00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020 #include "config.h"
00021
00022 #include <stdlib.h>
00023 #include <math.h>
00024 #include <limits.h>
00025 #ifdef HAVE_COMPLEX_H
00026 #include <complex.h>
00027 #endif
00028
00029 #include "nfft3.h"
00030 #include "nfft3util.h"
00031 #include "infft.h"
00032
00039 static void reconstruct(char* filename,int N,int M,int iteration , int weight)
00040 {
00041 int j,k,l;
00042 double time,min_time,max_time,min_inh,max_inh;
00043 ticks t0, t1;
00044 double t,real,imag;
00045 double w,epsilon=0.0000003;
00046 ;
00047 mri_inh_2d1d_plan my_plan;
00048 solver_plan_complex my_iplan;
00049 FILE* fp,*fw,*fout_real,*fout_imag,*finh,*ftime;
00050 int my_N[3],my_n[3];
00051 int flags = PRE_PHI_HUT| PRE_PSI |MALLOC_X| MALLOC_F_HAT|
00052 MALLOC_F| FFTW_INIT| FFT_OUT_OF_PLACE;
00053 unsigned infft_flags = CGNR | PRECOMPUTE_DAMP;
00054
00055 double Ts;
00056 double W,T;
00057 int N3;
00058 int m=2;
00059 double sigma = 1.25;
00060
00061 ftime=fopen("readout_time.dat","r");
00062 finh=fopen("inh.dat","r");
00063
00064 min_time=INT_MAX; max_time=INT_MIN;
00065 for(j=0;j<M;j++)
00066 {
00067 fscanf(ftime,"%le ",&time);
00068 if(time<min_time)
00069 min_time = time;
00070 if(time>max_time)
00071 max_time = time;
00072 }
00073
00074 fclose(ftime);
00075
00076 Ts=(min_time+max_time)/2.0;
00077
00078
00079 min_inh=INT_MAX; max_inh=INT_MIN;
00080 for(j=0;j<N*N;j++)
00081 {
00082 fscanf(finh,"%le ",&w);
00083 if(w<min_inh)
00084 min_inh = w;
00085 if(w>max_inh)
00086 max_inh = w;
00087 }
00088 fclose(finh);
00089
00090 N3=ceil((NFFT_MAX(fabs(min_inh),fabs(max_inh))*(max_time-min_time)/2.0+(m)/(2*sigma))*4*sigma);
00091
00092 if(N3%2!=0)
00093 N3++;
00094
00095 T=((max_time-min_time)/2.0)/(0.5-((double) (m))/N3);
00096 W=N3/T;
00097
00098 my_N[0]=N; my_n[0]=ceil(N*sigma);
00099 my_N[1]=N; my_n[1]=ceil(N*sigma);
00100 my_N[2]=N3; my_n[2]=N3;
00101
00102
00103 mri_inh_2d1d_init_guru(&my_plan, my_N, M, my_n, m, sigma, flags,
00104 FFTW_MEASURE| FFTW_DESTROY_INPUT);
00105
00106
00107
00108 if(my_plan.plan.nfft_flags & PRE_LIN_PSI)
00109 nfft_precompute_lin_psi(&my_plan.plan);
00110
00111 if (weight)
00112 infft_flags = infft_flags | PRECOMPUTE_WEIGHT;
00113
00114
00115 solver_init_advanced_complex(&my_iplan,(nfft_mv_plan_complex*)(&my_plan), infft_flags );
00116
00117
00118 if(my_iplan.flags & PRECOMPUTE_WEIGHT)
00119 {
00120 fw=fopen("weights.dat","r");
00121 for(j=0;j<my_plan.M_total;j++)
00122 {
00123 fscanf(fw,"%le ",&my_iplan.w[j]);
00124 }
00125 fclose(fw);
00126 }
00127
00128
00129 if(my_iplan.flags & PRECOMPUTE_DAMP)
00130 {
00131 for(j=0;j<N;j++){
00132 for(k=0;k<N;k++) {
00133 int j2= j-N/2;
00134 int k2= k-N/2;
00135 double r=sqrt(j2*j2+k2*k2);
00136 if(r>(double) N/2)
00137 my_iplan.w_hat[j*N+k]=0.0;
00138 else
00139 my_iplan.w_hat[j*N+k]=1.0;
00140 }
00141 }
00142 }
00143
00144 fp=fopen(filename,"r");
00145 ftime=fopen("readout_time.dat","r");
00146
00147 for(j=0;j<my_plan.M_total;j++)
00148 {
00149 fscanf(fp,"%le %le %le %le",&my_plan.plan.x[2*j+0],&my_plan.plan.x[2*j+1],&real,&imag);
00150 my_iplan.y[j]=real+ _Complex_I*imag;
00151 fscanf(ftime,"%le ",&my_plan.t[j]);
00152
00153 my_plan.t[j] = (my_plan.t[j]-Ts)/T;
00154 }
00155 fclose(fp);
00156 fclose(ftime);
00157
00158
00159 finh=fopen("inh.dat","r");
00160 for(j=0;j<N*N;j++)
00161 {
00162 fscanf(finh,"%le ",&my_plan.w[j]);
00163 my_plan.w[j]/=W;
00164 }
00165 fclose(finh);
00166
00167
00168 if(my_plan.plan.nfft_flags & PRE_PSI) {
00169 nfft_precompute_psi(&my_plan.plan);
00170 }
00171 if(my_plan.plan.nfft_flags & PRE_FULL_PSI) {
00172 nfft_precompute_full_psi(&my_plan.plan);
00173 }
00174
00175
00176 for(j=0;j<my_plan.N_total;j++)
00177 {
00178 my_iplan.f_hat_iter[j]=0.0;
00179 }
00180
00181 t0 = getticks();
00182
00183
00184 solver_before_loop_complex(&my_iplan);
00185 for(l=0;l<iteration;l++)
00186 {
00187
00188 if(my_iplan.dot_r_iter<epsilon)
00189 break;
00190 fprintf(stderr,"%e, %i of %i\n",sqrt(my_iplan.dot_r_iter),
00191 l+1,iteration);
00192 solver_loop_one_step_complex(&my_iplan);
00193 }
00194
00195 t1 = getticks();
00196 t = nfft_elapsed_seconds(t1,t0);
00197
00198 fout_real=fopen("output_real.dat","w");
00199 fout_imag=fopen("output_imag.dat","w");
00200
00201 for (j=0;j<N*N;j++) {
00202
00203 my_iplan.f_hat_iter[j]*=cexp(-2.0*_Complex_I*PI*Ts*my_plan.w[j]*W);
00204
00205 fprintf(fout_real,"%le ",creal(my_iplan.f_hat_iter[j]));
00206 fprintf(fout_imag,"%le ",cimag(my_iplan.f_hat_iter[j]));
00207 }
00208
00209 fclose(fout_real);
00210 fclose(fout_imag);
00211 solver_finalize_complex(&my_iplan);
00212 mri_inh_2d1d_finalize(&my_plan);
00213 }
00214
00215
00216 int main(int argc, char **argv)
00217 {
00218 if (argc <= 5) {
00219
00220 printf("usage: ./reconstruct_data_inh_2d1d FILENAME N M ITER WEIGHTS\n");
00221 return 1;
00222 }
00223
00224 reconstruct(argv[1],atoi(argv[2]),atoi(argv[3]),atoi(argv[4]),atoi(argv[5]));
00225
00226 return 1;
00227 }
00228