping is:

x = r * cos(theta)
y = r * sin(theta)
z = z

The effects of mapping can be duplicated with the using filter on the splot command, but
mapping may be more convenient if many data files are to be processed. However even if
mapping is used, using may still be necessary if the data in the file are not in the required
order.

mapping has no effect on plot. world.dem: mapping demos.

38.35. Margin

The computed margins can be overridden by the set margin commands. show margin
shows the current settings.

Syntax:
set bmargin {<margin>}
set lmargin {<margin>}
set rmargin {<margin>}
set tmargin {<margin>}
show margin

The units of <margin> are character heights or widths, as appropriate. A positive value
defines the absolute size of the margin. A negative value (or none) causes gnuplot to revert
to the computed value. For 3D plots, only the left margin setting has any effect so far.

Normally the margins of a plot are automatically calculated based on tics, tic labels, axis
labels, the plot title, the timestamp and the size of the key if it is outside the borders. If,
however, tics are attached to the axes (set xtics axis, for example), neither the tics them-
selves nor their labels will be included in either the margin calculation or the calculation of
the positions of other text to be written in the margin. This can lead to tic labels overwrit-
ing other text if the axis is very close to the border.

38.36. Mouse

The command set mouse enables mouse actions. Currently the pm, x11, ggi and windows
terminals are mouse enhanced. There are two mouse modes. The 2d-graph mode works for

GNUPLOT 4.0 86

2d graphs and for maps (i.e. splots with set view having z-rotation 0, 90, 180, 270 or 360
degrees) and it allows tracing the position over graph, zooming, annotating graph etc. For
3d graphs splot, the view and scaling of the graph can be changed with mouse buttons 1
and 2. If additionally to these buttons the modifier <ctrl> is hold down, the coordinate sys-
tem only is rotated which is useful for large data sets. A vertical motion of Button 2 with
the shift key hold down changes the ticslevel.

Mousing is not available in multiplot mode. If multiplot is disabled using unset multiplot
though, the mouse will be turned on again and acts on the last plot (like replot does).

Syntax:
set mouse [doubleclick <ms>] [nodoubleclick] \

[[no]zoomcoordinates] \
[[no]polardistance] \
[format <string>] \
[clipboardformat <int>/<string>] \
[mouseformat <int>/<string>] \
[[no]labels] [labeloptions <string>] \
[[no]zoomjump] [[no]verbose]

unset mouse

The doubleclick resolution is given in milliseconds and used for Button 1 which copies the
current mouse position to the clipboard. If you want that to be done by single clicking a
value of 0 ms can be used. The default value is 300 ms.

The option zoomcoordinates determines if the coordinates of the zoom box are drawn at
the edges while zooming. This is on by default.

The option polardistance determines if the distance to the ruler is also shown in polar
coordinates. This corresponds to the default key binding ’5’.

The format option takes a fprintf like format string which determines how floating point
numbers are printed to the drivers window and the clipboard. The default is "% #g".

clipboardformat and mouseformat are used for formatting the text on Button1 and But-
ton2 actions -- copying the coordinates to the clipboard and temporarily annotating the
mouse position. This corresponds to the key bindings ’1’, ’2’, ’3’, ’4’ (see the drivers’s help
window). If the argument is a string this string is used as c format specifier and should con-
tain two float specifiers, e.g. set mouse mouseformat "mouse = %5.2g, %10.2f". Use
set mouse mouseformat "" to turn this string off again.

The following formats are available (format 6 may only be selected if the format string was
specified already):

0 real coordinates in brackets e.g. [1.23, 2.45]
1 real coordinates w/o brackets e.g. 1.23, 2.45
2 x == timefmt [(as set by ‘set timefmt‘), 2.45]
3 x == date [31. 12. 1999, 2.45]
4 x == time [23:59, 2.45]
5 x == date / time [31. 12. 1999 23:59, 2.45]
6 alt. format, specified as string ""

Choose the option labels to get real gnuplot labels on Button 2. (The default is nolabels

GNUPLOT 4.0 87

which makes Button 2 drawing only temporary annotations at the mouse positions). The
labels are drawn with the current setting of mouseformat. labeloptions controls which
options are passed to the set label command. The default is "pointstyle 1" which will plot
a small plus at the label position. Note that the pointsize is taken from the set pointsize
command. Labels can be removed by holding the Ctrl-Key down while clicking with Button
2 on the label’s point. The threshold for how close you must be to the label is also deter-
mined by the pointsize.

If the option zoomjump is on, the mouse pointer will be automatically offset a small dis-
tance after starting a zoom region with button 3. This can be useful to avoid a tiny (or even
empty) zoom region. zoomjump is off by default.

If the option verbose is turned on the communication commands are shown during execu-
tion. This option can also be toggled by hitting 6 in the driver’s window. verbose is off by
default.

Press ’h’ in the driver’s window for a short summary of the mouse and key bindings. This
will also display user defined bindings or hotkeys which can be defined using the bind com-
mand, see help for bind. Note, that user defined hotkeys may override the default bind-
ings.

Press ’q’ in the driver’s window to close the window. This key cannot be overridden with the
bind command.

See also help for bind and label.

38.36.1. X11 mouse

X11 mouse support is turned on by default if standard input comes from a terminal
(tty). Mouse support is turned off if standard input does not come from a tty, e.g. a
pipe. If you want to use mouse support while writing to gnuplot from a pipe, the
mouse must be turned on *before* starting the x11 driver, e.g. immediately after
startup with the explicit command set mouse. Beware: on some UNIX flavours, spe-
cial input devices as /dev/null might not be select-able; turning on the mouse when
using such devices will hang gnuplot.

If multiple X11 plot windows have been opened using the set term x11 <n> termi-
nal option, then only the current plot window supports the entire range of mouse com-
mands and hotkeys. The other windows will, however, continue to display mouse coor-
dinates at the lower left.

38.37. Multiplot

The command set multiplot places gnuplot in the multiplot mode, in which several plots
are placed on the same page, window, or screen.

Syntax:
set multiplot

GNUPLOT 4.0 88

unset multiplot

For some terminals, no plot is displayed until the command unset multiplot is given,
which causes the entire page to be drawn and then returns gnuplot to its normal single-plot
mode. For other terminals, each separate plot command produces a plot, but the screen
may not be cleared between plots.

Any labels or arrows that have been defined will be drawn for each plot according to the
current size and origin (unless their coordinates are defined in the screen system). Just
about everything else that can be set is applied to each plot, too. If you want something to
appear only once on the page, for instance a single time stamp, you’ll need to put a set
time/unset time pair around one of the plot, splot or replot commands within the set
multiplot/unset multiplot block.

The commands set origin and set size must be used to correctly position each plot; see
set origin and set size for details of their usage.

Example:
set size 0.7,0.7
set origin 0.1,0.1
set multiplot
set size 0.4,0.4
set origin 0.1,0.1
plot sin(x)
set size 0.2,0.2
set origin 0.5,0.5
plot cos(x)
unset multiplot

displays a plot of cos(x) stacked above a plot of sin(x). Note the initial set size and set
origin. While these are not always required, their inclusion is recommended. Some termi-
nal drivers require that bounding box information be available before any plots can be
made, and the form given above guarantees that the bounding box will include the entire
plot array rather than just the bounding box of the first plot.

set size and set origin refer to the entire plotting area used for each plot. If you want to
have the axes themselves line up, you can guarantee that the margins are the same size with
the set margin commands. See set margin for their use. Note that the margin settings
are absolute, in character units, so the appearance of the graph in the remaining space will
depend on the screen size of the display device, e.g., perhaps quite different on a video dis-
play and a printer. See also multiplot demo (multiplt.dem).

38.38. Mx2tics

Minor tic marks along the x2 (top) axis are controlled by set mx2tics. Please see set
mxtics.

GNUPLOT 4.0 89

38.39. Mxtics

Minor tic marks along the x axis are controlled by set mxtics. They can be turned off with
unset mxtics. Similar commands control minor tics along the other axes.

Syntax:
set mxtics {<freq> | default}
unset mxtics
show mxtics

The same syntax applies to mytics, mztics, mx2tics, my2tics and mcbtics.

<freq> is the number of sub-intervals (NOT the number of minor tics) between major tics
(the default for a linear axis is either two or five depending on the major tics, so there are
one or four minor tics between major tics). Selecting default will return the number of
minor ticks to its default value.

If the axis is logarithmic, the number of sub-intervals will be set to a reasonable number by
default (based upon the length of a decade). This will be overridden if <freq> is given.
However the usual minor tics (2, 3, ..., 8, 9 between 1 and 10, for example) are obtained by
setting <freq> to 10, even though there are but nine sub-intervals.

Minor tics can be used only with uniformly spaced major tics. Since major tics can be
placed arbitrarily by set {x|x2|y|y2|z}tics, minor tics cannot be used if major tics are
explicitly set.

By default, minor tics are off for linear axes and on for logarithmic axes. They inherit the
settings for axis|border and {no}mirror specified for the major tics. Please see set xtics
for information about these.

38.40. My2tics

Minor tic marks along the y2 (right-hand) axis are controlled by set my2tics. Please see
set mxtics.

38.41. Mytics

Minor tic marks along the y axis are controlled by set mytics. Please see set mxtics.

38.42. Mztics

Minor tic marks along the z axis are controlled by set mztics. Please see set mxtics.

GNUPLOT 4.0 90

38.43. Offsets

Offsets provide a mechanism to put a boundary around the data inside of an autoscaled
graph.

Syntax:
set offsets <left>, <right>, <top>, <bottom>
unset offsets
show offsets

Each offset may be a constant or an expression. Each defaults to 0. Left and right offsets
are given in units of the x axis, top and bottom offsets in units of the y axis. A positive off-
set expands the graph in the specified direction, e.g., a positive bottom offset makes ymin
more negative. Negative offsets, while permitted, can have unexpected interactions with
autoscaling and clipping.

Offsets are ignored in splots.

Example:
set offsets 0, 0, 2, 2
plot sin(x)

This graph of sin(x) will have a y range [-3:3] because the function will be autoscaled to
[-1:1] and the vertical offsets are each two.

38.44. Origin

The set origin command is used to specify the origin of a plotting surface (i.e., the graph
and its margins) on the screen. The coordinates are given in the screen coordinate system
(see coordinates for information about this system).

Syntax:
set origin <x-origin>,<y-origin>

38.45. Output

By default, screens are displayed to the standard output. The set output command redi-
rects the display to the specified file or device.

Syntax:
set output {"<filename>"}
show output

The filename must be enclosed in quotes. If the filename is omitted, any output file opened
by a previous invocation of set output will be closed and new output will be sent to STD-
OUT. (If you give the command set output "STDOUT", your output may be sent to a
file named "STDOUT"! ["May be", not "will be", because some terminals, like x11, ignore
set output.])

GNUPLOT 4.0 91

MSDOS users should note that the \ character has special significance in double-quoted
strings, so single-quotes should be used for filenames in different directories.

When both set terminal and set output are used together, it is safest to give set termi-
nal first, because some terminals set a flag which is needed in some operating systems. This
would be the case, for example, if the operating system needs to know whether or not a file
is to be formatted in order to open it properly.

On machines with popen functions (Unix), output can be piped through a shell command if
the first non-whitespace character of the filename is ’|’. For instance,

set output "|lpr -Plaser filename"
set output "|lp -dlaser filename"

On MSDOS machines, set output "PRN" will direct the output to the default printer.
On VMS, output can be sent directly to any spooled device. It is also possible to send the
output to DECnet transparent tasks, which allows some flexibility.

38.46. Parametric

The set parametric command changes the meaning of plot (splot) from normal functions
to parametric functions. The command unset parametric restores the plotting style to
normal, single-valued expression plotting.

Syntax:
set parametric
unset parametric
show parametric

For 2-d plotting, a parametric function is determined by a pair of parametric functions oper-
ating on a parameter. An example of a 2-d parametric function would be plot
sin(t),cos(t), which draws a circle (if the aspect ratio is set correctly---see set size). gnu-
plot will display an error message if both functions are not provided for a parametric plot.

For 3-d plotting, the surface is described as x=f(u,v), y=g(u,v), z=h(u,v). Therefore a
triplet of functions is required. An example of a 3-d parametric function would be
cos(u)*cos(v),cos(u)*sin(v),sin(u), which draws a sphere. gnuplot will display an error
message if all three functions are not provided for a parametric splot.

The total set of possible plots is a superset of the simple f(x) style plots, since the two func-
tions can describe the x and y values to be computed separately. In fact, plots of the type
t,f(t) are equivalent to those produced with f(x) because the x values are computed using
the identity function. Similarly, 3-d plots of the type u,v,f(u,v) are equivalent to f(x,y).

Note that the order the parametric functions are specified is xfunction, yfunction (and
zfunction) and that each operates over the common parametric domain.

Also, the set parametric function implies a new range of values. Whereas the normal f(x)
and f(x,y) style plotting assume an xrange and yrange (and zrange), the parametric mode
additionally specifies a trange, urange, and vrange. These ranges may be set directly with
set trange, set urange, and set vrange, or by specifying the range on the plot or splot

GNUPLOT 4.0 92

commands. Currently the default range for these parametric variables is [-5:5]. Setting the
ranges to something more meaningful is expected.

38.47. Plot

The show plot command shows the current plotting command as it results from the last
plot and/or splot and possible subsequent replot commands.

In addition, the show plot add2history command adds this current plot command into
the history. It is useful if you have used replot to add more curves to the current plot and
you want to edit the whole command now.

38.48. Pm3d

pm3d is an splot style for drawing palette-mapped 3d and 4d data as color/gray maps and
surfaces. It uses a pm3d algorithm which allows plotting gridded as well as non-gridded
data without preprocessing, even when the data scans do not have the same number of
points.

Drawing of color surfaces is available on terminals supporting filled colored polygons with
color mapping specified by palette. Currently supported terminals include

Screen terminals:
OS/2 Presentation Manager
X11
Linux VGA (vgagl)
GGI
Windows
AquaTerm (Mac OS X)

Files:
PostScript
pslatex, pstex, epslatex
gif, png, jpeg
(x)fig
tgif
cgm
pdf
svg

Let us first describe how a map/surface is drawn. The input data come from an evaluated
function or from an splot data file. Each surface consists of a sequence of separate scans
(isolines). The pm3d algorithm fills the region between two neighbouring points in one scan
with another two points in the next scan by a gray (or color) according to z-values (or
according to an additional ’color’ column, see help for using) of these 4 corners; by default
the 4 corner values are averaged, but this can be changed by the option corners2color. In
order to get a reasonable surface, the neighbouring scans should not cross and the number of
points in the neighbouring scans should not differ too much; of course, the best plot is with
scans having same number of points. There are no other requirements (e.g. the data need
not be gridded). Another advantage is that the pm3d algorithm does not draw anything

GNUPLOT 4.0 93

outside of the input (measured or calculated) region.

Surface coloring works with the following input data:

1. splot of function or of data file with one or three data columns: The gray/color scale is
obtained by mapping the averaged (or corners2color) z-coordinate of the four corners of
the above-specified quadrangle into the range [min color z,max color z] of zrange or
cbrange providing a gray value in the range [0:1]. This value can be used directly as the
gray for gray maps. The normalized gray value can be further mapped into a color---see set
palette for the complete description.

2. splot of data file with two or four data columns: The gray/color value is obtained by using
the last-column coordinate instead of the z-value, thus allowing the color and the z-coordi-
nate be mutually independent. This can be used for 4d data drawing.

Other notes:

1. The term ’scan’ referenced above is used more among physicists than the term ’iso curve’
referenced in gnuplot documentation and sources. You measure maps recorded one scan
after another scan, that’s why.

2. The ’gray’ or ’color’ scale is a linear mapping of a continuous variable onto a smoothly
varying palette of colors. The mapping is shown in a rectangle next to the main plot. This
documentation refers to this as a "colorbox", and refers to the indexing variable as lying on
the colorbox axis. See set colorbox, set cbrange.

3. To use pm3d coloring to generate a two-dimensional plot rather than a 3D surface, use
set view map or set pm3d map.

Syntax:
set pm3d
set pm3d {

{ at <bst combination> }
{ scansautomatic | scansforward | scansbackward }
{ flush { begin | center | end } }
{ ftriangles | noftriangles }
{ clip1in | clip4in }
{ corners2color { mean|geomean|median|c1|c2|c3|c4 } }
{ hidden3d <linestyle> | nohidden3d }
{ implicit | explicit }
{ map }

}
show pm3d
unset pm3d

Setting set pm3d (i.e. without options) sets up the default values. Otherwise, the options
can be given in any order.

Color surface can be drawn at the base or top (then it is a gray/color planar map) or at z-
coordinates of surface points (gray/color surface). This is defined by the at option with a
string of up to 6 combinations of b, t and s. For instance, at b plots at bottom only, at st
plots firstly surface and then top map, while at bstbst will never by seriously used.

GNUPLOT 4.0 94

Colored quadrangles are plotted one after another. When plotting surfaces (at s), the later
quadrangles overlap (overdraw) the previous ones. (Gnuplot is not virtual reality tool to
calculate intersections of filled polygon meshes.) You may try to switch between scansfor-
ward and scansbackward to force the first scan of the data to be plotted first or last. The
default is scansautomatic where gnuplot makes a guess about scans order.

If two subsequent scans do not have same number of points, then it has to be decided
whether to start taking points for quadrangles from the beginning of both scans (flush
begin), from their ends (flush end) or to center them (flush center). Note, that flush
(center|end) are incompatible with scansautomatic: if you specify flush center or flush
end and scansautomatic is set, it is silently switched to scansforward.

If two subsequent scans do not have the same number of points, the option ftriangles speci-
fies whether color triangles are drawn at the scan tail(s) where there are not enough points
in either of the scan. This can be used to draw a smooth map boundary.

Clipping with respect to x, y coordinates of quadrangles can be done in two ways. clip1in:
all 4 points of each quadrangle must be defined and at least 1 point of the quadrangle must
lie in the x and y ranges. clip4in: all 4 points of each quadrangle must lie in the x and y
ranges.

There is a single gray/color value associated to each drawn pm3d quadrangle (no smooth
color change among vertices). The value is calculated from z-coordinates from the surround-
ing corners according to corners2color <option>. The options ’mean’ (default),
’geomean’ and ’median’ produce various kinds of surface color smoothing. This may not be
desired for pixel images or for maps with sharp and intense peaks, in which case the options
’c1’, ’c2’, ’c3’ or ’c4’ can be used instead to assign the quadrangle color based on the z-coor-
dinate of only one corner. Some experimentation may be needed to determine which corner
corresponds to ’c1’, as the orientation depends on the drawing direction. Because the pm3d
algorithm does not extend the colored surface outside the range of the input data points, the
’c<j>’ coloring options will result in pixels along two edges of the grid not contributing to
the color of any quadrangle. For example, applying the pm3d algorithm to the 4x4 grid of
data points in script demo/pm3d.dem (please have a look) produces only (4-1)x(4-1)=9
colored rectangles.

Another drawing algorithm, which would draw quadrangles around a given node by taking
corners from averaged (x,y)-coordinates of its surrounding 4 nodes while using node’s color,
could be implemented in the future.

Notice that ranges of z-values and color-values for surfaces are adjustable independently by
set zrange, set cbrange, as well as set log for z or cb. Maps can be adjusted by the cb-
axis only; see also set view map and set colorbox.

The option hidden3d takes as the argument a linestyle which must be created by set style
line (The style need not to be present when setting pm3d, but it must be present when
plotting). If set, lines are drawn using the specified line style, taking into account hidden
line removal. This is by far more efficient than using the command set hidden3d as it
doesn’t really calculate hidden line removal, but just draws the filled polygons in the correct
order. So the recommended choice when using pm3d is

set pm3d at s hidden3d 100
set style line 100 lt 5 lw 0.5
unset hidden3d
unset surf

GNUPLOT 4.0 95

splot x*x+y*y

There used to be an option {transparent|solid} to this command. Now you get the same
effect from set grid {front|layerdefault}, respectively.

The set pm3d map is an abbreviation for set pm3d at b; set view map; set style
data pm3d; set style func pm3d;. It is used for backwards compatibility, when set
view map was not available. Take care that you properly use zrange and cbrange for
input data point filtering and color range scaling, respectively; and also set (no)surface
seems to have a (side?) effect.

The coloring setup as well as the color box drawing are determined by set palette. There
can be only one palette for the current plot. Drawing of several surfaces with different
palettes can be achieved by multiplot with fixed origin and size; don’t forget to use set
palette maxcolors when your terminal is running out of available colors.

If the option implicit is on (which is the default), all surface plots will be plotted addition-
ally to the default type, e.g.

splot ’fred.dat’ with lines, ’lola.dat’ with lines
would give both plots additionally to a pm3d surface. If the option implicit is off (or
explicit is on) only plots specified by the with pm3d attribute are plotted with a pm3d
surface, e.g.:

splot ’fred.dat’ with lines, ’lola.dat’ with pm3d
would plot ’fred.dat’ with lines (and only lines) and ’lola.dat’ with a pm3d surface. If
explicit is on, you can also switch to the default style pm3d, e.g.:

set style data pm3d

Note that when plotting several plots, they are plotted in the order given on the command
line. This can be of interest especially for filled surfaces which can overwrite and therefore
hide part of earlier plots.

If with pm3d is specified in the splot command line, then it accepts the ’at’ option. The
following plots draw three color surfaces at different altitudes:

set border 4095
set pm3d at s
splot 10*x with pm3d at b, x*x-y*y, x*x+y*y with pm3d at t

See also help for set palette, set cbrange, set colorbox, x11 pm3d and definitely the
demo file demo/pm3d.dem.

38.49. Palette

Palette is a color storage for use by pm3d, filled color contours or polygons, color his-
tograms, color gradient background, and whatever it is or it will be implemented... Here it
stands for a palette of smooth "continuous" colors or grays, but let’s call it just a palette.

Color palettes require terminal entries for filled color polygons and palettes of smooth colors,
are currently available for terminals listed in help for set pm3d. The range of color values
are adjustable independently by set cbrange and set log cb. The whole color palette is
visualized in the colorbox.

GNUPLOT 4.0 96

Syntax:
set palette
set palette {

{ gray | color }
{ gamma <gamma> }
{ rgbformulae <r>,<g>,
| defined { (<gray1> <color1> {, <grayN> <colorN>}...) }
| file ’<filename>’ {datafile-modifiers}
| functions <R>,<G>,

}
{ model { RGB | HSV | CMY | YIQ | XYZ } }
{ positive | negative }
{ nops allcF | ps allcF }
{ maxcolors <maxcolors> }

}
show palette
show palette palette <n> {{float | int}}
show palette gradient
show palette fit2rgbformulae
show palette rgbformulae
show palette colornames

set palette (i.e. without options) sets up the default values. Otherwise, the options can be
given in any order. show palette shows the current palette properties.

show palette gradient displays the gradient defining the palette (if appropriate). show
palette rgbformulae prints the available fixed gray --> color transformation formulae.
show palette colornames prints the implemented color names.

show palette palette <n> prints to screen or to the file given by set output table of
RGB triplets calculated for the current palette settings and a palette having <n> discrete
colors. The default wide table can be limited to 3 columns of r,g,b float values [0..1] or inte-
ger values [0..255] by options float or int, respectively. This way, the current gnuplot color
palette can be loaded into other imaging applications, for example Octave. Additionally to
this textual list of RGB table, you can enjoy command test palette to draw graphically the
R,G,B profiles for the current palette.

The following options determine the coloring properties.

Figure using this palette can be gray or color. For instance, in pm3d color surfaces the
gray of each small spot is obtained by mapping the averaged z-coordinate of the 4 corners of
surface quadrangles into the range [min z,max z] providing range of grays [0:1]. This value
can be used directly as the gray for gray maps. The color map requires a transformation
gray --> (R,G,B), i.e. a mapping [0:1] --> ([0:1],[0:1],[0:1]).

Basically two different types of mappings can be used: Analytic formulae to convert gray to
color, or discrete mapping tables which are interpolated. rgbformulae and functions use
analytic formulae whereas defined and file use interpolated tables. rgbformulae reduces
the size of postscript output to a minimum.

The command show palette fit2rgbformulae finds the best matching set palette rgb-
formulae for the current set palette. Naturally, it makes sense to use it for non-rgbformu-
lae palettes. This command can be found useful mainly for external programs using the

GNUPLOT 4.0 97

same rgbformulae definition of palettes as gnuplot, like zimg.

set palette gray switches to a gray only palette. rgbformulae, defined, file and func-
tions switch to a color mapping. set palette color is an easy way to switch back from the
gray palette to the last color mapping.

Automatic gamma correction via set palette gamma <gamma> can be done for gray
maps only (set palette gray). Linear mapping to gray is for gamma equals 1, see test
palette. Gamma is ignored for color mappings.

Most terminals support only discrete number of colors (e.g. 256 colors in gif). All entries of
the palette remaining after the default gnuplot linetype colors declaration are allocated for
pm3d by default. Then multiplot could fail if there are no more color positions in the ter-
minal available. Then you should use set palette maxcolors <maxcolors> with a rea-
sonably small value. This option can also be used to separate levels of z=constant in dis-
crete steps, thus to emulate filled contours. Default value of 0 stays for allocating all remain-
ing entries in the terminal palette or for to use exact mapping to RGB.

RGB color space might not be the most useful color space to work in. For that reason you
may change the color space with model to one of RGB, HSV, CMY, YIQ and XYZ.
Using color names for defined tables and a color space other than RGB will result in funny
colors. All explanation have been written for RGB color space, so please note, that R can
be H, C, Y, or X, depending on the actual color space (G and B accordingly).

All values for all color spaces are limited to [0,1].

RGB stands for Red, Green and Blue; CMY stands for Cyan, Magenta and Yellow; HSV
stands for Hue, Saturation, and Value; YIQ is the color model used by the U.S. Commercial
Color Television Broadcasting, it is basically an RGB recoding with downward compatibility
for black and white television; XYZ are the three primary colors of the color model defined
by the ’Commission Internationale de l’Eclairage’ (CIE). For more information on color
models see:

http://www.cs.rit.edu/˜ncs/color/glossary.htm
and

http://cs.fit.edu/wds/classes/cse5255/cse5255/davis/index.html

38.49.1. Rgbformulae

For rgbformulae three suitable mapping functions have to be chosen. This is done
via rgbformulae <r>,<g>,. The available mapping functions are listed by
show palette rgbformulae. Default is 7,5,15, some other examples are 3,11,6,
21,23,3 or 3,23,21. Negative numbers, like 3,-11,-6, mean inverted color (i.e. 1-gray
passed into the formula, see also positive and negative options below).

Some nice schemes in RGB color space
7,5,15 ... traditional pm3d (black-blue-red-yellow)
3,11,6 ... green-red-violet
23,28,3 ... ocean (green-blue-white); try also all other permutations
21,22,23 ... hot (black-red-yellow-white)
30,31,32 ... color printable on gray (black-blue-violet-yellow-white)

GNUPLOT 4.0 98

33,13,10 ... rainbow (blue-green-yellow-red)
34,35,36 ... AFM hot (black-red-yellow-white)

A full color palette in HSV color space
3,2,2 ... red-yellow-green-cyan-blue-magenta-red

Please note that even if called rgbformulae the formulas might actually determine
the <H>,<S>,<V> or <X>,<Y>,<Z> or ... color components as usual.

Use positive and negative to invert the figure colors.

