Blender  V3.3
btTriangleInfoMap.h
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2010 Erwin Coumans http://bulletphysics.org
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef _BT_TRIANGLE_INFO_MAP_H
17 #define _BT_TRIANGLE_INFO_MAP_H
18 
19 #include "LinearMath/btHashMap.h"
21 
23 #define TRI_INFO_V0V1_CONVEX 1
24 #define TRI_INFO_V1V2_CONVEX 2
25 #define TRI_INFO_V2V0_CONVEX 4
26 
27 #define TRI_INFO_V0V1_SWAP_NORMALB 8
28 #define TRI_INFO_V1V2_SWAP_NORMALB 16
29 #define TRI_INFO_V2V0_SWAP_NORMALB 32
30 
34 {
36  {
40  m_flags = 0;
41  }
42 
43  int m_flags;
44 
48 };
49 
51 
54 {
59  btScalar m_maxEdgeAngleThreshold; //ignore edges that connect triangles at an angle larger than this m_maxEdgeAngleThreshold
61 
63  {
64  m_convexEpsilon = 0.00f;
65  m_planarEpsilon = 0.0001f;
66  m_equalVertexThreshold = btScalar(0.0001) * btScalar(0.0001);
68  m_zeroAreaThreshold = btScalar(0.0001) * btScalar(0.0001);
70  }
71  virtual ~btTriangleInfoMap() {}
72 
73  virtual int calculateSerializeBufferSize() const;
74 
76  virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
77 
79 };
80 
81 // clang-format off
82 
85 {
86  int m_flags;
90 };
91 
93 {
95  int *m_nextPtr;
98 
104 
109  char m_padding[4];
110 };
111 
112 // clang-format on
113 
115 {
116  return sizeof(btTriangleInfoMapData);
117 }
118 
120 SIMD_FORCE_INLINE const char* btTriangleInfoMap::serialize(void* dataBuffer, btSerializer* serializer) const
121 {
122  btTriangleInfoMapData* tmapData = (btTriangleInfoMapData*)dataBuffer;
128 
129  tmapData->m_hashTableSize = m_hashTable.size();
130 
131  tmapData->m_hashTablePtr = tmapData->m_hashTableSize ? (int*)serializer->getUniquePointer((void*)&m_hashTable[0]) : 0;
132  if (tmapData->m_hashTablePtr)
133  {
134  //serialize an int buffer
135  int sz = sizeof(int);
136  int numElem = tmapData->m_hashTableSize;
137  btChunk* chunk = serializer->allocate(sz, numElem);
138  int* memPtr = (int*)chunk->m_oldPtr;
139  for (int i = 0; i < numElem; i++, memPtr++)
140  {
141  *memPtr = m_hashTable[i];
142  }
143  serializer->finalizeChunk(chunk, "int", BT_ARRAY_CODE, (void*)&m_hashTable[0]);
144  }
145 
146  tmapData->m_nextSize = m_next.size();
147  tmapData->m_nextPtr = tmapData->m_nextSize ? (int*)serializer->getUniquePointer((void*)&m_next[0]) : 0;
148  if (tmapData->m_nextPtr)
149  {
150  int sz = sizeof(int);
151  int numElem = tmapData->m_nextSize;
152  btChunk* chunk = serializer->allocate(sz, numElem);
153  int* memPtr = (int*)chunk->m_oldPtr;
154  for (int i = 0; i < numElem; i++, memPtr++)
155  {
156  *memPtr = m_next[i];
157  }
158  serializer->finalizeChunk(chunk, "int", BT_ARRAY_CODE, (void*)&m_next[0]);
159  }
160 
161  tmapData->m_numValues = m_valueArray.size();
162  tmapData->m_valueArrayPtr = tmapData->m_numValues ? (btTriangleInfoData*)serializer->getUniquePointer((void*)&m_valueArray[0]) : 0;
163  if (tmapData->m_valueArrayPtr)
164  {
165  int sz = sizeof(btTriangleInfoData);
166  int numElem = tmapData->m_numValues;
167  btChunk* chunk = serializer->allocate(sz, numElem);
169  for (int i = 0; i < numElem; i++, memPtr++)
170  {
171  memPtr->m_edgeV0V1Angle = (float)m_valueArray[i].m_edgeV0V1Angle;
172  memPtr->m_edgeV1V2Angle = (float)m_valueArray[i].m_edgeV1V2Angle;
173  memPtr->m_edgeV2V0Angle = (float)m_valueArray[i].m_edgeV2V0Angle;
174  memPtr->m_flags = m_valueArray[i].m_flags;
175  }
176  serializer->finalizeChunk(chunk, "btTriangleInfoData", BT_ARRAY_CODE, (void*)&m_valueArray[0]);
177  }
178 
179  tmapData->m_numKeys = m_keyArray.size();
180  tmapData->m_keyArrayPtr = tmapData->m_numKeys ? (int*)serializer->getUniquePointer((void*)&m_keyArray[0]) : 0;
181  if (tmapData->m_keyArrayPtr)
182  {
183  int sz = sizeof(int);
184  int numElem = tmapData->m_numValues;
185  btChunk* chunk = serializer->allocate(sz, numElem);
186  int* memPtr = (int*)chunk->m_oldPtr;
187  for (int i = 0; i < numElem; i++, memPtr++)
188  {
189  *memPtr = m_keyArray[i].getUid1();
190  }
191  serializer->finalizeChunk(chunk, "int", BT_ARRAY_CODE, (void*)&m_keyArray[0]);
192  }
193 
194  // Fill padding with zeros to appease msan.
