
Quick start OpenSCADA
Roman Savochenko (rom_as@oscada.org)

Maxim Lysenko (mlisenko@oscada.org)

8. Jun. 2012

mailto:rom_as@oscada.org
mailto:mlisenko@oscada.org

Content table
Quick start OpenSCADA...1

Introduction..3
 1. Terms, definitions and abbreviations ...4
 2. Installation ..5

 2.1. Installing OpenSCADA from packages ...5
 2.2. Installation from sources ...7

 3. Initial configuration and start ..8
 3.1.Creation the user's project from scratch ..12

 4. Working with Data Sources ..15
 4.1. Data acquisition from the TP device ...15
 4.2. TP data processing ..25
 4.3. Typified Data Sources Parameters ...32
 4.4. Enabling the TP data archiving ..36

 5. The formation of visual presentation ..39
 5.1. Adding the template page in the project and linkage of the dynamics 40
 5.2. The creation of the new frame, the mnemonic scheme ..45
 5.3. Creation of the new complex element ..53

 6. Recipes ...75
 6.1. Transfer of OpenSCADA configurations from one project to another 75
 6.2. Cyclic programming into OpenSCADA particularity ...76
 6.3. Live disk (Live CD/USB) ...77
 6.4. General provisions of the working conception with violations, alarms and notifications
...82

Conclusion...83

Quick start OpenSCADA 2

Introduction
The OpenSCADA is extremely modular, flexible and multi-functional SCADA-system. As a

consequence of this the first contact with OpenSCADA can be quite complex because of the small chance
of matching the previous experience of the user or complete lack of it with the methods of work in
OpenSCADA. However, this is largely just a first impression, because the whole power of OpenSCADA
is in the palm of the user, because of the abundance of which the user can get confused, and he may
require considerable efforts to select the necessary functions to solve his tasks.

For this reason, and to visualize the general concept of work in OpenSCADA this document is created.
The document in the concise and understandable form shows the path from start of OpenSCADA to
creation of the user interface elements on real examples. In addition, the document contains the chapter
with recipes for the configuration, implementation, and typical problems of the user.

The document does not contain the detailed description of the concept and a deep dive into the details
of OpenSCADA, and provides links to the appropriate OpenSCADA documents, containing such
information.

Document description is synchronized with the implementation of the examples on the demonstration
database (DB), AGLKS model. Consequently, the user must obtain the distribution kit of OpenSCADA
with this database for illustrative study and testing the examples.

Quick start OpenSCADA 3

http://wiki.oscada.org/HomePageEn/Using/ModelAGLKS?v=gnj

 1. Terms, definitions and abbreviations
The automated workplace — Usually consists of a system unit of the computer system, display,

mouse, sometimes with the keyboard, and other peripheral equipment that is used for visual representation
of technological process data and making the control actions on the TP.

Lock (term) — notional boundary of technological parameter, in the case of its getting over the preset
algorithm steps to prevent the accident are made. In some modes of TP (start) in accordance with the
regulation it may be necessary to disable the lock (unlocking).

Unlocking (term) — process of the lock disabling for the duration of the TP working in the modes for
which the regulation provides this operation. Attention, unlocking the technological parameters is strict
accountable operation and the must be made by operational staff in the proper order.

Quittance (term) — the process of confirming the fact that operational staff drew attention to the
failures of TP working. This process usually entails the adoption of measures by the operator to correct
violations and pressing the appropriate button to stop the alarm.

PLC (abbreviation) — Industrial PLC. Microprocessor-based electronic device to which via
computer-process interface (CPI) the signal of processing parameters are going. PLC acts the role of the
direct data acquisition, processing and making the control actions by means of algorithms of automatic
control. In addition the PLC provides data for the visualization of TP, and receives data of the manual
intervention from the "top level" system.

Alarm (term) — process of notifying the operational staff of the violation of process or work of the
automation equipment. Way of signaling may be of different types of impacts on human senses in order to
attract attention. Often it is involved the following types of alarms:

• Light alarm — usually is done by changing the color of the graphic object (blinking) to
emerging events and by the setting of static accidents colors (red and yellow) for acknowledged
events.
• Sound — is made by an audible signal at the time of occurrence of the event. Type of alarm can
be monotonous and the synthesized voice message with information about the violation.

TP (abbreviation) — Technological process. The whole complex of technological equipment of the
production process.

CPI (abbreviation) — Computer-Process Interface. A number of devices or modules of PLC, to which
are directly connected the signals from the sensors of TP for subsequent conversion from analog to digital
form and vice versa. The transformation is carried out with aim of further processing of values of
technological parameters in the PLC.

Alarm setpoint (term) — conventional boundary of the value of technological parameter, the
overcoming of which is considered ad the emergency situation. Usually the following boundaries are
provided:

• The upper and lower emergency boundaries — boundaries of the emergency values of
technological parameter.
• The upper and lower warning boundaries — boundaries of the prevention, regulation
boundaries, of the violation of the technological parameter of the working range.
• Failure — sign of parameter getting over the hardware boundaries of technological equipment.
Usually it characterizes the sensor failure, breakage of the communication channel with the sensor
or PLC.

SCADA (abbreviation) — Supervisory Control And Data Acquisition. The software that performs
complex tasks of data acquisition of TP, their archiving and presentation, as well as the making the control
actions by the operator in manual mode.

Quick start OpenSCADA 4

 2. Installation
The installation of OpenSCADA distribution kit can be done in two ways. The first and the easiest way

is to get packages for your Linux distribution. The second — to build the OpenSCADA system from
sources. In general, the installation procedure depends strongly on the used Linux distribution and it does
not seem possible to exhaustively describe it in this guide! Therefore, you may need a deep familiarity
with the mechanisms of software installation for the selected Linux distribution from its documentation.

If user does not have deep enough knowledges and skills in the chosen Linux distribution, it is strongly
recommended to choose the Linux distribution by the criterion of existence for it the packages of
OpenSCADA in the repositories of the distribution, which will ensure an easy and problem-free
installation!

If the user can not only install the OpenSCADA, but also the Linux distribution, for the first time he
can use the "live" distribution of Linux, with the installed and ready for work or study demonstration of
OpenSCADA. Currently are available "live" builds on the basis of ALTLinux distribution in the form of
CD and Flash-images on the page: http://oscada.org/en/download. For more details look the chapter
"Recipes".

 The dynamic model of the compressor station, at 6 gas compressors, which lies at the basis of
the demonstration database requires significant computing resources, and more specifically the
processor with a frequency greater than 1 GHz. These resources are needed specifically for the
dynamic model and are not a common resource intensity indicator of the program in its final tasks!

 2.1. Installing OpenSCADA from packages

Installing OpenSCADA from packages, in its turn, can be made by two methods. The first — the
simplest one, when packages of OpenSCADA are already present in the official or additional repositories
of the used Linux distribution, and installation of them — the question of running the typical program of
packages' management followed by selection of the OpenSCADA packages. The second is when the
OpenSCADA packages are got and installed manually.

At the moment the OpenSCADA packages can be found in the repositories of such OS Linux
distributions: ALTLinux and distributions based on the Fedora package base.

To check for OpenSCADA packages presence in the repositories of the used Linux distribution, as well
as to download OpenSCADA packages for manual installation you can at download page of the official
OpenSCADA site (http://oscada.org/en/download).

 You should download the packages directly for the used distributive version, otherwise you
can get unresolved dependencies problems at the installation process.

Description of the installation from the repository of the selected Linux distribution we'll omit and refer
the reader to the documentation of the appropriate distribution.

For the manually installation of OpenSCADA packages lets download them from the official website or
from the other source. You can download packages of two sets.

The first set is represented by the nine packages:
• openscada — package with all necessary files to start OpenSCADA, including all modules;
• openscada-LibDB.Main — main OpenSCADA libraries for DAQ and others in the SQLite
DB;
• openscada-LibDB.VCA — visual components libraries in the SQLite DB;
• openscada-Model.AGLKS — model "AGLKS" data bases and config (Demo: EN,RU,UK);
• openscada-Model.Boiler — model "Boiler" data bases and config (EN,RU,UK);
• openscada-docEN — documentation on the OpenSCADA system - English;
• openscada-docRU — documentation on the OpenSCADA system - Russian;
• openscada-docUK — documentation on the OpenSCADA system - Ukrainian;

Quick start OpenSCADA 5

http://oscada.org/en/download
http://fedoraproject.org/
http://www.altlinux.ru/
http://wiki.oscada.org/HomePageEn/Doc/QuickStart?v=g66#h995-27
http://oscada.org/en/download

• openscada-devel — development packages for the creation of the separate modules for the
OpenSCADA.

The second set is represented by about fifty packages with separation of OpenSCADA modules in
different packages:

• openscada-core — contains the OpenSCADA core, basic configuration and launching(starting)
files;
• openscada-DB.* — "DB" subsystem's modules;
• openscada-DAQ.* — "Data acquisition" subsystem's modules;
• openscada-Archive.* — "Archives" subsystem's modules;
• openscada-Transport.* — "Transports" subsystem's modules;
• openscada-Protocol.* — "Transport protocols" subsystem's modules;
• openscada-UI.* — "User interfaces" subsystem's modules;
• openscada-Special.* — "Specials" subsystem's modules;
• openscada-LibDB.Main — main OpenSCADA libraries for DAQ and other into SQLite DB;
• openscada-LibDB.VCA — visual components libraries into SQLite DB;
• openscada-Model.AGLKS — model "AGLKS" data bases and config (Demo: EN,RU,UK);
• openscada-Model.Boiler — model "Boiler" data bases and config (EN,RU,UK);
• openscada-docEN — documentation on the OpenSCADA system - English;
• openscada-docRU — documentation on the OpenSCADA system - Russian;
• openscada-docUK — documentation on the OpenSCADA system - Ukrainian;
• openscada-devel — development packages for the creation of the separate modules to the
OpenSCADA.
• openscada — virtual package containing dependencies for installing the typical configuration
of the OpenSCADA;
• openscada-plc — virtual package containing dependencies for installing the typical
configuration of the OpenSCADA as a PLC;
• openscada-server — virtual package containing dependencies for installing the typical
configuration of OpenSCADA as a SCADA-server;
• openscada-visStation — virtual package containing dependencies for installing the typical
configuration of OpenSCADA as a visual SCADA-station.

The first packages' set is provided for easy, manual installation, because it contains only nine packages.
The second set is designed to be placed in a repository of Linux distribution and for the following
installation of them using the packages manager, which the auto-dependency resolution. The second type
of the packages' set allows you to install only the required components of OpenSCADA, thereby
optimizing the working environment, which is do not allowed by the packages of the first set.

