Blender  V3.3
btConeShape.cpp
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #include "btConeShape.h"
17 
19  m_radius(radius),
21 {
22  m_shapeType = CONE_SHAPE_PROXYTYPE;
23  setConeUpIndex(1);
24  btVector3 halfExtents;
25  m_sinAngle = (m_radius / btSqrt(m_radius * m_radius + m_height * m_height));
26 }
27 
29 {
30  setConeUpIndex(2);
31 }
32 
34 {
35  setConeUpIndex(0);
36 }
37 
39 void btConeShape::setConeUpIndex(int upIndex)
40 {
41  switch (upIndex)
42  {
43  case 0:
44  m_coneIndices[0] = 1;
45  m_coneIndices[1] = 0;
46  m_coneIndices[2] = 2;
47  break;
48  case 1:
49  m_coneIndices[0] = 0;
50  m_coneIndices[1] = 1;
51  m_coneIndices[2] = 2;
52  break;
53  case 2:
54  m_coneIndices[0] = 0;
55  m_coneIndices[1] = 2;
56  m_coneIndices[2] = 1;
57  break;
58  default:
59  btAssert(0);
60  };
61 
65 }
66 
68 {
69  btScalar halfHeight = m_height * btScalar(0.5);
70 
71  if (v[m_coneIndices[1]] > v.length() * m_sinAngle)
72  {
73  btVector3 tmp;
74 
75  tmp[m_coneIndices[0]] = btScalar(0.);
76  tmp[m_coneIndices[1]] = halfHeight;
77  tmp[m_coneIndices[2]] = btScalar(0.);
78  return tmp;
79  }
80  else
81  {
83  if (s > SIMD_EPSILON)
84  {
85  btScalar d = m_radius / s;
86  btVector3 tmp;
87  tmp[m_coneIndices[0]] = v[m_coneIndices[0]] * d;
88  tmp[m_coneIndices[1]] = -halfHeight;
89  tmp[m_coneIndices[2]] = v[m_coneIndices[2]] * d;
90  return tmp;
91  }
92  else
93  {
94  btVector3 tmp;
95  tmp[m_coneIndices[0]] = btScalar(0.);
96  tmp[m_coneIndices[1]] = -halfHeight;
97  tmp[m_coneIndices[2]] = btScalar(0.);
98  return tmp;
99  }
100  }
101 }
102 
104 {
105  return coneLocalSupport(vec);
106 }
107 
108 void btConeShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors, btVector3* supportVerticesOut, int numVectors) const
109 {
110  for (int i = 0; i < numVectors; i++)
111  {
112  const btVector3& vec = vectors[i];
113  supportVerticesOut[i] = coneLocalSupport(vec);
114  }
115 }
116 
118 {
119  btVector3 supVertex = coneLocalSupport(vec);
120  if (getMargin() != btScalar(0.))
121  {
122  btVector3 vecnorm = vec;
123  if (vecnorm.length2() < (SIMD_EPSILON * SIMD_EPSILON))
124  {
125  vecnorm.setValue(btScalar(-1.), btScalar(-1.), btScalar(-1.));
126  }
127  vecnorm.normalize();
128  supVertex += getMargin() * vecnorm;
129  }
130  return supVertex;
131 }
132 
133 void btConeShape::setLocalScaling(const btVector3& scaling)
134 {
135  int axis = m_coneIndices[1];
136  int r1 = m_coneIndices[0];
137  int r2 = m_coneIndices[2];
138  m_height *= scaling[axis] / m_localScaling[axis];
139  m_radius *= (scaling[r1] / m_localScaling[r1] + scaling[r2] / m_localScaling[r2]) / 2;
140  m_sinAngle = (m_radius / btSqrt(m_radius * m_radius + m_height * m_height));
142 }
_GL_VOID GLfloat value _GL_VOID_RET _GL_VOID const GLuint GLboolean *residences _GL_BOOL_RET _GL_VOID GLsizei height
ATTR_WARN_UNUSED_RESULT const BMVert * v
virtual void setLocalScaling(const btVector3 &scaling)
in case we receive negative scaling
Definition: btBox2dShape.h:120
SIMD_FORCE_INLINE btVector3 localGetSupportingVertexWithoutMargin(const btVector3 &vec) const
btConvexShape Interface
Definition: btBox2dShape.h:62
virtual btVector3 localGetSupportingVertex(const btVector3 &vec) const
Definition: btBox2dShape.h:51
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3 *vectors, btVector3 *supportVerticesOut, int numVectors) const
Definition: btBox2dShape.h:71
@ CONE_SHAPE_PROXYTYPE
virtual btScalar getMargin() const =0
btVector3 m_localScaling
btConeShape(btScalar radius, btScalar height)
Definition: btConeShape.cpp:18
btScalar m_radius
Definition: btConeShape.h:28
int m_coneIndices[3]
Definition: btConeShape.h:30
btScalar m_height
Definition: btConeShape.h:29
btVector3 coneLocalSupport(const btVector3 &v) const
Definition: btConeShape.cpp:67
void setConeUpIndex(int upIndex)
choose upAxis index
Definition: btConeShape.cpp:39
btConvexInternalShape()
btVector3 m_implicitShapeDimensions
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
SIMD_FORCE_INLINE btScalar btSqrt(btScalar y)
Definition: btScalar.h:466
#define SIMD_EPSILON
Definition: btScalar.h:543
#define btAssert(x)
Definition: btScalar.h:295
btVector3
btVector3 can be used to represent 3D points and vectors. It has an un-used w component to suit 16-by...
Definition: btVector3.h:82
btConeShapeX(btScalar radius, btScalar height)
Definition: btConeShape.cpp:33
btConeShapeZ(btScalar radius, btScalar height)
Definition: btConeShape.cpp:28