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Figure 1: Life-cycle of a PFunc application.

1 Introduction

This tutorial helps you learn to use PFunc, short for Parallel Functions, a lightweight and portable
library that provides C and C++ APIs to express task parallelism. PFunc enables programmers
to focus on developing parallel algorithms and specify low-level and high-level tasks to paral-
lelize instead of working with native threading libraries such as POSIX and Windows threads.
Although there are several task libraries, PFunc is unique in that its features are a strict superset
of the features offered by current solutions for task parallelism. Specifically, PFunc extends the
feature set of current solutions with custom task scheduling, task priorities and task affinities.
In addition, PFunc offers task groups for SPMD-style programming and multiple task comple-
tion notifications for parallel execution of DAGs. PFunc’s extended feature set is geared towards
helping knowledgeable users optimize their application performance.

1.1 Organization

Figure 1 depicts the life-cycle of a PFunc application. First, the library is initialized. Then, tasks are
repeatedly spawned and executed in parallel. Finally, the library instance is cleared. This tutorial
is organized to reflect the life-cycle of PFunc applications. The table below gives a brief summary
of each section.
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Section Explanation

Section 1 Introduction to the tutorial.

Section 2 Installation and package information.

Section 3 Generating PFunc’s library instance description.

Section 4 Initializing the library.

Section 5 Creating, spawing, and waiting for tasks.

Section 6 A complete Fibonacci example in C.

Section 7 Packing and unpacking arguments in C.

Section 8 Setting task attributes.

Section 9 Group operations in PFunc.

Section 10 Locks and atomic operations.

Section 11 Higher-level parallel loop primitives.

Section 12 Handling exceptions.

Section 13 Gather hardware statistics using PFunc and PAPI.

Section 14 A detailed description of PFunc’s design.

Section 15 Customizing PFunc.

1.2 Salient Features

Customizable PFunc can be used “out-of-the-box”; however, for the more adventerous users,
most of PFunc’s features are completely customizable. PFunc is the first task parallel library to
offer STL-like customization of task scheduling policy, task stealing policy, task priorities, and
task affinities. As a result, PFunc is a great fit in an academic environment.

Generic PFunc is unique in its heavy use of generic programming — a programming paradigm
for developing efficient and reusable software libraries. While developing PFunc, we applied the
process of “lifting” to find both commonality and missing features among existing task paral-
lelism implementations such as Cilk, Intel’s Threading Building Blocks, and OpenMP tasks. The
use of generic programming allows PFunc to be flexible and yet highly efficient as most of its
customizations are done at compile-time.

Task parallelism PFunc provides a super-set of the features offered by other task parallel solu-
tions. For example, it introduces the ability to deliver multiple task completion notifications and
the notion of task groups. Multiple task completion notifications allow users to execute arbitrary
DAG computations instead of the traditional tree-based model supported in most other solutions.
On the other hand, groups allow users to seamlessly incorporate SPMD-style semantics into their
task parallel algorithms.

Loop parallelism A vast majority of algorithms can be parallelized by merely parallelizing the
loops in these algorithms. PFunc offers three high-level parallel loop structures: for , while , and
reduce, which can be used without delving into the details of task parallelism.

Production-grade Finally, PFunc provides production-grade exception handling and performance
monitoring mechanisms to assist software developers.
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2 Installation

This document contains basic information required to install and start using PFunc. Please take
the time to read through it as there might be subtleties in the build process that might influence
behavior of PFunc, and ultimately, your application.

2.1 Software Requirements

PFunc uses CMake to configure and build itself. We selected CMake for its portability across Win-
dows, Linux and Unix platforms. So, in order to configure and build PFunc, it is required that
CMake be installed on your system. To obtain a copy of CMake, please visit www.cmake.org.
PFunc requires CMake version 2.6 or later. To build documentation, PFunc requires these ad-
ditional software: doxygen, latex, dvips, ps2pdf, perl, and makeindex; however, these are not
required if users do not intend to build documentation.