Note that it is possible to find a set of the best matching rgbformulae for any other
color scheme by the command

show palette fit2rgbformulae

38.49.2. Defined

Gray-to-rgb mapping can be manually set by use of defined: A color gradient is
defined and used to give the rgb values. Such a gradient is a piecewise linear mapping
from gray values in [0,1] to the RGB space [0,1]x[0,1]x[0,1]. You have to specify the
gray values and the corresponding RGB values in between a linear interpolation shall
take place:

Syntax:
set palette defined { (<gray1> <color1> {, <grayN> <colorN>}...) }

<grayX> are gray values which are mapped to [0,1] and <colorX> are the correspond-
ing rgb colors. The color can be specified in three different ways:

<color> := { <r> <g> | ’<color-name>’ | ’#rrggbb’ }

Either by three numbers (each in [0,1]) for red, green and blue, separated by white-
space, or the name of the color in quotes or X style color specifiers also in quotes. You
may freely mix the three types in a gradient definition, but the named color "red" will
be something strange if RGB is not selected as color space. Use show palette color-
names for a list of known color names.

Please note, that even if written as <r>, this might actually be the <H> component
in HSV color space or <X> in CIE-XYZ space, or ... depending on the selected color
model.

The <gray> values have to form an ascending sequence of real numbers; the sequence
will be automatically rescaled to [0,1].

set palette defined (without a gradient definition in braces) switches to RGB color
space and uses a preset full-spectrum color gradient. Use show palette gradient to
display the gradient.

Examples:

To produce a gray palette (useless but instructive) use:

GNUPLOT 4.0 99

set palette model RGB
set palette defined (0 "black", 1 "white")

To produce a blue yellow red palette use (all equivalent):
set palette defined (0 "blue", 1 "yellow", 2 "red")
set palette defined (0 0 0 1, 1 1 1 0, 2 1 0 0)
set palette defined (0 "#0000ff", 1 "#ffff00", 2 "ff0000")

To produce some rainbow-like palette use:
set palette defined (0 "blue", 3 "green", 6 "yellow", 10 "red")

Full color spectrum within HSV color space:
set palette model HSV
set palette defined (0 0 1 1, 1 1 1 1)
set palette defined (0 0 1 0, 1 0 1 1, 6 0.8333 1 1, 7 0.8333 0 1)

To produce a palette with few colors only use:
set palette model RGB maxcolors 4
set palette defined (0 "blue", 1 "green", 2 "yellow", 3 "red")

’Traffic light’ palette (non-smooth color jumps at gray = 1/3 and 2/3).
set palette model RGB
set palette defined (0 "dark-green", 1 "green", 1 "yellow", \

2 "dark-yellow", 2 "red", 3 "dark-red")

38.49.3. Functions

Use set palette functions <Rexpr>, <Gexpr>, <Bexpr> to define three formu-
lae for the R(gray), G(gray) and B(gray) mapping. The three formulae may depend
on the variable gray which will take values in [0,1] and should also produce values in
[0,1]. Please note that <Rexpr> might be a formula for the H-value if HSV color
space has been chosen (same for all other formulae and color spaces).

Examples:

To produce a full color palette use:
set palette model HSV functions gray, 1, 1

A nice black to gold palette:
set palette model XYZ functions gray**0.35, gray**0.5, gray**0.8

A gamma-corrected black and white palette
gamma = 2.2
color(gray) = gray**(1./gamma)
set palette model RGB functions color(gray), color(gray), color(gray)

GNUPLOT 4.0 100

38.49.4. File

set palette file is basically a set palette defined (<gradient>) where <gradient>
is read from a datafile. Either 4 columns (gray,R,G,B) or just three columns (R,G,B)
have to be selected via the using data file modifier. In the three column case, the line
number will be used as gray. The gray range is automatically rescaled to [0,1]. The
file is read as a normal data file, so all datafile modifiers can be used. Please note,
that R might actually be e.g. H if HSV color space is selected.

As usual <filename> may be ’-’ which means that the data follow the command inline
and are terminated by a single e on a line of its own.

Use show palette gradient to display the gradient.

Examples:

Read in a palette of RGB triples each in range [0,255]:
set palette file ’some-palette’ using ($1/255):($2/255):($3/255)

Equidistant rainbow (blue-green-yellow-red) palette:
set palette model RGB file "-"
0 0 1
0 1 0
1 1 0
1 0 0
e

38.49.5. Gamma-correction

For gray mappings gamma correction can be turned on by set palette gamma
<gamma>. <gamma> defaults to 1.5 which is quite suitable for most terminals.

For color mappings no automatic gamma correction is done by gnuplot. But you may
easily implement gamma correction, here an example for a gray scale image by use of
explicit functions for the red, green and blue component with slightly different values
of gamma

Example:
set palette model RGB
set palette functions gray**0.64, gray**0.67, gray**0.70

To use gamma correction with interpolated gradients specify intermediate gray values
with appropriate colors. Instead of

set palette defined (0 0 0 0, 1 1 1 1)

use e.g.

set palette defined (0 0 0 0, 0.5 .73 .73 .73, 1 1 1 1)

GNUPLOT 4.0 101

or even more intermediate points until the linear interpolation fits the "gamma cor-
rected" interpolation well enough.

38.49.6. Postscript

In order to reduce the size of postscript files, the gray value and not all three calcu-
lated r,g,b values are written to the file. Therefore the analytical formulae are coded
directly in the postscript language as a header just before the pm3d drawing, see /g
and /cF definitions. Usually, it makes sense to write therein definitions of only the 3
formulae used. But for multiplot or any other reason you may want to manually edit
the transformations directly in the postscript file. This is the default option
nops allcF. Using the option ps allcF writes postscript definitions of all formulae.
This you may find interesting if you want to edit the postscript file in order to have
different palettes for different surfaces in one graph. Well, you can achieve this func-
tionality by multiplot with fixed origin and size.

If pm3d map has been plotted from gridded or almost regular data with an output to
a postscript file, then it is possible to reduce the size of this postscript file up to at
about 50% by the enclosed awk script pm3dCompress.awk. This you may find
interesting if you intend to keep the file for including it into your publication or before
downloading a very large file into a slow printer. Usage:

awk -f pm3dCompress.awk thefile.ps >smallerfile.ps

If pm3d map has been plotted from rectangular gridded data with an output to a post-
script file, then it is possible to reduce the file size even more by the enclosed awk
script pm3dConvertToImage.awk. Usage:

awk -f pm3dConvertToImage.awk <thefile.ps >smallerfile.ps

You may manually change the postscript output from gray to color and vice versa and
change the definition of <maxcolors>.

38.50. Pointsize

The set pointsize command scales the size of the points used in plots.

Syntax:
set pointsize <multiplier>
show pointsize

The default is a multiplier of 1.0. Larger pointsizes may be useful to make points more visi-
ble in bitmapped graphics.

The pointsize of a single plot may be changed on the plot command. See plot with for
details.

Please note that the pointsize setting is not supported by all terminal types.

GNUPLOT 4.0 102

38.51. Polar

The set polar command changes the meaning of the plot from rectangular coordinates to
polar coordinates.

Syntax:
set polar
unset polar
show polar

There have been changes made to polar mode in version 3.7, so that scripts for gnuplot ver-
sions 3.5 and earlier will require modification. The main change is that the dummy variable
t is used for the angle so that the x and y ranges can be controlled independently. Other
changes are: 1) tics are no longer put along the zero axes automatically ---use set xtics axis
nomirror; set ytics axis nomirror; 2) the grid, if selected, is not automatically polar
---use set grid polar; 3) the grid is not labelled with angles ---use set label as necessary.

In polar coordinates, the dummy variable (t) is an angle. The default range of t is [0:2*pi],
or, if degree units have been selected, to [0:360] (see set angles).

The command unset polar changes the meaning of the plot back to the default rectangular
coordinate system.

The set polar command is not supported for splots. See the set mapping command for
similar functionality for splots.

While in polar coordinates the meaning of an expression in t is really r = f(t), where t is an
angle of rotation. The trange controls the domain (the angle) of the function, and the x and
y ranges control the range of the graph in the x and y directions. Each of these ranges, as
well as the rrange, may be autoscaled or set explicitly. See set xrange for details of all the
ranges commands.

Example:
set polar
plot t*sin(t)
plot [-2*pi:2*pi] [-3:3] [-3:3] t*sin(t)

The first plot uses the default polar angular domain of 0 to 2*pi. The radius and the size of
the graph are scaled automatically. The second plot expands the domain, and restricts the
size of the graph to [-3:3] in both directions.

You may want to set size square to have gnuplot try to make the aspect ratio equal to
unity, so that circles look circular. See also polar demos (polar.dem) and polar data plot
(poldat.dem).

38.52. Print

The set print command redirects the output of the print command to a file.

Syntax:
set print

GNUPLOT 4.0 103

set print "-"
set print "<filename>"
set print "<filename>" append
set print "|<shell command>"

Without "<filename>", the output file is restored to <STDERR>. The <filename> "-"
means <STDOUT>. The append flag causes the file to be opened in append mode. A
<filename> starting with "|" is opened as a pipe to the <shell command> on platforms
that support piping.

38.53. Rmargin

The command set rmargin sets the size of the right margin. Please see set margin for
details.

38.54. Rrange

The set rrange command sets the range of the radial coordinate for a graph in polar mode.
Please see set xrange for details.

38.55. Samples

The sampling rate of functions, or for interpolating data, may be changed by the set sam-
ples command.

Syntax:
set samples <samples 1> {,<samples 2>}
show samples

By default, sampling is set to 100 points. A higher sampling rate will produce more accu-
rate plots, but will take longer. This parameter has no effect on data file plotting unless one
of the interpolation/approximation options is used. See plot smooth re 2-d data and set
cntrparam and set dgrid3d re 3-d data.

When a 2-d graph is being done, only the value of <samples 1> is relevant.

When a surface plot is being done without the removal of hidden lines, the value of samples
specifies the number of samples that are to be evaluated for the isolines. Each iso-v line will
have <sample 1> samples and each iso-u line will have <sample 2> samples. If you only
specify <samples 1>, <samples 2> will be set to the same value as <samples 1>. See also
set isosamples.

GNUPLOT 4.0 104

38.56. Size

The set size command scales the displayed size of the plot.

Syntax:
set size {{no}square | ratio <r> | noratio} {<xscale>,<yscale>}
show size

The <xscale> and <yscale> values are the scaling factors for the size of the plot, which
includes the graph and the margins.

ratio causes gnuplot to try to create a graph with an aspect ratio of <r> (the ratio of the
y-axis length to the x-axis length) within the portion of the plot specified by <xscale> and
<yscale>.

The meaning of a negative value for <r> is different. If <r>=-1, gnuplot tries to set the
scales so that the unit has the same length on both the x and y axes (suitable for geographi-
cal data, for instance). If <r>=-2, the unit on y has twice the length of the unit on x, and
so on.

The success of gnuplot in producing the requested aspect ratio depends on the terminal
selected. The graph area will be the largest rectangle of aspect ratio <r> that will fit into
the specified portion of the output (leaving adequate margins, of course).

square is a synonym for ratio 1.

Both noratio and nosquare return the graph to the default aspect ratio of the terminal,
but do not return <xscale> or <yscale> to their default values (1.0).

ratio and square have no effect on 3-d plots.

set size is relative to the default size, which differs from terminal to terminal. Since gnu-
plot fills as much of the available plotting area as possible by default, it is safer to use set
size to decrease the size of a plot than to increase it. See set terminal for the default
sizes.

On some terminals, changing the size of the plot will result in text being misplaced.

Examples:

To set the size to normal size use:
set size 1,1

To make the graph half size and square use:
set size square 0.5,0.5

To make the graph twice as high as wide use:
set size ratio 2

See also
airfoil demo.

GNUPLOT 4.0 105

38.57. Style

Default plotting styles are chosen with the set style data and set style function com-
mands. See plot with for information about how to override the default plotting style for
individual functions and data sets. See plotting styles for a complete list of styles.

Syntax:
set style function <style>
set style data <style>
show style function
show style data

Default styles for specific plotting elements may also be set.

Syntax:
set style arrow <n> <arrowstyle>
set style fill <fillstyle>
set style line <n> <linestyle>

38.57.1. Set style arrow

Each terminal has a default set of arrow and point types, which can be seen by using
the command test. set style arrow defines a set of arrow types and widths and
point types and sizes so that you can refer to them later by an index instead of repeat-
ing all the information at each invocation.

Syntax:
set style arrow <index> {nohead | head | heads}

{size <length>,<angle>{,<backangle>}}
{filled | empty | nofilled}
{front | back}
{ {linestyle | ls <line style>}
| {linetype | lt <line type>}
{linewidth | lw <line width} }

unset style arrow
show style arrow

<index> is an integer that identifies the arrowstyle.

Specifying nohead produces arrows drawn without a head---a line segment. This
gives you yet another way to draw a line segment on the plot. By default, arrows have
one head. Specifying heads draws arrow heads on both ends of the line.

Head size can be controlled by size <length>,<angle> or size
<length>,<angle>,<backangle> where <length> defines length of each branch of
the arrow head and <angle> the angle (in degrees) they make with the arrow.
<Length> is in x-axis units; this can be changed by first, second, graph or screen
before the <length>; see coordinates for details. <Backangle> only takes effect
when filled or empty is also used. Then, <backangle> is the angle (in degrees) the

GNUPLOT 4.0 106

back branches make with the arrow (in the same direction as <angle>). The fig ter-
minal has a restricted backangle function. It supports three different angles. There are
two thresholds: Below 70 degrees, the arrow head gets an indented back angle. Above
110 degrees, the arrow head has an acute back angle. Between these thresholds, the
back line is straight.

Specifying filled produces filled arrow heads (if heads are used). Filling is supported
on filled-polygon capable terminals, see help of pm3d for their list, otherwise the
arrow heads are closed but not filled. The same result (closed but not filled arrow
head) is reached by specifying empty. Further, filling and outline is obviously not
supported on terminals drawing arrows by their own specific routines, like metafont,
metapost, latex or tgif.

The line style may be selected from a user-defined list of line styles (see set style
line) or may be defined here by providing values for <line type> (an index from the
default list of styles) and/or <line width> (which is a multiplier for the default
width).

Note, however, that if a user-defined line style has been selected, its properties (type
and width) cannot be altered merely by issuing another set style arrow command
with the appropriate index and lt or lw.

If front is given, the arrows are written on top of the graphed data. If back is given
(the default), the arrow is written underneath the graphed data. Using front will pre-
vent a arrow from being obscured by dense data.

Examples:

To draw an arrow without an arrow head and double width, use:
set style arrow 1 nohead lw 2
set arrow arrowstyle 1

See also ‘set arrow‘ for further examples.

38.57.2. Set style data

The set style data command changes the default plotting style for data plots.

Syntax:
set style data <plotting-style>
show style data

See plotting styles for the choices. If no choice is given, the choices are listed. show
style data shows the current default data plotting style.

38.57.3. Set style fill

GNUPLOT 4.0 107

The set style fill command is used to set the style of boxes or candlesticks.

Syntax:
set style fill {empty | solid {<density>} | pattern {<n>}}

{border {<linetype>} | noborder}

The default fillstyle is empty.

The solid option causes filling with a solid color, if the terminal supports that. The
<density> parameter specifies the intensity of the fill color. At a <density> of 0.0, the
box is empty, at <density> of 1.0, the inner area is of the same color as the current
linetype. Some terminal types can vary the density continuously; others implement
only a few levels of partial fill. If no <density> parameter is given, it defaults to 1.

The pattern option causes filling to be done with a fill pattern supplied by the termi-
nal driver. The kind and number of available fill patterns depend on the terminal
driver. If multiple datasets using filled boxes are plotted, the pattern cycles through
all available pattern types, starting from pattern <n>, much as the line type cycles for
multiple line plots.

The empty option causes filled boxes not to be filled. This is the default. It is equiva-
lent to the solid option with a <density> parameter of zero.

By default, border, the box is bounded by a solid line of the current linetype. border
<lt> specifies that a border is to be drawn using linetype <lt>. noborder specifies
that no bounding lines are drawn.

38.57.4. Set style function

The set style function command changes the default plotting style for function plots.

Syntax:
set style function <plotting-style>
show style function

See plotting styles for the choices. If no choice is given, the choices are listed. show
style function shows the current default function plotting style.

38.57.5. Set style line

Each terminal has a default set of line and point types, which can be seen by using the
command test. set style line defines a set of line types and widths and point types
and sizes so that you can refer to them later by an index instead of repeating all the
information at each invocation.

Syntax:
set style line <index> {linetype | lt <line type>}

{linewidth | lw <line width>}
{pointtype | pt <point type>}

GNUPLOT 4.0 108

{pointsize | ps <point size>}
{palette}

unset style line
show style line

The line and point types are taken from the default types for the terminal currently in
use. The line width and point size are multipliers for the default width and size (but
note that <point size> here is unaffected by the multiplier given on set pointsize).

The defaults for the line and point types is the index. The defaults for the width and
size are both unity.

Linestyles created by this mechanism do not replace the default styles; both may be
used.

Not all terminals support the linewidth and pointsize features; if not supported, the
option will be ignored.

Note that this feature is not completely implemented; linestyles defined by this mecha-
nism may be used with plot, splot, replot, and set arrow, but not by other com-
mands that allow the default index to be used, such as set grid.

If gnuplot was built with pm3d support, the special keyword palette is allowed as
linetype for splots (the 2d plot command ignores palette). In this case the line color
is chosen from a smooth palette which was set previously with the command set
palette. The color value corresponds to the z-value (elevation) of the splot.

Example: Suppose that the default lines for indices 1, 2, and 3 are red, green, and
blue, respectively, and the default point shapes for the same indices are a square, a
cross, and a triangle, respectively. Then

set style line 1 lt 2 lw 2 pt 3 ps 0.5

defines a new linestyle that is green and twice the default width and a new pointstyle
that is a half-sized triangle. The commands

set style function lines
plot f(x) lt 3, g(x) ls 1

will create a plot of f(x) using the default blue line and a plot of g(x) using the user-
defined wide green line. Similarly the commands

set style function linespoints
plot p(x) lt 1 pt 3, q(x) ls 1

will create a plot of p(x) using the default triangles connected by a red line and q(x)
using small triangles connected by a green line.

splot sin(sqrt(x*x+y*y))/sqrt(x*x+y*y) w l pal

creates a surface plot using smooth colors according to palette. Note, that this works
only on some terminals.

GNUPLOT 4.0 109

See also set palette, set pm3d.

38.57.6. Plotting styles

The commands set style data and set style function change the default plotting
style for subsequent plot and splot commands.

The types used for all line and point styles (i.e., solid, dash-dot, color, etc. for lines;
circles, squares, crosses, etc. for points) will be either those specified on the plot or
splot command or will be chosen sequentially from the types available to the terminal
in use. Use the command test to see what is available.

None of the styles requiring more than two columns of information (e.g., errorbars or
errorlines) can be used with splots or function plots. Neither boxes, filledcurves
nor any of the steps styles can be used with splots. If an inappropriate style is speci-
fied, it will be changed to points.

For 2-d data with more than two columns, gnuplot is picky about the allowed error-
bars and errorlines styles. The using option on the plot command can be used to
set up the correct columns for the style you want. (In this discussion, "column" will be
used to refer both to a column in the data file and an entry in the using list.)

For three columns, only xerrorbars, yerrorbars (or errorbars), xerrorlines, yer-
rorlines (or errorlines), boxes and boxerrorbars are allowed. If another plot style
is used, the style will be changed to yerrorbars. The boxerrorbars style will calcu-
late the boxwidth automatically.

For four columns, only xerrorbars, yerrorbars (or errorbars), xyerrorbars, xer-
rorlines, yerrorlines (or errorlines), xyerrorlines, boxxyerrorbars, and boxer-
rorbars are allowed. An illegal style will be changed to yerrorbars.

Five-column data allow only the boxerrorbars, financebars, and candlesticks
styles. An illegal style will be changed to boxerrorbars before plotting.

Six- and seven-column data only allow the xyerrorbars, xyerrorlines, and boxxyer-
rorbars styles. Illegal styles will be changed to xyerrorbars before plotting.

For more information about error bars with and without lines, please see plot error-
lines and plot errorbars.

38.57.6.1. Boxerrorbars

The boxerrorbars style is only relevant to 2-d data plotting. It is a combina-
tion of the boxes and yerrorbars styles. The boxwidth will come from the
fourth column if the y errors are in the form of "ydelta" and the boxwidth was

GNUPLOT 4.0 110

not previously set equal to -2.0 (set boxwidth -2.0) or from the fifth column if
the y errors are in the form of "ylow yhigh". The special case boxwidth =
-2.0 is for four-column data with y errors in the form "ylow yhigh". In this case
the boxwidth will be calculated so that each box touches the adjacent boxes.
The width will also be calculated in cases where three-column data are used.

The box height is determined from the y error in the same way as it is for the
yerrorbars style---either from y-ydelta to y+ydelta or from ylow to yhigh,
depending on how many data columns are provided. See also errorbar demo.

38.57.6.2. Boxes

The boxes style is only relevant to 2-d plotting. It draws a box centered about
the given x coordinate from the x axis (not the graph border) to the given y
coordinate. The width of the box is obtained in one of three ways. If it is a data
plot and the data file has a third column, this will be used to set the width of
the box. If not, if a width has been set using the set boxwidth command, this
will be used. If neither of these is available, the width of each box will be calcu-
lated automatically so that it touches the adjacent boxes.

The interior of the boxes is drawn according to the current fillstyle. See set
style fill for details. Alternatively a new fillstyle may be specified in the plot
command.

For fillstyle empty the box is filled with the background color.

For fillstyle solid the box is filled with a solid rectangle of the current drawing
color. There is an optional parameter <density> that controls the fill density; it
runs from 0 (background color) to 1 (current drawing color).

For fillstyle pattern the box is filled in the current drawing color with a pattern,
if supported by the terminal driver.

Examples:

To plot a data file with solid filled boxes with a small vertical space separating
them (bargraph):

set boxwidth 0.9 relative
set style fill solid 1.0
plot ’file.dat’ with boxes

To plot a sine and a cosine curve in pattern-filled boxes style:

set style fill pattern
plot sin(x) with boxes, cos(x) with boxes

The sin plot will use pattern 0; the cos plot will use pattern 1. Any additional
plots would cycle through the patterns supported by the terminal driver.

To specify explicit fillstyles for each dataset:

GNUPLOT 4.0 111

plot ’file1’ with boxes fs solid 0.25, \
’file2’ with boxes fs solid 0.50, \
’file3’ with boxes fs solid 0.75, \
’file4’ with boxes fill pattern 1, \
’file5’ with boxes fill empty

Currently only the following terminal drivers support fillstyles other than
empty: x11, windows, pm, postscript, fig, pbm, png, gif, hpdj, hppj, hpljii,
hp500c, jpeg, nec cp6, epson 180dpi, epson 60dpi, epson lx800, okidata, starc
and tandy 60dpi. The BeOS driver (be) is untested.

38.57.6.3. Filledcurves

The filledcurves style is only relevant to 2-d plotting. It draws either the cur-
rent curve closed and filled, or the region between the current curve and a given
axis, horizontal or vertical line, or a point, filled with the current drawing color.

Syntax:

set style [data | function] filledcurves [option]
plot ... with filledcurves [option]

where the option can be

[closed | {x1 | x2 | y1 | y2}[=<a>] | xy=<x>,<y>]

The area is filled between the current curve and
filledcurves closed ... just filled closed curve,
filledcurves x1 ... x1 axis,
filledcurves x2 ... x2 axis, etc for y1 and y2 axes,
filledcurves y1=0 ... line y=0 (at y1 axis) ie parallel to x1 axis,
filledcurves y2=42 ... line y=42 (at y2 axis) ie parallel to x2, etc,
filledcurves xy=10,20 ... point 10,20 of x1,y1 axes (arc-like shape).

Note: filling is supported on filled-polygon capable terminals, see help of set
pm3d for their list.

Zoom of a filled curve drawn from a datafile may produce empty or incorrect
area because gnuplot is clipping points and lines, and not areas.

If the values of <a>, <x>, <y> are out of the drawing boundary, then they are
moved to the graph boundary. Then the actually filled area in the case of option
xy=<x>,<y> will depend on xrange and yrange.

38.57.6.4. Boxxyerrorbars

The boxxyerrorbars style is only relevant to 2-d data plotting. It is a combi-
nation of the boxes and xyerrorbars styles.

GNUPLOT 4.0 112

The box width and height are determined from the x and y errors in the same
way as they are for the xyerrorbars style---either from xlow to xhigh and from
ylow to yhigh, or from x-xdelta to x+xdelta and from y-ydelta to y+ydelta ,
depending on how many data columns are provided.

If filled-box support is present, then the interior of the boxes is drawn according
to the current fillstyle. See set style fill and boxes for details. Alternatively a
new fillstyle may be specified in the plot command.

38.57.6.5. Candlesticks

The candlesticks style can be used for 2-d data plotting of financial data or for
generating box-and-whisker plots of statistical data. Five columns of data are
required; in order, these should be the x coordinate (most likely a date) and the
opening, low, high, and closing prices. The symbol is a rectangular box, centered
horizontally at the x coordinate and limited vertically by the opening and closing
prices. A vertical line segment at the x coordinate extends up from the top of
the rectangle to the high price and another down to the low. The vertical line
will be unchanged if the low and high prices are interchanged.

The width of the rectangle can be controlled by the set boxwidth command.
For backwards compatibility with earlier gnuplot versions, when the boxwidth
parameter has not been set then the width of the candlestick rectangle is con-
trolled by set bars <width>.

By default the rectangle is empty if (open > close), and filled with three vertical
bars if (close > open). If filled-boxes support is present, then the rectangle is col-
ored according to set style fill <fillstyle>. See set bars and financebars.
See also finance demos.

Note: To place additional symbols, such as the median value, on a box-and-
whisker plot requires additional plot commands as in this example:

Data columns: X Min 1stQuartile Median 3rdQuartile Max
set bars 4.0
set style fill empty
plot ’stat.dat’ using 1:3:2:6:5 with candlesticks title ’Quartiles’, \

’’ using 1:4:4:4:4 with candlesticks lt -1 notitle

See ‘set boxwidth‘, ‘set bars‘ and ‘set style fill‘.

38.57.6.6. Dots

The dots style plots a tiny dot at each point; this is useful for scatter plots with
many points.

GNUPLOT 4.0 113

38.57.6.7. Financebars

The financebars style is only relevant for 2-d data plotting of financial data.
Five columns of data are required; in order, these should be the x coordinate
(most likely a date) and the opening, low, high, and closing prices. The symbol
is a vertical line segment, located horizontally at the x coordinate and limited
vertically by the high and low prices. A horizontal tic on the left marks the
opening price and one on the right marks the closing price. The length of these
tics may be changed by set bars. The symbol will be unchanged if the high and
low prices are interchanged. See set bars and candlesticks, and also the
finance demo.

38.57.6.8. Fsteps

The fsteps style is only relevant to 2-d plotting. It connects consecutive points
with two line segments: the first from (x1,y1) to (x1,y2) and the second from
(x1,y2) to (x2,y2). See also steps demo.

38.57.6.9. Histeps

The histeps style is only relevant to 2-d plotting. It is intended for plotting his-
tograms. Y-values are assumed to be centered at the x-values; the point at x1 is
represented as a horizontal line from ((x0+x1)/2,y1) to ((x1+x2)/2,y1). The
lines representing the end points are extended so that the step is centered on at
x. Adjacent points are connected by a vertical line at their average x, that is,
from ((x1+x2)/2,y1) to ((x1+x2)/2,y2).

If autoscale is in effect, it selects the xrange from the data rather than the
steps, so the end points will appear only half as wide as the others. See also
steps demo.

histeps is only a plotting style; gnuplot does not have the ability to create bins
and determine their population from some data set.

38.57.6.10. Impulses

The impulses style displays a vertical line from the x axis (not the graph bor-
der), or from the grid base for splot, to each point.

38.57.6.11. Lines

The lines style connects adjacent points with straight line segments. See also
linetype, linewidth, and linestyle.

GNUPLOT 4.0 114

38.57.6.12. Linespoints

The linespoints style does both lines and points, that is, it draws a small sym-
bol at each point and then connects adjacent points with straight line segments.
The command set pointsize may be used to change the size of the points. See
set pointsize for its usage.

linespoints may be abbreviated lp.

