Package | Description |
---|---|
JSci.maths | |
JSci.maths.wavelet |
Modifier and Type | Method and Description |
---|---|
static double[] |
LinearMath.eigenSolveHermitian(ComplexSquareMatrix matrix,
ComplexVector[] eigenvector)
This method finds the eigenvalues and eigenvectors of a Hermitian matrix.
|
static double[] |
LinearMath.eigenSolveSymmetric(DoubleSquareMatrix matrix,
DoubleVector[] eigenvector)
This method finds the eigenvalues and eigenvectors of a symmetric square matrix.
|
static double[] |
LinearMath.eigenSolveSymmetric(DoubleTridiagonalMatrix matrix,
DoubleVector[] eigenvector)
This method finds the eigenvalues and eigenvectors of a symmetric tridiagonal matrix by the QL method.
|
static double[] |
LinearMath.eigenvalueSolveHermitian(ComplexSquareMatrix matrix)
This method finds the eigenvalues of a Hermitian matrix.
|
static double[] |
LinearMath.eigenvalueSolveSymmetric(DoubleSquareMatrix matrix)
This method finds the eigenvalues of a symmetric square matrix.
|
static double[] |
LinearMath.eigenvalueSolveSymmetric(DoubleTridiagonalMatrix matrix)
This method finds the eigenvalues of a symmetric tridiagonal matrix by the QL method.
|
double[][] |
KarhunenLoeve.getEigenvectors()
Returns the eigenvectors ordered by the norm of the eigenvalues
(from max to min).
|
double |
ComplexTridiagonalMatrix.operatorNorm()
Returns the operator norm.
|
double |
DoubleTridiagonalMatrix.operatorNorm()
Returns the operator norm.
|
double |
ComplexSquareMatrix.operatorNorm()
Returns the operator norm.
|
double |
DoubleSquareMatrix.operatorNorm()
Returns the operator norm.
|
static DoubleVector |
LinearMath.solveGMRes(DoubleMatrix A,
DoubleVector b,
int max_iter,
double tol)
Solves the unsymmetric linear system Ax=b using the
Generalized Minimum Residual method (doesn't require A
to be nonsingular).
|
Modifier and Type | Method and Description |
---|---|
void |
MatchingPursuit.diagnostic(double tol)
Check the validity of the
current matching algorithm.
|
double[][] |
MatchingPursuit.matchAll(double tol)
Repeatly match until it remains less
than tol * 100 percent of the original
L2 norm; no matter what, at least one
match will be done.
|