

Available at

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

See Also "TLSH - A Locality Sensitive Hash" CTC 2013

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

Using Randomization to Attack Similarity Digests

Jonathan Oliver, Scott Forman, and Chun Cheng

Trend Micro, Melbourne, Australia
{jon_oliver,lane_forman,chun_cheng}@trendmicro.com

Abstract. There has been considerable research and use of similarity digests

and Locality Sensitive Hashing (LSH) schemes - those hashing schemes where

small changes in a file result in small changes in the digest. These schemes are

useful in security and forensic applications. We examine how well three

similarity digest schemes (Ssdeep, Sdhash and TLSH) work when exposed to

random change. Various file types are tested by randomly manipulating source

code, Html, text and executable files. In addition, we test for similarities in

modified image files that were generated by cybercriminals to defeat fuzzy

hashing schemes (spam images). The experiments expose shortcomings in the

Sdhash and Ssdeep schemes that can be exploited in straight forward ways. The

results suggest that the TLSH scheme is more robust to the attacks and random

changes considered.

Keywords: Locality Sensitive Hash, similarity digests, Ssdeep, Sdhash, TLSH

1 Introduction

Similarity digest schemes exhibit the property that small changes to the file being

hashed results in a small change to the hash. The similarity between two files can be

determined by comparing the digests of the original files.

We considered the following schemes: Ssdeep [6], Sdhash [9], and TLSH [7]. We

restricted the research to these schemes because they had mature implementations

which were available as open source code. In addition, Ssdeep [6] is the de facto

standard in the area of malware analysis. It is currently supported by NIST [12], and

is the only similarity digest supported by Virus Total [16]. We did not report on the

Nilsimsa [11] scheme here due to its high collision rate and false positive rate [7].

There have been several security analyses of similarity digests [2, 3, 8]. In [2],

Breitinger analyzed Ssdeep and concluded that Ssdeep “is not suitable as a

'cryptographic similarity hashing function'. There are vulnerabilities that are easily

exploitable”. Roussev [8] concludes that Sdhash demonstrated the potential to address

all five of the design requirements, where the design requirements were reasonable

security requirements for similarity digests. Breitinger et al. [3] conclude that “Sdhash

has the potential to be a robust similarity preserving digest algorithm”.

An important property to consider for similarity digests [2, 3] is anti-blacklisting.

Anti-blacklisting involves modifying a file to be semantically similar, but where a

digest method assesses the files to be non-similar.

Available at

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

See Also "TLSH - A Locality Sensitive Hash" CTC 2013

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

 We have no expectation for similarity digests to match files which use an encrypted

file format. For example, executable code which has been encrypted as a part of a

packing process is not considered “semantically similar” to the original executable

code for the purpose of this paper. Typical ways that files are modified include:

 Spam email: It is standard practice for spammers to use templates for their spam

and to add randomized content to each individual message;

 Source code: It is not uncommon for the whitespace in source code to be changed

by programmers, program beautifiers or editors;

 Malware: Malware uses techniques such as packing, polymorphism and

metamorphism [5] to make the executable code more difficult to analyze. In this

paper, we do not consider the packing issue, but we consider elements of

polymorphism / metamorphism such as adding NOPs, permuting registers,

adding useless instructions and loops, function re-ordering, program flow

modification and inserting un-used data [5].

We focus on situations where the file is deliberately modified by an adversary

using randomization as a key component. This paper offers the following new aspects

to the research area: (i) we provide simple rules for modifying content to make

Ssdeep ineffective, (ii) we reject the proposal in [3] that Sdhash is a robust similarity

digest, and provide simple rules for modifying content to make Sdhash ineffective,

and (iii) provide evidence that locality sensitive hashing schemes (such as TLSH)

scheme are more difficult to exploit.

2 A Description of Ssdeep, Sdhash and TLSH

Ssdeep [6] uses 3 steps to construct the digest from file F:

(1) use a rolling hash to split the document into distinct segments;

(2) produce a 6 bit value for each segment by hashing the segment; and

(3) concatenate the base64 encoded values from step (2) to form the signature.

