
The omniORB version 4.2Users’ Guide

Duncan Grisby
(email: dgrisby@apasphere.com)

Apasphere Ltd.
Sai-Lai Lo

David Riddoch
AT&T Laboratories Cambridge

April 2012

mailto:dgrisby@apasphere.com


Changes and Additions, April 2012
• Updates for omniORB 4.2.

Changes and Additions, July 2007
• Updates for omniORB 4.1.1.

Changes and Additions, June 2005
• New omniORB 4.1 features.

Changes and Additions, October 2004
• Packaging stubs into DLLs.

Changes and Additions, July 2004
• Minor updates.

Changes and Additions, November 2002
• Per thread timeouts.
• Implement missing interceptors.
• Minor fixes.

Changes and Additions, June 2002
• Updated to omniORB 4.0.



Contents

1 Introduction 11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.2 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.3 Missing features . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Setting up your environment . . . . . . . . . . . . . . . . . . . . . . 31.3 Platform specific variables . . . . . . . . . . . . . . . . . . . . . . . 4
2 The Basics 72.1 The Echo Object Example . . . . . . . . . . . . . . . . . . . . . . . . 72.2 Specifying the Echo interface in IDL . . . . . . . . . . . . . . . . . . 72.3 Generating the C++ stubs . . . . . . . . . . . . . . . . . . . . . . . 82.4 Object References and Servants . . . . . . . . . . . . . . . . . . . . 92.5 A quick look at the C++ mapping . . . . . . . . . . . . . . . . . . . 92.5.1 Mapping overview . . . . . . . . . . . . . . . . . . . . . . . . 92.5.2 Interface scope type . . . . . . . . . . . . . . . . . . . . . . . 92.5.3 Object reference pointer type . . . . . . . . . . . . . . . . . 102.5.3.1 Nil object reference . . . . . . . . . . . . . . . . . . 102.5.3.2 Object reference lifecycle . . . . . . . . . . . . . . . 112.5.3.3 Object reference inheritance . . . . . . . . . . . . . 122.5.3.4 Object reference equivalence . . . . . . . . . . . . 122.5.4 Servant Object Implementation . . . . . . . . . . . . . . . . 132.6 Writing the servant implementation . . . . . . . . . . . . . . . . . . 132.7 Writing the client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.8 Example 1 — Colocated Client and Servant . . . . . . . . . . . . . . 162.8.1 ORB initialisation . . . . . . . . . . . . . . . . . . . . . . . . 172.8.2 Obtaining the Root POA . . . . . . . . . . . . . . . . . . . . . 172.8.3 Object initialisation . . . . . . . . . . . . . . . . . . . . . . . 182.8.4 Activating the POA . . . . . . . . . . . . . . . . . . . . . . . . 192.8.5 Performing a call . . . . . . . . . . . . . . . . . . . . . . . . . 192.8.6 ORB destruction . . . . . . . . . . . . . . . . . . . . . . . . . 192.9 Example 2 — Different Address Spaces . . . . . . . . . . . . . . . . 19

iii



2.9.1 Making a Stringified Object Reference . . . . . . . . . . . . 202.9.2 Client: Using a Stringified Object Reference . . . . . . . . . 202.9.3 Catching System Exceptions . . . . . . . . . . . . . . . . . . 212.9.4 Lifetime of a CORBA object . . . . . . . . . . . . . . . . . . . 212.10 Example 3 — Using the Naming Service . . . . . . . . . . . . . . . 222.10.1 Obtaining the Root Context Object Reference . . . . . . . . 222.10.2 The Naming Service Interface . . . . . . . . . . . . . . . . . 232.11 Example 4 — Using tie implementation templates . . . . . . . . . . 232.12 Source Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.12.1 eg1.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.12.2 eg2_impl.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.12.3 eg2_clt.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.12.4 eg3_impl.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.12.5 eg3_clt.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.12.6 eg3_tieimpl.cc . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3 C++ language mapping 453.1 omniORB 2 BOA compatibility . . . . . . . . . . . . . . . . . . . . . 453.2 omniORB 3.0 compatibility . . . . . . . . . . . . . . . . . . . . . . . 473.3 omniORB 4.0 compatibility . . . . . . . . . . . . . . . . . . . . . . . 473.4 omniORB 4.1 compatibility . . . . . . . . . . . . . . . . . . . . . . . 48
4 omniORB configuration and API 494.1 Setting parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 494.1.1 Command line arguments . . . . . . . . . . . . . . . . . . . . 494.1.2 ORB_init() parameter . . . . . . . . . . . . . . . . . . . . . . 504.1.3 Environment variables . . . . . . . . . . . . . . . . . . . . . 504.1.4 Configuration file . . . . . . . . . . . . . . . . . . . . . . . . 504.1.5 Windows registry . . . . . . . . . . . . . . . . . . . . . . . . 504.2 Tracing options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514.2.1 Tracing API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.3 Miscellaneous global options . . . . . . . . . . . . . . . . . . . . . . 524.4 Client side options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.5 Server side options . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.5.1 Main thread selection . . . . . . . . . . . . . . . . . . . . . . 614.6 GIOP and interoperability options . . . . . . . . . . . . . . . . . . . 614.7 System Exception Handlers . . . . . . . . . . . . . . . . . . . . . . . 624.7.1 Minor codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 634.7.2 CORBA::TRANSIENT handlers . . . . . . . . . . . . . . . . . 634.7.3 CORBA::TIMEOUT . . . . . . . . . . . . . . . . . . . . . . . . 654.7.4 CORBA::COMM_FAILURE . . . . . . . . . . . . . . . . . . . 664.7.5 CORBA::SystemException . . . . . . . . . . . . . . . . . . . . 66



4.8 Location forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5 The IDL compiler 695.1 Common options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.1.1 Preprocessor interactions . . . . . . . . . . . . . . . . . . . . 705.1.1.1 Ancient history: Windows 9x . . . . . . . . . . . . . 705.1.2 Forward-declared interfaces . . . . . . . . . . . . . . . . . . 705.1.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715.2 C++ back-end options . . . . . . . . . . . . . . . . . . . . . . . . . . 715.2.1 Optional code generation options . . . . . . . . . . . . . . . 725.2.1.1 Any and TypeCode . . . . . . . . . . . . . . . . . . . 725.2.1.2 Tie templates . . . . . . . . . . . . . . . . . . . . . . 725.2.1.3 Asynchronous Method Invocation . . . . . . . . . . 725.2.1.4 Example implementations . . . . . . . . . . . . . . 725.2.2 Include file options . . . . . . . . . . . . . . . . . . . . . . . . 735.2.3 Object reference operations . . . . . . . . . . . . . . . . . . 735.2.4 Module splicing . . . . . . . . . . . . . . . . . . . . . . . . . 745.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6 Connection and Thread Management 776.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786.3 Client side behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 786.3.1 Client side timeouts . . . . . . . . . . . . . . . . . . . . . . . 796.4 Server side behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 806.4.1 Thread per connection mode . . . . . . . . . . . . . . . . . . 816.4.2 Thread pool mode . . . . . . . . . . . . . . . . . . . . . . . . 816.4.3 Policy transition . . . . . . . . . . . . . . . . . . . . . . . . . 826.5 Idle connection shutdown . . . . . . . . . . . . . . . . . . . . . . . . 836.5.1 Interoperability Considerations . . . . . . . . . . . . . . . . 836.6 Transports and endpoints . . . . . . . . . . . . . . . . . . . . . . . . 846.6.1 Port ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856.6.2 IPv6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856.6.2.1 Link local addresses . . . . . . . . . . . . . . . . . . 866.6.3 Endpoint publishing . . . . . . . . . . . . . . . . . . . . . . . 866.7 Connection selection and acceptance . . . . . . . . . . . . . . . . . 876.7.1 Client transport rules . . . . . . . . . . . . . . . . . . . . . . 876.7.2 Server transport rules . . . . . . . . . . . . . . . . . . . . . . 896.8 Bidirectional GIOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896.9 SSL transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7 Interoperable Naming Service 91



7.1 Object URIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.1.1 corbaloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.1.2 Other transports . . . . . . . . . . . . . . . . . . . . . . . . . 927.1.3 Resolve initial references . . . . . . . . . . . . . . . . . . . . 927.1.4 corbaname . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937.2 Configuring resolve_initial_references . . . . . . . . . . . . . . . . . 937.2.1 ORBInitRef . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937.2.2 ORBDefaultInitRef . . . . . . . . . . . . . . . . . . . . . . . . 947.3 omniNames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947.3.1 NamingContextExt . . . . . . . . . . . . . . . . . . . . . . . . 947.3.2 Use with corbaname . . . . . . . . . . . . . . . . . . . . . . . 957.4 omniMapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957.5 Creating objects with simple object keys . . . . . . . . . . . . . . . 96
8 Code set conversion 978.1 Native code sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978.2 Code set library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988.3 Implementing new code sets . . . . . . . . . . . . . . . . . . . . . . 98
9 Interceptors 1019.1 Interceptor registration . . . . . . . . . . . . . . . . . . . . . . . . . 1029.2 Available interceptors . . . . . . . . . . . . . . . . . . . . . . . . . . 1029.3 Server-side call interceptor . . . . . . . . . . . . . . . . . . . . . . . 105
10 Type Any and TypeCode 10710.1 Example using type Any . . . . . . . . . . . . . . . . . . . . . . . . . 10710.1.1 Type Any in IDL . . . . . . . . . . . . . . . . . . . . . . . . . 10710.1.2 Inserting and Extracting Basic Types from an Any . . . . . . 10810.1.3 Inserting and Extracting Constructed Types from an Any . . 10910.2 Type Any in omniORB . . . . . . . . . . . . . . . . . . . . . . . . . . 11010.2.1 Generating Insertion and Extraction Operators. . . . . . . . 11110.2.2 TypeCode comparison when extracting from an Any. . . . . 11110.2.3 Top-level aliases. . . . . . . . . . . . . . . . . . . . . . . . . . 11110.2.4 Removing aliases from TypeCodes. . . . . . . . . . . . . . . 11210.2.5 Recursive TypeCodes. . . . . . . . . . . . . . . . . . . . . . . 11210.2.6 Threads and type Any. . . . . . . . . . . . . . . . . . . . . . . 11210.3 TypeCode in omniORB . . . . . . . . . . . . . . . . . . . . . . . . . . 11310.3.1 TypeCodes in IDL. . . . . . . . . . . . . . . . . . . . . . . . . 11310.3.2 orb.idl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11310.3.3 Generating TypeCodes for constructed types. . . . . . . . . 113
11 Objects by value, etc. 115



11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11511.2 Reference counting . . . . . . . . . . . . . . . . . . . . . . . . . . . 11511.3 Value sharing and local calls . . . . . . . . . . . . . . . . . . . . . . 11611.4 Value box factories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11611.5 Standard value boxes . . . . . . . . . . . . . . . . . . . . . . . . . . 11711.6 Covariant returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11711.7 Values inside Anys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11711.7.1 Values inside DynAnys . . . . . . . . . . . . . . . . . . . . . . 11811.8 Local Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11911.8.1 Simple local interfaces . . . . . . . . . . . . . . . . . . . . . 11911.8.2 Inheritance from unconstrained interfaces . . . . . . . . . . 11911.8.3 Valuetypes supporting local interfaces . . . . . . . . . . . . 120
12 Asynchronous Method Invocation 12312.1 Implied IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12312.2 Generating AMI stubs . . . . . . . . . . . . . . . . . . . . . . . . . . 12412.3 AMI examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
13 Interface Type Checking 12513.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12513.2 Interface Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . 126
14 Packaging stubs into DLLs 12914.1 Dynamic loading and unloading . . . . . . . . . . . . . . . . . . . . 12914.2 Windows DLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12914.2.1 Exporting symbols . . . . . . . . . . . . . . . . . . . . . . . . 12914.2.2 Importing constant symbols . . . . . . . . . . . . . . . . . . 130
15 Resources 133





Chapter 1

Introduction

omniORB is an Object Request Broker (ORB) that implements version 2.6 of theCommon Object Request Broker Architecture (CORBA) [OMG01] specification.Where possible, backward compatibility has been maintained back to specifica-tion 2.0. It passed the Open Group CORBA compliant testsuite (for CORBA 2.1)and was one of the three ORBs to be granted the CORBA brand in June 19991.This user guide tells you how to use omniORB to develop CORBA applica-tions. It assumes a basic understanding of CORBA.In this chapter, we give an overview of the main features of omniORB andwhat you need to do to set up your environment to run omniORB.

1.1 Features

omniORB is quite feature-rich, but it does not slavishly implement every lastpart of the CORBA specification. The goal is to provide the most generally usefulparts of the specification in a clean and efficient manner. Highlights are:
• C++ and Python language bindings.
• Support for the complete Portable Object Adapter (POA) specification.
• Support for the Interoperable Naming Service (INS).
• Internet Inter-ORB Protocol (IIOP 1.2) is used as the native protocol.
• The omniORB runtime is fully multithreaded. It uses platform thread sup-port encapsulated with a small class library, omnithread, to abstract awayfrom differences in native thread APIs.
• TypeCode and type Any are supported.

1More information can be found at http://www.opengroup.org/press/7jun99_b.htm
1



2 CHAPTER 1. INTRODUCTION

• DynAny is supported.
• The Dynamic Invocation and Dynamic Skeleton interfaces are supported.
• Valuetype and abstract interfaces are supported.
• Asynchronous Method Invocation (AMI) supported, including both pollingand callback models.
• Extensive control over connection management.
• Soft real-time features including call deadlines and timeouts.
• A COS Naming Service, omniNames.
• Many platforms are supported, including most Unix platforms and Win-dows.
• It has been successfully tested for interoperability via IIOP with otherORBs.

1.1.1 Multithreading

omniORB is fully multithreaded. To achieve low call overhead, unnecessary callmultiplexing is eliminated. With the default policies, there is at most one callin-flight in each communication channel between two address spaces at anyone time. To do this without limiting the level of concurrency, new channelsconnecting the two address spaces are created on demand and cached whenthere are concurrent calls in progress. Each channel is served by a dedicatedthread. This arrangement provides maximal concurrency and eliminates anythread switching in either of the address spaces to process a call. Furthermore,to maximise the throughput in processing large call arguments, large data el-ements are sent as soon as they are processed while the other arguments arebeing marshalled. With GIOP 1.2, large messages are fragmented, so the mar-shaller can start transmission before it knows how large the entire message willbe.
omniORB also supports a flexible thread pool policy, and supports sendingmultiple interleaved calls on a single connection. This policy leads to a smallamount of additional call overhead, compared to the default thread per connec-tion model, but allows omniORB to scale to extremely large numbers of concur-rent clients.



1.2. SETTING UP YOUR ENVIRONMENT 3
1.1.2 Portability

omniORB runs on many flavours of Unix, Windows, several embedded operatingsystems, and relatively obscure systems such as OpenVMS and Fujitsu-SiemensBS2000. It is designed to be easy to port to new platforms. The IDL to C++mapping for all target platforms is the same.omniORB uses real C++ exceptions and nested classes. It keeps to theCORBA specification’s standard mapping as much as possible and does not usethe alternative mappings for C++ dialects. The only small exception is the map-ping of IDL modules, which can use either namespaces according to the stan-dard, or nested classes for truly ancient C++ compilers without namespace sup-port.omniORB relies on native thread libraries to provide multithreading capabil-ity. A small class library (omnithread [Ric96]) is used to encapsulate the APIsof the native thread libraries. In application code, it is recommended but notmandatory to use this class library for thread management. It should be easy toport omnithread to any platform that either supports the POSIX thread standardor has a thread package that supports similar capabilities.Partly for historical reasons, and partly to support users with archaic com-pilers, omniORB does not use the C++ standard library.The omniORB IDL compiler, omniidl, requires Python 2.5, 2.6 or 2.7.
1.1.3 Missing features

omniORB is not (yet) a complete implementation of the CORBA 2.6 core. Thefollowing is a list of the most significant missing features.
• omniORB does not have its own Interface Repository. However, it can actas a client to an IfR. The omniifr project (http://omniifr.sourceforge.net/)aims to create an IfR for omniORB.
• omniORB supports interceptors, but not the standard Portable InterceptorAPI.

1.2 Setting up your environment

To get omniORB running, you first need to install omniORB according to theinstructions in the installation notes for your platform. See README.FIRST.txtat the top of the omniORB tree for instructions. Most Unix platforms can usethe Autoconf configure script to automate the configuration process.Once omniORB is installed in a suitable location, you must configure it ac-cording to your required setup. The configuration can be set with a configura-



4 CHAPTER 1. INTRODUCTION

tion file, environment variables, command-line arguments or, on Windows, theWindows registry.

• On Unix platforms, the omniORB runtime looks for the environment vari-able OMNIORB_CONFIG. If this variable is defined, it contains the pathnameof the omniORB configuration file. If the variable is not set, omniORB willuse the compiled-in pathname to locate the file (by default /etc/omniORB.
cfg).

• On Win32 / Win64 platforms, omniORB first checks the environment vari-able OMNIORB_CONFIG to obtain the pathname of the configuration file. Ifthis is not set, it then attempts to obtain configuration data in the sys-tem registry. It searches for the data under the key HKEY_LOCAL_MACHINE\
SOFTWARE\omniORB.

omniORB has a large number of parameters than can be configured. Seechapter 4 for full details. The files sample.cfg and sample.reg contain an ex-ample configuration file and set of registry entries respectively.
To get all the omniORB examples running, the main thing you need to con-figure is the Naming service, omniNames. To do that, the configuration file orregistry should contain an entry of the form

InitRef = NameService=corbaname::my.host.name

See section 7.1.4 for full details of corbaname URIs.

1.3 Platform specific variables

To compile omniORB programs correctly, several C++ preprocessor defines
must be specified to identify the target platform. On Unix platforms where omni-ORB was configured with Autoconf, the omniconfig.h file sets these for you. Onother platforms, and Unix platforms when Autoconf is not used, youmust specifythe following defines:



1.3. PLATFORM SPECIFIC VARIABLES 5

Platform CPP definesWindows __x86__ __NT__ __OSVERSION__=4 __WIN32__Windows NT 3.5 __x86__ __NT__ __OSVERSION__=3 __WIN32__Sun Solaris 2.5 __sparc__ __sunos__ __OSVERSION__=5HPUX 10.x __hppa__ __hpux__ __OSVERSION__=10HPUX 11.x __hppa__ __hpux__ __OSVERSION__=11IBM AIX 4.x __aix__ __powerpc__ __OSVERSION__=4Digital Unix 3.2 __alpha__ __osf1__ __OSVERSION__=3Linux 2.x (x86) __x86__ __linux__ __OSVERSION__=2Linux 2.x (powerpc) __powerpc__ __linux__ __OSVERSION__=2OpenVMS 6.x (alpha) __alpha__ __vms __OSVERSION__=6OpenVMS 6.x (vax) __vax__ __vms __OSVERSION__=6SGI Irix 6.x __mips__ __irix__ __OSVERSION__=6Reliant Unix 5.43 __mips__ __SINIX__ __OSVERSION__=5ATMos 4.0 __arm__ __atmos__ __OSVERSION__=4NextStep 3.x __m68k__ __nextstep__ __OSVERSION__=3Unixware 7 __x86__ __uw7__ __OSVERSION__=5

The preprocessor defines for new platform ports not listed above can befound in the corresponding platform configuration files. For instance, the plat-form configuration file for Sun Solaris 2.6 is in mk/platforms/sun4_sosV_5.6.
mk. The preprocessor defines to identify a platform are in the make variable
IMPORT_CPPFLAGS.In a single source multi-target environment, you can put the preprocessordefines as the command-line arguments for the compiler. If you are building fora single platform, you can edit include/omniconfig.h to add the definitions.



6 CHAPTER 1. INTRODUCTION



Chapter 2

The Basics

In this chapter, we go through three examples to illustrate the practical steps touse omniORB. By going through the source code of each example, the essentialconcepts and APIs are introduced. If you have no previous experience with usingCORBA, you should study this chapter in detail. There are pointers to otheressential documents you should be familiar with.If you have experience with using other ORBs, you should still go throughthis chapter because it provides important information about the features andAPIs that are necessarily omniORB specific. With the Portable Object Adapter,there are very few omniORB specific details.
2.1 The Echo Object Example

Our example is an object which has only one method. The method simply echosthe argument string. We have to:
1. define the object interface in IDL
2. use the IDL compiler to generate the stub code, which provides the objectmapping as defined in the CORBA specification
3. provide the servant object implementation
4. write the client code.
These examples are in the src/examples/echo directory of the omniORBdistribution; there are several other examples in src/examples.

2.2 Specifying the Echo interface in IDL

We define an object interface, called Echo, as follows:
7



8 CHAPTER 2. THE BASICS

interface Echo {
string echoString(in string mesg);

};

If you are new to IDL, you can learn about its syntax in Chapter 3 of theCORBA 2.6 specification [OMG01]. For the moment, you only need to know thatthe interface consists of a single operation, echoString(), which takes a stringas an input argument and returns a copy of the same string.
The interface is written in a file, called echo.idl. It is part of the CORBAstandard that all IDL files must have the extension ‘.idl’, although omniORBdoes not enforce this. In the omniORB distribution, this file is in idl/echo.idl.
For simplicity, the interface is defined in the global IDL namespace. Youshould normally avoid this practice for the sake of object reusability. If everyCORBA developer defines their interfaces in the global IDL namespace, there isa danger of name clashes between two independently defined interfaces. There-fore, it is better to qualify your interfaces by defining them inside module names.Of course, this does not eliminate the chance of a name clash unless some formof naming convention is agreed globally. Nevertheless, a well-chosen modulename can help a lot.

2.3 Generating the C++ stubs

From the IDL file, we use the IDL compiler to produce the C++ mapping of theinterface. The IDL compiler for omniORB is called omniidl. Given the IDL file,omniidl produces two stub files: a C++ header file and a C++ source file. Forexample, from the file echo.idl, the following files are produced:
• echo.hh

• echoSK.cc

omniidl must be invoked with the -bcxx argument to tell it to generate C++stubs. The following command line generates the stubs for echo.idl:
omniidl -bcxx echo.idl

Note that the names echo.hh and echoSK.cc are not defined in the C++mapping standard. Other CORBA implementations may use different file names.To aid migration omniidl from other implementations, omniidl has options tooverride the default output file names. See section 5.2 for details.
If you are using our make environment, you don’t need to invoke omniidlexplicitly. In the example file dir.mk, we have the following line:
CORBA_INTERFACES = echo



2.4. OBJECT REFERENCES AND SERVANTS 9
That is all we need to instruct the build system to generate the stubs. You won’tfind the stubs in your working directory because all stubs are written into the
stub directory at the top level of your build tree.The full arguments to omniidl are detailed in chapter 5.

2.4 Object References and Servants

We contact a CORBA object through an object reference. The actual implemen-tation of a CORBA object is termed a servant.Object references and servants are quite separate entities, and it is impor-tant not to confuse the two. Client code deals purely with object references,so there can be no confusion; object implementation code must deal with bothobject references and servants. omniORB uses distinct C++ types for objectreferences and servants, so the C++ compiler will complain if you use a servantwhen an object reference is expected, or vice-versa.

2.5 A quick look at the C++ mapping

The C++ stubs conform to the standard mapping defined in the CORBA speci-fication [OMG03]. Sadly, since it pre-dates the C++ standard library, the C++language mapping is quite hard to use, especially because it has complex mem-ory management rules.The best way to understand the mapping is to read either the specificationor, better, a book about using CORBA from C++. Reading the code generatedby omniidl is hard-going, and it is difficult to distinguish the parts you need toknow from the implementation details.
2.5.1 Mapping overview

For interface Echo, omniidl generates four things of note:
• class Echo, containing static functions and type definitions
• Echo_ptr, an object reference type with pointer semantics
• Echo_var, a memory management helper for Echo_ptr
• class POA_Echo, the server-side skeleton class

2.5.2 Interface scope type

A C++ class Echo is defined to hold a number of static functions and type defi-nitions. It looks like this:



10 CHAPTER 2. THE BASICS

class Echo {
public:
typedef Echo_ptr _ptr_type;
typedef Echo_var _var_type;

static _ptr_type _duplicate(_ptr_type);
static _ptr_type _narrow(CORBA::Object_ptr);
static _ptr_type _nil();

};

The _ptr_type and _var_type typedefs are there to facilitate template pro-gramming. The static functions are described below.

