Safe Haskell | Trustworthy |
---|
Generics.Deriving.Instances
Documentation
type Rep0Down a = Rep (Down a)
type Rep1Down = Rep1 Down
type Rep0ExitCode = D1 D1ExitCode (C1 C1_0ExitCode U1 :+: C1 C1_1ExitCode (S1 NoSelector (Rec0 Int)))
type Rep0Version = D1 D1Version (C1 C1_0Version (S1 S1_0_0Version (Rec0 [Int]) :*: S1 S1_0_1Version (Rec0 [String])))
type Rep1ConSum f g = D1 D1ConSum (C1 C1_0ConSum (S1 NoSelector (Rec1 f)) :+: C1 C1_1ConSum (S1 NoSelector (Rec1 g)))
type Rep1ConProduct f g = D1 D1ConProduct (C1 C1_ConProduct (S1 NoSelector (Rec1 f) :*: S1 NoSelector (Rec1 g)))
type Rep1ConCompose f g = D1 D1ConCompose (C1 C1_0ConCompose (S1 S1_0_0ConCompose (f :.: Rec1 g)))
type Rep1K1 i c = D1 D1K1 (C1 C1_0K1 (S1 S1_0_0K1 (Rec0 c)))
type Rep1M1 i c f = D1 D1M1 (C1 C1_0M1 (S1 S1_0_0M1 (Rec1 f)))
type Rep1Par1 = D1 D1Par1 (C1 C1_0Par1 (S1 S1_0_0Par1 Par1))
type Rep1Rec1 f = D1 D1Rec1 (C1 C1_0Rec1 (S1 S1_0_0Rec1 (Rec1 f)))
type Rep1U1 = D1 D1U1 (C1 C1_0U1 U1)
type Rep0V1 p = D1 D1V1 V1
type Rep1V1 = D1 D1V1 V1
type Rep0UDouble p = D1 D1UDouble (C1 C1_0UDouble (S1 S1_0_0UDouble UDouble))
type Rep1UDouble = D1 D1UDouble (C1 C1_0UDouble (S1 S1_0_0UDouble UDouble))
type Rep0UFloat p = D1 D1UFloat (C1 C1_0UFloat (S1 S1_0_0UFloat UFloat))
type Rep1UFloat = D1 D1UFloat (C1 C1_0UFloat (S1 S1_0_0UFloat UFloat))
type Rep0Complex a = D1 D1Complex (C1 C1_0Complex (S1 NoSelector (Rec0 a) :*: S1 NoSelector (Rec0 a)))
type Rep1Complex = D1 D1Complex (C1 C1_0Complex (S1 NoSelector Par1 :*: S1 NoSelector Par1))
type Rep0All = D1 D1All (C1 C1_0All (S1 S1_0_0All (Rec0 Bool)))
type Rep0Any = D1 D1Any (C1 C1_0Any (S1 S1_0_0Any (Rec0 Bool)))
type Rep0Arity = D1 D1Arity (C1 C1_0Arity U1 :+: C1 C1_1Arity (S1 NoSelector (Rec0 Int)))
type Rep0Associativity = D1 D1Associativity (C1 C1_0Associativity U1 :+: (C1 C1_1Associativity U1 :+: C1 C1_2Associativity U1))
type Rep0Const a b = D1 D1Const (C1 C1_0Const (S1 S1_0_0Const (Rec0 a)))
type Rep1Const a = D1 D1Const (C1 C1_0Const (S1 S1_0_0Const (Rec0 a)))
type Rep0Dual a = D1 D1Dual (C1 C1_0Dual (S1 S1_0_0Dual (Rec0 a)))
type Rep1Dual = D1 D1Dual (C1 C1_0Dual (S1 S1_0_0Dual Par1))
type Rep0Endo a = D1 D1Endo (C1 C1_0Endo (S1 S1_0_0Endo (Rec0 (a -> a))))
type Rep0First a = D1 D1First (C1 C1_0First (S1 S1_0_0First (Rec0 (Maybe a))))
type Rep1First = D1 D1First (C1 C1_0First (S1 S1_0_0First (Rec1 Maybe)))
type Rep0Fixity = D1 D1Fixity (C1 C1_0Fixity U1 :+: C1 C1_1Fixity (S1 NoSelector (Rec0 Associativity) :*: S1 NoSelector (Rec0 Int)))
type Rep0Last a = D1 D1Last (C1 C1_0Last (S1 S1_0_0Last (Rec0 (Maybe a))))
type Rep1Last = D1 D1Last (C1 C1_0Last (S1 S1_0_0Last (Rec1 Maybe)))
type Rep0Product a = D1 D1Product (C1 C1_0Product (S1 S1_0_0Product (Rec0 a)))
type Rep1Product = D1 D1Product (C1 C1_0Product (S1 S1_0_0Product Par1))
type Rep0Sum a = D1 D1Sum (C1 C1_0Sum (S1 S1_0_0Sum (Rec0 a)))
type Rep1Sum = D1 D1Sum (C1 C1_0Sum (S1 S1_0_0Sum Par1))
type Rep0WrappedArrow a b c = D1 D1WrappedArrow (C1 C1_0WrappedArrow (S1 S1_0_0WrappedArrow (Rec0 (a b c))))
type Rep1WrappedArrow a b = D1 D1WrappedArrow (C1 C1_0WrappedArrow (S1 S1_0_0WrappedArrow (Rec1 (a b))))
type Rep0WrappedMonad m a = D1 D1WrappedMonad (C1 C1_0WrappedMonad (S1 S1_0_0WrappedMonad (Rec0 (m a))))
type Rep1WrappedMonad m = D1 D1WrappedMonad (C1 C1_0WrappedMonad (S1 S1_0_0WrappedMonad (Rec1 m)))
type Rep0ZipList a = D1 D1ZipList (C1 C1_0ZipList (S1 S1_0_0ZipList (Rec0 [a])))
type Rep1ZipList = D1 D1ZipList (C1 C1_0ZipList (S1 S1_0_0ZipList (Rec1 [])))
type Rep0U1 p = D1 D1U1 (C1 C1_0U1 U1)
type Rep0Par1 p = D1 D1Par1 (C1 C1_0Par1 (S1 S1_0_0Par1 (Rec0 p)))
type Rep0Rec1 f p = D1 D1Rec1 (C1 C1_0Rec1 (S1 S1_0_0Rec1 (Rec0 (f p))))
type Rep0K1 i c p = D1 D1K1 (C1 C1_0K1 (S1 S1_0_0K1 (Rec0 c)))
type Rep0M1 i c f p = D1 D1M1 (C1 C1_0M1 (S1 S1_0_0M1 (Rec0 (f p))))
type Rep0ConSum f g p = D1 D1ConSum (C1 C1_0ConSum (S1 NoSelector (Rec0 (f p))) :+: C1 C1_1ConSum (S1 NoSelector (Rec0 (g p))))
type Rep0ConProduct f g p = D1 D1ConProduct (C1 C1_ConProduct (S1 NoSelector (Rec0 (f p)) :*: S1 NoSelector (Rec0 (g p))))
type Rep0ConCompose f g p = D1 D1ConCompose (C1 C1_0ConCompose (S1 S1_0_0ConCompose (Rec0 (f (g p)))))