If you are installing from the repository you should only select the package "openscada-
Model.AGLKS". Everything else, according to the dependencies, will be selected and installed
automatically.

Manual installation of RPM-packages of the first set can be made by the following command, after
changing the working directory to the directory with the package:

rpm -i openscada-LibDB.Main-0.8.0-alt1.noarch.rpm openscada-LibDB.VCA-0.8.0-
alt1.noarch.rpm openscada-Model.AGLKS-0.8.0-alt1.i586.rpm openscada-0.8.0-
alt1.i586.rpm

Manual installation of DEB-packages of the first set is made by the following command, previously
having changed the working directory to the directory with the package:

dpkg -i openscada-libdb.main-0.8.0-1_all.deb openscada-libdb.vca-0.8.0-
1_all.deb openscada-model.aglks-0.8.0-1_all.deb openscada_0.8.0-1_i386.deb

In the process of installation it may cause bugs related to missing dependencies, because of the
unresolved dependences. The manual installation of the packages means that you'll solve them manually,
like installing packages of OpenSCADA, or via the packages manager of Linux distribution. You can read
the details of the RPM-package software installing process by the click on:
http://skif.bas-net.by/bsuir/admin/node51.html.

Quick start OpenSCADA 6

http://skif.bas-net.by/bsuir/admin/node51.html

 2.2. Installation from sources

If you can not get packages of OpenSCADA for the selected distribution, it remains the only option of
OpenSCADA building from the sources. The building process of OpenSCADA is described in details in
the guide on the following link http://wiki.oscada.org/HomePageEn/Doc/BuildFromSource. However, it
must be borne in mind that if you managed to build OpenSCADA from sources, then this document is not
for you, and you probably can easily master the basic documents of OpenSCADA
(http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual).

This chapter is given here for completeness and integrity of the consideration of the question, because
the required qualification level of the user for this chapter is much higher than the level of the document at
whole!

Quick start OpenSCADA 7

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual
http://wiki.oscada.org/HomePageEn/Doc/BuildFromSource

 3. Initial configuration and start
After successful installation of the OpenSCADA with the database of "AGLKS" model no pre-

configuration is required. If you want to perform a particular configuration, which differs from the base,
then use the document of description the OpenSCADA program on the link:
http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-1.

 The demonstration of OpenSCADA based on the "AGLKS" model database is not the same as
that is usually provided by the commercial software vendors to demonstrate the possibilities, but to
exclude or to complicate the normal operations by limiting the functions. Demonstration of
OpenSCADA is fully-functional system that provides examples of implementation and configuration
of various components. Based on the "AGLKS" model database and other OpenSCADA models one
can easily create own projects, using the given resources.

You can execute the OpenSCADA with "AGLKS" model database from the menu of the desktop
environment in the "Graphics" section, "Model 'AGLKS' on open SCADA system" with the characteristic
icon (Fig. 3.1).

Fig. 3.1. Menu item of the desktop environment to start the demonstration of OpenSCADA.

Start also can be done from the console by the command:
$ openscada_demo

Quick start OpenSCADA 8

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-1

 When you start OpenSCADA from the console with the command "$ openscada" , the system
is launched without any configuration and the result is the request of the user name and password to
login. By default, the system provides OpenSCADA super user "root" (password "openscada") and
unprivileged "user" (password "user"), which have no relation to the users of the operating system.
Starting the OpenSCADA in this way makes sense only if it is done from the OS administrator
("root") or in daemon mode.

After start we'll get the window of the OpenSCADA graphical configurator — QTCfg (Fig.3.2) with
the opened root page. Demo database specifically configured so that the first window you'll see after start
it is the configurator's window. You can then open the window for creating graphical user interfaces, as
well as run the user interface project's execution.

Fig. 3.2. OpenSCADA configurator - QTCfg, the root page.

Configurator of OpenSCADA is the main and sufficient instrument for the configuration of any
system's component. Like many other components of OpenSCADA, configurator is implemented as a
module. Besides the QTCfg configurator there may be available other configurators that performs the
same function, but implemented on the basis of other technologies. For example, these are the Web-
configurators: WebCfg and WebCfgD.

All actions in the future, we will make only in the configuration tool QTCfg, although all of them can
be done in other configurators.

Quick start OpenSCADA 9

http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=w2c
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=ecy

The structure of the configurator's window interface can be considered in detail by reference
http://wiki.oscada.org/HomePageEn/Doc/QTCfg. It is more important now for us to examine all the
available interfaces OpenSCADA, so click next to last icon in the top on the toolbar. After clicking on this
icon the window of user interface development will be opened (Fig.3.3).

Fig. 3.3. Window of the UI development.

Quick start OpenSCADA 10

http://wiki.oscada.org/HomePageEn/Doc/QTCfg

Then we can start the "AGLKS" project's execution. To do this, select it in the list of projects and run
by clicking on the first left icon on the toolbar or in the the popup menu. The result will be the window of
user interface (Fig.3.4).

Fig. 3.4. Window of the user interface of the "AGLKS" project.

Building and executing of the user interfaces is implemented by the Vision module of the "User
interfaces" subsystem. In addition to this module it can be accessed the other modules of visualization. For
example, OpenSCADA provides the WebVision module, which allows to execute projects, previously
developed in the "Vision" interface module, through the Web-based technologies and standard Web-
browser. All actions in the future we will make only in the interface of the "Vision" module.

So we ran the demonstration of OpenSCADA and familiarized with the main set of tools. In the future
we will use them for configuration of OpenSCADA, creating the tasks of data acquisition, binding the
collected data with the purpose of their processing and making the impacts, as well as to create the
visualization user interface of the received data and to make the control actions.

Lets close the window of the "AGLKS" project's execution and the window of the user interface
development to prepare for the study of the following chapters.

The whole process of SCADA-system's configuration to perform the "top level" functions can be
divided into two stages:

• The configuration of data sources and creation the database (DB) of the parameters from these
sources.
• Formation of a visual presentation of technological process (TP) data by creating the operator's
interface in the form of mnemonic schemes, groups of graphs (trends), groups of contours,
documents, etc.

Quick start OpenSCADA 11

http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=1dju
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=te1

 3.1.Creation the user's project from scratch

All the actions in the following sections are described in the "AGLKS" (demonstration) model database
environment with the purpose of the widest and the most descriptive presentation of the configuration
process, with the ability to connect to a real-live data source, realized on the basis of the gas compressor
station TP model. However, it is necessary to describe the process of creation a user project from scratch,
which is obviously your final goal. On the basis of a new user's project you can perform all the following
steps with the "AGLKS" model database, but with an eye to your own data sources of a new project.

To start a clean user's project there is the item "OpenSCADA System" with the characteristic icon in
the desktop environment menu, the "Graphics" section (Fig.3.1.1).

Fig. 3.1.1. Menu item of the desktop environment to start the clean user's project.

The start can also be done with the following command:
$ openscada_start

Quick start OpenSCADA 12

A clean user's project does not contain any project-specific configuration and is configured to work in
the user's directory "/.openscada", with the main SQLite database in the file "DATA/MainSt.db". It is
easier to create a complex SCADA-system's project using the libraries of API functions of the
OpenSCADA object model, libraries of graphic elements, as well as with the help of other OpenSCADA
libraries. To use the OpenSCADA libraries, stored in a database file, they need to be connected, added in
the "SQLite" database module's object (Fig.3.1.2), as well as it is necessary to set the address and the
database charset to "UTF-8" (Fig.3.1.3).

Fig. 3.1.2. Add the "SQLite" DB object.

Quick start OpenSCADA 13

http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries?v=sec
http://wiki.oscada.org/HomePageEn/Using/APIFunctionLibs?v=17nb
http://wiki.oscada.org/HomePageEn/Using/APIFunctionLibs?v=17nb

Fig. 3.1.3. "SQLite" DB object of OpenSCADA library.

OpenSCADA distributions supplied with a number of libraries in the form of "SQLite" database files
(Table 3.1), which, when you run the clean user's project are placed to the "LibsDB/" directory. According
to this list, lets add them in the "SQLite" database module's object, set the "Enabled" flag and save. Next,
to load the library contents it is necessary to enable the database and click "Download this system from the
database", but during the loading some of new objects are disabled so it's easier to complete a exit user's
project and start over again.

Table 3.1. OpenSCADA libraries included in the distribution.
ID Name Address Languages/charset

OscadaLibs Functions libraries ./LibsDB/OscadaLibs.db EN,RU,UK/UTF-8

vcaBase VCA: Main libraries ./LibsDB/vcaBase.db EN,RU,UK/UTF-8

vcaTest VCA: Tests ./LibsDB/vcaTest.db EN,RU,UK/UTF-8

vcaElectroEls VCA: Electrical elements library of the
user interface

./LibsDB/vcaElectroEls.db EN,RU,UK/UTF-8

After the addition of OpenSCADA libraries you'll get an environment ready for addition of data
sources and the formation of the new SCADA-system project's interface.

Quick start OpenSCADA 14

 4. Working with Data Sources
he main function of any SCADA-system is to work with data sources of realtime, namely the inquiry of

programmable logic controllers (PLC) and simple modules of CPI. For more details see the document
"Data acquisition in OpenSCADA" on the following link: http://wiki.oscada.org/HomePageEn/Doc/DAQ.

Support of the one or another data source depends on the protocol or API, through which the source
provides its data, and the availability for the protocol/API the module in the subsystem "Data acquisition"
in OpenSCADA. The total list of modules of the subsystem "Data acquisition" and documentation on them
can be found here http://wiki.oscada.org/HomePageEn/Doc#h735-4 in the appropriate chapter.

Obtained from sources data subsequently are archived, processed and used for visual representation for
the operator of TP.

 4.1. Data acquisition from the TP device

As an example lets examine and create the inquiry for the air cooler device. Demo database contains
the real-time model of the compressor station with six compressors. Data for two devices of air coolers
"AT101_1" and "AT101_2" of the compressor station "KM101" are available via the ModBus/TCP
protocol on the 10502 port.

We will create the inquiry controller's object via the ModBUS/TCP protocol and get these data, thereby
practically made the task of inquiry of real data, because from the external device our configuration will
be different only in address of the device, addresses of the ModBUS registers and maybe the interaction
interface.