2.2 Supported Platforms

PFunc is written in standards conformant C++, and as such, it should work with most C++ com-
pilers. However, because as PFunc makes heavy use of templates, it is recommended to get the
latest C++ compilers. Furthermore, as PFunc makes use of low-level assembly code for atomic
operations, it is guaranteed to work only on certain architectures. The table below lists all the
platforms on which PFunc has been tested.

Operating System Architecture Compiler

Windows Visual Studio Express 10.0 x86 32 and x86 64

Linux, kernel≥ 2.6 GCC ≥ 3.4.6 x86 32, x86 64, ppc32, and ppc64

AIX ≥ 5.3 GCC ≥ 3.4.6 ppc2 and ppc64

OS X ≥ 10.5 GCC ≥ 3.4.6 x86 32 and x86 64

2.3 Header Files and libpfunc

To use PFunc’s C++ interface, it is sufficient to configure PFunc and use the header files; on the
other hand, to use the C interface, it is necessary to link against libpfunc. The table below lists all
the header files and their contents.

Header Language Contents

pfunc/pfunc.h C All definitions for task-based parallelization.

pfunc/pfunc.hpp C++ All definitions for task-based parallelization.

pfunc/parallel for.hpp C++ Necessary to use pfunc::parallel for.
pfunc/parallel reduce.hpp C++ Necessary to use pfunc::parallel reduce.
pfunc/parallel while.hpp C++ Necessary to use pfunc::parallel while.
pfunc/pfunc atomics.h C,C++ Necessary to PFunc atomics.

pfunc/utility.h C,C++ Necessary to use timers and other utilities.

2.4 Configuration Options

Configuration is necessary to use either the C or the C++ interfaces. During this phase, PFunc
(using CMake) gathers all platform specific information to provide the most optimal execution to
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its users. There are a variety of options available for configuring PFunc; a detailed list of these
options is available using the command cmake −i. We briefly describe the important options and
their default values below.

CMAKE BUILD TYPE The available choices are Release, Debug and RelWithDebugInfo; the de-
fault is Release.

CMAKE INSTALL PREFIX The value of this variable is used as the base installation location
for PFunc; the default value is /usr/local.

BUILD EXAMPLES The available choices are ON|On and OFF|Off; by default, this option is
turned ON. Enabling this builds the examples that are provided with the distribution.

BUILD PERF TESTS The available choices are ON|On and OFF|Off; by default, this option is
turned OFF. Enabling this builds the performance tests that are provided with the distribution.

BUILD TUTORIAL The available choices are ON|On and OFF|Off; by default, this option is
turned OFF. Enabling this builds the PFunc tutorial.

BUILD DOCS The available choices are ON|On and OFF|Off; by default, this option is turned
OFF. Enabling this option builds in-code documentation.

USE EXCEPTIONS This option is used to turn on exception handling (ON|On) in PFunc; by
default, this option is turned OFF|Off.

USE PAPI This option is used to turn on hardware performance profiling (ON|On) in PFunc; by
default, this option is turned OFF|Off. Note that PAPI needs to be installed in order for perfor-
mance profiling to work.

2.5 Installation

For a clean installation process, we recommend an out-of-source build; however, the in-source
build works just as well. Given below are the basic installation instructions for PFunc on Lin-
ux/OS X/AIX:

• Get a copy of PFunc; for the sake of this installation guide, let us assume that PFunc’s sources
have been checked out in the directory /home/anon/pfunc.

• #cd /home/anon/ && mkdir pfunc−build

At the end of this step, we have created /home/anon/pfunc and /home/anon/pfunc−build.

• #cd /home/anon/pfunc−build

• #cmake /home/anon/pfunc −DCMAKE INSTALL PREFIX=/home/anon/pfunc−install

At this step, we are configuring PFunc and have choosen to install the files in /home/anon/pfunc−install.
Once configuration is done, the following targets are available to be built by the native build-
system:
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• pfunc, builds the static library libpfunc

• tutorial, builds the tutorial if BUILD TUTORIAL was ON.

• doc, build documentation if BUILD DOCS was ON.

• all, builds all the selected targets.

• clean, removes all the object files.

• install, installs the targets to the selected prefix.

• uninstall, does the obvious.

• examples, builds examples if BUILD EXAMPLES was ON.