38.57.6.13. Points

The points style displays a small symbol at each point. The command set
pointsize may be used to change the size of the points. See set pointsize for
its usage.

38.57.6.14. Steps

The steps style is only relevant to 2-d plotting. It connects consecutive points
with two line segments: the first from (x1,y1) to (x2,y1) and the second from
(x2,y1) to (x2,y2). See also steps demo.

38.57.6.15. Vectors

The vectors style draws a vector from (x,y) to (x+xdelta,y+ydelta). Thus it
requires four columns of data. It also draws a small arrowhead at the end of the
vector.

Example:
plot ’file.dat’ using 1:2:3:4 with vectors head filled lt 2

set clip one and set clip two affect drawing vectors. Please see set clip and
arrowstyle.

38.57.6.16. Xerrorbars

The xerrorbars style is only relevant to 2-d data plots. xerrorbars is like
dots, except that a horizontal error bar is also drawn. At each point (x,y), a
line is drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y) to (x+xdelta,y),
depending on how many data columns are provided. A tic mark is placed at the
ends of the error bar (unless set bars is used---see set bars for details).

GNUPLOT 4.0 115

38.57.6.17. Xyerrorbars

The xyerrorbars style is only relevant to 2-d data plots. xyerrorbars is like
dots, except that horizontal and vertical error bars are also drawn. At each
point (x,y), lines are drawn from (x,y-ydelta) to (x,y+ydelta) and from (x-
xdelta,y) to (x+xdelta,y) or from (x,ylow) to (x,yhigh) and from (xlow,y) to
(xhigh,y), depending upon the number of data columns provided. A tic mark is
placed at the ends of the error bar (unless set bars is used---see set bars for
details).

If data are provided in an unsupported mixed form, the using filter on the plot
command should be used to set up the appropriate form. For example, if the
data are of the form (x,y,xdelta,ylow,yhigh), then you can use

plot ’data’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

38.57.6.18. Yerrorbars

The yerrorbars (or errorbars) style is only relevant to 2-d data plots. yerror-
bars is like points, except that a vertical error bar is also drawn. At each point
(x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta) or from (x,ylow) to
(x,yhigh), depending on how many data columns are provided. A tic mark is
placed at the ends of the error bar (unless set bars is used---see set bars for
details). See also errorbar demo.

38.57.6.19. Xerrorlines

The xerrorlines style is only relevant to 2-d data plots. xerrorlines is like
linespoints, except that a horizontal error line is also drawn. At each point
(x,y), a line is drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y) to
(x+xdelta,y), depending on how many data columns are provided. A tic mark is
placed at the ends of the error bar (unless set bars is used---see set bars for
details).

38.57.6.20. Xyerrorlines

The xyerrorlines style is only relevant to 2-d data plots. xyerrorlines is like
linespoints, except that horizontal and vertical error bars are also drawn. At
each point (x,y), lines are drawn from (x,y-ydelta) to (x,y+ydelta) and from (x-
xdelta,y) to (x+xdelta,y) or from (x,ylow) to (x,yhigh) and from (xlow,y) to
(xhigh,y), depending upon the number of data columns provided. A tic mark is
placed at the ends of the error bar (unless set bars is used---see set bars for
details).

If data are provided in an unsupported mixed form, the using filter on the plot
command should be used to set up the appropriate form. For example, if the

GNUPLOT 4.0 116

data are of the form (x,y,xdelta,ylow,yhigh), then you can use

plot ’data’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines

38.57.6.21. Yerrorlines

The yerrorlines (or errorlines) style is only relevant to 2-d data plots. yerror-
lines is like linespoints, except that a vertical error line is also drawn. At each
point (x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta) or from (x,ylow) to
(x,yhigh), depending on how many data columns are provided. A tic mark is
placed at the ends of the error bar (unless set bars is used---see set bars for
details). See also errorbar demo.

38.58. Surface

The command set surface controls the display of surfaces by splot.

Syntax:
set surface
unset surface
show surface

The surface is drawn with the style specified by with, or else the appropriate style, data or
function.

Whenever unset surface is issued, splot will not draw points or lines corresponding to the
function or data file points. Contours may still be drawn on the surface, depending on the
set contour option. unset surface; set contour base is useful for displaying contours on
the grid base. See also set contour.

38.59. Terminal

gnuplot supports many different graphics devices. Use set terminal to tell gnuplot what
kind of output to generate. Use set output to redirect that output to a file or device.

Syntax:
set terminal {<terminal-type> | push | pop}
show terminal

If <terminal-type> is omitted, gnuplot will list the available terminal types. <terminal-
type> may be abbreviated.

If both set terminal and set output are used together, it is safest to give set terminal
first, because some terminals set a flag which is needed in some operating systems.

Several terminals have additional options. For example, see dumb, iris4d, hpljii or

GNUPLOT 4.0 117

postscript. The options used by a previous invocation set term <term> <options> of
a given <term> are remembered, thus subsequent set term <term> does not reset them.
This helps in printing, for instance, when switching among different terminals---previous
options don’t have to be repeated.

The command set term push remembers the current terminal including its settings while
set term pop restores it. This is equivalent to save term and load term, but without
accessing the filesystem. Therefore they can be used to achieve platform independent restor-
ing of the terminal after printing, for instance. After gnuplot’s startup, the default terminal
or that from startup file is pushed automatically. Therefore portable scripts can rely that
set term pop restores the default terminal on a given platform unless another terminal has
been pushed explicitly.

This document may describe drivers that are not available to you because they were not
installed, or it may not describe all the drivers that are available to you, depending on its
output format.

38.59.1. Aed767

The aed512 and aed767 terminal drivers support AED graphics terminals. The two
drivers differ only in their horizontal ranges, which are 512 and 768 pixels, respectively.
Their vertical range is 575 pixels. There are no options for these drivers.

38.59.2. Aifm

Several options may be set in aifm---the Adobe Illustrator 3.0+ driver.

Syntax:
set terminal aifm {<color>} {"<fontname>"} {<fontsize>}

<color> is either color or monochrome; "<fontname>" is the name of a valid Post-
Script font; <fontsize> is the size of the font in PostScript points, before scaling by
the set size command. Selecting default sets all options to their default values:
monochrome, "Times-Roman", and 14pt.

Since AI does not really support multiple pages, multiple graphs will be drawn directly
on top of one another. However, each graph will be grouped individually, making it
easy to separate them inside AI (just pick them up and move them).

Examples:
set term aifm
set term aifm 22
set size 0.7,1.4; set term aifm color "Times-Roman" 14

GNUPLOT 4.0 118

38.59.3. Amiga

The amiga terminal, for Commodore Amiga computers, allows the user to plot either
to a screen (default), or, if Kickstart 3.0 or higher is installed, to a window on the cur-
rent public screen. The font and its size can also be selected.

Syntax:
set terminal amiga {screen | window} {"<fontname>"} {<fontsize>}

The default font is 8-point "topaz".

The screen option uses a virtual screen, so it is possible that the graph will be larger
than the screen.

38.59.4. Apollo

The apollo terminal driver supports the Apollo Graphics Primitive Resource with
rescaling after window resizing. It has no options.

If a fixed-size window is desired, the gpr terminal may be used instead.

38.59.5. Aqua

This terminal relies on AquaTerm.app for display on Mac OS X.

Syntax:
set terminal aqua {<n>} {title "<wintitle>"} {size <x> <y>}

{fname "<fontface>"} {fsize <fontsize>}

where <n> is the number of the window to draw in (default is 0), <wintitle> is the
name shown in the title bar (default "Figure <n>"), <x> <y> is the size of the plot
(default is 846x594 pt = 11.75x8.25 in).

Use <fontface> to specify the font to use (default is "Times-Roman"), <fontzise> sets
the font size (default is 14.0 pt).

38.59.6. Atari ST (via AES)

The atari terminal has options to set the character size and the screen colors.

Syntax:
set terminal atari {<fontsize>} {<col0> <col1> ... <col15>}

The character size must appear if any colors are to be specified. Each of the (up to
16) colors is given as a three-digit hex number, where the digits represent RED,
GREEN and BLUE (in that order). The range of 0--15 is scaled to whatever color

GNUPLOT 4.0 119

range the screen actually has. On a normal ST screen, odd and even intensities are
the same.

Examples:
set terminal atari 4 # use small (6x6) font
set terminal atari 6 0 # set monochrome screen to white on black
set terminal atari 13 0 fff f00 f0 f ff f0f

set first seven colors to black, white, red, green,
blue, cyan, and purple and use large font (8x16).

Additionally, if an environment variable GNUCOLORS exists, its contents are inter-
preted as an options string, but an explicit terminal option takes precedence.

38.59.7. Be

gnuplot provides the be terminal type for use with X servers. This terminal type is
set automatically at startup if the DISPLAY environment variable is set, if the
TERM environment variable is set to xterm, or if the -display command line option
is used.

Syntax:
set terminal be {reset} {<n>}

Multiple plot windows are supported: set terminal be <n> directs the output to
plot window number n. If n>0, the terminal number will be appended to the window
title and the icon will be labeled gplt <n>. The active window may distinguished by
a change in cursor (from default to crosshair.)

Plot windows remain open even when the gnuplot driver is changed to a different
device. A plot window can be closed by pressing the letter q while that window has
input focus, or by choosing close from a window manager menu. All plot windows can
be closed by specifying reset, which actually terminates the subprocess which main-
tains the windows (unless -persist was specified).

Plot windows will automatically be closed at the end of the session unless the -persist
option was given.

The size or aspect ratio of a plot may be changed by resizing the gnuplot window.

Linewidths and pointsizes may be changed from within gnuplot with set linestyle.

For terminal type be, gnuplot accepts (when initialized) the standard X Toolkit
options and resources such as geometry, font, and name from the command line argu-
ments or a configuration file. See the X(1) man page (or its equivalent) for a descrip-
tion of such options.

A number of other gnuplot options are available for the be terminal. These may be
specified either as command-line options when gnuplot is invoked or as resources in
the configuration file ".Xdefaults". They are set upon initialization and cannot be
altered during a gnuplot session.

GNUPLOT 4.0 120

38.59.7.1. Command-line options

In addition to the X Toolkit options, the following options may be specified on
the command line when starting gnuplot or as resources in your ".Xdefaults"
file:

‘-mono‘ forces monochrome rendering on color displays.
‘-gray‘ requests grayscale rendering on grayscale or color displays.

(Grayscale displays receive monochrome rendering by default.)
‘-clear‘ requests that the window be cleared momentarily before a

new plot is displayed.
‘-raise‘ raises plot window after each plot

‘-noraise‘ does not raise plot window after each plot
‘-persist‘ plots windows survive after main gnuplot program exits

The options are shown above in their command-line syntax. When entered as resources in ".Xde-
faults", they require a different syntax.

Example:
gnuplot*gray: on

gnuplot also provides a command line option (-pointsize <v>) and a resource, gnuplot*point-
size: <v>, to control the size of points plotted with the points plotting style. The value v is a
real number (greater than 0 and less than or equal to ten) used as a scaling factor for point sizes.
For example, -pointsize 2 uses points twice the default size, and -pointsize 0.5 uses points half
the normal size.

38.59.7.2. Monochrome options

For monochrome displays, gnuplot does not honor foreground or background
colors. The default is black-on-white. -rv or gnuplot*reverseVideo: on
requests white-on-black.

38.59.7.3. Color resources

For color displays, gnuplot honors the following resources (shown here with
their default values) or the greyscale resources. The values may be color names
as listed in the BE rgb.txt file on your system, hexadecimal RGB color specifica-
tions (see BE documentation), or a color name followed by a comma and an
intensity value from 0 to 1. For example, blue, 0.5 means a half intensity blue.

GNUPLOT 4.0 121

gnuplot*background: white
gnuplot*textColor: black
gnuplot*borderColor: black
gnuplot*axisColor: black
gnuplot*line1Color: red
gnuplot*line2Color: green
gnuplot*line3Color: blue
gnuplot*line4Color: magenta
gnuplot*line5Color: cyan
gnuplot*line6Color: sienna
gnuplot*line7Color: orange
gnuplot*line8Color: coral

The command-line syntax for these is, for example,

Example:
gnuplot -background coral

38.59.7.4. Grayscale resources

When -gray is selected, gnuplot honors the following resources for grayscale or
color displays (shown here with their default values). Note that the default
background is black.

gnuplot*background: black
gnuplot*textGray: white
gnuplot*borderGray: gray50
gnuplot*axisGray: gray50
gnuplot*line1Gray: gray100
gnuplot*line2Gray: gray60
gnuplot*line3Gray: gray80
gnuplot*line4Gray: gray40
gnuplot*line5Gray: gray90
gnuplot*line6Gray: gray50
gnuplot*line7Gray: gray70
gnuplot*line8Gray: gray30

38.59.7.5. Line resources

GNUPLOT 4.0 122

gnuplot honors the following resources for setting the width (in pixels) of plot
lines (shown here with their default values.) 0 or 1 means a minimal width line
of 1 pixel width. A value of 2 or 3 may improve the appearance of some plots.

gnuplot*borderWidth: 2
gnuplot*axisWidth: 0
gnuplot*line1Width: 0
gnuplot*line2Width: 0
gnuplot*line3Width: 0
gnuplot*line4Width: 0
gnuplot*line5Width: 0
gnuplot*line6Width: 0
gnuplot*line7Width: 0
gnuplot*line8Width: 0

gnuplot honors the following resources for setting the dash style used for plotting lines. 0 means
a solid line. A two-digit number jk (j and k are >= 1 and <= 9) means a dashed line with a
repeated pattern of j pixels on followed by k pixels off. For example, ’16’ is a "dotted" line with
one pixel on followed by six pixels off. More elaborate on/off patterns can be specified with a
four-digit value. For example, ’4441’ is four on, four off, four on, one off. The default values
shown below are for monochrome displays or monochrome rendering on color or grayscale dis-
plays. For color displays, the default for each is 0 (solid line) except for axisDashes which
defaults to a ’16’ dotted line.

gnuplot*borderDashes: 0
gnuplot*axisDashes: 16
gnuplot*line1Dashes: 0
gnuplot*line2Dashes: 42
gnuplot*line3Dashes: 13
gnuplot*line4Dashes: 44
gnuplot*line5Dashes: 15
gnuplot*line6Dashes: 4441
gnuplot*line7Dashes: 42
gnuplot*line8Dashes: 13

38.59.8. Cgi

The cgi and hcgi terminal drivers support SCO CGI drivers. hcgi is for printers; the
environment variable CGIPRNT must be set. cgi may be used for either a display or
hardcopy; if the environment variable CGIDISP is set, then that display is used. Oth-
erwise CGIPRNT is used.

These terminals have no options.

GNUPLOT 4.0 123

38.59.9. Cgm

The cgm terminal generates a Computer Graphics Metafile, Version 1. This file for-
mat is a subset of the ANSI X3.122-1986 standard entitled "Computer Graphics -
Metafile for the Storage and Transfer of Picture Description Information". Several
options may be set in cgm.

Syntax:
set terminal cgm {<mode>} {<color>} {<rotation>} {solid | dashed}

{width <plot width>} {linewidth <line width>}
{""} {<fontsize>}
{<color0> <color1> <color2> ...}

where <mode> is landscape, portrait, or default; <color> is either color or
monochrome; <rotation> is either rotate or norotate; solid draws all curves with
solid lines, overriding any dashed patterns; <plot width> is the assumed width of the
plot in points; <line width> is the line width in points (default 1); is the
name of a font; and <fontsize> is the size of the font in points (default 12).

By default, cgm uses rotated text for the Y axis label.

The first six options can be in any order. Selecting default sets all options to their
default values.

Each color must be of the form ’xrrggbb’, where x is the literal character ’x’ and
’rrggbb’ are the red, green and blue components in hex. For example, ’x00ff00’ is
green. The background color is set first, then the plotting colors. Examples:

set terminal cgm landscape color rotate dashed width 432 \
linewidth 1 ’Helvetica Bold’ 12 # defaults

set terminal cgm linewidth 2 14 # wider lines & larger font
set terminal cgm portrait "Times Italic" 12
set terminal cgm color solid # no pesky dashes!

38.59.9.1. Font

The first part of a Computer Graphics Metafile, the metafile description, includes
a font table. In the picture body, a font is designated by an index into this table.
By default, this terminal generates a table with the following 35 fonts, plus six
more with italic replaced by oblique, or vice-versa (since at least the Microsoft
Office and Corel Draw CGM import filters treat italic and oblique as equiva-
lent):

GNUPLOT 4.0 124

CGM fonts
Helvetica
Helvetica Bold
Helvetica Oblique
Helvetica Bold Oblique
Times Roman
Times Bold
Times Italic
Times Bold Italic
Courier
Courier Bold
Courier Oblique
Courier Bold Oblique
Symbol
Hershey/Cartographic Roman
Hershey/Cartographic Greek
Hershey/Simplex Roman
Hershey/Simplex Greek
Hershey/Simplex Script
Hershey/Complex Roman
Hershey/Complex Greek
Hershey/Complex Script
Hershey/Complex Italic
Hershey/Complex Cyrillic
Hershey/Duplex Roman
Hershey/Triplex Roman
Hershey/Triplex Italic
Hershey/Gothic German
Hershey/Gothic English
Hershey/Gothic Italian
Hershey/Symbol Set 1
Hershey/Symbol Set 2
Hershey/Symbol Math
ZapfDingbats
Script
15

The first thirteen of these fonts are required for WebCGM. The Microsoft Office CGM import fil-
ter implements the 13 standard fonts listed above, and also ’ZapfDingbats’ and ’Script’. However,
the script font may only be accessed under the name ’15’. For more on Microsoft import filter
font substitutions, check its help file which you may find here:

C:\Program Files\Microsoft Office\Office\Cgmimp32.hlp
and/or its configuration file, which you may find here:

C:\Program Files\Common Files\Microsoft Shared\Grphflt\Cgmimp32.cfg

In the set term command, you may specify a font name which does not appear in the default
font table. In that case, a new font table is constructed with the specified font as its first entry.
You must ensure that the spelling, capitalization, and spacing of the name are appropriate for the
application that will read the CGM file. (Gnuplot and any MIL-D-28003A compliant application
ignore case in font names.) If you need to add several new fonts, use several set term commands.

GNUPLOT 4.0 125

Example:
set terminal cgm ’Old English’
set terminal cgm ’Tengwar’
set terminal cgm ’Arabic’
set output ’myfile.cgm’
plot ...
set output

You cannot introduce a new font in a set label command.2 fontsize Fonts are scaled assuming the
page is 6 inches wide. If the size command is used to change the aspect ratio of the page or the
CGM file is converted to a different width, the resulting font sizes will be scaled up or down
accordingly. To change the assumed width, use the width option.

38.59.9.2. Linewidth

The linewidth option sets the width of lines in pt. The default width is 1 pt.
Scaling is affected by the actual width of the page, as discussed under the font-
size and width options.

38.59.9.3. Rotate

The norotate option may be used to disable text rotation. For example, the
CGM input filter for Word for Windows 6.0c can accept rotated text, but the
DRAW editor within Word cannot. If you edit a graph (for example, to label a
curve), all rotated text is restored to horizontal. The Y axis label will then
extend beyond the clip boundary. With norotate, the Y axis label starts in a
less attractive location, but the page can be edited without damage. The rotate
option confirms the default behavior.

38.59.9.4. Solid

The solid option may be used to disable dashed line styles in the plots. This is
useful when color is enabled and the dashing of the lines detracts from the
appearance of the plot. The dashed option confirms the default behavior, which
gives a different dash pattern to each curve.

38.59.9.5. Size

Default size of a CGM plot is 32599 units wide and 23457 units high for land-
scape, or 23457 units wide by 32599 units high for portrait.

GNUPLOT 4.0 126

38.59.9.6. Width

All distances in the CGM file are in abstract units. The application that reads
the file determines the size of the final plot. By default, the width of the final
plot is assumed to be 6 inches (15.24 cm). This distance is used to calculate the
correct font size, and may be changed with the width option. The keyword
should be followed by the width in points. (Here, a point is 1/72 inch, as in
PostScript. This unit is known as a "big point" in TeX.) Gnuplot expressions
can be used to convert from other units.

Example:
set terminal cgm width 432 # default
set terminal cgm width 6*72 # same as above
set terminal cgm width 10/2.54*72 # 10 cm wide

38.59.9.7. Nofontlist

The default font table includes the fonts recommended for WebCGM, which are
compatible with the Computer Graphics Metafile input filter for Microsoft Office
and Corel Draw. Another application might use different fonts and/or different
font names, which may not be documented. As a workaround, the nofontlist
option deletes the font table from the CGM file. In this case, the reading appli-
cation should use a default table. Gnuplot will still use its own default font table
to select font indices. Thus, ’Helvetica’ will give you an index of 1, which should
get you the first entry in your application’s default font table. ’Helvetica Bold’
will give you its second entry, etc.

The former winword6 option is now a deprecated synonym for nofontlist. The
problems involving the color and font tables that the winword6 option was
intended to work around turned out to be gnuplot bugs which have now been
fixed.

38.59.10. Corel

The corel terminal driver supports CorelDraw.

Syntax:
set terminal corel { default

| {monochrome | color
{"" {<fontsize>
{<xsize> <ysize> {<linewidth> }}}}}

where the fontsize and linewidth are specified in points and the sizes in inches. The
defaults are monochrome, "SwitzerlandLight", 22, 8.2, 10 and 1.2.

GNUPLOT 4.0 127

38.59.11. Debug

This terminal is provided to allow for the debugging of gnuplot. It is likely to be of
use only for users who are modifying the source code.

38.59.12. Dospc

The dospc terminal driver supports PCs with arbitrary graphics boards, which will be
automatically detected. It should be used only if you are not using the gcc or Zortec
C/C++ compilers.

38.59.13. Dumb

The dumb terminal driver has an optional size specification and trailing linefeed con-
trol.

Syntax:
set terminal dumb {[no]feed} {<xsize> <ysize>}

{[no]enhanced}

where <xsize> and <ysize> set the size of the dumb terminals. Default is 79 by 24.
The last newline is printed only if feed is enabled.

Examples:
set term dumb nofeed
set term dumb 79 49 # VGA screen---why would anyone do that?

38.59.14. Dxf

The dxf terminal driver creates pictures that can be imported into AutoCad (Release
10.x). It has no options of its own, but some features of its plots may be modified by
other means. The default size is 120x80 AutoCad units, which can be changed by set
size. dxf uses seven colors (white, red, yellow, green, cyan, blue and magenta), which
can be changed only by modifying the source file. If a black-and-white plotting device
is used, the colors are mapped to differing line thicknesses. See the description of the
AutoCad print/plot command.

38.59.15. Dxy800a

This terminal driver supports the Roland DXY800A plotter. It has no options.

GNUPLOT 4.0 128

38.59.16. Eepic

The eepic terminal driver supports the extended LaTeX picture environment. It is an
alternative to the latex driver.

The output of this terminal is intended for use with the "eepic.sty" macro package for
LaTeX. To use it, you need "eepic.sty", "epic.sty" and a printer driver that supports
the "tpic" \specials. If your printer driver doesn’t support those \specials, "eep-
icemu.sty" will enable you to use some of them. dvips and dvipdfm do support the
"tpic" \specials.

Syntax:
set terminal eepic {color, dashed, rotate, small, tiny, default, <fontsize>}

Options: You can give options in any order you wish. ’color’ causes gnuplot to pro-
duce \color{...} commands so that the graphs are colored. Using this option, you must
include \usepackage{color} in the preambel of your latex document. ’dashed’ will
allow dashed line types; without this option, only solid lines with varying thickness will
be used. ’dashed’ and ’color’ are mutually exclusive; if ’color’ is specified, then
’dashed’ will be ignored. ’rotate’ will enable true rotated text (by 90 degrees). Other-
wise, rotated text will be typeset with letters stacked above each other. If you use this
option you must include \usepackage{graphicx} in the preamble. ’small’ will use
\scriptsize symbols as point markers (Probably does not work with TeX, only
LaTeX2e). Default is to use the default math size. ’tiny’ uses \scriptscriptstyle sym-
bols. ’default’ resets all options to their defaults = no color, no dashed lines, pseudo-
rotated (stacked) text, large point symbols. <fontsize> is a number which specifies
the font size inside the picture environment; the unit is pt (points), i.e., 10 pt equals
approx. 3.5 mm. If fontsize is not specified, then all text inside the picture will be set
in \footnotesize.

Notes: Remember to escape the # character (or other chars meaningful to (La-)TeX)
by \\ (2 backslashes). It seems that dashed lines become solid lines when the vertices
of a plot are too close. (I do not know if that is a general problem with the tpic spe-
cials, or if it is caused by a bug in eepic.sty or dvips/dvipdfm.) The default size of an
eepic plot is 5x3 inches, which can be scaled by ’set size a,b’. Points, among other
things, are drawn using the LaTeX commands "\Diamond", "\Box", etc. These com-
mands no longer belong to the LaTeX2e core; they are included in the latexsym pack-
age, which is part of the base distribution and thus part of any LaTeX implementa-
tion. Please do not forget to use this package. Instead of latexsym, you can also
include the amssymb package. All drivers for LaTeX offer a special way of controlling
text positioning: If any text string begins with ’{’, you also need to include a ’}’ at the
end of the text, and the whole text will be centered both horizontally and vertically. If
the text string begins with ’[’, you need to follow this with a position specification (up
to two out of t,b,l,r), ’]{’, the text itself, and finally ’}’. The text itself may be any-
thing LaTeX can typeset as an LR-box. ’\rule{}{}’s may help for best positioning.

Examples: set term eepic
output graphs as eepic macros inside a picture environment;
\input the resulting file in your LaTeX document.

set term eepic color tiny rotate 8
eepic macros with \color macros, \scripscriptsize point markers,
true rotated text, and all text set with 8pt.

GNUPLOT 4.0 129

About label positioning: Use gnuplot defaults (mostly sensible, but sometimes not
really best):

set title ’\LaTeX\ -- $ \gamma $’
Force centering both horizontally and vertically:

set label ’{\LaTeX\ -- $ \gamma $}’ at 0,0
Specify own positioning (top here):

set xlabel ’[t]{\LaTeX\ -- $ \gamma $}’
The other label -- account for long ticlabels:

set ylabel ’[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{0pt}}’

38.59.17. Emf

The emf terminal generates an Enhanced Metafile Format file. This file format is the
metafile standard on MS Win32 Systems Syntax:

set terminal emf {<color>} {solid | dashed}
{""} {<fontsize>}

<color> is either color or monochrome; solid draws all curves with solid lines, over-
riding any dashed patterns; is the name of a font; and <fontsize> is the size
of the font in points.

The first two options can be in any order. Selecting default sets all options to their
default values.

Examples:
set terminal emf ’Times Roman Italic’ 12
set terminal emf color solid # no pesky dashes!

38.59.18. Emxvga

The emxvga, emxvesa and vgal terminal drivers support PCs with SVGA, vesa
SVGA and VGA graphics boards, respectively. They are intended to be compiled with
"emx-gcc" under either DOS or OS/2. They also need VESA and SVGAKIT main-
tained by Johannes Martin (JMARTIN@GOOFY.ZDV.UNI-MAINZ.DE) with addi-
tions by David J. Liu (liu@phri.nyu.edu).

Syntax:
set terminal emxvga
set terminal emxvesa {vesa-mode}
set terminal vgal

The only option is the vesa mode for emxvesa, which defaults to G640x480x256.

38.59.19. Epslatex

GNUPLOT 4.0 130

The epslatex driver generates output for further processing by LaTeX. Syntax:
set terminal epslatex {default}

{color | monochrome} {solid | dashed}
{"<fontname>"} {<fontsize>}

default mode sets all options to their defaults: monochrome, dashed, "default" and
11pt. Default size of a plot is 5 inches wide and 3 inches high.

solid draws all plots with solid lines, overriding any dashed patterns; "<fontname>"
is the name of font; and <fontsize> is the size of the font in PostScript points. Font
selection isn’t supported yet. Font size selection is supported only for the calculation
of proper spacing. The actual LaTeX font at the point of inclusion is taken, so use
LaTeX commands for changing fonts. If you use e.g. 12pt as font size for your LaTeX
documents, use ’"default" 12’ as options.