Ssdeep assigns a similarity score in the range of 0-100 by calculating the edit distance

between the two digests using the dynamic programming algorithm.

Ssdeep is vulnerable to anti-blacklisting in two ways [2]: (i) to disrupt the content

identified by the rolling hash, and (ii) to modify content in all the segments. Because

of these vulnerabilities, Breitinger [2] concludes that Ssdeep is insecure.

Sdhash [9] uses 3 steps to construct the digest:

(1) identify 64 byte sequences which have a low probability;

(2) hash the sequences identified in step (1) and put them in a Bloom filters; and

(3) encode the series of Bloom filters to form the output signature.

Sdhash assigns a similarity score in the range 0-100 by calculating a normalized

entropy measure between the two digests.

A security assessment of Sdhash is made in [3]. In [3], the authors state that the

main contribution of the paper is that “Sdhash is a robust approach, but an active

adversary can beat down the similarity score to approximately 28 while preserving the

perceptual behavior of a file”. Breitinger et al. (Section 5.1 of [3]) note that 20% of

the input bytes do not influence the similarity digest, giving scope for attack.

Available at

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

See Also "TLSH - A Locality Sensitive Hash" CTC 2013

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

TLSH [7] is a locality sensitive hash closer in spirit to the Nilsimsa [11] hash than the

Ssdeep and Sdhash digests. TLSH uses 4 steps to construct the digest:

(1) process the input using a sliding window to populate an array of bucket counts;

(2) calculate the quartile points;

(3) construct the digest header values based on the quartile points, the length of the

file and a checksum; and

(4) construct the digest body by generating a sequence of bit pairs, which depend

on each bucket’s value in relation to the quartile points.

TLSH assigns a distance score between two digests by summing the distance between

the digest headers and the digest bodies. The distance between the digest bodies is

calculated as an approximate Hamming distance between the two digest bodies. The

distance between two digest headers is determined by comparing file lengths and

quartile ratios. The distance score between two digests is in the range 0-1000+. The

recommended threshold [7] is 100, which should be tuned for each application.

3 Analyzing Spam Image Files

We collected a sample of 1000 images which had been deliberately manipulated by

spammers to avoid detection. There were 30 distinct groups of related spam images.

In 23 of these groups, the spammers had systematically manipulated the images so

that the image files were distinct, leaving us with a data set of 911 images. Examples

of the types of manipulations are shown in Figure 1 below. The manipulations

included changing the height and width, changing the font size, doing rotations of the

images, adding dots and dashes to the images, and changing the background colours.

Manipulation Example Image #1 Example Image #2

Image rotation

Changing image

dimensions;

stretching image.

Dimensions = 134 x 71

Dimensions = 123 x 73

Changing image

height and width;

Changing font and

changing font size.

Fig. 1. Example spam images

Available at

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

See Also "TLSH - A Locality Sensitive Hash" CTC 2013

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

Due to the processes used to compress jpeg and gif images, it is not a useful

experiment to apply the similarity digests to the raw gif and jpeg images. So CxImage

[10] was used to extract the image and save the file as a bit mapped image. The digest

methods were then used on each group to determine detection rates and across distinct

groups to determine a false positive rate for each of the methods.

Tables 1 shows the detection rates for each digest scheme. The Sdhash and Ssdeep

methods were considered to match images if they scored any value above 0. The

threshold for the TLSH digest was selected to be 100. With these thresholds, Ssdeep

and Sdhash had no false positive matches, and TLSH had a false positive rate of

0.007% (29 out of 414505 image combinations). The results in Table 1, show that

 Ssdeep was ineffective at identifying images as being related, although it did

have a very low false positive rate.

 The TLSH and Sdhash methods were reasonably effective at identifying that

images are related, for many of the other classes of image manipulation.

 The digest methods were ineffective at certain types of adversarial image

manipulations. The groups that digest methods were ineffective against

included the groups where multiple types of changes were made (Pharmacy

erectile dysfunction, Stockspam CYTV, Stockspam EXVG).