• perf tests, builds performance tests if BUILD PERF TESTS was ON.

2.6 Caveat

PFunc is written completely in C++; that is, libpfunc is a C++ library that provides C-bindings.
To build a C executable using libpfunc, you may need to link against the C++ standard library
(libstdc++ on most machines and libC on AIX). When building the C examples and performance
tests, PFunc’s configuration mechanism checks for the presence of these libraries. Unfortunately,
due to a shortcoming in CMake, the library has to be named libstdc++.[so|a] or libC.[so|a]. Usually,
what you find on your system will be libstdc++.so.[0−9], with a symbolic link to libstdc++.so. In
the oft-chance that this symbolic link is missing, the C examples will fail to build. In this case,
manually create a symbolic link to libstdc++ to fix this issue.
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Feature Default

Scheduling policy cilkS
Compare std::less<int >()

Function object struct { virtual void operator ()() = 0; };

Table 1: Default values for PFunc’s template parameters.

3 Choosing The Right PFunc

PFunc is a templated library; the first step is, therefore, to generate the concrete type that will be
used as the library instance (C++ only). PFunc takes three template parameters: scheduling policy,
compare, and function object. Formost users, it is sufficient to provide default values to the template
parameters that are used in PFunc; Table 1 lists the default values for each of the three template
parameters. We briefly describe the roles of each of these template parameters; for a more detailed
description, please see Sections 14 and 15.

• Scheduling policy: This template parameter names the scheduling policy to be used; the built-in
values that can be used are cilkS, lifoS, fifoS, and prioS.

• Compare: This template parameter represents the ordering operator for task priorities; for the built-
in scheduling policies, it is used only for prioS.

• Function object: This template parameter determines the type of the function objects that are par-
allelized; when default value is choosen for this parameter, all function objects the need to be
parallelized are required to inherit from a abstract base class.

The code below summarizes how a library instance description can be generated.

typedef pfunc::generator<cilkS, /∗ scheduling policy ∗/
pfunc::use default, /∗ compare ∗/
pfunc::use default> my pfunc; /∗function object∗/

Here, we have generated an new library instance description of PFunc by choosing the Cilk-style
scheduling policy. The values for the compare and function object features are allowed to be de-
faults; In fact, It is possible to use pfunc::use default for all the features (Figure 1). PFunc automati-
cally chooses sensible values for the features in this case. The type my pfunc thus generated in our
example is a custom instance that can be used to parallelize user applications. In PFunc, there are
four important types that users are exposed to: attribute, group, task and taskmgr. Once the required
library instance description has been generated, these types can be accessed as follows:

typedef my pfunc::attribute attribute;
typedef my pfunc::group group;
typedef my pfunc::task task;
typedef my pfunc::taskmgr taskmgr;

Objects of type attribute allow users to control the execution of spawned tasks by setting at-
tributes such as task priority and task affinity (see Section 8). Objects of type group can be used to
create collaborations of tasks that can communicate with each other using point-to-point message
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passing and barrier synchronization (see Section 9). Objects of type task are used as references
to spawned tasks, which can be passed to other tasks. The ability to pass task references is cru-
cial for the support of multiple task completion notifications (see Section 5). Finally, objects of
type taskmgr manage threads and their task queues, and are responsible for task scheduling (see
Section 5).

3.1 C

In C, both because of the lack of support for generic programming and the pitfalls of over-using
preprocessor macros, PFunc pre-generates the library instance descriptions for the users; the def-
initions for these are present in pfunc/pfunc.h. The users are merely required to then select the
right set of functions from the available sets of pre-generated functions; each set is denoted by a
common prefix and is given in the table below:

Instance description Scheduling policy Compare, priority Function type

pfunc cilk ∗ Cilk-style unused void (∗)(void ∗)
pfunc lifo ∗ Queue unused void (∗)(void ∗)
pfunc fifo ∗ Stack unused void (∗)(void ∗)
pfunc prio ∗ Priority-based < op, int void (∗)(void ∗)

Like in C++, there are four important types exposed to the users: attribute, group, task and taskmgr.
For example, for the Cilk-style library instance description, the names by which these types can
be accessed are pfunc cilk attr t, pfunc cilk group t, pfunc cilk task t and pfunc cilk taskmgr t.

