Package PyDSTool :: Package Toolbox :: Module phaseplane :: Class fixedpoint_nD
[hide private]
[frames] | no frames]

Class fixedpoint_nD

source code

object --+
         |
        fixedpoint_nD
Known Subclasses:

IMPORTANT: Any complex eigenvectors are stored as pairs of real eigenvectors,
    with the understanding that the corresponding complex eigenvalues indicate the
    use of these eigenvectors as a solution basis with the trig functions.


The full, possibly complex eigenvectors are always available using np.linalg(fp.D)
for a fixedpoint_nD object 'fp'.

Instance Methods [hide private]
 
__init__(self, gen, pt, coords=None, jac=None, description='', normord=2, eps=1e-12)
pt must have same dimension as generator, but if a sub-system is being analyzed then specify the sub-system's variables using the coords argument.
source code
 
_get_eigen(self)
Uses numpy linalg.eig to compute eigenvalues and right eigenvectors of this fixed point.
source code
 
_ensure_jac(self, jac) source code
 
__getitem__(self, k) source code
 
__setitem__(self, k, v) source code
 
_classify(self) source code

Inherited from object: __delattr__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __repr__, __setattr__, __str__

Class Variables [hide private]
  _classifications = None
  _stability = ('s', 'c', 'u')
Properties [hide private]

Inherited from object: __class__

Method Details [hide private]

__init__(self, gen, pt, coords=None, jac=None, description='', normord=2, eps=1e-12)
(Constructor)

source code 

pt must have same dimension as generator, but if a sub-system is being analyzed then specify the sub-system's variables using the coords argument.

Overrides: object.__init__

_get_eigen(self)

source code 

Uses numpy linalg.eig to compute eigenvalues and right eigenvectors of this fixed point.

IMPORTANT: Any complex eigenvectors are stored as pairs of real eigenvectors, with the understanding that the corresponding complex eigenvalues indicate the use of these eigenvectors as a solution basis with the trig functions.

The full, possibly complex eigenvectors are always available using np.linalg(fp.D) for a fixedpoint_nD object 'fp'.