Quick start OpenSCADA 15

http://wiki.oscada.org/HomePageEn/Doc#h735-4
http://wiki.oscada.org/HomePageEn/Doc/DAQ

There is "ModBUS" module in the "Data acquisition" subsystem for the data acquisition via
"ModBUS" protocol in OpenSCADA. To add a new controller we will open the page of the "ModBUS"
module in the configurator ("Demo Station"->"Data acquisition"->"Module"->"ModBUS") and in the
pop-up menu of the "ModBUS" item lets click "Add" (Fig. 4.1.1).

Fig. 4.1.1. Adding the controller in the "ModBUS" module of the "Data acquisition" subsystem.

Quick start OpenSCADA 16

At the result of our actions the dialog window will appear (Fig.4.1.2) to enter the ID and name of the
new controller. IDs of any objects in OpenSCADA are limited by 20 characters and they should be entered
using English alphabet characters and numerals. In addition, it is desirable to start the ID with the letter.
This is due to the fact that the identifier can later be used in scripts. The OpenSCADA objects' names are
limited by 50 characters and can contain any characters. The names are usually displayed. If the name
field is blank, instead it the identifier will be displayed. Enter the ID "KM101" and the name "KM 101".

Fig. 4.1.2. Dialog to specify the ID and name of the new object.

Quick start OpenSCADA 17

After confirmation we have a new controller's object. Lets choose it in the configurator and get
acquainted with its settings (Fig.4.1.3).

Fig. 4.1.3. The main tab of the controller's object settings of the ModBUS module.

Settings of the controller's object, as a rule, are specific for the different types of data sources and
protocols. You can familiarize in details with the settings of the controller's object of the ModBUS module
using the link http://wiki.oscada.org/HomePageEn/Doc/ModBus#h871-13. We'll examine the general
configuration of the controller's object and the key settings for the ModBUS module.

Before the connection configuration with your controller you need from the controller's documentation
to find the settings of network interfaces and protocols, and also, in the case of "ModBus" using, to get the
association table for external and internal controller's signals with the numbers of "ModBus" registers.

With the help of the page of the controller's object in the section "Status" may be primarily assessed the
current state of the controller's object and the real state of connection with the physical controller, as well
as it can be quickly changed. For example, field "Status" contains the code of error and the textual
description of the current state of connection with the controller, in this case the controller's object is
disabled. We are able to enable it and start by setting the flags beside the appropriate fields. Enabled
controller's object initializes the parameters objects, the running one runs the acquisition task and provides
an opportunity to transmit data to the controller through the attributes of the parameters. The DB field
indicates which database to store in the configuration of the object. We will store the data to main
database, ie leave it by defaults.

Quick start OpenSCADA 18

http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=b74
http://wiki.oscada.org/HomePageEn/Doc/ModBus#h871-13
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=b74

In the "Config" section the configuration of the controller's object is directly contained:
• "ID" and "Name" are the fields, we've just entered at the object's creation. The Name can be
changed right here, but the ID can not be changed so simply. If you want to change the ID you
must Cut (Ctrl+X) and Paste (Ctrl+V) the object and enter the desired ID.
• "Description" may contain the detailed description and purpose of the controller's object. In our
case, the value of this field is not principal.
• "Enable" and "Run" indicated the state, in which to transfer the controller's object at start of
OpenSCADA. Lets set both fields.
• "Parameters table" — contains the name of the database's table in which to store the
configuration of parameters of the controller. Leave it default.
• "Acquisition schedule" — contains the configuration of the scheduler to run the inquiry task. To
get the description of the format of the configuration of the field you can from the tooltip. The
single number indicates the periodicity of run in seconds. Let it be one second.
• "Gather task priority" — indicate the priority of the task (from -1 to 99). Priorities above zero
are meaningful only when you start OpenSCADA from the privileged user. Leave this field
unchanged.
• "ModBUS protocol" — indicates to variant of the ModBUS protocol. The protocol variants
possible "TCP/IP", "RTU" and "ASCII". At the moment we are interested in the option "TCP/IP",
so leave it as is. The protocol variants "RTU" and "ASCII" need for set at case communication
with the controller by serial interfaces, typically "RS-485".
• "Transport address" — indicates the outgoing transport of the subsystem "Transports", which is
used to connect to the controller. In the case of "TCP/IP" option we need the transport module
Sockets, and in case variants "RTU", "ASCII" and serial interfaces we need the transport module
Serial. We'll examine the creating of the outgoing transport in "Sockets" and "Serial" in details
below.
• "Destination node" — indicates the node of data source or conroller in ModBUS network. In
our case, it should be "1".
• "Data fragments merge" — includes the merging not related fragments of registers in the single
block of the request, up to 100 registers, instead generating individual requests. Allows you to
reduce the total time of the inquiry. Lets set this option.
• "Using write functions for more items (0x0F,0x10)" — instead one-item write will used multi-
items functions. Leave this field unchanged.
• "Connection timeout" — indicates how long to wait for the response from the controller and
after which to report an error of connection. Zero indicates the use of time of transport. Unchanged.
• "Restore timeout" — specifies the time in seconds after which if there is no connection to retry
to reconnect.
• "Maximum request block size (bytes)" — maximum size (bytes) of registers and coils blocks
set. Usefull for some controllers with like limits. Unchanged.

Lets save our changes to the database by clicking the second left icon on the toolbar.

Quick start OpenSCADA 19

http://wiki.oscada.org/HomePageEn/Doc/Serial?v=935
http://wiki.oscada.org/HomePageEn/Doc/Soskets?v=1bg0

Now, in the same manner as the controller's object, let's create the outgoing transport in the module
"Sockets" ("Demo Station" ->"Transports"->"Sockets") through the context menu (Fig.4.1.4). And let's
call the transport as well as the controller: "KM101" and the name "KM 101". Note that in the "Item type"
of the dialog (fig.4.1.2) you should choose the "Output transport.

Fig. 4.1.4. Adding the outgoing transport in the module "Sockets" of subsystem "Transports".

Quick start OpenSCADA 20

The configuration page of outgoing transport is shown in Fig.4.1.5. This page also contains the section
of the status and operational control. In the "Status" field the textual description of the current state of
transport is contained. We can run it for execution by checking the box in front of the appropriate field.
Running object of the transport initiates the connection to the external node. Field DB indicates the
database to store the configuration of the object. We will store it in the main database.

Fig. 4.1.5. The configuration page of the outgoing transport of the "Sockets" module of subsystem

"Transports".

In the "Config" section the configuration of the transport object is contained:
• "ID" and "Name" contain the titles, which we entered when creating the object.
• "Description" — may contain the detailed description and purpose of the object.
• "Address" — specifies the type, address and mode of connection with the remote station. You
can view the record format in the tooltip. Let's set this field to the value "TCP:localhost:10502".
• "To start" — indicates in what state to transfer an object at start of OpenSCADA. Let's set the
field.
• "Timings" — indicate the duration of waiting for the response from the remote station. You can
view the record format in the tooltip. Let us leave the value unchanged.

Other types transports created by like to "Sockets" method, but configuration typical different only at
record format for address and timings. In case of transport module "Serial" into address field write the path
to serial device, speed, and format. For converters USB->Serial that address you need learn into operation
system, for example by console command "$ dmesg", just after the converter connection.

Let's save the transport and return to the configuration field "Transport address" of the controller's
object and select the address "Sockets.KM101". Setting the controller's object is finished, enable it by set
flag "Enabled". The next step is configuration and choose the data you need to query from the controller.
This setting is done by creating an object "Parameter" of the controller. The "Parameter" object allows you

Quick start OpenSCADA 21

to describe the list of data obtained from the comptroller and to transmit them to the environment of
OpenSCADA.

To add a new object of the parameter we will open in the configurator the page of our controller's
object and on the popup menu of item "KM101" we'll click "Add". The parameter's object we'll call
"AT101_1" and the name "AT 101_1".

The configuration page of the obtained parameter is shown in the Fig.4.1.6. This page contains the
section of status and operational control. In the "Type" field it is contained the ID of the type of the
parameter, in this case it is only possible the "Standard" type (std). We can enable the parameter by
checking the box of the appropriate field. The enabled parameter is involved in the process of exchange
with the controller.

Fig. 4.1.6. Configuration page of the controller's parameter "ModBUS".

In the "Config" section the configuration of tge parameter's object is contained:
• "ID" and "Name" contain the titles, which we entered when creating the object.
• "Description" — may contain the detailed description and purpose of the object.
• "To enable" — indicates in what state to transfer an object at start of OpenSCADA. Let's set the
field.
• "Attributes list" — contains the configuration of attributes of parameters in relation of them to
the registers and bits of ModBUS. You can view the record format in the tooltip. Let's set the
contents of the text field as follows:

R:100:r:Ti:T input
R:101:r:To:T output

Quick start OpenSCADA 22

R:102:rw:Cw:Productivity.

Similarly, create the second option: "AT101_2" with the name "AT 101_2". The list of attributes fro it
let's set in:

R:103:r:Ti:T input
R:104:r:To:T output
R:105:rw:Cw:Productivity.

Let's save the both objects of the parameter. Now we can enable and run our controller to initiate the
exchange. To do this, go back to the page of our controller's object and in the "Status" section let's set the
flag "Run". If we do not miss something, the exchange is successfully started and in the "Status" field we'll
get something like this, as it is shown in the Fig.4.1.7.

Fig. 4.1.7. The page of the controller's object if the exchange with the physical controller is successful.

Quick start OpenSCADA 23

In the case of a successful exchange with the physical controller, we'll obtain the described data of the
controller in the infrastructure of OpenSCADA. You can see these data on the tab "Attributes" of our
parameters AT101_1 (Fig.4.1.8) and AT101_2. Because the inquiry is regularly and at intervals of a
second, then we can observe their changes by clicking the button "Refresh current page" on the toolbar.

Fig. 4.1.8. The page of described attributes of the AT101_1 parameter.

The configuration of data acquisition is complete.

Quick start OpenSCADA 24

 4.2. TP data processing

Frequently the initial data obtained from the data source are the "raw", ie unprepared or uncomfortable
for the visual presentation, so you need to perform this preparation. In our example, we received the data
that comes in the code from the scale inside the controller. Our task is to perform the calculation of real
values from the received data. Data processing in OpenSCADA can be done, either during the
visualization, and in the subsystem "Data acquisition". However, the mixing of the visualization process
and processing of initial data makes the configuration confusing and makes the obtained images of the
visualization unsuitable for reuse. For this reason, let's make the preparation of data in the subsystem
"Data acquisition".

Calculations in the subsystem "Data acquisition" are done via the module of logic level LogicLev and
the templates of parameters of the subsystem "Data acquisition". To familiarize with the concept of
"logical level" you can here: http://wiki.oscada.org/HomePageEn/Doc/DAQ#h942-9.

