SHOGUN
v2.0.0
|
00001 /* 00002 * This program is free software; you can redistribute it and/or modify 00003 * it under the terms of the GNU General Public License as published by 00004 * the Free Software Foundation; either version 3 of the License, or 00005 * (at your option) any later version. 00006 * 00007 * Written (W) 2009 Soeren Sonnenburg 00008 * Copyright (C) 2009 Fraunhofer Institute FIRST and Max-Planck-Society 00009 * 00010 * The MD5 hashing function was integrated from public sources. 00011 * Its copyright follows. 00012 * 00013 * MD5 00014 * 00015 * This code implements the MD5 message-digest algorithm. 00016 * The algorithm is due to Ron Rivest. This code was 00017 * written by Colin Plumb in 1993, no copyright is claimed. 00018 * This code is in the public domain; do with it what you wish. 00019 * 00020 * Equivalent code is available from RSA Data Security, Inc. 00021 * This code has been tested against that, and is equivalent, 00022 * except that you don't need to include two pages of legalese 00023 * with every copy. 00024 * 00025 * To compute the message digest of a chunk of bytes, declare an 00026 * MD5Context structure, pass it to MD5Init, call MD5Update as 00027 * needed on buffers full of bytes, and then call MD5Final, which 00028 * will fill a supplied 16-byte array with the digest. 00029 */ 00030 00031 #include <shogun/lib/common.h> 00032 #include <shogun/lib/Hash.h> 00033 #include <ctype.h> 00034 00035 using namespace shogun; 00036 00037 uint32_t CHash::crc32(uint8_t *data, int32_t len) 00038 { 00039 uint32_t result; 00040 int32_t i,j; 00041 uint8_t octet; 00042 00043 result = 0-1; 00044 for (i=0; i<len; i++) 00045 { 00046 octet = *(data++); 00047 for (j=0; j<8; j++) 00048 { 00049 if ((octet >> 7) ^ (result >> 31)) 00050 { 00051 result = (result << 1) ^ 0x04c11db7; 00052 } 00053 else 00054 { 00055 result = (result << 1); 00056 } 00057 octet <<= 1; 00058 } 00059 } 00060 00061 return ~result; 00062 } 00063 00064 void CHash::MD5(unsigned char *x, unsigned l, unsigned char *buf) 00065 { 00066 struct MD5Context ctx; 00067 00068 MD5Init(&ctx); 00069 MD5Update(&ctx, x, l); 00070 MD5Final(buf, &ctx); 00071 } 00072 00073 #ifndef HIGHFIRST 00074 #define byteReverse(buf, len) /* Nothing */ 00075 #else 00076 void byteReverse(unsigned char *buf, unsigned uint32_t longs); 00077 00078 #ifndef ASM_MD5 00079 /* 00080 * Note: this code is harmless on little-endian machines. 00081 */ 00082 void byteReverse(unsigned char *buf, unsigned uint32_t longs) 00083 { 00084 uint32_t t; 00085 do { 00086 t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 | 00087 ((unsigned) buf[1] << 8 | buf[0]); 00088 *(uint32_t *) buf = t; 00089 buf += 4; 00090 } while (--longs); 00091 } 00092 #endif 00093 #endif 00094 00095 void CHash::MD5Init(struct MD5Context *ctx) 00096 { 00097 ctx->buf[0] = 0x67452301; 00098 ctx->buf[1] = 0xefcdab89; 00099 ctx->buf[2] = 0x98badcfe; 00100 ctx->buf[3] = 0x10325476; 00101 00102 ctx->bits[0] = 0; 00103 ctx->bits[1] = 0; 00104 } 00105 00106 void CHash::MD5Update(struct MD5Context *ctx, unsigned char const *buf, 00107 unsigned len) 00108 { 00109 uint32_t t; 00110 00111 /* Update bitcount */ 00112 00113 t = ctx->bits[0]; 00114 if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t) 00115 ctx->bits[1]++; /* Carry from low to high */ 00116 ctx->bits[1] += len >> 29; 00117 00118 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ 00119 00120 /* Handle any leading odd-sized chunks */ 00121 00122 if (t) { 00123 unsigned char *p = (unsigned char *) ctx->in + t; 00124 00125 t = 64 - t; 00126 if (len < t) { 00127 memcpy(p, buf, len); 00128 return; 00129 } 00130 memcpy(p, buf, t); 00131 byteReverse(ctx->in, 16); 00132 MD5Transform(ctx->buf, (uint32_t *) ctx->in); 00133 buf += t; 00134 len -= t; 00135 } 00136 /* Process data in 64-byte chunks */ 00137 00138 while (len >= 64) { 00139 