195  tmapData->m_padding[0] = 0;
196  tmapData->m_padding[1] = 0;
197  tmapData->m_padding[2] = 0;
198  tmapData->m_padding[3] = 0;
199 
200  return "btTriangleInfoMapData";
201 }
202 
205 {
206  m_convexEpsilon = tmapData.m_convexEpsilon;
207  m_planarEpsilon = tmapData.m_planarEpsilon;
212  int i = 0;
213  for (i = 0; i < tmapData.m_hashTableSize; i++)
214  {
215  m_hashTable[i] = tmapData.m_hashTablePtr[i];
216  }
217  m_next.resize(tmapData.m_nextSize);
218  for (i = 0; i < tmapData.m_nextSize; i++)
219  {
220  m_next[i] = tmapData.m_nextPtr[i];
221  }
222  m_valueArray.resize(tmapData.m_numValues);
223  for (i = 0; i < tmapData.m_numValues; i++)
224  {
225  m_valueArray[i].m_edgeV0V1Angle = tmapData.m_valueArrayPtr[i].m_edgeV0V1Angle;
226  m_valueArray[i].m_edgeV1V2Angle = tmapData.m_valueArrayPtr[i].m_edgeV1V2Angle;
227  m_valueArray[i].m_edgeV2V0Angle = tmapData.m_valueArrayPtr[i].m_edgeV2V0Angle;
228  m_valueArray[i].m_flags = tmapData.m_valueArrayPtr[i].m_flags;
229  }
230 
231  m_keyArray.resize(tmapData.m_numKeys, btHashInt(0));
232  for (i = 0; i < tmapData.m_numKeys; i++)
233  {
234  m_keyArray[i].setUid1(tmapData.m_keyArrayPtr[i]);
235  }
236 }
237 
238 #endif //_BT_TRIANGLE_INFO_MAP_H
typedef float(TangentPoint)[2]
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define SIMD_FORCE_INLINE
Definition: btScalar.h:280
#define SIMD_2_PI
Definition: btScalar.h:527
#define BT_ARRAY_CODE
Definition: btSerializer.h:118
btHashMap< btHashInt, btTriangleInfo > btInternalTriangleInfoMap
SIMD_FORCE_INLINE int size() const
return the number of elements in the array
SIMD_FORCE_INLINE void resize(int newsize, const T &fillData=T())
void * m_oldPtr
Definition: btSerializer.h:52
btAlignedObjectArray< int > m_hashTable
Definition: btHashMap.h:222
btAlignedObjectArray< int > m_next
Definition: btHashMap.h:223
btAlignedObjectArray< Key > m_keyArray
Definition: btHashMap.h:226
btAlignedObjectArray< Value > m_valueArray
Definition: btHashMap.h:225
virtual btChunk * allocate(size_t size, int numElements)=0
virtual void * getUniquePointer(void *oldPtr)=0
virtual void finalizeChunk(btChunk *chunk, const char *structType, int chunkCode, void *oldPtr)=0
those fields have to be float and not btScalar for the serialization to work properly
btTriangleInfoData * m_valueArrayPtr
The btTriangleInfoMap stores edge angle information for some triangles. You can compute this informat...
virtual const char * serialize(void *dataBuffer, btSerializer *serializer) const
fills the dataBuffer and returns the struct name (and 0 on failure)
btScalar m_maxEdgeAngleThreshold
used to determine edge contacts: if the closest distance between a contact point and an edge is small...
virtual int calculateSerializeBufferSize() const
btScalar m_edgeDistanceThreshold
used to compute connectivity: if the distance between two vertices is smaller than m_equalVertexThres...
btScalar m_zeroAreaThreshold
btTriangleInfoMap()
used to determine if a triangle is degenerate (length squared of cross product of 2 triangle edges < ...
void deSerialize(struct btTriangleInfoMapData &data)
fills the dataBuffer and returns the struct name (and 0 on failure)
btScalar m_planarEpsilon
used to determine if an edge or contact normal is convex, using the dot product
btScalar m_equalVertexThreshold
used to determine if a triangle edge is planar with zero angle
virtual ~btTriangleInfoMap()
btScalar m_edgeV2V0Angle
btScalar m_edgeV0V1Angle
btScalar m_edgeV1V2Angle