26 #ifdef TRI_COLLISION_PROFILING
30 float g_accum_tree_collision_time = 0;
31 int g_count_traversing = 0;
33 void bt_begin_gim02_tree_time()
38 void bt_end_gim02_tree_time()
45 float btGImpactBvh::getAverageTreeCollisionTime()
47 if (g_count_traversing == 0)
return 0;
49 float avgtime = g_accum_tree_collision_time;
50 avgtime /= (
float)g_count_traversing;
52 g_accum_tree_collision_time = 0;
53 g_count_traversing = 0;
74 for (i = startIndex; i < endIndex; i++)
77 primitive_boxes[i].m_bound.m_min);
82 for (i = startIndex; i < endIndex; i++)
85 primitive_boxes[i].m_bound.m_min);
87 diff2 = diff2 * diff2;
92 return variance.maxAxis();
97 int endIndex,
int splitAxis)
100 int splitIndex = startIndex;
107 for (i = startIndex; i < endIndex; i++)
110 primitive_boxes[i].m_bound.m_min);
115 splitValue = means[splitAxis];
118 for (i = startIndex; i < endIndex; i++)
121 primitive_boxes[i].m_bound.m_min);
122 if (
center[splitAxis] > splitValue)
125 primitive_boxes.
swap(i, splitIndex);
141 bool unbalanced = ((splitIndex <= (startIndex + rangeBalancedIndices)) || (splitIndex >= (endIndex - 1 - rangeBalancedIndices)));
148 btAssert(!((splitIndex == startIndex) || (splitIndex == (endIndex))));
158 btAssert((endIndex - startIndex) > 0);
160 if ((endIndex - startIndex) == 1)
163 setNodeBound(curIndex, primitive_boxes[startIndex].m_bound);
174 primitive_boxes, startIndex, endIndex,
181 node_bound.invalidate();
183 for (
int i = startIndex; i < endIndex; i++)
185 node_bound.merge(primitive_boxes[i].m_bound);
237 bound.merge(temp_box);
244 bound.merge(temp_box);
259 for (
int i = 0; i < primitive_boxes.
size(); i++)
262 primitive_boxes[i].m_data = i;
274 while (curIndex < numNodes)
281 bool aabbOverlap = bound.has_collision(box);
284 if (isleafnode && aabbOverlap)
289 if (aabbOverlap || isleafnode)
300 if (collided_results.
size() > 0)
return true;
312 while (curIndex < numNodes)
319 bool aabbOverlap = bound.collide_ray(ray_origin, ray_dir);
322 if (isleafnode && aabbOverlap)
327 if (aabbOverlap || isleafnode)
338 if (collided_results.
size() > 0)
return true;
345 int node0,
int node1,
bool complete_primitive_tests)
352 return box0.overlapping_trans_cache(box1, trans_cache_1to0, complete_primitive_tests);
362 int node0,
int node1,
bool complete_primitive_tests)
365 boxset0, boxset1, trans_cache_1to0,
366 node0, node1, complete_primitive_tests) ==
false)
return;
383 collision_pairs, trans_cache_1to0,
389 collision_pairs, trans_cache_1to0,
400 collision_pairs, trans_cache_1to0,
407 collision_pairs, trans_cache_1to0,
416 collision_pairs, trans_cache_1to0,
423 collision_pairs, trans_cache_1to0,
430 collision_pairs, trans_cache_1to0,
437 collision_pairs, trans_cache_1to0,
452 trans_cache_1to0.calc_from_homogenic(trans0, trans1);
454 #ifdef TRI_COLLISION_PROFILING
455 bt_begin_gim02_tree_time();
460 &collision_pairs, trans_cache_1to0, 0, 0,
true);
461 #ifdef TRI_COLLISION_PROFILING
462 bt_end_gim02_tree_time();
typedef float(TangentPoint)[2]
NSNotificationCenter * center
BT_BOX_BOX_TRANSFORM_CACHE
Class for transforming a model1 to the space of model0.
static void _find_collision_pairs_recursive(btGImpactBvh *boxset0, btGImpactBvh *boxset1, btPairSet *collision_pairs, const BT_BOX_BOX_TRANSFORM_CACHE &trans_cache_1to0, int node0, int node1, bool complete_primitive_tests)
SIMD_FORCE_INLINE bool _node_collision(btGImpactBvh *boxset0, btGImpactBvh *boxset1, const BT_BOX_BOX_TRANSFORM_CACHE &trans_cache_1to0, int node0, int node1, bool complete_primitive_tests)
btAlignedObjectArray< btScalar > m_data
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
#define SIMD_FORCE_INLINE
btVector3
btVector3 can be used to represent 3D points and vectors. It has an un-used w component to suit 16-by...
SIMD_FORCE_INLINE int size() const
return the number of elements in the array
void swap(int index0, int index1)
SIMD_FORCE_INLINE void resize(int newsize, const T &fillData=T())
SIMD_FORCE_INLINE void push_back(const T &_Val)
void _build_sub_tree(GIM_BVH_DATA_ARRAY &primitive_boxes, int startIndex, int endIndex)
int _calc_splitting_axis(GIM_BVH_DATA_ARRAY &primitive_boxes, int startIndex, int endIndex)
GIM_BVH_TREE_NODE_ARRAY m_node_array
SIMD_FORCE_INLINE void setNodeBound(int nodeindex, const btAABB &bound)
int _sort_and_calc_splitting_index(GIM_BVH_DATA_ARRAY &primitive_boxes, int startIndex, int endIndex, int splitAxis)
void build_tree(GIM_BVH_DATA_ARRAY &primitive_boxes)
stackless build tree
The btClock is a portable basic clock that measures accurate time in seconds, use for profiling.
void reset()
Resets the initial reference time.
unsigned long long int getTimeMicroseconds()
Structure for containing Boxes.
void buildSet()
this rebuild the entire set
SIMD_FORCE_INLINE bool isLeafNode(int nodeindex) const
tells if the node is a leaf
bool boxQuery(const btAABB &box, btAlignedObjectArray< int > &collided_results) const
returns the indices of the primitives in the m_primitive_manager
SIMD_FORCE_INLINE int getEscapeNodeIndex(int nodeindex) const
SIMD_FORCE_INLINE int getNodeData(int nodeindex) const
SIMD_FORCE_INLINE void setNodeBound(int nodeindex, const btAABB &bound)
bool rayQuery(const btVector3 &ray_dir, const btVector3 &ray_origin, btAlignedObjectArray< int > &collided_results) const
returns the indices of the primitives in the m_primitive_manager
SIMD_FORCE_INLINE int getLeftNode(int nodeindex) const
btPrimitiveManagerBase * m_primitive_manager
SIMD_FORCE_INLINE int getRightNode(int nodeindex) const
SIMD_FORCE_INLINE void getNodeBound(int nodeindex, btAABB &bound) const
static void find_collision(btGImpactBvh *boxset1, const btTransform &trans1, btGImpactBvh *boxset2, const btTransform &trans2, btPairSet &collision_pairs)
SIMD_FORCE_INLINE int getNodeCount() const
node count
void push_pair(int index1, int index2)
virtual int get_primitive_count() const =0
virtual void get_primitive_box(int prim_index, btAABB &primbox) const =0