 TLSH was able to identify images that were rotated, while Sdhash was not

able to do so (see the “Discounted Pharma” images in Figure 1).

 TLSH was able to identify images that were stretched, while Sdhash was not

able to do so (see the “Pharmacy Picture” images in Figure 1).

Table 1. Detection rates for each group of images

Image Group N TLSH Sdhash Ssdeep

Discounted Pharma 20 80.0% 3.7% 0.0%

International Greek 3 33.3% 33.3% 0.0%

Pharmacy erectile dysfunction 147 22.1% 22.6% 9.6%

Pharmacy legal RX 22 0.0% 0.0% 0.0%

Pharmacy online 1 22 90.5% 100.0% 10.8%

Pharmacy online 2 63 12.1% 11.2% 1.0%

Pharmacy online 3 10 64.4% 62.2% 4.4%

Pharmacy online 4 6 100.0% 100.0% 6.7%

Pharmacy picture 8 57.1% 3.6% 7.1%

Pharmacy pop a pill 5 80.0% 100.0% 60.0%

Pharmacy power pack 41 47.8% 47.8% 20.7%

Pharmacy research 3 0.0% 33.3% 33.3%

Pharmacy Viagra Pro 11 32.7% 38.2% 29.1%

Pharmacy Viagra Pro2 7 42.9% 42.9% 42.9%

Software OEM 6 66.7% 66.7% 66.7%

Software SOBAKA 11 100.0% 100.0% 100.0%

StockSpam CYTV 105 1.7% 1.4% 0.0%

StockSpam EXVG 389 1.2% 2.8% 0.6%

Available at

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

See Also "TLSH - A Locality Sensitive Hash" CTC 2013

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

4 Analyzing Text Files and Web Pages

In the case of image files, we had real world data where images had been altered to

try to stop a filter from determining that they were similar. For text and Html files, we

randomly made changes to them to simulate the adversarial environment.

4.1 Performing Random Changes

Procedure “greedy_adversarial_search” takes two inputs a file F(0) and a

digest scheme DS. At iteration n, it considers “random changes” to F(n-1), and creates

F(n) by applying the change that results in the lowest score according to digest

scheme DS. This creates a sequence of files F(0) … F(n) where for each i > j,

score(F(i), F(0)) < score(F(j), F(0)) according to scheme DS. It will perform these

changes until F(n) is considered a non-match or up to 500 iterations. In the case of the

TLSH scheme, the scores of the sequence are increasing rather than decreasing. We

define a single "random change" as one of the following actions:

I. insert a new word (selected randomly);

II. delete an existing word (selected randomly);

III. swap two words (each word selected randomly from within the document);

IV. substitute a word for another word (each word selected randomly) ;

V. replace 10 occurrences of a character with another character;

VI. delete 10 occurrences of a character;

VII. swap two lines (selected randomly)

VIII. append a low entropy token of length 10 at the end of the document (a single

character is selected randomly) (for example append “1111111111”); and

IX. append a high entropy token of length 10 at the end of the document (for

example append the token "Qo*\ezN)8$").

We used the procedure on 500 text and html files to identify vulnerabilities in the

digest methods. Across the sample of files we measure the following:

 File Size: the size of original files in bytes,

 Number of Files Broken: the number of files where greedy procedure

returned successfully (i.e, the greedy procedure was successful at defeating

the digest within 500 iterations),

 Iteration Required to Break Digest: When the greedy procedure ends in

success, we record the iteration number,

 Relative File Change: This was measured by comparing the original file with

the manipulated file at the final iteration of the greedy procedure. The

comparison is made by converting the original and final manipulated file into

two sorted lists of tokens (by replacing all sequences of whitespace by a

newline character) and using the Linux “diff” command to determine the

ratio of tokens that have changed to the original number of tokens in the file.

 List of Random Changes: The sequence of changes performed by the greedy

procedure.