Caveat As PFunc is implemented completely in C++, the C types (attribute, group, task, taskmgr)
are mere typed pointers to their C++ counterparts. Consequently, these types (eg., pfunc cilk attr t,
pfunc cilk group t, pfunc cilk task t and pfunc cilk taskmgr t) need to be initialized and cleared explicil-
ity using calls to their respective init() and clear() functions. This notion of initializing and clearing
PFunc’s C types will be reinforced throughout the C examples described in this tutorial.
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Parameter Type Explanation

Num queues unsigned int Number of task queues to be used.
Queues are numbered from 0 to N-1.

Num threads per queue unsigned int [] Number of threads to work on each queue.
Allows a m × n mapping.
1 × n mapping represents work-sharing (thread-pools).
n × 1 mapping represents work-stealing (Cilk-style).

Thread affinities unsigned int [][] Affinity of each thread in each queue to a processor.
Processors are numbered from 0 to N-1.
Default values are accepted.

Figure 2: Table depicting the three parameters that are needed to initialize PFunc’s runtime.

4 Initializing PFunc

Once the appropriate library instance description has been generated, the next step is to initialize
the PFunc runtime. PFunc’s runtime is encapsulated by objects of type taskmgr; each object of
type taskmgr encapsulates a task scheduling policy, a number of task queues into which tasks
can be placed, and threads that are attached to these task queues, which execute the tasks. In
fact, the words “runtime” and taskmgr can be used interchangably. Typically, there is one object
of type taskmgr per application run; however, users can create as many object instances of type
taskmgr as they deem necessary. For example, if there are two disjoint sets of tasks that need to
be run simultaneously with different scheduling policies, it is advisable to create two objects of
type taskmgr. Each such object of type taskmgr represents a separate initialized instance of PFunc’s
runtime. PFunc further facilitates users who require just one runtime (taskmgr) per application
run by allowing specification of a global object of type taskmgr that can be used as an implicit
argument in many function calls. To initialize PFunc’s runtime, users are required to provide
three pieces of information: number of queues, number of threads per queue and the affinities of
threads to processors (see Figure 2). By tweaking these parameters, users are able to choose from a
wide variety of mappings ranging from centralized work-sharing model to the distributed work-
stealing model. For example, consider the following code that creates an instance of Cilk-style
runtime with four threads and one queue per thread.

/∗ Library instance description ∗/
typedef pfunc::generator<cilkS, pfunc::use default, parallel foo> my pfunc;

int main () {
unsigned int num queues = 4;
const unsigned int num threads per queue[] = {1,1,1,1};
const unsigned int affinities[4][1] = {{0},{1},{2},{3}};

/∗ Create a variable of the type taskmgr ∗/
my pfunc::taskmgr my taskmgr (num queues, num threads per queue, affinities);
...
return 0; /∗ PFunc runtime is destroyed when my taskmgr goes out of scope ∗/

}

Scheduling Model In the above example, we choose to have 4 task queues and 1 thread per
queue; that is, thread has its own queue. Since we choose cilkS scheduling policy, when a thread
runs out of work on its own queue, it “steals” work from other task queues; in fact, all four built-in
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scheduling policies (cilkS, prioS, lifoS, and fifoS) follow this stealing model. Hence, this model is
called the work-stealing model. At the other end of the spectrum, if had chosen to have a single
queue and put all our threads on it, it would constitute a work-sharing model. PFunc also allows
users to define an m × n model, which would be a hybrid between the work-stealing and work-
sharing models. The work-stealing model has been proven to be efficient for running applications
that are written in a divide and conquer model. In such applications, each thread generates ample
tasks to keep itself busy and avoids the contention associated with having a single task queue.
The best scheduling policy for an application is usually found out by experimenting with different
configurations. With PFunc, this is as simple as just changing the library instance description and
the initialization of the runtime.