memcpy(ctx->in, buf, 64); 00140 byteReverse(ctx->in, 16); 00141 MD5Transform(ctx->buf, (uint32_t *) ctx->in); 00142 buf += 64; 00143 len -= 64; 00144 } 00145 00146 /* Handle any remaining bytes of data. */ 00147 00148 memcpy(ctx->in, buf, len); 00149 } 00150 00151 void CHash::MD5Final(unsigned char digest[16], struct MD5Context *ctx) 00152 { 00153 unsigned count; 00154 unsigned char *p; 00155 00156 /* Compute number of bytes mod 64 */ 00157 count = (ctx->bits[0] >> 3) & 0x3F; 00158 00159 /* Set the first char of padding to 0x80. This is safe since there is 00160 always at least one byte free */ 00161 p = ctx->in + count; 00162 *p++ = 0x80; 00163 00164 /* Bytes of padding needed to make 64 bytes */ 00165 count = 64 - 1 - count; 00166 00167 /* Pad out to 56 mod 64 */ 00168 if (count < 8) { 00169 /* Two lots of padding: Pad the first block to 64 bytes */ 00170 memset(p, 0, count); 00171 byteReverse(ctx->in, 16); 00172 MD5Transform(ctx->buf, (uint32_t *) ctx->in); 00173 00174 /* Now fill the next block with 56 bytes */ 00175 memset(ctx->in, 0, 56); 00176 } else { 00177 /* Pad block to 56 bytes */ 00178 memset(p, 0, count - 8); 00179 } 00180 byteReverse(ctx->in, 14); 00181 00182 /* Append length in bits and transform */ 00183 ctx->uin[14] = ctx->bits[0]; 00184 ctx->uin[15] = ctx->bits[1]; 00185 00186 MD5Transform(ctx->buf, (uint32_t *) ctx->in); 00187 byteReverse((unsigned char *) ctx->buf, 4); 00188 memcpy(digest, ctx->buf, 16); 00189 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ 00190 } 00191 00192 #ifndef ASM_MD5 00193 00194 /* The four core functions - F1 is optimized somewhat */ 00195 00196 /* #define F1(x, y, z) (x & y | ~x & z) */ 00197 #define F1(x, y, z) (z ^ (x & (y ^ z))) 00198 #define F2(x, y, z) F1(z, x, y) 00199 #define F3(x, y, z) (x ^ y ^ z) 00200 #define F4(x, y, z) (y ^ (x | ~z)) 00201 00202 /* This is the central step in the MD5 algorithm. */ 00203 #ifdef __PUREC__ 00204 #define MD5STEP(f, w, x, y, z, data, s) \ 00205 ( w += f /*(x, y, z)*/ + data, w = w<<s | w>>(32-s), w += x ) 00206 #else 00207 #define MD5STEP(f, w, x, y, z, data, s) \ 00208 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) 00209 #endif 00210 00211 void CHash::MD5Transform(uint32_t buf[4], uint32_t const in[16]) 00212 { 00213 register uint32_t a, b, c, d; 00214 00215 a = buf[0]; 00216 b = buf[1]; 00217 c = buf[2]; 00218 d = buf[3]; 00219 00220 #ifdef __PUREC__ /* PureC Weirdness... (GG) */ 00221 MD5STEP(F1(b, c, d), a, b, c, d, in[0] + 0xd76aa478L, 7); 00222 MD5STEP(F1(a, b, c), d, a, b, c, in[1] + 0xe8c7b756L, 12); 00223 MD5STEP(F1(d, a, b), c, d, a, b, in[2] + 0x242070dbL, 17); 00224 MD5STEP(F1(c, d, a), b, c, d, a, in[3] + 0xc1bdceeeL, 22); 00225 MD5STEP(F1(b, c, d), a, b, c, d, in[4] + 0xf57c0fafL, 7); 00226 MD5STEP(F1(a, b, c), d, a, b, c, in[5] + 0x4787c62aL, 12); 00227 MD5STEP(F1(d, a, b), c, d, a, b, in[6] + 0xa8304613L, 17); 00228 MD5STEP(F1(c, d, a), b, c, d, a, in[7] + 0xfd469501L, 22); 00229 MD5STEP(F1(b, c, d), a, b, c, d, in[8] + 0x698098d8L, 7); 00230 MD5STEP(F1(a, b, c), d, a, b, c, in[9] + 0x8b44f7afL, 12); 00231 MD5STEP(F1(d, a, b), c, d, a, b, in[10] + 0xffff5bb1L, 17); 00232 MD5STEP(F1(c, d, a), b, c, d, a, in[11] + 0x895cd7beL, 22); 00233 MD5STEP(F1(b, c, d), a, b, c, d, in[12] + 0x6b901122L, 7); 00234 MD5STEP(F1(a, b, c), d, a, b, c, in[13] + 0xfd987193L, 12); 00235 MD5STEP(F1(d, a, b), c, d, a, b, in[14] + 0xa679438eL, 17); 00236 MD5STEP(F1(c, d, a), b, c, d, a, in[15] + 0x49b40821L, 22); 00237 00238 MD5STEP(F2(b, c, d), a, b, c, d, in[1] + 0xf61e2562L, 5); 00239 MD5STEP(F2(a, b, c), d, a, b, c, in[6] + 0xc040b340L, 9); 00240 MD5STEP(F2(d, a, b), c, d, a, b, in[11] + 0x265e5a51L, 14); 00241 MD5STEP(F2(c, d, a), b, c, d, a, in[0] + 0xe9b6c7aaL, 20); 00242 MD5STEP(F2(b, c, d), a, b, c, d, in[5] + 0xd62f105dL, 5); 00243 MD5STEP(F2(a, b, c), d, a, b, c, in[10] + 0x02441453L, 9); 00244 