
LIBAGRAPH(3) LIBAGRAPH(3)

NAME
Agraph − abstract graph library

SYNOPSIS
#include <graphviz/agraph.h>

TYPES
Agraph_t;
Agnode_t;
Agedge_t;
Agdesc_t;
Agdisc_t;
Agsym_t;

GRAPHS
Agraph_t *agopen(char *name, Agdesc_t kind, Agdisc_t *disc);
int agclose(Agraph_t *g);
Agraph_t *agread(void *file, Agdisc_t *);
Agraph_t *agconcat(Agraph_t *g, void *chan, Agdisc_t *disc)
int agwrite(Agraph_t *g, void *file);
int agnnodes(Agraph_t *g),agnedges(Agraph_t *g);

SUBGRAPHS
Agraph_t *agsubg(Agraph_t *g, char *name, int createflag);
Agraph_t *agfstsubg(Agraph_t *g), agnxtsubg(Agraph_t *);
Agraph_t *agparent(Agraph_t *g),*agroot(Agraph_t *g);

NODES
Agnode_t *agnode(Agraph_t *g, char *name, int createflag);
Agnode_t *agidnode(Agraph_t *g, ulong id, int createflag);
Agnode_t *agsubnode(Agraph_t *g, Agnode_t *n, int createflag);
Agnode_t *agfstnode(Agraph_t *g);
Agnode_t *agnxtnode(Agnode_t *n);
int agdelnode(Agraph_t *g, Agnode_t *n);
int agrename(Agraph_t *g, Agnode_t *n, char *newname);
int agdegree(Agnode_t *n, int use_inedges, int use_outedges);

EDGES
Agedge_t *agedge(Agnode_t *t, Agnode_t *h, char *name, int createflag);
Agedge_t *agsubedge(Agraph_t *g, Agedge_t *e, int createflag);
int agdeledge(Agraph_t *g, Agedge_t *e);

Agnode_t *aghead(Agedge_t *e), *agtail(Agedge_t *e);
Agedge_t *agfstedge(Agnode_t *n);
Agedge_t *agnxtedge(Agedge_t *e, Agnode_t *n);
Agedge_t *agfstin(Agnode_t *n);
Agedge_t *agnxtin(Agedge_t *e);
Agedge_t *agfstout(Agnode_t *n);
Agedge_t *agnxtout(Agedge_t *e);

FLATTENED LISTS
int agflatten(Agraph_t *graph, int flag);
Agnode_t *agfstn(Agraph_t *g), *agnxtn(Agnode_t *n);
Agedge_t *agfout(Agnode_t *n), *agfin(Agnode_t *n), *agnxte(Agedge_t *e);

8 MARCH 1996 1



LIBAGRAPH(3) LIBAGRAPH(3)

STRING ATTRIBUTES
Agsym_t *agattr(Agraph_t *g, int kind, char *name, char *value);
Agsym_t *agattrnxt(Agraph_t *g, int kind, Agsym_t *attr);

char *agget(void *obj, char *name);
char *agxget(void *obj, Agsym_t *sym);
int agset(void *obj, char *name, char *value);
int agxset(void *obj, Agsym_t *sym, char *value);

RECORDS
void *agnewrec(Agraph_t *g, void *obj, char *name, unsigned int size);
Agrec_t *aggetrec(void *obj, char *name, int move_to_front);
int agdelrec(Agraph_t *g, void *obj, char *name);

CALLBACKS
Agcbdisc_t *agpopdisc(Agraph_t *g);
void agpushdisc(Agraph_t *g, Agcbdisc_t *disc);
void agmethod(Agraph_t *g, void *obj, Agcbdisc_t *disc, int initflag);

MEMORY
void *agalloc(Agraph_t *g, size_t request);
void *agrealloc(Agraph_t *g, void *ptr, size_t oldsize, size_t newsize);
void agfree(Agraph_t *g, void *ptr);

GENERIC OBJECTS
Agraph_t *agraphof(void*);
char *agnameof(void*);
int agisarootobj(void*);
Agrec_t *AGDAT A(void *obj);
ulong AGID(void *obj);
int AGTYPE(void *obj);

DESCRIPTION
Libagraph supports graph programming by maintaining graphs in memory and reading and writing graph
files. Graphs, nodes and edges may be attributed with programmer-defined records and string name-value
pairs. Graphs are composed of nodes, edges, and nested subgraphs. Internally, Libagraph depends exten-
sively on Libcdt (formerly Libdict) for set representation.