Processor Affinities In our example, we also specify the processor affinities for each of the
threads; we bound thread 0 to processor 0, thread 1 to processor 1, thread 2 to processor 2 and
thread 3 to processor 3. Processor affinities are currently only supported on Linux platforms. By
default, each thread can be scheduled to run on any of the available processors (cores). Binding a
thread to a particular processor (core) might results in better cache resuse for applications running
on dedicated machines. However, setting a thread’s affinity also prevents it from being scheduled
on other processors (cores).

How many threads? The total number of threads that are created can be calculated by multi-
plying the number of queues with the number of threads in each queue. In our example, we are
creating 4 threads in all; these threads are created in addition to themain user thread that is already
running. As a general rule, it is recommended to have only as many threads running an applica-
tion as there are processors (cores). For example, on a dual core machine, we recommend creating
only two threads, regardless of the configuration that the users set the threads up in (for example,
2× 1 or 1× 2). Creating more threads than processors might result in performance degradation as
threads contend for shared computing resources. Furthermore, each PFunc runtime initialization
(i.e., each object of type taskmgr) creates its own threads separate from other instances. So, exercise
caution while having more than one library instance running.

What do the threads do? As soon as PFunc’s runtime is initialized, the task queues and their cor-
responding threads are created. Each thread continually checks on the tasks queues (starting with
its own) for tasks to be executed. However, as such continuous checking for tasks to run can de-
plete compute resource, PFunc threads check for tasks a pre-specified number of times (2× 106 by
default) before “yielding” the processor that they are running on. Such yielding behavior allows
PFunc applications to co-exist with other applications without completely holding up compute re-
sources. However, when the number of threads is ≤ to the number of processors available to run,
and the application is being run on a dedicated machine, users can opt to never yield threads by
increasing the number of attempts made by each thread before yielding. The higher the number
of attempts made by a thread, the quicker the response time of a task in the task queue of being
picked up by the thread and executed. The code below demonstrates how the maximum attempts
can be changed if it is not to the user’s liking.

unsigned int num attempts;
pfunc::taskmgr max attempts get (my taskmgr, num attempts);
if (10000 > num attempts) pfunc::taskmgr max attempts set (my taskmgr, 10000);
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4.1 Initializing in C

We now demonstrate how to initialize PFunc when using the C interface. For ease of understand-
ing, we initialize to the same specification as the C++ example above.

int main () {
unsigned int num queues = 4;
const unsigned int num threads per queue[] = {1,1,1,1};
const unsigned int affinities[4][1] = {{0},{1},{2},{3}};
pfunc cilk taskmgr t cilk tmanager;

/∗ Initialize a global instance of the library ∗/
pfunc cilk taskmgr init (&cilk tmanager, num queues, num threads per queue, affinities);
...
/∗ Clear the global instance of the library ∗/
pfunc cilk taskmgr clear (&cilk tmanager);

return 0;
}

Immediately, two differences can be seen from the C++ example. First, as we are programming
in C, PFunc is initialized using a function call (pfunc cilk taskmgr init() in this case) rather than by
constructors. Second, unlike in C++, PFunc’s runtime needs to be explicitly cleared to release all
the resources allocated by PFunc (using pfunc cilk taskmgr clear() in this case).

4.2 Using global runtimes

Inmost cases, only one object of type taskmgr (one runtime) is required. Under such circumstances,
it becomes tedious to explicitly specify the correct runtime to use when spawning tasks. To avoid
this, PFunc allows users to set up a global runtime and use it as the default runtimewhen a specific
runtime (object of type taskmgr) is not specified in the various PFunc function calls. In following
C++ code sample, we set up a global runtime and then proceed to change the number of attempts
made by each thread to check for the availability of a task before yielding control to the thread
scheduler.

typedef pfunc::generator<cilkS, pfunc::use default, parallel foo> my pfunc;

int main () {
unsigned int num queues = 4;
const unsigned int num threads per queue[] = {1,1,1,1};
const unsigned int affinities[4][1] = {{0},{1},{2},{3}};
unsigned int num attempts;

/∗ Create a variable of the type taskmgr ∗/
my pfunc::taskmgr my taskmgr (num queues, num threads per queue, affinities);

