00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020 #include "config.h"
00021
00022 #include <stdlib.h>
00023 #include <math.h>
00024 #include <limits.h>
00025 #ifdef HAVE_COMPLEX_H
00026 #include <complex.h>
00027 #endif
00028
00029 #include "nfft3.h"
00030 #include "nfft3util.h"
00031
00041 static void construct(char * file, int N, int M)
00042 {
00043 int j;
00044 double real;
00045 double w;
00046 double time,min_time,max_time,min_inh,max_inh;
00047 mri_inh_3d_plan my_plan;
00048 FILE *fp,*fout,*fi,*finh,*ftime;
00049 int my_N[3],my_n[3];
00050 int flags = PRE_PHI_HUT| PRE_PSI |MALLOC_X| MALLOC_F_HAT|
00051 MALLOC_F| FFTW_INIT| FFT_OUT_OF_PLACE|
00052 FFTW_MEASURE| FFTW_DESTROY_INPUT;
00053
00054 double Ts;
00055 double W;
00056 int N3;
00057 int m=2;
00058 double sigma = 1.25;
00059
00060 ftime=fopen("readout_time.dat","r");
00061 finh=fopen("inh.dat","r");
00062
00063 min_time=INT_MAX; max_time=INT_MIN;
00064 for(j=0;j<M;j++)
00065 {
00066 fscanf(ftime,"%le ",&time);
00067 if(time<min_time)
00068 min_time = time;
00069 if(time>max_time)
00070 max_time = time;
00071 }
00072
00073 fclose(ftime);
00074
00075 Ts=(min_time+max_time)/2.0;
00076
00077 min_inh=INT_MAX; max_inh=INT_MIN;
00078 for(j=0;j<N*N;j++)
00079 {
00080 fscanf(finh,"%le ",&w);
00081 if(w<min_inh)
00082 min_inh = w;
00083 if(w>max_inh)
00084 max_inh = w;
00085 }
00086 fclose(finh);
00087
00088 N3=ceil((NFFT_MAX(fabs(min_inh),fabs(max_inh))*(max_time-min_time)/2.0+m/(2*sigma))*4*sigma);
00089
00090 W= NFFT_MAX(fabs(min_inh),fabs(max_inh))/(0.5-((double)m)/N3);
00091
00092 my_N[0]=N; my_n[0]=ceil(N*sigma);
00093 my_N[1]=N; my_n[1]=ceil(N*sigma);
00094 my_N[2]=N3; my_n[2]=ceil(N3*sigma);
00095
00096
00097 mri_inh_3d_init_guru(&my_plan, my_N, M, my_n, m, sigma, flags,
00098 FFTW_MEASURE| FFTW_DESTROY_INPUT);
00099
00100 ftime=fopen("readout_time.dat","r");
00101 fp=fopen("knots.dat","r");
00102
00103 for(j=0;j<my_plan.M_total;j++)
00104 {
00105 fscanf(fp,"%le %le",&my_plan.plan.x[3*j+0],&my_plan.plan.x[3*j+1]);
00106 fscanf(ftime,"%le ",&my_plan.plan.x[3*j+2]);
00107 my_plan.plan.x[3*j+2] = (my_plan.plan.x[3*j+2]-Ts)*W/N3;
00108 }
00109 fclose(fp);
00110 fclose(ftime);
00111
00112 finh=fopen("inh.dat","r");
00113 for(j=0;j<N*N;j++)
00114 {
00115 fscanf(finh,"%le ",&my_plan.w[j]);
00116 my_plan.w[j]/=W;
00117 }
00118 fclose(finh);
00119
00120
00121 fi=fopen("input_f.dat","r");
00122 for(j=0;j<N*N;j++)
00123 {
00124 fscanf(fi,"%le ",&real);
00125 my_plan.f_hat[j] = real*cexp(2.0*_Complex_I*PI*Ts*my_plan.w[j]*W);
00126 }
00127
00128 if(my_plan.plan.nfft_flags & PRE_PSI)
00129 nfft_precompute_psi(&my_plan.plan);
00130
00131 mri_inh_3d_trafo(&my_plan);
00132
00133 fout=fopen(file,"w");
00134
00135 for(j=0;j<my_plan.M_total;j++)
00136 {
00137 fprintf(fout,"%le %le %le %le\n",my_plan.plan.x[3*j+0],my_plan.plan.x[3*j+1],creal(my_plan.f[j]),cimag(my_plan.f[j]));
00138 }
00139
00140 fclose(fout);
00141
00142 mri_inh_3d_finalize(&my_plan);
00143 }
00144
00145 int main(int argc, char **argv)
00146 {
00147 if (argc <= 3) {
00148 printf("usage: ./construct_data_inh_3d FILENAME N M\n");
00149 return 1;
00150 }
00151
00152 construct(argv[1],atoi(argv[2]),atoi(argv[3]));
00153
00154 return 1;
00155 }
00156