
NGSolve - 4.4

Joachim Schöberl

February 6, 2013



2



Contents

3



4 CONTENTS



Chapter 1

Getting Started

NGSolve is a finite element library. It contains equation assembling and equation
solving. It does not contain mesh operations, so it has to be linked to a mesh
handler such as Netgen.

1.1 Installing NGSolve as Netgen Add-On

Install Netgen and NGsolve as expained on http://sourceforge.net/apps/mediawiki/ngsolve

1.2 A first demo

Start the program ’netgen’. There should pop up a window with menu items,
and a large white visualization area.

Select the menu item Solve→ Load PDE and open the PDE file ngsolve/pde tutorial/d1 square.pde.
You get some text in the shell window, and you will find a blue square in the
drawing area. You have loaded the problem description, including geometry and
mesh. In the button line (below the menu items) you see the selection-button
showing ’Geometry’. Here, you can switch to ’Mesh’, and later, you switch to
’Solution’. This selects the visualization mode in the drawing area.

Now, you are ready to start the first solve. Press the Solve-button.. The
visualization switches to Solution, and you see two gray triangles.

Click Solve→Visualization to open the visualization dialog box. Here, you
can select what you want to see. Look for the selection button Scalar Function,
and change from ’None’ to ’u’. The triangles will be colored.

Clearly, this mesh is too coarse. Go on, and press the Solve-button five more
times. The mesh gets refined, and new solutions will be computed.

Play around with the items in the visualization box. You may try Autoscale,
Isolines, and Textures. Go on and do some more refinement steps (by pressing
the short-cuts <s>-<p>.

The next chapter will describe the structure of the PDE input file.

5



6 CHAPTER 1. GETTING STARTED



Chapter 2

The PDE Description file

The way to describe the equations in NGSolve is very close to the variational
formulation (the virtual displacement formulation).

2.1 The weak formulation

The partial differential equation describing a heat flow problem with thermic
conductivity λ, a volumetric source density f , an inflow density g at the part ΓN

of the boundary, and a heat exchange to the environment of temperature u0, and
conductivity α on ΓR is

−divλ∇u = f in Ω,
nTλ∇u = g on ΓN ,
nTλ∇u = α(u0 − u) on ΓR.

The weak form of the equation is to find the temperature distribution u in
the proper Sobolev space V := H1(Ω) such that∫

Ω
λ∇u · ∇vdx+

∫
ΓR

αuv ds =
∫

Ω
fv dx+

∫
ΓN

gv ds+
∫

ΓR

αu0v ds

holds for all test functions v ∈ V . The finite element method replaces the Sobolev
spaces V by a finite dimensional sub-space.

The PDE input file defines the variational problem. You specify the finite
element space, and then, the bilinear-form (left hand side), and the linear form
(right hand side) are build up from elementary blocks called integrators. The
table below lists the names of the integrators needed in the equation above:

laplace lam
∫

Ω λ∇u · ∇v dx
robin alpha

∫
ΓR
αuv ds

source f
∫

Ω fv dx
neumann g

∫
ΓN
gv ds

7



8 CHAPTER 2. THE PDE DESCRIPTION FILE

Note that the last term is handled by the neumann - integrator with coefficient
αu0. You might miss Dirichlet boundary conditions. Indeed, NGSolve always
approximates them by Robin b.c. with large conductivity α.

2.2 The input file

The file below is a valid input file to NGSolve. The first two lines load the
prepared geometry file and the mesh file. It is a square. The boundary splits into
the 4 sides Γ1 to Γ4. We specify Robin boundary conditions (with conductivity
α = 105) on Γ1 to Γ3, and Neumann boundary condition (with g = 1) on Γ4.
This is defined in terms of coefficients. The list of numbers correspond to the sub-
domains, if the integral is taken over the domain, or, to parts of the boundary,
if the integral is taken over the boundary, respectively. The next lines define the
mathematical objects finite-element space, grid-function, bilinear-form, linear-
form, and a preconditioner. The last line (numproc) calls the solver for boundary
value problems (bvp). Here, a preconditioned conjugate gradients iteration is
called.

geometry = ngsolve/pde_tutorial/square.in2d

mesh = ngsolve/pde_tutorial/square.vol

define coefficient coef_lam

1,

define coefficient coef_alpha

1e5, 1e5, 1e5, 0,

define coefficient coef_f

1,

define coefficient coef_g

0, 0, 0, 1,

define fespace v -order=1

define gridfunction u -fespace=v -nested

define bilinearform a -fespace=v

laplace coef_lam

robin coef_penalty

define linearform f -fespace=v

source coef_source



2.2. THE INPUT FILE 9

neumann coef_g

define preconditioner c -type=multigrid -bilinearform=a -smoothingsteps=1

numproc bvp np1 -bilinearform=a -linearform=f -gridfunction=u -preconditioner=c \

-maxsteps=50



10 CHAPTER 2. THE PDE DESCRIPTION FILE



Chapter 3

Reference Manual

This is the most up to date description of the PDE input file. General rules for
writing input files are:

• The input file is case sensitive. All keywords must be in lower-case.