2.5.3 Object reference pointer type

For interface Echo, the mapping defines the object reference type Echo_ptrwhich has pointer semantics. The _ptr type provides access to the interface’soperations. The concrete type of an object reference is opaque, i.e. you mustnot make any assumptions about how an object reference is implemented. Youcan imagine it looks something like this:
class private_class : public some_base_class {
char* echoString(const char* mesg);

};

typedef something Echo_ptr;

To use an object reference, you use the arrow operator ‘->’ to invoke itsoperations, but you must not use it as a C++ pointer in any other respect. It isnon-compliant to convert it to void*, perform arithmetic or relational operationsincluding testing for equality using operator==.
In some CORBA implementations, Echo_ptr is a typedef to Echo*. In omni-ORB, it is not—the object reference type is distinct from class Echo.

2.5.3.1 Nil object reference

Object references can be nil. To obtain a nil object reference for interface Echo,call Echo::_nil(). To test if an object reference is nil, use CORBA::_is_nil():
CORBA::Boolean true_result = CORBA::is_nil(Echo::_nil());

Echo::_nil() is the only compliant way to obtain a nil Echo reference, and
CORBA::is_nil() is the only compliant way to check if an object reference isnil. You should not use the equality operator==. Many C++ ORBs use the nullpointer to represent a nil object reference, but omniORB does not.



2.5. A QUICK LOOK AT THE C++ MAPPING 11
2.5.3.2 Object reference lifecycle

Object references are reference counted. That is, the opaque C++ objects on theclient side that implement Echo_ptr are reference counted, so they are deletedwhen the count goes to zero. The lifetime of an object reference has no bearingat all on the lifetime of the CORBA object to which it is a reference—when anobject reference is deleted, it has no effect on the object in the server.Reference counting for Echo object references is performed with Echo::
_duplicate() and CORBA::release().The _duplicate() function returns a new object reference of the Echo inter-face. The new object reference can be used interchangeably with the old objectreference to perform an operation on the same object.To indicate that an object reference will no longer be accessed, you must callthe CORBA::release() operation. Its signature is as follows:

namespace CORBA {
void release(CORBA::Object_ptr obj);
... // other methods

};

Once you have called CORBA::release() on an object reference, you may nolonger use that reference. This is because the associated resources may havebeen deallocated. Remember that we are referring to the resources associatedwith the object reference and not the servant object. Servant objects are notaffected by the lifetimes of object references. In particular, servants are notdeleted when all references to them have been released—CORBA does not per-form distributed garbage collection.Nil object references are not reference counted, so there is no need to call
_duplicate() and release() with them, although it does no harm.Since object references must be released explicitly, their usage is prone toerror and can lead to memory leaks or invalid memory accesses. The mappingdefines the object reference variable type Echo_var to make life somewhat eas-ier.The Echo_var is more convenient to use because it automatically releases itsobject reference when it goes out of scope or when assigned a new object refer-ence. For many operations, mixing data of type Echo_var and Echo_ptr is pos-sible without any explicit operations or casting. For instance, the echoString()operation can be called using the arrow (‘->’) on a Echo_var, as one can do witha Echo_ptr.The usage of Echo_var is illustrated below:

Echo_var a;
Echo_ptr p = ... // somehow obtain an object reference

a = p; // a assumes ownership of p, must not use p any more



12 CHAPTER 2. THE BASICS

Echo_var b = a; // implicit _duplicate

p = ... // somehow obtain another object reference

a = Echo::_duplicate(p); // release old object reference
// a now holds a copy of p.

The mappings of many other IDL data types include _var types with similarsemantics.
2.5.3.3 Object reference inheritance

All CORBA objects inherit from the generic object CORBA::Object. CORBA::
Object_ptr is the object reference type for base CORBA::Object. Object ref-erences can be implicitly widened to base interface types, so this is valid:

Echo_ptr echo_ref = // get reference from somewhere
CORBA::Object_ptr base_ref = echo_ref; // widen

An object reference such as Echo_ptr can be used in places where a CORBA::
Object_ptr is expected. Conversely, the Echo::_narrow() function takes anargument of type CORBA::Object_ptr and returns a new object reference ofthe Echo interface. If the actual (runtime) type of the argument object refer-ence can be narrowed to Echo_ptr, _narrow() will return a valid object ref-erence. Otherwise it will return a nil object reference. Note that _narrow()performs an implicit duplication of the object reference, so the result must bereleased. Note also that _narrow() may involve a remote call to check the typeof the object, so it may throw CORBA system exceptions such as TRANSIENT or
OBJECT_NOT_EXIST.
2.5.3.4 Object reference equivalence

As described above, the equality operator== should not be used on object ref-erences. To test if two object references are equivalent, the member function
_is_equivalent() of the generic object CORBA::Object can be used. Here isan example of its usage:

Echo_ptr a;
... // initialise a to a valid object reference
Echo_ptr b = a;
CORBA::Boolean true_result = a->_is_equivalent(a);
// Note: the above call is guaranteed to be true

_is_equivalent() does not contact the object to check for equivalence—ituses purely local knowledge, meaning that it is possible to construct situationsin which two object references refer to the same object, but _is_equivalent()



2.6. WRITING THE SERVANT IMPLEMENTATION 13
does not consider them equivalent. If you need a strong sense of object identity,you must implement it with explicit IDL operations.
2.5.4 Servant Object Implementation

For each object interface, a skeleton class is generated. In our example, the POAspecification says that the skeleton class for interface Echo is named POA_Echo.A servant implementation can be written by creating an implementation classthat derives from the skeleton class.The skeleton class POA_Echo is defined in echo.hh. The relevant section ofthe code is reproduced below.
class POA_Echo :
public virtual PortableServer::ServantBase

{
public:
Echo_ptr _this();

virtual char * echoString(const char* mesg) = 0;
};

The code fragment shows the only member functions that can be used in theobject implementation code. Other member functions are generated for internaluse only. As with the code generated for object references, other POA-basedORBs will generate code which looks different, but is functionally equivalent tothis.
echoString()It is through this abstract function that an implementation class providesthe implementation of the echoString() operation. Notice that its signa-ture is the same as the echoString() function that can be invoked via the

Echo_ptr object reference. This will be the case most of the time, but ob-ject reference operations for certain parameter types use special helperclasses to facilitate correct memory management.
_this()The _this() function returns an object reference for the target object,provided the POA policies permit it. The returned value must be deallo-cated via CORBA::release(). See section 2.8 for an example of how thisfunction is used.
2.6 Writing the servant implementation

You define a class to provide the servant implementation. There is little con-straint on how you design your implementation class except that it has to inherit



14 CHAPTER 2. THE BASICS

from the skeleton class1 and to implement all the abstract functions defined inthe skeleton class. Each of these abstract functions corresponds to an opera-tion of the interface. They are the hooks for the ORB to perform upcalls to yourimplementation. Here is a simple implementation of the Echo object.
class Echo_i : public POA_Echo
{
public:
inline Echo_i() {}
virtual ~Echo_i() {}
virtual char* echoString(const char* mesg);

};

char* Echo_i::echoString(const char* mesg)
{
return CORBA::string_dup(mesg);

}

There are four points to note here:
Storage ResponsibilitiesString, which is used both as an in argument and the return value of

echoString(), is a variable sized data type. Other examples of variablesized data types include sequences, type ‘any’, etc. For these data types,you must be clear about whose responsibility it is to allocate and releasethe associated storage. As a rule of thumb, the client (or the caller to theimplementation functions) owns the storage of all in arguments, the ob-ject implementation (or the callee) must copy the data if it wants to retaina copy. For out arguments and return values, the object implementationallocates the storage and passes the ownership to the client. The clientmust release the storage when the variables will no longer be used. Fordetails, see the C++ mapping specification.
Multi-threadingAs omniORB is fully multithreaded, multiple threadsmay perform the sameupcall to your implementation concurrently. It is up to your implementa-tion to synchronise the threads’ accesses to shared data. In our simpleexample, we have no shared data to protect so no thread synchronisationis necessary.

Alternatively, you can create a POA which has the SINGLE_THREAD_MODELThread Policy. This guarantees that all calls to that POA are processedsequentially.
1Rather than deriving from the skeleton class, an alternative is to use a tie template, describedin section 2.11.



2.7. WRITING THE CLIENT 15
Reference CountingAll servant objects are reference counted. The base PortableServer::

ServantBase class from which all servant skeleton classes derive definesmember functions named _add_ref() and _remove_ref()2. The referencecounting means that an Echo_i instance will be deleted when no morereferences to it are held by application code or the POA itself. Note thatthis is totally separate from the reference counting which is associatedwith object references—a servant object is never deleted due to a CORBAobject reference being released.
InstantiationServants are usually instantiated on the heap, i.e. using the new operator.However, they can also be created on the stack as automatic variables. Ifyou do that, it is vital to make sure that the servant has been deactivated,and thus released by the POA, before the variable goes out of scope and isdestroyed.

2.7 Writing the client

Here is an example of how an Echo_ptr object reference is used.
1 void
2 hello(CORBA::Object_ptr obj)
3 {
4 Echo_var e = Echo::_narrow(obj);
5
6 if (CORBA::is_nil(e)) {
7 cerr << "cannot invoke on a nil object reference."
8 << endl;
9 return;
10 }
11
12 CORBA::String_var src = (const char*) "Hello!";
13 CORBA::String_var dest;
14
15 dest = e->echoString(src);
16
17 cout << "I said,\"" << src << "\"."
18 << " The Object said,\"" << dest <<"\"" << endl;
19 }

2In the previous 1.0 version of the C++ mapping, servant reference counting was optional,chosen by inheriting from a mixin class named RefCountServantBase. That has been deprecatedin the 1.1 version of the C++ mapping, but the class is still available as an empty struct, soexisting code that inherits from RefCountServantBase will continue to work.



16 CHAPTER 2. THE BASICS

The hello() function accepts a generic object reference. The object refer-ence (obj) is narrowed to Echo_ptr. If the object reference returned by Echo::
_narrow() is not nil, the operation echoString() is invoked. Finally, both theargument to and the return value of echoString() are printed to cout.The example also illustrates how T_var types are used. As was explainedin the previous section, T_var types take care of storage allocation and releaseautomatically when variables are reassigned or when the variables go out ofscope.In line 4, the variable e takes over the storage responsibility of the objectreference returned by Echo::_narrow(). The object reference is released bythe destructor of e. It is called automatically when the function returns. Lines 6and 15 show how a Echo_var variable is used. As explained earlier, the Echo_vartype can be used interchangeably with the Echo_ptr type.The argument and the return value of echoString() are stored in CORBA::
String_var variables src and dest respectively. The strings managed by thevariables are deallocated by the destructor of CORBA::String_var. It is calledautomatically when the variable goes out of scope (as the function returns). Line15 shows how CORBA::String_var variables are used. They can be used in placeof a string (for which the mapping is char*)3. As used in line 12, assigning aconstant string (const char*) to a CORBA::String_var causes the string to becopied. On the other hand, assigning a char* to a CORBA::String_var, as usedin line 15, causes the latter to assume the ownership of the string4.Under the C++ mapping, T_var types are provided for all the non-basic datatypes. One should use automatic variables whenever possible both to avoidmemory leaks and to maximise performance. However, when one has to allo-cate data items on the heap, it is a good practice to use the T_var types tomanage the heap storage.

2.8 Example 1 — Colocated Client and Servant

Having introduced the client and the object implementation, we can now de-scribe how to link up the two via the ORB and POA. In this section, we describean example in which both the client and the object implementation are in thesame address space. In the next two sections, we shall describe the case wherethe two are in different address spaces.The code for this example is reproduced below:
1 int
2 main(int argc, char **argv)
3 {

3A conversion operator of CORBA::String_var converts a CORBA::String_var to a char*.4Please refer to the C++ mapping specification for details of the String_var mapping.



2.8. EXAMPLE 1 — COLOCATED CLIENT AND SERVANT 17
4 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv, "omniORB4");
5
6 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
7 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
8
9 PortableServer::Servant_var<Echo_i> myecho = new Echo_i();
10 PortableServer::ObjectId_var myechoid = poa->activate_object(myecho);
11
12 Echo_var myechoref = myecho->_this();
13
14 PortableServer::POAManager_var pman = poa->the_POAManager();
15 pman->activate();
16
17 hello(myechoref);
18
19 orb->destroy();
20 return 0;
21 }

The example illustrates several important interactions among the ORB, thePOA, the servant, and the client. Here are the details:
2.8.1 ORB initialisation

Line 4The ORB is initialised by calling the CORBA::ORB_init() function. Thefunction uses the optional 3rd argument to determine which ORB shouldbe returned. Unless you are using omniORB specific features, it is usuallybest to leave it out, and get the default ORB. To explicitly ask for omniORB4.x, this argument must be ‘omniORB4’5.
CORBA::ORB_init() takes the list of command line arguments and pro-cesses any that start ‘-ORB’. It removes these arguments from the list, soapplication code does not have to deal with them.
If any error occurs during ORB initialisation, such as invalid ORB argu-ments, or an invalid configuration file, the CORBA::INITIALIZE system ex-ception is raised.

2.8.2 Obtaining the Root POA

Lines 6–7To activate our servant object andmake it available to clients, wemust reg-ister it with a POA. In this example, we use the Root POA, rather than cre-
5For backwards compatibility, the ORB identifiers ‘omniORB2’ and ‘omniORB3’ are also ac-cepted.



18 CHAPTER 2. THE BASICS

ating any child POAs. The Root POA is found with orb->resolve_initial_
references(), which returns a plain CORBA::Object. In line 7, we narrowthe reference to the right type for a POA.
A POA’s behaviour is governed by its policies. The Root POA has suitablepolicies for many simple servers, and closely matches the ‘policies’ used byomniORB 2’s BOA. See Chapter 11 of the CORBA 2.6 specification[OMG01]for details of all the POA policies which are available.

2.8.3 Object initialisation

Line 9An instance of the Echo servant is initialised using the new operator. The
PortableServer::Servant_var<> template automatically is analogous tothe T_var types generated by the IDL compiler. It releases our referenceto the servant when it goes out of scope.

Line 10The servant object is activated in the Root POA using poa->activate_
object(), which returns an object identifier (of type PortableServer::
ObjectId*). The object id must be passed back to various POA operations.The caller is responsible for freeing the object id, so it is assigned to a _vartype.

Line 12The object reference is obtained from the servant object by calling its
_this() method. Like all object references, the return value of _this()must be released by CORBA::release() when it is no longer needed. Inthis case, we assign it to a _var type, so the release is implicit at the endof the function.
One of the important characteristics of an object reference is that it iscompletely location transparent. A client can invoke on the object usingits object reference without any need to know whether the servant objectis colocated in the same address space or is in a different address space.
In the case of colocated client and servant, omniORB is able to short-circuitthe client calls so they do not involve IIOP. The calls still go through thePOA, however, so the various POA policies affect local calls in the sameway as remote ones. This optimisation is applicable not only to object ref-erences returned by _this(), but to any object references that are passedaround within the same address space or received from other addressspaces via remote calls.



2.9. EXAMPLE 2 — DIFFERENT ADDRESS SPACES 19
2.8.4 Activating the POA

Lines 15–16POAs are initially in the holding state, meaning that incoming requests areblocked. Lines 15 and 16 acquire a reference to the POA’s POA manager,and use it to put the POA into the active state. Incoming requests arenow served. Failing to activate the POA is one of the most common
programming mistakes. If your program appears deadlocked, make
sure you activated the POA!

2.8.5 Performing a call

Line 18At long last, we can call hello() with this object reference. The argumentis widened implicitly to the generic object reference CORBA::Object_ptr.

2.8.6 ORB destruction

Line 20Shutdown the ORB permanently. This call causes the ORB to release all itsresources, e.g. internal threads, and also to deactivate any servant objectswhich are currently active. When it deactivates the Echo_i instance, theservant’s reference count drops to zero, so the servant is deleted.
This call is particularly important when writing a CORBA DLL on WindowsNT that is to be used from ActiveX. If this call is absent, the applicationwill hang when the CORBA DLL is unloaded.

2.9 Example 2 — Different Address Spaces

In this example, the client and the object implementation reside in two differentaddress spaces. The code of this example is almost the same as the previousexample. The only difference is the extra work which needs to be done to passthe object reference from the object implementation to the client.
The simplest (and quite primitive) way to pass an object reference betweentwo address spaces is to produce a stringified version of the object referenceand to pass this string to the client as a command-line argument. The string isthen converted by the client into a proper object reference. This method is usedin this example. In the next example, we shall introduce a better way of passingthe object reference using the CORBA Naming Service.



20 CHAPTER 2. THE BASICS

2.9.1 Making a Stringified Object Reference

The main() function of the server side is reproduced below. The full listing(eg2_impl.cc) can be found at the end of this chapter.
1 int main(int argc, char** argv)
2 {
3 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
4
5 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
6 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
7
8 PortableServer::Servant_var<Echo_i> myecho = new Echo_i();
9
10 PortableServer::ObjectId_var myechoid = poa->activate_object(myecho);
11
12 obj = myecho->_this();
13 CORBA::String_var sior(orb->object_to_string(obj));
14 cerr << sior << endl;
15
16 PortableServer::POAManager_var pman = poa->the_POAManager();
17 pman->activate();
18
19 orb->run();
20 orb->destroy();
21 return 0;
22 }

The stringified object reference is obtained by calling the ORB’s object_to_
string() function (line 13). This results in a string starting with the signature‘IOR:’ and followed by quite a lot of hexadecimal digits. All CORBA compliantORBs are able to convert the string into its internal representation of a so-calledInteroperable Object Reference (IOR). The IOR contains the location informa-tion and a key to uniquely identify the object implementation in its own addressspace. From the IOR, an object reference can be constructed.
2.9.2 Client: Using a Stringified Object Reference

The stringified object reference is passed to the client as a command-line argu-ment. The client uses the ORB’s string_to_object() function to convert thestring into a generic object reference (CORBA::Object_ptr). The relevant sec-tion of the code is reproduced below. The full listing (eg2_clt.cc) can be foundat the end of this chapter.
try {
CORBA::Object_var obj = orb->string_to_object(argv[1]);
hello(obj);



2.9. EXAMPLE 2 — DIFFERENT ADDRESS SPACES 21
}
catch (CORBA::TRANSIENT&) {
... // code to handle transient exception...

}

2.9.3 Catching System Exceptions

When omniORB detects an error condition, it may raise a system exception. TheCORBA specification defines a series of exceptions covering most of the errorconditions that an ORB may encounter. The client may choose to catch theseexceptions and recover from the error condition6. For instance, the code frag-ment, shown in section 2.9.2, catches the TRANSIENT system exception whichindicates that the object could not be contacted at the time of the call, usuallymeaning the server is not running.All system exceptions inherit from CORBA::SystemException. Unless youhave a truly ancient C++ compiler, a single catch of CORBA::SystemExceptionwill catch all the different system exceptions.
2.9.4 Lifetime of a CORBA object

CORBA objects are either transient or persistent. The majority are transient,meaning that the lifetime of the CORBA object (as contacted through an objectreference) is the same as the lifetime of its servant object. Persistent objects canlive beyond the destruction of their servant object, the POA they were createdin, and even their process. Persistent objects are, of course, only contactablewhen their associated server processes are running, and their servants are ac-tive or can be activated by their POA with a servant manager7. A reference toa persistent object can be published, and will remain valid even if the serverprocess is restarted.To support persistent objects, the servants must be activated in their POAwith the same object identifier each time. Also, the server must be configuredwith the same endpoint details so it is contactable in the same way as previousinvocations. See section 6.6 for details.A POA’s Lifespan Policy determines whether objects created within it aretransient or persistent. The Root POA has the TRANSIENT policy.An alternative to creating persistent objects is to register object referencesin a naming service and bind them to fixed path names. Clients can bind to theobject implementations at run time by asking the naming service to resolve the
6If a system exception is not caught, the C++ runtime will call the terminate() function. Thisfunction is defaulted to abort the whole process and on some systems will cause a core file to beproduced.7The POA itself can be activated on demand with an adapter activator.



22 CHAPTER 2. THE BASICS

path names to the object references. CORBA defines a standard naming service,which is a component of the Common Object Services (COS) [OMG98], that canbe used for this purpose. The next section describes an example of how to usethe COS Naming Service.

2.10 Example 3 — Using the Naming Service

In this example, the object implementation uses the Naming Service [OMG98]to pass on the object reference to the client. This method is often more practicalthan using stringified object references. The full listing of the object implemen-tation (eg3_impl.cc) and the client (eg3_clt.cc) can be found at the end of thischapter.The names used by the Naming service consist of a sequence of name com-
ponents. Each name component has an id and a kind field, both of which arestrings. All name components except the last one are bound to a naming context.A naming context is analogous to a directory in a filing system: it can containnames of object references or other naming contexts. The last name componentis bound to an object reference.Sequences of name components can be represented as a flat string, using ‘.’to separate the id and kind fields, and ‘/’ to separate name components from eachother8. In our example, the Echo object reference is bound to the stringifiedname ‘test.my_context/Echo.Object’.The kind field is intended to describe the name in a syntax-independent way.The naming service does not interpret, assign, or manage these values. How-ever, both the name and the kind attribute must match for a name lookup tosucceed. In this example, the kind values for test and Echo are chosen to be‘my_context’ and ‘Object’ respectively. This is an arbitrary choice as there isno standardised set of kind values.
2.10.1 Obtaining the Root Context Object Reference

The initial contact with the Naming Service can be established via the root con-text. The object reference to the root context is provided by the ORB and can beobtained by calling resolve_initial_references(). The following code frag-ment shows how it is used:
CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv);
CORBA::Object_var obj = orb->resolve_initial_references("NameService");

8There are escaping rules to cope with id and kind fields which contain ‘.’ and ‘/’ characters.See chapter 7 of this manual, and chapter 3 of the CORBA services specification, as updated forthe Interoperable Naming Service [OMG00].



2.11. EXAMPLE 4 — USING TIE IMPLEMENTATION TEMPLATES 23
CosNaming::NamingContext_var rootContext;
rootContext = CosNaming::NamingContext::_narrow(obj);

Remember from section 1.2, omniORB constructs its internal list of initialreferences at initialisation time using the information provided in the configu-ration file omniORB.cfg, or given on the command line. If this file is not present,the internal list will be empty and resolve_initial_references() will raise a
CORBA::ORB::InvalidName exception.
2.10.2 The Naming Service Interface

It is beyond the scope of this chapter to describe in detail the Naming Serviceinterface. You should consult the CORBA services specification [OMG98] (chap-ter 3). The code listed in eg3_impl.cc and eg3_clt.cc are good examples ofhow the service can be used.

2.11 Example 4—Using tie implementation templates

omniORB supports tie implementation templates as an alternative way of pro-viding servant classes. If you use the -Wbtp option to omniidl, it generates anextra template class for each interface. This template class can be used to tie aC++ class to the skeleton class of the interface.The source code in eg3_tieimpl.cc at the end of this chapter illustrates howthe template class can be used. The code is almost identical to eg3_impl.ccwithonly a few changes.Firstly, the servant class Echo_i does not inherit from any skeleton classes.This is the main benefit of using the template class because there are applica-tions in which it is difficult to require every servant class to derive from CORBAclasses.Secondly, the instantiation of a CORBA object now involves creating an in-stance of the implementation class and an instance of the template. Here is therelevant code fragment:
class Echo_i { ... };

Echo_i *myimpl = new Echo_i();
POA_Echo_tie<Echo_i> myecho(myimpl);

PortableServer::ObjectId_var myechoid = poa->activate_object(&myecho);

For interface Echo, the name of its tie implementation template is POA_Echo_
tie. The template parameter is the servant class that contains an implementa-tion of each of the operations defined in the interface. As used above, the tietemplate takes ownership of the Echo_i instance, and deletes it when the tie



24 CHAPTER 2. THE BASICS

object goes out of scope. The tie constructor has an optional boolean argument(defaulted to true) which indicates whether or not it should delete the servantobject. For full details of using tie templates, see the CORBA C++ mappingspecification.



