Actual source code: ex4.c

petsc-3.3-p6 2013-02-11
  2: static char help[] = "Solves a linear system with KSP.  The matrix uses simple\n\
  3: bilinear elements on the unit square. Input arguments are:\n\
  4:   -m <size> : problem size\n\n";

  6: #include <petscksp.h>

 10: int FormElementStiffness(PetscReal H,PetscScalar *Ke)
 11: {
 12:   Ke[0]  = H/6.0;    Ke[1]  = -.125*H; Ke[2]  = H/12.0;   Ke[3]  = -.125*H;
 13:   Ke[4]  = -.125*H;  Ke[5]  = H/6.0;   Ke[6]  = -.125*H;  Ke[7]  = H/12.0;
 14:   Ke[8]  = H/12.0;   Ke[9]  = -.125*H; Ke[10] = H/6.0;    Ke[11] = -.125*H;
 15:   Ke[12] = -.125*H;  Ke[13] = H/12.0;  Ke[14] = -.125*H;  Ke[15] = H/6.0;
 16:   return 0;
 17: }
 20: int FormElementRhs(PetscReal x,PetscReal y,PetscReal H,PetscScalar *r)
 21: {
 22:   r[0] = 0.; r[1] = 0.; r[2] = 0.; r[3] = 0.0;
 23:   return 0;
 24: }

 28: int main(int argc,char **args)
 29: {
 30:   Mat            C;
 32:   PetscInt       i,m = 2,N,M,its,idx[4],count,*rows;
 33:   PetscScalar    val,Ke[16],r[4];
 34:   PetscReal      x,y,h,norm,tol=1.e-14;
 35:   Vec            u,ustar,b;
 36:   KSP            ksp;

 38:   PetscInitialize(&argc,&args,(char *)0,help);
 39:   PetscOptionsGetInt(PETSC_NULL,"-m",&m,PETSC_NULL);
 40:   N = (m+1)*(m+1); /* dimension of matrix */
 41:   M = m*m; /* number of elements */
 42:   h = 1.0/m;       /* mesh width */

 44:   /* create stiffness matrix */
 45:   MatCreateSeqAIJ(PETSC_COMM_SELF,N,N,9,PETSC_NULL,&C);
 46:   MatSetUp(C);

 48:   /* forms the element stiffness for the Laplacian */
 49:   FormElementStiffness(h*h,Ke);
 50:   for (i=0; i<M; i++) {
 51:      /* location of lower left corner of element */
 52:      x = h*(i % m); y = h*(i/m);
 53:      /* node numbers for the four corners of element */
 54:      idx[0] = (m+1)*(i/m) + (i % m);
 55:      idx[1] = idx[0]+1; idx[2] = idx[1] + m + 1; idx[3] = idx[2] - 1;
 56:      MatSetValues(C,4,idx,4,idx,Ke,ADD_VALUES);
 57:   }
 58:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
 59:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);

 61:   /* create right hand side and solution */

 63:   VecCreateSeq(PETSC_COMM_SELF,N,&u);
 64:   VecDuplicate(u,&b);
 65:   VecDuplicate(b,&ustar);
 66:   VecSet(u,0.0);
 67:   VecSet(b,0.0);

 69:   for (i=0; i<M; i++) {
 70:      /* location of lower left corner of element */
 71:      x = h*(i % m); y = h*(i/m);
 72:      /* node numbers for the four corners of element */
 73:      idx[0] = (m+1)*(i/m) + (i % m);
 74:      idx[1] = idx[0]+1; idx[2] = idx[1] + m + 1; idx[3] = idx[2] - 1;
 75:      FormElementRhs(x,y,h*h,r);
 76:      VecSetValues(b,4,idx,r,ADD_VALUES);
 77:   }
 78:   VecAssemblyBegin(b);
 79:   VecAssemblyEnd(b);

 81:   /* modify matrix and rhs for Dirichlet boundary conditions */
 82:   PetscMalloc((4*m+1)*sizeof(PetscInt),&rows);
 83:   for (i=0; i<m+1; i++) {
 84:     rows[i] = i; /* bottom */
 85:     rows[3*m - 1 +i] = m*(m+1) + i; /* top */
 86:   }
 87:   count = m+1; /* left side */
 88:   for (i=m+1; i<m*(m+1); i+= m+1) {
 89:     rows[count++] = i;
 90:   }
 91:   count = 2*m; /* left side */
 92:   for (i=2*m+1; i<m*(m+1); i+= m+1) {
 93:     rows[count++] = i;
 94:   }
 95:   for (i=0; i<4*m; i++) {
 96:      x = h*(rows[i] % (m+1)); y = h*(rows[i]/(m+1));
 97:      val = y;
 98:      VecSetValues(u,1,&rows[i],&val,INSERT_VALUES);
 99:      VecSetValues(b,1,&rows[i],&val,INSERT_VALUES);
100:   }
101:   MatZeroRows(C,4*m,rows,1.0,0,0);

103:   PetscFree(rows);
104:   VecAssemblyBegin(u);
105:   VecAssemblyEnd(u);
106:   VecAssemblyBegin(b);
107:   VecAssemblyEnd(b);

109:   /* solve linear system */
110:   KSPCreate(PETSC_COMM_WORLD,&ksp);
111:   KSPSetOperators(ksp,C,C,DIFFERENT_NONZERO_PATTERN);
112:   KSPSetFromOptions(ksp);
113:   KSPSetInitialGuessNonzero(ksp,PETSC_TRUE);
114:   KSPSolve(ksp,b,u);

116:   /* check error */
117:   for (i=0; i<N; i++) {
118:      x = h*(i % (m+1)); y = h*(i/(m+1));
119:      val = y;
120:      VecSetValues(ustar,1,&i,&val,INSERT_VALUES);
121:   }
122:   VecAssemblyBegin(ustar);
123:   VecAssemblyEnd(ustar);

125:   VecAXPY(u,-1.0,ustar);
126:   VecNorm(u,NORM_2,&norm);
127:   KSPGetIterationNumber(ksp,&its);
128:   if (norm > tol){
129:     PetscPrintf(PETSC_COMM_WORLD,"Norm of error %G Iterations %D\n",norm*h,its);
130:   }

132:   KSPDestroy(&ksp);
133:   VecDestroy(&ustar);
134:   VecDestroy(&u);
135:   VecDestroy(&b);
136:   MatDestroy(&C);
137:   PetscFinalize();
138:   return 0;
139: }