Available at

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

See Also "TLSH - A Locality Sensitive Hash" CTC 2013

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

Table 2 gives the results of applying the greedy procedure to the 500 text and Html

files. The table splits the results into 5 file size ranges, and for each range gives the

average results for the criteria measured.

Table 2. Results after applying the greedy procedure to 500 text and Html files

File Size Average

Relative

Change

Digest

Attacked

% Broken Average

Iterations to

Break Digest

0-10000 34.3% TLSH 20.6% 83.7

0-10000 34.3% Ssdeep 100.0% 6.9

0-10000 34.3% Sdhash 100.0% 14.5

10000-20000 21.8% TLSH 12.7% 84.5

10000-20000 21.8% Ssdeep 100.0% 7.1

10000-20000 21.8% Sdhash 100.0% 26.3

20000-40000 14.4% TLSH 2.8% 78.7

20000-40000 14.4% Ssdeep 100.0% 7.9

20000-40000 14.4% Sdhash 97.2% 44.9

40000-80000 10.4% TLSH 0.0%

40000-80000 10.4% Ssdeep 100.0% 10.3

40000-80000 10.4% Sdhash 32.9% 68.0

80000- 7.9% TLSH 0.0%

80000- 7.9% Ssdeep 96.9% 12.4

80000- 7.9% Sdhash 0.0%

The greedy procedure was highly successful at breaking the Ssdeep and Sdhash

digests when the file size was below 40,000 bytes. The Ssdeep digest method was

particularly vulnerable - on average being broken with less than 10 iterations. The

difference in the robustness of the digest approaches to adversarial manipulation is

highlighted with file sizes in the range 20,000-40,000; in this range manipulating an

average of 14% of the original file will break Ssdeep and Sdhash most of the time,

while the TLSH scheme is still able to identify the files as being related files.

The Ssdeep method was consistently broken by procedure

greedy_adversarial_search. The random changes selected most frequently by the

procedure were the swap-line, change-char and delete-char modifications. The

characters selected the most often to be changed or deleted were

'S', 'N', newline, space

This is particularly disturbing for the Ssdeep method since the changes which are very

effective at breaking the digest method are those that humans are unlikely to notice,

such as changing the spacing and the line length.

The Sdhash method was also consistently broken by procedure

greedy_adversarial_search, though on average Sdhash required 25 more iterations to

Available at

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

See Also "TLSH - A Locality Sensitive Hash" CTC 2013

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

break than Ssdeep. The random changes selected most frequently by the procedure

were the change-char, delete-char and swap-line modifications. The characters

selected the most often to be changed or deleted were:

'c', 'd', 'u', 'r', 'e', 'm', newline, 'f', comma, 'S'

This is also disturbing for the Sdhash method - some changes which are very effective

at breaking the digest method include those that do not change the meaning of the

document - namely changing the length of lines in a document.

4.2 Anti-blacklisting for C/C++ Source Code

Task (1) is to modify source code in such a way that:

 The modified source code still compiled and produced an executable

program identical to the original source code, and

 Each modified file of source code resulted in a similarity digest which was

judged to not match the digest of the original source file.

This could be achieved with the sed [1] script: “s/;[\t]*$/& / s/{[\t]*$/& /”.

This sed script adds a space after each semicolon (;) and open brace ({) at the end of

lines. We note that there is a multitude of ways that further changes can be made

before we start to consider the types of program transformations which do not alter

the meaning of the program, but change its representation. We tried it on a range of

source code projects, and found the script to be 100% effective at breaking both

Ssdeep and Sdhash.

4.3 Anti-blacklisting for Html files

Task (2) is to modify Html files in such a way that:

 The modified Html file had the same appearance and browser functionality

to the original Html file, and

 The modified Html file had a similarity digest which was judged to not

match the digest of the original Html file.