MD5STEP(F2(d, a, b), c, d, a, b, in[15] + 0xd8a1e681L, 14); 00245 MD5STEP(F2(c, d, a), b, c, d, a, in[4] + 0xe7d3fbc8L, 20); 00246 MD5STEP(F2(b, c, d), a, b, c, d, in[9] + 0x21e1cde6L, 5); 00247 MD5STEP(F2(a, b, c), d, a, b, c, in[14] + 0xc33707d6L, 9); 00248 MD5STEP(F2(d, a, b), c, d, a, b, in[3] + 0xf4d50d87L, 14); 00249 MD5STEP(F2(c, d, a), b, c, d, a, in[8] + 0x455a14edL, 20); 00250 MD5STEP(F2(b, c, d), a, b, c, d, in[13] + 0xa9e3e905L, 5); 00251 MD5STEP(F2(a, b, c), d, a, b, c, in[2] + 0xfcefa3f8L, 9); 00252 MD5STEP(F2(d, a, b), c, d, a, b, in[7] + 0x676f02d9L, 14); 00253 MD5STEP(F2(c, d, a), b, c, d, a, in[12] + 0x8d2a4c8aL, 20); 00254 00255 MD5STEP(F3(b, c, d), a, b, c, d, in[5] + 0xfffa3942L, 4); 00256 MD5STEP(F3(a, b, c), d, a, b, c, in[8] + 0x8771f681L, 11); 00257 MD5STEP(F3(d, a, b), c, d, a, b, in[11] + 0x6d9d6122L, 16); 00258 MD5STEP(F3(c, d, a), b, c, d, a, in[14] + 0xfde5380cL, 23); 00259 MD5STEP(F3(b, c, d), a, b, c, d, in[1] + 0xa4beea44L, 4); 00260 MD5STEP(F3(a, b, c), d, a, b, c, in[4] + 0x4bdecfa9L, 11); 00261 MD5STEP(F3(d, a, b), c, d, a, b, in[7] + 0xf6bb4b60L, 16); 00262 MD5STEP(F3(c, d, a), b, c, d, a, in[10] + 0xbebfbc70L, 23); 00263 MD5STEP(F3(b, c, d), a, b, c, d, in[13] + 0x289b7ec6L, 4); 00264 MD5STEP(F3(a, b, c), d, a, b, c, in[0] + 0xeaa127faL, 11); 00265 MD5STEP(F3(d, a, b), c, d, a, b, in[3] + 0xd4ef3085L, 16); 00266 MD5STEP(F3(c, d, a), b, c, d, a, in[6] + 0x04881d05L, 23); 00267 MD5STEP(F3(b, c, d), a, b, c, d, in[9] + 0xd9d4d039L, 4); 00268 MD5STEP(F3(a, b, c), d, a, b, c, in[12] + 0xe6db99e5L, 11); 00269 MD5STEP(F3(d, a, b), c, d, a, b, in[15] + 0x1fa27cf8L, 16); 00270 MD5STEP(F3(c, d, a), b, c, d, a, in[2] + 0xc4ac5665L, 23); 00271 00272 MD5STEP(F4(b, c, d), a, b, c, d, in[0] + 0xf4292244L, 6); 00273 MD5STEP(F4(a, b, c), d, a, b, c, in[7] + 0x432aff97L, 10); 00274 MD5STEP(F4(d, a, b), c, d, a, b, in[14] + 0xab9423a7L, 15); 00275 MD5STEP(F4(c, d, a), b, c, d, a, in[5] + 0xfc93a039L, 21); 00276 MD5STEP(F4(b, c, d), a, b, c, d, in[12] + 0x655b59c3L, 6); 00277 MD5STEP(F4(a, b, c), d, a, b, c, in[3] + 0x8f0ccc92L, 10); 00278 MD5STEP(F4(d, a, b), c, d, a, b, in[10] + 0xffeff47dL, 15); 00279 MD5STEP(F4(c, d, a), b, c, d, a, in[1] + 0x85845dd1L, 21); 00280 MD5STEP(F4(b, c, d), a, b, c, d, in[8] + 0x6fa87e4fL, 6); 00281 MD5STEP(F4(a, b, c), d, a, b, c, in[15] + 0xfe2ce6e0L, 10); 00282 MD5STEP(F4(d, a, b), c, d, a, b, in[6] + 0xa3014314L, 15); 00283 MD5STEP(F4(c, d, a), b, c, d, a, in[13] + 0x4e0811a1L, 21); 00284 MD5STEP(F4(b, c, d), a, b, c, d, in[4] + 0xf7537e82L, 6); 00285 MD5STEP(F4(a, b, c), d, a, b, c, in[11] + 0xbd3af235L, 10); 00286 MD5STEP(F4(d, a, b), c, d, a, b, in[2] + 0x2ad7d2bbL, 15); 00287 MD5STEP(F4(c, d, a), b, c, d, a, in[9] + 0xeb86d391L, 21); 00288 #else 00289 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 00290 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 00291 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 00292 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 00293 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 00294 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 00295 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 00296 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 00297 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 00298 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 00299 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 00300 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 00301 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 00302 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 00303 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 00304 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 00305 00306 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 00307 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 00308 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 