All drivers for LaTeX offer a special way of controlling text positioning: (a) If any text
string begins with ’{’, you also need to include a ’}’ at the end of the text, and the
whole text will be centered both horizontally and vertically by LaTeX. (b) If the text
string begins with ’[’, you need to continue it with: a position specification (up to two
out of t,b,l,r), ’]{’, the text itself, and finally, ’}’. The text itself may be anything
LaTeX can typeset as an LR-box. \rule{}{}’s may help for best positioning. See also
the documentation for the pslatex terminal driver. To create multiline labels, use
\shortstack, for example

set ylabel ’[r]{\shortstack{first line \\ second line}}’

The driver produces two different files, one for the eps part of the figure and one for
the LaTeX part. The name of the eps file is taken from the set output command. The
name of the LaTeX file is derived by replacing the file extension (normally .eps) with
.tex instead. There is no LaTeX output if no output file is given! Remember to close
the output file before leaving gnuplot.

In your LaTeX documents use ’\input{filename}’ to include the figure. The .eps file is
included by the command \includegraphics{...}, so you must also include \usepack-
age{graphicx} in the LaTeX preamble.

Pdf files can be made from the eps file using ’epstopdf’. If the graphics package is
properly configured, the LaTeX files can also be processed by pdflatex without
changes, using the pdf files instead of the eps files.

38.59.20. Epson-180dpi

This driver supports a family of Epson printers and derivatives.

epson-180dpi and epson-60dpi are drivers for Epson LQ-style 24-pin printers with
resolutions of 180 and 60 dots per inch, respectively.

epson-lx800 is a generic 9-pin driver appropriate for printers like the Epson LX-800,
the Star NL-10 and NX-1000, the PROPRINTER, and so forth.

nec-cp6 is generic 24-pin driver that can be used for printers like the NEC CP6 and
the Epson LQ-800.

GNUPLOT 4.0 131

The okidata driver supports the 9-pin OKIDATA 320/321 Standard printers.

The starc driver is for the Star Color Printer.

The tandy-60dpi driver is for the Tandy DMP-130 series of 9-pin, 60-dpi printers.

Only nec-cp6 has any options.

Syntax:
set terminal nec-cp6 {monochrome | colour | draft}

which defaults to monochrome.

With each of these drivers, a binary copy is required on a PC to print. Do not use
print---use instead copy file /b lpt1:.

38.59.21. Excl

The excl terminal driver supports Talaris printers such as the EXCL Laser printer and
the 1590. It has no options.

38.59.22. Fig

The fig terminal device generates output in the Fig graphics language.

Syntax:
set terminal fig {monochrome | color}

{landscape | portrait}
{small | big | size <xsize> <ysize>}
{metric | inches}
{pointsmax <max points>}
{solid | dashed}
{fontsize <fsize>}
{textnormal | {textspecial texthidden textrigid}}
{thickness <units>}
{depth <layer>}
{version <number>}

monochrome and color determine whether the picture is black-and-white or color.
small and big produce a 5x3 or 8x5 inch graph in the default landscape mode and
3x5 or 5x8 inches in portrait mode. size sets (overrides) the size of the drawing area
to <xsize>*<ysize> in units of inches or centimeters depending on the inches or
metric setting in effect. The latter settings is also used as default units for editing
with "xfig".

pointsmax <max points> sets the maximum number of points per polyline.

solid inhibits automatic usage of dashed lines when solid linestyles are used up, which
otherwise occurs.

GNUPLOT 4.0 132

fontsize sets the size of the text font to <fsize> points. textnormal resets the text
flags and selects postscript fonts, textspecial sets the text flags for LaTeX specials,
texthidden sets the hidden flag and textrigid the rigid flag.

depth sets the default depth layer for all lines and text. The default depth is 10 to
leave room for adding material with "xfig" on top of the plot.

version sets the format version of the generated fig output. Currently only versions
3.1 and 3.2 are supported.

thickness sets the default line thickness, which is 1 if not specified. Overriding the
thickness can be achieved by adding a multiple of 100 to the linetype value for a plot
command. In a similar way the depth of plot elements (with respect to the default
depth) can be controlled by adding a multiple of 1000 to <linetype>. The depth is
then <layer> + <linetype>/1000 and the thickness is (<linetype>%1000)/100 or, if
that is zero, the default line thickness.

Additional point-plot symbols are also available with the fig driver. The symbols can
be used through pointtype values % 100 above 50, with different fill intensities con-
trolled by <pointtype> % 5 and outlines in black (for <pointtype> % 10 < 5) or in
the current color. Available symbols are

50 - 59: circles
60 - 69: squares
70 - 79: diamonds
80 - 89: upwards triangles
90 - 99: downwards triangles

The size of these symbols is linked to the font size. The depth of symbols is by default
one less than the depth for lines to achieve nice error bars. If <pointtype> is above
1000, the depth is <layer> + <pointtype>/1000-1. If <pointtype>%1000 is above
100, the fill color is (<pointtype>%1000)/100-1.

Available fill colors are (from 1 to 9): black, blue, green, cyan, red, magenta, yellow,
white and dark blue (in monochrome mode: black for 1 to 6 and white for 7 to 9).

See plot with for details of <linetype> and <pointtype>.

The big option is a substitute for the bfig terminal in earlier versions, which is no
longer supported.

Examples:
set terminal fig monochrome small pointsmax 1000 # defaults

plot ’file.dat’ with points linetype 102 pointtype 759
would produce circles with a blue outline of width 1 and yellow fill color.

plot ’file.dat’ using 1:2:3 with err linetype 1 pointtype 554
would produce errorbars with black lines and circles filled red. These circles are one
layer above the lines (at depth 9 by default).

To plot the error bars on top of the circles use
plot ’file.dat’ using 1:2:3 with err linetype 1 pointtype 2554

GNUPLOT 4.0 133

38.59.23. Ggi

The ggi driver can run on different targets as X or svgalib.

Syntax:
set terminal ggi [acceleration <integer>] [[mode] {mode}]

In X the window cannot be resized using window manager handles, but the mode can
be given with the mode option, e.g.:
- V1024x768
- V800x600
- V640x480
- V320x200

Please refer to the ggi documentation for other modes. The ’mode’ keyword is
optional. It is recommended to select the target by environment variables as explained
in the libggi manual page. To get DGA on X, you should for example

bash> export GGI DISPLAY=DGA
csh> setenv GGI DISPLAY DGA

’acceleration’ is only used for targets which report relative pointer motion events (e.g.
DGA) and is a strictly positive integer multiplication factor for the relative distances.
The default for acceleration is 7.

Examples:
set term ggi acc 10
set term ggi acc 1 mode V1024x768
set term ggi V1024x768

38.59.24. Gif

The gif terminal driver generates output in GIF format. It uses Thomas Boutell’s gd
library, which is available from http://www.boutell.com/gd/ Support for GIF output
was removed from the gd library beginning with version 1.6; newer versions support
PNG output instead.

Syntax:
set terminal gif {transparent} {interlace}

{tiny | small | medium | large | giant}
{size <x>,<y>}
{<color0> <color1> <color2> ...}

transparent instructs the driver to generate transparent GIFs. The first color will be
the transparent one.

interlace instructs the driver to generate interlaced GIFs.

The choice of fonts is tiny (5x8 pixels), small (6x12 pixels), medium (7x13 Bold),
large (8x16) or giant (9x15 pixels)

The size <x,y> is given in pixels---it defaults to 640x480. The number of pixels can
be also modified by scaling with the set size command.

GNUPLOT 4.0 134

Each color must be of the form ’xrrggbb’, where x is the literal character ’x’ and
’rrggbb’ are the red, green and blue components in hex. For example, ’x00ff00’ is
green. The background color is set first, then the border colors, then the X & Y axis
colors, then the plotting colors. The maximum number of colors that can be set is
256.

Examples:
set terminal gif small size 640,480 \

xffffff x000000 x404040 \
xff0000 xffa500 x66cdaa xcdb5cd \
xadd8e6 x0000ff xdda0dd x9500d3 # defaults

which uses white for the non-transparent background, black for borders, gray for the
axes, and red, orange, medium aquamarine, thistle 3, light blue, blue, plum and dark
violet for eight plotting colors.

set terminal gif transparent xffffff \
x000000 x202020 x404040 x606060 \
x808080 xA0A0A0 xC0C0C0 xE0E0E0

which uses white for the transparent background, black for borders, dark gray for axes,
and a gray-scale for the six plotting colors.

The page size is 640x480 pixels. The gif driver can create either color or monochro-
matic output, but you have no control over which is produced.

The current version of the gif driver does not support animated GIFs.

38.59.25. Gnugraph(GNU plotutils)

The gnugraph driver produces device-independent output in the GNU plot graphics
language. The default size of the PostScript results generated by "plot2ps" is 5 x 3
inches; this can be increased up to about 8.25 x 8.25 by set size.

Syntax:
set terminal gnugraph {"<fontname>"} {<fontsize>}

{type <pt>} {size "<size>"}

which defaults to 10-point "Courier".

For type, the following options are accepted: X, pnm, gif, ai, ps, cgm, fig, pcl5,
hpgl, tek, and meta (default). The size option (default is a4) is passed straight
through to plotutils, it’s the user’s responsibility to provide correct values. Details can
be found in the plotutils documentation.

Examples:
set terminal gnugraph type hpgl size "a4"
set terminal gnugraph size "a4,xoffset=-5mm,yoffset=2.0cm" type pnm

There is a non-GNU version of the gnugraph driver which cannot be compiled unless
this version is left out.

GNUPLOT 4.0 135

38.59.26. Gpic

The gpic terminal driver generates GPIC graphs in the Free Software Foundations’s
"groff" package. The default size is 5 x 3 inches. The only option is the origin, which
defaults to (0,0).

Syntax:
set terminal gpic {<x> <y>}

where x and y are in inches.

A simple graph can be formatted using

groff -p -mpic -Tps file.pic > file.ps.

The output from pic can be pipe-lined into eqn, so it is possible to put complex func-
tions in a graph with the set label and set {x/y}label commands. For instance,

set ylab ’@space 0 int from 0 to x alpha (t) roman d t@’

will label the y axis with a nice integral if formatted with the command:

gpic filename.pic | geqn -d@@ -Tps | groff -m[macro-package] -Tps
> filename.ps

Figures made this way can be scaled to fit into a document. The pic language is easy
to understand, so the graphs can be edited by hand if need be. All co-ordinates in the
pic-file produced by gnuplot are given as x+gnuplotx and y+gnuploty. By default x
and y are given the value 0. If this line is removed with an editor in a number of files,
one can put several graphs in one figure like this (default size is 5.0x3.0 inches):

.PS 8.0
x=0;y=3
copy "figa.pic"
x=5;y=3
copy "figb.pic"
x=0;y=0
copy "figc.pic"
x=5;y=0
copy "figd.pic"
.PE

This will produce an 8-inch-wide figure with four graphs in two rows on top of each
other.

One can also achieve the same thing by the command

set terminal gpic x y

for example, using

.PS 6.0
copy "trig.pic"

GNUPLOT 4.0 136

.PE

38.59.27. Gpr

The gpr terminal driver supports the Apollo Graphics Primitive Resource for a fixed-
size window. It has no options.

If a variable window size is desired, use the apollo terminal instead.

38.59.28. Grass

The grass terminal driver gives gnuplot capabilities to users of the GRASS geo-
graphic information system. Contact grassp-list@moon.cecer.army.mil for more infor-
mation. Pages are written to the current frame of the GRASS Graphics Window.
There are no options.

38.59.29. Hercules

These drivers supports PC monitors with autodetected graphics boards. They can be
used only when compiled with Zortech C/C++. None have options.

38.59.30. Hp2623a

The hp2623a terminal driver supports the Hewlett Packard HP2623A. It has no
options.

38.59.31. Hp2648

The hp2648 terminal driver supports the Hewlett Packard HP2647 and HP2648. It
has no options.

38.59.32. Hp500c

The hp500c terminal driver supports the Hewlett Packard HP DeskJet 500c. It has
options for resolution and compression.

Syntax:
set terminal hp500c {<res>} {<comp>}

where res can be 75, 100, 150 or 300 dots per inch and comp can be "rle", or "tiff".

GNUPLOT 4.0 137

Any other inputs are replaced by the defaults, which are 75 dpi and no compression.
Rasterization at the higher resolutions may require a large amount of memory.

38.59.33. Hpgl

The hpgl driver produces HPGL output for devices like the HP7475A plotter. There
are two options which can be set: the number of pens and eject, which tells the plotter
to eject a page when done. The default is to use 6 pens and not to eject the page
when done.

The international character sets ISO-8859-1 and CP850 are recognized via set encod-
ing iso 8859 1 or set encoding cp850 (see set encoding for details).

Syntax:
set terminal hpgl {<number of pens>} {eject}

The selection

set terminal hpgl 8 eject

is equivalent to the previous hp7550 terminal, and the selection

set terminal hpgl 4

is equivalent to the previous hp7580b terminal.

The pcl5 driver supports plotters such as the Hewlett-Packard Designjet 750C, the
Hewlett-Packard Laserjet III, and the Hewlett-Packard Laserjet IV. It actually uses
HPGL-2, but there is a name conflict among the terminal devices. It has several
options which must be specified in the order indicated below:

Syntax:
set terminal pcl5 {mode <mode>} {<plotsize>}

{{color {<number of pens>}} | monochrome} {solid | dashed}
{font } {size <fontsize>} {pspoints | nopspoints}

<mode> is landscape or portrait. <plotsize> is the physical plotting size of the
plot, which is one of the following: letter for standard (8 1/2" X 11") displays, legal
for (8 1/2" X 14") displays, noextended for (36" X 48") displays (a letter size ratio)
or, extended for (36" X 55") displays (almost a legal size ratio). color is for multi-
pen (i.e. color) plots, and <number of pens> is the number of pens (i.e. colors) used
in color plots. monochrome is for one (e.g. black) pen plots. solid draws all lines as
solid lines, or dashed will draw lines with different dashed and dotted line patterns.
 is stick, univers, cg times, zapf dingbats, antique olive, arial, courier,
garamond antigua, letter gothic, cg omega, albertus, times new roman,
clarendon, coronet, marigold, truetype symbols, or wingdings. <fontsize> is
the font size in points. The point type selection can be the standard default set by
specifying nopspoints, or the same set of point types found in the postscript terminal
by specifying pspoints.

Note that built-in support of some of these options is printer device dependent. For

GNUPLOT 4.0 138

instance, all the fonts are supposedly supported by the HP Laserjet IV, but only a few
(e.g. univers, stick) may be supported by the HP Laserjet III and the Designjet 750C.
Also, color obviously won’t work on the the laserjets since they are monochrome
devices.

Defaults: landscape, noextended, color (6 pens), solid, univers, 12 point,
and nopspoints.

With pcl5 international characters are handled by the printer; you just put the appro-
priate 8-bit character codes into the text strings. You don’t need to bother with set
encoding.

HPGL graphics can be imported by many software packages.

38.59.34. Hpljii

The hpljii terminal driver supports the HP Laserjet Series II printer. The hpdj
driver supports the HP DeskJet 500 printer. These drivers allow a choice of resolu-
tions.

Syntax:
set terminal hpljii | hpdj {<res>}

where res may be 75, 100, 150 or 300 dots per inch; the default is 75. Rasterization at
the higher resolutions may require a large amount of memory.

The hp500c terminal is similar to hpdj; hp500c additionally supports color and com-
pression.

38.59.35. Hppj

The hppj terminal driver supports the HP PaintJet and HP3630 printers. The only
option is the choice of font.

Syntax:
set terminal hppj {FNT5X9 | FNT9X17 | FNT13X25}

with the middle-sized font (FNT9X17) being the default.

38.59.36. Imagen

The imagen terminal driver supports Imagen laser printers. It is capable of placing
multiple graphs on a single page.

Syntax:
set terminal imagen {<fontsize>} {portrait | landscape}

GNUPLOT 4.0 139

{[<horiz>,<vert>]}

where fontsize defaults to 12 points and the layout defaults to landscape. <horiz>
and <vert> are the number of graphs in the horizontal and vertical directions; these
default to unity.

Example:
set terminal imagen portrait [2,3]

puts six graphs on the page in three rows of two in portrait orientation.

38.59.37. Iris4d

The iris4d terminal driver supports Silicon Graphics IRIS 4D computers. Its only
option is 8- or 24-bit color depth. The default is 8.

Syntax:
set terminal iris4d {8 | 24}

The color depth is not really a choice -- the value appropriate for the hardware should
be selected.

When using 24-bit mode, the colors can be directly specified via the file .gnuplot iris4d
that is searched in the current directory and then in the home directory specified by
the HOME environment variable. This file holds RGB values for the background, bor-
der, labels and nine plotting colors, in that order. For example, here is a file contain-
ing the default colors:

85 85 85 Background (dark gray)
0 0 0 Boundary (black)
170 0 170 Labeling (magenta)
85 255 255 Plot Color 1 (light cyan)
170 0 0 Plot Color 2 (red)
0 170 0 Plot Color 3 (green)
255 85 255 Plot Color 4 (light magenta)
255 255 85 Plot Color 5 (yellow)
255 85 85 Plot Color 6 (light red)
85 255 85 Plot Color 7 (light green)
0 170 170 Plot Color 8 (cyan)
170 170 0 Plot Color 9 (brown)

This file must have exactly 12 lines of RGB triples. No empty lines are allowed, and
anything after the third number on a line is ignored.

38.59.38. Jpeg

Syntax:
set terminal jpeg

GNUPLOT 4.0 140

{{no}interlace}
{tiny | small | medium | large | giant}
{font <face> {<pointsize>}}
{size <x>,<y>} {{no}crop}
{{no}enhanced}
{<color0> <color1> <color2> ...}

JPEG images are created using libgd, with optional support for TrueType fonts via
libfreetype.

The interlace option creates a progressive JPEG image. Default is nointerlace.

Five basic fonts are supported directly by the gd library. These are tiny (5x8 pixels),
small (6x12 pixels), medium, (7x13 Bold), large (8x16) or giant (9x15 pixels).
These fonts cannot be scaled or rotated (pure horizontal or vertical text only).

If gnuplot was built with support for TrueType (*.ttf) or Adobe Type 1 (*.pfa) fonts,
they may be selected using the ’font <face> {<pointsize>}’ option. <face> is either
the full pathname to the font file, or a font face name that is assumed to be the first
part of a filename in one of the directories listed in the GDFONTPATH environmental
variable. That is, ’set term jpeg font "Face"’ will look for a font file named either
<somedirectory>/Face.ttf or <somedirectory>/Face.pfa. Both TrueType and Adobe
Type 1 fonts are fully scalable and may be rotated through any angle. If no font is
specified, gnuplot checks the environmental variable GNUPLOT DEFAULT GDFONT
to see if there is a preferred default font.

enhanced enables the enhanced text processing features, (subscripts, superscripts and
mixed fonts). See enhanced for more information. The full enhanced mode syntax is
supported by the PNG/JPEG driver itself, but some of these features are dependent
on which version of the underlying libgd library is present, and which fonts are avail-
able.

The size <x,y> is given in pixels---it defaults to 640x480. The number of pixels can
be also modified by scaling with the set size command. crop trims blank space from
the edges of the completed plot, resulting in a smaller final image size. Default is
nocrop.

Each color must be of the form ’xrrggbb’, where x is the literal character ’x’ and
’rrggbb’ are the red, green and blue components in hex. For example, ’x00ff00’ is
green. The background color is set first, then the border colors, then the X & Y axis
colors, then the plotting colors. The maximum number of colors that can be set is
256.

Examples:
set terminal jpeg medium size 640,480 \

xffffff x000000 x404040 \
xff0000 xffa500 x66cdaa xcdb5cd \
xadd8e6 x0000ff xdda0dd x9500d3 # defaults

which uses white for the non-transparent background, black for borders, gray for the
axes, and red, orange, medium aquamarine, thistle 3, light blue, blue, plum and dark
violet for eight plotting colors.

GNUPLOT 4.0 141

set terminal jpeg large font arial size 800,600

which searches for a TrueType font with face name ’arial’ in the directory specified by
the environment variable GDFONTPATH and large (14pt) font size.

38.59.39. Kyo

The kyo and prescribe terminal drivers support the Kyocera laser printer. The only
difference between the two is that kyo uses "Helvetica" whereas prescribe uses
"Courier". There are no options.

38.59.40. Latex

The latex and emtex drivers allow two options.

Syntax:
set terminal latex | emtex {courier | roman | default} {<fontsize>}

fontsize may be any size you specify. The default is for the plot to inherit its font
setting from the embedding document.

Unless your driver is capable of building fonts at any size (e.g. dvips), stick to the
standard 10, 11 and 12 point sizes.

METAFONT users beware: METAFONT does not like odd sizes.

All drivers for LaTeX offer a special way of controlling text positioning: If any text
string begins with ’{’, you also need to include a ’}’ at the end of the text, and the
whole text will be centered both horizontally and vertically. If the text string begins
with ’[’, you need to follow this with a position specification (up to two out of t,b,l,r),
’]{’, the text itself, and finally ’}’. The text itself may be anything LaTeX can typeset
as an LR-box. ’\rule{}{}’s may help for best positioning.

Points, among other things, are drawn using the LaTeX commands "\Diamond" and
"\Box". These commands no longer belong to the LaTeX2e core; they are included in
the latexsym package, which is part of the base distribution and thus part of any
LaTeX implementation. Please do not forget to use this package.

Examples: About label positioning: Use gnuplot defaults (mostly sensible, but some-
times not really best):

set title ’\LaTeX\ -- $ \gamma $’
Force centering both horizontally and vertically:

set label ’{\LaTeX\ -- $ \gamma $}’ at 0,0
Specify own positioning (top here):

set xlabel ’[t]{\LaTeX\ -- $ \gamma $}’
The other label -- account for long ticlabels:

set ylabel ’[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{0pt}}’

GNUPLOT 4.0 142

38.59.41. Linux

The linux driver has no additional options to specify. It looks at the environment
variable GSVGAMODE for the default mode; if not set, it uses 1024x768x256 as
default mode or, if that is not possible, 640x480x16 (standard VGA).

38.59.42. Macintosh

Several options may be set in the ’macintosh’ driver.

Syntax:
set terminal macintosh {singlewin | multiwin} {vertical | novertical}

{size <width>, <height> | default}

’singlewin’ limits the output to a single window and is useful for animations. ’multi-
win’ allows multiple windows. ’vertical’ is only valid under the gx option. With this
option, rotated text

be drawn vertically. novertical turns this option off.
size <width>, <height> overrides the graph size set in the preferences

dialog until it is cleared with either ’set term mac size default’
or ’set term mac default’.

’set term mac size default’ sets the window size settings to those set in
the preferences dialog.

’set term mac default’ sets all options to their default values.
Default values: nogx, multiwin, novertical.

If you generate graphs under the multiwin option and then switch to singlewin,
the next plot command will cause one more window to be created. This new
window will be reused as long as singlewin is in effect. If you switch back
to multiwin, generate some graphs, and then switch to singlewin again, the
orginal ’singlewin’ window will be resused if it is still open. Otherwise
a new ’singlewin’ window will be created. The ’singlewin’ window is not numbered.

38.59.43. Mf

The mf terminal driver creates an input file to the METAFONT program. Thus a fig-
ure may be used in the TeX document in the same way as is a character.

To use a picture in a document, the METAFONT program must be run with the out-
put file from gnuplot as input. Thus, the user needs a basic knowledge of the font
creating process and the procedure for including a new font in a document. However,
if the METAFONT program is set up properly at the local site, an unexperienced user
could perform the operation without much trouble.

The text support is based on a METAFONT character set. Currently the Computer
Modern Roman font set is input, but the user is in principal free to choose whatever

GNUPLOT 4.0 143

fonts he or she needs. The METAFONT source files for the chosen font must be avail-
able. Each character is stored in a separate picture variable in METAFONT. These
variables may be manipulated (rotated, scaled etc.) when characters are needed. The
drawback is the interpretation time in the METAFONT program. On some machines
(i.e. PC) the limited amount of memory available may also cause problems if too many
pictures are stored.

The mf terminal has no options.

38.59.43.1. METAFONT Instructions

- Set your terminal to METAFONT:
set terminal mf

- Select an output-file, e.g.:
set output "myfigures.mf"

- Create your pictures. Each picture will generate a separate character. Its
default size will be 5*3 inches. You can change the size by saying set size
0.5,0.5 or whatever fraction of the default size you want to have.

- Quit gnuplot.

- Generate a TFM and GF file by running METAFONT on the output of gnu-
plot. Since the picture is quite large (5*3 in), you will have to use a version of
METAFONT that has a value of at least 150000 for memmax. On Unix systems
these are conventionally installed under the name bigmf. For the following
assume that the command virmf stands for a big version of METAFONT. For
example:

- Invoke METAFONT:
virmf ’&plain’

- Select the output device: At the METAFONT prompt (’*’) type:
\mode:=CanonCX; % or whatever printer you use

- Optionally select a magnification:
mag:=1; % or whatever you wish

- Input the gnuplot-file:
input myfigures.mf

On a typical Unix machine there will usually be a script called "mf" that exe-
cutes virmf ’&plain’, so you probably can substitute mf for virmf &plain. This
will generate two files: mfput.tfm and mfput.$$$gf (where $$$ indicates the reso-
lution of your device). The above can be conveniently achieved by typing every-
thing on the command line, e.g.: virmf ’&plain’ ’\mode:=CanonCX; mag:=1;
input myfigures.mf’ In this case the output files will be named myfigures.tfm and
myfigures.300gf.

- Generate a PK file from the GF file using gftopk:
gftopk myfigures.300gf myfigures.300pk

The name of the output file for gftopk depends on the DVI driver you use. Ask
your local TeX administrator about the naming conventions. Next, either install
the TFM and PK files in the appropriate directories, or set your environment
variables properly. Usually this involves setting TEXFONTS to include the

GNUPLOT 4.0 144

current directory and doing the same thing for the environment variable that
your DVI driver uses (no standard name here...). This step is necessary so that
TeX will find the font metric file and your DVI driver will find the PK file.

- To include your pictures in your document you have to tell TeX the font:
\font\gnufigs=myfigures

Each picture you made is stored in a single character. The first picture is char-
acter 0, the second is character 1, and so on... After doing the above step, you
can use the pictures just like any other characters. Therefore, to place pictures 1
and 2 centered in your document, all you have to do is:
\centerline{\gnufigs\char0}
\centerline{\gnufigs\char1}

in plain TeX. For LaTeX you can, of course, use the picture environment and
place the picture wherever you wish by using the \makebox and \put macros.

This conversion saves you a lot of time once you have generated the font; TeX
handles the pictures as characters and uses minimal time to place them, and the
documents you make change more often than the pictures do. It also saves a lot
of TeX memory. One last advantage of using the METAFONT driver is that the
DVI file really remains device independent, because no \special commands are
used as in the eepic and tpic drivers.

38.59.44. Mgr

The mgr terminal driver supports the Mgr Window system. It has no options.

38.59.45. Mif

The mif terminal driver produces Frame Maker MIF format version 3.00. It plots in
MIF Frames with the size 15*10 cm, and plot primitives with the same pen will be
grouped in the same MIF group. Plot primitives in a gnuplot page will be plotted in
a MIF Frame, and several MIF Frames are collected in one large MIF Frame. The
MIF font used for text is "Times".

Several options may be set in the MIF 3.00 driver.