All of Libagraph’s global symbols have the prefix ag (case varying).

GRAPHS
A ‘‘main’’ or ‘‘root’’ graph defines a namespace for a collection of graph objects (subgraphs, nodes, edges)
and their attributes. Objects may be named by unique strings or by 32-bit IDs. By default data points to
runtime records containing application-dependent data, keyed by name (see Attributes). desc records if a
graph is directed or undirected, and if it is strict or allows multi-edges and self-arcs.

agopen creates a new graph with the given name and graph kind descriptor (global values are Agdirected,
Agundirected, Agstrictdirected, and Agstrictundirected). agclose deletes a graph, freeing all its associ-
ated storage. agread and agwrite perform file I/O (see Graph File Language bellow). agsubg creates a
new subgraph, which always inherits the graph kind of its parent. The new subgraph is initially empty.
Nested subgraph trees may be created. The name of a subgraph is interpreted only relative to the given par-
ent graph. agsubglist returns a list (possibly empty) of subgraphs of a given graph.

By default, nodes are kept in ordered sets in n_dict, allowing efficient random access to insert, find, and
delete nodes. Similarly the edges of each node are kept in ordered sets. The sets are maintained as splay

8 MARCH 1996 2



LIBAGRAPH(3) LIBAGRAPH(3)

tree dictionaries. agflatten allows flattening trees into linked lists, which may thereafter be traversed very
quickly without function calls for low overhead in critical sections of code. In this mode, sets are locked to
prevent updates or random access searches, though it is still legal to call Libagraph to scan lists sequen-
tially. The flag argument requests flattening and locking (if boolean true), or unlocking (if false). In-line
functions or macros for list traversal are given below under Nodes and Edges. Note that flattening a graph
does not automatically flatten its subgraphs.

agnnodes, agnedges, and agdegree return the cardinalities of node and edge sets. The latter takes flags to
select in-edges, out-edges, or both.

Agdisc_t specifies callbacks invoked when initializing, modifying, or finalizinf graph objects. (Casual
users can ignore the following.) Disciplines are kept on a stack. Libagraph automatically calls the methods
on the stack, top-down. A method can obtain its data (closure) via aggetuserptr.

When Libagraph is compiled with Vmalloc, each graph has its own heap. Programmers may allocate appli-
cation-dependent data within the same heap as the rest of the graph. The advantage is that a graph can be
deleted by atomically freeing its entire heap without scanning each individual node and edge.

NODES
A node is identified uniquely by name and graph pointer. Node pointers are not unique— separate node
structs are created per subgraph. Name pointers are unique, though, because each graph has its own shared
string pool.

agnode searches in a graph or subgraph for a node with the given name, and returns it if found. If not
found, if createflag is boolean true a new node is created and returned, otherwise a nil pointer is returned.
agsubnode takes an existing node as a template, usually to find or insert a node in a subgraph.

The default ordering of nodes is by order of creation (sequence). Internally, Libagraph switches between
ID searching and sequence ordering as necessary. agfstnode and agnxtnode are the usual functions for
scanning node lists. When node sets are flattened it is permissible to call agfstnode and agnxtnode, but
conflicting attempts to insert, delete, or search for nodes cause a runtime error.

EDGES
An abstract edge is represented by two edge structs. There is one pointing to each terminal node, and resid-
ing in an edge list of the opposite node. The object tag distinguishes between these otherwise symmetric
records, to allow obtaining head and tail. If a graph has multi-edges between the same nodes, the name
field serves as a secondary key.

agedge searches in a graph of subgraph for an edge between the given endpoints (with an optional multi-
edge selector name) and returns it if found. Otherwise, if createflag is boolean true, a new edge is created
and returned: otherwise a nil pointer is returned. If the name is (char*)0 then an anonymous internal value
is generated. agfstin, agnxtint, agfstout, and agnxtout visit directed in- and out- edge lists, and ordinarily
apply only in directed graphs. agfstedge and agnxtedge visit all edges incident to a node. In traversing
lists, e->node always points to the ‘‘other’’ node of the edge, To resolve ambiguity between in- and out-
edge structs, aghead and agtail are macros or inline functions to find endpoints by checking object tags.
agopp returns the ‘‘opposite’’ edge struct. Similarly agfout, agfin, and agnedge operate on flattened edge
lists.