2.12. SOURCE LISTINGS 25
2.12 Source Listings

2.12.1 eg1.cc

// eg1.cc - This is the source code of example 1 used in Chapter 2
// "The Basics" of the omniORB user guide.
//
// In this example, both the object implementation and the
// client are in the same process.
//
// Usage: eg1
//

#include <echo.hh>

#ifdef HAVE_STD
# include <iostream>

using namespace std;
#else
# include <iostream.h>
#endif

// This is the object implementation.

class Echo_i : public POA_Echo
{
public:
inline Echo_i() {}
virtual ~Echo_i() {}
virtual char* echoString(const char* mesg);

};

char* Echo_i::echoString(const char* mesg)
{
// Memory management rules say we must return a newly allocated
// string.
return CORBA::string_dup(mesg);

}

//////////////////////////////////////////////////////////////////////

// This function acts as a client to the object.

static void hello(Echo_ptr e)
{



26 CHAPTER 2. THE BASICS

if( CORBA::is_nil(e) ) {
cerr << "hello: The object reference is nil!" << endl;
return;

}

CORBA::String_var src = (const char*) "Hello!";
// String literals are (char*) rather than (const char*) on some
// old compilers. Thus it is essential to cast to (const char*)
// here to ensure that the string is copied, so that the
// CORBA::String_var does not attempt to ’delete’ the string
// literal.

CORBA::String_var dest = e->echoString(src);

cout << "I said, \"" << (char*)src << "\"." << endl
<< "The Echo object replied, \"" << (char*)dest <<"\"." << endl;

}

//////////////////////////////////////////////////////////////////////

int main(int argc, char** argv)
{
try {
// Initialise the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Obtain a reference to the root POA.
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

// We allocate the servant (implementation object) on the heap.
// The servant is reference counted. We start out holding a
// reference, and when the object is activated, the POA holds
// another reference. The PortableServer::Servant_var<> template
// automatically releases our reference when it goes out of scope.
PortableServer::Servant_var<Echo_i> myecho = new Echo_i();

// Activate the object. This tells the POA that this object is
// ready to accept requests.
PortableServer::ObjectId_var myechoid = poa->activate_object(myecho);

// Obtain a reference to the object.
Echo_var myechoref = myecho->_this();

// Obtain a POAManager, and tell the POA to start accepting
// requests on its objects.
PortableServer::POAManager_var pman = poa->the_POAManager();



2.12. SOURCE LISTINGS 27
pman->activate();

// Do the client-side call.
hello(myechoref);

// Clean up all the resources.
orb->destroy();

}
catch (CORBA::SystemException& ex) {
cerr << "Caught CORBA::" << ex._name() << endl;

}
catch (CORBA::Exception& ex) {
cerr << "Caught CORBA::Exception: " << ex._name() << endl;

}
return 0;

}



28 CHAPTER 2. THE BASICS

2.12.2 eg2_impl.cc

// eg2_impl.cc - This is the source code of example 2 used in Chapter 2
// "The Basics" of the omniORB user guide.
//
// This is the object implementation.
//
// Usage: eg2_impl
//
// On startup, the object reference is printed to cout as a
// stringified IOR. This string should be used as the argument to
// eg2_clt.
//

#include <echo.hh>

#ifdef HAVE_STD
# include <iostream>

using namespace std;
#else
# include <iostream.h>
#endif

class Echo_i : public POA_Echo
{
public:
inline Echo_i() {}
virtual ~Echo_i() {}
virtual char* echoString(const char* mesg);

};

char* Echo_i::echoString(const char* mesg)
{
cout << "Upcall: " << mesg << endl;
return CORBA::string_dup(mesg);

}

//////////////////////////////////////////////////////////////////////

int main(int argc, char** argv)
{
try {
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);



2.12. SOURCE LISTINGS 29

PortableServer::Servant_var<Echo_i> myecho = new Echo_i();

PortableServer::ObjectId_var myechoid = poa->activate_object(myecho);

// Obtain a reference to the object, and print it out as a
// stringified IOR.
obj = myecho->_this();
CORBA::String_var sior(orb->object_to_string(obj));
cout << sior << endl;

PortableServer::POAManager_var pman = poa->the_POAManager();
pman->activate();

// Block until the ORB is shut down.
orb->run();

}
catch (CORBA::SystemException& ex) {
cerr << "Caught CORBA::" << ex._name() << endl;

}
catch (CORBA::Exception& ex) {
cerr << "Caught CORBA::Exception: " << ex._name() << endl;

}
return 0;

}



30 CHAPTER 2. THE BASICS

2.12.3 eg2_clt.cc

// eg2_clt.cc - This is the source code of example 2 used in Chapter 2
// "The Basics" of the omniORB user guide.
//
// This is the client. The object reference is given as a
// stringified IOR on the command line.
//
// Usage: eg2_clt <object reference>
//

#include <echo.hh>

#ifdef HAVE_STD
# include <iostream>

using namespace std;
#else
# include <iostream.h>
#endif

static void hello(Echo_ptr e)
{
CORBA::String_var src = (const char*) "Hello!";

CORBA::String_var dest = e->echoString(src);

cout << "I said, \"" << (char*)src << "\"." << endl
<< "The Echo object replied, \"" << (char*)dest <<"\"." << endl;

}

//////////////////////////////////////////////////////////////////////

int main(int argc, char** argv)
{
try {
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

if (argc != 2) {
cerr << "usage: eg2_clt <object reference>" << endl;
return 1;

}

CORBA::Object_var obj = orb->string_to_object(argv[1]);

Echo_var echoref = Echo::_narrow(obj);



2.12. SOURCE LISTINGS 31
if (CORBA::is_nil(echoref)) {
cerr << "Can’t narrow reference to type Echo (or it was nil)." << endl;
return 1;

}

for (CORBA::ULong count=0; count<10; count++)
hello(echoref);

orb->destroy();
}
catch (CORBA::TRANSIENT&) {
cerr << "Caught system exception TRANSIENT -- unable to contact the "

<< "server." << endl;
}
catch (CORBA::SystemException& ex) {
cerr << "Caught a CORBA::" << ex._name() << endl;

}
catch (CORBA::Exception& ex) {
cerr << "Caught CORBA::Exception: " << ex._name() << endl;

}
return 0;

}



32 CHAPTER 2. THE BASICS

2.12.4 eg3_impl.cc

// eg3_impl.cc - This is the source code of example 3 used in Chapter 2
// "The Basics" of the omniORB user guide.
//
// This is the object implementation.
//
// Usage: eg3_impl
//
// On startup, the object reference is registered with the
// COS naming service. The client uses the naming service to
// locate this object.
//
// The name which the object is bound to is as follows:
// root [context]
// |
// test [context] kind [my_context]
// |
// Echo [object] kind [Object]
//

#include <echo.hh>

#ifdef HAVE_STD
# include <iostream>

using namespace std;
#else
# include <iostream.h>
#endif

static CORBA::Boolean bindObjectToName(CORBA::ORB_ptr, CORBA::Object_ptr);

class Echo_i : public POA_Echo
{
public:
inline Echo_i() {}
virtual ~Echo_i() {}
virtual char* echoString(const char* mesg);

};

char* Echo_i::echoString(const char* mesg)
{
return CORBA::string_dup(mesg);

}



2.12. SOURCE LISTINGS 33
//////////////////////////////////////////////////////////////////////

int
main(int argc, char **argv)
{
try {
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

PortableServer::Servant_var<Echo_i> myecho = new Echo_i();

PortableServer::ObjectId_var myechoid = poa->activate_object(myecho);

// Obtain a reference to the object, and register it in
// the naming service.
obj = myecho->_this();

CORBA::String_var sior(orb->object_to_string(obj));
cout << sior << endl;

if (!bindObjectToName(orb, obj))
return 1;

PortableServer::POAManager_var pman = poa->the_POAManager();
pman->activate();

orb->run();
}
catch (CORBA::SystemException& ex) {
cerr << "Caught CORBA::" << ex._name() << endl;

}
catch (CORBA::Exception& ex) {
cerr << "Caught CORBA::Exception: " << ex._name() << endl;

}
return 0;

}

//////////////////////////////////////////////////////////////////////

static CORBA::Boolean
bindObjectToName(CORBA::ORB_ptr orb, CORBA::Object_ptr objref)
{
CosNaming::NamingContext_var rootContext;

try {
// Obtain a reference to the root context of the Name service:



34 CHAPTER 2. THE BASICS

CORBA::Object_var obj = orb->resolve_initial_references("NameService");

// Narrow the reference returned.
rootContext = CosNaming::NamingContext::_narrow(obj);
if (CORBA::is_nil(rootContext)) {
cerr << "Failed to narrow the root naming context." << endl;
return 0;

}
}
catch (CORBA::NO_RESOURCES&) {
cerr << "Caught NO_RESOURCES exception. You must configure omniORB "

<< "with the location" << endl
<< "of the naming service." << endl;

return 0;
}
catch (CORBA::ORB::InvalidName&) {
// This should not happen!
cerr << "Service required is invalid [does not exist]." << endl;
return 0;

}

try {
// Bind a context called "test" to the root context:

CosNaming::Name contextName;
contextName.length(1);
contextName[0].id = (const char*) "test"; // string copied
contextName[0].kind = (const char*) "my_context"; // string copied
// Note on kind: The kind field is used to indicate the type
// of the object. This is to avoid conventions such as that used
// by files (name.type -- e.g. test.ps = postscript etc.)

CosNaming::NamingContext_var testContext;
try {
// Bind the context to root.
testContext = rootContext->bind_new_context(contextName);

}
catch(CosNaming::NamingContext::AlreadyBound& ex) {
// If the context already exists, this exception will be raised.
// In this case, just resolve the name and assign testContext
// to the object returned:
CORBA::Object_var obj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(obj);
if (CORBA::is_nil(testContext)) {
cerr << "Failed to narrow naming context." << endl;
return 0;

}



2.12. SOURCE LISTINGS 35
}

// Bind objref with name Echo to the testContext:
CosNaming::Name objectName;
objectName.length(1);
objectName[0].id = (const char*) "Echo"; // string copied
objectName[0].kind = (const char*) "Object"; // string copied

try {
testContext->bind(objectName, objref);

}
catch(CosNaming::NamingContext::AlreadyBound& ex) {
testContext->rebind(objectName, objref);

}
// Note: Using rebind() will overwrite any Object previously bound
// to /test/Echo with obj.
// Alternatively, bind() can be used, which will raise a
// CosNaming::NamingContext::AlreadyBound exception if the name
// supplied is already bound to an object.

}
catch (CORBA::TRANSIENT& ex) {
cerr << "Caught system exception TRANSIENT -- unable to contact the "

<< "naming service." << endl
<< "Make sure the naming server is running and that omniORB is "
<< "configured correctly." << endl;

return 0;
}
catch (CORBA::SystemException& ex) {
cerr << "Caught a CORBA::" << ex._name()

<< " while using the naming service." << endl;
return 0;

}
return 1;

}



36 CHAPTER 2. THE BASICS

2.12.5 eg3_clt.cc

// eg3_clt.cc - This is the source code of example 3 used in Chapter 2
// "The Basics" of the omniORB user guide.
//
// This is the client. It uses the COSS naming service
// to obtain the object reference.
//
// Usage: eg3_clt
//
//
// On startup, the client lookup the object reference from the
// COS naming service.
//
// The name which the object is bound to is as follows:
// root [context]
// |
// text [context] kind [my_context]
// |
// Echo [object] kind [Object]
//

#include <echo.hh>

#ifdef HAVE_STD
# include <iostream>

using namespace std;
#else
# include <iostream.h>
#endif

static CORBA::Object_ptr getObjectReference(CORBA::ORB_ptr orb);

static void hello(Echo_ptr e)
{
if (CORBA::is_nil(e)) {
cerr << "hello: The object reference is nil!\n" << endl;
return;

}

CORBA::String_var src = (const char*) "Hello!";

CORBA::String_var dest = e->echoString(src);

cerr << "I said, \"" << (char*)src << "\"." << endl
<< "The Echo object replied, \"" << (char*)dest <<"\"." << endl;

}



2.12. SOURCE LISTINGS 37

//////////////////////////////////////////////////////////////////////

int
main (int argc, char **argv)
{
try {
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

CORBA::Object_var obj = getObjectReference(orb);

Echo_var echoref = Echo::_narrow(obj);

for (CORBA::ULong count=0; count < 10; count++)
hello(echoref);

orb->destroy();
}
catch (CORBA::TRANSIENT&) {
cerr << "Caught system exception TRANSIENT -- unable to contact the "

<< "server." << endl;
}
catch (CORBA::SystemException& ex) {
cerr << "Caught a CORBA::" << ex._name() << endl;

}
catch (CORBA::Exception& ex) {
cerr << "Caught CORBA::Exception: " << ex._name() << endl;

}
return 0;

}

//////////////////////////////////////////////////////////////////////

static CORBA::Object_ptr
getObjectReference(CORBA::ORB_ptr orb)
{
CosNaming::NamingContext_var rootContext;

try {
// Obtain a reference to the root context of the Name service:
CORBA::Object_var obj;
obj = orb->resolve_initial_references("NameService");

// Narrow the reference returned.
rootContext = CosNaming::NamingContext::_narrow(obj);

if (CORBA::is_nil(rootContext)) {



38 CHAPTER 2. THE BASICS

cerr << "Failed to narrow the root naming context." << endl;
return CORBA::Object::_nil();

}
}
catch (CORBA::NO_RESOURCES&) {
cerr << "Caught NO_RESOURCES exception. You must configure omniORB "

<< "with the location" << endl
<< "of the naming service." << endl;

return CORBA::Object::_nil();
}
catch (CORBA::ORB::InvalidName& ex) {
// This should not happen!
cerr << "Service required is invalid [does not exist]." << endl;
return CORBA::Object::_nil();

}

// Create a name object, containing the name test/context:
CosNaming::Name name;
name.length(2);

name[0].id = (const char*) "test"; // string copied
name[0].kind = (const char*) "my_context"; // string copied
name[1].id = (const char*) "Echo";
name[1].kind = (const char*) "Object";
// Note on kind: The kind field is used to indicate the type
// of the object. This is to avoid conventions such as that used
// by files (name.type -- e.g. test.ps = postscript etc.)

try {
// Resolve the name to an object reference.
return rootContext->resolve(name);

}
catch (CosNaming::NamingContext::NotFound& ex) {
// This exception is thrown if any of the components of the
// path [contexts or the object] aren’t found:
cerr << "Context not found." << endl;

}
catch (CORBA::TRANSIENT& ex) {
cerr << "Caught system exception TRANSIENT -- unable to contact the "

<< "naming service." << endl
<< "Make sure the naming server is running and that omniORB is "
<< "configured correctly." << endl;

}
catch (CORBA::SystemException& ex) {
cerr << "Caught a CORBA::" << ex._name()

<< " while using the naming service." << endl;
}



2.12. SOURCE LISTINGS 39
return CORBA::Object::_nil();

}



40 CHAPTER 2. THE BASICS

2.12.6 eg3_tieimpl.cc

// eg3_tieimpl.cc - This example is similar to eg3_impl.cc except that
// the tie implementation skeleton is used.
//
// This is the object implementation.
//
// Usage: eg3_tieimpl
//
// On startup, the object reference is registered with the
// COS naming service. The client uses the naming service to
// locate this object.
//
// The name which the object is bound to is as follows:
// root [context]
// |
// test [context] kind [my_context]
// |
// Echo [object] kind [Object]
//

#include <echo.hh>

#ifdef HAVE_STD
# include <iostream>

using namespace std;
#else
# include <iostream.h>
#endif

static CORBA::Boolean bindObjectToName(CORBA::ORB_ptr, CORBA::Object_ptr);

// This is the object implementation. Notice that it does not inherit
// from any skeleton class, and notice that the echoString() member
// function does not have to be virtual.

class Echo_i {
public:
inline Echo_i() {}
inline ~Echo_i() {}
char* echoString(const char* mesg);

};

char* Echo_i::echoString(const char* mesg)
{



2.12. SOURCE LISTINGS 41
return CORBA::string_dup(mesg);

}

//////////////////////////////////////////////////////////////////////

int main(int argc, char** argv)
{
try {
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

// Note that the <myecho> tie object is constructed on the stack
// here. It will delete its implementation (myimpl) when it it
// itself destroyed (when it goes out of scope). It is essential
// however to ensure that such servants are not deleted whilst
// still activated.
//
// Tie objects can of course be allocated on the heap using new,
// in which case they are deleted when their reference count
// becomes zero, as with any other servant object.
Echo_i* myimpl = new Echo_i();
POA_Echo_tie<Echo_i> myecho(myimpl);

PortableServer::ObjectId_var myechoid = poa->activate_object(&myecho);

// Obtain a reference to the object, and register it in
// the naming service.
obj = myecho._this();
if (!bindObjectToName(orb, obj))
return 1;

PortableServer::POAManager_var pman = poa->the_POAManager();
pman->activate();

orb->run();
}
catch (CORBA::SystemException& ex) {
cerr << "Caught CORBA::" << ex._name() << endl;

}
catch (CORBA::Exception& ex) {
cerr << "Caught CORBA::Exception: " << ex._name() << endl;

}
return 0;

}

//////////////////////////////////////////////////////////////////////



42 CHAPTER 2. THE BASICS

static CORBA::Boolean
bindObjectToName(CORBA::ORB_ptr orb, CORBA::Object_ptr objref)
{
CosNaming::NamingContext_var rootContext;

try {
// Obtain a reference to the root context of the Name service:
CORBA::Object_var obj = orb->resolve_initial_references("NameService");

// Narrow the reference returned.
rootContext = CosNaming::NamingContext::_narrow(obj);
if (CORBA::is_nil(rootContext)) {
cerr << "Failed to narrow the root naming context." << endl;
return 0;

}
}
catch (CORBA::NO_RESOURCES&) {
cerr << "Caught NO_RESOURCES exception. You must configure omniORB "

<< "with the location" << endl
<< "of the naming service." << endl;

return 0;
}
catch (CORBA::ORB::InvalidName&) {
// This should not happen!
cerr << "Service required is invalid [does not exist]." << endl;
return 0;

}

try {
// Bind a context called "test" to the root context:

CosNaming::Name contextName;
contextName.length(1);
contextName[0].id = (const char*) "test"; // string copied
contextName[0].kind = (const char*) "my_context"; // string copied
// Note on kind: The kind field is used to indicate the type
// of the object. This is to avoid conventions such as that used
// by files (name.type -- e.g. test.ps = postscript etc.)

CosNaming::NamingContext_var testContext;
try {
// Bind the context to root.
testContext = rootContext->bind_new_context(contextName);

}
catch(CosNaming::NamingContext::AlreadyBound& ex) {
// If the context already exists, this exception will be raised.



2.12. SOURCE LISTINGS 43
// In this case, just resolve the name and assign testContext
// to the object returned:
CORBA::Object_var obj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(obj);
if (CORBA::is_nil(testContext)) {
cerr << "Failed to narrow naming context." << endl;
return 0;

}
}

// Bind objref with name Echo to the testContext:
CosNaming::Name objectName;
objectName.length(1);
objectName[0].id = (const char*) "Echo"; // string copied
objectName[0].kind = (const char*) "Object"; // string copied

try {
testContext->bind(objectName, objref);

}
catch(CosNaming::NamingContext::AlreadyBound& ex) {
testContext->rebind(objectName, objref);

}
// Note: Using rebind() will overwrite any Object previously bound
// to /test/Echo with obj.
// Alternatively, bind() can be used, which will raise a
// CosNaming::NamingContext::AlreadyBound exception if the name
// supplied is already bound to an object.

}
catch (CORBA::TRANSIENT& ex) {
cerr << "Caught system exception TRANSIENT -- unable to contact the "

<< "naming service." << endl
<< "Make sure the naming server is running and that omniORB is "
<< "configured correctly." << endl;

return 0;
}
catch (CORBA::SystemException& ex) {
cerr << "Caught a CORBA::" << ex._name()

<< " while using the naming service." << endl;
return 0;

}
return 1;

}



44 CHAPTER 2. THE BASICS



Chapter 3

C++ language mapping

Now that you are familiar with the basics, it is important to familiarise yourselfwith the standard IDL to C++ language mapping. The mapping is describedin detail in [OMG03]. If you have not done so, you should obtain a copy of thedocument and use that as the programming guide to omniORB.The specification is not an easy read. The alternative is to use one of thebooks on CORBA programming. For instance, Henning and Vinoski’s ‘AdvancedCORBA Programmingwith C++’ [HV99] includesmany example code fragmentsto illustrate how to use the C++ mapping.
3.1 omniORB 2 BOA compatibility

Before the Portable Object Adapter (POA) specification, many of the details ofhow servant objects should be implemented and registered with the systemwereunspecified, so server-side code was not portable between ORBs. The POA spec-ification rectifies that. For compatibility, omniORB 4 still supports the old omni-ORB 2.x BOA mapping, but you should always use the POA mapping for newcode. BOA code and POA code can coexist within a single program.If you use the -WbBOA option to omniidl, it will generate skeleton code with(nearly) the same interface as the old omniORB 2 BOA mapping, as well as codeto be used with the POA. Note that since the major problem with the BOA spec-ification was that server code was not portable between ORBs, it is unlikelythat omniORB’s BOA compatibility will help you much if you are moving from adifferent BOA-based ORB.The BOA compatibility permits the majority of BOA code to compile withoutdifficulty. However, there are a number of constructs which relied on omniORB2 implementation details which no longer work.
• omniORB 2 did not use distinct types for object references and servants,and often accepted a pointer to a servant when the CORBA specification

45



46 CHAPTER 3. C++ LANGUAGE MAPPING

says it should only accept an object reference. Such code will not compileunder omniORB 4.
• The reverse is true for BOA::obj_is_ready(). It now only works whenpassed a pointer to a servant object, not an object reference. The morecommonly used mechanism of calling _obj_is_ready(boa) on the servantobject still works as expected.
• It used to be the case that the skeleton class for interface I (_sk_I) wasderived from class I. This meant that the names of any types declared inthe interface were available in the scope of the skeleton class. This is nolonger true. If you have an interface:

interface I {
struct S {
long a,b;

};
S op();

};

then where before the implementation code might have been:
class I_impl : public virtual _sk_I {
S op(); // _sk_I is derived from I

};
I::S I_impl::op() {
S ret;
// ...

}

it is now necessary to fully qualify all uses of S:
class I_impl : public virtual _sk_I {
I::S op(); // _sk_I is not derived from I

};
I::S I_impl::op() {
I::S ret;
// ...

}

• The proprietary omniORB 2 LifeCycle extensions are no longer supported.All of the facilities it offered can be implemented with the POA interfaces,and the omniORB::LOCATION_FORWARD exception (see section 4.8). Codewhich used the old interfaces will have to be rewritten.



3.2. OMNIORB 3.0 COMPATIBILITY 47
3.2 omniORB 3.0 compatibility

omniORB 4 is almost completely source-code compatible with omniORB 3.0.There are two main cases where code may have to change. The first is codethat uses the omniORB API, some aspects of which have changed. The omniORBconfiguration file also has a new format. See the next chapter for details of thenew API and configuration file.The second case of code that may have to change is code using the DynamicAny interfaces. The standard changed quite significantly between CORBA 2.2and CORBA 2.3; omniORB 3.0 supported the old CORBA 2.2 interfaces; omni-ORB 4 uses the new mapping. The changes are largely syntax changes, ratherthan semantic differences.
3.3 omniORB 4.0 compatibility

omniORB 4.2 is source-code compatible with omniORB 4.0, with four exceptions:
1. As required by the 1.1 version of the CORBA C++ mapping specification,the RefCountServantBase class has been deprecated, and the referencecounting functionality moved into ServantBase. For backwards compati-bility, RefCountServantBase still exists, but is now defined as an emptystruct. Most code will continue to work unchanged, but code that ex-plicitly calls RefCountServantBase::_add_ref() or _remove_ref() willno longer compile.
2. omniORB 4.0 had an option for Any extraction semantics that was com-patible with omniORB 2.7, where ownership of extracted values was notmaintained by the Any. That option is no longer available.
3. The members of the clientSendRequest interceptor have been changed,replacing all the separate variables with a single member of type GIOP_C.All the values previously available can be accessed through the GIOP_Cinstance.
4. The C++ mapping contains Any insertion operators for sequence typesthat are passed by pointer, which cause the Any to take ownership of theinserted sequence. In omniORB 4.0 and earlier, the sequence was imme-diately marshalled into the Any’s internal buffer, and the sequence wasdeleted. In omniORB 4.1, the sequence pointer is stored by the Any, andthe sequence is deleted later when the Any is destroyed.
For most uses, this change is not visible to application code. However, ifa sequence is constructed using an application-supplied buffer with therelease flag set to false (meaning that the application continues to own



48 CHAPTER 3. C++ LANGUAGE MAPPING

the buffer), it is now important that the buffer is not deleted or modifiedwhile the Any exists, since the Any continues to refer to the buffer contents.This change means that code that worked with omniORB 4.0 may now failwith 4.1, with the Any seeing modified data or the process crashing dueto accessing deleted data. To avoid this situation, use the alternative Anyinsertion operator using a const reference, which copies the sequence.