To make calculations in the module of the logic level you must first create the template of the
parameter of subsystem "Data acquisition". To do this, let's open the page of templates' library "Main
templates" ("Demo Station"->"Data acquisition"->"Template library"->"Main templates") and through the
context menu we will create the template object "airCooler" with the name "Air cooler". The configuration
page of the resulting object is shows in the figure 4.2.1. This page contains the "State" section and the
section of the operational control. We can make the template accessing by checking the box next to the
corresponding field. Accessing templates can be connected to the data acquisition parameters, and the
parameters will make calculations on this template. In the "Used" field the number of objects that use this
template to calculate the image of the parameter is indicated. In the "Config" section only the familiar for
us configuration fields are present.

Fig. 4.2.1. The configuration page of the template's object.

Quick start OpenSCADA 25

http://wiki.oscada.org/HomePageEn/Doc/DAQ#h942-9
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=yzr

The basic configuration and the formation of the template of parameter of data acquisition is made in
the tab "IO" (Fig.4.2.2) of the template. The detailed description of the process of the template's formation
can be found here: http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-6.

Let's create in the template two properties fro the inputs ("TiCod", "ToCod"), two for outputs
("Ti","To") and one clear property ("Cw"). For the "TiCod", "ToCod" and "Cw" let's set the "Configure"
flag to the "Link", this will let to link to them the "raw" source. For the "Ti" and "To" let's set the
"Attribute" flag to the "Read only", and for the "Cw" — "Full access", we make it to form the three
attributes of the resulting parameter of the data acquisition: two — read only and one with the full access.

The program language let's set to "JavaLikeCalc.JavaScript", and the program:
Ti=150*TiCod/65536;
To=100*ToCod/65536;

Fig. 4.2.2. Tab "IO" tab of the configuration page of the template's object.

Let's save the resulting template and set the accessibility flag.

Now we'll create the controller's parameters' objects in the "LogicLev" module of subsystem "Data
acquisition". The controller and its parameters in the module "LogicLev" are identical to the previously
created in the module "ModBUS" and they are created on the page: "Demo station"->"Data acquisition-
>"Module"->"Logic level". The object of the controller and the parameters will be called identical to the
objects in the module "ModBUS".

Quick start OpenSCADA 26

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-6

The object of the controller of the module "LogicLev" (Fig.4.2.3) has no specific settings and the
default ones may not be touched.

Fig. 4.2.3. The main tab of the configuration of the object of controller of the LogicLev module.

Quick start OpenSCADA 27

The object of the parameter of controller of the "LogicLev" module (Fig.4.2.4) has the specific setting
"Type", where you need to set "Logical" (std) and into setting "Parameter template" select the address of
the template, we have just created.

Fig. 4.2.4. Configuration page of the "LogicLev" controller's parameter.

In addition to the basic configuration of the parameter it is necessary to configure the attached template
(Fig. 4.2.5). Configuration tab of the template appears in the parameter's mode "Enable". To enable the
parameter it is possible by the previously enabling the controller. The flag "Only attributes are to be
shown" allows you to set apart each link (Fig.4.2.6). Since we are made the following format of linkage in
the template "Parameter|Ti", then all three links we can set simply by typing an address to the parameter in
the "ModBus" controller. We shall specify the following addresses "ModBus.KM101.AT101_1" and
"ModBus.KM101.AT101_2" in the appropriate parameters.

It should be noted that all the input fields addresses of objects in OpenSCADA provide a mechanism to
set the address. This mechanism involves elemental choice, during which there is a movement in the
interior. For example, typing the address "ModBus.KM101.AT101_1" first we will be able to choose the
type of data source, including the "ModBus". By selecting "ModBus" in the list of available items for
selection will be added to the module controllers "ModBus", among which will be "ModBus.KM101".
Select the item "ModBus.KM101" add to the list of parameters of the controller, etc. to the final element
in accordance with the hierarchy of objects
(http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-6). To be able to return to levels above
the selection list of all the elements are inserted into the higher levels of the current value of the address.

Quick start OpenSCADA 28

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-6

Fig. 4.2.5. The "Template config" tab of the "LogicLev" controller's parameter page.

Fig. 4.2.6. The "Template config" tab of the "LogicLev" controller's parameter page with the links details.

Quick start OpenSCADA 29

Let's save the created objects of the controller and parameters. After this, run the controller for
execution by setting the controller's flag "Run" in the "State". If we do not miss something, the calculation
is successfully started and in the "State" we'll get something like the one on Fig.4.2.7.

Fig. 4.2.7. The page of the controller's object if the calculation of the controller in the "LogicLev" module

is successful.

Quick start OpenSCADA 30

In case of successful processing of the template's code in the parameters we'll obtain the processed data
in the infrastructure of OpenSCADA. You can see these data on the tab "Attributes" of our parameters
AT101_1 (Fig.4.2.8) and AT101_2.

Fig. 4.2.8. The page of the attributes of the parameter AT101_1 of "LogicLev" module.

The configuration of data processing is complete.

Quick start OpenSCADA 31

 4.3. Typified Data Sources Parameters

In the previous sections the data source connection mechanism has been described for the apparatus
object ("Air Cooler"), which provides the unification of all signals in a single parameter's object of the
data source. However, a more common approach is to create a parameter's object around a signal, such as
"Temperature at the cooler's outlet AT101_1 (TE1314_1)".

Creating the parameter's object around the signal allows to formalize its description to the templates of
analog and digital signals by including to them all necessary processing, alarming and other characteristic
information. For a simple configuration of the typified analog and digital signals there are the parameters
templates in the OpenSCADA libraries, and many of the visual presentation images are adapted to work
and binding with these parameters directly, without going into details on the attributes.

Typically, for the formation of a parameter's object based on a template the logic level module
LogicLev is used, as described in the previous section. However, a number of modules, including ModBus
provide the ability to immediately create logical parameters, based on the template. We'll add new
parameter's objects by opening the early created page of our "ModBus" controller's object in the
configurator, and in the context menu of the "KM101" item lets press "Add".

Lets name the analog parameter object "TE1314_1" — id and the name is "TE1314_1" (Fig.4.3.1).
Parameter's type lets set to "Logical", the parameter's template — "base.anUnif", description — "The
temperature at the outlet of AT101_1", lets set the "To enable" and "Enable" flags. Next, we need to
configure the parameter's template in the tab "Template Configuration" tab (Fig.4.3.2): the "Input" field is
set to ModBus-register's address of this parameter "R:101", the "Maximum module scale" is set to 65535,
which corresponds to 100 °C. Next, lets go to the "Attributes" tab (Fig.4.3.3) and set some fields,
"Dimension" is set to "deg. C", "Scale minimum" to "0", "Scale maximum" to "100"; "Border up alarm" to
"40", "Border up warning" to "30". Lets save the parameter's object.

Fig. 4.3.1. The page of the logical parameter "TE1314_1" of the "ModBus" module.

Quick start OpenSCADA 32

http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=b74
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=yzr

Fig. 4.3.2. The page of the "TE1314_1" parameter's template configuration of the "ModBus" module.

Fig. 4.3.3. The page of the "TE1314_1" parameter's attributes of the "ModBus" module.

Quick start OpenSCADA 33

The discrete parameter's object lats name: "KSH102" — id and the name is "KSH102". Parameter's
type lets set to "Logical", the parameter's template — "base.digitBlockUnif", lets set the "To enable" and
"Enable" flags. Next, we need to configure the parameter's template in the tab "Template Configuration"
tab (Fig.4.3.4): the "Command 'Open '" field is set to the value of the ModBus-bit address of the parameter
"C:100:rw"; the "State 'Opened'" field is set to the value of the ModBus-bit address "C:101", the "State
'Closed'" field is set to the value of the ModBus-bit address "C:102", the "Hold command time (s)" field is
set to 0, because the command if not the pulse one. Next, lets go to the "Attributes" tab (Fig.4.3.5) and
make sure the availability of command and states. Save the parameter's object.

Fig. 4.3.4. The page of the "KSH102" parameter's template configuration of the "ModBus" module.

Quick start OpenSCADA 34

Fig. 4.3.5. The page of the "KSH102" parameter's attributes of the "ModBus" module.

Quick start OpenSCADA 35

 4.4. Enabling the TP data archiving

Many tasks require to keep the history of parameters of the TP. To activate the archiving of the
attributes "Ti" and "To" of the AT101_1 and AT101_2 parameters in the previously created controller of
the "LogicLev" module it is enough on the "Archiving" tab of the configuration page to choose which
attributes are to be archived and by what archivers (Fig.4.4.1). We'll choose the archiving of "Ti" and "To"
attributes in the "FSArch.1s" archiver. The same thing you can do for attribute "var" of analog parameter
"ModBus.KM101.TE1314_1" and for "com" of digital parameter "ModBus.KM101.KSH102".

Fig. 4.4.1. The "Archiving" tab of the AT101_1 parameter of the "LogicLev" module.

Quick start OpenSCADA 36

As the result of this operation it will be automatically created the objects of archives for the selected
attributes. For example, the archive's object for the attribute "Ti" of the AT101_1 parameter is presented at
Fig.4.4.2.

Fig. 4.4.2. The page of the archive's object of the "Ti" attribute of the AT101_1 parameter.

Quick start OpenSCADA 37

Usually the settings of the archive do not need to be change, but if you need the special configuration, it
can be done on the aforesaid page. Often you may need to obtain the information about the archive. For
example, find the archive's size, both in time and in the bytes, as well as to look at the graph(diagram) of
the parameter (Fig.4.4.3).

Fig. 4.4.3. The "Values" tab of the page of the archive's object of the "To" attribute of AT101_1

parameter.

Quick start OpenSCADA 38

 5. The formation of visual presentation
The formation of visual presentation may be performed at three levels of complexity and the user can

select any of them, depending on the level of his knowledge and availability of libraries with ready-made
images and templates.

The first level requires a minimum qualification of the user, but implies the presence of template
frames' libraries, which are needed to solve his task. Within the limits of the first level the user only has to
know how to connect the dynamics to the template frames' pages and how to add new pages of the
template frames.

The second level provides the additional ability to create new frames based on the finished complex
elements, simply by their placement in the frame. To achieve this qualification level users will need
libraries of complex elements needed to solve his tasks.

The third level requires that user is able to use of all the tools of the development environment of visual
interfaces of OpenSCADA, including the creation of new complex elements and developing of the new
user interfaces in the project.

All works on the visualization interface we will make in an environment of the "Vision" module of
subsystem "User interfaces". To open the "Vision" interface window you should click the second icon on
the right on the configurator toolbar. The result is the window previously shown in Fig.3.3.

