Blender  V3.3
btConvex2dConvex2dAlgorithm.cpp
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
17 
18 //#include <stdio.h>
24 
30 
35 
38 
40 
44 
46 {
47  m_simplexSolver = simplexSolver;
48  m_pdSolver = pdSolver;
49 }
50 
52 {
53 }
54 
55 btConvex2dConvex2dAlgorithm::btConvex2dConvex2dAlgorithm(btPersistentManifold* mf, const btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver, int /* numPerturbationIterations */, int /* minimumPointsPerturbationThreshold */)
56  : btActivatingCollisionAlgorithm(ci, body0Wrap, body1Wrap),
57  m_simplexSolver(simplexSolver),
58  m_pdSolver(pdSolver),
59  m_ownManifold(false),
60  m_manifoldPtr(mf),
61  m_lowLevelOfDetail(false)
62 {
63  (void)body0Wrap;
64  (void)body1Wrap;
65 }
66 
68 {
69  if (m_ownManifold)
70  {
71  if (m_manifoldPtr)
72  m_dispatcher->releaseManifold(m_manifoldPtr);
73  }
74 }
75 
77 {
78  m_lowLevelOfDetail = useLowLevel;
79 }
80 
82 
83 //
84 // Convex-Convex collision algorithm
85 //
87 {
88  if (!m_manifoldPtr)
89  {
90  //swapped?
91  m_manifoldPtr = m_dispatcher->getNewManifold(body0Wrap->getCollisionObject(), body1Wrap->getCollisionObject());
92  m_ownManifold = true;
93  }
94  resultOut->setPersistentManifold(m_manifoldPtr);
95 
96  //comment-out next line to test multi-contact generation
97  //resultOut->getPersistentManifold()->clearManifold();
98 
99  const btConvexShape* min0 = static_cast<const btConvexShape*>(body0Wrap->getCollisionShape());
100  const btConvexShape* min1 = static_cast<const btConvexShape*>(body1Wrap->getCollisionShape());
101 
102  btVector3 normalOnB;
103  btVector3 pointOnBWorld;
104 
105  {
107 
108  btGjkPairDetector gjkPairDetector(min0, min1, m_simplexSolver, m_pdSolver);
109  //TODO: if (dispatchInfo.m_useContinuous)
110  gjkPairDetector.setMinkowskiA(min0);
111  gjkPairDetector.setMinkowskiB(min1);
112 
113  {
114  input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
115  input.m_maximumDistanceSquared *= input.m_maximumDistanceSquared;
116  }
117 
118  input.m_transformA = body0Wrap->getWorldTransform();
119  input.m_transformB = body1Wrap->getWorldTransform();
120 
121  gjkPairDetector.getClosestPoints(input, *resultOut, dispatchInfo.m_debugDraw);
122 
123  btVector3 v0, v1;
124  btVector3 sepNormalWorldSpace;
125  }
126 
127  if (m_ownManifold)
128  {
129  resultOut->refreshContactPoints();
130  }
131 }
132 
134 {
135  (void)resultOut;
136  (void)dispatchInfo;
138 
141  btScalar resultFraction = btScalar(1.);
142 
143  btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
144  btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
145 
146  if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
147  squareMot1 < col1->getCcdSquareMotionThreshold())
148  return resultFraction;
149 
150  //An adhoc way of testing the Continuous Collision Detection algorithms
151  //One object is approximated as a sphere, to simplify things
152  //Starting in penetration should report no time of impact
153  //For proper CCD, better accuracy and handling of 'allowed' penetration should be added
154  //also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
155 
157  {
158  btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
159 
160  btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
162  btVoronoiSimplexSolver voronoiSimplex;
163  //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