• Line comments start with the pound sign #. The rest of the line is ignored.
Block comments are not available.

• The input file must start with geometry and mesh definition. The geometry
is optional, the mesh statement is required:

geometry = geodir/geofilename.geo

mesh = meshdir/meshfilename.vol

The filename is relative to the starting directory of ng. Spaces are optional.

• After that, define commands and numproc commands follow. Each object
must be given a unique name. The objects are called in order of definition.
The calling action depends on the type of object. For example, it is mem-
ory allocation for grid-functions, matrix assembling for bilinear-forms, and
linear equation solving for the bvp-numproc.

• Many commands require option flags. There are define flags, numerical
flags, string flags, number-list flags, and string-last flags. Examples for
every type are

-printstatus

-ref_fac=0.1 -solution=u

-parameters=[1.0,2,-5] -spaces=[v1,v2,v3]

Flags need an initial ’-’ character. Spaces within one flag are not allowed.

11



12 CHAPTER 3. REFERENCE MANUAL

3.1 Constants and Variables

Constants and variables are defined as follows:

define constant pi = 3.1415

define constant omega = (2 * pi * 10E3)

define variable t = 0

A constant is given its value at definition. A variable is initialized to a value, but
later, its value may be changed from a numproc. An example is the time variable
for dynamic problems.

The right hand side can be a constant, or a constant expression. Expressions
must be put into brackets. Expressions may contain the following operations:

• +,−, /, ∗, ()

• sin, cos, tan, exp, log

3.2 Coefficient functions

Coefficient functions are defined as list of constants or functions. Each element
corresponds to a sub-domain, or a part of the boundary (specified by the bound-
ary condition number).

define coefficient coef_lam 10,15, -5, (5*x), (sin(y)),

• Functions must be put into brackets. Function may be built as described
in Section ??, but may now additionally contain variables.

• Predefined variables are x, y, and z for the Cartesian coordinates.

• Specifying too many coefficients is ok, too less will throw an error exception.

Coefficients can be specified by materials. Use the ’-material’ flag. Currently
this version is only supported for CSG geometries.

define coefficient coef_nu material

iron 10000

air 1

default 1

All subdomains consisting of material ’iron’ get the constant coefficient 10000,
the ’air’ domain as well as all others get 1.



3.3. FINITE ELEMENT SPACES 13

3.3 Finite Element Spaces

The definition

define fespace <name> <flaglist>

defines the finite element space <name>. Example:

define fespace v -order=2 -dim=3

There are various classes of finite element spaces. Default are continuous, nodal-
valued finite element spaces. The following define flags select the type of spaces

non of the flags below continuous nodal finite element space
-hcurl H(curl) finite elements (Nedelec-type, edge elements)
-hdiv H(div) finite elements (Raviart-Thomas, face elements)
-l2 non-continuous elements, element by element
-l2surf element by element on surface
-h1ho Arbitrary order continuous elements
-hcurlho Arbitrary order H(curl) elements
-hdivho Arbitrary order H(div) elements
-l2ho Arbitrary order non-continuous elements

The following flags specify the finite element spaces

-order=<num> Order of finite elements
-dim=<num> Number of fields (number of copies of fe), 2 for 2D elasticity
-vec set -dim=spacedim
-tensor set -dim=spacedim*spacedim
-symtensor set -dim=spacedim * (spacedim+1) / 2, (symmetric stress tensor)
-complex complex valued fe-space

A compound fe-space combines several fe-spaces to a new one. Useful, e.g.,
for Reissner-Mindlin plate models containing the deflection w and two rotations
beta:

fespace vw -order=2

fespace vbeta -order=1

fespace v -compound -spaces=[vw,vbeta,vbeta]

The fespace maintains the degrees of freedom. On mesh refinement, the space
provides the grid transfer operator (prolongation). High order fe spaces maintain
a lowest-order fespace of the same type for preconditioning.



14 CHAPTER 3. REFERENCE MANUAL

3.3.1 H1-Finite Element Space

3.4 Grid-functions

A grid-function is a function living in a finite element space. Definition:

define gridfunction <name> <flaglist>

Example:

define gridfunction u -fespace=v

The string-flag fespace defines the fespace the grid function lives in. The
flag must refer to a valid fespace.