Syntax:
set terminal mif {color | colour | monochrome} {polyline | vectors}

{help | ?}

colour plots lines with line types >= 0 in colour (MIF sep. 2--7) and monochrome
plots all line types in black (MIF sep. 0). polyline plots curves as continuous curves
and vectors plots curves as collections of vectors. help and ? print online help on
standard error output---both print a short description of the usage; help also lists the
options.

Examples:
set term mif colour polylines # defaults
set term mif # defaults

GNUPLOT 4.0 145

set term mif vectors
set term mif help

38.59.46. Mp

The mp driver produces output intended to be input to the Metapost program. Run-
ning Metapost on the file creates EPS files containing the plots. By default, Metapost
passes all text through TeX. This has the advantage of allowing essentially any TeX
symbols in titles and labels.

Syntax:
set term mp {color | colour | monochrome}

{solid | dashed}
{notex | tex | latex}
{magnification <magsize>}
{psnfss | psnfss-version7 | nopsnfss}
{prologues <value>}
{a4paper}
{amstex}
{"<fontname>"} {<fontsize>}

The option color causes lines to be drawn in color (on a printer or display that sup-
ports it), monochrome (or nothing) selects black lines. The option solid draws solid
lines, while dashed (or nothing) selects lines with different patterns of dashes. If
solid is selected but color is not, nearly all lines will be identical. This may occasion-
ally be useful, so it is allowed.

The option notex bypasses TeX entirely, therefore no TeX code can be used in labels
under this option. This is intended for use on old plot files or files that make frequent
use of common characters like $ and % that require special handling in TeX.

The option tex sets the terminal to output its text for TeX to process.

The option latex sets the terminal to output its text for processing by LaTeX. This
allows things like \frac for fractions which LaTeX knows about but TeX does not.
Note that you must set the environment variable TEX to the name of your LaTeX exe-
cutable (normally latex) if you use this option or use mpost --tex=<name of
LaTeX executable> Otherwise metapost will try and use TeX to process the
text and it won’t work.

Changing font sizes in TeX has no effect on the size of mathematics, and there is no
foolproof way to make such a change, except by globally setting a magnification fac-
tor. This is the purpose of the magnification option. It must be followed by a scaling
factor. All text (NOT the graphs) will be scaled by this factor. Use this if you have
math that you want at some size other than the default 10pt. Unfortunately, all math
will be the same size, but see the discussion below on editing the MP output. mag will
also work under notex but there seems no point in using it as the font size option
(below) works as well.

The option psnfss uses postscript fonts in combination with LaTeX. Since this option

GNUPLOT 4.0 146

only makes sense, if LaTeX is being used, the latex option is selected automatically.
This option includes the following packages for LaTeX: inputenc(latin1), fontenc(T1),
mathptmx, helvet(scaled=09.2), courier, latexsym and textcomp.

The option psnfss-version7 uses also postscript fonts in LaTeX (option latex is also
automatically selected), but uses the following packages with LaTeX: inputenc(latin1),
fontenc(T1), times, mathptmx, helvet and courier.

The option nopsnfss is the default and uses the standard font (cmr10 if not otherwise
specified).

The option prologues takes a value as an additional argument and adds the line pro-
logues:=<value> to the metapost file. If a value of 2 is specified metapost uses post-
script fonts to generate the eps-file, so that the result can be viewed using e.g.
ghostscript. Normally the output of metapost uses TeX fonts and therefore has to be
included in a (La)TeX file before you can look at it.

The option noprologues is the default. No additional line specifying the prologue will
be added.

The option a4paper adds a [a4paper] to the documentclass. Normally letter paper is
used (default). Since this option is only used in case of LaTeX, the latex option is
selected automatically.

The option amstex automatically selects the latex option and includes the following
LaTeX packages: amsfonts, amsmath(intlimits). By default these packages are not
included.

A name in quotes selects the font that will be used when no explicit font is given in a
set label or set title. A name recognized by TeX (a TFM file exists) must be used.
The default is "cmr10" unless notex is selected, then it is "pcrr8r" (Courier). Even
under notex, a TFM file is needed by Metapost. The file pcrr8r.tfm is the name
given to Courier in LaTeX’s psnfss package. If you change the font from the notex
default, choose a font that matches the ASCII encoding at least in the range 32-126.
cmtt10 almost works, but it has a nonblank character in position 32 (space).

The size can be any number between 5.0 and 99.99. If it is omitted, 10.0 is used. It is
advisable to use magstep sizes: 10 times an integer or half-integer power of 1.2,
rounded to two decimals, because those are the most available sizes of fonts in TeX
systems.

All the options are optional. If font information is given, it must be at the end, with
size (if present) last. The size is needed to select a size for the font, even if the font
name includes size information. For example, set term mp "cmtt12" selects cmtt12
shrunk to the default size 10. This is probably not what you want or you would have
used cmtt10.

The following common ascii characters need special treatment in TeX:
$, &, #, %, ; |, <, >; ˆ, ˜, \, {, and }

The five characters $, #, &, , and % can simply be escaped, e.g., \$. The three char-
acters <, >, and | can be wrapped in math mode, e.g., $<$. The remainder require
some TeX work-arounds. Any good book on TeX will give some guidance.

GNUPLOT 4.0 147

If you type your labels inside double quotes, backslashes in TeX code need to be
escaped (doubled). Using single quotes will avoid having to do this, but then you can-
not use \n for line breaks. As of this writing, version 3.7 of gnuplot processes titles
given in a plot command differently than in other places, and backslashes in TeX com-
mands need to be doubled regardless of the style of quotes.

Metapost pictures are typically used in TeX documents. Metapost deals with fonts
pretty much the same way TeX does, which is different from most other document
preparation programs. If the picture is included in a LaTeX document using the
graphics package, or in a plainTeX document via epsf.tex, and then converted to Post-
Script with dvips (or other dvi-to-ps converter), the text in the plot will usually be
handled correctly. However, the text may not appear if you send the Metapost output
as-is to a PostScript interpreter.

38.59.46.1. Metapost Instructions

- Set your terminal to Metapost, e.g.:
set terminal mp mono "cmtt12" 12

- Select an output-file, e.g.:
set output "figure.mp"

- Create your pictures. Each plot (or multiplot group) will generate a separate
Metapost beginfig...endfig group. Its default size will be 5 by 3 inches. You can
change the size by saying set size 0.5,0.5 or whatever fraction of the default
size you want to have.

- Quit gnuplot.

- Generate EPS files by running Metapost on the output of gnuplot:
mpost figure.mp OR mp figure.mp

The name of the Metapost program depends on the system, typically mpost for
a Unix machine and mp on many others. Metapost will generate one EPS file
for each picture.

- To include your pictures in your document you can use the graphics package in
LaTeX or epsf.tex in plainTeX:
\usepackage{graphics} % LaTeX
\input epsf.tex % plainTeX

If you use a driver other than dvips for converting TeX DVI output to PS, you
may need to add the following line in your LaTeX document:
\DeclareGraphicsRule{*}{eps}{*}{}

Each picture you made is in a separate file. The first picture is in, e.g., figure.0,
the second in figure.1, and so on.... To place the third picture in your document,
for example, all you have to do is:

\includegraphics{figure.2} % LaTeX
\epsfbox{figure.2} % plainTeX

The advantage, if any, of the mp terminal over a postscript terminal is editable

GNUPLOT 4.0 148

output. Considerable effort went into making this output as clean as possible.
For those knowledgeable in the Metapost language, the default line types and
colors can be changed by editing the arrays lt[] and col[]. The choice of solid vs
dashed lines, and color vs black lines can be change by changing the values
assigned to the booleans dashedlines and colorlines. If the default tex option
was in effect, global changes to the text of labels can be achieved by editing the
vebatimtex...etex block. In particular, a LaTeX preamble can be added if
desired, and then LaTeX’s built-in size changing commands can be used for max-
imum flexibility. Be sure to set the appropriate MP configuration variable to
force Metapost to run LaTeX instead of plainTeX.

38.59.47. Mtos

The mtos terminal has no options. It sends data via a pipe to an external program
called GPCLIENT. It runs under MULTITOS, Magic 3.x, MagicMAC. and MiNT. If
you cannot find GPCLIENT, than mail to dirk@lstm.uni-erlangen.de.

38.59.48. Next

Several options may be set in the next driver.

Syntax:
set terminal next {<mode>} {<type> } {<color>} {<dashed>}

{"<fontname>"} {<fontsize>} title {"<newtitle>"}

where <mode> is default, which sets all options to their defaults; <type> is either
new or old, where old invokes the old single window; <color> is either color or
monochrome; <dashed> is either solid or dashed; "<fontname>" is the name of a
valid PostScript font; <fontsize> is the size of the font in PostScript points; and
<title> is the title for the GnuTerm window. Defaults are new, monochrome,
dashed, "Helvetica", 14pt.

Examples:
set term next default
set term next 22
set term next color "Times-Roman" 14
set term next color "Helvetica" 12 title "MyPlot"
set term next old

Pointsizes may be changed with set linestyle.

38.59.49. Openstep (next)

Several options may be set in the openstep (next) driver.

Syntax:

GNUPLOT 4.0 149

set terminal openstep {<mode>} {<type> } {<color>} {<dashed>}
{"<fontname>"} {<fontsize>} title {"<newtitle>"}

where <mode> is default, which sets all options to their defaults; <type> is either
new or old, where old invokes the old single window; <color> is either color or
monochrome; <dashed> is either solid or dashed; "<fontname>" is the name of a
valid PostScript font; <fontsize> is the size of the font in PostScript points; and
<title> is the title for the GnuTerm window. Defaults are new, monochrome,
dashed, "Helvetica", 14pt.

Examples:
set term openstep default
set term openstep 22
set term openstep color "Times-Roman" 14
set term openstep color "Helvetica" 12 title "MyPlot"
set term openstep old

Pointsizes may be changed with set linestyle.

38.59.50. Pbm

Several options may be set in the pbm terminal---the driver for PBMplus.

Syntax:
set terminal pbm {<fontsize>} {<mode>}

where <fontsize> is small, medium, or large and <mode> is monochrome, gray
or color. The default plot size is 640 pixels wide and 480 pixels high; this may be
changed by set size.

The output of the pbm driver depends upon <mode>: monochrome produces a por-
table bitmap (one bit per pixel), gray a portable graymap (three bits per pixel) and
color a portable pixmap (color, four bits per pixel).

The output of this driver can be used with Jef Poskanzer’s excellent PBMPLUS pack-
age, which provides programs to convert the above PBMPLUS formats to GIF, TIFF,
MacPaint, Macintosh PICT, PCX, X11 bitmap and many others. PBMPLUS may be
obtained from ftp.x.org. The relevant files have names that begin with
"netpbm-1mar1994.p1"; they reside in /contrib/utilities. The package can probably
also be obtained from one of the many sites that mirrors ftp.x.org.

Examples:
set terminal pbm small monochrome # defaults
set size 2,2; set terminal pbm color medium

38.59.51. Pdf

This terminal produces files in the Adobe Portable Document Format (PDF), useable
for printing or display with tools like Acrobat Reader

GNUPLOT 4.0 150

Syntax:
set terminal pdf {fname ""} {fsize <fontsize>}

{{no}enhanced}

where is the name of the default font to use (default Helvetica) and <font-
size> is the font size (in points, default 12).

The enhanced option enables enhanced text processing features (subscripts, super-
scripts and mixed fonts). See enhanced for more information. Only the core PDF
fonts are supported.

38.59.52. Pm

The pm terminal driver provides an OS/2 Presentation Manager window in which the
graph is plotted. The window is opened when the first graph is plotted. This window
has its own online help as well as facilities for printing, copying to the clipboard and
some line type and color adjustments. The multiplot option is supported.

Syntax:
set terminal pm {server {n}} {persist} {widelines} {enhanced} {"title"}

If persist is specified, each graph appears in its own window and all windows remain
open after gnuplot exits. If server is specified, all graphs appear in the same win-
dow, which remains open when gnuplot exits. This option takes an optional numeri-
cal argument which specifies an instance of the server process. Thus multiple server
windows can be in use at the same time.

If widelines is specified, all plots will be drawn with wide lines. If enhanced is spec-
ified, sub- and superscripts and multiple fonts are enabled using the same syntax as
the enhanced postscript option (see set terminal postscript enhanced for
details). Font names for the basic PostScript fonts may be abbreviated to single let-
ters.

If title is specified, it will be used as the title of the plot window. It will also be used
as the name of the server instance, and will override the optional numerical argument.

Linewidths may be changed with set linestyle.

38.59.53. Png (NEW)

Syntax:
set terminal png

{{no}transparent} {{no}interlace}
{tiny | small | medium | large | giant}
{font <face> {<pointsize>}}
{size <x>,<y>} {{no}crop}
{{no}enhanced}
{<color0> <color1> <color2> ...}

GNUPLOT 4.0 151

PNG images are created using libgd, with optional support for TrueType and Adobe
Type 1 fonts via libfreetype. Version 1.8 or greater of libgd is required.

transparent instructs the driver to generate transparent PNGs. The first color will
be the transparent one. Default is notransparent.

interlace instructs the driver to generate interlaced PNGs. Default is nointerlace.

Five basic fonts are supported directly by the gd library. These are tiny (5x8 pixels),
small (6x12 pixels), medium, (7x13 Bold), large (8x16) or giant (9x15 pixels).
These fonts cannot be scaled or rotated (pure horizontal or vertical text only).

If gnuplot was built with support for TrueType (*.ttf) or Adobe Type 1 (*.pfa) fonts,
they may be selected using the ’font <face> {<pointsize>}’ option. <face> is either
the full pathname to the font file, or a font face name that is assumed to be the first
part of a filename in one of the directories listed in the GDFONTPATH environmental
variable. That is, ’set term png font "Face"’ will look for a font file named either
<somedirectory>/Face.ttf or <somedirectory>/Face.pfa. Both TrueType and Adobe
Type 1 fonts are fully scalable and may be rotated through any angle. If no font is
specified, gnuplot checks the environmental variable GNUPLOT DEFAULT GDFONT
to see if there is a preferred default font.

enhanced enables the enhanced text processing features, (subscripts, superscripts and
mixed fonts). See enhanced for more information. The full enhanced mode syntax is
supported by the PNG/JPEG driver itself, but some of these features are dependent
on which version of the underlying libgd library is present, and which fonts are avail-
able.

The size <x,y> is given in pixels---it defaults to 640x480. The number of pixels can
be also modified by scaling with the set size command. crop trims blank space from
the edges of the completed plot, resulting in a smaller final image size. Default is
nocrop.

Each color must be of the form ’xrrggbb’, where x is the literal character ’x’ and
’rrggbb’ are the red, green and blue components in hex. For example, ’x00ff00’ is
green. The background color is set first, then the border colors, then the X & Y axis
colors, then the plotting colors. The maximum number of colors that can be set is
256.

Examples:
set terminal png medium size 640,480 \

xffffff x000000 x404040 \
xff0000 xffa500 x66cdaa xcdb5cd \
xadd8e6 x0000ff xdda0dd x9500d3 # defaults

which uses white for the non-transparent background, black for borders, gray for the
axes, and red, orange, medium aquamarine, thistle 3, light blue, blue, plum and dark
violet for eight plotting colors.

set terminal png font arial 14 size 800,600

which searches for a TrueType font with face name ’arial’ in the directory specified by
the environment variable GDFONTPATH and 14pt font size.

GNUPLOT 4.0 152

set terminal png transparent xffffff \
x000000 x202020 x404040 x606060 \
x808080 xA0A0A0 xC0C0C0 xE0E0E0

which uses white for the transparent background, black for borders, dark gray for axes,
and a gray-scale for the six plotting colors.

38.59.54. Png (OLD)

The png terminal driver supports Portable Network Graphics. This old version of the
png driver requires the third-party libraries "libpng" and "zlib". There is a newer png
driver, with many more features, that is preferred if you have libgd version 1.8 or
newer.

Syntax:
set terminal png {small | medium | large}

{transparent|notransparent}
{picsize <xsize> <ysize>}
{monochrome | gray | color}
{<color0> <color1> <color2> ...}

transparent instructs the driver to generate transparent PNGs. The first color will
be the transparent one.

The defaults are small (fontsize) and color. Default size of the output is 640*480
pixel. This can be changed by the option picsize.

Each <color> must be of the form ’xrrggbb’, where x is the literal character ’x’ and
’rrggbb’ are the red, green and blue components in hex. For example, ’x00ff00’ is
green. The background color is set first, then the border color, then the X & Y axis
color, then the plotting colors. The maximum number of colors that can be set is cur-
rently 99.

38.59.55. Postscript

Several options may be set in the postscript driver.

Syntax:
set terminal postscript {<mode>}

{enhanced | noenhanced | plus | noplus }
{color | colour | monochrome}
{blacktext | colortext | colourtext}
{solid | dashed} {dashlength | dl <DL>}
{linewidth | lw <LW>}
{<duplexing>}
{rounded | butt}
{fontfile [add | delete] "<filename>"}
{palfuncparam <samples>{,<maxdeviation>}}

GNUPLOT 4.0 153

{"<fontname>"} {<fontsize>}

where <mode> is landscape, portrait, eps or default; enhanced enables enhanced
text mode features (subscripts, superscripts and mixed fonts). See enhanced for more
information. Option color enables color; blacktext forces all text to be written in
black even in color mode; solid draws all plots with solid lines, overriding any dashed
patterns; dashlength or dl scales the length of the dashed-line segments by <DL>
(which is a floating-point number greater than zero); linewidth or lw scales all
linewidths by <LW>; <duplexing> is defaultplex, simplex or duplex ("duplexing"
in PostScript is the ability of the printer to print on both sides of the same
page---don’t set this if your printer can’t do it); rounded sets line caps and line joins
to be rounded; butt is the default, butt caps and mitered joins; "<fontname>" is the
name of a valid PostScript font; and <fontsize> is the size of the font in PostScript
points. In addition to the standard postscript fonts, an oblique version of the Symbol
font, useful for mathematics, is defined. It is called "Symbol-Oblique".

default mode sets all options to their defaults: landscape, monochrome, dashed,
dl 1.0, lw 1.0, defaultplex, noenhanced, "Helvetica" and 14pt. Default size of a
PostScript plot is 10 inches wide and 7 inches high.

palfuncparam is only available if compiled with pm3d support. It controls how set
palette functions are encoded as gradients in the output. Analytic color component
functions (set via set palette functions) are encoded as linear interpolated gradients
in the postscript output: The color component functions are sampled at <samples>
points and all points are removed from this gradient which can be removed without
changing the resulting colors by more than <maxdeviation>. For almost every useful
palette you may savely leave the defaults of <samples>=2000 and <maxdevia-
tion>=0.003 untouched.

eps mode generates EPS (Encapsulated PostScript) output, which is just regular Post-
Script with some additional lines that allow the file to be imported into a variety of
other applications. (The added lines are PostScript comment lines, so the file may still
be printed by itself.) To get EPS output, use the eps mode and make only one plot
per file. In eps mode the whole plot, including the fonts, is reduced to half of the
default size.

Fonts listed by fontfile or fontfile add encapsulate the font definitions of the listed
font from a postscript Type 1 or TrueType font file directly into the gnuplot output
postscript file. Thus, the enclosed font can be used in labels, titles, etc. See the section
postscript fontfile for more details. With fontfile delete a fontfile is deleted from
the list of embedded files.

Examples:
set terminal postscript default # old postscript
set terminal postscript enhanced # old enhpost
set terminal postscript landscape 22 # old psbig
set terminal postscript eps 14 # old epsf1
set terminal postscript eps 22 # old epsf2
set size 0.7,1.4; set term post portrait color "Times-Roman" 14
set term post "VAGRoundedBT Regular" 14 fontfile "bvrr8a.pfa"

Linewidths and pointsizes may be changed with set style line.

GNUPLOT 4.0 154

The postscript driver supports about 70 distinct pointtypes, selectable through the
pointtype option on plot and set style line.

Several possibly useful files about gnuplot’s PostScript are included in the
/docs/psdoc subdirectory of the gnuplot distribution and at the distribution sites.
These are "ps symbols.gpi" (a gnuplot command file that, when executed, creates the
file "ps symbols.ps" which shows all the symbols available through the postscript ter-
minal), "ps guide.ps" (a PostScript file that contains a summary of the enhanced syn-
tax and a page showing what the octal codes produce with text and symbol fonts),
"ps file.doc" (a text file that contains a discussion of the organization of a PostScript
file written by gnuplot), and "ps fontfile doc.tex" (a LaTeX file which contains a
short documentation concerning the encapsulation of LaTeX fonts with a glyph table
of the math fonts).

A PostScript file is editable, so once gnuplot has created one, you are free to modify
it to your heart’s desire. See the editing postscript section for some hints.

38.59.55.1. Enhanced postscript

Several terminal types support an enhanced text mode in which additional for-
matting information is embedded in the text string.

Control Examples Explanation
ˆ aˆx superscript

a x subscript
@ @x or a@ˆb c phantom box (occupies no width)
& &{space} inserts space of specified length
˜ ˜a{.8-} overprints ’-’ on ’a’, raised by .8

times the current fontsize

Braces can be used to place multiple-character text where a single character is expected (e.g.,
2ˆ{10}). To change the font and/or size, use the full form: {/[fontname][=fontsize | *fontscale]
text}. Thus {/Symbol=20 G} is a 20-point GAMMA and {/*0.75 K} is a K at three-quarters of
whatever fontsize is currently in effect. (The ’/’ character MUST be the first character after the
’{’.)

If the encoding vector has been changed by set encoding, the default encoding vector can be
used instead by following the slash with a dash. This is unnecessary if you use the Symbol font,
however---since /Symbol uses its own encoding vector, gnuplot will not apply any other encoding
vector to it.

The phantom box is useful for a@ˆb c to align superscripts and subscripts but does not work well
for overwriting an accent on a letter. (To do the latter, it is much better to use ’set encoding
iso 8859 1’ to change to the ISO Latin-1 encoding vector, which contains a large variety of letters

GNUPLOT 4.0 155

with accents or other diacritical marks.) Since the box is non-spacing, it is sensible to put the
shorter of the subscript or superscript in the box (that is, after the @).

Space equal in length to a string can be inserted using the ’&’ character. Thus
’abc&{def}ghi’

would produce
’abc ghi’.

The ’˜’ character causes the next character or bracketed text to be overprinted by the following
character or bracketed text. The second text will be horizontally centered on the first. Thus ’˜a/’
will result in an ’a’ with a slash through it. You can also shift the second text vertically by pre-
ceding the second text with a number, which will define the fraction of the current fontsize by
which the text will be raised or lowered. In this case the number and text must be enclosed in
brackets because more than one character is necessary. If the overprinted text begins with a num-
ber, put a space between the vertical offset and the text (’˜{abc}{.5 000}’); otherwise no space is
needed (’˜{abc}{.5---}’). You can change the font for one or both strings (’˜a{.5 /*.2 o}’---an ’a’
with a one-fifth-size ’o’ on top---and the space between the number and the slash is necessary),
but you can’t change it after the beginning of the string. Neither can you use any other special
syntax within either string. You can, of course, use control characters by escaping them (see
below), such as ’˜a{\ˆ}’

You can access special symbols numerically by specifying \character-code (in octal), e.g., {/Sym-
bol \245} is the symbol for infinity.

You can escape control characters using \, e.g., \\, \{, and so on.

But be aware that strings in double-quotes are parsed differently than those enclosed in single-
quotes. The major difference is that backslashes may need to be doubled when in double-quoted
strings.

Examples (these are hard to describe in words---try them!):
set xlabel ’Time (10ˆ6 {/Symbol m}s)’
set title ’{/Symbol=18 \362@ {/=9.6 0}ˆ{/=12 x}} \

{/Helvetica eˆ{-{/Symbol m}ˆ2/2} d}{/Symbol m}’

The file "ps guide.ps" in the /docs/psdoc subdirectory of the gnuplot source distribution con-
tains more examples of the enhanced syntax.

38.59.55.2. Editing postscript

The PostScript language is a very complex language---far too complex to
describe in any detail in this document. Nevertheless there are some things in a
PostScript file written by gnuplot that can be changed without risk of introduc-
ing fatal errors into the file.

For example, the PostScript statement "/Color true def" (written into the file in
response to the command set terminal postscript color), may be altered in
an obvious way to generate a black-and-white version of a plot. Similarly line
colors, text colors, line weights and symbol sizes can also be altered in straight-
forward ways. Text (titles and labels) can be edited to correct misspellings or to
change fonts. Anything can be repositioned, and of course anything can be

GNUPLOT 4.0 156

added or deleted, but modifications such as these may require deeper knowledge
of the PostScript language.

The organization of a PostScript file written by gnuplot is discussed in the text
file "ps file.doc" in the docs/ps subdirectory of the gnuplot source distribution.

38.59.55.3. Postscript plus

When the plus option is in effect, the syntax used to change fonts and create
subscripts, superscripts and Greek letters is just like LaTeX.

Control Examples Explanation
ˆ aˆx superscript

a x subscript

Examples:
set label 1 ’\rotate=-20{\size=20\bf \sqrt{2\beta}}’
set xlabel ’Time $(10ˆ6 \mu s)$’
set ylabel ’Length (\AA)’
set title ’${\sm\size=18 \362} {\small 0}ˆ{\size=12 xi} \

{\rm eˆ{-\alphaˆ2} d}\mu$’

38.59.55.4. Postscript fontfile

The fontfile or fontfile add option takes one file name as argument and encap-
sulates this file into the postscript output in order to make this font available for
text elements (labels, tic marks, titles, etc.). The fontfile delete option also
takes one file name as argument. It deletes this file name from the list of encap-
sulated files.

The postscript terminal understands some font file formats: Type 1 fonts in
ASCII file format (extension ".pfa"), Type 1 fonts in binary file format (exten-
sion ".pfb"), and TrueType fonts (extension ".ttf"). Pfa files are understood
directly, pfb and ttf files are converted on the fly if appropriate conversion tools
are installed (see below). You have to specify the full filename with the exten-
sion. Each fontfile option takes exact one font file name. This option can be
used multiple times in order to include more than one font file.

The font file is searched in the working directory and in all directories listed in
the fontpath which is determined by set fontpath. In addition, the fontpath
can be set using the environment variable GNUPLOT FONTPATH. If this is
not set a system dependent default search list is used. See set fontpath for

GNUPLOT 4.0 157

more details.

For using the encapsulated font file you have to specify the font name (which
normally is not the same as the file name). When embedding a font file by using
the fontfile option in interactive mode, the font name is printed on the screen.
E.g.

Font file ’p052004l.pfb’ contains the font ’URWPalladioL-Bold’. Location:
/usr/lib/X11/fonts/URW/p052004l.pfb

When using pfa or pfb fonts, you can also find it out by looking into the font file.
There is a line similar to "/FontName /URWPalladioL-Bold def". The middle
string without the slash is the fontname, here "URWPalladioL-Bold". For True-
Type fonts, this is not so easy since the font name is stored in a binary format.
In addition, they often have spaces in the font names which is not supported by
Type 1 fonts (in which a TrueType is converted on the fly). The font names are
changed in order to eliminate the spaces in the fontnames. The easiest way to
find out which font name is generated for use with gnuplot, start gnuplot in
interactive mode and type in "set terminal postscript fontfile ’<filename.ttf>’".

For converting font files to pfa format the conversion tool has to read the font
from a file and write it to standard output. For pfb files "pfbtops" is a tool
which can do this. If this program is installed on your system the on the fly con-
version should work. Just try to encapsulate a pfb file. If the compiled in pro-
gram call does not work correctly you can specify how this program is called by
defining the environment variable GNUPLOT PFBTOPFA e.g. to "pfbtops %s".
The %s will be repeated by the font file name and thus has to exist in the string.
If you don’t want to do the conversion on the fly but get a pfa file of the font you
can use the tool "pfb2pfa" which is written in simple c and should compile with
any c compiler. It is available from many ftp servers, e.g.

ftp://ftp.dante.de/tex-archive/fonts/utilities/ps2mf/
In fact, "pfbtopfa" and "pfb2ps" do the same job. "pfbtopfa" puts the resulting
pfa code into a file, whereas "pfbtops" writes it to standard output.