The interfaces of user-operator realizing into OpenSCADA by the projects of visualization. Into library
main elements library of the user interface the typical project template has presented, which based on
signal objects model and display views concept. The user can start for self concept of visualization
interface creation, by new project, or can use pointed template. For new visualization project creation you
will need third level knowledges and hard work which placed over this document. By that will see to
creation the visualization interface based on allowed template project.

Fig. 5.1. The template project by the signal objects concept.

Quick start OpenSCADA 39

http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=476

The template contain two branches: "Control panels" and "Root page". The branch "Control panels"
contain typical control panels and special frames set. Branch "Root page", with the root page basis,
contain subbranches for signal objects "Group 1", "Group 2" and different branch of "Result graphics".
The signal object's subbranches "Group {n}" have number identifier and can expanded by appending up to
16. The subbranch "Group {n}" presenting will display by activation corresponding to it signal object's
button on root page, which will allow switch to it. Every subbranch "Group {n}" has containers or
templates for display views, typical: "Mnemo", "Graphics groups", "Contours groups", "Groups of
overview frames" and "Documents". Any pages present into containers will enable selection the display
view, for corresponding signal object of root page. About root page structure you can detailed see by link
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements#h1039-45.

For creation self visualization project user can copy the template project and call it for self. We will
continue work direct with template project and place our pages into mnemo-containers and graphics
groups.

 5.1. Adding the template page in the project and linkage of the dynamics

Let's examine the first level of complexity task, when in the already designed interface it is necessary to
link the dynamics to the template page. The concept of "Page's template" means the page on the basis of
which with the help of inheritance it can be created a lot of final visualization pages with an individual list
of the dynamics. The examples of these pages are: "Graphics group", "Contours group", "Overview frames
panel" and "Result graphics". In the Fig.5.1.1 the template page "Graphics group" in the project tree
"Signal groups (template)" is presented.

Fig. 5.1.1. The template page "Graphics group".

The "Graphics group" template page provides an opportunity to link up to eight signals for
simultaneous display them on the diagram. Elements at the top will automatically hide for unspecified
links.

Quick start OpenSCADA 40

http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=476#h1039-37
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=476#h1039-22
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=476#h1039-22
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=476#h1039-14
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=476#h1039-30
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements#h1039-45

Let's create the new group of graphs "Graphics 2" in the template container "Graphics group" of the
first group of the root page of "Signal groups (template)". To do this, let's in the context menu of the
"Graphics group" item select "Add visual item" (Fig.5.1.2). To enter the ID and name of the new visual
item the dialog will appear (Fig.5.1.3). Enter the ID "2" and the name "Graphics 2".

Fig. 5.1.2. Adding the "Graphics 2" group of graphs.

Fig. 5.1.3. Input dialog of the ID and name.

Quick start OpenSCADA 41

After confirming the name input it will be created the new page. However, for its activation, we need to
enable it. You can enable this page in the dialog of the properties editing page (Fig.5.1.4). To open this
page it is possible by selecting the menu item 'Visual item properties" in the context menu of the newly
created page. New page, based at the template, you can create into the logical container by simple copy
template to internal self

Fig. 5.1.4. Dialogue of the properties editing of the visual element.

Quick start OpenSCADA 42

After enabling the page you are ready to set links to the created in the previous chapter parameters of
controllers. To do this, without leaving the dialog to edit the properties of the newly created page
(Fig.5.1.4), click on the "Links" tab (Fig.5.1.5). On this tab, we can see the tree with the elements "el1" ...
"el8". Unwinding any of the elements we'll see the "Parameter" branch, in this branch we need to specify
or select the address of our attributes "Ti" and "To". Total we will fill the four elements. When filling out
the elements the part of properties must be specified as constants. For example, it is necessarily needed to
be specified:

• name — "val:AT101_1 Ti".
• ed — "val:deg.C".
• max — "val:150" (for Ti) and "val:100" (for To).
• min — "val:0".

If you foresee the existence of the attributes specified in the controller parameter's template as constant,
it will be possible to specify only parameter, and the attributes will be set automatically, that you can see
to link created early typical analog parameter "ModBus.KM101.TE1314_1".

Fig. 5.1.5. The "Links" tab of the dialog of edit the properties of visual item.

Quick start OpenSCADA 43

Having finished the links entering, we can see the result of our efforts. To do this we'll close the editing
properties dialog and run the "Signal groups (template)" for execution, about the run button we remember
from the previous chapters. Then let's choose the graphics and switch to the second page. With error-free
configuration, we should see something similar to that shown in Fig.5.1.6. Note that for typical parameter,
with violations borders set, variable gone to the borders will cause marking by violations color. For see
that we can set performance cooler value to 100 (Fig.4.2.8).

Fig. 5.1.6. The created group of graphs with the four signals and one typical parameter linked.

Quick start OpenSCADA 44

 5.2. The creation of the new frame, the mnemonic scheme

Let's raise the bar and create the new frame, on which we'll put the basic elements of our controllers'
values displaying. Such frames are usually called the mnemonic schemes and in addition to the dynamics
displaying, and even in the first place, contain the static image of the technological process in the
mnemonic representation. We are not going to focus on the creation of statics and we'll add the dynamic
elements and link them to the parameters of our controllers. We'll put the created frame to the tree of
already known to us project.

New frames, destined later to be placed in the project, are to be created in the library of widgets. Let's
create the new library of widgets "KM101" by the selecting of the vertical tab "Widgets" and in the
context menu of the window of widgets' libraries click "New Library" (Fig.5.2.1). In the dialog of entering
the name we'll indicate the identifier "KM101" and the name "KM 101" and then confirm.

Fig. 5.2.1. Adding the new library of widgets.

Quick start OpenSCADA 45

Next we'll add the new frame "AT101" by selecting "Library: originals" -> "Elements box" in the
context menu of the created library "KM101" (Fig.5.2.2). In the dialog of entering the name we'll indicate
the identifier "AT101" and the name "AT 101" and then confirm. At the heart of any frame and the page
must be based on an element of "Elements box (Box)", and therefore we have chosen it.

Fig. 5.2.2. Adding the new frame.

Immediately after the creation of the new frame element it is necessary to set its basic properties,
characteristic to the mnemonic scheme frame. Properties or attributes of any visual element can be
specified in the toolbar "Attributes", having pre-selected the visual element. Let's select the created frame
"AT 101" and set the following properties:

• Geometry:width — "900".
• Geometry:height — "600".
• Page:group — "so", for the frame including to mnemo container allow, at run.
• Background:color — "#5A5A5A".
• Border:width — "1".
• Border:color — "black".

Quick start OpenSCADA 46

The result will be an empty frame (Fig.5.2.3), ready to add items to it. To edit or view the the frame
you should in the frame's context menu select the "Visual item edit".

Fig. 5.2.3. The view of the new frame and set attributes for the mnemonic scheme.

Quick start OpenSCADA 47

Now let's add on frame the elements for the value of the analog parameters displaying for our four
signals and typical parameter "ModBus.KM101.TE1314_1". To place an element for displaying an analog
signal to the mnemonic scheme it is necessary to select our mnemonic scheme, and then in the window's
menu to select the "Widget" -> "Library: Main" -> "Analog show" after which the cursor with an image of
this element will appear, which should be moving to the desired location on the mnemonic scheme and
then the left mouse button should be pressed. At the time of adding the dialog asking the name of the new
element will appear. We'll add this way the five elements which we'll call: "A1_Ti", "A1_To", "A2_Ti",
"A2_To" and "TE1314_1".

let's add on the frame the element of typical digital parameter, for that will use library's widget
"Widget"->"Library: mnEls"->"Ball crane" and next call it "KSH102".

For list of current violations display let's place on the frame the protocol element from the primitives
library "Widget"->"Library: originals"->"Protocol" and next call it "Protocol". For the protocol element
will set properties into the attributes inspector:

• Geometry:width — "500".
• Geometry:height — "250".
• View columns — "tm;lev;mess".
• Level — "-1", for any level violations display.
• Size, sek — "0", for any depth violatons display.
• Tracing period (s) — "1".

The added elements can be subsequently positioned as needed by simply selecting and dragging them
by the mouse. After such manipulations, we should get the mnemonic scheme with the view, similar to
Fig.5.2.4.

Fig. 5.2.4. The view of the new frame and set attributes for the mnemonic scheme.

This procedure of the creating the mnemonic scheme we'll consider to be finished. Save the new library
of widgets "KM101" and proceed to the stage of the placing our mnemonic scheme in the project's tree of
"Signal groups (template)".

Let's put our mnemonic scheme to the branch of the "Signal groups (template"->"Root page (SO)"-
>"Group 1"->"Mnemos" by selecting in the context menu for the "Mnemos" item the item "Library:

Quick start OpenSCADA 48

KM101"->"AT 101". The identifier for the new mnemonic scheme let's set to "2" and the name field let's
leave blank.

Next you need to make an already familiar to us the operation from the previous chapter, namely the
setting of links to the created in the previous chapter the parameters of controllers. To do this let's open the
dialogue of the properties editing of the mnemonic scheme on the "Links" tab (Fig.5.2.5). On this tab,
we'll see the tree with the elements of "A1_Ti", "A1_To", "A2_Ti" and "A2_To". Unwinding any of the
elements, we'll see the "Parameter" branch, in this branch we are to specify or select the address of our
attributes "Ti" and "To", respectively. When filling out the elements the part of the properties must be
specified as constants. For example, necessarily must be specified:

• pName — "val:AT101_1 Ti".

As in case with graphics group in previous chapter for typical parameters
"ModBus.KM101.TE1314_1" and "ModBus.KM101.KSH102" you can set only the parameter and
attributes will assign automatic.

Fig. 5.2.5. The "Links" tab of dialog of editing the properties of the mnemonic scheme.

Quick start OpenSCADA 49

Now we can save our mnemonic scheme and verify what we have. To do this, we'll close the properties
dialog and run the "Signal groups (template)" for execution. Then switch to the second mnemonic scheme
by the paging buttons. With error-free configuration, we should see something similar to that shown in
Fig.5.2.6.

Fig. 5.2.6. The created mnemonic scheme with four linked signals, typical parameters and the protocol.