This could be achieved with the sed [1] script:

s/<[a-zA-Z0-9]*[\t]/& /g

s/[\"]>/" >/g

s/[\t][a-zA-Z0-9]*>/ &/g

s/<([a-zA-Z0-9]*)>/<\1 >/g

s/>[\t]/& /g

s/,[\t]/& /g

s/[;}>][\t]*$/& /

s/[a-zA-Z0-9]$/& /

The intent of the script is to exploit the following features of Html:

 It is permissible to put additional whitespace to further separate attributes

inside Html tags [13], (lines 1-4).

Available at

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

See Also "TLSH - A Locality Sensitive Hash" CTC 2013

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

 It is permissible to put an additional whitespace after end tags and commas in

the text in the Html page will result in an identical output page being

displayed, (lines 5-6).

 It is permissible to put an additional whitespace at the end of lines where the

last token is an end tag or a word, which will result in an identical output

displayed (lines 7-8).

We applied the technique to 500 HTML files and got the following results:

Digest Method Number of manipulated Html files identified

as matching original file

TLSH 291

Sdhash 16

Ssdeep 11

5 Analyzing Executable Files

We expect that similarity digests will behave differently when applied to executable

files than when applied to image files, text files and html files. The reason for this is

that text files and image files have no requirement to share common components.

However, we fully expect executable files to share standard components. For example

we expect C and C++ programs to share components such as the stdio library and the

preparation of the argc and argv parameters to the main() function. Thus we need to

establish a baseline threshold for each similarity digest scheme. In Section 5.1, we

determine suitable thresholds for the digest schemes for Linux executable programs.

We use these thresholds in Section 5.2 in our efforts to break the digest schemes.

5.1 Suitable Thresholds for Linux Executable Files

We analyzed the binary files from /usr/bin of a standard Linux distribution. There are

2526 files in /usr/bin, and we removed all those files which were either symbolic links

or less than 512 bytes (since the Sdhash scheme requires a minimum of 512 bytes to

create a digest). This left 1975 executable files. We applied the similarity digest

schemes doing 1975 * 1974 / 2 = 1,949,325 file comparisons. We begin this analysis

using the tentative thresholds of <= 100 for TLSH, and >= 1 for Sdhash and Ssdeep.

Using these thresholds resulted in the following number of file matches:

Digest Number of matches

TLSH ≤ 100 35733

Sdhash ≥ 1 25408

Ssdeep ≥ 1 836

Available at

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

See Also "TLSH - A Locality Sensitive Hash" CTC 2013

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

Manual inspection of the files showed that:

 A threshold of 100 was not useful for TLSH – it was making many

unjustified matches near the threshold of 100 – for example matching “time”

and “xtrapchar”.

 A threshold of 1 was not useful for Sdhash – it was making many unjustified

matches near the threshold of 1 – for example matching “ap2” and “xkill”.

 A threshold of 1 was appropriate for Ssdeep.

To improve the thresholds for Sdhash and TLSH, we consider thresholds where there

is similar discriminatory power. We found the thresholds which where closest to

assigning 1 in 1000 and 1 in 100 of the possible 1,949,325 file combinations as

matching:

 Threshold Number of matches

1 in 1000 Sdhash ≥ 13 2215

1 in 1000 TLSH ≤ 52 2130

1 in 100 Sdhash ≥ 2 19029

1 in 100 TLSH ≤ 85 19307

We found that for the thresholds of 13 for Sdhash and of 52 for TLSH, file pairs near

the thresholds are very likely to be related executable files. For the thresholds of 2 for

Sdhash and of 85 for TLSH, file pairs near the thresholds are almost always unrelated

executable files.

Based on this, we will take a conservative approach and use a threshold of 2 for

Sdhash and 85 for TLSH as the basis of anti-blacklisting testing. By this, we mean

that if an executable program can be modified (while keeping its functionality the

same) in a way which causes the TLSH distance between the original and modified

program to be >= 86, then we have broken the digest scheme.

5.2 Anti-blacklisting for Executable Programs

Task (3) is to modify an executable program in such a way that:

 The modified source code still compiled and produced identical program

behavior (determined by finding no difference on various output runs), and

 The modified executable program had a similarity digest which was judged

to not match the digest of the original program.

