Blender  V3.3
btGImpactQuantizedBvh.h
Go to the documentation of this file.
1 #ifndef GIM_QUANTIZED_SET_H_INCLUDED
2 #define GIM_QUANTIZED_SET_H_INCLUDED
3 
7 /*
8 This source file is part of GIMPACT Library.
9 
10 For the latest info, see http://gimpact.sourceforge.net/
11 
12 Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371.
13 email: projectileman@yahoo.com
14 
15 
16 This software is provided 'as-is', without any express or implied warranty.
17 In no event will the authors be held liable for any damages arising from the use of this software.
18 Permission is granted to anyone to use this software for any purpose,
19 including commercial applications, and to alter it and redistribute it freely,
20 subject to the following restrictions:
21 
22 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
23 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
24 3. This notice may not be removed or altered from any source distribution.
25 */
26 
27 #include "btGImpactBvh.h"
28 #include "btQuantization.h"
30 
31 class GIM_QUANTIZED_BVH_NODE_ARRAY : public btAlignedObjectArray<BT_QUANTIZED_BVH_NODE>
32 {
33 };
34 
37 {
38 protected:
43 
44 protected:
45  void calc_quantization(GIM_BVH_DATA_ARRAY& primitive_boxes, btScalar boundMargin = btScalar(1.0));
46 
48  GIM_BVH_DATA_ARRAY& primitive_boxes,
49  int startIndex, int endIndex, int splitAxis);
50 
51  int _calc_splitting_axis(GIM_BVH_DATA_ARRAY& primitive_boxes, int startIndex, int endIndex);
52 
53  void _build_sub_tree(GIM_BVH_DATA_ARRAY& primitive_boxes, int startIndex, int endIndex);
54 
55 public:
57  {
58  m_num_nodes = 0;
59  }
60 
63  void build_tree(GIM_BVH_DATA_ARRAY& primitive_boxes);
64 
66  unsigned short* quantizedpoint, const btVector3& point) const
67  {
69  }
70 
72  int node_index,
73  unsigned short* quantizedMin, unsigned short* quantizedMax) const
74  {
75  return m_node_array[node_index].testQuantizedBoxOverlapp(quantizedMin, quantizedMax);
76  }
77 
79  {
81  m_num_nodes = 0;
82  }
83 
86  {
87  return m_num_nodes;
88  }
89 
91  SIMD_FORCE_INLINE bool isLeafNode(int nodeindex) const
92  {
93  return m_node_array[nodeindex].isLeafNode();
94  }
95 
96  SIMD_FORCE_INLINE int getNodeData(int nodeindex) const
97  {
98  return m_node_array[nodeindex].getDataIndex();
99  }
100 
101  SIMD_FORCE_INLINE void getNodeBound(int nodeindex, btAABB& bound) const
102  {
103  bound.m_min = bt_unquantize(
104  m_node_array[nodeindex].m_quantizedAabbMin,
106 
107  bound.m_max = bt_unquantize(
108  m_node_array[nodeindex].m_quantizedAabbMax,
110  }
111 
112  SIMD_FORCE_INLINE void setNodeBound(int nodeindex, const btAABB& bound)
113  {
115  bound.m_min,
116  m_global_bound.m_min,
117  m_global_bound.m_max,
119 
121  bound.m_max,
122  m_global_bound.m_min,
123  m_global_bound.m_max,
125  }
126 
127  SIMD_FORCE_INLINE int getLeftNode(int nodeindex) const
128  {
129  return nodeindex + 1;
130  }
131 
132  SIMD_FORCE_INLINE int getRightNode(int nodeindex) const
133  {
134  if (m_node_array[nodeindex + 1].isLeafNode()) return nodeindex + 2;
135  return nodeindex + 1 + m_node_array[nodeindex + 1].getEscapeIndex();
136  }
137 
138  SIMD_FORCE_INLINE int getEscapeNodeIndex(int nodeindex) const
139  {
140  return m_node_array[nodeindex].getEscapeIndex();
141  }
142 
144  {
145  return &m_node_array[index];
146  }
147 
149 };
150 
152 
157 {
158 protected:
161 
162 protected:
163  //stackless refit
164  void refit();
165 
166 public:
169  {
171  }
172 
175  {
176  m_primitive_manager = primitive_manager;
177  }
178 
180  {
181  btAABB totalbox;
182  getNodeBound(0, totalbox);
183  return totalbox;
184  }
185 
187  {
188  m_primitive_manager = primitive_manager;
189  }
190 
192  {
193  return m_primitive_manager;
194  }
195 
198 
201  {
202  refit();
203  }
204 
206  void buildSet();
207 
209  bool boxQuery(const btAABB& box, btAlignedObjectArray<int>& collided_results) const;
210 