3.4 omniORB 4.1 compatibility

omniORB 4.2 is source-code compatible with omniORB 4.1 with one exception:
1. When omniORB 4.1 and earlier detected a timeout condition, they wouldthrow the CORBA::TRANSIENT system exception. omniORB 4.2 supports the

CORBA::TIMEOUT system exception that was introduced with the CORBAMessaging specification. Application code that caught CORBA::TRANSIENTto handle timeout situations should be updated to catch CORBA::TIMEOUTinstead. Alternatively, to avoid code changes, omniORB can be configuredto throw CORBA::TRANSIENT for timeouts, by setting the throwTransient
OnTimeout parameter to 1. See section 4.4.



Chapter 4

omniORB configuration and
API

omniORB has a wide range of parameters that can be configured. They can beset in the configuration file / Windows registry, as environment variables, on thecommand line, or within a proprietary extra argument to CORBA::ORB_init().A few parameters can be configured at run time. This chapter lists all the con-figuration parameters, and how they are used.

4.1 Setting parameters

When CORBA::ORB_init() is called, the value for each configuration parameteris searched for in the following order:
1. Command line arguments
2. ORB_init() options
3. Environment variables
4. Configuration file / Windows registry
5. Built-in defaults

4.1.1 Command line arguments

Command line arguments take the form ‘-ORBparameter’, and usually expectanother argument. An example is ‘-ORBtraceLevel 10’.
49



50 CHAPTER 4. OMNIORB CONFIGURATION AND API

4.1.2 ORB_init() parameter

ORB_init()’s extra argument accepts an array of two-dimensional string arrays,like this:
const char* options[][2] = { { "traceLevel", "1" }, { 0, 0 } };
orb = CORBA::ORB_init(argc,argv,"omniORB4",options);

4.1.3 Environment variables

Environment variables consist of the parameter name prefixed with ‘ORB’. Usingbash, for example
export ORBtraceLevel=10

4.1.4 Configuration file

The best way to understand the format of the configuration file is to look at the
sample.cfg file in the omniORB distribution. Each parameter is set on a singleline like
traceLevel = 10

Some parameters can havemore than one value, in which case the parametername may be specified more than once, or you can leave it out:
InitRef = NameService=corbaname::host1.example.com

= InterfaceRepository=corbaloc::host2.example.com:1234/IfR

Command line arguments and environment variables prefix parameternames with ‘-ORB’ and ‘ORB’ respectively, but the configuration file andthe extra argument to ORB_init() do not use a prefix.

4.1.5 Windows registry

On Windows, configuration parameters can be stored in the registry, under thekey HKEY_LOCAL_MACHINE\SOFTWARE\omniORB.
The file sample.reg shows the settings that can be made. It can be editedand then imported into regedit.



4.2. TRACING OPTIONS 51
4.2 Tracing options

The following options control debugging trace output.
traceLevel default = 1

omniORB can output tracing and diagnostic messages to the standard errorstream. The following levels are defined:
level 0 critical errors onlylevel 1 informational messages onlylevel 2 configuration information and warningslevel 5 notifications when server threads are createdand communication endpoints are shutdownlevel 10 execution and exception traceslevel 25 trace each send or receive of a GIOP messagelevel 30 dump up to 128 bytes of each GIOP messagelevel 40 dump complete contents of each GIOP message

The trace level is cumulative, so at level 40, all trace messages are output.
traceExceptions default = 0

If the traceExceptions parameter is set true, all system exceptions are loggedas they are thrown, along with details about where the exception is thrown from.This parameter is enabled by default if the traceLevel is set to 10 or more.
traceInvocations default = 0

If the traceInvocations parameter is set true, all local and remote invoca-tions are logged, in addition to any logging that may have been selected with
traceLevel.
traceInvocationReturns default = 0

If the traceInvocationReturns parameter is set true, a log message is outputas an operation invocation returns. In conjunction with traceInvocations and
traceTime (described below), this provides a simple way of timing CORBA callswithin your application.
traceThreadId default = 1

If traceThreadId is set true, all trace messages are prefixed with the id of thethread outputting the message. This can be handy for making sense of multi-



52 CHAPTER 4. OMNIORB CONFIGURATION AND API

threaded code, but it adds overhead to the logging so it can be disabled.
traceTime default = 1

If traceTime is set true, all trace messages are prefixed with the time. This isuseful, but on some platforms it adds a very large overhead, so it can be turnedoff.
traceFile default =
omniORB’s tracing is normally sent to stderr. If traceFile it set, the specifiedfile name is used for trace messages.
4.2.1 Tracing API

The tracing parameters can be modified at runtime by assigning to the followingvariables
namespace omniORB {
CORBA::ULong traceLevel;
CORBA::Boolean traceExceptions;
CORBA::Boolean traceInvocations;
CORBA::Boolean traceInvocationReturns;
CORBA::Boolean traceThreadId;
CORBA::Boolean traceTime;

};

Log messages can be sent somewhere other than stderr by registering a loggingfunction which is called with the text of each log message:
namespace omniORB {
typedef void (*logFunction)(const char*);
void setLogFunction(logFunction f);

};

The log function must not make any CORBA calls, since that could lead to in-finite recursion as outputting a log message caused other log messages to begenerated, and so on.
4.3 Miscellaneous global options

These options control miscellaneous features that affect the whole ORB runtime.
dumpConfiguration default = 0

If set true, the ORB dumps the values of all configuration parameters at start-up.



4.3. MISCELLANEOUS GLOBAL OPTIONS 53
scanGranularity default = 5

As explained in chapter 6, omniORB regularly scans incoming and outgoing con-nections, so it can close unused ones. This value is the granularity in secondsat which the ORB performs its scans. A value of zero turns off the scanningaltogether.
nativeCharCodeSet default = ISO-8859-1

The native code set the application is using for char and string. See chapter 8.
nativeWCharCodeSet default = UTF-16

The native code set the application is using for wchar and wstring. See chap-ter 8.
copyValuesInLocalCalls default = 1

Determines whether valuetype parameters in local calls are copied or not. Seechapter 11.
abortOnInternalError default = 0

If this is set true, internal fatal errors will abort immediately, rather than throw-ing the omniORB::fatalException exception. This can be helpful for trackingdown bugs, since it leaves the call stack intact.
abortOnNativeException default = 0

On Windows, ‘native’ exceptions such as segmentation faults and divide by zeroappear as C++ exceptions that can be caught with catch (...). Setting thisparameter to true causes such exceptions to abort the process instead.
maxSocketSend
maxSocketRecv

On some platforms, calls to send() and recv() have a limit on the buffer size thatcan be used. These parameters set the limits in bytes that omniORB uses whensending / receiving bulk data.The default values are platform specific. It is unlikely that you will need tochange the values from the defaults.The minimum valid limit is 1KB, 1024 bytes.
socketSendBuffer default = -1 or 16384



54 CHAPTER 4. OMNIORB CONFIGURATION AND API

On Windows, there is a kernel buffer used during send operations. A bug inWindows means that if a send uses the entire kernel buffer, a select() on thesocket blocks until all the data has been acknowledged by the receiver, resultingin dreadful performance. This parameter modifies the socket send buffer fromits default (8192 bytes on Windows) to the value specified. If this parameter isset to -1, the socket send buffer is left at the system default.
On Windows, the default value of this parameter is 16384 bytes; on all otherplatforms the default is -1.

validateUTF8 default = 0

When transmitting a string that is supposed to be UTF-8, omniORB usuallypasses it directly, assuming that it is valid. With this parameter set true, omni-ORB checks that all UTF-8 strings are valid, and throws DATA_CONVERSION ifnot.

4.4 Client side options

These options control aspects of client-side behaviour.
InitRef default = none

Specify objects available from ORB::resolve_initial_references(). The ar-guments take the form <key>=<uri>, where key is the name given to resolve_
initial_references() and uri is a valid CORBA object reference URI, as de-tailed in chapter 7.
DefaultInitRef default = none

Specify the default URI prefix for resolve_initial_references(), as explainedin chapter 7.
clientTransportRule default = * unix,tcp,ssl

Used to specify the way the client contacts a server, depending on the server’saddress. See section 6.7.1 for details.
clientCallTimeOutPeriod default = 0

Call timeout in milliseconds for the client side. If a call takes longer than thespecified number of milliseconds, the ORB closes the connection to the server



4.4. CLIENT SIDE OPTIONS 55
and raises a TRANSIENT exception. A value of zero means no timeout; calls canblock for ever. See section 6.3.1 for more information about timeouts.
Note: omniORB 3 had timeouts specified in seconds; omniORB 4.0 and later usemilliseconds for timeouts.
clientConnectTimeOutPeriod default = 0

The timeout that is used in the case that a new network connection is establishedto the server. A value of zero means that the normal call timeout is used. Seesection 6.3.1 for more information about timeouts.
supportPerThreadTimeOut default = 0

If this parameter is set true, timeouts can be set on a per thread basis, as wellas globally and per object. Checking per-thread storage has a noticeable per-formance impact, so it is turned off by default.
resetTimeoutOnRetries default = 0

If true, the call timeout is reset when an exception handler causes a call to beretried. If false, the timeout is not reset, and therefore applies to the call as awhole, rather than to each individual call attempt.
throwTransientOnTimeout default = 0

omniORB 4.2 supports the CORBA::TIMEOUT exception that is part of the CORBAMessaging specification. By default, that is the exception thrown when timeoutsoccur. Previous omniORB releases did not have the CORBA::TIMEOUT exception,and instead used CORBA::TRANSIENT. If this parameter is set true, omniORBfollows the old behaviour of throwing CORBA::TRANSIENTwhen a timeout occurs.
outConScanPeriod default = 120

Idle timeout in seconds for outgoing (i.e. client initiated) connections. If a con-nection has been idle for this amount of time, the ORB closes it. See section 6.5.
maxGIOPConnectionPerServer default = 5

The maximum number of concurrent connections the ORB will open to a singleserver. If multiple threads on the client call the same server, the ORB opensadditional connections to the server, up to the maximum specified by this pa-rameter. If the maximum is reached, threads are blocked until a connectionbecomes free for them to use.



56 CHAPTER 4. OMNIORB CONFIGURATION AND API

oneCallPerConnection default = 1

When this parameter is set to true (the default), the ORB will only send a singlecall on a connection at a time. If multiple client threads invoke on the sameserver, multiple connections are opened, up to the limit specified by maxGIOP
ConnectionPerServer. With this parameter set to false, the ORB will allowconcurrent calls on a single connection. This saves connection resources, but re-quires slightly more management work for both client and server. Some server-side ORBs (including omniORB versions before 4.0) serialise all incoming callson a single connection.
maxInterleavedCallsPerConnection default = 5

The maximum number of calls that can be interleaved on a connection. If moreconcurrent calls are made, they are queued.
offerBiDirectionalGIOP default = 0

If set true, the client will indicate to servers that it is willing to accept callbackson client-initiated connections using bidirectional GIOP, provided the relevantPOA policies are set. See section 6.8.
diiThrowsSysExceptions default = 0

If this is true, DII functions throw system exceptions; if it is false, systemexceptions that occur are passed through the Environment object.
verifyObjectExistsAndType default = 1

By default, omniORB uses the GIOP LOCATE_REQUEST message to verify the ex-istence of an object prior to the first invocation. In the case that the full typeof the object is not known, it instead calls the _is_a() operation to check theobject’s type. Some ORBs have bugs that mean one or other of these operationsfail. Setting this parameter false prevents omniORB from making these calls.
giopTargetAddressMode default = 0

GIOP 1.2 supports three addressing modes for contacting objects. This param-eter selects the mode that omniORB uses. A value of 0 means GIOP::KeyAddr;1 means GIOP::ProfileAddr; 2 means GIOP::ReferenceAddr.
immediateAddressSwitch default = 0



4.5. SERVER SIDE OPTIONS 57
If true, the client will immediately switch to use a new address to contact anobject after a failure. If false (the default), the current address will be retriedin certain circumstances.
bootstrapAgentHostname default = none

If set, this parameter indicates the hostname to use for look-ups using the obso-lete Sun bootstrap agent. This mechanism is superseded by the interoperablenaming service.
bootstrapAgentPort default = 900

The port number for the obsolete Sun bootstrap agent.
principal default = none

GIOP 1.0 and 1.1 have a request header field named ‘principal’, which containsa sequence of octets. It was never defined what it should mean, and its use isnow deprecated; GIOP 1.2 has no such field. Some systems (e.g. Gnome) usethe principal field as a primitive authentication scheme. This parameter sets thedata omniORB uses in the principal field. The default is an empty sequence.

4.5 Server side options

These parameters affect server-side operations.
endPoint default = giop:tcp::
endPointNoListen
endPointPublish
endPointNoPublish
endPointPublishAllIFs

These options determine the end-points the ORB should listen on, and the detailsthat should be published in IORs. See chapter 6 for details.
serverTransportRule default = * unix,tcp,ssl

Configure the rules about whether a server should accept an incoming connec-tion from a client. See section 6.7.2 for details.
serverCallTimeOutPeriod default = 0



58 CHAPTER 4. OMNIORB CONFIGURATION AND API

This timeout is used to catch the situation that the server starts receiving arequest, but the end of the request never comes. If a calls takes longer thanthe specified number of milliseconds to arrive, the ORB shuts the connection. Avalue of zero means never timeout.
inConScanPeriod default = 180

Idle timeout in seconds for incoming connections. If a connection has been idlefor this amount of time, the ORB closes it. See section 6.5.
threadPerConnectionPolicy default = 1

If true (the default), the ORB dedicates one server thread to each incomingconnection. Setting it false means the server should use a thread pool.
maxServerThreadPerConnection default = 100

If the client multiplexes several concurrent requests on a single connection,omniORB uses extra threads to service them. This parameter specifies the max-imum number of threads that are allowed to service a single connection at anyone time.
maxServerThreadPoolSize default = 100

The maximum number of threads the server will allocate to do various tasks, in-cluding dispatching calls in the thread pool mode. This number does not includethreads dispatched under the thread per connection server mode.
threadPerConnectionUpperLimit default = 10000

If the threadPerConnectionPolicy parameter is true, the ORB can automat-ically transition to thread pool mode if too many connections arrive. This pa-rameter sets the number of connections at which thread pooling is started. Thedefault of 10000 is designed to mean that it never happens.
threadPerConnectionLowerLimit default = 9000

If thread pooling was started because the number of connections hit the upperlimit, this parameter determines when thread per connection should start again.
threadPoolWatchConnection default = 1

After dispatching an upcall in thread pool mode, the thread that has just per-formed the call can watch the connection for a short time before returning to



4.5. SERVER SIDE OPTIONS 59
the pool. This leads to less thread switching for a series of calls from a singleclient, but is less fair if there are concurrent clients. The connection is watchedif the number of threads concurrently handling the connection is less than orequal to the value of this parameter. i.e. if the parameter is zero, the connectionis never watched; if it is 1, the last thread managing a connection watches it; if2, the connection is still watched if there is one other thread still in an upcallfor the connection, and so on. See section 6.4.2.
connectionWatchPeriod default = 50000

For each endpoint, the ORB allocates a thread to watch for new connections andto monitor existing connections for calls that should be handed by the threadpool. The thread blocks in select() or similar for a period, after which it re-scans the lists of connections it should watch. This parameter is specified inmicroseconds.
connectionWatchImmediate default = 0

When a thread handles an incoming call, it unmarshals the arguments thenmarks the connection as watchable by the connection watching thread, in casethe client sends a concurrent call on the same connection. If this parameter is setto the default false, the connection is not actually watched until the next con-nection watch period (determined by the connectionWatchPeriod parameter).If this parameter is set true, the connection watching thread is immediatelysignalled to watch the connection. That leads to faster interactive response toclients that multiplex calls, but adds significant overhead along the call chain.
Note that this setting has no effect on Windows, since it has no mechanismfor signalling the connection watching thread.

acceptBiDirectionalGIOP default = 0

Determines whether a server will ever accept clients’ offers of bidirectionalGIOP connections. See section 6.8.
unixTransportDirectory default = /tmp/omni-%u

(Unix platforms only). Selects the location used to store Unix domain sockets.The ‘%u’ is expanded to the user name.
unixTransportPermission default = 0777

(Unix platforms only). Determines the octal permission bits for Unix domainsockets. By default, all users can connect to a server, just as with TCP.



60 CHAPTER 4. OMNIORB CONFIGURATION AND API

supportCurrent default = 1

omniORB supports the PortableServer::Current interface to provide threadcontext information to servants. Supporting current has a small but noticeablerun-time overhead due to accessing thread specific storage, so this option allowsit to be turned off.
objectTableSize default = 0

Hash table size of the Active Object Map. If this is zero, the ORB uses a dy-namically resized open hash table. This is normally the best option, but it leadsto less predictable performance since any operation which adds or removes atable entry may trigger a resize. If set to a non-zero value, the hash table hasthe specified number of entries, and is never resized. Note that the hash tableis open, so this does not limit the number of active objects, just how efficientlythey can be located.
poaHoldRequestTimeout default = 0

If a POA is put in the HOLDING state, calls to it will be timed out after the specifiednumber of milliseconds, by raising a CORBA::TIMEOUT exception. Zero means notimeout.
poaUniquePersistentSystemIds default = 1

The POA specification requires that object ids in POAs with the PERSISTENTand SYSTEM_ID policies are unique between instantiations of the POA. Olderversions of omniORB did not comply with that, and reused object ids. With thisvalue true, the POA has the correct behaviour; with false, the POA uses theold scheme for compatibility.
idleThreadTimeout default = 10

When a thread created by omniORB becomes idle, it is kept alive for a while, incase a new thread is required. Once a thread has been idle for the number ofseconds specified in this parameter, it exits.
supportBootstrapAgent default = 0

If set true, servers support the Sun bootstrap agent protocol.



4.6. GIOP AND INTEROPERABILITY OPTIONS 61
4.5.1 Main thread selection

There is one server-side parameter that must be set with an API function, ratherthan a normal configuration parameter:
namespace omniORB {
void setMainThread();

};

POAs with the MAIN_THREAD policy dispatch calls on the ‘main’ thread. By de-fault, omniORB assumes that the thread that initialised the omnithread libraryis the ‘main’ thread. To choose a different thread, call this function from thedesired ‘main’ thread. The calling thread must have an omni_thread associatedwith it (i.e. it must have been created by omnithread, or omni_thread::create_
dummy() must have been called). If it does not, the function throws CORBA::
INITIALIZE.

Note that calls are only actually dispatched to the ‘main’ thread if ORB::run()or ORB::perform_work() is called from that thread.

4.6 GIOP and interoperability options

These options control omniORB’s use of GIOP, and cover some areas where omni-ORB can work around buggy behaviour by other ORBs.
maxGIOPVersion default = 1.2

Choose the maximum GIOP version the ORB should support. Valid values are1.0, 1.1 and 1.2.
giopMaxMsgSize default = 2097152

The largest message, in bytes, that the ORB will send or receive, to avoid re-source starvation. If the limit is exceeded, a MARSHAL exception is thrown. Thesize must be >= 8192.
strictIIOP default = 1

If true, be strict about interpretation of the IIOP specification; if false, permitsome buggy behaviour to pass.
lcdMode default = 0

If true, select ‘Lowest Common Denominator’ mode. This disables various IIOPand GIOP features that are known to cause problems with some ORBs.



62 CHAPTER 4. OMNIORB CONFIGURATION AND API

tcAliasExpand default = 0

This flag is used to indicate whether TypeCodes associated with Anys shouldhave aliases removed. This functionality is included because some ORBs willnot recognise an Any containing a TypeCode with aliases to be the same as theactual type contained in the Any. There is a performance penalty when insertinginto an Any if tcAliasExpand is set to 1.
useTypeCodeIndirections default = 1

TypeCode Indirections reduce the size of marshalled TypeCodes, and are essen-tial for recursive types, but some old ORBs do not support them. Setting thisflag to false prevents the use of indirections (and, therefore, prevents the useof recursive TypeCodes).
acceptMisalignedTcIndirections default = 0

If true, try to fix a mis-aligned indirection in a typecode. This is used to workaround a bug in some old versions of Visibroker’s Java ORB.

4.7 System Exception Handlers

By default, all system exceptions that are raised during an operation invoca-tion, with the exception of some cases of CORBA::TRANSIENT, are propagatedto the application code. Some applications may prefer to trap these exceptionswithin the proxy objects so that the application logic does not have to deal withthe error condition. For example, when a CORBA::COMM_FAILURE is received, anapplication may just want to retry the invocation until it finally succeeds. Thisapproach is useful for objects that are persistent and have idempotent opera-tions.
omniORB provides a set of functions to install exception handlers. Oncethey are installed, proxy objects will call these handlers when the associatedsystem exceptions are raised by the ORB runtime. Handlers can be installedfor CORBA::TRANSIENT, CORBA::TIMEOUT, CORBA::COMM_FAILURE and CORBA::

SystemException. This last handler covers all system exceptions other thanthe three specific ones covered by the first three handlers. An exception han-dler can be installed for individual proxy objects, or it can be installed for allproxy objects in the address space.



4.7. SYSTEM EXCEPTION HANDLERS 63
4.7.1 Minor codes

omniORB makes extensive use of exception minor codes to indicate the specificcircumstances surrounding a system exception. The file include/omniORB4/
minorCode.h contains definitions of all the minor codes used in omniORB, cov-ering codes allocated in the CORBA specification, and ones specific to omni-ORB. In compilers with namespace support, the minor code constants appear innamespace omni; otherwise they are in the global scope.Applications can use minor codes to adjust their behaviour according to thecondition, e.g.

try {
...

}
catch (CORBA::TRANSIENT& ex) {
if (ex.minor() == omni::TRANSIENT_ConnectFailed) {
// retry with a different object reference...

}
else {
// print an error message...

}
}

4.7.2 CORBA::TRANSIENT handlers

TRANSIENT exceptions can occur in many circumstances. One circumstance isas follows:
1. The client invokes on an object reference.
2. The object replies with a LOCATION_FORWARD message.
3. The client caches the new location and retries to the new location.
4. Time passes...
5. The client tries to invoke on the object again, using the cached, forwardedlocation.
6. The attempt to contact the object fails.
7. The ORB runtime resets the location cache and throws a TRANSIENT excep-tion with minor code TRANSIENT_FailedOnForwarded.
In this situation, the default TRANSIENT exception handler retries the call,using the object’s original location. If the retry results in another LOCATION_

FORWARD, to the same or a different location, and that forwarded location fails



64 CHAPTER 4. OMNIORB CONFIGURATION AND API

immediately, the TRANSIENT exception will occur again, and the pattern will re-peat. With repeated exceptions, the handler starts adding delays before retries,with exponential back-off.In all other circumstances, the default TRANSIENT handler just passes theexception on to the caller.Applications can override the default behaviour by installing their own ex-ception handler. The API to do so is summarised below:
namespace omniORB {

typedef CORBA::Boolean
(*transientExceptionHandler_t)(void* cookie,

CORBA::ULong n_retries,
const CORBA::TRANSIENT& ex);

void
installTransientExceptionHandler(void* cookie,

transientExceptionHandler_t fn);

void
installTransientExceptionHandler(CORBA::Object_ptr obj,

void* cookie,
transientExceptionHandler_t fn);

}

The overloaded installTransientExceptionHandler() function is used toinstall the exception handlers for CORBA::TRANSIENT. Two forms are available:the first form installs an exception handler for all object references except forthose which have an exception handler installed by the second form, which takesan additional argument to identify the target object reference. The argument
cookie is an opaque pointer which will be passed on by the ORB when it callsthe exception handler.An exception handler will be called by proxy objects with three arguments.The cookie is the opaque pointer registered by installTransientException
Handler(). The argument n_retries is the number of times the proxy has calledthis handler for the same invocation. The argument ex is the value of the excep-tion caught. The exception handler is expected to do whatever is appropriateand return a boolean value. If the return value is true, the proxy object retriesthe operation. If the return value is false, the original exception is propagatedinto the application code. In the case of a TRANSIENT exception due to a failedlocation forward, the exception propagated to the application is the original ex-ception that caused the TRANSIENT (e.g. a COMM_FAILURE or OBJECT_NOT_EXIST),rather than the TRANSIENT exception1.