Note for you, the typical parameter variable going beyond violation borders set will mark by flashing
through alarm color: the parameter, the signal object and the yellow circle bottom. On the violation also
will cause boozer cheep and speech synthesis (if set and configured program "ru_tts" or other) from the
parameter position text into link field "spName" (рис. 5.2.5). On the violation will set active the indication
buttons on the right and right-bottom, and to press the button will accorded type notification make
cvitation. On flashing yellow circle on the right-bottom press will cvitation for all. Any violation allowing
fact will noted into the protocol, which we have appended. To see going beyond one violation border we
can set the cooler productivity to 100 (Fig.4.2.8). About working with violations concept you can detailed
read into chapter "Recipes".

Quick start OpenSCADA 50

http://wiki.oscada.org/HomePageEn/Doc/QuickStart?v=wpp#h995-31

Violations history you can see into document "Protocol of violations", which allowed on the display
view "Document" select (Fig.5.2.7).

Fig. 5.2.7. Alarms document.

Quick start OpenSCADA 51

The digital typical parameter "ModBus.KM101.KSH102", displayed by ball crane, is active then you
can select it and get control panel on the right (Fig.5.2.6), and also send commands (open or close). The
commands you can doing to the control panel or context menu. All operator's control interruptions will
noted into protocols and the document for its you can see on the display view "Document" select
(Fig.5.2.8).

Fig. 5.2.7. The operator interruptions protocol.

Quick start OpenSCADA 52

 5.3. Creation of the new complex element

Let's proceed to the objectives of the third level of complexity, namely the creation of an complex
element. Creating of the new complex element, which includes a combination of basic primitives, can be
made in several stages. As an example, let's examine the task, consisting of two stages:

• Creation the widget "Air cooler" on the basis of the primitive "Elementary figures".
• Creation the final grouped widget "Cooler" based on the primitive "Elements box".

 5.3.1. Creation the widget "Air cooler" on the basis of the primitive "Elementary figures".

The widget will be created in our previously made library "KM101". To do this we'll make right mouse
button click on this library and select the item "Library: originals"->"Elementary figures", as it is shown in
Figure 5.3.1.1. For a new element let's write the "air_cooler" identifier and the name "Air cooler".

Fig. 5.3.1.1. Adding the widget based on the primitive "Elementary figures" to the "KM101" library.

Quick start OpenSCADA 53

After confirmation, we will have a new widget's object with the name "Air cooler". Select it in the
widget library "KM101" and open for editing via the context menu of the new element (Fig. 5.3.1.2). Let
is set properties into attributes inspector:

• Geometry:width — "200".
• Geometry:height — "200".
• Fill:color — "lightgrey". Color may set, as with help colors names, and also in format
#RRGGBB (#RRGGBB-AAA).

Fig. 5.3.1.2. First widget configuration.

Now let's draw the visual presentation of the widget. This procedure can be done in two ways described
below:

• To draw the desired image by the mouse, using the "Line", "Arc", "Bezier curve" and "Fill."
The corresponding panel ("Elementary figure tools") appears after entering the edit mode
(drawing). To enter this mode it is possible as shown it is shown in Fig. 5.3.1.3, or by double
clicking the left mouse button on the body of the widget.
• Manually fill in the "Elements' list", by entering the list of required elements and coordinates of
points.

More information about the editor you can get here:
http://wiki.oscada.org/HomePageEn/Doc/Vision/ElFigure

Quick start OpenSCADA 54

http://www.w3.org/TR/SVG/types.html#ColorKeywords
http://wiki.oscada.org/HomePageEn/Doc/Vision/ElFigure

Fig. 5.3.1.3. Entrance to the mode of drawing the widget, based on the primitive "Elementary figures."

In our example, we'll use the second method. To do this in the "Elements' list" of the attributes
inspector let's enter the list below and press "Ctrl" + "Enter".

line:(20|80):(100|20)
line:(100|20):(180|80)
line:(180|80):(100|140)
line:(100|140):(20|80)
line:(100|20):(100|140)
line:(20|80):(180|80)
line:(50|165):(100|140)
line:(100|140):(150|165)
line:(150|165):(50|165)
fill:(20|80):(100|20):(180|80):(100|140)
fill:(50|165):(100|140):(150|165)

All the points in our case are specified in the static form, since it is not provided the dynamics and
change of coordinates in the mode of execution, and all the other parameters are left by default.

Quick start OpenSCADA 55

As a consequence, our widget will take the form shown in Fig. 5.3.1.4.

Fig. 5.3.1.4. The image corresponding to the "Elements' list" of the widget.

Quick start OpenSCADA 56

Let's create an icon for our widget, which will be visible in the widgets' tree of the library "KM101"
(Figure 5.3.1.5).

Fig. 5.3.1.5. Creating an icon for the widget.

The process of creating the first widget is completed. We'll now turn to the stage of layout and the
creation of the resulting widget.

Quick start OpenSCADA 57

 5.3.2. Creation the final complex widget "Cooler" on the basis of the primitive "Elements box"

The resulting widget we'll create in the "KM 101" library. To do this we must click the right mouse
button on the library and select the primitive "Elements box", as it is shown in Figure 5.3.2.1. For a new
element let's specify the identifier "elCooler" and the name of "Cooler".

Fig. 5.3.2.1. Adding the widget based on the primitive "Elements box" to the "KM 101" library.

After confirmation, we'll have the new widget object with the name "Cooler". Select it in the widget
library "KM 101" and open for editing. Let is set properties into attributes inspector:

• Geometry:width — "250".
• Geometry:height — "200".

Quick start OpenSCADA 58

Let's take the previously created element "Air cooler" (air_cooler) and drag him (clicking on it by the
left mouse button and moving the cursor of the mouse to the body of the widget, then let the button) to the
newly created widget (see Figure 5.3.2.2).

Fig. 5.3.2.2. Drag and Drop of the widget "air_cooler" to the widget-container "elCooler".

Quick start OpenSCADA 59

The dialogue window will appear to enter the ID and name of the new widget. ID and the name can be
set arbitrarily. We will input the "air_cooler" ID and the name we'll leave blank (it will be inherited from
parent - the element "air_cooler"). Thus, the newly-created widget inside the container "elCooler" inherits
the element - "Air cooler" ("air_cooler"). After confirming the entry of ID and name the widget "Air
cooler" ("air_cooler") will be added to our widget container "elCooler" (Figure 5.3.2.3). Let is set
properties into attributes inspector:

• Geometry:x — "25".
• Geometry:y — "0".

Fig. 5.3.2.3. Adding the inherited widget "air_cooler".

Next, unwind the library "Mnemo elements", find there the "Cooler" element (cooler2) and drag it to
the widget-container. This element will dynamically display the productivity of the air cooler. As the
result it will appear the dialog window for entering the ID and name of the new widget. Enter the ID
"cooler2" and the name again let's leave blank. Thus, the newly-created widget inside the container
"elCooler" will inherit the element of the library "Mnemo elements" - "Cooler" ("cooler2"). After
confirming the entry of the ID and name the widget "Cooler" ("cooler2") will be added to our widget-
container "elCooler". Let is set properties into attributes inspector:

• Geometry:x — "75".
• Geometry:y — "30".
• Geometry:z — "10". Raise the widget over all you can from panel "Widgets view functions".

Quick start OpenSCADA 60

• Color1 — "#FFFF00-200", we have added the value of transparency 200 ("0" - fully
transparent, while "255" - the fully opaque), as it is shown in Fig. 5.3.2.4.
• Color2 — "#FF0000-200", we have added the value of transparency 200.

Fig. 5.3.2.4. Change the fill colors transparency in the inherited widget "cooler2".

Now let's add to the widget-container "elCooler" two text fields based on the primitive "Text", in order
to display the input and output temperatures of the flow. To do this in the library "KM 101" we'll select the
widget "Cooler" and then click on the visual items toolbar on the icon of the primitive "Text", as it is
shown in Figure 5.3.2.5. The dialog of the ID and name of the newly created element entering will appear.
Enter the ID "Ti" for the first text field, and the name field we'll leave blank. Let is set properties into
attributes inspector:

• Geometry:x — "5".
• Geometry:y — "20".
• Geometry:ширина — "70".
• Geometry:высота — "35".
• Alignment — "Center".
• Font — "Arial 14 1". Font selection you can do into the dialog which opened at press on the key
into edit field (Fig. 5.3.2.7).
• Text — "%1{Enter}deg.C" (Fig. 5.3.2.8). {Enter} — move to next line.
• Arguments number — "1" (Fig. 5.3.2.9):

Quick start OpenSCADA 61

• Argument 0:type — "Real".
• Argument 0:value — "300.25", the number "300.25" is entered only the with the purpose
of clarity, in the execution mode it will be changed by the real value of the input
temperature.
• Аргумент 0:config — "3;f;2".

Fig. 5.3.2.5. Adding the new element to the container, based on the primitive "Text."

Quick start OpenSCADA 62

Fig. 5.3.2.6. Specifying the geometry of the widget "Ti".

Fig. 5.3.2.7. Changing the font size for the widget "Ti".

Quick start OpenSCADA 63

Fig. 5.3.2.8. Changing the field "Text" and an indication of the argument's presence in it for the widget

"Ti".

Fig. 5.3.2.9. The configuration of the argument for the "Ti" widget.

Quick start OpenSCADA 64

Now we'll copy the "Ti" widget in order to create an equivalent widget "To" (output temperature). Let's
paste the widget, in the dialog of the ID and the name entering for the newly created widget in the field
"ID" we'll write "To", and the name field we'll leave blank (Fig. 5.3.2.10). Let is set properties into
attributes inspector:

• Geometry:x — "175".
• Geometry:y — "20".

Fig. 5.3.2.10. The "To" widget.

Quick start OpenSCADA 65

Now let's add the widget based on the primitive "Form's elements" (Fig. 5.3.2.11), which will be used
as the ComboBox to select the productivity values of the cooler. The identifier will be "cw", and the
"Name" field we'll leave blank (Fig. 5.3.2.12). Let is set properties into attributes inspector:

• Active — "true".
• Geometry:x — "60".
• Geometry:y — "158".
• Geometry:z — "10". Raise the widget over all you can from panel "Widgets view functions".
• Geometry:width — "60".
• Geometry:height — "40".
• Element type — "Combo Box".
• Font — "Arial 14 1".
• Value — "200".
• Configuration — "0{Enter}50{Enter}100{Enter}150{Enter}200". {Enter} — move to next
line.

Fig. 5.3.2.11. Adding the widget based on the primitive "Form's elements".

Quick start OpenSCADA 66

Fig. 5.3.2.12. Filling the parameters of the "cw" ComboBox.