165  btGjkConvexCast ccd1(convex0, &sphere1, &voronoiSimplex);
166  //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
167  if (ccd1.calcTimeOfImpact(col0->getWorldTransform(), col0->getInterpolationWorldTransform(),
168  col1->getWorldTransform(), col1->getInterpolationWorldTransform(), result))
169  {
170  //store result.m_fraction in both bodies
171 
172  if (col0->getHitFraction() > result.m_fraction)
173  col0->setHitFraction(result.m_fraction);
174 
175  if (col1->getHitFraction() > result.m_fraction)
176  col1->setHitFraction(result.m_fraction);
177 
178  if (resultFraction > result.m_fraction)
179  resultFraction = result.m_fraction;
180  }
181  }
182 
184  {
185  btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
186 
187  btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
189  btVoronoiSimplexSolver voronoiSimplex;
190  //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
192  btGjkConvexCast ccd1(&sphere0, convex1, &voronoiSimplex);
193  //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
194  if (ccd1.calcTimeOfImpact(col0->getWorldTransform(), col0->getInterpolationWorldTransform(),
195  col1->getWorldTransform(), col1->getInterpolationWorldTransform(), result))
196  {
197  //store result.m_fraction in both bodies
198 
199  if (col0->getHitFraction() > result.m_fraction)
200  col0->setHitFraction(result.m_fraction);
201 
202  if (col1->getHitFraction() > result.m_fraction)
203  col1->setHitFraction(result.m_fraction);
204 
205  if (resultFraction > result.m_fraction)
206  resultFraction = result.m_fraction;
207  }
208  }
209 
210  return resultFraction;
211 }
_GL_VOID GLfloat value _GL_VOID_RET _GL_VOID const GLuint GLboolean *residences _GL_BOOL_RET _GL_VOID GLsizei GLfloat GLfloat GLfloat GLfloat const GLubyte *bitmap _GL_VOID_RET _GL_VOID GLenum const void *lists _GL_VOID_RET _GL_VOID const GLdouble *equation _GL_VOID_RET _GL_VOID GLdouble GLdouble blue _GL_VOID_RET _GL_VOID GLfloat GLfloat blue _GL_VOID_RET _GL_VOID GLint GLint blue _GL_VOID_RET _GL_VOID GLshort GLshort blue _GL_VOID_RET _GL_VOID GLubyte GLubyte blue _GL_VOID_RET _GL_VOID GLuint GLuint blue _GL_VOID_RET _GL_VOID GLushort GLushort blue _GL_VOID_RET _GL_VOID GLbyte GLbyte GLbyte alpha _GL_VOID_RET _GL_VOID GLdouble GLdouble GLdouble alpha _GL_VOID_RET _GL_VOID GLfloat GLfloat GLfloat alpha _GL_VOID_RET _GL_VOID GLint GLint GLint alpha _GL_VOID_RET _GL_VOID GLshort GLshort GLshort alpha _GL_VOID_RET _GL_VOID GLubyte GLubyte GLubyte alpha _GL_VOID_RET _GL_VOID GLuint GLuint GLuint alpha _GL_VOID_RET _GL_VOID GLushort GLushort GLushort alpha _GL_VOID_RET _GL_VOID GLenum mode _GL_VOID_RET _GL_VOID GLint GLsizei GLsizei GLenum type _GL_VOID_RET _GL_VOID GLsizei GLenum GLenum const void *pixels _GL_VOID_RET _GL_VOID const void *pointer _GL_VOID_RET _GL_VOID GLdouble v _GL_VOID_RET _GL_VOID GLfloat v _GL_VOID_RET _GL_VOID GLint GLint i2 _GL_VOID_RET _GL_VOID GLint j _GL_VOID_RET _GL_VOID GLfloat param _GL_VOID_RET _GL_VOID GLint param _GL_VOID_RET _GL_VOID GLdouble GLdouble GLdouble GLdouble GLdouble zFar _GL_VOID_RET _GL_UINT GLdouble *equation _GL_VOID_RET _GL_VOID GLenum GLint *params _GL_VOID_RET _GL_VOID GLenum GLfloat *v _GL_VOID_RET _GL_VOID GLenum GLfloat *params _GL_VOID_RET _GL_VOID GLfloat *values _GL_VOID_RET _GL_VOID GLushort *values _GL_VOID_RET _GL_VOID GLenum GLfloat *params _GL_VOID_RET _GL_VOID GLenum GLdouble *params _GL_VOID_RET _GL_VOID GLenum GLint *params _GL_VOID_RET _GL_VOID GLsizei const void *pointer _GL_VOID_RET _GL_VOID GLsizei const void *pointer _GL_VOID_RET _GL_BOOL GLfloat param _GL_VOID_RET _GL_VOID GLint param _GL_VOID_RET _GL_VOID GLenum GLfloat param _GL_VOID_RET _GL_VOID GLenum GLint param _GL_VOID_RET _GL_VOID GLushort pattern _GL_VOID_RET _GL_VOID GLdouble GLdouble GLint GLint const GLdouble *points _GL_VOID_RET _GL_VOID GLdouble GLdouble GLint GLint GLdouble v1
btCollisionObject
btScalar getCcdSquareMotionThreshold() const
btScalar gContactBreakingThreshold
btConvexShape()
not supported on IBM SDK, until we fix the alignment of btVector3
btPersistentManifold()
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define btSimplexSolverInterface
btSphereShape(btScalar radius)
Definition: btSphereShape.h:29
SIMD_FORCE_INLINE btScalar length2() const
Return the length of the vector squared.
Definition: btVector3.h:251
btVector3
btVector3 can be used to represent 3D points and vectors. It has an un-used w component to suit 16-by...
Definition: btVector3.h:82
btVoronoiSimplexSolver
This class is not enabled yet (work-in-progress) to more aggressively activate objects.
virtual btScalar calculateTimeOfImpact(btCollisionObject *body0, btCollisionObject *body1, const btDispatcherInfo &dispatchInfo, btManifoldResult *resultOut)
btConvex2dConvex2dAlgorithm(btPersistentManifold *mf, const btCollisionAlgorithmConstructionInfo &ci, const btCollisionObjectWrapper *body0Wrap, const btCollisionObjectWrapper *body1Wrap, btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *pdSolver, int numPerturbationIterations, int minimumPointsPerturbationThreshold)
virtual void processCollision(const btCollisionObjectWrapper *body0Wrap, const btCollisionObjectWrapper *body1Wrap, const btDispatcherInfo &dispatchInfo, btManifoldResult *resultOut)
ConvexPenetrationDepthSolver provides an interface for penetration depth calculation.
virtual void releaseManifold(btPersistentManifold *manifold)=0
virtual btPersistentManifold * getNewManifold(const btCollisionObject *b0, const btCollisionObject *b1)=0
GjkConvexCast performs a raycast on a convex object using support mapping.
virtual bool calcTimeOfImpact(const btTransform &fromA, const btTransform &toA, const btTransform &fromB, const btTransform &toB, CastResult &result)
cast a convex against another convex object
btGjkPairDetector uses GJK to implement the btDiscreteCollisionDetectorInterface
virtual void getClosestPoints(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw, bool swapResults=false)
void setMinkowskiA(const btConvexShape *minkA)
void setMinkowskiB(const btConvexShape *minkB)
btManifoldResult is a helper class to manage contact results.
void setPersistentManifold(btPersistentManifold *manifoldPtr)
SIMD_FORCE_INLINE void refreshContactPoints()
SyclQueue void void size_t num_bytes void
ccl_global KernelShaderEvalInput * input
SIMD_FORCE_INLINE const btCollisionShape * getCollisionShape() const
SIMD_FORCE_INLINE const btTransform & getWorldTransform() const
SIMD_FORCE_INLINE const btCollisionObject * getCollisionObject() const
CreateFunc(btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *pdSolver)
class btIDebugDraw * m_debugDraw
Definition: btDispatcher.h:58