1This is different from omniORB 4.0 and earlier, where it was the TRANSIENT exception thatwas propagated to the application.



4.7. SYSTEM EXCEPTION HANDLERS 65
The following sample code installs a simple exception handler for all objectsand for a specific object:
CORBA::Boolean my_transient_handler1(void* cookie,

CORBA::ULong retries,
const CORBA::TRANSIENT& ex)

{
cerr << "transient handler 1 called." << endl;
return true; // retry immediately.

}

CORBA::Boolean my_transient_handler2(void* cookie,
CORBA::ULong retries,
const CORBA::TRANSIENT& ex)

{
cerr << "transient handler 2 called." << endl;
return false; // do not retry.

}

static Echo_ptr myobj;

void installhandlers()
{

omniORB::installTransientExceptionHandler(0, my_transient_handler1);
// All proxy objects will call my_transient_handler1 from now on.

omniORB::installTransientExceptionHandler(myobj, 0, my_transient_handler2);
// The proxy object of myobj will call my_transient_handler2 from now on.

}

4.7.3 CORBA::TIMEOUT

When a call timeout occurs, by default the ORB throws CORBA::TIMEOUT. Thedefault behaviour of the proxy objects is to propagate this exception to the ap-plication. Applications can override the default behaviour by installing their ownexception handlers. The API to do so is summarised below:
typedef CORBA::Boolean
(*timeoutExceptionHandler_t)(void* cookie,

CORBA::ULong n_retries,
const CORBA::TIMEOUT& ex);

void
installTimeoutExceptionHandler(void* cookie,

timeoutExceptionHandler_t fn);



66 CHAPTER 4. OMNIORB CONFIGURATION AND API

void
installTimeoutExceptionHandler(CORBA::Object_ptr obj,

void* cookie,
timeoutExceptionHandler_t fn);

The functions are equivalent to their counterparts for CORBA::TRANSIENT.
omniORB version 4.1 and earlier did not have the CORBA::TIMEOUT excep-tion, and threw CORBA::TRANSIENT instead. If the throwTransientOnTimeoutconfiguration parameter is set to 1, omniORB 4.2 reverts to this behaviour, andcalls the transient exception handler instead of the timeout exception handler.
The timeout exception handler is used when a CORBA call times out. It is notcalled when an AMI poller operation throws CORBA::TIMEOUT. In that situation,the exception is always propagated to the caller.

4.7.4 CORBA::COMM_FAILURE

If the ORB has successfully contacted a server at some point, and access to itsubsequently fails (and the condition for TRANSIENT described above does notoccur), the ORB raises a CORBA::COMM_FAILURE exception.
The default behaviour of the proxy objects is to propagate this exception tothe application. Applications can override the default behaviour by installingtheir own exception handlers. The API to do so is summarised below:
typedef CORBA::Boolean
(*commFailureExceptionHandler_t)(void* cookie,

CORBA::ULong n_retries,
const CORBA::COMM_FAILURE& ex);

void
installCommFailureExceptionHandler(void* cookie,

commFailureExceptionHandler_t fn);

void
installCommFailureExceptionHandler(CORBA::Object_ptr obj,

void* cookie,
commFailureExceptionHandler_t fn);

The functions are equivalent to their counterparts for CORBA::TRANSIENT.
4.7.5 CORBA::SystemException

If a system exceptions other than TRANSIENT, TIMEOUT or COMM_FAILURE occurs,the default behaviour of the proxy objects is to propagate this exception to theapplication. Applications can override the default behaviour by installing theirown exception handlers. The API to do so is summarised below:



4.8. LOCATION FORWARDING 67
typedef CORBA::Boolean
(*systemExceptionHandler_t)(void* cookie,

CORBA::ULong n_retries,
const CORBA::SystemException& ex);

void
installSystemExceptionHandler(void* cookie,

systemExceptionHandler_t fn);

void
installSystemExceptionHandler(CORBA::Object_ptr obj,

void* cookie,
systemExceptionHandler_t fn);

The functions are equivalent to their counterparts for CORBA::TRANSIENT.

4.8 Location forwarding

Any CORBA operation invocation can return a LOCATION_FORWARD message tothe caller, indicating that it should retry the invocation on a new object refer-ence. The standard allows ServantManagers to trigger LOCATION_FORWARDs byraising the PortableServer::ForwardRequest exception, but it does not pro-vide a similar mechanism for normal servants. omniORB provides the omniORB::
LOCATION_FORWARD exception for this purpose. It can be thrown by any operationimplementation.

namespace omniORB {
class LOCATION_FORWARD {
public:
LOCATION_FORWARD(CORBA::Object_ptr objref);

};
};

The exception object consumes the object reference it is passed.



68 CHAPTER 4. OMNIORB CONFIGURATION AND API



Chapter 5

The IDL compiler

omniORB’s IDL compiler is called omniidl. It consists of a generic front-endparser written in C++, and a number of back-ends written in Python. omniidl isvery strict about IDL validity, so you may find that it reports errors in IDL whichcompiles fine with other IDL compilers.The general form of an omniidl command line is:
omniidl [options] -b<back-end> [back-end options] <file>

5.1 Common options

The following options are common to all back-ends:
-bback-end Run the specified back-end. For the C++ ORB, use -bcxx.
-Dname[=value] Define name for the preprocessor.
-Uname Undefine name for the preprocessor.
-Idir Include dir in the preprocessor search path.
-E Only run the preprocessor, sending its output to stdout.
-Ycmd Use cmd as the preprocessor, rather than the normal C preprocessor.
-N Do not run the preprocessor.
-T Use a temporary file, not a pipe, for preprocessor output.
-Wparg[,arg. . . ] Send arguments to the preprocessor.
-Wbarg[,arg. . . ] Send arguments to the back-end.
-nf Do not warn about unresolved forward declarations.
-k Keep comments after declarations, to be used by some back-ends.
-K Keep comments before declarations, to be used by some back-ends.
-Cdir Change directory to dir before writing output files.
-d Dump the parsed IDL then exit, without running a back-end.
-pdir Use dir as a path to find omniidl back-ends.
-V Print version information then exit.

69



70 CHAPTER 5. THE IDL COMPILER

-u Print usage information.
-v Verbose: trace compilation stages.

Most of these options are self explanatory, but some are not so obvious.

5.1.1 Preprocessor interactions

IDL is processed by the C preprocessor before omniidl parses it. omniidl alwaysuses the GNU C preprocessor (which it builds with the name omnicpp). The
-D, -U, and -I options are just sent to the preprocessor. Note that the currentdirectory is not on the include search path by default—use ‘-I.’ for that. The -Yoption can be used to specify a different preprocessor to omnicpp. Beware thatline directives inserted by other preprocessors are likely to confuse omniidl.

5.1.1.1 Ancient history: Windows 9x

The output from the C preprocessor is normally fed to the omniidl parser througha pipe. On some Windows 98 machines (but not all!) the pipe does not work,and the preprocessor output is echoed to the screen. When this happens, theomniidl parser sees an empty file, and produces useless stub files with strangelong names. To avoid the problem, use the ‘-T’ option to create a temporary filebetween the two stages.

5.1.2 Forward-declared interfaces

If you have an IDL file like:
interface I;
interface J {
attribute I the_I;

};

then omniidl will normally issue a warning:
test.idl:1: Warning: Forward declared interface ‘I’ was never
fully defined

It is illegal to declare such IDL in isolation, but it is valid to define interface Iin a separate file. If you have a lot of IDL with this sort of construct, you willdrown under the warning messages. Use the -nf option to suppress them.



5.2. C++ BACK-END OPTIONS 71
5.1.3 Comments

By default, omniidl discards comments in the input IDL. However, with the -kand -K options, it preserves the comments for use by the back-ends. The C++back-end ignores this information, but it is relatively easy to write new back-ends which do make use of comments.
The two different options relate to how comments are attached to declara-tions within the IDL. Given IDL like:
interface I {
void op1();
// A comment
void op2();

};

the -k flag will attach the comment to op1(); the -K flag will attach it to op2().

5.2 C++ back-end options

When you specify the C++ back-end (with -bcxx), the following -Wb options areavailable. Note that the -Wb options must be specified after the -bcxx option,so omniidl knows which back-end to give the arguments to.
-Wbh=suffix Use suffix for generated header files. Default ‘.hh’.
-Wbs=suffix Use suffix for generated stub files. Default ‘SK.cc.’
-Wbd=suffix Use suffix for generated dynamic files. Default ‘DynSK.cc.’
-Wba Generate stubs for TypeCode and Any.
-Wbtp Generate ‘tie’ implementation skeletons.
-Wbtf Generate flattened ‘tie’ implementation skeletons.
-Wbami Generate AMI types and operations.
-Wbexample Generate example implementation code.
-Wbinline Output stubs for #included IDL files in line with the main file.
-Wbuse-quotes Use quotes in ‘#include’ directives (e.g. "foo" rather than <foo>.)
-Wbkeep-inc-path Preserve IDL ‘#include’ paths in generated ‘#include’ directives.
-Wbvirtual-objref Use virtual functions for object reference operations.
-Wbimpl-mapping Use the ‘implementation’ mapping for object reference methods.
-Wbsplice-modules Splice together multiply-opened modules into one.
-WbBOA Generate BOA compatible skeletons.
-Wbold Generate old CORBA 2.1 signatures for skeletons.
-Wbold-prefix Map C++ reserved words with prefix ‘_’ rather than ‘_cxx_’.
-WbF Generate code fragments (only for use during omniORB build).



72 CHAPTER 5. THE IDL COMPILER

5.2.1 Optional code generation options

By default, omniidl generates the minimum code required to provide all the IDL-defined types and interfaces, which is sufficient for the majority of applications.Additional code can also be generated, for various purposes:
5.2.1.1 Any and TypeCode

To generate TypeCodes and Any insertion operators, give the -Wba option. Seechapter 10 for details.By default, omniidl separates the normal stub and skeleton file (the SK.ccfile) from these ‘dynamic’ stubs (the DynSK.cc file), so applications that do notneed support for Any and TypeCode for a particular IDL file do not waste spacewith unnecessary definitions. It is possible to output both the normal stubs andthe dynamic stubs to a single file, by simply specifying the same extension forboth files. This command places both the normal stubs and the dynamic stubsin aSK.cc:
omniidl -bcxx -Wba -Wbd=SK.cc a.idl

5.2.1.2 Tie templates

As described in section 2.11, tie templates can be used to provide servant im-plementations, instead of using inheritance from the normal skeleton classes.To generate tie templates, give the -Wbtp option to omniidl.When using a pre-namespace C++ compiler, IDL modules are mapped toC++ classes, which causes a problem with tie templates. The C++ mappingsays that for the interface M::I, the C++ tie template class should be named
POA_M::I_tie. However, since template classes cannot be declared inside otherclasses, this naming scheme cannot be used if POA_M is a class.The C++ mapping has an alternative option of ‘flattened’ tie class names, inwhich the template class is declared at global scope with the name POA_M_I_tie.i.e. all occurrences of ‘::’ are replaced by ‘_’. Generate the flattened ties usingthe -Wbtf command line argument.
5.2.1.3 Asynchronous Method Invocation

Generate asynchronous invocation operations and the various types required byAMI by specifying -Wbami. See chapter 12 for details.
5.2.1.4 Example implementations

If you use the -Wbexample flag, omniidl will generate an example implementationfile as well as the stubs and skeletons. For IDL file foo.idl, the example code is



5.2. C++ BACK-END OPTIONS 73
written to foo_i.cc. The example file contains class and method declarationsfor the operations of all interfaces in the IDL file, along with a main() functionwhich creates an instance of each object. You still have to fill in the operationimplementations, of course.
5.2.2 Include file options

IDL files regularly #include other files. By default, if file a.idl says #include
<b/c.idl> then the generated header a.hh has an include of the form #include
<c.idl>, and aSK.cc and aDynSK.cc contain only code corresponding to thedeclarations in a.idl.

If the -Wbinline option is provided, all the #included declarations are gen-erated in a.hh, aSK.cc and aDynSK.cc, meaning the application code shouldonly use that single set of files.
If -Wbuse-quotes is specified, then the directive in a.hh uses quotes ratherthan angle brackets: #include "c.idl".
Normally any path details contained in the IDL #include directive are re-moved, leaving just the base name. If -Wbkeep-inc-path is specified, the direc-tive in a.hh is #include <b/c.idl>.

5.2.3 Object reference operations

Some of the C++ mapping’s parameter passing rules are problematic in termsof memory management. For example, if an IDL operation has a parameter oftype inout string, the standard mapping has a C++ parameter of type char*&.If application code passes a String_var for the parameter, some C++ compil-ers choose the wrong conversion operator and cause a violation of the memorymanagement rules1.
To avoid this, omniORB uses some helper classes as the parameter typesin object reference operations, meaning that the correct memory managementrules are always followed. Normally, that is invisible to application code, butoccasionally it becomes problematic. One example is that if a local interfaceis derived from a normal unconstrained interface, the C++ mapping of the lo-cal interface derives from the object reference class, and so the base objectreference class must use the standard mapping rather than omniORB’s usualenhanced mapping. To choose the standard ‘implementation mapping’, give the

-Wbimpl-mapping option to omniidl.
Similarly, omniidl usually uses non-virtual methods in its object referenceclasses, since there is no usual need to override them. The local interface situa-

1For this reason, the _var types define an inout() method that ensures use of the correctconversion and thus avoids this kind of trouble.



74 CHAPTER 5. THE IDL COMPILER

tion also requires method overrides, so omniidl must be instructed to generateobject references as virtual. Use -Wbvirtual-objref to achieve this.
More details about the local interface mapping can be found in section 11.8.

5.2.4 Module splicing

On ancient C++ compilers without namespace support, IDL modules map toC++ classes, and so cannot be reopened. For some IDL, it is possible to ‘splice’reopened modules on to the first occurrence of the module, so all module defi-nitions are in a single class. It is possible in this sort of situation:
module M1 {
interface I {};

};
module M2 {
interface J {
attribute M1::I ok;

};
};
module M1 {
interface K {
attribute I still_ok;

};
};

but not if there are cross-module dependencies:
module M1 {
interface I {};

};
module M2 {
interface J {
attribute M1::I ok;

};
};
module M1 {
interface K {
attribute M2::J oh_dear;

};
};

In both of these cases, the -Wbsplice-modules option causes omniidl to putall of the definitions for module M1 into a single C++ class. For the first case,this will work fine. For the second case, class M1::K will contain a reference to
M2::J, which has not yet been defined; the C++ compiler will complain.



5.3. EXAMPLES 75
5.3 Examples

Generate the C++ headers and stubs for a file a.idl:
omniidl -bcxx a.idl

Generate with Any support:
omniidl -bcxx -Wba a.idl

As above, but also generate Python stubs (assuming omniORBpy is installed):
omniidl -bcxx -Wba -bpython a.idl

Just check the IDL files for validity, generating no output:
omniidl a.idl b.idl



76 CHAPTER 5. THE IDL COMPILER



Chapter 6

Connection and Thread
Management

This chapter describes how omniORB manages threads and network connec-tions.

6.1 Background

In CORBA, the ORB is the ‘middleware’ that allows a client to invoke an opera-tion on an object without regard to its implementation or location. In order toinvoke an operation on an object, a client needs to ‘bind’ to the object by acquir-ing its object reference. Such a reference may be obtained as the result of anoperation on another object (such as a naming service or factory object) or byconversion from a stringified representation. If the object is in a different ad-dress space, the binding process involves the ORB building a proxy object in theclient’s address space. The ORB arranges for invocations on the proxy objectto be transparently mapped to equivalent invocations on the implementationobject.For the sake of interoperability, CORBA mandates that all ORBs should sup-port IIOP as the means to communicate remote invocations over a TCP/IP con-nection. IIOP is usually1 asymmetric with respect to the roles of the parties atthe two ends of a connection. At one end is the client which can only initiate re-mote invocations. At the other end is the server which can only receive remoteinvocations.Notice that in CORBA, as in most distributed systems, remote bindings areestablished implicitly without application intervention. This provides the illusionthat all objects are local, a property known as ‘location transparency’. CORBAdoes not specify when such bindings should be established or how they should
1GIOP 1.2 supports ‘bidirectional GIOP’, which permits the rôles to be reversed.

77



78 CHAPTER 6. CONNECTION AND THREAD MANAGEMENT

bemultiplexed over the underlying network connections. Instead, ORBs are freeto implement implicit binding by a variety of means.The rest of this chapter describes how omniORB manages network connec-tions and the programming interface to fine tune the management policy.

6.2 The model

omniORB is designed from the ground up to be fully multi-threaded. The objec-tive is to maximise the degree of concurrency and at the same time eliminateany unnecessary thread overhead. Another objective is to minimise the interfer-ence by the activities of other threads on the progress of a remote invocation. Inother words, thread ‘cross-talk’ should be minimised within the ORB. To achievethese objectives, the degree of multiplexing at every level is kept to a minimumby default.Minimising multiplexing works well when the system is relatively lightlyloaded. However, when the ORB is under heavy load, it can sometimes be bene-ficial to conserve operating system resources such as threads and network con-nections by multiplexing at the ORB level. omniORB has various options thatcontrol its multiplexing behaviour.

6.3 Client side behaviour

On the client side of a connection, the thread that invokes on a proxy objectdrives the GIOP protocol directly and blocks on the connection to receive thereply. The first time the client makes a call to a particular address space, theORB opens a suitable connection to the remote address space (based on theclient transport rule as described in section 6.7.1). After the reply has beenreceived, the ORB caches the open network connection, ready for use by anothercall.If two (or more) threads in a multi-threaded client attempt to contact thesame address space simultaneously, there are two different ways to proceed.The default way is to open another network connection to the server. This meansthat neither the client or server ORB has to perform any multiplexing on the net-work connections—multiplexing is performed by the operating system, whichhas to deal with multiplexing anyway. The second possibility is for the clientto multiplex the concurrent requests on a single network connection. This con-serves operating system resources (network connections), but means that boththe client and server have to deal with multiplexing issues themselves.In the default one call per connection mode, there is a limit to the numberof concurrent connections that are opened, set with the maxGIOPConnection
PerServer parameter. To tell the ORB that it may multiplex calls on a single con-



6.3. CLIENT SIDE BEHAVIOUR 79
nection, set the oneCallPerConnection parameter to zero. If the oneCallPer
Connection parameter is set to the default value of one, and there are moreconcurrent calls than specified by maxGIOPConnectionPerServer, calls blockwaiting for connections to become free.

Note that some server-side ORBs, including omniORB versions before ver-sion 4.0, are unable to deal with concurrent calls multiplexed on a single con-nection, so they serialise the calls. It is usually best to keep to the default modeof opening multiple connections.
6.3.1 Client side timeouts

omniORB can associate a timeout with a call, meaning that if the call takes toolong a CORBA::TIMEOUT exception2 is thrown. Timeouts can be set for the wholeprocess, for a specific thread, or for a specific object reference.
Timeouts are set using this API:
namespace omniORB {
void setClientCallTimeout(CORBA::ULong millisecs);
void setClientCallTimeout(CORBA::Object_ptr obj, CORBA::ULong millisecs);
void setClientThreadCallTimeout(CORBA::ULong millisecs);
void setClientConnectTimeout(CORBA::ULong millisecs);

};

setClientCallTimeout() sets either the global timeout or the timeout fora specific object reference. setClientThreadCallTimeout() sets the timeoutfor the calling thread. The calling thread must have an omni_thread associatedwith it. Setting any timeout value to zero disables it.
Accessing per-thread state is a relatively expensive operation, so per threadtimeouts are disabled by default. The supportPerThreadTimeOut parametermust be set true to enable them.
To choose the timeout value to use for a call, the ORB first looks to see ifthere is a timeout for the object reference, then to the calling thread, and finallyto the global timeout.
When a client has no existing connection to communicate with a server, itmust open a new connection before performing the call. setClientConnect

Timeout() sets an overriding timeout for cases where a new connection mustbe established. The effect of the connect timeout depends upon whether theconnect timeout is greater or less than the timeout that would otherwise beused.
As an example, imagine that the usual call timeout is 10 seconds:

2Or CORBA::TRANSIENT if the backwards-compatibility throwTransientOnTimeout parameteris set to 1.



80 CHAPTER 6. CONNECTION AND THREAD MANAGEMENT

Connect timeout > usual timeout

If the connect timeout is set to 20 seconds, then a call that establishes a newconnection will be permitted 20 seconds before it times out. Subsequent callsusing the same connection have the normal 10 second timeout. If establishingthe connection takes 8 seconds, then the call itself takes 5 seconds, the call suc-ceeds despite having taken 13 seconds in total, longer than the usual timeout.
This kind of configuration is good when connections are slow to be estab-lished.
If an object reference has multiple possible endpoints available, and connect-ing to the first endpoint times out, only that one endpoint will have been triedbefore an exception is raised. However, once the timeout has occurred, the ob-ject reference will switch to use the next endpoint. If the application attemptsto make another call, it will use the next endpoint.

Connect timeout < usual timeout

If the connect timeout is set to 2 seconds, the actual network-level connect isonly permitted to take 2 seconds. As long as the connection is established in lessthan 2 seconds, the call can proceed. The 10 second call timeout still appliesto the time taken for the whole call (including the connection establishment).So, if establishing the connection takes 1.5 seconds, and the call itself takes 9.5seconds, the call will time out because although it met the connection timeout,it exceeded the 10 second total call timeout. On the other hand, if establishingthe connection takes 3 seconds, the call will fail after only 2 seconds, since only2 seconds are permitted for the connect.
If an object reference has multiple possible endpoints available, the clientwill attempt to connect to them in turn, until one succeeds. The connect timeoutapplies to each connection attempt. So with a connect timeout of 2 seconds, theclient will spend up to 2 seconds attempting to connect to the first address andthen, if that fails, up to 2 seconds trying the second address, and so on. The 10second timeout still applies to the call as a whole, so if the total time taken ontimed-out connection attempts exceeds 10 seconds, the call will time out.
This kind of configuration is useful where calls may take a long time to com-plete (so call timeouts are long), but a fast indication of connection failure isrequired.

6.4 Server side behaviour

The server side has two primary modes of operation: thread per connection andthread pooling. It is able to dynamically transition between the two modes, and



6.4. SERVER SIDE BEHAVIOUR 81
it supports a hybrid scheme that behaves mostly like thread pooling, but has thesame fast turn-around for sequences of calls as thread per connection.
6.4.1 Thread per connection mode

In thread per connection mode (the default, and the only option in omniORBversions before 4.0), each connection has a single thread dedicated to it. Thethread blocks waiting for a request. When it receives one, it unmarshals thearguments, makes the up-call to the application code, marshals the reply, andgoes back to watching the connection. There is thus no thread switching alongthe call chain, meaning the call is very efficient.As explained above, a client can choose to multiplex multiple concurrentcalls on a single connection, so once the server has received the request, andjust before it makes the call into application code, it marks the connection as‘selectable’, meaning that another thread should watch it to see if any otherrequests arrive. If they do, extra threads are dispatched to handle the con-current calls. GIOP 1.2 actually allows the argument data for multiple calls tobe interleaved on a connection, so the unmarshalling code has to handle thattoo. As soon as any multiplexing occurs on the connection, the aim of remov-ing thread switching cannot be met, and there is inevitable inefficiency due tothread switching.The maxServerThreadPerConnection parameter can be set to limit the num-ber of threads that can be allocated to a single connection containing concurrentcalls. Setting the parameter to 1 mimics the behaviour of omniORB versions be-fore 4.0, that did not support calls multiplexed on one connection.
6.4.2 Thread pool mode

In thread pool mode, selected by setting the threadPerConnectionPolicy pa-rameter to zero, a single thread watches all incoming connections. When a callarrives on one of them, a thread is chosen from a pool of threads, and set to workunmarshalling the arguments and performing the up-call. There is therefore atleast one thread switch for each call.The thread pool is not pre-initialised. Instead, threads are started on de-mand, and idle threads are stopped after a period of inactivity. The maximumnumber of threads that can be started in the pool is set with the maxServer
ThreadPoolSize parameter. The default is 100.A common pattern in CORBA applications is for a client to make several callsto a single object in quick succession. To handle this situation most efficiently,the default behaviour is to not return a thread to the pool immediately aftera call is finished. Instead, it is set to watch the connection it has just servedfor a short while, mimicking the behaviour in thread per connection mode. If



82 CHAPTER 6. CONNECTION AND THREAD MANAGEMENT

a new call comes in during the watching period, the call is dispatched withoutany thread switching, just as in thread per connection mode. Of course, if theserver is supporting a very large number of connections (more than the size ofthe thread pool), this policy can delay a call coming from another connection. Ifthe threadPoolWatchConnection parameter is set to zero, connection watchingis disabled and threads return to the pool immediately after finishing a singlerequest.
In the face of multiplexed calls on a single connection, multiple threads fromthe pool can be dispatched for one connection, just as in thread per connectionmode. With threadPoolWatchConnection set to the default value of 1, onlythe last thread servicing a connection will watch it when it finishes a request.Setting the parameter to a larger number allows the last n connections to watchthe connection.