Quick start OpenSCADA 67

To display the cooler productivity dimensions we'll add the widget on the basis of the "Text" primitive.
Let's make the same procedure as for the "Ti" widget. The identifier of the newly created widget will be
"dimension" (Fig. 5.3.2.13). Let is set properties into attributes inspector:

• Geometry:x — "125".
• Geometry:y — "168".
• Geometry:width — "60".
• Geometry:height — "20".
• Alignment — "Center".
• Font — "Arial 14 1".
• Text — "rpm".

Fig. 5.3.2.13. Adding the "dimension" widget, based on the primitive "Text" and changing of its settings.

Quick start OpenSCADA 68

To add the processing logics for the widget "Cooler" (elCooler) we'll open the dialog of the properties
editing of the visual element and select the "Process" tab. On this tab we can see the tree of widget's
attributes and the field for the program code for the attributes' processing. To solve our task, we must add
three attributes: Ti, To, Cw (Fig. 5.3.2.14). To add an attribute you should unwind the root element ".",
select any element inside the root one and click "Add attribute" button below.

Further we'll enable the processing of "value" attribute of combo box "cw", as it is shown in Fig.
5.3.2.15. Similarly, enable the processing of the "arg0val" attribute for Ti and To, as well as the "speed"
attribute of the "cooler2" element.

Fig. 5.3.2.14. Adding the three attributes for the element "elCooler" of the library "KM 101".

Fig. 5.3.2.15. The enabling of the processing of the "value" attribute of the combo box "cw".

Quick start OpenSCADA 69

At the end let's set the user programming language for the program to the "JavaLikeCalc.JavaScript"
and write the program to process this widget:

Ti_arg0val = Ti;
To_arg0val = To;

ev_wrk = ev_rez = "";
off = 0;
while(true)
{
 ev_wrk = Special.FLibSYS.strParse(event,0,"\n",off);
 if(ev_wrk == "") break;
 if(ev_wrk == "ws_CombChange:/cw") Cw = cw_value;
 else ev_rez += ev_wrk+"\n";
}
cw_value = Cw;
cooler2_speed = Cw/5;

 Place or edit the widget program does not make its compilation, and therefore no error
messages in the program if they have a place to be. This is due to the fact that the immediate
execution of the program and, hence, its compilation is carried out in the surroundings and the
moment of launch to project execution visualization. In this case any errors during compilation are
displayed in a message OpenSCADA, widgets with errors and not executed. View to messages
archive OpenSCADA you can in the main tab of the subsystem "Archives" or in a terminal run
OpenSCADA, if the launch was from the terminal or emulator.

Quick start OpenSCADA 70

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=ksv#h932-7

The resulting view of the Process tab of the "elCooler" widget of the "KM 101" library will have the
form shown in Fig. 5.3.2.16.

 Fig.
5.3.2.16. The resulting view of the Process tab of the "elCooler" widget of the "KM 101" library.

Let's close the dialogue of the properties of visual element editing, create an icon on the basis of our
element, close the inner editing window and save it all.

The development of the complex element is finished.

Quick start OpenSCADA 71

 5.3.3. Adding the complex element to the mnemonic scheme

To test the operability and evaluate the results of our efforts let's add the created widget to the
mnemonic scheme, developed in chapter 5.2. We'll repeat this operation for two coolers "AT101_1" and
"AT101_2".

To do this we'll open the frame of mnemonic scheme "AT 101" for editing. Then grab by the "mouse"
our complex element and drag to mnemonic scheme, where we drop it in the desired position. In the
dialog we'll enter the identifiers "AT101_1" and "AT101_2" respectively. The field "Name" is blank.
Added element we'll place the way we desire. After such manipulations, we should get the mnemonic
scheme with the view, similar to Fig.5.3.3.1.

Fig. 5.3.3.1. The view of the mnemonic scheme with complex elements.

Quick start OpenSCADA 72

Let's save the new mnemonic scheme and close its window. Then move on to the project and open this
mnemonic scheme in the project's tree "Signal groups (template)"->"Root page (SO)"->"Group 1"-
>"Mnemos"->"AT 101". As you can see, our new elements are appeared here automatically. And we only
need to connect the links to the new elements. To do this we'll open the dialog of editing the properties of
the mnemonic scheme on the "Links" tab (Fig.5.3.3.2). On this tab, we can see the tree with the elements
of "AT101_1" and "AT101_2". Unwinding any of the elements, we'll see the "Parameter" branch just with
the "Ti", "To" and "Cw" attributes, thus we can simply specify the address of the parameter
"prm:/LogicLev/KM101/AT101_1" in the "Parameter" field and attributes will be placed automatically.

Fig. 5.3.3.2. The "Links" tab of the dialog of editing the properties of the mnemonic scheme.

Quick start OpenSCADA 73

Let's save our mnemonic scheme and verify what we have. To do this, close the dialog of the properties
and run the "Signal groups (template)" for execution. Then switch to the second mnemonic scheme with
the help of paging buttons. With error-free configuration, we should see something similar to that shown
in Fig.5.3.3.3.

Fig. 5.3.3.3. The resulting mnemonic scheme.

On this mnemonic scheme through our complex elements we can not only observe but also to control
the productivity of coolers, simply by changing the value in the combo box. Changing the productivity, we
can see the changes in temperature and alarms for analog typed parameter. History of changes we can see
on the created in the chapter 5.1 the group of graphs.

Quick start OpenSCADA 74

 6. Recipes
This section is intended to provide the descriptions of recipes for solving the common problems and

tasks of the user. Recipes to be placed in this section may be offered by the users.

 6.1. Transfer of OpenSCADA configurations from one project to another

It is often needed to transfer configuration from one OpenSCADA project to another. And, more often
it is necessary to make a partial transfer, for example, the transfer of certain developments that could be
useful in the new project.

Generally, it should be noted that any developments with the slightest hint, and the prospect of re-use
should be standardized and maintained in the separate, own libraries and databases. It is not recommended
to change the default configurations and elements of the standard libraries, and save your own, new
libraries and elements in the databases of standard libraries. This will subsequently allow you to painlessly
update the standard libraries, and to simply use the developments of your previous projects.

Easy transfer of the DB with libraries and configuration

If you took into account the above recommendations and all of your uniform developments are
contained in the separate database, then the entire transfer process will be to copy the database and connect
it to a new project.

The procedure of DB copying is different for different types of databases and you should read about it
in the DB documentation. In the OpenSCADA distros it is commonly used the SQLite database, as
separate files *.db. Сopying of the SQLite database, respectively, is the simple copying of the the required
database file from the database directory of the old project to the database directory of the new one.

Connection is made by creating a new database object in the module of the required DB type of the
database subsystem and its subsequent configuration (in details). After the creation, configuration, and the
enabling of database you can immediately download the configuration from it by clicking the "Load
system from this DB" on the form of the database object.

Separation of the desired configuration

If the desired configuration is contained in a common database or in the database of standard libraries,
you need to move it to the separate database. You can move the configuration either to a separate database
with your libraries or to the export database. Export database, unlike a library one, only serves to transfer
the configuration and will subsequently be deleted. In any case, you must create a new database for the
desired database type, like the connection procedure above. To transfer you should use a database type
that you plan to use in the new project. Usually, it is better to use the SQLite database type for the transfer,
because of the simple copying procedure for it. However, if you use a network database, the procedure
may change to the simple connection of the library or export database to a new project.

Next, you must separate the configuration in unifying or export libraries, if it can not be directly stored
in a database. For example, certain templates of parameters or parameters of the data acquisition
controllers, visual elements of the widgets libraries etc. You can separate by creating a library of export or
by the unification of the element, such as a library of templates, or the controller of the data acquisition
parameters, library of widgets etc. For the newly created library as the database should be specified the
previously created unifying or export database. Further you should copy the necessary elements from the
original library to unifying/export via a standard copy function. After copying the unifying/export library
must be saved.

If it is necessary to transfer the configuration element with a separate DB property or the entire libraries
the operation of creating an intermediate library and the further copying can be omitted. It is enough in the
DB field to specify the previously created a unifying or export database and save the element.

Quick start OpenSCADA 75

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-2

Further actions, namely the simple transfer of the database, are implemented in accordance with the
previous section.

When you transfer the configuration by exporting it is necessary to implement the reverse process of
copying from the export libraries to the local libraries of a new project and deleting of the export database.

Low-level copy of the DB contents

To transfer you can make selectively copying of the database tables with the configuration by selecting
the tables' objects in the database object, the copy command, the selecting of the object of a new database
and insert command (in details). However, it is necessary to know the structure of the database, about
which you can read by this link.

 6.2. Cyclic programming into OpenSCADA particularity

Novice users often have question about time intervals hold while programming calculation procedures
in the OpenSCADA environment. This question is usually associated with the presence of previous
programming experience in linear calculations and lack of experience in programming of cyclic real-time
systems.

The so-called tact or cycle of periodical calculations, ie the life rhythm is used in the real-time systems.
Some procedure is calculated in each cycle that should not take more time than the cycle. As a
consequence, if the cycle procedure stops for waiting, the life of the real-time system stops too. Hence, the
using of traditional sleep task functions into such procedures is unacceptable!

The solution of the desired exposure time interval in the real-time systems, within the rhythm of life, is
made in two ways. The first way is to decrement the counter value, set to the time interval, in each cycle
by the cycle frequency to the value <= 0, for example, in OpenSCADA it is implemented as follows:

if((tm_cnt-=1/f_frq) <= 0) //Decrement
{
 tm_cnt = 10; //Set the counter to a value of 10 seconds
 //Other actions with the periodicity of 10 seconds
}

The second way is based on the astronomical time, ie the comparison with the current time is made in
the cycle, for example, in OpenSCADA it is implemented as follows:

if(SYS.time() > tm_to)
{
 tm_to = SYS.time()+10; //Setting the waiting threshold for 10 seconds more
than the current time
 //Other actions with the periodicity of 10 seconds
}

The second method is more reliable because it excludes the operation delay problem due to the
possibility of calculating the cycle procedure over the cycle time. Although in the properly configured
systems and tasks, this problem should not occur.

Quick start OpenSCADA 76

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-2
http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-2

 6.3. Live disk (Live CD/USB)

In order to simplify the OpenSCADA deployment, you can use live builds of bootable CD and USB.
Live disk provides the ability to boot directly from it and quickly to obtain the desired working
environment. During booting and operating a live disk does not use regular data storages, which means
you can not worry about the integrity and security of data on them. In general, a live disk is a convinient
tool with a wide range of necessary software tools, independent from the stationary software environment,
and capable to make diagnostics of software and hardware environment, and their restoration in some
cases.

Live disk is a packaged image of the operating system and applications with a size of about 700MB,
recorded on CD/DVD drive or USB-Flash drive. During the operation the operating system "on the fly"
unpacks the files needed to run programs and open documents, and therefore does not use memory more
than at its usual installation.