TrueType fonts are converted into Type 1 pfa format, e.g. by using the tool
"ttf2pt1" which is available from

http://ttf2pt1.sourceforge.net/
If the builtin conversion does not work, the conversion command can be changed
by the environment variable GNUPLOT TTFTOPFA. For usage with ttf2pt1 it
may be set to "ttf2pt1 -a -e -W 0 %s - ". Here again, %s stands for the file
name.

For special purposes you also can use a pipe (if available for your operating sys-
tem). Therefore you start the file name definition with the character "<" and
append a program call. This program has to write pfa data to standard output.
Thus, a pfa file may be accessed by set fontfile "< cat garamond.pfa".

For example, including Type 1 font files can be used for including the postscript
output in LaTeX documents. The "european computer modern" font (which is a
variant of the "computer modern" font) is available in pfb format from any
CTAN server, e.g.

ftp://ftp.dante.de/tex-archive/fonts/ps-type1/cm-super/
For example, the file "sfrm1000.pfb" contains the normal upright fonts with serifs
in the design size 10pt (font name "SFRM1000"). The computer modern fonts,

GNUPLOT 4.0 158

which are still necessary for mathematics, are available from
ftp://ftp.dante.de/tex-archive/fonts/cm/ps-type1/bluesky

With these you can use any character available in TeX. However, the computer
modern fonts have a strange encoding. (This is why you should not use
cmr10.pfb for text, but sfrm1000.pfb instead.) The usage of TeX fonts is shown
in one of the demos. The file "ps fontfile doc.tex" in the /docs/psdoc subdirec-
tory of the gnuplot source distribution contains a table with glyphs of the TeX
mathfonts.

If the font "CMEX10" is embedded (file "cmex10.pfb") gnuplot defines the addi-
tional font "CMEX10-Baseline". It is shifted vertically in order to fit better to
the other glyphs (CMEX10 has its baseline at the top of the symbols).

38.59.56. Pslatex and pstex

The pslatex and pstex drivers generate output for further processing by LaTeX and
TeX, respectively. Figures generated by pstex can be included in any plain-based for-
mat (including LaTeX).

Syntax:
set terminal [pslatex | pstex] {<color>} {<dashed>} {<rotate>}

{auxfile} {}

<color> is either color or monochrome. <dashed> is either dashed or solid.
<rotate> is either rotate or norotate and determines if the y-axis label is rotated.
 is the size (in pts) of the desired font.

If auxfile is specified, it directs the driver to put the PostScript commands into an
auxiliary file instead of directly into the LaTeX file. This is useful if your pictures are
large enough that dvips cannot handle them. The name of the auxiliary PostScript file
is derived from the name of the TeX file given on the set output command; it is
determined by replacing the trailing .tex (actually just the final extent in the file
name) with .ps in the output file name, or, if the TeX file has no extension, .ps is
appended. Remember to close the output file before leaving gnuplot. The .ps is
included into the .tex file by a \special{psfile=...} command. If you would rather pre-
fer \includegraphics{...}, then use the epslatex terminal.

All drivers for LaTeX offer a special way of controlling text positioning: (a) If any text
string begins with ’{’, you also need to include a ’}’ at the end of the text, and the
whole text will be centered both horizontally and vertically by LaTeX. (b) If the text
string begins with ’[’, you need to continue it with: a position specification (up to two
out of t,b,l,r), ’]{’, the text itself, and finally, ’}’. The text itself may be anything
LaTeX can typeset as an LR-box. \rule{}{}’s may help for best positioning.

Examples:
set term pslatex monochrome dashed rotate # set to defaults

To write the PostScript commands into the file "foo.ps":
set term pslatex auxfile
set output "foo.tex"; plot ...; set output

About label positioning: Use gnuplot defaults (mostly sensible, but sometimes not
really best):

GNUPLOT 4.0 159

set title ’\LaTeX\ -- $ \gamma $’
Force centering both horizontally and vertically:

set label ’{\LaTeX\ -- $ \gamma $}’ at 0,0
Specify own positioning (top here):

set xlabel ’[t]{\LaTeX\ -- $ \gamma $}’
The other label -- account for long ticlabels:

set ylabel ’[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{0pt}}’

Linewidths and pointsizes may be changed with set style line.

38.59.57. Pstricks

The pstricks driver is intended for use with the "pstricks.sty" macro package for
LaTeX. It is an alternative to the eepic and latex drivers. You need "pstricks.sty",
and, of course, a printer that understands PostScript, or a converter such as
Ghostscript.

PSTricks is available via anonymous ftp from the /pub directory at Princeton.edu.
This driver definitely does not come close to using the full capability of the PSTricks
package.

Syntax:
set terminal pstricks {hacktext | nohacktext} {unit | nounit}

The first option invokes an ugly hack that gives nicer numbers; the second has to do
with plot scaling. The defaults are hacktext and nounit.

38.59.58. Qms

The qms terminal driver supports the QMS/QUIC Laser printer, the Talaris 1200 and
others. It has no options.

38.59.59. Regis

The regis terminal device generates output in the REGIS graphics language. It has
the option of using 4 (the default) or 16 colors.

Syntax:
set terminal regis {4 | 16}

38.59.60. Rgip

The rgip and uniplex terminal drivers support RGIP metafiles. They can combine
several graphs on a single page, but only one page is allowed in a given output file.

GNUPLOT 4.0 160

Syntax:
set terminal rgip | uniplex {portrait | landscape}

{[<horiz>,<vert>]} {<fontsize>}

permissible values for the font size are in the range 1--8, with the default being 1. The
default layout is landscape. Graphs are placed on the page in a horizxvert grid,
which defaults to [1,1].

Example:
set terminal uniplex portrait [2,3]

puts six graphs on a page in three rows of two in portrait orientation.

38.59.61. Sun

The sun terminal driver supports the SunView window system. It has no options.

38.59.62. Svg

This terminal produces files in the W3C Scalable Vector Graphics format.

Syntax:
set terminal svg {size <x> <y> {|fixed|dynamic}}

{fname ""} {fsize <fontsize>}
{{no}enhanced} {fontfile <filename>}

where <x> and <y> are the size of the SVG plot to generate, dynamic allows a svg-
Viewer to resize plot, whereas the default setting, fixed, will request an absolute size.

 is the name of the default font to use (default Arial) and <fontsize> is the
font size (in points, default 12). Gnuplot does not currently provide a mechanism for
embedding fonts in the output file, so svg viewing programs may substitute other fonts
when the file is displayed.

The svg terminal supports an enhanced text mode, which allows font and other for-
matting commands to be embedded in labels and other text strings. The enhanced
text mode syntax is shared with other gnuplot terminal types. See enhanced for more
details.

SVG allows you to embed fonts directly into an SVG document, or to provide a hyper-
text link to the desired font. The fontfile option specifies a local file which is copied
into the <defs> section of the resulting SVG output file. This file may either itself
contain a font, or may contain the records necessary to create a hypertext reference to
the desired font. Gnuplot will look for the requested file using the directory list in the
GNUPLOT FONTPATH environmental variable.

GNUPLOT 4.0 161

38.59.63. Svga

The svga terminal driver supports PCs with SVGA graphics. It can only be used if it
is compiled with DJGPP. Its only option is the font.

Syntax:
set terminal svga {"<fontname>"}

38.59.64. Table

Instead of producing a graph, the table terminal prints out the points on which a
graph would be based, i.e., the results of processing the plot or splot command, in a
multicolumn ASCII table of X Y {Z} R values. The character R takes on one of three
values: "i" if the point is in the active range, "o" if it is out-of-range, or "u" if it is
undefined. The data format is determined by the format of the axis labels (see set
format), and the columns are separated by single spaces.

For those times when you want the numbers, you can display them on the screen or
save them to a file. This can be useful if you want to generate contours and then save
them for further use, perhaps for plotting with plot; see set contour for an example.
The same method can be used to save interpolated data (see set samples and set
dgrid3d).

38.59.65. Tek40

This family of terminal drivers supports a variety of VT-like terminals. tek40xx sup-
ports Tektronix 4010 and others as well as most TEK emulators; vttek supports VT-
like tek40xx terminal emulators; kc-tek40xx supports MS-DOS Kermit Tek4010 ter-
minal emulators in color: km-tek40xx supports them in monochrome; selanar sup-
ports Selanar graphics; and bitgraph supports BBN Bitgraph terminals. None have
any options.

38.59.66. Tek410x

The tek410x terminal driver supports the 410x and 420x family of Tektronix termi-
nals. It has no options.

38.59.67. Texdraw

The texdraw terminal driver supports the LaTeX texdraw environment. It is
intended for use with "texdraw.sty" and "texdraw.tex" in the texdraw package.

Points, among other things, are drawn using the LaTeX commands "\Diamond" and
"\Box". These commands no longer belong to the LaTeX2e core; they are included in

GNUPLOT 4.0 162

the latexsym package, which is part of the base distribution and thus part of any
LaTeX implementation. Please do not forget to use this package.

It has no options.

38.59.68. Tgif

Tgif is an X11-based drawing tool---it has nothing to do with GIF.

The tgif driver supports different pointsizes (with set pointsize), different label fonts
and font sizes (e.g. set label "Hallo" at x,y font "Helvetica,34") and multiple
graphs on the page. The proportions of the axes are not changed.

Syntax:
set terminal tgif {portrait | landscape} {<[x,y]>}

{solid | dashed}
{"<fontname>"} {<fontsize>}

where <[x,y]> specifies the number of graphs in the x and y directions on the page,
"<fontname>" is the name of a valid PostScript font, and <fontsize> specifies the size
of the PostScript font. Defaults are portrait, [1,1], dashed, "Helvetica", and 18.

The solid option is usually prefered if lines are colored, as they often are in the editor.
Hardcopy will be black-and-white, so dashed should be chosen for that.

Multiplot is implemented in two different ways.

The first multiplot implementation is the standard gnuplot multiplot feature:

set terminal tgif
set output "file.obj"
set multiplot
set origin x01,y01
set size xs,ys
plot ...

...
set origin x02,y02
plot ...
set nomultiplot

See set multiplot for further information.

The second version is the [x,y] option for the driver itself. The advantage of this
implementation is that everything is scaled and placed automatically without the need
for setting origins and sizes; the graphs keep their natural x/y proportions of 3/2 (or
whatever is fixed by set size).

If both multiplot methods are selected, the standard method is chosen and a warning
message is given.

Examples of single plots (or standard multiplot):

GNUPLOT 4.0 163

set terminal tgif # defaults
set terminal tgif "Times-Roman" 24
set terminal tgif landscape
set terminal tgif landscape solid

Examples using the built-in multiplot mechanism:
set terminal tgif portrait [2,4] # portrait; 2 plots in the x-

and 4 in the y-direction
set terminal tgif [1,2] # portrait; 1 plot in the x-

and 2 in the y-direction
set terminal tgif landscape [3,3] # landscape; 3 plots in both

directions

38.59.69. Tkcanvas

This terminal driver generates Tk canvas widget commands based on Tcl/Tk (default)
or Perl. To use it, rebuild gnuplot (after uncommenting or inserting the appropriate
line in "term.h"), then

gnuplot> set term tkcanvas {perltk} {interactive}
gnuplot> set output ’plot.file’

After invoking "wish", execute the following sequence of Tcl/Tk commands:

% source plot.file
% canvas .c
% pack .c
% gnuplot .c

Or, for Perl/Tk use a program like this:

use Tk;
my $top = MainWindow->new;
my $c = $top->Canvas->pack;
my $gnuplot = do "plot.pl";
$gnuplot->($c);
MainLoop;

The code generated by gnuplot creates a procedure called "gnuplot" that takes the
name of a canvas as its argument. When the procedure is called, it clears the canvas,
finds the size of the canvas and draws the plot in it, scaled to fit.

For 2-dimensional plotting (plot) two additional procedures are defined: "gnu-
plot plotarea" will return a list containing the borders of the plotting area "xleft,
xright, ytop, ybot" in canvas screen coordinates, while the ranges of the two axes
"x1min, x1max, y1min, y1max, x2min, x2max, y2min, y2max" in plot coordinates can
be obtained calling "gnuplot axisranges". If the "interactive" option is specified,
mouse clicking on a line segment will print the coordinates of its midpoint to stdout.
Advanced actions can happen instead if the user supplies a procedure named
"user gnuplot coordinates", which takes the following arguments: "win id x1s y1s x2s
y2s x1e y1e x2e y2e x1m y1m x2m y2m", the name of the canvas and the id of the line

GNUPLOT 4.0 164

segment followed by the coordinates of its start and end point in the two possible axis
ranges; the coordinates of the midpoint are only filled for logarithmic axes.

The current version of tkcanvas supports neither multiplot nor replot.

38.59.70. Tpic

The tpic terminal driver supports the LaTeX picture environment with tpic \specials.
It is an alternative to the latex and eepic terminal drivers. Options are the point
size, line width, and dot-dash interval.

Syntax:
set terminal tpic <pointsize> <linewidth> <interval>

where pointsize and linewidth are integers in milli-inches and interval is a float in
inches. If a non-positive value is specified, the default is chosen: pointsize = 40,
linewidth = 6, interval = 0.1.

All drivers for LaTeX offer a special way of controlling text positioning: If any text
string begins with ’{’, you also need to include a ’}’ at the end of the text, and the
whole text will be centered both horizontally and vertically by LaTeX. --- If the text
string begins with ’[’, you need to continue it with: a position specification (up to two
out of t,b,l,r), ’]{’, the text itself, and finally, ’}’. The text itself may be anything
LaTeX can typeset as an LR-box. \rule{}{}’s may help for best positioning.

Examples: About label positioning: Use gnuplot defaults (mostly sensible, but some-
times not really best):

set title ’\LaTeX\ -- $ \gamma $’
Force centering both horizontally and vertically:

set label ’{\LaTeX\ -- $ \gamma $}’ at 0,0
Specify own positioning (top here):

set xlabel ’[t]{\LaTeX\ -- $ \gamma $}’
The other label -- account for long ticlabels:

set ylabel ’[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{0pt}}’

38.59.71. Unixpc

The unixpc terminal driver supports AT&T 3b1 and AT&T 7300 Unix PC. It has no
options.

38.59.72. Unixplot

The unixplot terminal driver generates output in the Unix "plot" graphics language.
It has no options.

This terminal cannot be compiled if the GNU version of plot is to be used; in that

GNUPLOT 4.0 165

case, use the gnugraph terminal instead.

38.59.73. Atari ST (via VDI)

The vdi terminal is the same as the atari terminal, except that it sends output to the
screen via the VDI and not into AES-Windows.

The vdi terminal has options to set the character size and the screen colors.

Syntax:
set terminal vdi {<fontsize>} {<col0> <col1> ... <col15>}

The character size must appear if any colors are to be specified. Each of the (up to
16) colors is given as a three-digit hex number, where the digits represent RED,
GREEN and BLUE (in that order). The range of 0--15 is scaled to whatever color
range the screen actually has. On a normal ST screen, odd and even intensities are
the same.

Examples:
set terminal vdi 4 # use small (6x6) font
set terminal vdi 6 0 # set monochrome screen to white on black
set terminal vdi 13 0 fff f00 f0 f ff f0f

set first seven colors to black, white, red, green,
blue, cyan, and purple and use large font (8x16).

Additionally, if an environment variable GNUCOLORS exists, its contents are inter-
preted as an options string, but an explicit terminal option takes precedence.

38.59.74. Vgagl

The vgagl driver is a fast linux console driver with full mouse and pm3d support. It
looks at the environment variable SVGALIB DEFAULT MODE for the default mode;
if not set, it uses a 256 color mode with the highest available resolution.

Syntax:
set terminal vgagl \

background [red] [[green] [blue]] \
[uniform | interpolate] \
[mode]

The color mode can also be given with the mode option. Both Symbolic names as
G1024x768x256 and integers are allowed. The background option takes either one or
three integers in the range [0, 255]. If only one integers is supplied, it is taken as gray
value for the background. If three integers are present, the background gets the corre-
sponding color. The (mutually exclusive) options interpolate and uniform control if
color interpolation is done while drawing triangles (on by default).

To get high resolution modes, you will probably have to modify the configuration file
of libvga, usually /etc/vga/libvga.conf. Using the VESA fb is a good choice, but this

GNUPLOT 4.0 166

needs to be compiled in the kernel.

The vgagl driver uses the first *available* vga mode from the following list:
- the driver which was supplied when setting vgagl, e.g. ‘set term vgagl

G1024x768x256‘ would first check, if the G1024x768x256 mode is available.
- the environment variable SVGALIB DEFAULT MODE
- G1024x768x256
- G800x600x256
- G640x480x256
- G320x200x256
- G1280x1024x256
- G1152x864x256
- G1360x768x256
- G1600x1200x256

38.59.75. VWS

The VWS terminal driver supports the VAX Windowing System. It has no options.
It will sense the display type (monochrome, gray scale, or color.) All line styles are
plotted as solid lines.

38.59.76. Vx384

The vx384 terminal driver supports the Vectrix 384 and Tandy color printers. It has
no options.

38.59.77. Windows

Three options may be set in the windows terminal driver.

Syntax:
set terminal windows {<color>} {"<fontname>"} {<fontsize>}

where <color> is either color or monochrome, "<fontname>" is the name of a
valid Windows font, and <fontsize> is the size of the font in points.

Other options may be set with the graph-menu, the initialization file, and set
linestyle. Note that there is one restriction imposed by the classic Windows GDI
interface: modifiable linewidth only works with solid lines, not with dotted or dashed
ones.

The Windows version normally terminates immediately as soon as the end of any files
given as command line arguments is reached (i.e. in non-interactive mode), unless you
specify - as the last command line option. It will also not show the text-window at all,
in this mode, only the plot. By giving the optional argument -persist (same as for

GNUPLOT 4.0 167

gnuplot under x11; former Windows-only options /noend or -noend are still accepted
as well), will not close gnuplot. Contrary to gnuplot on other operating systems, gnu-
plot’s interactive command line is accessible after the -persist option.

38.59.77.1. Graph-menu

The gnuplot graph window has the following options on a pop-up menu
accessed by pressing the right mouse button or selecting Options from the sys-
tem menu:

Bring to Top when checked brings the graph window to the top after every
plot.

Color when checked enables color linestyles. When unchecked it forces mono-
chrome linestyles.

Copy to Clipboard copies a bitmap and a Metafile picture.

Background... sets the window background color.

Choose Font... selects the font used in the graphics window.

Line Styles... allows customization of the line colors and styles.

Print... prints the graphics windows using a Windows printer driver and allows
selection of the printer and scaling of the output. The output produced by
Print is not as good as that from gnuplot’s own printer drivers.

Update wgnuplot.ini saves the current window locations, window sizes, text
window font, text window font size, graph window font, graph window font size,
background color and linestyles to the initialization file WGNUPLOT.INI.

38.59.77.2. Printing

In order of preference, graphs may be be printed in the following ways.

1. Use the gnuplot command set terminal to select a printer and set output
to redirect output to a file.

2. Select the Print... command from the gnuplot graph window. An extra
command screendump does this from the text window.

3. If set output "PRN" is used, output will go to a temporary file. When you
exit from gnuplot or when you change the output with another set output
command, a dialog box will appear for you to select a printer port. If you choose
OK, the output will be printed on the selected port, passing unmodified through
the print manager. It is possible to accidentally (or deliberately) send printer
output meant for one printer to an incompatible printer.

GNUPLOT 4.0 168

38.59.77.3. Text-menu

The gnuplot text window has the following options on a pop-up menu accessed
by pressing the right mouse button or selecting Options from the system menu:

Copy to Clipboard copies marked text to the clipboard.

Paste copies text from the clipboard as if typed by the user.

Choose Font... selects the font used in the text window.

System Colors when selected makes the text window honor the System Colors
set using the Control Panel. When unselected, text is black or blue on a white
background.

Update wgnuplot.ini saves the current text window location, text window size,
text window font and text window font size to the initialisation file WGNU-
PLOT.INI.

MENU BAR

If the menu file WGNUPLOT.MNU is found in the same directory as
WGNUPLOT.EXE, then the menu specified in WGNUPLOT.MNU will be
loaded. Menu commands:

[Menu] starts a new menu with the name on the following line.

[EndMenu] ends the current menu.

[--] inserts a horizontal menu separator.

[|] inserts a vertical menu separator.

[Button] puts the next macro on a push button instead of a menu.

Macros take two lines with the macro name (menu entry) on the first line and
the macro on the second line. Leading spaces are ignored. Macro commands:

[INPUT] --- Input string with prompt terminated by [EOS] or {ENTER}

[EOS] --- End Of String terminator. Generates no output.

[OPEN] --- Get name of file to open from list box, with title of list box termi-
nated by [EOS], followed by default filename terminated by [EOS] or {ENTER}.
This uses COMMDLG.DLL from Windows 3.1.

[SAVE] --- Get name of file to save. Similar to [OPEN]

Macro character substitutions:

{ENTER} --- Carriage Return ’\r’

{TAB} --- Tab ’\011’

GNUPLOT 4.0 169

{ESC} --- Escape ’\033’

{ˆA} --- ’\001’

...

{ˆ } --- ’\031’

Macros are limited to 256 characters after expansion.

38.59.77.4. Wgnuplot.ini

Windows gnuplot will read some of its options from the [WGNUPLOT] sec-
tion of WGNUPLOT.INI in the Windows directory. A sample WGNU-
PLOT.INI file:

[WGNUPLOT]
TextOrigin=0 0
TextSize=640 150
TextFont=Terminal,9
GraphOrigin=0 150
GraphSize=640 330
GraphFont=Arial,10
GraphColor=1
GraphToTop=1
GraphBackground=255 255 255
Border=0 0 0 0 0
Axis=192 192 192 2 2
Line1=0 0 255 0 0
Line2=0 255 0 0 1
Line3=255 0 0 0 2
Line4=255 0 255 0 3
Line5=0 0 128 0 4

The GraphFont entry specifies the font name and size in points. The five num-
bers given in the Border, Axis and Line entries are the Red intensity (0--255),
Green intensity, Blue intensity, Color Linestyle and Mono Linestyle.
Linestyles are 0=SOLID, 1=DASH, 2=DOT, 3=DASHDOT, 4=DASHDOT-
DOT. In the sample WGNUPLOT.INI file above, Line 2 is a green solid line
in color mode, or a dashed line in monochrome mode. The default line width is
1 pixel. If Linestyle is negative, it specifies the width of a SOLID line in pixels.
Line1 and any linestyle used with the points style must be SOLID with unit
width.

38.59.77.5. Windows3.0

Windows 3.1 is preferred, but WGNUPLOT will run under Windows 3.0 with
the following restrictions: 1. COMMDLG.DLL and SHELL.DLL (available with
Windows 3.1 or Borland C++ 3.1) must be in the windows directory.

GNUPLOT 4.0 170

2. WGNUPLOT.HLP produced by Borland C++ 3.1 is in Windows 3.1 format.
You need to use the WINHELP.EXE supplied with Borland C++ 3.1.

3. It will not run in real mode due to lack of memory.

4. TrueType fonts are not available in the graph window.

5. Drag-drop does not work.

38.59.78. X11

gnuplot provides the x11 terminal type for use with X servers. This terminal type is
set automatically at startup if the DISPLAY environment variable is set, if the
TERM environment variable is set to xterm, or if the -display command line option
is used.

Syntax:
set terminal x11 [reset] <n> [[no]enhanced] [font <fontspec>]

[title "<string>"] [[no]persist] [[no]raise] [close]

Multiple plot windows are supported: set terminal x11 <n> directs the output to
plot window number n. If n>0, the terminal number will be appended to the window
title (unless a title has been supplied manually) and the icon will be labeled gplt
<n>. The active window may be distinguished by a change in cursor (from default to
crosshair.)

The x11 terminal support enhanced text mode (see enhanced), subject to the avail-
able fonts. In order for font size commands embedded in text to have any effect, the
default x11 font must be scalable. Thus the first example below will work as expected,
but the second will not.

set term x11 enhanced font "arial,15"
set title ’{\=20 Big} Medium {\=5 Small}’

set term x11 enhanced font "terminal-14"
set title ’{\=20 Big} Medium {\=5 Small}’

Plot windows remain open even when the gnuplot driver is changed to a different
device. A plot window can be closed by pressing the letter q while that window has
input focus, or by choosing close from a window manager menu. All plot windows can
be closed by specifying reset, which actually terminates the subprocess which main-
tains the windows (unless -persist was specified). The close command can be used to
close individual plot windows by number. However, after a reset, those plot windows
left due to persist cannot be closed with the command close. A close without a num-
ber closes the current active plot window.

The gnuplot outboard driver, gnuplot x11, is searched in a default place chosen when
the program is compiled. You can override that by defining the environment variable
GNUPLOT DRIVER DIR to point to a different location.

Plot windows will automatically be closed at the end of the session unless the -persist

GNUPLOT 4.0 171

option was given.

The options persist and raise are unset by default, which means that the defaults
(persist == no and raise == yes) or the command line options -persist / -raise or the
Xresources are taken. If [no]persist or [no]raise are specified, they will override com-
mand line options and Xresources. Setting one of these options takes place immedi-
ately, so the behaviour of an already running driver can be modified.

The option title "<title name>" will supply the title name of the window for the
current plot window or plot window <n> if a number is given. Where (or if) this title
is shown depends on your X window manager.

The size or aspect ratio of a plot may be changed by resizing the gnuplot window.

Linewidths and pointsizes may be changed from within gnuplot with set linestyle.

For terminal type x11, gnuplot accepts (when initialized) the standard X Toolkit
options and resources such as geometry, font, and name from the command line argu-
ments or a configuration file. See the X(1) man page (or its equivalent) for a descrip-
tion of such options.

A number of other gnuplot options are available for the x11 terminal. These may be
specified either as command-line options when gnuplot is invoked or as resources in
the configuration file ".Xdefaults". They are set upon initialization and cannot be
altered during a gnuplot session. (except persist and raise)

38.59.78.1. X11 fonts

Upon initial startup, the default font is taken from the X11 resources as set in
the system or user .Xdefaults file or on the command line.

Example:
gnuplot*font: lucidasans-bold-12

A new default font may be specified to the x11 driver from inside gnuplot using
‘set term x11 font "<fontspec>"‘

The driver first queries the X-server for a font of the exact name given, for exam-
ple set term x11 font "lucidasans-10". If this query fails, then it tries to
interpret <fontspec> as ",<size>,<slant>,<weight>" and to construct a
full X11 font name of the form

-*--<weight>-<s>-*-*-<size>-*-*-*-*-*-<encoding>

 is the base name of the font (e.g. Times or Symbol)
<size> is the point size (defaults to 12 if not specified)
<s> is ‘i‘ if <slant>=="italic" ‘o‘ if <slant>=="oblique" ‘r‘ otherwise
<weight> is ‘medium‘ or ‘bold‘ if explicitly requested, otherwise ‘*‘
<encoding> is set based on the current character set (see help for ‘set encod-

ing‘).
So set term x11 font "arial,15,italic" will be translated to
-*-arial-*-i-*-*-15-*-*-*-*-*-iso8859-1 (assuming default encoding). The <size>,
<slant>, and <weight> specifications are all optional. If you do not specify
<slant> or <weight> then you will get whatever font variant the font server

GNUPLOT 4.0 172

offers first. The driver also recognizes some common PostScript font names and
replaces them with possible X11 or TrueType equivalents. This same sequence is
used to process font requests from set label.

38.59.78.2. Command-line options

In addition to the X Toolkit options, the following options may be specified on
the command line when starting gnuplot or as resources in your ".Xdefaults"
file (note that raise and persist can be overridden later by set term x11
[no]raise [no]persist):

‘-mono‘ forces monochrome rendering on color displays.
‘-gray‘ requests grayscale rendering on grayscale or color displays.