6.4.3 Policy transition

If the server is dealing with a relatively small number of connections, it is mostefficient to use thread per connection mode. If the number of connections be-comes too large, however, operating system limits on the number of threads maycause a significant slowdown, or even prevent the acceptance of new connec-tions altogether.
To give the most efficient response in all circumstances, omniORB allows aserver to start in thread per connection mode, and transition to thread poolingif many connections arrive. This is controlled with the threadPerConnection

UpperLimit and threadPerConnectionLowerLimit parameters. The upper limitmust always be larger than the lower limit. The upper limit chooses the numberof connections at which time the ORB transitions to thread pool mode; the lowerlimit selects the point at which the transition back to thread per connection ismade.
For example, setting the upper limit to 50 and the lower limit to 30 wouldmean that the first 49 connections would receive dedicated threads. The 50th toarrive would trigger thread pooling. All future connections to arrive would makeuse of threads from the pool. Note that the existing dedicated threads continueto service their connections until the connections are closed. If the numberof connections falls below 30, thread per connection is reactivated and newconnections receive their own dedicated threads (up to the limit of 50 again).Once again, existing connections in thread pool mode stay in that mode untilthey are closed.



6.5. IDLE CONNECTION SHUTDOWN 83
6.5 Idle connection shutdown

It is wasteful to leave a connection open when it has been left unused for aconsiderable time. Too many idle connections could block out new connectionswhen the system runs out of spare communication channels. For example, mostplatforms have a limit on the number of file handles a process can open. Manyplatforms have a very small default limit like 64. The value can often be in-creased to a maximum of a thousand or more by changing the ‘ulimit’ in theshell.Every so often, a thread scans all open connections to see which are idle.The scanning period (in seconds) is set with the scanGranularity parameter.The default is 5 seconds.Outgoing connections (initiated by clients) and incoming connections (ini-tiated by servers) have separate idle timeouts. The timeouts are set with the
outConScanPeriod and inConScanPeriod parameters respectively. The valuesare in seconds, and must be a multiple of the scan granularity.Beware that setting outConScanPeriod or inConScanPeriod to be equal to(or less than) scanGranularity means that connections are considered candi-dates for closure immediately after they are opened. That can mean that theconnections are closed before any calls have been sent through them. If onewaycalls are used, such connection closure can result in silent loss of calls.
6.5.1 Interoperability Considerations

The IIOP specification allows both the client and the server to shutdown a con-nection unilaterally. When one end is about to shutdown a connection, it shouldsend a CloseConnection message to the other end. It should also make surethat the message will reach the other end before it proceeds to shutdown theconnection.The client should distinguish between an orderly and an abnormal connec-tion shutdown. When a client receives a CloseConnection message before theconnection is closed, the condition is an orderly shutdown. If the message is notreceived, the condition is an abnormal shutdown. In an abnormal shutdown, theORB should raise a COMM_FAILURE exception whereas in an orderly shutdown,the ORB should not raise an exception and should try to re-establish a new con-nection transparently.omniORB implements these semantics completely. However, it is known thatsome ORBs are not (yet) able to distinguish between an orderly and an abnor-mal shutdown. Usually this is manifested as the client in these ORBs seeing a
COMM_FAILURE occasionally when connected to an omniORB server. The work-around is either to catch the exception in the application code and retry, or toturn off the idle connection shutdown inside the omniORB server.



84 CHAPTER 6. CONNECTION AND THREAD MANAGEMENT

6.6 Transports and endpoints

omniORB can support multiple network transports. All platforms (usually) havea TCP transport available. Unix platforms support a Unix domain socket trans-port. Platforms with the OpenSSL library available can support an SSL trans-port.Servers must be configured in two ways with regard to transports: the trans-ports and interfaces on which they listen, and the details that are published inIORs for clients to see. Usually the published details will be the same as thelistening details, but there are times when it is useful to publish different infor-mation.Details are selected with the endPoint family of parameters. The simplest isplain endPoint, which chooses a transport and interface details, and publishesthe information in IORs. Endpoint parameters are in the form of URIs, with ascheme name of ‘giop:’, followed by the transport name. Different transportshave different parameters following the transport.TCP endpoints have the format:
giop:tcp:<host>:<port>

The host must be a valid host name or IP address for the server machine. Itdetermines the network interface on which the server listens. The port selectsthe TCP port to listen on, which must be unoccupied. Either the host or port, orboth can be left empty. If the host is empty, the ORB publishes the IP addressof the first non-loopback network interface it can find (or the loopback if thatis the only interface), but listens on all network interfaces. If the port is empty,the operating system chooses an ephemeral port.Multiple TCP endpoints can be selected, either to specify multiple networkinterfaces on which to listen, or (less usefully) to select multiple TCP ports onwhich to listen.If no endPoint parameters are set, the ORB assumes a single parameter of
giop:tcp::, meaning IORs contain the address of the first non-loopback net-work interface, the ORB listens on all interfaces, and the OS chooses a portnumber.SSL endpoints have the same format as TCP ones, except ‘tcp’ is replacedwith ‘ssl’. Unix domain socket endpoints have the format:

giop:unix:<filename>

where the filename is the name of the socket within the filesystem. If the file-name is left blank, the ORB chooses a name based on the process id and a times-tamp.



6.6. TRANSPORTS AND ENDPOINTS 85
To listen on an endpoint without publishing it in IORs, specify it with the

endPointNoPublish configuration parameter. See below for more details aboutendpoint publishing.
6.6.1 Port ranges

Sometimes it is useful to restrict a server to listen on one of a range of ports,rather than pinning it to one particular port or allowing the OS to choose anephemeral port. omniORB 4.2 introduces the ability to specify a range of portsusing a hyphen. e.g. to listen on a port between 5000 and 5010 inclusive:
giop:tcp::5000-5010

omniORB randomly chooses a port in the range. If it finds that the chosenport is already occupied, it keeps trying different ports until it finds a free one.If all the ports in the range are occupied, it throws CORBA::INITIALIZE.
6.6.2 IPv6

On platforms where it is available, omniORB supports IPv6. On most Unix plat-forms, IPv6 sockets accept both IPv6 and IPv4 connections, so omniORB’s de-fault giop:tcp:: endpoint accepts both IPv4 and IPv6 connections. On Win-dows versions before Windows Vista, each socket type only accepts incomingconnections of the same type, so an IPv6 socket cannot be used with IPv4 clients.For this reason, the default giop:tcp:: endpoint only listens for IPv4 connec-tions. Since endpoints with a specific host name or address only listen on asingle network interface, they are inherently limited to just one protocol family.
To explicitly ask for just IPv4 or just IPv6, an endpoint with the wildcardaddress for the protocol family should be used. For IPv4, the wildcard addressis ‘0.0.0.0’, and for IPv6 it is ‘::’. So, to listen for IPv4 connections on all IPv4network interfaces, use an endpoint of:
giop:tcp:0.0.0.0:

All IPv6 addresses contain colons, so the address portion in URIs must be con-tained within [] characters. Therefore, to listen just for IPv6 connections on allIPv6 interfaces, use the somewhat cryptic:
giop:tcp:[::]:

To listen for both IPv4 and IPv6 connections on Windows versions prior to Vista,both endpoints must be explicitly provided.



86 CHAPTER 6. CONNECTION AND THREAD MANAGEMENT

6.6.2.1 Link local addresses

In IPv6, all network interfaces are assigned a link local address, starting withthe digits fe80. The link local address is only valid on the same ‘link’ as theinterface, meaning directly connected to the interface, or possibly on the samesubnet, depending on how the network is switched. To connect to a server’slink local address, a client has to know which of its network interfaces is onthe same link as the server. Since there is no way for omniORB to know whichlocal interface a remote link local address may be connected to, and in extremecircumstancesmay even end up contacting the wrong server if it picks the wronginterface, link local addresses are not considered valid. Servers do not publishlink local addresses in their IORs.

6.6.3 Endpoint publishing

For clients to be able to connect to a server, the server publishes endpoint in-formation in its IORs (Interoperable Object References). Normally, omniORBpublishes the first available address for each of the endpoints it is listening on.
The endpoint information to publish is determined by the endPointPublishconfiguration parameter. It contains a comma-separated list of publish rules.The rules are applied in turn to each of the configured endpoints; if a rulematches an endpoint, it causes one or more endpoints to be published.
The following core rules are supported:
addr the first natural address of the endpoint
ipv4 the first IPv4 address of a TCP or SSL endpoint
ipv6 the first IPv6 address of a TCP or SSL endpoint
name the first address that can be resolved to a name
hostname the result of the gethostname() system call
fqdn the fully-qualified domain name

The core rules can be combined using the vertical bar operator to try severalrules in turn until one succeeds. e.g:
name|ipv6|ipv4 the name of the endpoint if it has one; failing that, itsfirst IPv6 address; failing that, its first IPv4 address.

Multiple rules can be combined using the comma operator to publish more thanone endpoint. e.g.
name,addr the name of the endpoint (if it has one), followed byits first address.



6.7. CONNECTION SELECTION AND ACCEPTANCE 87
For endpoints with multiple addresses (e.g. TCP endpoints on multi-homed ma-chines), the all() manipulator causes all addresses to be published. e.g.:

all(addr) all addresses are published
all(name) all addresses that resolve to names are published
all(name|addr) all addresses are published by name if they haveone, address otherwise.
all(name,addr) all addresses are published by name (if they haveone), and by address.
all(name),
all(addr)

first the names of all addresses are published, fol-lowed by all the addresses.
A specific endpoint can be published by giving its endpoint URI, even if theserver is not listening on that endpoint. e.g.:

giop:tcp:not.my.host:12345
giop:unix:/not/my/socket-file

If the host or port number for a TCP or SSL URI are missed out, they are filledin with the details from each listening TCP/SSL endpoint. This can be used topublish a different name for a TCP/SSL endpoint that is using an ephemeral port,for example.
omniORB 4.0 supported two options related to endpoint publishing that aresuperseded by the endPointPublish parameter, and so are now deprecated.Setting endPointPublishAllIFs to 1 is equivalent to setting endPointPublishto ‘all(addr)’. The endPointNoListen parameter is equivalent to adding end-point URIs to the endPointPublish parameter.

6.7 Connection selection and acceptance

In the face of IORs containing details about multiple different endpoints, clientshave to know how to choose the one to use to connect a server. Similarly, serversmay wish to restrict which clients can connect to particular transports. This isachieved with transport rules.
6.7.1 Client transport rules

The clientTransportRule parameter is used to filter and prioritise the orderin which transports specified in an IOR are tried. Each rule has the form:
<address mask> [action]+



88 CHAPTER 6. CONNECTION AND THREAD MANAGEMENT

The address mask can be one of
1. localhost The address of this machine2. w.x.y.z/m1.m2.m3.m4 An IPv4 address with bitsselected by the mask, e.g.

172.16.0.0/255.240.0.03. w.x.y.z/prefixlen An IPv4 address with prefixlen signifi-cant bits, e.g. 172.16.2.0/244. a:b:c:d:e:f:g:h/prefixlen An IPv6 address with prefixlen signifi-cant bits, e.g. 3ffe:505:2:1::/645. * Wildcard that matches any address
The action is one or more of the following:

1. none Do not use this address2. tcp Use a TCP transport3. ssl Use an SSL transport4. unix Use a Unix socket transport5. bidir Connections to this address can be usedbidirectionally (see section 6.8)
The transport-selecting actions form a prioritised list, so an action of ‘unix,ssl,
tcp’ means to use a Unix transport if there is one, failing that a SSL transport,failing that a TCP transport. In the absence of any explicit rules, the client usesthe implicit rule of ‘* unix,ssl,tcp’.

If more than one rule is specified, they are prioritised in the order they arespecified. For example, the configuration file might contain:
clientTransportRule = 192.168.1.0/255.255.255.0 unix,tcp
clientTransportRule = 172.16.0.0/255.240.0.0 unix,tcp

= * none

This would be useful if there is a fast network (192.168.1.0) which should beused in preference to another network (172.16.0.0), and connections to othernetworks are not permitted at all.
In general, the result of filtering the endpoint specifications in an IOR withthe client transport rule will be a prioritised list of transports and networks. (Ifthe transport rules do not prioritise one endpoint over another, the order theendpoints are listed in the IOR is used.) When trying to contact an object, theORB tries its possible endpoints in turn, until it finds one with which it can con-tact the object. Only after it has unsuccessfully tried all permissible endpointswill it raise a TRANSIENT exception to indicate that the connect failed.



6.8. BIDIRECTIONAL GIOP 89
6.7.2 Server transport rules

Server transport rules have the same format as client transport rules. Ratherthan being used to select which of a set of ways to contact a machine, they areused to determine whether or not to accept connections from particular clients.In this example, we only allow connections from our intranet:
serverTransportRule = localhost unix,tcp,ssl

= 172.16.0.0/255.240.0.0 tcp,ssl
= * none

And in this one, we accept only SSL connections if the client is not on the in-tranet:
serverTransportRule = localhost unix,tcp,ssl

= 172.16.0.0/255.240.0.0 tcp,ssl
= * ssl,bidir

In the absence of any explicit rules, the server uses the implicit rule of ‘* unix,
ssl,tcp’, meaning any kind of connection is accepted from any client.

6.8 Bidirectional GIOP

omniORB supports bidirectional GIOP, which allows callbacks to be made usinga connection opened by the original client, rather than the normal model wherethe server opens a new connection for the callback. This is important for ne-gotiating firewalls, since they tend not to allow connections back on arbitraryports.There are several steps required for bidirectional GIOP to be enabled for acallback. Both the client and server must be configured correctly. On the clientside, these conditions must be met:
• The offerBiDirectionalGIOP parameter must be set to true.
• The client transport rule for the target server must contain the bidir ac-tion.
• The POA containing the callback object (or objects) must have been cre-ated with a BidirectionalPolicy value of BOTH.

On the server side, these conditions must be met:
• The acceptBiDirectionalGIOP parameter must be set to true.



90 CHAPTER 6. CONNECTION AND THREAD MANAGEMENT

• The server transport rule for the requesting client must contain the bidiraction.
• The POA hosting the object contacted by the client must have been createdwith a BidirectionalPolicy value of BOTH.

6.9 SSL transport

omniORB supports an SSL transport, using OpenSSL. It is only built if OpenSSLis available. On platforms using Autoconf, it is autodetected in many locations,or its location can be given with the --with-openssl= argument to configure.On other platforms, the OPEN_SSL_ROOT make variable must be set in the plat-form file.To use the SSL transport, you must link your application with the omnisslTPlibrary, and correctly set up certificates. See the src/examples/ssl_echo di-rectory for an example. That directory contains a README file with more details.



Chapter 7

Interoperable Naming Service

omniORB supports the Interoperable Naming Service (INS). The following is asummary of its facilities.
7.1 Object URIs

As well as accepting IOR-format strings, ORB::string_to_object() also sup-ports two Uniform Resource Identifier (URI) [BLFIM98] formats, which can beused to specify objects in a convenient human-readable form. IOR-format stringsare now also considered URIs.
7.1.1 corbaloc

corbaloc URIs allow you to specify object references which can be contactedby IIOP, or found through ORB::resolve_initial_references(). To specify anIIOP object reference, you use a URI of the form:
corbaloc:iiop:<host>:<port>/<object key>

for example:
corbaloc:iiop:myhost.example.com:1234/MyObjectKey

which specifies an object with key ‘MyObjectKey’ within a process running onmyhost.example.com listening on port 1234. Object keys containing non-ASCIIcharacters can use the standard URI % escapes:
corbaloc:iiop:myhost.example.com:1234/My%efObjectKey

denotes an object key with the value 239 (hex ef) in the third octet.The protocol name ‘iiop’ can be abbreviated to the empty string, so theoriginal URI can be written:
91



92 CHAPTER 7. INTEROPERABLE NAMING SERVICE

corbaloc::myhost.example.com:1234/MyObjectKey

The IANA has assigned port number 28091 for use by corbaloc, so if the serveris listening on that port, you can leave the port number out. The following twoURIs refer to the same object:
corbaloc::myhost.example.com:2809/MyObjectKey
corbaloc::myhost.example.com/MyObjectKey

You can specify an object which is available at more than one location by sepa-rating the locations with commas:
corbaloc::myhost.example.com,:localhost:1234/MyObjectKey

Note that you must restate the protocol for each address, hence the ‘:’ before‘localhost’. It could equally have been written ‘iiop:localhost’.You can also specify an IIOP version number:
corbaloc::1.2@myhost.example.com/MyObjectKey

Specifying IIOP versions above 1.0 is slightly risky since higher versions makeuse of various information stored in IORs that is not present in a corbaloc URI.It is generally best to contact initial corbaloc objects with IIOP 1.0, and rely onhigher versions for all other object references.
7.1.2 Other transports

The only transport specified in the CORBA standard is iiop, but omniORB alsosupports the following extensions:
ssliopEquivalent semantics to iiop, but the server is contacted using SSL / TLS.As with iiop, the address details are of the form host:port.
omniunixThe omniORB Unix domain socket transport. The address details are ofthe form filename.
7.1.3 Resolve initial references

A corbaloc: can also specify a call to resolve_initial_references(). This
orb->string_to_object("corbaloc:rir:/NameService");

is identical in behaviour to
orb->resolve_initial_references("NameService");

1Not 2089 as printed in [OMG00]!



7.2. CONFIGURING RESOLVE_INITIAL_REFERENCES 93
7.1.4 corbaname

corbaname URIs cause string_to_object() to look-up a name in a CORBANaming service. They are an extension of the corbaloc syntax:
corbaname:<corbaloc location>/<object key>#<stringified name>

for example:
corbaname::myhost/NameService#project/example/echo.obj
corbaname:rir:/NameService#project/example/echo.obj

The object found with the corbaloc-style portion must be of type CosNaming::
NamingContext, or something derived from it. If the object key (or rir name) is‘NameService’, it can be left out:

corbaname::myhost#project/example/echo.obj
corbaname:rir:#project/example/echo.obj

The stringified name portion can also be left out, in which case the URI denotesthe CosNaming::NamingContext which would have been used for a look-up:
corbaname::myhost.example.com
corbaname:rir:

The first of these examples is the easiest way of specifying the location of anaming service.
7.2 Configuring resolve_initial_references

The INS specifies two standard command line arguments which provide a portableway of configuring ORB::resolve_initial_references():
7.2.1 ORBInitRef

-ORBInitRef takes an argument of the form <ObjectId>=<ObjectURI>. So, forexample, with command line arguments of:
-ORBInitRef NameService=corbaname::myhost.example.com

resolve_initial_references("NameService") will return a reference to theobject with key ‘NameService’ available on myhost.example.com, port 2809.Since IOR-format strings are considered URIs, you can also say things like:
-ORBInitRef NameService=IOR:00ff...



94 CHAPTER 7. INTEROPERABLE NAMING SERVICE

7.2.2 ORBDefaultInitRef

-ORBDefaultInitRef provides a prefix string which is used to resolve otherwiseunknown names. When resolve_initial_references() is unable to resolve aname which has been specifically configured (with -ORBInitRef), it constructsa string consisting of the default prefix, a ‘/’ character, and the name requested.The string is then fed to string_to_object(). So, for example, with a commandline of:
-ORBDefaultInitRef corbaloc::myhost.example.com

a call to resolve_initial_references("MyService")will return the object ref-erence denoted by ‘corbaloc::myhost.example.com/MyService’.
Similarly, a corbaname prefix can be used to cause look-ups in the namingservice. Note, however, that since a ‘/’ character is always added to the prefix,it is impossible to specify a look-up in the root context of the naming service—you have to use a sub-context, like:
-ORBDefaultInitRef corbaname::myhost.example.com#services

7.3 omniNames

7.3.1 NamingContextExt

omniNames supports the extended CosNaming::NamingContextExt interface:
module CosNaming {
interface NamingContextExt : NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);
Name to_name (in StringName sn) raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

};
};



7.4. OMNIMAPPER 95
to_string() and to_name() convert from CosNaming::Name sequences toflattened strings and vice-versa. Note that calling these operations involvesremote calls to the naming service, so they are not particularly efficient. Youcan use the omniORB specific local omniURI::nameToString() and omniURI::

stringToName() functions instead.A CosNaming::Name is stringified by separating name components with ‘/’characters. The kind and id fields of each component are separated by ‘.’ char-acters. If the kind field is empty, the representation has no trailing ‘.’; if the idis empty, the representation starts with a ‘.’ character; if both id and kind areempty, the representation is just a ‘.’. The backslash ‘\’ is used to escape themeaning of ‘/’, ‘.’ and ‘\’ itself.
to_url() takes a corbaloc style address and key string (but without the

corbaloc: part), and a stringified name, and returns a corbaname URI (incor-rectly called a URL) string, having properly escaped any invalid characters. Thespecification does not make it clear whether or not the address string should alsobe escaped by the operation; omniORB does not escape it. For this reason, itis best to avoid calling to_url() if the address part contains escapable char-acters. To avoid remote calls, omniORB provides the equivalent local function
omniURI::addrAndNameToURI().

resolve_str() is equivalent to calling to_name() followed by the inherited
resolve() operation. There are no string-based equivalents of the various bindoperations.
7.3.2 Use with corbaname

To make it easy to use omniNames with corbaname URIs, it starts with the de-fault port of 2809, and an object key of ‘NameService’ for the root naming con-text.
7.4 omniMapper

omniMapper is a simple daemon which listens on port 2809 (or any other port),and redirects IIOP requests for configured object keys to associated persistentobject references. It can be used to make a naming service (even an old non-INS aware version of omniNames or other ORB’s naming service) appear on port2809 with the object key ‘NameService’. The same goes for any other serviceyou may wish to specify, such as an interface repository. omniMapper is startedwith a command line of:
omniMapper [-port <port>] [-config <config file>] [-v]

The -port option allows you to choose a port other than 2809 to listen on. The
-config option specifies a location for the configuration file. The default name is



96 CHAPTER 7. INTEROPERABLE NAMING SERVICE

/etc/omniMapper.cfg, or C:\omniMapper.cfg on Windows. omniMapper doesnot normally print anything; the -v option makes it verbose so it prints configu-ration information and a record of the redirections it makes, to standard output.The configuration file is very simple. Each line contains a string to be usedas an object key, some white space, and an IOR (or any valid URI) that it willredirect that object key to. Comments should be prefixed with a ‘#’ character.For example:
# Example omniMapper.cfg
NameService IOR:000f...
InterfaceRepository IOR:0100...

omniMapper can either be run on a single machine, in much the same wayas omniNames, or it can be run on everymachine, with a common configurationfile. That way, eachmachine’s omniORB configuration file could contain the line:
ORBDefaultInitRef corbaloc::localhost

7.5 Creating objects with simple object keys

In normal use, omniORB creates object keys containing various information in-cluding POA names and various non-ASCII characters. Since object keys aresupposed to be opaque, this is not usually a problem. The INS breaks this opac-ity and requires servers to create objects with human-friendly keys.If you wish to make your objects available with human-friendly URIs, thereare two options. The first is to use omniMapper as described above, in conjunc-tion with a PERSISTENT POA. The second is to create objects with the requiredkeys yourself. You do this with a special POA with the name ‘omniINSPOA’, ac-quired from resolve_initial_references(). This POA has the USER_ID and
PERSISTENT policies, and the special property that the object keys it createscontain only the object ids given to the POA, and no other data. It is a normalPOA in all other respects, so you can activate/deactivate it, create children, andso on, in the usual way.Children of the omniINSPOA do not inherit its special properties of creatingsimple object keys. If the omniINSPOA’s policies are not suitable for your appli-cation, you cannot create a POAwith different policies (such as single threading,for example), and still generate simple object keys. Instead, you can activate aservant in the omniINSPOA that uses location forwarding to redirect requeststo objects in a different POA.