STRING ATTRIBUTES
Programmer-defined values may be dynamically attached to graphs, subgraphs, nodes, and edges. Such
values are either uninterpreted binary records (for implementing efficient algorithms) or character string
data (for I/O). String attributes are handled automatically in reading and writing graph files. Uninterpreted
records are ignored; any desired conversion must be coded explicitly by application programmers.

A string attribute is identified by name and by an internal symbol table entry (Agsym_t) created by Liba-
graph. Attributes of nodes, edges, and graphs (with their subgraphs) have separate namespaces. The con-
tents of an Agsym_t is listed below, followed by primitives to operate on string attributes.

8 MARCH 1996 3



LIBAGRAPH(3) LIBAGRAPH(3)

typedef struct Agsym_s { /* symbol in one of the above dictionaries */
Dtlink_t link;
char *name; /* attribute’s name */
char *defval; /* its default value for initialization */
int id; /* its index in attr[] */

} Agsym_t;

agattr creates or looks up attributes. kind may be AGRAPH, AGNODE, or AGEDGE. If value is
(char*)0), the request is to search for an existing attribute of the given kind and name. Otherwise, if the
attribute already exists, its default for creating new objects is set to the given value; if it does not exist, a
new attribute is created with the given default, and the default is applied to all pre-existing objects of the
given kind.

agdictof returns a Libdict set of all the attributes of a given kind. agdictsym is a utility function that finds
an entry in one of these dictionary sets.

agget and agset read and update string attributes. The first argument should be a graph, node, or edge
struct pointer. agxset and agxset take a symbol table entry reference instead of a name, to avoid the cost of
looking up attribute names inside loops. Note that Libagraph performs its own storage management of
strings. The calling program does not need to dynamically allocate storage.

RECORDS
Uninterpreted records may be attached to graphs (subgraphs), nodes, and edges for efficient operations on
values such as marks, weights, counts, and pointers needed by algorithms. Application programmers define
the fields of these records, but they hav e a common header as shown below.

typedef struct Agrec_s {
char *name;
struct Agrec_s *next;
/* programmer-defined follows */

} Agrec_t;

Records are created and managed by Libagraph. In each graph, node, or edge, data points to a circular list
of records. The name field distinguishes various types of records, and is programmer defined (Libagraph
reserves the prefix _ag). next stores the list pointers. The remainder of a record may contain application-
dependent fields. agnewrec creates one new record of the given size and attaches it to the given object
(graph, node, or edge). agdelrec is the corresponding function to delete records. aggetrec finds a record
with the given name.

To allow referencing application-dependent data without function calls or linear search, Libagraph allows
setting and locking the data field of a graph, node, or edge on a particular record. The move_to_front flag
may be AG_MTF_FALSE, AG_MTF_SOFT, or AG_MTF_HARD accordingly. The AG_MTF_SOFT
field is only a hint that decreases overhead in subsequent calls of aggetrec; AG_MTF_HARD guarantees
that a lock was obtained. To release locks, use AG_MTF_SOFT or AG_MTF_FALSE. Use of this fea-
ture implies cooperation or at least isolation from other functions also using the move-to-front convention.

A cast (generally using a macro or inline function) is then needed to convert the data pointer to an appro-
priate programmer-defined type.

DISCIPLINES
Programmer-defined disciplines customize certain resources- ID namespace, memory, and I/O - needed by
Libagraph. A discipline struct (or NIL) is passed at graph creation time.

8 MARCH 1996 4



LIBAGRAPH(3) LIBAGRAPH(3)

struct Agdisc_s { /* user’s discipline */
Agmemdisc_t *mem;
Agiddisc_t *id;
Agiodisc_t *io;

} ;

A default discipline is supplied when NIL is given for any of these fields.

An ID allocator discipline allows a client to control assignment of IDs (uninterpreted 32-bit values) to
objects, and possibly how they are mapped to and from strings.

struct Agiddisc_s { /* object ID allocator */
void *(*open)(Agraph_t *g); /* associated with a graph */
int (*map)(void *state, int objtype, char *str, ulong *id, int createflag);
int (*alloc)(void *state, int objtype, ulong id);
void (*free)(void *state, int objtype, ulong id);
char *(*print)(void *state, int objtype, ulong id);
void (*close)(void *state);

} ;

open permits the ID discipline to initialize any data structures that maintains per individual graph. Its
return value is then passed as the first argument to all subsequent ID manager calls.