To achieve this, we performed modifications to the source code and applied the digest

methods to the executable program created by compiling the source code. Each

change considered was designed to leave unchanged the semantic meaning of the

program, while creating small changes in the object code. The semantic meaning of

the code was verified using unit-test programs. The changes introduced to the source

code, were typical of the changes performed by polymorphic malware and

metamorphic malware [6]. The changes implemented are given in Table 3.

Available at

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

See Also "TLSH - A Locality Sensitive Hash" CTC 2013

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

Table 3. 10 Modifications for source code

Modification Description

And-Reordering
Changing the order of clauses in an “if” statement

if the condition is a conjunction

Or-Reordering
Changing the order of terms in an “if” statement if

the condition is a disjunction

Control-Flow-If-Then-Else Change control flow of an if-then-else statement

Control-Flow-If-Then Change control flow of an if-then statement

New Integer Variables Introducing new integer variables

New String Variables Introducing new string variables

Re-ordering Functions
Changing the order of functions within the source

code

Adding NOPs
Adding variables definitions and adding NOPs

related to those variables.

Adding Random Binary Data Adding character strings with randomized content.

Splitting Strings Split the control string within printf statements

We applied these changes to 3 programs:

 C4.5 [4],

 SVMlight [14],

 greedy_adversarial_search (the program from Section 4.1)

We applied the modifications listed to each source file in turn. Some of the

modifications were not applicable to some source files, and some of the modifications

could cause syntactic or semantic errors. Where this occurred the modification was

discarded.

Table 4. Scores after a single modification on the C4.5 source code

 Number of source

files modified TLSH Sdhash Ssdeep

And-Reordering 5 13 28 32

Or-Reordering 5 26 25 0

If-Then-Else 9 13 46 27

If-Then 12 9 81 69

New Integer Variables 6 12 35 30

Reorder Funs 1 9 79 71

Add NOPs 4 13 16 29

Add Random Data 3 11 70 60

Split Strings 1 13 24 33

New String Variables 14 62 1 0

Available at

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

See Also "TLSH - A Locality Sensitive Hash" CTC 2013

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

 Table 4 gives the scores of the various digests schemes when we apply a single

manipulation from Table 3 to the source code of C4.5 [4]. The column “Number of
source files modified” is the number of source code files that the manipulation is

applicable to and produces no errors. For the C4.5 source code, applying a single type

of manipulation broke both the Sdhash and the Ssdeep digest schemes.

We applied the same approach to SVMlight:

 5 of the manipulations reduced the Ssdeep score to 0.

 The "New String Variables" manipulation reduced the Sdhash score to 0 and

increased the TLSH score to 50.

Applying the "New String Variables" manipulation followed by the "And-

Reordering" manipulation increased the TLSH score to 34 and reduced the Sdhash

and Ssdeep scores to 0.

We applied the same approach to greedy_adversarial_search:

 Again 5 of the manipulations reduced the Ssdeep score to 0 (it was a

different set of 5 manipulations).

 The "Add NOPs" manipulation reduced the Sdhash score to 2.

 The "New String Variables" manipulation increased the TLSH score to 23.

 The "Add NOPs" manipulation reduced the Sdhash score to 2.

Applying the "New String Variables" manipulation followed by the "New Integer

Variables" manipulation increased the TLSH score to 38 and reduced the Sdhash and

Ssdeep scores to 0.

6 Conclusion

Research into similarity digests and locality sensitive hashes for security applications

should be done in an adversarial environment, where the people developing the digest

schemes are actively trying to break their own work and the work of other such

schemes.

Our work demonstrated that different types of manipulations can have very distinct

effects on the scores of similarity digests. Researchers should also explore the

manipulations which are mostly likely to adversely affect the scheme.

Different thresholds need to be considered for different file types. The experiments

described in this paper show that executable files appear to be a more difficult

discrimination task for similarity digests than Html, text files and images, requiring

careful selection of suitable thresholds.