(Grayscale displays receive monochrome rendering by default.)
‘-clear‘ requests that the window be cleared momentarily before a

new plot is displayed.
‘-tvtwm‘ requests that geometry specifications for position of the

window be made relative to the currently displayed portion
of the virtual root.

‘-raise‘ raises plot window after each plot
‘-noraise‘ does not raise plot window after each plot

‘-novevents‘ does not process mouse and key events
‘-persist‘ plot windows survive after main gnuplot program exits

The options are shown above in their command-line syntax. When entered as resources in ".Xde-
faults", they require a different syntax.

Example:
gnuplot*gray: on

gnuplot also provides a command line option (-pointsize <v>) and a resource, gnuplot*point-
size: <v>, to control the size of points plotted with the points plotting style. The value v is a
real number (greater than 0 and less than or equal to ten) used as a scaling factor for point sizes.
For example, -pointsize 2 uses points twice the default size, and -pointsize 0.5 uses points half
the normal size.

The -noevents switch disables all mouse and key event processing (except for q and <space> for
closing the window). This is useful for programs which use the x11 driver independent of the gnu-
plot main program.

38.59.78.3. Monochrome options

For monochrome displays, gnuplot does not honor foreground or background
colors. The default is black-on-white. -rv or gnuplot*reverseVideo: on
requests white-on-black.

GNUPLOT 4.0 173

38.59.78.4. Color resources

For color displays, gnuplot honors the following resources (shown here with
their default values) or the greyscale resources. The values may be color names
as listed in the X11 rgb.txt file on your system, hexadecimal RGB color specifica-
tions (see X11 documentation), or a color name followed by a comma and an
intensity value from 0 to 1. For example, blue, 0.5 means a half intensity blue.

gnuplot*background: white
gnuplot*textColor: black
gnuplot*borderColor: black
gnuplot*axisColor: black
gnuplot*line1Color: red
gnuplot*line2Color: green
gnuplot*line3Color: blue
gnuplot*line4Color: magenta
gnuplot*line5Color: cyan
gnuplot*line6Color: sienna
gnuplot*line7Color: orange
gnuplot*line8Color: coral

The command-line syntax for these is simple only for background, which maps directly to the
usual X11 toolkit option "-bg". All others can only be set on the command line by use of the
generic "-xrm" resource override option

Examples:

gnuplot -background coral
to change the background color.

gnuplot -xrm ’gnuplot*line1Color:blue’
to override the first linetype color.

38.59.78.5. Grayscale resources

When -gray is selected, gnuplot honors the following resources for grayscale or
color displays (shown here with their default values). Note that the default
background is black.

GNUPLOT 4.0 174

gnuplot*background: black
gnuplot*textGray: white
gnuplot*borderGray: gray50
gnuplot*axisGray: gray50
gnuplot*line1Gray: gray100
gnuplot*line2Gray: gray60
gnuplot*line3Gray: gray80
gnuplot*line4Gray: gray40
gnuplot*line5Gray: gray90
gnuplot*line6Gray: gray50
gnuplot*line7Gray: gray70
gnuplot*line8Gray: gray30

38.59.78.6. Line resources

gnuplot honors the following resources for setting the width (in pixels) of plot
lines (shown here with their default values.) 0 or 1 means a minimal width line
of 1 pixel width. A value of 2 or 3 may improve the appearance of some plots.

gnuplot*borderWidth: 2
gnuplot*axisWidth: 0
gnuplot*line1Width: 0
gnuplot*line2Width: 0
gnuplot*line3Width: 0
gnuplot*line4Width: 0
gnuplot*line5Width: 0
gnuplot*line6Width: 0
gnuplot*line7Width: 0
gnuplot*line8Width: 0

gnuplot honors the following resources for setting the dash style used for plotting lines. 0 means
a solid line. A two-digit number jk (j and k are >= 1 and <= 9) means a dashed line with a
repeated pattern of j pixels on followed by k pixels off. For example, ’16’ is a "dotted" line with
one pixel on followed by six pixels off. More elaborate on/off patterns can be specified with a
four-digit value. For example, ’4441’ is four on, four off, four on, one off. The default values
shown below are for monochrome displays or monochrome rendering on color or grayscale dis-
plays. For color displays, the default for each is 0 (solid line) except for axisDashes which
defaults to a ’16’ dotted line.

GNUPLOT 4.0 175

gnuplot*borderDashes: 0
gnuplot*axisDashes: 16
gnuplot*line1Dashes: 0
gnuplot*line2Dashes: 42
gnuplot*line3Dashes: 13
gnuplot*line4Dashes: 44
gnuplot*line5Dashes: 15
gnuplot*line6Dashes: 4441
gnuplot*line7Dashes: 42
gnuplot*line8Dashes: 13

38.59.78.7. X11 pm3d resources

Choosing the appropriate visual class and number of colors is a crucial point in
X11 applications and a bit awkward, since X11 supports six visual types in dif-
ferent depths.

By default gnuplot uses the default visual of the screen. The number of colors
which can be allocated depends on the visual class chosen. On a visual class with
a depth > 12bit, gnuplot starts with a maximal number of 0x200 colors. On a
visual class with a depth > 8bit (but <= 12 bit) the maximal number of colors is
0x100, on <= 8bit displays the maximum number of colors is 240 (16 are left for
line colors).

Gnuplot first starts to allocate the maximal number of colors as stated above. If
this fails, the number of colors is reduced by the factor 2 until gnuplot gets all
colors which are requested. If dividing maxcolors by 2 repeatedly results in a
number which is smaller than mincolors gnuplot tries to install a private col-
ormap. In this case the window manager is responsible for swapping colormaps
when the pointer is moved in and out the x11 driver’s window.

The default for mincolors is maxcolors / (num colormaps > 1 ? 2 : 8), where
num colormaps is the number of colormaps which are currently used by gnuplot
(usually 1, if only one x11 window is open).

Some systems support multiple (different) visual classes together on one screen.
On these systems it might be necessary to force gnuplot to use a specific visual
class, e.g. the default visual might be 8bit PseudoColor but the screen would also
support 24bit TrueColor which would be the preferred choice.

The information about an Xserver’s capabilities can be obtained with the pro-
gram xdpyinfo. For the visual names below you can choose one of StaticGray,
GrayScale, StaticColor, PseudoColor, TrueColor, DirectColor. If an Xserver sup-
ports a requested visual type at different depths, gnuplot chooses the visual
class with the highest depth (deepest). If the requested visual class matches the
default visual and multiple classes of this type are supported, the default visual
is preferred.

GNUPLOT 4.0 176

Example: on an 8bit PseudoColor visual you can force a private color map by
specifying gnuplot*maxcolors: 240 and gnuplot*mincolors: 240.

gnuplot*maxcolors: <integer number>
gnuplot*mincolors: <integer number>
gnuplot*visual: <visual name>

38.59.79. Xlib

The xlib terminal driver supports the X11 Windows System. It generates gnuplot x11
commands, but sends them to the output file specified by set output ’<filename>’.
set term x11 is equivalent to set terminal xlib; set output "|gnuplot x11
-noevents". xlib takes the same set of options as x11.

38.60. Tics

The set tics command can be used to change the tics to be drawn outwards.

Syntax:
set tics {<direction>}
show tics

where <direction> may be in (the default) or out.

See also set xtics for more control of major (labelled) tic marks and set mxtics for control
of minor tic marks.

38.61. Ticslevel

Using splot, one can adjust the relative height of the vertical (Z) axis using set ticslevel.
The numeric argument provided specifies the location of the bottom of the scale (as a frac-
tion of the z-range) above the xy-plane. The default value is 0.5. Negative values are per-
mitted, but tic labels on the three axes may overlap.

To place the xy-plane at a position ’pos’ on the z-axis, ticslevel should be set equal to (pos
- zmin) / (zmin - zmax).

Syntax:
set ticslevel {<level>}
show tics

GNUPLOT 4.0 177

See also set view.

38.62. Ticscale

The size of the tic marks can be adjusted with set ticscale.

Syntax:
set ticscale {<major> {<minor>}}
show tics

If <minor> is not specified, it is 0.5*<major>. The default size is 1.0 for major tics and 0.5
for minor tics. Note that it is possible to have the tic marks pointing outward by specifying
a negative size.

38.63. Timestamp

The command set timestamp places the time and date of the plot in the left margin.

Syntax:
set timestamp {"<format>"} {top|bottom} {{no}rotate}

{<xoff>}{,<yoff>} {""}
unset timestamp
show timestamp

The format string allows you to choose the format used to write the date and time. Its
default value is what asctime() uses: "%a %b %d %H:%M:%S %Y" (weekday, month name,
day of the month, hours, minutes, seconds, four-digit year). With top or bottom you can
place the timestamp at the top or bottom of the left margin (default: bottom). rotate lets
you write the timestamp vertically, if your terminal supports vertical text. The constants
<xoff> and <yoff> are offsets from the default position given in character screen coordi-
nates. is used to specify the font with which the time is to be written.

The abbreviation time may be used in place of timestamp.

Example:
set timestamp "%d/%m/%y %H:%M" 80,-2 "Helvetica"

See set timefmt for more information about time format strings.

38.64. Timefmt

This command applies to timeseries where data are composed of dates/times. It has no
meaning unless the command set xdata time is given also.

Syntax:
set timefmt "<format string>"

GNUPLOT 4.0 178

show timefmt

The string argument tells gnuplot how to read timedata from the datafile. The valid for-
mats are:

Format Explanation
%d day of the month, 1--31
%m month of the year, 1--12
%y year, 0--99
%Y year, 4-digit
%j day of the year, 1--365
%H hour, 0--24
%M minute, 0--60
%s seconds since the Unix epoch (1970-01-01 00:00 UTC)
%S second, 0--60
%b three-character abbreviation of the name of the month
%B name of the month

Any character is allowed in the string, but must match exactly. \t (tab) is recognized. Backslash-
octals (\nnn) are converted to char. If there is no separating character between the time/date ele-
ments, then %d, %m, %y, %H, %M and %S read two digits each, %Y reads four digits and %j
reads three digits. %b requires three characters, and %B requires as many as it needs.

Spaces are treated slightly differently. A space in the string stands for zero or more whitespace
characters in the file. That is, "%H %M" can be used to read "1220" and "12 20" as well as
"12 20".

Each set of non-blank characters in the timedata counts as one column in the using n:n specifica-
tion. Thus 11:11 25/12/76 21.0 consists of three columns. To avoid confusion, gnuplot
requires that you provide a complete using specification if your file contains timedata.

Since gnuplot cannot read non-numerical text, if the date format includes the day or month in
words, the format string must exclude this text. But it can still be printed with the "%a", "%A",
"%b", or "%B" specifier: see set format for more details about these and other options for print-
ing timedata. (gnuplot will determine the proper month and weekday from the numerical val-
ues.)

See also set xdata and Time/date for more information.

Example:
set timefmt "%d/%m/%Y\t%H:%M"

tells gnuplot to read date and time separated by tab. (But look closely at your data---what
began as a tab may have been converted to spaces somewhere along the line; the format string
must match what is actually in the file.) See also time data demo.

GNUPLOT 4.0 179

38.65. Title

The set title command produces a plot title that is centered at the top of the plot. set
title is a special case of set label.

Syntax:
set title {"<title-text>"} {<xoff>}{,<yoff>} {"{,<size>}"}

{{textcolor | tc} {lt <line type> | default}}
show title

Specifying constants <xoff> or <yoff> as optional offsets for the title will move the title
<xoff> or <yoff> character screen coordinates (not graph coordinates). For example, "set
title ,-1" will change only the y offset of the title, moving the title down by roughly the
height of one character.

 is used to specify the font with which the title is to be written; the units of the font
<size> depend upon which terminal is used.

textcolor lt <n> sets the text color to that of line type <n>.

set title with no parameters clears the title.

See syntax for details about the processing of backslash sequences and the distinction
between single- and double-quotes.

38.66. Tmargin

The command set tmargin sets the size of the top margin. Please see set margin for
details.

38.67. Trange

The set trange command sets the parametric range used to compute x and y values when
in parametric or polar modes. Please see set xrange for details.

38.68. Urange

The set urange and set vrange commands set the parametric ranges used to compute x,
y, and z values when in splot parametric mode. Please see set xrange for details.

38.69. Variables

The show variables command lists all user-defined variables and their values.

GNUPLOT 4.0 180

Syntax:
show variables

38.70. Version

The show version command lists the version of gnuplot being run, its last modification
date, the copyright holders, and email addresses for the FAQ, the gnuplot-info mailing list,
and reporting bugs--in short, the information listed on the screen when the program is
invoked interactively.

Syntax:
show version {long}

When the long option is given, it also lists the operating system, the compilation options
used when gnuplot was installed, the location of the help file, and (again) the useful email
addresses.

38.71. View

The set view command sets the viewing angle for splots. It controls how the 3-d coordi-
nates of the plot are mapped into the 2-d screen space. It provides controls for both rota-
tion and scaling of the plotted data, but supports orthographic projections only. It supports
both 3D projection or orthogonal 2D projection into a 2D plot-like map.

Syntax:
set view { <rot x>{,{<rot z>}{,{<scale>}{,<scale z>}}} | map }
show view

where <rot x> and <rot z> control the rotation angles (in degrees) in a virtual 3-d coordi-
nate system aligned with the screen such that initially (that is, before the rotations are per-
formed) the screen horizontal axis is x, screen vertical axis is y, and the axis perpendicular
to the screen is z. The first rotation applied is <rot x> around the x axis. The second
rotation applied is <rot z> around the new z axis.

Command set view map is used to represent the drawing as a map. It can be used for
contour plots, or for color pm3d maps. In the latter, take care that you properly use
zrange and cbrange for input data point filtering and color range scaling, respectively.

<rot x> is bounded to the [0:180] range with a default of 60 degrees, while <rot z> is
bounded to the [0:360] range with a default of 30 degrees. <scale> controls the scaling of
the entire splot, while <scale z> scales the z axis only. Both scales default to 1.0.

Examples:
set view 60, 30, 1, 1
set view ,,0.5

The first sets all the four default values. The second changes only scale, to 0.5.

See also set ticslevel.

GNUPLOT 4.0 181

38.72. Vrange

The set urange and set vrange commands set the parametric ranges used to compute x,
y, and z values when in splot parametric mode. Please see set xrange for details.

38.73. X2data

The set x2data command sets data on the x2 (top) axis to timeseries (dates/times).
Please see set xdata.

38.74. X2dtics

The set x2dtics command changes tics on the x2 (top) axis to days of the week. Please see
set xdtics for details.

38.75. X2label

The set x2label command sets the label for the x2 (top) axis. Please see set xlabel.

38.76. X2mtics

The set x2mtics command changes tics on the x2 (top) axis to months of the year. Please
see set xmtics for details.

38.77. X2range

The set x2range command sets the horizontal range that will be displayed on the x2 (top)
axis. Please see set xrange for details.

38.78. X2tics

The set x2tics command controls major (labelled) tics on the x2 (top) axis. Please see set
xtics for details.

38.79. X2zeroaxis

GNUPLOT 4.0 182

The set x2zeroaxis command draws a line at the origin of the x2 (top) axis (y2 = 0). For
details, please see set zeroaxis.

38.80. Xdata

This command sets the datatype on the x axis to time/date. A similar command does the
same thing for each of the other axes.

Syntax:
set xdata {time}
show xdata

The same syntax applies to ydata, zdata, x2data, y2data and cbdata.

The time option signals that the datatype is indeed time/date. If the option is not speci-
fied, the datatype reverts to normal.

See set timefmt to tell gnuplot how to read date or time data. The time/date is converted
to seconds from start of the century. There is currently only one timefmt, which implies
that all the time/date columns must conform to this format. Specification of ranges should
be supplied as quoted strings according to this format to avoid interpretation of the
time/date as an expression.

The function ’strftime’ (type "man strftime" on unix to look it up) is used to print tic-mark
labels. gnuplot tries to figure out a reasonable format for this unless the set format x
"string" has supplied something that does not look like a decimal format (more than one
’%’ or neither %f nor %g).

See also Time/date for more information.

38.81. Xdtics

The set xdtics commands converts the x-axis tic marks to days of the week where 0=Sun
and 6=Sat. Overflows are converted modulo 7 to dates. set noxdtics returns the labels to
their default values. Similar commands do the same things for the other axes.

Syntax:
set xdtics
unset xdtics
show xdtics

The same syntax applies to ydtics, zdtics, x2dtics, y2dtics and cbdtics.

See also the set format command.

GNUPLOT 4.0 183

38.82. Xlabel

The set xlabel command sets the x axis label. Similar commands set labels on the other
axes.

Syntax:
set xlabel {"<label>"} {<xoff>}{,<yoff>} {font "{,<size>}"}

{{textcolor | tc} {lt <line type> | default}}
show xlabel

The same syntax applies to x2label, ylabel, y2label, zlabel and cblabel.

Specifying the constants <xoff> or <yoff> as optional offsets for a label will move it <xoff>
or <yoff> character widths or heights. For example, " set xlabel -1" will change only the
x offset of the xlabel, moving the label roughly one character width to the left. The size of
a character depends on both the font and the terminal.

 is used to specify the font in which the label is written; the units of the font <size>
depend upon which terminal is used.

textcolor lt <n> sets the text color to that of line type <n>.

To clear a label, put no options on the command line, e.g., "set y2label".

The default positions of the axis labels are as follows:

xlabel: The x-axis label is centered below the bottom axis.

ylabel: The position of the y-axis label depends on the terminal, and can be one of the fol-
lowing three positions:

1. Horizontal text flushed left at the top left of the plot. Terminals that cannot rotate text
will probably use this method. If set x2tics is also in use, the ylabel may overwrite the
left-most x2tic label. This may be remedied by adjusting the ylabel position or the left mar-
gin.

2. Vertical text centered vertically at the left of the plot. Terminals that can rotate text will
probably use this method.

3. Horizontal text centered vertically at the left of the plot. The EEPIC, LaTeX and TPIC
drivers use this method. The EEPIC driver will produce a stack of characters so as not to
overwrite the plot. With other drivers (such as LaTeX and TPIC), the user probably has to
insert line breaks using \\ to prevent the ylabel from overwriting the plot.

zlabel: The z-axis label is centered along the z axis and placed in the space above the grid
level.

cblabel: The color box axis label is centered along the box and placed below or right accord-
ing to horizontal or vertical color box gradient.

y2label: The y2-axis label is placed to the right of the y2 axis. The position is terminal-
dependent in the same manner as is the y-axis label.

GNUPLOT 4.0 184

x2label: The x2-axis label is placed above the top axis but below the plot title. It is also
possible to create an x2-axis label by using new-line characters to make a multi-line plot
title, e.g.,

set title "This is the title\n\nThis is the x2label"

Note that double quotes must be used. The same font will be used for both lines, of course.

If you are not satisfied with the default position of an axis label, use set label instead--that
command gives you much more control over where text is placed.

Please see syntax for further information about backslash processing and the difference
between single- and double-quoted strings.

38.83. Xmtics

The set xmtics command converts the x-axis tic marks to months of the year where 1=Jan
and 12=Dec. Overflows are converted modulo 12 to months. The tics are returned to their
default labels by unset xmtics. Similar commands perform the same duties for the other
axes.

Syntax:
set xmtics
unset xmtics
show xmtics

The same syntax applies to x2mtics, ymtics, y2mtics, zmtics and cbmtics.

See also the set format command.

38.84. Xrange

The set xrange command sets the horizontal range that will be displayed. A similar com-
mand exists for each of the other axes, as well as for the polar radius r and the parametric
variables t, u, and v.

Syntax:
set xrange { [{{<min>}:{<max>}}] {{no}reverse} {{no}writeback} }

| restore
show xrange

where <min> and <max> terms are constants, expressions or an asterisk to set autoscaling.
If the data are time/date, you must give the range as a quoted string according to the set
timefmt format. Any value omitted will not be changed.

The same syntax applies to yrange, zrange, x2range, y2range, cbrange, rrange,
trange, urange and vrange.

The reverse option reverses the direction of the axis, e.g., set xrange [0:1] reverse will

GNUPLOT 4.0 185

produce an axis with 1 on the left and 0 on the right. This is identical to the axis produced
by set xrange [1:0], of course. reverse is intended primarily for use with autoscale.

The writeback option essentially saves the range found by autoscale in the buffers that
would be filled by set xrange. This is useful if you wish to plot several functions together
but have the range determined by only some of them. The writeback operation is per-
formed during the plot execution, so it must be specified before that command. To restore,
the last saved horizontal range use set xrange restore. For example,

set xrange [-10:10]
set yrange [] writeback
plot sin(x)
set yrange restore
replot x/2

results in a yrange of [-1:1] as found only from the range of sin(x); the [-5:5] range of x/2 is
ignored. Executing show yrange after each command in the above example should help
you understand what is going on.

In 2-d, xrange and yrange determine the extent of the axes, trange determines the range
of the parametric variable in parametric mode or the range of the angle in polar mode. Sim-
ilarly in parametric 3-d, xrange, yrange, and zrange govern the axes and urange and
vrange govern the parametric variables.

In polar mode, rrange determines the radial range plotted. <rmin> acts as an additive
constant to the radius, whereas <rmax> acts as a clip to the radius---no point with radius
greater than <rmax> will be plotted. xrange and yrange are affected---the ranges can be
set as if the graph was of r(t)-rmin, with rmin added to all the labels.

Any range may be partially or totally autoscaled, although it may not make sense to
autoscale a parametric variable unless it is plotted with data.

Ranges may also be specified on the plot command line. A range given on the plot line will
be used for that single plot command; a range given by a set command will be used for all
subsequent plots that do not specify their own ranges. The same holds true for splot.

Examples:

To set the xrange to the default:
set xrange [-10:10]

To set the yrange to increase downwards:
set yrange [10:-10]

To change zmax to 10 without affecting zmin (which may still be autoscaled):
set zrange [:10]

To autoscale xmin while leaving xmax unchanged:
set xrange [*:]

GNUPLOT 4.0 186

38.85. Xtics

Fine control of the major (labelled) tics on the x axis is possible with the set xtics com-
mand. The tics may be turned off with the unset xtics command, and may be turned on
(the default state) with set xtics. Similar commands control the major tics on the y, z, x2
and y2 axes.

Syntax:
set xtics {axis | border} {{no}mirror} {{no}rotate {by <ang>}}

{ autofreq
| <incr>
| <start>, <incr> {,<end>}
| ({"<label>"} <pos> {<level>} {,{"<label>"}...) }
{ font "name{,<size>}" }
{ textcolor <colorspec> }

unset xtics
show xtics

The same syntax applies to ytics, ztics, x2tics, y2tics and cbtics.

axis or border tells gnuplot to put the tics (both the tics themselves and the accompany-
ing labels) along the axis or the border, respectively. If the axis is very close to the border,
the axis option will move the tic labels to outside the border. The relevant margin settings
will usually be sized badly by the automatic layout algorithm in this case.

mirror tells gnuplot to put unlabelled tics at the same positions on the opposite border.
nomirror does what you think it does.

rotate asks gnuplot to rotate the text through 90 degrees, which will be done if the termi-
nal driver in use supports text rotation. norotate cancels this. rotate by <ang> asks for
rotation by <ang> degrees, supported by some terminal types.

The defaults are border mirror norotate for tics on the x and y axes, and border
nomirror norotate for tics on the x2 and y2 axes. For the z axis, the {axis | border}
option is not available and the default is nomirror. If you do want to mirror the z-axis
tics, you might want to create a bit more room for them with set border.

set xtics with no options restores the default border or axis if xtics are being displayed;
otherwise it has no effect. Any previously specified tic frequency or position {and labels}
are retained.

Positions of the tics are calculated automatically by default or if the autofreq option is
given; otherwise they may be specified in either of two forms:

The implicit <start>, <incr>, <end> form specifies that a series of tics will be plotted on
the axis between the values <start> and <end> with an increment of <incr>. If <end> is
not given, it is assumed to be infinity. The increment may be negative. If neither <start>
nor <end> is given, <start> is assumed to be negative infinity, <end> is assumed to be
positive infinity, and the tics will be drawn at integral multiples of <incr>. If the axis is
logarithmic, the increment will be used as a multiplicative factor.

The set grid options ’front’, ’back’ and ’layerdefault’ affect the drawing order of the xtics,
too.

GNUPLOT 4.0 187

Examples:

Make tics at 0, 0.5, 1, 1.5, ..., 9.5, 10.
set xtics 0,.5,10

Make tics at ..., -10, -5, 0, 5, 10, ...
set xtics 5

Make tics at 1, 100, 1e4, 1e6, 1e8.
set logscale x; set xtics 1,100,1e8

The explicit ("<label>" <pos> <level>, ...) form allows arbitrary tic positions or non-
numeric tic labels. In this form, the tics do not need to be listed in numerical order. Each
tic has a position, optionally with a label. Note that the label is a string enclosed by quotes.
It may be a constant string, such as "hello", may contain formatting information for con-
verting the position into its label, such as "%3f clients", or may be empty, "". See set for-
mat for more information. If no string is given, the default label (numerical) is used.

An explicit tic mark has a third parameter, the "level". The default is level 0, a major tic.
A level of 1 generates a minor tic. If the level is specified, then the label must also be sup-
plied.

Examples:
set xtics ("low" 0, "medium" 50, "high" 100)
set xtics (1,2,4,8,16,32,64,128,256,512,1024)
set ytics ("bottom" 0, "" 10, "top" 20)
set ytics ("bottom" 0, "" 10 1, "top" 20)

In the second example, all tics are labelled. In the third, only the end tics are labelled. In
the fourth, the unlabeled tic is a minor tic.

However they are specified, tics will only be plotted when in range.

Format (or omission) of the tic labels is controlled by set format, unless the explicit text of
a labels is included in the set xtics (<label>) form.

Minor (unlabelled) tics can be added by the set mxtics command.

In case of timeseries data, position values must be given as quoted dates or times according
to the format timefmt. If the <start>, <incr>, <end> form is used, <start> and <end>
must be given according to timefmt, but <incr> must be in seconds. Times will be written
out according to the format given on set format, however.

Examples:
set xdata time
set timefmt "%d/%m"
set format x "%b %d"
set xrange ["01/12":"06/12"]
set xtics "01/12", 172800, "05/12"

set xdata time
set timefmt "%d/%m"
set format x "%b %d"

GNUPLOT 4.0 188

set xrange ["01/12":"06/12"]
set xtics ("01/12", "" "03/12", "05/12")

Both of these will produce tics "Dec 1", "Dec 3", and "Dec 5", but in the second example
the tic at "Dec 3" will be unlabelled.

38.86. Xzeroaxis

The set xzeroaxis command draws a line at y = 0. For details, please see set zeroaxis.

38.87. Y2data

The set y2data command sets y2 (right-hand) axis data to timeseries (dates/times).
Please see set xdata.

38.88. Y2dtics

The set y2dtics command changes tics on the y2 (right-hand) axis to days of the week.
Please see set xdtics for details.

38.89. Y2label

The set y2label command sets the label for the y2 (right-hand) axis. Please see set xla-
bel.

38.90. Y2mtics

The set y2mtics command changes tics on the y2 (right-hand) axis to months of the year.
Please see set xmtics for details.

38.91. Y2range

The set y2range command sets the vertical range that will be displayed on the y2 (right-
hand) axis. Please see set xrange for details.

GNUPLOT 4.0 189

38.92. Y2tics

The set y2tics command controls major (labelled) tics on the y2 (right-hand) axis. Please
see set xtics for details.

38.93. Y2zeroaxis

The set y2zeroaxis command draws a line at the origin of the y2 (right-hand) axis (x2 =
0). For details, please see set zeroaxis.

38.94. Ydata

The set ydata commands sets y-axis data to timeseries (dates/times). Please see set
xdata.

38.95. Ydtics

The set ydtics command changes tics on the y axis to days of the week. Please see set
xdtics for details.

38.96. Ylabel

This command sets the label for the y axis. Please see set xlabel.

