NGSolve
4.9
|
Gradient operator in r-z coordinates. More...
#include <bdbequations.hpp>
Public Types | |
enum | { DIM = 1 } |
enum | { DIM_SPACE = D } |
enum | { DIM_ELEMENT = D } |
enum | { DIM_DMAT = D } |
enum | { DIFFORDER = 1 } |
Static Public Member Functions | |
template<typename FEL , typename MIP , typename MAT > | |
static void | GenerateMatrix (const FEL &fel, const MIP &mip, MAT &mat, LocalHeap &lh) |
Computes the B-matrix. |
Gradient operator in r-z coordinates.
static void ngfem::DiffOpGradientRotSym< D >::GenerateMatrix | ( | const FEL & | fel, |
const MIP & | mip, | ||
MAT & | mat, | ||
LocalHeap & | lh | ||
) | [inline, static] |
Computes the B-matrix.
The height is DIM_DMAT, the width is fel.GetNDof(). FEL is the FiniteElement type specified in the BDB-Integrator mip is the mapped integration point containing the Jacobi-Matrix MAT is the resulting matrix (usually a FixedHeightMatrix)
Reimplemented from ngfem::DiffOp< DiffOpGradientRotSym< D > >.