Our work also demonstrates that similarity digests should not use a restricted

range, such as 0 to 100. This gives adversaries a target to strive for; once a Sdhash or

Ssdeep digest has been reduced to zero, then these schemes cannot adjust their

threshold any further. An open ended distance criteria makes the job of an adversary

more difficult.

Based on the analysis in this paper, we make the following conclusions:

 Ssdeep: We concur with the previous assessments [2, 8] that Ssdeep is not

suitable as a 'secure similarity digest'.

 Sdhash: We disagree with the security assessment in [3] that “Sdhash is a

robust approach”. Sdhash has significant vulnerabilities that can be exploited.

Available at

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

See Also "TLSH - A Locality Sensitive Hash" CTC 2013

https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

 TLSH: Based on the experiments done here, TLSH appears significantly more

robust to random changes and adversarial manipulations than Ssdeep and

Sdhash.

Acknowledgments.

We would like to thank Jennifer Rihn for her helpful comments on drafts of the

manuscript, Charlie Hou and Yanggui Chen for their assistance, and Liwei Ren for his

support and ideas about the research. We also thank our anonymous reviewers for

their feedback which was very helpful.

References

1. Barnett, B.: Sed - An Introduction and Tutorial, http://www.grymoire.com/Unix/Sed.html

2. Breitinger, F.: Sicherheitsaspekte von fuzzy-hashing. Master's thesis, Hochschule

Darmstadt, 2011

3. Breitinger, F., Baier, H., Beckingham, J.: Security and Implementation Analysis of the

Similarity Digest sdhash, 1st International Baltic Conference on Network Security &

Forensics (NeSeFo), Tartu (Estland) (2012).

4. C4.5 source code http://www.rulequest.com/Personal/

5. Hosmer, C.: Metamorphic and Polymorphic Malware, Black Hat USA, 2008,
http://blackhat.com/presentations/bh-usa-08/Hosmer/BH_US_08_Hosmer_Polymorphic_Malware.pdf

6. Kornblum, J.: Identifying Almost Identical Files Using Context Triggered Piecewise

Hashing. In: Proceedings of the 6th Annual DFRWS, pp. S91.S97. Elsevier, (2006)

7. Oliver, J., Cheng, C., Chen, Y.: TLSH - A Locality Sensitive Hash. 4th Cybercrime and

Trustworthy Computing Workshop, Sydney, November 2013

https://www.academia.edu/7833902/TLSH_-A_Locality_Sensitive_Hash

8. Roussev, V.: An Evaluation of Forensics Similarity Hashes. In: Proceedings of the 11th

Annual DFRWS, pp. S34.S41. Elsevier, (2011)

9. Roussev, V.: Data Fingerprinting with Similarity Digests. In: Chow, K.; Shenoi, S. (eds.)

Research Advances in Digital Forensics VI, pp. 207--226. Springer (2010)

10. CxImage, http://www.codeproject.com/Articles/1300/CxImage

11. Nilsimsa source code, http://ixazon.dynip.com/~cmeclax/nilsimsa.html

12. NIST, http://www.nsrl.nist.gov/ssdeep.htm

13. Stackoverflow Blog, White space inside XML/HTML tags,

http://stackoverflow.com/questions/3314535/white-space-inside-xml-html-tags

14. SVMlight source code http://svmlight.joachims.org/

15. TLSH source code https://github.com/trendmicro/tlsh

16. Virus Total, http://www.virustotal.org/

http://www.grymoire.com/Unix/Sed.html
http://blackhat.com/presentations/bh-usa-08/Hosmer/BH_US_08_Hosmer_Polymorphic_Malware.pdf
https://www.academia.edu/7833902/TLSH_-A_Locality_Sensitive_Hash
http://www.codeproject.com/Articles/1300/CxImage
http://ixazon.dynip.com/~cmeclax/nilsimsa.html
http://stackoverflow.com/questions/3314535/white-space-inside-xml-html-tags
http://svmlight.joachims.org/
https://github.com/trendmicro/tlsh
http://www.virustotal.org/