If the define flag nested is specified, the grid-function will be prolongated
from the coarse space to the fine space when the mesh is refined.

3.5 Bilinear-forms

A bilinear form is defined by

define bilinearform <name> <flaglist>

integrator1

integrator2

integrator3

...

Example

define bilinearform a -fespace=v

laplace lam

robin alpha

A bilinear-form is always defined as sum over integrators. A bilinear-form
maintains the stiffness matrix. For multi-level algorithms, a bilinear-form stores
all matrices. Bilinear-forms for high order spaces have a bilinear-form for the
corresponding lowest order space.

The following flags are defined
-fespace=¡name¿ bilinear form is defined on fe space ¡name¿
-symmetric bilinear form is symmetric (store just lower left triangular matrix)
-nonassemble do not allocate matrix (bilinear-form is used, e.g., for post-processing)
-project use Galerkin projection to generate coarse grid matrices

An integrator is defined as

token <coef1> <coef2> ... <flaglist>



3.6. LINEAR-FORMS 15

Example:

elasticity coef_e coef_nu -order=4

The ¡coefi¿ refers to a coefficient function defined above. It provides the coeffi-
cients defined sub-domain by dub-domain for integrators defined on the domain
(e.g., laplace), or, the coefficient boundary-patch by boundary-patch for integra-
tors defined on the surface (e.g., robin).

Allowed flags are
-order=num use integration rule of order num. Default order is computed form element order.
-comp=num use scalar integrator as component num for system (e.g., penalty term for y-displacement). num=0 adds integrator to all components.
-normal add integrator in normal direction (penalty for normal-displacement)

The integrator tokens are
laplace lam

∫
Ω λ∇u · ∇v dx

mass rho
∫
Ω ρuv dx

robin alpha
∫
Γ αuv ds

elasticity e nu
∫
Ω Dε(u) : ε(v) dx (with D..3D elasticity tensor, or plane stress)

curlcurledge nu
∫
Ω ν(∇× u)(∇× v) dx for H(curl) spaces

massedge sigma
∫
Ω σu · vdx for H(curl) spaces

robinedge sigma
∫
Γ σ(n× u)(n× v)ds for H(curl) spaces

3.6 Linear-forms

A linear form is defined by

define linearform <name> <flaglist>

integrator1

integrator2

integrator3

...

Example

define linearform f -fespace=v

source coef_f

neumann coef_g

A linear-form is always defined as sum over integrators. A linear-form main-
tains the right hand side vector.

The following flags are defined
-fespace=¡name¿ bilinear form is defined on fe space ¡name¿

An integrator is defined as

token <coef1> <coef2> ... <flaglist>

Example:



16 CHAPTER 3. REFERENCE MANUAL

source coef_fy -comp=2

The ¡coefi¿ refers to a coefficient function defined above. It provides the coeffi-
cients defined sub-domain by dub-domain for integrators defined on the domain
(e.g., source), or, the coefficient boundary-patch by boundary-patch for integra-
tors defined on the surface (e.g., neumann).

Allowed flags are
-order=num use integration rule of order num. Default order is computed form element order.
-comp=num use scalar integrator as component num for system (e.g., penalty term for y-displacement). num=0 adds integrator to all components.
-normal add integrator in normal direction (surface load in normal direction)

The integrator tokens are
source f

∫
Ω fv dx

neumann g
∫

Γ gv ds
sourceedge jx jy jz

∫
Ω j · v dx for 3D H(curl) spaces

neumannedge jx jy jz
∫

Γ(n× j) · (n× v) ds for 3D H(curl) spaces
curledge f

∫
Ω f(∇× vz) dx for 2D H(curl) spaces

curlboundaryedge f
∫

Γ fn · (∇× v) ds for 3D H(curl) spaces

3.7 Preconditioners

A preconditioner is defined by

define preconditioner <name> -type=<type> <flaglist>

Example:

define preconditioner c -type=multigrid -bilinearform=a -smoothingsteps=2

A preconditioner must have a type flags specifying the type of preconditioner.
The remaining flags depend on the preconditioner.