38.97. Ymtics

The set ymtics command changes tics on the y axis to months of the year. Please see set
xmtics for details.

38.98. Yrange

The set yrange command sets the vertical range that will be displayed on the y axis.
Please see set xrange for details.

38.99. Ytics

GNUPLOT 4.0 190

The set ytics command controls major (labelled) tics on the y axis. Please see set xtics
for details.

38.100. Yzeroaxis

The set yzeroaxis command draws a line at x = 0. For details, please see set zeroaxis.

38.101. Zdata

The set zdata command sets zaxis data to timeseries (dates/times). Please see set xdata.

38.102. Zdtics

The set zdtics command changes tics on the z axis to days of the week. Please see set
xdtics for details.

38.103. Cbdata

Set color box axis data to timeseries (dates/times). Please see set xdata.

38.104. Cbdtics

The set cbdtics command changes tics on the color box axis to days of the week. Please see
set xdtics for details.

38.105. Zero

The zero value is the default threshold for values approaching 0.0.

Syntax:
set zero <expression>
show zero

gnuplot will not plot a point if its imaginary part is greater in magnitude than the zero
threshold. This threshold is also used in various other parts of gnuplot as a (crude) numer-
ical-error threshold. The default zero value is 1e-8. zero values larger than 1e-3 (the recip-
rocal of the number of pixels in a typical bitmap display) should probably be avoided, but it
is not unreasonable to set zero to 0.0.

GNUPLOT 4.0 191

38.106. Zeroaxis

The x axis may be drawn by set xzeroaxis and removed by unset xzeroaxis. Similar
commands behave similarly for the y, x2, and y2 axes.

Syntax:
set {x|x2|y|y2|}zeroaxis { {linestyle | ls <line style>}

| { linetype | lt <line type>}
{ linewidth | lw <line width>}}

unset {x|x2|y|y2|}zeroaxis
show {x|y|}zeroaxis

By default, these options are off. The selected zero axis is drawn with a line of type
<line type> and width <line width> (if supported by the terminal driver currently in use),
or a user-defined style <line style>.

If no linetype is specified, any zero axes selected will be drawn using the axis linetype (line-
type 0).

set zeroaxis is equivalent to set xzeroaxis; set yzeroaxis. set nozeroaxis is equivalent
to unset xzeroaxis; unset yzeroaxis.

Examples:

To simply have the y=0 axis drawn visibly:

set xzeroaxis

If you want a thick line in a different color or pattern, instead:

set xzeroaxis linetype 3 linewidth 2.5

38.107. Zlabel

This command sets the label for the z axis. Please see set xlabel.

38.108. Zmtics

The set zmtics command changes tics on the z axis to months of the year. Please see set
xmtics for details.

38.109. Zrange

The set zrange command sets the range that will be displayed on the z axis. The zrange is
used only by splot and is ignored by plot. Please see set xrange for details.

GNUPLOT 4.0 192

38.110. Ztics

The set ztics command controls major (labelled) tics on the z axis. Please see set xtics
for details.

38.111. Cblabel

This command sets the label for the color box axis. Please see set xlabel.

38.112. Cbmtics

The set cbmtics command changes tics on the color box axis to months of the year. Please
see set xmtics for details.

38.113. Cbrange

The set cbrange command sets the range of z-values which are colored by pm3d mode of
splot. If the cb-axis is autoscaled, then the pm3d / palette range is taken from zrange.

Please see set xrange for details on set cbrange syntax.

38.114. Cbtics

The set cbtics command controls major (labelled) tics on the color box axis. Please see
set xtics for details.

39. Shell

The shell command spawns an interactive shell. To return to gnuplot, type logout if using
VMS, exit or the END-OF-FILE character if using Unix, endcli if using AmigaOS, or exit if
using MS-DOS or OS/2.

There are two ways of spawning a shell command: using system command or via ! ($ if using
VMS). The former command takes a string as a parameter and thus it can be used anywhere
among other gnuplot commands, while the latter syntax requires to be the only command on the
line. Control will return immediately to gnuplot after this command is executed. For example, in
AmigaOS, MS-DOS or OS/2,

! dir
or

system "dir"

GNUPLOT 4.0 193

prints a directory listing and then returns to gnuplot.

Other examples of the former syntax:
system "date"; set time; plot "a.dat"
print=1; if (print) replot; set out; system "lpr x.ps"

On an Atari, the ! command first checks whether a shell is already loaded and uses it, if available.
This is practical if gnuplot is run from gulam, for example.

40. Splot

splot is the command for drawing 3-d plots (well, actually projections on a 2-d surface, but you
knew that). It can create a plot from functions or a data file in a manner very similar to the plot
command.

See plot for features common to the plot command; only differences are discussed in detail here.
Note specifically that the binary and matrix options (discussed under "datafile-modifiers") are
not available for plot, and plot’s axes option is not available for splot.

Syntax:
splot {<ranges>}

<function> | "<datafile>" {datafile-modifiers}}
{<title-spec>} {with <style>}
{, {definitions,} <function> ...}

where either a <function> or the name of a data file enclosed in quotes is supplied. The function
can be a mathematical expression, or a triple of mathematical expressions in parametric mode.

By default splot draws the xy plane completely below the plotted data. The offset between the
lowest ztic and the xy plane can be changed by set ticslevel. The orientation of a splot projec-
tion is controlled by set view. See set view and set ticslevel for more information.

The syntax for setting ranges on the splot command is the same as for plot. In non-parametric
mode, the order in which ranges must be given is xrange, yrange, and zrange. In parametric
mode, the order is urange, vrange, xrange, yrange, and zrange.

The title option is the same as in plot. The operation of with is also the same as in plot,
except that the plotting styles available to splot are limited to lines, points, linespoints, dots,
and impulses; the error-bar capabilities of plot are not available for splot.

The datafile options have more differences.

See also show plot.

40.1. Data-file

GNUPLOT 4.0 194

As for plot, discrete data contained in a file can be displayed by specifying the name of the
data file, enclosed in quotes, on the splot command line.

Syntax:
splot ’<file name>’ {binary | matrix}

{index <index list>}
{every <every list>}
{using <using list>}

The special filenames "" and "-" are permitted, as in plot.

In brief, binary and matrix indicate that the data are in a special form, index selects
which data sets in a multi-data-set file are to be plotted, every specifies which datalines
(subsets) within a single data set are to be plotted, and using determines how the columns
within a single record are to be interpreted.

The options index and every behave the same way as with plot; using does so also,
except that the using list must provide three entries instead of two.

The plot options thru and smooth are not available for splot, but cntrparam and
dgrid3d provide limited smoothing capabilities.

Data file organization is essentially the same as for plot, except that each point is an (x,y,z)
triple. If only a single value is provided, it will be used for z, the datablock number will be
used for y, and the index of the data point in the datablock will be used for x. If two or
four values are provided, gnuplot uses the last value for calculating the color in pm3d plots.
Three values are interpreted as an (x,y,z) triple. Additional values are generally used as
errors, which can be used by fit.

Single blank records separate datablocks in a splot datafile; splot treats datablocks as the
equivalent of function y-isolines. No line will join points separated by a blank record. If all
datablocks contain the same number of points, gnuplot will draw cross-isolines between dat-
ablocks, connecting corresponding points. This is termed "grid data", and is required for
drawing a surface, for contouring (set contour) and hidden-line removal (set hidden3d).
See also splot grid data.

It is no longer necessary to specify parametric mode for three-column splots.

40.1.1. Binary

splot can read binary files written with a specific format (and on a system with a
compatible binary file representation.)

In previous versions, gnuplot dynamically detected binary data files. It is now neces-
sary to specify the keyword binary directly after the filename.

Single precision floats are stored in a binary file as follows:

<N+1> <y0> <y1> <y2> ... <yN>
<x0> <z0,0> <z0,1> <z0,2> ... <z0,N>
<x1> <z1,0> <z1,1> <z1,2> ... <z1,N>

GNUPLOT 4.0 195

: : : : ... :

which are converted into triplets:
<x0> <y0> <z0,0>
<x0> <y1> <z0,1>
<x0> <y2> <z0,2>
: : :

<x0> <yN> <z0,N>

<x1> <y0> <z1,0>
<x1> <y1> <z1,1>
: : :

These triplets are then converted into gnuplot iso-curves and then gnuplot proceeds
in the usual manner to do the rest of the plotting.

A collection of matrix and vector manipulation routines (in C) is provided in
binary.c. The routine to write binary data is

int fwrite matrix(file,m,nrl,nrl,ncl,nch,row title,column title)

An example of using these routines is provided in the file bf test.c, which generates
binary files for the demo file demo/binary.dem.

The index keyword is not supported, since the file format allows only one surface per
file. The every and using filters are supported. using operates as if the data were
read in the above triplet form. See also Binary File Splot Demo.

40.1.2. Example datafile

A simple example of plotting a 3-d data file is

splot ’datafile.dat’

where the file "datafile.dat" might contain:

The valley of the Gnu.
0 0 10
0 1 10
0 2 10

1 0 10
1 1 5
1 2 10

2 0 10
2 1 1
2 2 10

3 0 10
3 1 0

GNUPLOT 4.0 196

3 2 10

Note that "datafile.dat" defines a 4 by 3 grid (4 rows of 3 points each). Rows (dat-
ablocks) are separated by blank records.

Note also that the x value is held constant within each dataline. If you instead keep y
constant, and plot with hidden-line removal enabled, you will find that the surface is
drawn ’inside-out’.

Actually for grid data it is not necessary to keep the x values constant within a dat-
ablock, nor is it necessary to keep the same sequence of y values. gnuplot requires
only that the number of points be the same for each datablock. However since the sur-
face mesh, from which contours are derived, connects sequentially corresponding
points, the effect of an irregular grid on a surface plot is unpredictable and should be
examined on a case-by-case basis.

40.1.3. Matrix

The matrix flag indicates that the ASCII data are stored in matrix format. The z-
values are read in a row at a time, i. e.,

z11 z12 z13 z14 ...
z21 z22 z23 z24 ...
z31 z32 z33 z34 ...

and so forth. The row and column indices are used for the x- and y-values.

A blank line or comment line ends the matrix, and starts a new surface mesh. You can
select among the meshes inside a file by the index option to the splot command, as
usual.

40.2. Grid data

The 3D routines are designed for points in a grid format, with one sample, datapoint, at
each mesh intersection; the datapoints may originate from either evaluating a function, see
set isosamples, or reading a datafile, see splot datafile. The term "isoline" is applied to
the mesh lines for both functions and data. Note that the mesh need not be rectangular in
x and y, as it may be parameterized in u and v, see set isosamples.

However, gnuplot does not require that format. In the case of functions, ’samples’ need not
be equal to ’isosamples’, i.e., not every x-isoline sample need intersect a y-isoline. In the case
of data files, if there are an equal number of scattered data points in each datablock, then
"isolines" will connect the points in a datablock, and "cross-isolines" will connect the corre-
sponding points in each datablock to generate a "surface". In either case, contour and hid-
den3d modes may give different plots than if the points were in the intended format. Scat-
tered data can be converted to a {different} grid format with set dgrid3d.

The contour code tests for z intensity along a line between a point on a y-isoline and the
corresponding point in the next y-isoline. Thus a splot contour of a surface with samples
on the x-isolines that do not coincide with a y-isoline intersection will ignore such samples.
Try:

GNUPLOT 4.0 197

set xrange [-pi/2:pi/2]; set yrange [-pi/2:pi/2]
set style function lp
set contour
set isosamples 10,10; set samples 10,10;
splot cos(x)*cos(y)
set samples 4,10; replot
set samples 10,4; replot

40.3. Splot overview

splot can display a surface as a collection of points, or by connecting those points. As with
plot, the points may be read from a data file or result from evaluation of a function at spec-
ified intervals, see set isosamples. The surface may be approximated by connecting the
points with straight line segments, see set surface, in which case the surface can be made
opaque with set hidden3d. The orientation from which the 3d surface is viewed can be
changed with set view.

Additionally, for points in a grid format, splot can interpolate points having a common
amplitude (see set contour) and can then connect those new points to display contour
lines, either directly with straight-line segments or smoothed lines (see set cntrparam).
Functions are already evaluated in a grid format, determined by set isosamples and set
samples, while file data must either be in a grid format, as described in data-file, or be
used to generate a grid (see set dgrid3d).

Contour lines may be displayed either on the surface or projected onto the base. The base
projections of the contour lines may be written to a file, and then read with plot, to take
advantage of plot’s additional formatting capabilities.

41. System

system spawns shell to execute a command. Please type help shell for more details.

42. Test

This command graphically tests or presents terminal and palette capabilities.

Syntax:
test {terminal | palette [rgb|rbg|grb|gbr|brg|bgr]}

test or test terminal creates a display of line and point styles and other useful things appropri-
ate for and supported by the terminal you are just using.

test palette draws graphically profiles R(z),G(z),B(z), where 0<=z<=1, as calculated by the
current color palette. In other words, it is a beautiful plot you would have to do yourself with the
result of show palette palette 256 float. The optional parameter, a permutation of letters rgb,

GNUPLOT 4.0 198

determines the sequence of r,g,b profiles drawn one after the other --- try this yourself for set
palette gray. The default sequence is rgb.

43. Unset

Options set using the set command may be returned to their default state by issuing the corre-
sponding unset command.

Example:
set xtics mirror rotate by -45 0,10,100
...
unset xtics

44. Update

This command writes the current values of the fit parameters into the given file, formatted as an
initial-value file (as described in the fitsection). This is useful for saving the current values for
later use or for restarting a converged or stopped fit.

Syntax:
update <filename> {<filename>}

If a second filename is supplied, the updated values are written to this file, and the original
parameter file is left unmodified.

Otherwise, if the file already exists, gnuplot first renames it by appending .old and then opens a
new file. That is, "update ’fred’" behaves the same as "!rename fred fred.old; update
’fred.old’ ’fred’". [On DOS and other systems that use the twelve-character "filename.ext"
naming convention, "ext" will be "old" and "filename" will be related (hopefully recognizably) to
the initial name. Renaming is not done at all on VMS systems, since they use file-versioning.]

Please see fit for more information.

45. Graphical User Interfaces

Several graphical user interfaces have been written for gnuplot and one for win32 is included in
this distribution. In addition, there is a Macintosh interface at

ftp://ftp.ee.gatech.edu/pub/mac/gnuplot

Also several X11 interfaces exist. One of them is called xgfe. It uses the Qt library and can be
found on

http://www.flash.net/˜dmishee/xgfe/xgfe.html

GNUPLOT 4.0 199

In addition three Tcl/Tk located at the usual Tcl/Tk repositories exist.

Bruce Ravel (ravel@phys.washington.edu) has written a new version of gnuplot-mode for GNU
emacs and XEmacs. This version is based on the gnuplot.el file by Gershon Elber. While the gnu-
plot CVS repository has its own copy the most recent version of this package is available from

http://feff.phys.washington.edu/˜ravel/software/gnuplot-mode/

46. Bugs

Floating point exceptions (floating point number too large/small, divide by zero, etc.) may occa-
sionally be generated by user defined functions. Some of the demos in particular may cause num-
bers to exceed the floating point range. Whether the system ignores such exceptions (in which
case gnuplot labels the corresponding point as undefined) or aborts gnuplot depends on the
compiler/runtime environment.

The bessel functions do not work for complex arguments.

The gamma function does not work for complex arguments.

As of gnuplot version 3.7, all development has been done using ANSI C. With current operating
system, compiler, and library releases, the OS specific bugs documented in release 3.5, now rele-
gated to old bugs, may no longer be relevant.

Bugs reported since the current release as well as older ones may be located via the official distri-
bution site:

http://www.gnuplot.info

Please e-mail any bugs to bug-gnuplot mailing list (see Seeking-assistance).

47. Old bugs

There is a bug in the stdio library for old Sun operating systems (SunOS Sys4-3.2). The "%g"
format for ’printf’ sometimes incorrectly prints numbers (e.g., 200000.0 as "2"). Thus, tic mark
labels may be incorrect on a Sun4 version of gnuplot. A work-around is to rescale the data or
use the set format command to change the tic mark format to "%7.0f" or some other appropri-
ate format. This appears to have been fixed in SunOS 4.0.

Another bug: On a Sun3 under SunOS 4.0, and on Sun4’s under Sys4-3.2 and SunOS 4.0, the
’sscanf’ routine incorrectly parses "00 12" with the format "%f %f" and reads 0 and 0 instead of 0
and 12. This affects data input. If the data file contains x coordinates that are zero but are spec-
ified like ’00’, ’000’, etc, then you will read the wrong y values. Check any data files or upgrade
the SunOS. It appears to have been fixed in SunOS 4.1.1.

Suns appear to overflow when calculating exp(-x) for large x, so gnuplot gets an undefined result.
One work-around is to make a user-defined function like e(x) = x<-500 ? 0 : exp(x). This affects
plots of Gaussians (exp(-x*x)) in particular, since x*x grows quite rapidly.

GNUPLOT 4.0 200

Microsoft C 5.1 has a nasty bug associated with the %g format for ’printf’. When any of the for-
mats "%.2g", "%.1g", "%.0g", "%.g" are used, ’printf’ will incorrectly print numbers in the range
1e-4 to 1e-1. Numbers that should be printed in the %e format are incorrectly printed in the %f
format, with the wrong number of zeros after the decimal point. To work around this problem,
use the %e or %f formats explicitly.

gnuplot, when compiled with Microsoft C, did not work correctly on two VGA displays that were
tested. The CGA, EGA and VGA drivers should probably be rewritten to use the Microsoft C
graphics library. gnuplot compiled with Borland C++ uses the Turbo C graphics drivers and
does work correctly with VGA displays.

VAX/VMS 4.7 C compiler release 2.4 also has a poorly implemented %g format for ’printf’. The
numbers are printed numerically correct, but may not be in the requested format. The K&R sec-
ond edition says that for the %g format, %e is used if the exponent is less than -4 or greater than
or equal to the precision. The VAX uses %e format if the exponent is less than -1. The VAX
appears to take no notice of the precision when deciding whether to use %e or %f for numbers less
than 1. To work around this problem, use the %e or %f formats explicitly. From the VAX C 2.4
release notes: e,E,f,F,g,G Result will always contain a decimal point. For g and G, trailing zeros
will not be removed from the result.

VAX/VMS 5.2 C compiler release 3.0 has a slightly better implemented %g format than release
2.4, but not much. Trailing decimal points are now removed, but trailing zeros are still not
removed from %g numbers in exponential format.

The two preceding problems are actually in the libraries rather than in the compilers. Thus the
problems will occur whether gnuplot is built using either the DEC compiler or some other one
(e.g. the latest gcc).

ULTRIX X11R3 has a bug that causes the X11 driver to display "every other" graph. The bug
seems to be fixed in DEC’s release of X11R4 so newer releases of ULTRIX don’t seem to have the
problem. Solutions for older sites include upgrading the X11 libraries (from DEC or direct from
MIT) or defining ULTRIX KLUDGE when compiling the x11.trm file. Note that the kludge is
not an ideal fix, however.

The constant HUGE was incorrectly defined in the NeXT OS 2.0 operating system. HUGE
should be set to 1e38 in plot.h. This error has been corrected in the 2.1 version of NeXT OS.

Some older models of HP plotters do not have a page eject command ’PG’. The current HPGL
driver uses this command in HPGL reset. This may need to be removed for these plotters. The
current PCL5 driver uses HPGL/2 for text as well as graphics. This should be modified to use
scalable PCL fonts.

On the Atari version, it is not possible to send output directly to the printer (using /dev/lp as
output file), since CRs are added to LFs in binary output. As a work-around, write the output to
a file and copy it to the printer afterwards using a shell command.

On AIX 4, the literal ’NaNq’ in a datafile causes the special internal value ’not-a-number’ to be
stored, rather than setting an internal ’undefined’ flag. A workaround is to use set datafile
missing ’NaNq’.

GNUPLOT 4.0 i

Table of Contents

Gnuplot . 1
Copyright . 1
Introduction . 2
Seeking-assistance . 3
What is New in Version 4.0 . 3
Mouse and hotkey support in interactive terminals 3
New terminal features . 4
New plot style ‘pm3d‘ . 5
New plot style ‘filledcurves‘ . 5
Filled boxes . 5
New plot option smooth frequency . 5
Improved text options . 5
More text encodings . 6
Arrows . 6
Data file format . 6
Other changes and additions . 6
Accompanying documentation . 7
Batch/Interactive Operation . 7
Command-line-editing . 8
Comments . 10
Coordinates . 10
Environment . 10
Expressions . 11
Functions . 12
Random number generator . 14
Operators . 14
Unary . 14
Binary . 15
Ternary . 16
User-defined . 16
Glossary . 17
Mouse input . 18
Bind . 18
Mouse variables . 19
Plotting . 20
Start-up . 20
Substitution . 21
Syntax . 21
Time/Date data . 22
Commands . 23
Cd . 23
Call . 24
Clear . 25
Exit . 25
Fit . 25
Adjustable parameters . 27
Short introduction . 27
Error estimates . 28
Statistical overview . 28
Practical guidelines . 29

GNUPLOT 4.0 ii

Fit controlling . 30
Control variables . 31
Environment variables . 31
Multi-branch . 32
Starting values . 32
Tips . 32
Help . 33
History . 34
If . 34
Load . 35
Pause . 35
Plot . 36
Data-file . 37
Every . 38
Example datafile . 39
Index . 39
Smooth . 39
Acsplines . 40
Bezier . 41
Csplines . 41
Sbezier . 41
Unique . 41
Frequency . 41
Special-filenames . 41
Thru . 43
Using . 43
Errorbars . 45
Errorlines . 46
Parametric . 47
Ranges . 47
Title . 48
With . 49
Print . 51
Pwd . 51
Quit . 51
Replot . 51
Reread . 52
Reset . 53
Save . 53
Set-show . 54
Angles . 54
Arrow . 55
Autoscale . 57
Parametric mode . 58
Polar mode . 58
Bars . 59
Bmargin . 59
Border . 59
Boxwidth . 61
Clabel . 61
Clip . 62
Cntrparam . 63
Color box . 64

=1 .if 0 .tl ’GNUPLOT 4.0’’%’

Contour . 65
Data style . 66
Datafile . 66
Set datafile missing . 66
Set datafile separator . 67
Set datafile commentschars . 68
Decimalsign . 68
Dgrid3d . 69
Dummy . 70
Encoding . 70
Fit . 71
Fontpath . 71
Format . 72
Format specifiers . 73
Time/date specifiers . 74
Function style . 75
Functions . 75
Grid . 75
Hidden3d . 76
Historysize . 78
Isosamples . 78
Key . 78
Label . 81
Lmargin . 83
Loadpath . 83
Locale . 83
Logscale . 84
Mapping . 84
Margin . 85
Mouse . 85
X11 mouse . 87
Multiplot . 87
Mx2tics . 88
Mxtics . 89
My2tics . 89
Mytics . 89
Mztics . 89
Offsets . 90
Origin . 90
Output . 90
Parametric . 91
Plot . 92
Pm3d . 92
Palette . 95
Rgbformulae . 97
Defined . 98
Functions . 99
File . 100
Gamma-correction . 100
Postscript . 101
Pointsize . 101
Polar . 102
Print . 102

GNUPLOT 4.0 iv

Rmargin . 103
Rrange . 103
Samples . 103
Size . 104
Style . 105
Set style arrow . 105
Set style data . 106
Set style fill . 107
Set style function . 107
Set style line . 107
Plotting styles . 109
Boxerrorbars . 109
Boxes . 110
Filledcurves . 111
Boxxyerrorbars . 111
Candlesticks . 112
Dots . 112
Financebars . 113
Fsteps . 113
Histeps . 113
Impulses . 113
Lines . 113
Linespoints . 114
Points . 114
Steps . 114
Vectors . 114
Xerrorbars . 114
Xyerrorbars . 115
Yerrorbars . 115
Xerrorlines . 115
Xyerrorlines . 115
Yerrorlines . 116
Surface . 116
Terminal . 116
Aed767 . 117
Aifm . 117
Amiga . 118
Apollo . 118
Aqua . 118
Atari ST (via AES) . 118
Be . 119
Command-line options . 120
Monochrome options . 120
Color resources . 120
Grayscale resources . 121
Line resources . 122
Cgi . 122
Cgm . 123
Font . 123
Linewidth . 125
Rotate . 125
Solid . 125
Size . 125

GNUPLOT 4.0 v

Width . 126
Nofontlist . 126
Corel . 126
Debug . 127
Dospc . 127
Dumb . 127
Dxf . 127
Dxy800a . 127
Eepic . 128
Emf . 129
Emxvga . 129
Epslatex . 130
Epson-180dpi . 130
Excl . 131
Fig . 131
Ggi . 133
Gif . 133
Gnugraph(GNU plotutils) . 134
Gpic . 135
Gpr . 136
Grass . 136
Hercules . 136
Hp2623a . 136
Hp2648 . 136
Hp500c . 136
Hpgl . 137
Hpljii . 138
Hppj . 138
Imagen . 138
Iris4d . 139
Jpeg . 139
Kyo . 141
Latex . 141
Linux . 142
Macintosh . 142
Mf . 142
METAFONT Instructions . 143
Mgr . 144
Mif . 144
Mp . 145
Metapost Instructions . 147
Mtos . 148
Next . 148
Openstep (next) . 148
Pbm . 149
Pdf . 149
Pm . 150
Png (NEW) . 150
Png (OLD) . 152
Postscript . 152
Enhanced postscript . 154
Editing postscript . 155
Postscript plus . 156

GNUPLOT 4.0 vi

Postscript fontfile . 156
Pslatex and pstex . 158
Pstricks . 159
Qms . 159
Regis . 159
Rgip . 159
Sun . 160
Svg . 160
Svga . 161
Table . 161
Tek40 . 161
Tek410x . 161
Texdraw . 161
Tgif . 162
Tkcanvas . 163
Tpic . 164
Unixpc . 164
Unixplot . 164
Atari ST (via VDI) . 165
Vgagl . 165
VWS . 166
Vx384 . 166
Windows . 166
Graph-menu . 167
Printing . 167
Text-menu . 168
Wgnuplot.ini . 169
Windows3.0 . 169
X11 . 170
X11 fonts . 171
Command-line options . 172
Monochrome options . 172
Color resources . 173
Grayscale resources . 173
Line resources . 174
X11 pm3d resources . 175
Xlib . 176
Tics . 176
Ticslevel . 176
Ticscale . 177
Timestamp . 177
Timefmt . 177
Title . 179
Tmargin . 179
Trange . 179
Urange . 179
Variables . 179
Version . 180
View . 180
Vrange . 181
X2data . 181
X2dtics . 181
X2label . 181

GNUPLOT 4.0 vii

X2mtics . 181
X2range . 181
X2tics . 181
X2zeroaxis . 182
Xdata . 182
Xdtics . 182
Xlabel . 183
Xmtics . 184
Xrange . 184
Xtics . 186
Xzeroaxis . 188
Y2data . 188
Y2dtics . 188
Y2label . 188
Y2mtics . 188
Y2range . 188
Y2tics . 189
Y2zeroaxis . 189
Ydata . 189
Ydtics . 189
Ylabel . 189
Ymtics . 189
Yrange . 189
Ytics . 190
Yzeroaxis . 190
Zdata . 190
Zdtics . 190
Cbdata . 190
Cbdtics . 190
Zero . 190
Zeroaxis . 191
Zlabel . 191
Zmtics . 191
Zrange . 191
Ztics . 192
Cblabel . 192
Cbmtics . 192
Cbrange . 192
Cbtics . 192
Shell . 192
Splot . 193
Data-file . 194
Binary . 194
Example datafile . 195
Matrix . 196
Grid data . 196
Splot overview . 197
System . 197
Test . 197
Unset . 198
Update . 198
Graphical User Interfaces . 198
Bugs . 199

GNUPLOT 4.0 viii

Old bugs . 199

