NGSolve
4.9
|
Element vector assembling. More...
#include <bdbintegrator.hpp>
Public Types | |
enum | { DIM_SPACE = DIFFOP::DIM_SPACE } |
enum | { DIM_ELEMENT = DIFFOP::DIM_ELEMENT } |
enum | { DIM_DMAT = DIFFOP::DIM_DMAT } |
enum | { DIM = DIFFOP::DIM } |
Public Member Functions | |
T_BIntegrator (const DVecOp &advec) | |
virtual void | CheckElement (const FiniteElement &el) const |
does element match integrator ? | |
virtual bool | BoundaryForm () const |
integrates on the boundary, or on the domain ? | |
virtual int | DimElement () const |
dimension of element | |
virtual int | DimSpace () const |
dimension of space | |
virtual void | CalcElementVector (const FiniteElement &bfel, const ElementTransformation &eltrans, FlatVector< double > &elvec, LocalHeap &lh) const |
Computes the element vector. | |
virtual void | CalcElementVector (const FiniteElement &bfel, const ElementTransformation &eltrans, FlatVector< Complex > &elvec, LocalHeap &lh) const |
template<typename TSCAL > | |
void | T_CalcElementVector (const FiniteElement &fel, const ElementTransformation &eltrans, FlatVector< TSCAL > &elvec, LocalHeap &lh) const |
virtual void | CalcElementVectorIndependent (const FiniteElement &gfel, const BaseMappedIntegrationPoint &s_mip, const BaseMappedIntegrationPoint &g_mip, FlatVector< double > &elvec, LocalHeap &lh, const bool curveint=false) const |
virtual void | CalcElementVectorIndependent (const FiniteElement &gfel, const BaseMappedIntegrationPoint &s_mip, const BaseMappedIntegrationPoint &g_mip, FlatVector< Complex > &elvec, LocalHeap &lh, const bool curveint=false) const |
template<typename TSCAL > | |
void | T_CalcElementVectorIndependent (const FiniteElement &gfel, const BaseMappedIntegrationPoint &s_mip, const BaseMappedIntegrationPoint &g_mip, FlatVector< TSCAL > &elvec, LocalHeap &lh, const bool curveint=false) const |
int | IntegrationOrder (const FiniteElement &fel) const |
virtual int | GetDimension () const |
virtual string | Name () const |
Protected Attributes | |
DVecOp | dvecop |
Element vector assembling.
Assembling for linear-forms of type $ D (B u) dx$.