Chapter 8

Code set conversion

omniORB supports full code set negotiation, used to select and translate be-tween different character code sets when transmitting chars, strings, wcharsand wstrings. The support is mostly transparent to application code, but thereare a number of options that can be selected. This chapter covers the options,and also gives some pointers about how to implement your own code sets, incase the ones that come with omniORB are not sufficient.

8.1 Native code sets

For the ORB to know how to handle strings and wstrings given to it by the appli-cation, it must know what code set they are represented with, so it can properlytranslate them if need be. The defaults are ISO 8859-1 (Latin 1) for char andstring, and UTF-16 for wchar and wstring. Different code sets can be chosenat initialisation time with the nativeCharCodeSet and nativeWCharCodeSet pa-rameters. The supported code sets are printed out at initialisation time if theORB traceLevel is 15 or greater.
For most applications, the defaults are fine. Some applications may needto set the native char code set to UTF-8, allowing the full Unicode range to besupported in strings.
Note that the default for wchar is always UTF-16, even on Unix platformswhere wchar is a 32-bit type. Select the UCS-4 code set to select charactersoutside the first plane without having to use UTF-16 surrogates1.

1If you have no idea what this means, don’t worry—you’re better off not knowing unless you
really have to.

97



98 CHAPTER 8. CODE SET CONVERSION

8.2 Code set library

To save space in the main ORB core library, most of the code set implementa-tions are in a separate library named omniCodeSets4. To use the extra codesets, you must link your application with that library. On most platforms, ifyou are using dynamic linking, specifying the omniCodeSets4 library in the linkcommand is sufficient to have it initialised, and for the code sets to be avail-able. With static linking, or platforms with less intelligent dynamic linkers,you must force the linker to initialise the library. You do that by including the
omniORB4/optionalFeatures.h header. By default, that header enables sev-eral optional features. Look at the file contents to see how to turn off particularfeatures.

8.3 Implementing new code sets

It is quite easy to implement new code sets, if you need support for code sets (ormarshalling formats) that do not come with the omniORB distribution. There areextensive comments in the headers and ORB code that explain how to implementa code set; this section just serves to point you in the right direction.
The main definitions for the code set support are in include/omniORB4/

codeSets.h. That defines a set of base classes use to implement code sets, plussome derived classes that use look-up tables to convert simple 8-bit and 16-bitcode sets to Unicode.
When sending or receiving string data, there are a total of four code sets inaction: a native char code set, a transmission char code set, a native wchar codeset, and a transmission wchar code set. The native code sets are as describedabove; the transmission code sets are the ones selected to communicate with aremote machine. They are responsible for understanding the GIOP marshallingformats, as well as the code sets themselves. Each of the four code sets has anobject associated with it which contains methods for converting data.
There are two ways in which a string/wstring can be transmitted or received.If the transmission code set in action knows how to deal directly with the na-tive code set (the trivial case being that they are the same code set, but morecomplex cases are possible too), the transmission code set object can directlymarshal or unmarshal the data into or out of the application buffer. If the trans-mission code set does not know how to handle the native code set, it convertsthe string/wstring into UTF-16, and passes that to the native code set object (orvice-versa). All code set implementations must therefore know how to convertto and from UTF-16.
With this explanation, the classes in codeSets.h should be easy to under-stand. The next place to look is in the various existing code set implementa-



8.3. IMPLEMENTING NEW CODE SETS 99
tions, which are files of the form cs-*.cc in the src/lib/omniORB/orbcore and
src/lib/omniORB/codesets. Note how all the 8-bit code sets (the ISO 8859-*family) consist entirely of data and no code, since they are driven by look-uptables.



100 CHAPTER 8. CODE SET CONVERSION



Chapter 9

Interceptors

omniORB supports interceptors that allow the application to insert processingin various points along the call chain, and in various other locations. It does not(yet) support the standard Portable Interceptors API.
The interceptor interfaces are defined in a single header, include/omniORB4/

omniInterceptors.h. Each interception point consists of a singleton object with
add() and remove() methods, and the definition of an ‘interceptor info’ class.For example:

class omniInterceptors {
...
class clientSendRequest_T {
public:

class info_T {
public:
GIOP_C& giop_c;
IOP::ServiceContextList service_contexts;

info_T(GIOP_C& c) : giop_c(c), service_contexts(5) {}

private:
info_T();
info_T(const info_T&);
info_T& operator=(const info_T&);

};

typedef CORBA::Boolean (*interceptFunc)(info_T& info);

void add(interceptFunc);
void remove(interceptFunc);

};
...

101



102 CHAPTER 9. INTERCEPTORS

};

You can see that the interceptors themselves are functions that take the info_Tobject as their argument and return boolean. Interceptors are called in the orderthey are registered; normally, all interceptor functions return true, meaningthat processing should continue with subsequent interceptors. If an interceptorreturns false, later interceptors are not called. You should only do that if youreally know what you are doing.
Notice that the info_T contains references to omniORB internal data types.The definitions of these types can be found in other header files within include/

omniORB4 and include/omniORB4/internal.

9.1 Interceptor registration

All the interceptor singletons are registered within another singleton object ofclass omniInterceptors. You retrieve a pointer to the object with the omniORB::
getInterceptors() function, which must be called after the ORB has been ini-tialised with CORBA::ORB_init(), but before the ORB is used. The code to reg-ister an interceptor looks, for example, like:

omniInterceptors* interceptors = omniORB::getInterceptors();
interceptors->clientSendRequest.add(myInterceptorFunc);

9.2 Available interceptors

The following interceptors are available:
encodeIORCalled when encoding an IOR to represent an object reference. This in-terception point allows the application to insert extra profile componentsinto IORs. Note that you must understand and adhere to the rules aboutdata stored in IORs, otherwise the IORs created may be invalid. omniORBitself uses this interceptor to insert various items, so you can see an ex-ample of its use in the insertSupportedComponents() function defined in

src/lib/omniORB/orbcore/ior.cc.
decodeIORCalled when decoding an IOR. The application can use this to get out what-ever information they put into IORs with encodeIOR. Again, see extract

SupportedComponents() in src/lib/omniORB/orbcore/ior.cc for an ex-ample.



9.2. AVAILABLE INTERCEPTORS 103
clientOpenConnectionCalled as a client opens a new connection to a server, after the connectionis opened but before it is used to send a request. The interceptor func-tion can set the info_T’s reject member to true to cause the client toimmediately close the new connection and throw CORBA::TRANSIENT tothe calling code. In that case, the interceptor function can also set the whymember to provide a message that is logged.
clientSendRequestCalled just before a request header is sent over the network. The applica-tion can use it to insert service contexts in the header. See the setCodeSet

ServiceContext() function in src/lib/omniORB/orbcore/cdrStream.ccfor an example of its use.
clientReceiveReplyCalled as the client receives a reply, just after unmarshalling the replyheader. Called for normal replies and exceptions.
serverAcceptConnectionCalled when a server accepts a new incoming connection, but before itreads any data from it. The interceptor function can set the info_T’s

reject member to true to cause the server to immediately close the newconnection. In that case, the interceptor function can also set the whymember to provide a message that is logged.
serverReceiveRequestCalled when the server receives a request, just after unmarshalling therequest header. See the getCodeSetServiceContext() function in src/

lib/omniORB/orbcore/cdrStream.cc for an example.
serverSendReplyCalled just before the server marshals a reply header.
serverSendExceptionCalled just before the server marshals an exception reply header.
createIdentityCalled when the ORB is about to create an ‘identity’ object to representa CORBA object. It allows application code to provide its own identityimplementations. It is very unlikely that an application will need to dothis.
createORBServerUsed internally by the ORB to register different kinds of server. At present,



104 CHAPTER 9. INTERCEPTORS

only a GIOP server is registered. It is very unlikely that application codewill need to do this.
createThreadCalled whenever the ORB creates a thread. The info_T class for this in-terceptor is

class info_T {
public:
virtual void run() = 0;
virtual omni_thread* self() = 0;

};

The interceptor is called in the context of the newly created thread. Thefunctionmust call the info_T’s run()method, to pass control to the threadbody. run() returns just before the thread exits. This arrangement allowsthe interceptor to initialise some per-thread state before the thread bodyruns, then release it just before the thread exits.
The info_T’s self() method returns a pointer to the omni_thread objectfor the thread, equivalent to calling omni_thread::self().

assignUpcallThreadThe ORB maintains a general thread pool, from which threads are drawnfor various purposes. One purpose is for performing upcalls to applicationcode, in response to incoming CORBA calls. The assignUpcallThread in-terceptor is called when a thread is assigned to perform upcalls. In thethread per connection model, the thread stays assigned to performingupcalls for the entire lifetime of the underlying network connection; inthe thread pool model, threads are assigned for upcalls on a per call ba-sis, so this interceptor is triggered for every incoming call1. As with the
createThread interceptor, the interceptor function must call the info_T’s
run() method to pass control to the upcall.
When a thread finishes its assignment of processing upcalls, it returns tothe pool (even in thread per connection mode), so the same thread can bereassigned to perform more upcalls, or reused for a different purpose.

assignAMIThreadAsynchronous Method Invocation (AMI) uses threads to perform outgoingcalls. The assignAMIThread interceptor is called when a thread is assignedto performAMI calls. As with the other thread interceptors, the interceptorfunction must call the info_T’s run() method to pass control to the AMIcall.
1Except that with the threadPoolWatchConnection parameter set true, a thread can performmultiple upcalls even when thread pool mode is active.



9.3. SERVER-SIDE CALL INTERCEPTOR 105
Unlike the other interceptors, the interceptor functions for createThread,
assignUpcallThread and assignAMIThread have no return values. Inter-ceptor chaining is performed by calls through the info_T::run()method,rather than by visiting interceptor functions in turn.

9.3 Server-side call interceptor

Calls can be intercepted on the server just before the upcall into applicationcode. This interceptor is registered with omniORB’s callDescriptor class,which is responsible for encapsulating the state of a call. Unlike the transport-related serverReceiveRequest, serverSendReply and serverSendExceptioninterceptors, the callDescriptor interceptor is invoked for all calls, even onesfrom colocated clients in the same address space.The types used for the call interceptor are defined in include/omniORB4/
callDescriptor.h. The interceptor takes the form of a bare function with twoparameters. The first parameter is a pointer to the callDescriptor; the sec-ond is a pointer to omniServant, which is the base class of all servant classes.The interceptor function must call the callDescriptor’s interceptedCall()method to pass on the call.This interception point allows access to various parts of omniORB’s call ma-chinery. The callDescriptor includes access to the operation name and, if castto the concrete subclass defined by the IDL compiler, the call arguments andreturn values too.



106 CHAPTER 9. INTERCEPTORS



Chapter 10

Type Any and TypeCode

The CORBA specification provides for a type that can hold the value of any OMGIDL type. This type is known as type Any. The OMG also specifies a pseudo-object, TypeCode, that can encode a description of any type specifiable in OMGIDL.In this chapter, an example demonstrating the use of type Any is presented.The example code is in the src/examples/anyExample directory in the omniORBdistribution. The example is followed by sections describing the behaviour oftype Any and TypeCode in omniORB. For further information on type Any, referto the C++Mapping specification., and for more information on TypeCode, referto the Interface Repository chapter in the CORBA core section of the CORBAspecification.

10.1 Example using type Any

Before going through this example, you should make sure that you have readand understood the examples in chapter 2.
10.1.1 Type Any in IDL

Type Any allows one to delay the decision on the type used in an operationuntil run-time. To use type any in IDL, use the keyword any, as in the followingexample:
// IDL
interface anyExample {
any testOp(in any mesg);

};

The operation testOp() in this example can now take any value expressible inOMG IDL as an argument, and can also return any type expressible in OMG IDL.
107



108 CHAPTER 10. TYPE ANY AND TYPECODE

Type Any is mapped into C++ as the type CORBA::Any. When passed as anargument or as a result of an operation, the following rules apply:
In InOut Out Return
const CORBA::Any& CORBA::Any& CORBA::Any*& CORBA::Any*

So, the above IDL would map to the following C++:
// C++

class anyExample_i : public virtual POA_anyExample {
public:
anyExample_i() { }
virtual ~anyExample_i() { }
virtual CORBA::Any* testOp(const CORBA::Any& a);

};

10.1.2 Inserting and Extracting Basic Types from an Any

The question now arises as to how values are inserted into and removed froman Any. This is achieved using two overloaded operators: <<= and >>=.To insert a value into an Any, the <<= operator is used, as in this example:
// C++
CORBA::Any an_any;
CORBA::Long l = 100;
an_any <<= l;

Note that the overloaded <<= operator has a return type of void.To extract a value, the >>= operator is used, as in this example (where theAny contains a long):
// C++
CORBA::Long l;
an_any >>= l;

cout << "This is a long: " << l << endl;

The overloaded >>= operator returns a CORBA::Boolean. If an attempt ismade to extract a value from an Any when it contains a different type of value(e.g. an attempt to extract a long from an Any containing a double), the over-loaded >>= operator will return false; otherwise it will return true. Thus, acommon tactic to extract values from an Any is as follows:
// C++
CORBA::Long l;
CORBA::Double d;
const char* str;



10.1. EXAMPLE USING TYPE ANY 109
if (an_any >>= l) {
cout << "Long: " << l << endl;

}
else if (an_any >>= d) {
cout << "Double: " << d << endl;

}
else if (an_any >>= str) {
cout << "String: " << str << endl;
// The storage of the extracted string is still owned by the any.

}
else {
cout << "Unknown value." << endl;

}

10.1.3 Inserting and Extracting Constructed Types from an Any

It is also possible to insert and extract constructed types and object referencesfrom an Any. omniidl will generate insertion and extraction operators for theconstructed type. Note that it is necessary to specify the -Wba command-lineflag when running omniidl in order to generate these operators. The followingexample illustrates the use of constructed types with type Any:
// IDL
struct testStruct {
long l;
short s;

};

interface anyExample {
any testOp(in any mesg);

};

Upon compiling the above IDLwith omniidl -bcxx -Wba, the following over-loaded operators are generated:
1. void operator<<=(CORBA::Any&, const testStruct&)

2. void operator<<=(CORBA::Any&, testStruct*)

3. CORBA::Boolean operator>>=(const CORBA::Any&,
const testStruct*&)

Operators of this form are generated for all constructed types, and for inter-faces.The first operator, (1), copies the constructed type, and inserts it into theAny. The second operator, (2), inserts the constructed type into the Any, and



110 CHAPTER 10. TYPE ANY AND TYPECODE

then manages it. Note that if the second operator is used, the Any consumesthe constructed type, and the caller should not use the pointer to access thedata after insertion. The following is an example of how to insert a value into anAny using operator (1):
// C++
CORBA::Any an_any;

testStruct t;
t.l = 456;
t.s = 8;

an_any <<= t;

The third operator, (3), is used to extract the constructed type from the Any,and can be used as follows:
const testStruct* tp;

if (an_any >>= tp) {
cout << "testStruct: l: " << tp->l << endl;
cout << " s: " << tp->s << endl;

}
else {

cout << "Unknown value contained in Any." << endl;
}

As with basic types, if an attempt is made to extract a type from an Any thatdoes not contain a value of that type, the extraction operator returns false.If the Any does contain that type, the extraction operator returns true. If theextraction is successful, the caller’s pointer will point tomemorymanaged by theAny. The caller must not delete or otherwise change this storage, and should notuse this storage after the contents of the Any are replaced (either by insertionor assignment), or after the Any has been destroyed. In particular, managementof the pointer should not be assigned to a _var type.
If the extraction fails, the caller’s pointer will be set to point to null.
Note that there are special rules for inserting and extracting arrays (usingthe _forany types), and for inserting and extracting bounded strings, booleans,chars, and octets. Please refer to the C++ Mapping specification for furtherinformation.

10.2 Type Any in omniORB

This section contains some notes on the use and behaviour of type Any in omni-ORB.



10.2. TYPE ANY IN OMNIORB 111
10.2.1 Generating Insertion and Extraction Operators.

To generate type Any insertion and extraction operators for constructed typesand interfaces, the -Wba command line flag should be specified when runningomniidl.
10.2.2 TypeCode comparison when extracting from an Any.

When an attempt is made to extract a type from an Any, the TypeCode of thetype is checked for equivalence with the TypeCode of the type stored by theAny. The equivalent() test in the TypeCode interface is used for this purpose.For example:
// IDL 1
typedef double Double1;

struct Test1 {
Double1 a;

};

// IDL 2
typedef double Double2;

struct Test1 {
Double2 a;

};

If an attempt is made to extract the type Test1 defined in IDL 1 from an Anycontaining the Test1 defined in IDL 2, this will succeed (and vice-versa), as thetwo types differ only by an alias.
10.2.3 Top-level aliases.

When a type is inserted into an Any, the Any stores both the value of the typeand the TypeCode for that type. However, in some cases, a top-level alias canbe lost due to the details of the C++ mapping. For example, consider these IDLdefinitions:
// IDL 3
typedef sequence<double> seqDouble1;
typedef sequence<double> seqDouble2;
typedef seqDouble2 seqDouble3;

omniidl generates distinct types for seqDouble1 and seqDouble2, and there-fore each has its own set of C++ operators for Any insertion and extraction.That means inserting a seqDouble1 into an Any sets the Any’s TypeCode to in-clude the alias ‘seqDouble1’, and inserting a seqDouble2 sets the TypeCode tothe alias ‘seqDouble2’.



112 CHAPTER 10. TYPE ANY AND TYPECODE

However, in the C++ mapping, seqDouble3 is required to be just a C++typedef to seqDouble2, so the C++ compiler uses the Any insertion operatorfor seqDouble2. Therefore, inserting a seqDouble3 sets the Any’s TypeCode tothe seqDouble2 alias. If this is not desirable, you can use the member function‘void type(TypeCode_ptr)’ of the Any interface to explicitly set the TypeCodeto the correct one.

10.2.4 Removing aliases from TypeCodes.

Some ORBs (such as old versions of Orbix) will not accept TypeCodes contain-ing tk_alias TypeCodes. When using type Any while interoperating with theseORBs, it is necessary to remove tk_alias TypeCodes from throughout the Type-Code representing a constructed type.
To remove all tk_alias TypeCodes from TypeCodes transmitted in Anys,supply the -ORBtcAliasExpand 1 command-line flag when running an omniORBexecutable. There will be some (small) performance penalty when transmittingAny values.
Note that the _tc_ TypeCodes generated for all constructed types will con-tain the complete TypeCode for the type (including any tk_alias TypeCodes),regardless of whether the -ORBtcAliasExpand flag is set to 1 or not. It is onlywhen Anys are transmitted that the aliases are stripped.

10.2.5 Recursive TypeCodes.

omniORB supports recursive TypeCodes. This means that types such as thefollowing can be inserted or extracted from an Any:
// IDL 4
struct Test4 {
sequence<Test4> a;

};

10.2.6 Threads and type Any.

Inserting and extracting simultaneously from the same Any (in 2 threads) resultsin undefined behaviour.
In versions of omniORB before 4.0, extracting simultaneously from the sameAny (in 2 or more different threads) also led to undefined behaviour. That is nolonger the case—Any extraction is now thread safe.



10.3. TYPECODE IN OMNIORB 113
10.3 TypeCode in omniORB

This section contains some notes on the use and behaviour of TypeCode in omni-ORB
10.3.1 TypeCodes in IDL.

When using TypeCodes in IDL, note that they are defined in the CORBA scope.Therefore, CORBA::TypeCode should be used. Example:
// IDL 5
struct Test5 {
long length;
CORBA::TypeCode desc;

};

10.3.2 orb.idl

The CORBA specification says that IDL using CORBA::TypeCode must includethe file orb.idl. That is not required in omniORB, but a suitable orb.idl isavailable.
10.3.3 Generating TypeCodes for constructed types.

To generate a TypeCode for constructed types, specify the -Wba command-lineflag when running omniidl. This will generate a _tc_ TypeCode describing thetype, at the same scope as the type. Example:
// IDL 6
struct Test6 {
double a;
sequence<long> b;

};

A TypeCode, _tc_Test6, will be generated to describe the struct Test6. Theoperations defined in the TypeCode interface can be used to query the TypeCodeabout the type it represents.



114 CHAPTER 10. TYPE ANY AND TYPECODE



Chapter 11

Objects by value, abstract
interfaces and local interfaces

omniORB 4.1 supports objects by value, declared with the valuetype keyword inIDL, and both abstract and local interfaces. This chapter outlines some issuesto do with using these types in omniORB. You are assumed to have read therelevant parts of the CORBA specification, specifically chapters 3, 4, 5 and 6of the CORBA 2.6 specification, and sections 1.17, 1.18 and 1.35 of the C++mapping specification, version 1.1.

11.1 Features

omniORB supports the complete objects by value specification, with the excep-tion of custom valuetypes. All other valuetype features including value boxes,value sharing semantics, abstract valuetypes, and abstract interfaces are sup-ported. Local interfaces are supported, with a number of caveats outlined insection 11.8.

11.2 Reference counting

Values are reference counted. This means that, as long as your application prop-erly manages reference counts, values are usually automatically deleted whenthey are no longer required. However, one of the features of valuetypes is thatthey support the representation of cyclic graph structures. In that kind of situ-ation, the reference counting garbage collection does not work, because refer-ences internal to the graph prevent the reference counts ever becoming zero.To avoid memory leaks, application code must explicitly break any referencecycles in values it manipulates. This includes graphs of values received as pa-rameters and return values from CORBA operations.
115



116 CHAPTER 11. OBJECTS BY VALUE, ETC.

11.3 Value sharing and local calls

When valuetypes are passed as parameters in CORBA calls (i.e. calls on CORBAobjects declared with interface in IDL), the structure of related values is main-tained. Consider, for example, the following IDL definitions (which are from theexample code in src/examples/valuetype/simple:
module ValueTest {
valuetype One {
public string s;
public long l;

};

interface Test {
One op1(in One a, in One b);

};
};

If the client to the Test object passes the same value in both parameters,just one value is transmitted, and the object implementation receives a copy ofthe single value, with references to it in both parameters.In the case that the object is remote from the client, there is obviously acopying step involved. In the case that the object is in the same address spaceas the client, the same copying semantics must be maintained so that the objectimplementation can modify the values it receives without the client seeing themodifications. To support that, omniORB must copy the entire parameter list inone operation, in case there is sharing between different parameters. Such copy-ing is a rather more time-consuming process than the parameter-by-parametercopy that takes place in calls not involving valuetypes.To avoid the overhead of copying parameters in this way, applications canchoose to relax the semantics of value copying in local calls, so values are notcopied at all, but are passed by reference. In that case, the client to a callwill seeany modifications to the values it passes as parameters (and similarly, the objectimplementation will see any changes the client makes to returned values). Tochoose this option, set the copyValuesInLocalCalls configuration parameterto zero.

11.4 Value box factories

With normal valuetypes, omniidl generates factory classes (with names ending
_init) as required by the C++ mapping specification. The application is re-sponsible for registering the factories with the ORB.Unfortunately, the C++ mapping makes no mention of factories for valueboxes. In omniORB, factories for value boxes are automatically registered with



11.5. STANDARD VALUE BOXES 117
the ORB, and there are no application-visible factory classes generated for them.Some other CORBA implementations generate application visible factories, andthe application does have to register the factories with the ORB.

11.5 Standard value boxes

The standard CORBA::StringValue and CORBA::WStringValue value boxes areavailable to application code. To make the definitions available in IDL, #includethe standard orb.idl.

11.6 Covariant returns

As required by the C++ mapping, on C++ compilers that support covariant re-turn types, omniidl generates code for the _copy_value() function that returnsthe most derived type of the value. On older compilers, _copy_value() returns
CORBA::ValueBase.If you write code that calls _copy_value(), and you need to support oldercompilers, you should assign the result to a variable of type CORBA::ValueBase*and downcast to the target type, rather than using the covariant return.If you are overriding _copy_value(), you must correctly take account of the
OMNI_HAVE_COVARIANT_RETURNS preprocessor definition.