The live disks with OpenSCADA built into several variants based on distributive ОS Linux
ALTLinux and allowed for download to accorded OpenSCADA version here:
http://oscada.org/en/download. Modern live build with OpenSCADA have much more functions than have
been planed originally:

• Saving work changes transparently, on writing to USB-Flash. The feature achieved by creation
disk's partition to write, on free USB-Flash space. The partion mirrored to file system's root and all
modifications will write to it. Besides work data saving to the partition you can install need
program packages from repository ALTLinux (last P6 and T6).
• Combination typical data and live Flash-disk. The feature achieved by writing the live disk's
image direct to USB-Flash file system, FAT16 or FAT32, that preserves typical data storage's
functions and append live-disk function.
• The live disk environment installation to stationary data storage (HDD). That allow for you do
not deeply learning to operation system Linux on it installation, configuration, and also
OpenSCADA deployment. You enough to load from the live disk, to check for all hardware correct
detection and all need program work, then to install to HDD, by simple procedure aid from the icon
on desktop. The resulting installation will exactly repeat the live disk environment.

ISO-image of the live CD

The first variant of a live CD building is the ISO-image (*LiveCD_USB.iso) for writing to CD/DVD,
but it is also combined and can be written directly to the USB-Flash drive.

For the ISO-image record to CD/DVD, you can use standard tools of the original operating system.
Writing to USB-Falsh can only be done from the environment of Linux, for example, from the
environment of this live disc, recorded and booted previously with CD/DVD drive.

 The user, who has no experience with Linux should only burn the CD/DVD and start to get
acquainted with Linux, if he wants to get a live USB-Flash drive.

 Burn the image to the USB-Flash will destroy all the data and make it unfit for usage as a data
storage, except the possibility of recording the changes to the storage section of the live disk OS
environment that is created when you first boot from the live disk.

Address of the disk for ISO-image record is "/dev/sd{x}", and it can be found by the console command
"$ dmesg", immediately after you connect the target USB-Flash drive. For the ISO-image record to the
USB-Flash from the Linux environment you can use the following command:

$ dd if=ALTLinux_6-OpenSCADA_0.8.0-TDE_3.5.13-i586-LiveCD_USB.iso of=/dev/sd{x} bs=4096
#The record directly from the booted CD/DVD disc
$ dd if=/dev/sr0 of=/dev/sd{x} bs=4096

Quick start OpenSCADA 77

http://oscada.org/en/download
http://www.altlinux.com/
http://www.altlinux.com/
http://oscada.org/en/download

FAT-image of the live disk

The second variant of the live disk building is a FAT-image: a group of files for the direct recording
and uploading from the FAT-partition (*flash.tar). The advantage of this building, as it was previously
mentioned, is a combination of USB-Flash drive features as a data storage and as a live disc at the same
time. Also on the basis of this building, you can create compact, reliable and functional solutions of the
embedded systems based on OpenSCADA, such as Programmable Logic Controllers (PLC), the panel
controllers (with a touch screen), as well as simple SCADA-servers and operator's "quickly made"
SCADA-stations, by recording a live disk to the stationary data storage (HDD, SSD or Flash). The
reliability of this solution is achieved by placing the main non-modifiable software in the packed file, and
operational data on the journaled file system.

The record of such image can be done from any operating system, but to install the bootloader it is
possible only from Linux, for which you can use the LiveCD from the previous section.

The procedure for creating a live disk has the following steps:

Connect the target disk, find out ist address and
mount it, all operation should be done from root:
$ su -
$ dmesg
$ mkdir /mnt/tmp; mount /dev/sd{x}1 /mnt/tmp
Unpack the contents of an archive on the mounted disk:
$ cd /mnt/tmp
$ tar xvf /var/tmp/ALTLinux_6-OpenSCADA_0.8.0-TDE_3.5.13-i586-flash.tar
Find out the UUID for the filesystem of the target disk:
$ blkid | grep /dev/sd{x}1
Modify the file /mnt/tmp/syslinux/syslinux.cfg at the end of the line
"append initrd=alt0/full.cz live ... disk, uuid:4EB3-0478",
UUID where it is necessary to indicate the previously obtained UUID
Add or modify the file "/mnt/tmp/syslinux/lang" for specifying
the locale-language of the interface by default,
for the Russian language it is necessary to specify "ru_RU",
otherwise it will be English.
Unmount the disk:
$ umount /dev/sd{x}1
Initialize the MBR of the disk to the correct value:
$ ms-sys -s /dev/sd{x}
Initialize the boot loader:
$ syslinux /dev/sd{x}1

 This method of the live disk creation requires knowledge of Linux and command line interface
(console), as well as the basics of the disks partitioning because with an wrong initial partitioning of
media the booting may not be passed. In addition, to ensure the function of transparent changes
saving it is necessary to create the partition labeled "alt-live-storage" and the file system ext3, this can
be done in the program-manager of the partitions, for example, "gparted".

Quick start OpenSCADA 78

Booting

To boot from the live disk the computer should be rebooted and then you should press the key to enter
the BIOS boot menu at the very start of the boot and choose there our disk (Fig.6.3.1). The key to enter the
boot menu may be different on the different computers and may be one of the following: "F8", "F9",
"F10", "F11" or "F12".

Fig. 6.3.1. Boot device selection dialog in BIOS.

Quick start OpenSCADA 79

After the selection of the the device you should see the boot menu of live disk, where it is important to
pre-select your language by pressing F2 (Fig.6.3.2) if the default language is not the desired one.

Fig. 6.3.2. Live disk's language selection menu.

Quick start OpenSCADA 80

As a result of booting from the live disc, you'll get a desktop of the TDE 3.5.13 (Fig.6.3.3).

Fig. 6.3.3. Live disk's working desktop.

Quick start OpenSCADA 81

 6.4. General provisions of the working conception with violations, alarms and
notifications

Alarms and their processing in OpenSCADA is implemented in two ways, which is associated with the
OpenSCADA structure, ways of its usage, as well as with the nature of alarms.

The first part of alarms, with which the OpenSCADA works initially, and which is most needed, is
notifications in various ways. Since the notification is part of the visualization interface, they are
implemented in the VCA engine UI.VCAEngine and in the visualizers UI.Vision, UI.WebVision.
Currently, notifications and alarms OpenSCADA subsystem implements the following functions:

• Notification:
• Light — blinking of the object, the signaling group, the general status with the alarm
color.
• Sound — playing the sound file, or speech synthesis from text, associated with the
alarm;
• Beep — a continuous signal to the system, "Beeper", regardless of the alarm.

• Quittance of the alarm notification:
• Full — by clicking on the colored blinking circle of the alarm status (the "ws_alarmLev"
event), bottom right:
• By the notification way — separate the light (the event "ws_alarmLight"), sound (event
"ws_alarmSound") and the beep (the event "ws_alarmAlarm"), by pressing a button with
the corresponding image, bottom right, or under the buttons of display options;
• By the alarm object — to the visual presentation image it can be added the quittance
command of the notification directly by itself;
• Alternately with listening — it is character of the sound notification, because every alarm
object can provide its own sound notification or the speech synthesis.

During the implementation of the notifications in the visualization area there is no direct rule for the
formation of alarm sign because in many situations there is no uniqueness. Currently, on the side of the
typified data source templates, it is practiced a method of the formation an "err" error attribute with the
code and text of the alarm, and their processing and the formation of notification is made in the visual
image of the data object. Sometimes the processing the parameter's borders is made directly in the visual
image of the data object.

Subsequently, it became necessary to log and record the actual alarms for the current moment. For the
alarms logging it is sufficient the formation of system messages with the specified category and message
format, but for the monitoring the ongoing(actual) alarms a buffer is needed. Subsequently, a buffer was
added as an add-on of the messages subsystem, and its addressing is made by the inversion of the message
level. So, the message record with the level "-2" and the category "TEST" will put the message into the
alarm buffer and duplicate it in the messages archive, with the level of "2". At the messages request with
the negative level they will be taken from the alarm buffer. Deleting/removing of the alarm is made by
writing the messages with the same category "TEST" and the non-negative level.

This concept of accounting the actual alarms allows you to use standard mechanisms for the messages
processing to account the alarms:

• Alarm registration: SYS.message("alCategory", -3, "Parameter: alarm");
• Removing of the alarm: SYS.message("alCategory", 1, "Parameter: normal");
• Creating a list of actual (active) alarms by means of the "Protocol" or "Document" elements
with the "-1" negative level for all.

Messages registration is best done on the side of the typified data source templates by a special function
"SYS.DAQ["Modul"]["Controller"].alarmSet(string mess, int lev = -5, string prm = "")", which
unifies the category. To call this function from the context of the template you need to add "this" IO of the
"Object" type, then the set of the alarm would be of the following form
"this.nodePrev().alarmSet("Parameter: alarm", -5, "prm");". This function is now used in many data
sources modules to account the global alarms of the controllers objects. The function creates the alarm
with the category: al{ModId}:{CntrId}[.{PrmId}], where:

Quick start OpenSCADA 82

http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=1dju
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=te1
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=rv2

• ModId — module's ID;
• CntrId — controller's ID;
• PrmId — parameter's ID from the <prm> argument.

In general, it should be noted that the notification and alarms registration are different mechanisms that
can be used individually for simple projects, or together for large complex projects.

Conclusion
This document describes in detail the basic process of creating the user interface elements, with

preparation and configuration of the data source. In general, you can quickly get an idea of the work with
the OpenSCADA system, and purposefully look for solutions of associated problems.

Quick start OpenSCADA 83

	Quick start OpenSCADA
	Introduction
	 1. Terms, definitions and abbreviations
	 2. Installation
	 2.1. Installing OpenSCADA from packages
	 2.2. Installation from sources

	 3. Initial configuration and start
	 3.1.Creation the user's project from scratch

	 4. Working with Data Sources
	 4.1. Data acquisition from the TP device
	 4.2. TP data processing
	 4.3. Typified Data Sources Parameters
	 4.4. Enabling the TP data archiving

	 5. The formation of visual presentation
	 5.1. Adding the template page in the project and linkage of the dynamics
	 5.2. The creation of the new frame, the mnemonic scheme
	 5.3. Creation of the new complex element

	 6. Recipes
	 6.1. Transfer of OpenSCADA configurations from one project to another
	 6.2. Cyclic programming into OpenSCADA particularity
	 6.3. Live disk (Live CD/USB)
	 6.4. General provisions of the working conception with violations, alarms and notifications

	Conclusion