213  const btTransform& transform, btAlignedObjectArray<int>& collided_results) const
214  {
215  btAABB transbox = box;
216  transbox.appy_transform(transform);
217  return boxQuery(transbox, collided_results);
218  }
219 
221  bool rayQuery(
222  const btVector3& ray_dir, const btVector3& ray_origin,
223  btAlignedObjectArray<int>& collided_results) const;
224 
227  {
228  return true;
229  }
230 
233  {
235  }
236 
239  {
240  return m_box_tree.getNodeCount();
241  }
242 
244  SIMD_FORCE_INLINE bool isLeafNode(int nodeindex) const
245  {
246  return m_box_tree.isLeafNode(nodeindex);
247  }
248 
249  SIMD_FORCE_INLINE int getNodeData(int nodeindex) const
250  {
251  return m_box_tree.getNodeData(nodeindex);
252  }
253 
254  SIMD_FORCE_INLINE void getNodeBound(int nodeindex, btAABB& bound) const
255  {
256  m_box_tree.getNodeBound(nodeindex, bound);
257  }
258 
259  SIMD_FORCE_INLINE void setNodeBound(int nodeindex, const btAABB& bound)
260  {
261  m_box_tree.setNodeBound(nodeindex, bound);
262  }
263 
264  SIMD_FORCE_INLINE int getLeftNode(int nodeindex) const
265  {
266  return m_box_tree.getLeftNode(nodeindex);
267  }
268 
269  SIMD_FORCE_INLINE int getRightNode(int nodeindex) const
270  {
271  return m_box_tree.getRightNode(nodeindex);
272  }
273 
274  SIMD_FORCE_INLINE int getEscapeNodeIndex(int nodeindex) const
275  {
276  return m_box_tree.getEscapeNodeIndex(nodeindex);
277  }
278 
279  SIMD_FORCE_INLINE void getNodeTriangle(int nodeindex, btPrimitiveTriangle& triangle) const
280  {
282  }
283 
285  {
286  return m_box_tree.get_node_pointer(index);
287  }
288 
289 #ifdef TRI_COLLISION_PROFILING
290  static float getAverageTreeCollisionTime();
291 #endif //TRI_COLLISION_PROFILING
292 
293  static void find_collision(const btGImpactQuantizedBvh* boxset1, const btTransform& trans1,
294  const btGImpactQuantizedBvh* boxset2, const btTransform& trans2,
295  btPairSet& collision_pairs);
296 };
297 
298 #endif // GIM_BOXPRUNING_H_INCLUDED
in reality light always falls off quadratically Particle Retrieve the data of the particle that spawned the object for example to give variation to multiple instances of an object Point Retrieve information about points in a point cloud Retrieve the edges of an object as it appears to Cycles topology will always appear triangulated Convert a blackbody temperature to an RGB value Normal Generate a perturbed normal from an RGB normal map image Typically used for faking highly detailed surfaces Generate an OSL shader from a file or text data block Image Sample an image file as a texture Sky Generate a procedural sky texture Noise Generate fractal Perlin noise Wave Generate procedural bands or rings with noise Voronoi Generate Worley noise based on the distance to random points Typically used to generate textures such as or biological cells Brick Generate a procedural texture producing bricks Texture Retrieve multiple types of texture coordinates nTypically used as inputs for texture nodes Vector Convert a point
btAABB
Axis aligned box.
SIMD_FORCE_INLINE btVector3 transform(const btVector3 &point) const
SIMD_FORCE_INLINE void bt_quantize_clamp(unsigned short *out, const btVector3 &point, const btVector3 &min_bound, const btVector3 &max_bound, const btVector3 &bvhQuantization)
SIMD_FORCE_INLINE btVector3 bt_unquantize(const unsigned short *vecIn, const btVector3 &offset, const btVector3 &bvhQuantization)
unsigned short int m_quantizedAabbMin[3]
unsigned short int m_quantizedAabbMax[3]
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define SIMD_FORCE_INLINE
Definition: btScalar.h:280
btTransform
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition: btTransform.h:30
btVector3
btVector3 can be used to represent 3D points and vectors. It has an un-used w component to suit 16-by...
Definition: btVector3.h:82
SIMD_FORCE_INLINE void clear()
clear the array, deallocated memory. Generally it is better to use array.resize(0),...