11.7 Values inside Anys

Valuetypes inserted into Anys cause a number of interesting issues. Even wheninside Anys, values are required to support complete sharing semantics. Takethis IDL for example:
module ValueTest {
valuetype One {
public string s;
public long l;

};

interface AnyTest {
void op1(in One v, in Any a);

};
};

Now, suppose the client behaves as follows:
ValueTest::One* v = new One_impl("hello", 123);
CORBA::Any a;
a <<= v;



118 CHAPTER 11. OBJECTS BY VALUE, ETC.

obj->op1(v, a);

then on the server side:
void AnyTest_impl::op1(ValueTest::One* v, CORBA::Any& a)
{
ValueTest::One* v2;
a >>= v2;
assert(v2 == v);

}

This is all very well in this kind of simple situation, but problems can arise iftruncatable valuetypes are used. Imagine this derived value:
module ValueTest {
valuetype Two : truncatable One {
public double d;

};
};

Now, suppose that the client shown above sends an instance of valuetype Twoin both parameters, and suppose that the server has not seen the definition ofvaluetype Two. In this situation, as the first parameter is unmarshalled, it will betruncated to valuetype One, as required. Now, when the Any is unmarshalled,it refers to the same value, which has been truncated. So, even though theTypeCode in the Any indicates that the value has type Two, the stored valueactually has type One. If the receiver of the Any tries to pass it on, transmissionwill fail because the Any’s value does not match its TypeCode.In the opposite situation, where an Any parameter comes before a valuetypeparameter, a different problem occurs. In that case, as the Any is unmarshalled,there is no type information available for valuetype Two, so the value inside theAny has an internal omniORB type used for unknown valuetypes. As the nextparameter is unmarshalled, omniORB sees that the shared value is unknown,and is able to convert it to the target One valuetype with truncation. In thiscase, the Any and the plain valuetype both have the correct types and values,but the fact that both should have referred to the same value has been lost.Because of these issues, it is best to avoid defining interfaces that mix value-types and Anys in a single operation, and certainly to avoid trying to share plainvalues with values inside Anys.
11.7.1 Values inside DynAnys

The sharing semantics of valuetypes can also cause difficulties for DynAny. TheCORBA 2.6 specification does not mention how shared values inside DynAnysshould be handled; the CORBA 3.x specification slightly clarifies the situation,but it is still unclear. To write portable code it is best to avoid manipulatingDynAnys containing values that are shared.



11.8. LOCAL INTERFACES 119
In omniORB, when a value inside an Any is converted into a DynAny, thevalue’s state is copied into the DynAny, and manipulated there. When convert-ing back to an Any a new value is created. This means that any other referencesto the original value (whether themselves inside Anys of not) still relate to theoriginal value, with unchanged state. However, this copying only occurs when aDynValue is actually created, so for example a structure with two value membersreferring to the same value can manipulated inside a DynAny without breakingthe sharing, provided the value members are not accessed as DynAnys. Extract-ing the value members as ValueBase will reveal the sharing, for example.

11.8 Local Interfaces

Local interfaces are somewhat under-specified in the C++ mapping. This sec-tion outlines the way local interfaces are supported in omniORB, and details thelimitations and issues.
11.8.1 Simple local interfaces

With simple IDL, there are no particular issues:
module Test {
local interface Example {
string hello(in string arg);

};
};

The IDL compiler generates an abstract base class Test::Example. The ap-plication defines a class derived from it that implements the abstract hello()member function. Instances of that class can then be used where the IDL spec-ifies interface Example.Note that, by default, local interface implementations have no referencecounting behaviour. If the local object should be deleted when the last referenceis released, the application must implement the _add_ref() and _remove_ref()virtual member functions within the implementation class. Make sure that theimplementations are thread safe.
11.8.2 Inheritance from unconstrained interfaces

Local interfaces can inherit from unconstrained (i.e. non-local) interfaces:
module Test {
interface One {
void problem(inout string arg);

};
local interface Two : One {



120 CHAPTER 11. OBJECTS BY VALUE, ETC.

};

interface Receiver {
void setOne(in One a);

};
};

IDL like this leads to two issues to do with omniORB’s C++ mapping imple-mentation.First, an instance of local interface Two should be suitable to pass as the ar-gument to the setOne()method of a Receiver object (as long as the object is inthe same address space as the caller). Therefore, the Two abstract base class hasto inherit from the internal class omniORB uses to map object references of type
One. For performance reasons, the class that implements One object referencesnormally has non-virtual member functions. That means that the application-supplied problem() member function for the implementation of local interface
Two will not override the base class’s version. To overcome this, the IDL for thebase unconstrained interface must be compiled with the -Wbvirtual-objrefswitch to omniidl. That makes the member functions of the mapping of One intovirtual functions, so they can be overridden.The second problem is that, in some cases, omniORB uses a different map-ping for object reference member functions than the mapping used in servantclasses. For example, in the problem() operation, it uses an internal type forthe inout string argument that avoids memory issues if the application uses a
String_var in the argument. This means that the abstract member functiondeclared in the Two class (and implemented by the application) has a differentsignature to the member function in the base class. The application-suppliedclass will therefore not properly override the base class method. In all likeli-hood, the C++ compiler will also complain that the two member functions areambiguous. The solution to this problem is to use the implementation mappingin the base object reference class, rather than the normal object reference map-ping, using the -Wbimpl-mapping switch to omniidl. The consequence of this isthat some uses of _var types for inout arguments that are normally acceptablein omniORB can now lead to memory management problems.In summary, to use local interfaces derived from normal unconstrained in-terfaces, you should compile all your IDL with the omniidl flags:

-Wbvirtual-objref -Wbimpl-mapping

11.8.3 Valuetypes supporting local interfaces

According to the IDL specification, it should be possible to declare a valuetypethat supports a local interface:



11.8. LOCAL INTERFACES 121
local interface I {
void my_operation();

};
valuetype V supports I {
public string s;

};

omniidl accepts the IDL, but unfortunately the resulting C++ code does notcompile. The C++mapping specification has a problem in that both the CORBA::
LocalObject and CORBA::ValueBase classes have _add_ref() and _remove_
ref() member functions defined. The classes generated for the valuetype in-herit from both these base classes, and therefore have an ambiguity. Until theC++ mapping resolves this conflict, valuetypes supporting local interfaces can-not be used in omniORB.



122 CHAPTER 11. OBJECTS BY VALUE, ETC.



Chapter 12

Asynchronous Method
Invocation

omniORB 4.2 supports Asynchronous Method Invocation, AMI, as defined in theCORBA Messaging specification. It supports both the polling and callback mod-els of asynchronous calls. Note that omniORB does not support the other partsof theMessaging specification such as Quality of Service, Routing and Persistentrequests.While omniORB mainly targets the 2.6 version of the CORBA specification,the AMI support follows the CORBAMessaging specification as described in theCORBA 3.1 specification, chapter 17 [OMG08]. That version of the specificationis largely the same as the one in CORBA 2.6. The only significant difference isthat exception replies in the callback model use a simpler interface-independentmapping.
12.1 Implied IDL

AMI works by defining some additional implied IDL for each interface in thereal IDL. The implied IDL contains type and operation definitions that enableasynchronous calls.As a guide to the implied IDL, there is a special ami back-end to omniidl thatoutputs the implied IDL for the given input IDL. For example, given the Echoexample IDL:
// echo.idl
interface Echo {
string echoString(in string mesg);

};

You can output the implied IDL using
omniidl -bami echo.idl

123



124 CHAPTER 12. ASYNCHRONOUS METHOD INVOCATION

That outputs the following to standard out:
// ReplyHandler for interface Echo
interface AMI_EchoHandler : Messaging::ReplyHandler {
void echoString(in string ami_return_val);
void echoString_excep(in ::Messaging::ExceptionHolder excep_holder);

};

// Poller valuetype for interface Echo
abstract valuetype AMI_EchoPoller : Messaging::Poller {
void echoString(in unsigned long ami_timeout, out string ami_return_val);

};

// AMI implied operations for interface Echo
interface Echo {
void sendc_echoString(in ::AMI_EchoHandler ami_handler, in string mesg);
::AMI_EchoPoller sendp_echoString(in string mesg);

};

Alternatively, you can use the -Wbdump option to output an interleaved versionthat shows the original IDL and the implied IDL together.Note that the implied IDL output is for information only. You should notcompile it, but rather instruct the omniidl C++ back-end to generate the corre-sponding C++ definitions.

12.2 Generating AMI stubs

To generate stub code including AMI types and operations, give the -Wbami com-mand line option to omniidl’s cxx back-end:
omniidl -bcxx -Wbami echo.idl

That generates the normal C++ stubs and skeletons, plus all the definitions inthe implied IDL.

12.3 AMI examples

Example AMI clients for the Echo server can be found in src/examples/ami.



Chapter 13

Interface Type Checking

This chapter describes the mechanism used by omniORB to ensure type safetywhen object references are exchanged across the network. This mechanism ishandled completely within the ORB. There is no programming interface visibleat the application level. However, for the sake of diagnosing the problem whenthere is a type violation, it is useful to understand the underlying mechanism inorder to interpret the error conditions reported by the ORB.

13.1 Introduction

In GIOP/IIOP, an object reference is encoded as an Interoperable Object Ref-erence (IOR) when it is sent across a network connection. The IOR contains aRepository ID (RepoId) and one or more communication profiles. The communi-cation profiles describe where and how the object can be contacted. The RepoIdis a string which uniquely identifies the IDL interface of the object.Unless the ID pragma is specified in the IDL, the ORB generates the RepoIdstring in the so-called OMG IDL Format1. For instance, the RepoId for the Echointerface used in the examples of chapter 2 is IDL:Echo:1.0.When interface inheritance is used in the IDL, the ORB always sends theRepoId of the most derived interface. For example:
// IDL
interface A {
...

};
interface B : A {
...

};
interface C {

1For further details of the repository ID formats, see section 10.6 in the CORBA 2.6 specifica-tion.
125



126 CHAPTER 13. INTERFACE TYPE CHECKING

void op(in A arg);
};

// C++
C_ptr server;
B_ptr objB;
A_ptr objA = objB;
server->op(objA); // Send B as A

In the example, the operation C::op() accepts an object reference of type
A. The real type of the reference passed to C::op() is B, which inherits from A.In this case, the RepoId of B, and not that of A, is sent across the network.The GIOP/IIOP specification allows an ORB to send a null string in the RepoIdfield of an IOR. It is up to the receiving end to work out the real type of theobject. omniORB never sends out null strings as RepoIds, but it may receivenull RepoIds from other ORBs. In that case, it will use the mechanism describedbelow to ensure type safety.

13.2 Interface Inheritance

When the ORB receives an IOR of interface type B when it expects the type tobe A, it must find out if B inherits from A. When the ORB has no local knowledgeof the type B, it must work out the type of B dynamically.The CORBA specification defines an Interface Repository (IR) from whichIDL interfaces can be queried dynamically. In the above situation, the ORBcould contact the IR to find out the type of B. However, this approach assumesthat an IR is always available and contains the up-to-date information of all theinterfaces used in the domain. This assumption may not be valid in many appli-cations.An alternative is to use the _is_a() operation to work out the actual typeof an object. This approach is simpler and more robust than the previous onebecause no 3rd party is involved, so this is what omniORB does.
class Object{

CORBA::Boolean _is_a(const char* type_id);
};

The _is_a() operation is part of the CORBA::Object interface and must beimplemented by every object. The input argument is a RepoId. The functionreturns true if the object is really an instance of that type, including if that typeis a base type of the most derived type of that object.In the situation above, the ORB would invoke the _is_a() operation on theobject and ask if the object is of type A before it processes any application invo-cation on the object.



13.2. INTERFACE INHERITANCE 127
Notice that the _is_a() call is not performed when the IOR is unmarshalled.It is performed just prior to the first application invocation on the object. Thisleads to some interesting failure modes if B reports that it is not an A. Considerthe following example:
// IDL
interface A { ... };
interface B : A { ... };
interface D { ... };
interface C {
A op1();
Object op2();

};

1 // C++
2 C_ptr objC;
3 A_ptr objA;
4 CORBA::Object_ptr objR;
5
6 objA = objC->op1();
7 (void) objA->_non_existent();
8
9 objR = objC->op2();
10 objA = A::_narrow(objR);

If the stubs of A,B,C,D are linked into the executable and:
Case 1 C::op1() and C::op2() return a B. Lines 6–10 complete successfully.The remote object is only contacted at line 7.
Case 2 C::op1() and C::op2() return a D. This condition only occurs if theruntime of the remote end is buggy. Even though the IDL definitions showthat D is not derived from A, omniORB gives it the benefit of the doubt,in case it actually has a more derived interface that is derived from bothA and D. At line 7, the object is contacted to ask if it is an A. The answeris no, so a CORBA::INV_OBJREF exception is raised. At line 10, the narrowoperation will fail, and objA will be set to nil.
If only the stubs of A are linked into the executable and:
Case 1 C::op1() and C::op2() return a B. Lines 6–10 complete successfully.When lines 7 and 10 are executed, the object is contacted to ask if it is anA.
Case 2 C::op1() and C::op2() return a D. This condition only occurs if theruntime of the remote end is buggy. Line 6 completes and no exception israised. At line 7, the object is contacted to ask if it is an A. If the answer



128 CHAPTER 13. INTERFACE TYPE CHECKING

is no, a CORBA::INV_OBJREF exception is raised. At line 10, the narrowoperation will fail, and objA will be set to nil.



Chapter 14

Packaging stubs into DLLs

omniORB’s stubs can be packaged into shared libraries or DLLs. On Unix plat-forms this is mostly painless, but on Windows things are slightly more tricky.

14.1 Dynamic loading and unloading

As long as your platform supports running static initialisers and destructors aslibraries are loaded and unloaded, you can package stubs into shared libraries/ DLLs, and load them dynamically at runtime.There is one minor problem with this, which is that normally nil object refer-ences are heap allocated, and only deallocated when the ORB is destroyed. Thatmeans that if you unload a stub library from which nil references have been ob-tained (just by creating an object reference _var for example), there is a risk ofa segmentation fault when the ORB is destroyed. To avoid that problem, definethe OMNI_UNLOADABLE_STUBS C pre-processor symbol while you are compilingthe stub files. Unfortunately, with that define set, there is a risk that object ref-erence _vars at global scope will segfault as they are unloaded. You must notcreate _vars at global scope if you are using OMNI_UNLOADABLE_STUBS.

14.2 Windows DLLs

On Unix platforms, the linker figures out how to link the symbols exported by alibrary in to the running program. On Windows, unfortunately, you have to tellthe linker where symbols are coming from. This causes all manner of difficulties.
14.2.1 Exporting symbols

To (statically) link with a DLL file in Windows, you link with a LIB file whichreferences the symbols exported from the DLL. To build the LIB and DLL files,
129



130 CHAPTER 14. PACKAGING STUBS INTO DLLS

the correct symbols must be exported. One way to do that is to decorate thesource code with magic tags that tell the compiler to export the symbols. Thealternative is to provide a DEF file that lists all the symbols to be exported.omniORB uses a DEF file.The question is, how do you create the DEF file? The answer is to use aPython script named makedeffile.py that lives in the bin\scripts directoryin the omniORB distribution. makedeffile.py runs the dumpbin program thatcomes with Visual C++, and processes its output to extract the necessary sym-bols. Although it is designed for exporting the symbols from omniORB stub files,it can actually be used for arbitrary C++ code. To use it to create a DLL from asingle source file, use the following steps:
1. Compile the source:

cl -c -O2 -MD -GX -Fofoo.o -Tpfoo.cc

2. Build a static library (It probably won’t work on its own due to the -MDswitch to cl, but we just need it to get the symbols out):
lib -out:foo_static.lib foo.o

3. Use the script to build a .def file:
makedeffile.py foo_static.lib foo 1.0 foo.def

4. Build the .dll and .lib with the def file.
link -out:foo.dll -dll -def:foo.def -implib:foo.lib foo.o

Of course, you can link together many separate C++ files, rather than justthe one shown here.
14.2.2 Importing constant symbols

As if exporting the symbols from a DLL was not complicated enough, any con-stant values exported by a DLL have to be explicitly imported into the code usingthem. omniORB’s stub files declare a number of such constants. This time, theconstant declarations in the generated header files are decorated in a way thattells the compiler what to do. When the stub headers are #included, the correctpre-processor defines must be set. If things are not set correctly, the code alllinks without problems, but then mysteriously blows up at run time.Depending on how complex your situation is, there are a range of solutions.Starting with the simplest, here are some scenarios you may find yourself in:
1. All stub code, and all code that uses it is wrapped up in a single DLL.
Do nothing special.



14.2. WINDOWS DLLS 131
2. All stub code is in a single DLL. Code using it is in another DLL, or not ina DLL at all.

#define USE_stub_in_nt_dll before #include of the stub headers.
3. The stubs for each IDL file are in separate DLLs, one DLL per IDL file.
In this case, if the IDL files #include each other, then when the stub filesare compiled, import declarations are needed so that references betweenthe separate DLLs work. To do this, first compile the IDL files with the
-Wbdll_stubs flag:
omniidl -bcxx -Wbdll_stubs example.idl

Then define the INCLUDED_stub_in_nt_dll pre-processor symbol whencompiling the stub files. As above, define USE_stub_in_nt_dll when in-cluding the stub headers into application code.
4. Stubs and application code are packaged into multiple DLLs, but DLLscontain the stubs for more than one IDL file.
This situation is handled by ‘annotating’ the IDL files to indicate whichDLLs they will be compiled into. The annotation takes the form of some
#ifdefs to be inserted in the stub headers. For example,
// one.idl

#pragma hh #ifndef COMPILING_FIRST_DLL
#pragma hh # ifndef USE_stub_in_nt_dll
#pragma hh # define USE_stub_in_nt_dll
#pragma hh # endif
#pragma hh #endif

#include <two.idl>

module ModuleOne {
...

};

// two.idl

#pragma hh #ifndef COMPILING_SECOND_DLL
#pragma hh # ifndef USE_stub_in_nt_dll
#pragma hh # define USE_stub_in_nt_dll
#pragma hh # endif
#pragma hh #endif

#include <three.idl>
...



132 CHAPTER 14. PACKAGING STUBS INTO DLLS

Here, one.idl is packaged into first.dll and two.idl is in second.dll.When compiling first.dll, the COMPILING_FIRST_DLL define is set, mean-ing definitions from one.idl (and any other files in that DLL) are not im-ported. Any other module that includes the stub header for one.idl doesnot define COMPILING_FIRST_DLL, and thus imports the necessary symbolsfrom the DLL.
Rather than explicitly listing all the pre-processor code, it can be cleanerto use a C++ header file for each DLL. See the COS services IDL files in
idl/COS for an example.



Chapter 15

Resources

There are a number of useful online resources related to omniORB:
• http://omniorb.sourceforge.net/ is the main omniORB web site.
• The omniORB FAQ is at http://omniorb.sourceforge.net/faq.html
• The omniORB mailing list is the first port of call for questions that are notanswered in this document or in the FAQ. Subscription information andarchives are at http://omniorb.sourceforge.net/list.html
• Commercial support is available from http://www.omniorb-support.com/

133

http://omniorb.sourceforge.net/
http://omniorb.sourceforge.net/faq.html
http://omniorb.sourceforge.net/list.html
http://www.omniorb-support.com/


134 CHAPTER 15. RESOURCES



Bibliography

[BLFIM98] T. Berners-Lee, R. Fielding, U.C. Irvine, and L. Masinter. Uniform
Resource Identifiers (URI): Generic Syntax. RFC 2396, August1998.

[HV99] Michi Henning and Steve Vinoski. Advanced CORBA Programming
with C++. Addison-Wesley professional computing series, 1999.

[OMG98] Object Management Group. CORBAServices: Common Object Ser-
vices Specification, December 1998.

[OMG00] Object Management Group. Interoperable Naming Service revised
chapters, August 2000. From http://www.omg.org/cgi-bin/doc?ptc/
00-08-07.

[OMG01] Object Management Group. The Common Object Request Broker:
Architecture and Specification, 2.6 edition, December 2001. From
http://www.omg.org/cgi-bin/doc?formal/01-12-01.

[OMG03] Object Management Group. C++ Language Mapping, 1.1 edition,2003. From http://www.omg.org/cgi-bin/doc?formal/03-06-03.
[OMG08] Object Management Group. The Common Object Request Broker:

Architecture and Specification, 3.1 edition, January 2008. From
http://www.omg.org/cgi-bin/doc?formal/08-01-04.

[Ric96] Tristan Richardson. The OMNI Thread Abstraction. AT&T Labora-tories Cambridge, October 1996.

135


	Introduction
	Features
	Multithreading
	Portability
	Missing features

	Setting up your environment
	Platform specific variables

	The Basics
	The Echo Object Example
	Specifying the Echo interface in IDL
	Generating the C++ stubs
	Object References and Servants
	A quick look at the C++ mapping
	Mapping overview
	Interface scope type
	Object reference pointer type
	Nil object reference
	Object reference lifecycle
	Object reference inheritance
	Object reference equivalence

	Servant Object Implementation

	Writing the servant implementation
	Writing the client
	Example 1 — Colocated Client and Servant
	ORB initialisation
	Obtaining the Root POA
	Object initialisation
	Activating the POA
	Performing a call
	ORB destruction

	Example 2 — Different Address Spaces
	Making a Stringified Object Reference
	Client: Using a Stringified Object Reference
	Catching System Exceptions
	Lifetime of a CORBA object

	Example 3 — Using the Naming Service
	Obtaining the Root Context Object Reference
	The Naming Service Interface

	Example 4 — Using tie implementation templates
	Source Listings
	eg1.cc
	eg2_impl.cc
	eg2_clt.cc
	eg3_impl.cc
	eg3_clt.cc
	eg3_tieimpl.cc


	C++ language mapping
	omniORB 2 BOA compatibility
	omniORB 3.0 compatibility
	omniORB 4.0 compatibility
	omniORB 4.1 compatibility

	omniORB configuration and API
	Setting parameters
	Command line arguments
	ORB_init() parameter
	Environment variables
	Configuration file
	Windows registry

	Tracing options
	Tracing API

	Miscellaneous global options
	Client side options
	Server side options
	Main thread selection

	GIOP and interoperability options
	System Exception Handlers
	Minor codes
	CORBA::TRANSIENT handlers
	CORBA::TIMEOUT
	CORBA::COMM_FAILURE
	CORBA::SystemException

	Location forwarding

	The IDL compiler
	Common options
	Preprocessor interactions
	Ancient history: Windows 9x

	Forward-declared interfaces
	Comments

	C++ back-end options
	Optional code generation options
	Any and TypeCode
	Tie templates
	Asynchronous Method Invocation
	Example implementations

	Include file options
	Object reference operations
	Module splicing

	Examples

	Connection and Thread Management
	Background
	The model
	Client side behaviour
	Client side timeouts

	Server side behaviour
	Thread per connection mode
	Thread pool mode
	Policy transition

	Idle connection shutdown
	Interoperability Considerations

	Transports and endpoints
	Port ranges
	IPv6
	Link local addresses

	Endpoint publishing

	Connection selection and acceptance
	Client transport rules
	Server transport rules

	Bidirectional GIOP
	SSL transport

	Interoperable Naming Service
	Object URIs
	corbaloc
	Other transports
	Resolve initial references
	corbaname

	Configuring resolve_initial_references
	ORBInitRef
	ORBDefaultInitRef

	omniNames
	NamingContextExt
	Use with corbaname

	omniMapper
	Creating objects with simple object keys

	Code set conversion
	Native code sets
	Code set library
	Implementing new code sets

	Interceptors
	Interceptor registration
	Available interceptors
	Server-side call interceptor

	Type Any and TypeCode
	Example using type Any
	Type Any in IDL
	Inserting and Extracting Basic Types from an Any
	Inserting and Extracting Constructed Types from an Any

	Type Any in omniORB
	Generating Insertion and Extraction Operators.
	TypeCode comparison when extracting from an Any.
	Top-level aliases.
	Removing aliases from TypeCodes.
	Recursive TypeCodes.
	Threads and type Any.

	TypeCode in omniORB
	TypeCodes in IDL.
	orb.idl
	Generating TypeCodes for constructed types.


	Objects by value, etc.
	Features
	Reference counting
	Value sharing and local calls
	Value box factories
	Standard value boxes
	Covariant returns
	Values inside Anys
	Values inside DynAnys

	Local Interfaces
	Simple local interfaces
	Inheritance from unconstrained interfaces
	Valuetypes supporting local interfaces


	Asynchronous Method Invocation
	Implied IDL
	Generating AMI stubs
	AMI examples

	Interface Type Checking
	Introduction
	Interface Inheritance

	Packaging stubs into DLLs
	Dynamic loading and unloading
	Windows DLLs
	Exporting symbols
	Importing constant symbols


	Resources

