00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020 #include "config.h"
00021
00022 #include <stdlib.h>
00023 #include <math.h>
00024 #include <limits.h>
00025 #ifdef HAVE_COMPLEX_H
00026 #include <complex.h>
00027 #endif
00028
00029 #include "nfft3.h"
00030 #include "nfft3util.h"
00031 #include "infft.h"
00032
00039 static void reconstruct(char* filename,int N,int M,int iteration , int weight)
00040 {
00041 int j,k,l;
00042 ticks t0, t1;
00043 double time,min_time,max_time,min_inh,max_inh;
00044 double t,real,imag;
00045 double w,epsilon=0.0000003;
00046 ;
00047 mri_inh_3d_plan my_plan;
00048 solver_plan_complex my_iplan;
00049 FILE* fp,*fw,*fout_real,*fout_imag,*finh,*ftime;
00050 int my_N[3],my_n[3];
00051 int flags = PRE_PHI_HUT| PRE_PSI |MALLOC_X| MALLOC_F_HAT|
00052 MALLOC_F| FFTW_INIT| FFT_OUT_OF_PLACE;
00053 unsigned infft_flags = CGNR | PRECOMPUTE_DAMP;
00054
00055 double Ts;
00056 double W;
00057 int N3;
00058 int m=2;
00059 double sigma = 1.25;
00060
00061 ftime=fopen("readout_time.dat","r");
00062 finh=fopen("inh.dat","r");
00063
00064 min_time=INT_MAX; max_time=INT_MIN;
00065 for(j=0;j<M;j++)
00066 {
00067 fscanf(ftime,"%le ",&time);
00068 if(time<min_time)
00069 min_time = time;
00070 if(time>max_time)
00071 max_time = time;
00072 }
00073
00074 fclose(ftime);
00075
00076 Ts=(min_time+max_time)/2.0;
00077
00078
00079 min_inh=INT_MAX; max_inh=INT_MIN;
00080 for(j=0;j<N*N;j++)
00081 {
00082 fscanf(finh,"%le ",&w);
00083 if(w<min_inh)
00084 min_inh = w;
00085 if(w>max_inh)
00086 max_inh = w;
00087 }
00088 fclose(finh);
00089
00090 N3=ceil((NFFT_MAX(fabs(min_inh),fabs(max_inh))*(max_time-min_time)/2.0+m/(2*sigma))*4*sigma);
00091
00092 if(N3%2!=0)
00093 N3++;
00094
00095 W= NFFT_MAX(fabs(min_inh),fabs(max_inh))/(0.5-((double) m)/N3);
00096
00097 my_N[0]=N;my_n[0]=ceil(N*sigma);
00098 my_N[1]=N; my_n[1]=ceil(N*sigma);
00099 my_N[2]=N3; my_n[2]=ceil(N3*sigma);
00100
00101
00102 mri_inh_3d_init_guru(&my_plan, my_N, M, my_n, m, sigma, flags,
00103 FFTW_MEASURE| FFTW_DESTROY_INPUT);
00104
00105 if (weight)
00106 infft_flags = infft_flags | PRECOMPUTE_WEIGHT;
00107
00108
00109 solver_init_advanced_complex(&my_iplan,(nfft_mv_plan_complex*)(&my_plan), infft_flags );
00110
00111
00112 if(my_iplan.flags & PRECOMPUTE_WEIGHT)
00113 {
00114 fw=fopen("weights.dat","r");
00115 for(j=0;j<my_plan.M_total;j++)
00116 {
00117 fscanf(fw,"%le ",&my_iplan.w[j]);
00118 }
00119 fclose(fw);
00120 }
00121
00122
00123 if(my_iplan.flags & PRECOMPUTE_DAMP)
00124 {
00125 for(j=0;j<N;j++){
00126 for(k=0;k<N;k++) {
00127 int j2= j-N/2;
00128 int k2= k-N/2;
00129 double r=sqrt(j2*j2+k2*k2);
00130 if(r>(double) N/2)
00131 my_iplan.w_hat[j*N+k]=0.0;
00132 else
00133 my_iplan.w_hat[j*N+k]=1.0;
00134 }
00135 }
00136 }
00137
00138 fp=fopen(filename,"r");
00139 ftime=fopen("readout_time.dat","r");
00140
00141 for(j=0;j<my_plan.M_total;j++)
00142 {
00143 fscanf(fp,"%le %le %le %le",&my_plan.plan.x[3*j+0],&my_plan.plan.x[3*j+1],&real,&imag);
00144 my_iplan.y[j]=real+ _Complex_I*imag;
00145 fscanf(ftime,"%le ",&my_plan.plan.x[3*j+2]);
00146
00147 my_plan.plan.x[3*j+2] = (my_plan.plan.x[3*j+2]-Ts)*W/N3;
00148 }
00149 fclose(fp);
00150 fclose(ftime);
00151
00152
00153 finh=fopen("inh.dat","r");
00154 for(j=0;j<N*N;j++)
00155 {
00156 fscanf(finh,"%le ",&my_plan.w[j]);
00157 my_plan.w[j]/=W;
00158 }
00159 fclose(finh);
00160
00161
00162 if(my_plan.plan.nfft_flags & PRE_PSI) {
00163 nfft_precompute_psi(&my_plan.plan);
00164 }
00165 if(my_plan.plan.nfft_flags & PRE_FULL_PSI) {
00166 nfft_precompute_full_psi(&my_plan.plan);
00167 }
00168
00169
00170 for(j=0;j<my_plan.N_total;j++)
00171 {
00172 my_iplan.f_hat_iter[j]=0.0;
00173 }
00174
00175 t0 = getticks();
00176
00177
00178 solver_before_loop_complex(&my_iplan);
00179 for(l=0;l<iteration;l++)
00180 {
00181
00182 if(my_iplan.dot_r_iter<epsilon)
00183 break;
00184 fprintf(stderr,"%e, %i of %i\n",sqrt(my_iplan.dot_r_iter),
00185 l+1,iteration);
00186 solver_loop_one_step_complex(&my_iplan);
00187 }
00188
00189 t1 = getticks();
00190 t = nfft_elapsed_seconds(t1,t0);
00191
00192 fout_real=fopen("output_real.dat","w");
00193 fout_imag=fopen("output_imag.dat","w");
00194
00195 for (j=0;j<N*N;j++) {
00196
00197 my_iplan.f_hat_iter[j]*=cexp(-2.0*_Complex_I*PI*Ts*my_plan.w[j]*W);
00198
00199 fprintf(fout_real,"%le ",creal(my_iplan.f_hat_iter[j]));
00200 fprintf(fout_imag,"%le ",cimag(my_iplan.f_hat_iter[j]));
00201 }
00202
00203 fclose(fout_real);
00204 fclose(fout_imag);
00205 solver_finalize_complex(&my_iplan);
00206 mri_inh_3d_finalize(&my_plan);
00207 }
00208
00209
00210 int main(int argc, char **argv)
00211 {
00212 if (argc <= 5) {
00213
00214 printf("usage: ./reconstruct_data_inh_3d FILENAME N M ITER WEIGHTS\n");
00215 return 1;
00216 }
00217
00218 reconstruct(argv[1],atoi(argv[2]),atoi(argv[3]),atoi(argv[4]),atoi(argv[5]));
00219
00220 return 1;
00221 }
00222