00309 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 00310 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 00311 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 00312 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 00313 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 00314 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 00315 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 00316 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 00317 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 00318 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 00319 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 00320 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 00321 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 00322 00323 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 00324 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 00325 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 00326 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 00327 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 00328 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 00329 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 00330 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 00331 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 00332 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 00333 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 00334 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 00335 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 00336 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 00337 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 00338 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 00339 00340 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 00341 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 00342 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 00343 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 00344 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 00345 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 00346 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 00347 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 00348 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 00349 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 00350 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 00351 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 00352 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 00353 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 00354 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 00355 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 00356 #endif 00357 00358 buf[0] += a; 00359 buf[1] += b; 00360 buf[2] += c; 00361 buf[3] += d; 00362 } 00363 #endif 00364 00365 uint32_t CHash::MurmurHash3(uint8_t* data, int32_t len, uint32_t seed) 00366 { 00367 return PMurHash32(seed, data, len); 00368 } 00369 00370 void CHash::IncrementalMurmurHash3(uint32_t *ph1, uint32_t *pcarry, uint8_t* data, int32_t len) 00371 { 00372 PMurHash32_Process(ph1, pcarry, data, len); 00373 } 00374 00375 uint32_t CHash::FinalizeIncrementalMurmurHash3(uint32_t h, uint32_t carry, uint32_t total_length) 00376 { 00377 return PMurHash32_Result(h, carry, total_length); 00378 } 00379 00380 uint32_t CHash::MurmurHashString(substring s, uint32_t h) 00381 { 00382 uint32_t ret = 0; 00383 00384 // Trim leading whitespace 00385 for(; *(s.start) <= 0x20 && s.start < s.end; s.start++); 00386 00387 // Trim trailing white space 00388 for(; *(s.end-1) <= 0x20 && s.end > s.start; s.end--); 00389 00390 char *p = s.start; 00391 while (p != s.end) 00392 if (isdigit(*p)) 00393 ret = 10*ret + *(p++) - '0'; 00394 else 00395 return MurmurHash3((uint8_t *)s.start, s.end - s.start, h); 00396 00397 return ret + h; 00398 }