Preconditioners are:

• -type=local: Local preconditioner, symmetric Gauss-Seidel Jacobi, block
Gauss-Seidel

Flags are
-bilinearform=¡name¿ name of bilinear-form containing matrix
-block use block Gauss-Seidel (block defined by fe-space)

• -type=multigrid: Multigrid preconditioner



3.8. NUMERICAL PROCEDURES 17

Flags are

-bilinearform=¡name¿ name of bilinear-form containing matrix
-smoother=¡smoother¿ type of smoother: ’point’..GS, ’block’..block GS, ’line’..line-GS (lines by anisotropic mesh)
-coarsetype=¡coarse¿ type of coarse grid solver: ’exact’..factorization, ’smoothing’..use smoother, ’cg’..inner cg iteration
-smoothingsteps=nsm number of pre- and post-smoothing steps
-increasesmoothingsteps=inc smoothing steps on level l are nsm ∗ incL−l with L..finest level
-coarsesmoothingsteps=nsmc smoothing steps for coarse grid solver (if smoother)
-finesmoothingsteps=nsmf smoothing steps for high order equation
-test compute eigenvalues of preconditioned system
-timing measure time per preconditioning step
-updateall update coarse grid matrices (e.g. in combination with the bilinearform flag project)

• -type=direct: Cholesky factorization

3.8 Numerical Procedures

Numerical procedures are functions where the actual computations happen. Numprocs
call iterative solvers, perform time integration loops, control postprocessing, and
error estimators.

3.8.1 Boundary Value Problem

Keyword: bvp
The numproc bvp takes a matrix (from a bilinear form), a right hand side

vector (from a gridfunction), call an iterative solver to compute the solution
vector stored in a gridfunction.

Example:

define bvp np1 -bilinearform=a -linearform=f -solution=u -preconditioner=c

Flags are:

-bilinearform=¡name¿ bilinear form to provide matrix
-linearform=¡name¿ linear form to provide right hand side vector
-gridfunction=¡name¿ gridfunction to store solution
-preconditioner=¡name¿ preconditioner for iterative solver
-maxsteps=num maximal number of iterations
-prec=num relative error reduction
-solver=cg—qmr choice of iterative solver, default is cg.
-print print matrix, rhs, and solution to test.out file

3.8.2 Post processing

Keyword: calcflux
Compute derivatives of solution. Depending on the problem, this function

computes the gradient, the flux, strain or stress, magnetic induction, etc...
Example:



18 CHAPTER 3. REFERENCE MANUAL

numproc calcflux pp1 -bilinearform=a -solution=u -flux=p -applyd

Flags are:

bilinearform=¡name¿ The flux is defined by the first integrator of the bilinearform
solution=¡name¿ The input gridfunction
flux=¡name¿ The output gridfunction. Must be nodal-valued or element by element.
-applyd apply coefficientmatrix. Switches between stress and strain, or B-field and H-field

3.8.3 Evaluation of numerical values

Keyword: evaluate

Evaluate (bi)linear functionals on gridfunctions, compute point values, etc,..

Examples:

numproc evaluate ev1 -linearform=f -gridfunction=u -text=NormalFlux

numproc evaluate ev2 -bilinearform=a -gridfunction=u -point=[0.3,0.5,0.5] -applyd

Flags are:

-bilinearform=¡name¿ bilinear form to evaluate a(u,v), or, take first integrator to define quantity to evaluate
-linearform=¡name¿ linear form to evaluate f(v)
-gridfunction=¡name¿ gridfunction to evaluate
-gridfunction2=¡name¿ gridfunction v to evaluate a(u,v)
-point=[px,py,pz] point where to evaluate Bu
-point2=[qx,qy,qz] evaluate elong line [P,Q] and store values in file
-filename=¡name¿ file to store results
-applyd switch between stain/stress, i.e., Bu or DBu
-text=¡text¿ output is “¡text¿ = “ values

3.8.4 Error estimator

Keyword: zzerrorestimator

Performs a Zienkiewicz-Zhu type error estimator.

Example:

numproc zzerrorestimator ee1 -bilinearform=a -solution=u -error=err

Averages the fluxes, and computes difference between averaged flux and origi-
nal flux. Difference is added to element by element gridfunction error. Averaging
is done sub-domain by sub-domain to avoid too strong refinement along material
interfaces.

-bilinearform=¡name¿ first integrator of bilinear-form defines flux
-solution=¡name¿ gridfunction containing solution
-error=¡name¿ element-by-element, order 0 gridfunction containing element contributions of error



3.8. NUMERICAL PROCEDURES 19

3.8.5 Refinement marker

Keyword: markelements
Marks elements for mesh refinement.
Example:

numproc markelements me -error=err -minlevel=2 -fac=0.1

All elements having element error greater than fac times maximal element
error are marked for refinement.

-error=¡name¿ element by element, order 0, gridfunction containing element contributions
-minlevel=¡l¿ Do l-1 levels of uniform refinement before starting adaptivity
-fac=val Elements having contribution greater than val * maximal err are marked
-error2=¡name¿ mark elements based on element by element quantity
errorT * error2T , used for goal driven error estimator.


