Package PyDSTool :: Module Model
[hide private]
[frames] | no frames]

Module Model

source code

General purpose (hybrid) model class, and associated hybrid trajectory
and variable classes.

   Robert Clewley, March 2005.

A Model object's hybrid trajectory can be treated as a curve, or as
a mapping. Call the model object with the trajectory name, time(s), and
set the 'asmap' argument to be True to use an integer time to select the
trajectory segment. These are numbered from zero.

A trajectory value in a Model object's 'trajectories' dictionary
attribute is a HybridTrajectory object, having the following
attributes (among others):

    timeInterval is the entire time interval for the trajectory.

    timePartitions is a sequence of time_intervals (for each trajectory
        segment in trajseq), and

    trajSeq is a list of epoch or regime trajectory segments [traj_0, traj_1,
        ..., traj_(R-1)],

        where traj_i is a callable Trajectory or HybridTrajectory object.

    eventStruct is the event structure used to determine that trajectory.

    events is a dictionary of event names -> list of times at which that
      event took place.

    modelNames is a list of the generators used for the trajectory (one per
                                                             partition).

    variables is a dictionary that mimics the variables of the trajectory.

Classes [hide private]
  boundary_containment
  boundary_containment_by_event
  boundary_containment_by_postproc
  domain_test
  Model
General-purpose Hybrid and Non-Hybrid Model abstract class.
  NonHybridModel
  HybridModel
obsvars specifies the observable variables for this model, which must be present in all trajectory segments (regardless of which other variables are specified in those segments).
Functions [hide private]
 
getAuxVars(dsi, t, icdict, pardict)
Return auxiliary variable values evaluated at t, icdict, pardict.
source code
 
findTrajInitiator(modelInfo, t, vardict, pardict, intvars, verboselevel=0)
Find eligible Model to begin computation of trajectory.
source code
Variables [hide private]
  _1DimplicitSolveMethods = ['newton', 'bisect', 'steffe']
  _all_complex = (<type 'complex'>, <type 'numpy.complexfloating...
  _all_float = (<type 'float'>, <type 'numpy.floating'>, <type '...
  _all_int = (<type 'int'>, <type 'numpy.integer'>, <type 'numpy...
  _all_numpy_complex = (<type 'numpy.complex128'>, <type 'numpy....
  _all_numpy_float = (<type 'numpy.float64'>, <type 'numpy.float...
  _all_numpy_int = (<type 'numpy.int32'>, <type 'numpy.int32'>, ...
  _complex_types = (<type 'complex'>, <type 'numpy.complexfloati...
  _float_types = (<type 'float'>, <type 'numpy.floating'>)
  _implicitSolveMethods = ['newton', 'bisect', 'steffe', 'fsolve']
  _int_types = (<type 'int'>, <type 'numpy.integer'>)
  _num_equivtype = {<type 'float'>: <type 'numpy.float64'>, <typ...
  _num_maxmin = {<type 'numpy.int32'>: [-2147483648, 2147483647]...
  _num_name2equivtypes = {'float': (<type 'float'>, <type 'numpy...
  _num_name2type = {'float': <type 'numpy.float64'>, 'int': <typ...
  _num_type2name = {<type 'float'>: 'float', <type 'int'>: 'int'...
  _num_types = (<type 'float'>, <type 'int'>, <type 'numpy.float...
  _pytypefromtype = {<type 'numpy.int32'>: <type 'int'>, <type '...
  _real_types = (<type 'int'>, <type 'numpy.integer'>, <type 'fl...
  _seq_types = (<type 'list'>, <type 'tuple'>, <type 'numpy.ndar...
Function Details [hide private]

findTrajInitiator(modelInfo, t, vardict, pardict, intvars, verboselevel=0)

source code 

Find eligible Model to begin computation of trajectory. Cannot depend on any internal variables (e.g. those not common to all sub-models).


Variables Details [hide private]

_all_complex

Value:
(<type 'complex'>,
 <type 'numpy.complexfloating'>,
 <type 'numpy.complex128'>,
 <type 'numpy.complex64'>,
 <type 'numpy.complex128'>)

_all_float

Value:
(<type 'float'>,
 <type 'numpy.floating'>,
 <type 'numpy.float64'>,
 <type 'numpy.float32'>,
 <type 'numpy.float64'>)

_all_int

Value:
(<type 'int'>,
 <type 'numpy.integer'>,
 <type 'numpy.int32'>,
 <type 'numpy.int32'>,
 <type 'numpy.int8'>,
 <type 'numpy.int16'>,
 <type 'numpy.int32'>,
 <type 'numpy.int64'>)

_all_numpy_complex

Value:
(<type 'numpy.complex128'>,
 <type 'numpy.complex64'>,
 <type 'numpy.complex128'>)

_all_numpy_float

Value:
(<type 'numpy.float64'>,
 <type 'numpy.float32'>,
 <type 'numpy.float64'>)

_all_numpy_int

Value:
(<type 'numpy.int32'>,
 <type 'numpy.int32'>,
 <type 'numpy.int8'>,
 <type 'numpy.int16'>,
 <type 'numpy.int32'>,
 <type 'numpy.int64'>)

_complex_types

Value:
(<type 'complex'>, <type 'numpy.complexfloating'>)

_num_equivtype

Value:
{<type 'float'>: <type 'numpy.float64'>,
 <type 'int'>: <type 'numpy.int32'>,
 <type 'numpy.integer'>: <type 'numpy.int32'>,
 <type 'numpy.floating'>: <type 'numpy.float64'>,
 <type 'numpy.int8'>: <type 'numpy.int32'>,
 <type 'numpy.int16'>: <type 'numpy.int32'>,
 <type 'numpy.int32'>: <type 'numpy.int32'>,
 <type 'numpy.int32'>: <type 'numpy.int32'>,
...

_num_maxmin

Value:
{<type 'numpy.int32'>: [-2147483648, 2147483647],
 <type 'numpy.float64'>: [-inf, inf]}

_num_name2equivtypes

Value:
{'float': (<type 'float'>,
           <type 'numpy.floating'>,
           <type 'numpy.float64'>,
           <type 'numpy.float32'>,
           <type 'numpy.float64'>),
 'int': (<type 'int'>,
         <type 'numpy.integer'>,
         <type 'numpy.int32'>,
...

_num_name2type

Value:
{'float': <type 'numpy.float64'>, 'int': <type 'numpy.int32'>}

_num_type2name

Value:
{<type 'float'>: 'float',
 <type 'int'>: 'int',
 <type 'numpy.integer'>: 'int',
 <type 'numpy.floating'>: 'float',
 <type 'numpy.int8'>: 'int',
 <type 'numpy.int16'>: 'int',
 <type 'numpy.int32'>: 'int',
 <type 'numpy.int32'>: 'int',
...

_num_types

Value:
(<type 'float'>,
 <type 'int'>,
 <type 'numpy.floating'>,
 <type 'numpy.integer'>)

_pytypefromtype

Value:
{<type 'numpy.int32'>: <type 'int'>,
 <type 'numpy.float64'>: <type 'float'>}

_real_types

Value:
(<type 'int'>,
 <type 'numpy.integer'>,
 <type 'float'>,
 <type 'numpy.floating'>)

_seq_types

Value:
(<type 'list'>, <type 'tuple'>, <type 'numpy.ndarray'>)