Structure for containing Boxes.
bool rayQuery(const btVector3 &ray_dir, const btVector3 &ray_origin, btAlignedObjectArray< int > &collided_results) const
returns the indices of the primitives in the m_primitive_manager
SIMD_FORCE_INLINE void getNodeTriangle(int nodeindex, btPrimitiveTriangle &triangle) const
SIMD_FORCE_INLINE int getNodeData(int nodeindex) const
btPrimitiveManagerBase * m_primitive_manager
void buildSet()
this rebuild the entire set
btGImpactQuantizedBvh()
this constructor doesn't build the tree. you must call buildSet
SIMD_FORCE_INLINE int getRightNode(int nodeindex) const
SIMD_FORCE_INLINE btPrimitiveManagerBase * getPrimitiveManager() const
bool boxQuery(const btAABB &box, btAlignedObjectArray< int > &collided_results) const
returns the indices of the primitives in the m_primitive_manager
btGImpactQuantizedBvh(btPrimitiveManagerBase *primitive_manager)
this constructor doesn't build the tree. you must call buildSet
btQuantizedBvhTree m_box_tree
SIMD_FORCE_INLINE bool isLeafNode(int nodeindex) const
tells if the node is a leaf
SIMD_FORCE_INLINE void update()
this attemps to refit the box set.
SIMD_FORCE_INLINE bool isTrimesh() const
tells if this set is a trimesh
SIMD_FORCE_INLINE int getNodeCount() const
node count
SIMD_FORCE_INLINE bool hasHierarchy() const
tells if this set has hierarcht
SIMD_FORCE_INLINE const BT_QUANTIZED_BVH_NODE * get_node_pointer(int index=0) const
SIMD_FORCE_INLINE bool boxQueryTrans(const btAABB &box, const btTransform &transform, btAlignedObjectArray< int > &collided_results) const
returns the indices of the primitives in the m_primitive_manager
SIMD_FORCE_INLINE void setPrimitiveManager(btPrimitiveManagerBase *primitive_manager)
SIMD_FORCE_INLINE int getLeftNode(int nodeindex) const
SIMD_FORCE_INLINE void setNodeBound(int nodeindex, const btAABB &bound)
SIMD_FORCE_INLINE int getEscapeNodeIndex(int nodeindex) const
SIMD_FORCE_INLINE btAABB getGlobalBox() const
SIMD_FORCE_INLINE void getNodeBound(int nodeindex, btAABB &bound) const
static void find_collision(const btGImpactQuantizedBvh *boxset1, const btTransform &trans1, const btGImpactQuantizedBvh *boxset2, const btTransform &trans2, btPairSet &collision_pairs)
A pairset array.
Definition: btGImpactBvh.h:35
Prototype Base class for primitive classification.
Definition: btGImpactBvh.h:150
virtual void get_primitive_triangle(int prim_index, btPrimitiveTriangle &triangle) const =0
retrieves only the points of the triangle, and the collision margin
virtual bool is_trimesh() const =0
determines if this manager consist on only triangles, which special case will be optimized
Basic Box tree structure.
SIMD_FORCE_INLINE int getRightNode(int nodeindex) const
SIMD_FORCE_INLINE bool isLeafNode(int nodeindex) const
tells if the node is a leaf
SIMD_FORCE_INLINE void quantizePoint(unsigned short *quantizedpoint, const btVector3 &point) const
SIMD_FORCE_INLINE int getEscapeNodeIndex(int nodeindex) const
void _build_sub_tree(GIM_BVH_DATA_ARRAY &primitive_boxes, int startIndex, int endIndex)
SIMD_FORCE_INLINE void getNodeBound(int nodeindex, btAABB &bound) const
SIMD_FORCE_INLINE void clearNodes()
void calc_quantization(GIM_BVH_DATA_ARRAY &primitive_boxes, btScalar boundMargin=btScalar(1.0))
void build_tree(GIM_BVH_DATA_ARRAY &primitive_boxes)
stackless build tree
SIMD_FORCE_INLINE int getLeftNode(int nodeindex) const
SIMD_FORCE_INLINE bool testQuantizedBoxOverlapp(int node_index, unsigned short *quantizedMin, unsigned short *quantizedMax) const
SIMD_FORCE_INLINE int getNodeData(int nodeindex) const
GIM_QUANTIZED_BVH_NODE_ARRAY m_node_array
int _sort_and_calc_splitting_index(GIM_BVH_DATA_ARRAY &primitive_boxes, int startIndex, int endIndex, int splitAxis)
int _calc_splitting_axis(GIM_BVH_DATA_ARRAY &primitive_boxes, int startIndex, int endIndex)
SIMD_FORCE_INLINE void setNodeBound(int nodeindex, const btAABB &bound)
SIMD_FORCE_INLINE int getNodeCount() const
node count
SIMD_FORCE_INLINE const BT_QUANTIZED_BVH_NODE * get_node_pointer(int index=0) const