alloc informs the ID manager that Libagraph is attempting to create an object with a specific ID that was
given by a client. The ID manager should return TRUE (nonzero) if the ID can be allocated, or FALSE
(which aborts the operation).

free is called to inform the ID manager that the object labeled with the given ID is about to go out of exis-
tence.

map is called to create or look-up IDs by string name (if supported by the ID manager). Returning TRUE
(nonzero) in all cases means that the request succeeded (with a valid ID stored through result. There are
four cases:

name != NULL and createflag == 1: This requests mapping a string (e.g. a name in a graph file) into a new
ID. If the ID manager can comply, then it stores the result and returns TRUE. It is then also responsible for
being able to print the ID again as a string. Otherwise the ID manager may return FALSE but it must
implement the following (at least for graph file reading and writing to work):

name == NULL and createflag == 1: The ID manager creates a unique new ID of its own choosing.
Although it may return FALSE if it does not support anonymous objects, but this is strongly discouraged
(to support "local names" in graph files.)

name != NULL and createflag == 0: This is a namespace probe. If the name was previously mapped into
an allocated ID by the ID manager, then the manager must return this ID. Otherwise, the ID manager may
either return FALSE, or may store any unallocated ID into result. (This is convenient, for example, if names
are known to be digit strings that are directly converted into 32 bit values.)

name == NULL and createflag == 0: forbidden.

print should return print is allowed to return a pointer to a static buffer; a caller must copy its value if
needed past subsequent calls. NULL should be returned by ID managers that do not map names.

The map and alloc calls do not pass a pointer to the newly allocated object. If a client needs to install
object pointers in a handle table, it can obtain them via new object callbacks.

8 MARCH 1996 5



LIBAGRAPH(3) LIBAGRAPH(3)

struct Agiodisc_s {
int (*fread)(void *chan, char *buf, int bufsize);
int (*putstr)(void *chan, char *str);
int (*flush)(void *chan); /* sync */
/* error messages? */

} ;

struct Agmemdisc_s { /* memory allocator */
void *(*open)(void); /* independent of other resources */
void *(*alloc)(void *state, size_t req);
void *(*resize)(void *state, void *ptr, size_t old, size_t req);
void (*free)(void *state, void *ptr);
void (*close)(void *state);

} ;

EXAMPLE PROGRAM
#include <graphviz/agraph.h>
typedef struct mydata_s {int x,y,z;} mydata;

main(int argc, char **argv)
{

Agraph_t *g;
Agnode_t *v;
Agedge_t *e;
Agsym_t *attr;
Dict_t *d
int cnt;
mydata *p;

if (g = agread(stdin,NIL(Agdisc_t*))) {
/* dtsize() is a Libdict primitive */

fprintf(stderr,"%s has %d node attributes0,
dtsize(agdictof(g,AGNODE)));

attr = agattr(g,AGNODE,"color","blue");

/* create a new graph */
h = agopen("tmp",g->desc);

/* this is a way of counting all the edges of the graph */
cnt = 0;
for (v = agfstnode(g); v; v = agnxtnode(g,v))

for (e = agfstout(g,v); e; e = agnxtout(g,e))
cnt++;

/* using inline functions or macros, attach records to edges */
agflatten(g);
for (v = agfstn(g); v; v = agnxtn(v))

for (e = agfout(v); e; e; = agnxte(e)) {
p = (mydata*) agnewrec(g,e,"mydata",sizeof(mydata));
p->x = 27; /* meaningless example */

}
}

}

8 MARCH 1996 6



LIBAGRAPH(3) LIBAGRAPH(3)

EXAMPLE GRAPH FILES
digraph G {

a -> b;
c [shape=box];
a -> c [weight=29,label="some text];
subgraph anything {

/* the following affects only x,y,z */
node [shape=circle];
a; x; y -> z; y -> z; /* multiple edges */

}
}

strict graph H {
n0 -- n1 -- n2 -- n0; /* a cycle */
n0 -- {a b c d}; /* a star */
n0 -- n3;
n0 -- n3 [weight=1]; /* same edge because graph is strict */

}

SEE ALSO
Libcdt(3)

BUGS
The root graph name is treated as a comment.

There is no way to delete string attributes or modify edge keys.

Strings and uninterpreted records could be treatly more uniformly.

AUTHOR
Stephen North, north@research.att.com, AT&T Research.

8 MARCH 1996 7