/∗ Set up my taskmgr as the global runtime ∗/
pfunc::init (my taskmgr);

/∗ Change the number of attempts if necessary ∗/
pfunc::taskmgr max attempts get (num attempts);
if (10000 > num attempts) pfunc::taskmgr max attempts set (10000);

/∗ Clear my taskmgr as the global runtime ∗/
pfunc::clear ();

return 0; /∗ my taskmgr is destroyed when my taskmgr goes out of scope ∗/
}
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int main () {
unsigned int num queues = 4;
const unsigned int num threads per queue[] = {1,1,1,1};
const unsigned int affinities[4][1] = {{0},{1},{2},{3}};
pfunc cilk taskmgr t cilk tmanager;
unsigned int num attempts;

/∗ Initialize a global instance of the library ∗/
pfunc cilk taskmgr init (&cilk tmanager, num queues, num threads per queue, affinities);

/∗ Set up the global runtime ∗/
pfunc cilk init (&cilk tmanager);

/∗ Change the number of attempts if necessary ∗/
pfunc cilk taskmgr max attempts get gbl (&num attempts);
if (10000 > num attempts) pfunc cilk taskmgr max attempts set gbl (10000);

/∗ Clear the global runtime ∗/
pfunc cilk clear (&cilk tmanager);

/∗ Clear the global instance of the library ∗/
pfunc cilk taskmgr clear (&cilk tmanager);

return 0;
}

Figure 3: Setting up a PFunc global Cilk-style runtime in C.

The global run time is set up by first initializing an object of the type taskmgr (my taskmgr) as
before and then using the function init() to specify the use of my taskmgr as the global runtime.
Corresponding to this, it is necessary to clear the global runtime using the function clear(). This
does not destroy my taskmgr, but merely unsets the use of my taskmgr as the global runtime; this is
useful when users want to switch to using a different object of type taskmgr as the global runtime.
Finally, we turn our attention to how setting up the global runtime simplifies further function
calls. In our case, we have simply omitted the first argument (meant to be my taskmgr) from calls to
the functions taskmgr max attempts set() and taskmgr max attempts get(). Similarly, once the global
runtime has been set up, users can omit the taskmgr argument from the function call.

Figure 3 demonstrates the programmatic equivalent of the above example in C; to set up and
clear the global runtime, we have used the functions pfunc cilk init() and pfunc cilk clear() respec-
tively. The one marked difference from the C++ example is the addition of the “ gbl” suffix to the
name of the functions that operate on the global runtimes. Such suffixing is necessary because
C does not provide function overloading. For example, in Figure 3, the local equivalent of the
function pfunc cilk taskmgr max attempts set gbl() would be pfunc cilk taskmgr max attempts set().
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5 Spawning tasks

A regular function call in C/C++is executed sequentially; a sequence of function calls are also
executed sequentially. However, it is often the case that there are function calls that can be exe-
cuted at the same time without any harmful side effects. In such cases, one can make use of PFunc
to execute functions in parallel with respect to each other. For example consider array sum() that
computes the sum of the elements in an array:

int array sum (int a[], int n) { int sum = 0, i; for (i=0; i<n; ++i) sum += a[i]; return sum; }

Now, suppose that we are to sum up an array of 100 elements; to compute the sum of elements in
this array, we invoke array sum() as shown below:

int main () { int a[100]; return array sum (a, 100); }

Although this serves our purpose, we could compute the sum of the two halves of the array as
show below as well:

int main () { int a[100]; return array sum (a, 50) + array sum (a+50, 50); }

Once we have written the problem in this form, we can see that the two invocations of array sum()
can actually be executed in parallel; it is precisely such things that PFunc allows us to do.

5.1 Creating work

In C/C++, a function can have any signature; that is, it can accept any number of arguments,
which can be of different types, and return any type. However, because of language restrictions,
PFunc can only accept one type of function signature. In brief, PFunc accepts work in two forms:
as special forms of function pointers (C), and function objects (C++).

5.1.1 C++ function objects

The C++ bindings stipulate that the function objects that want to be parallelized have the over-
loaded void operator ()(). As function objects name concrete types, users must decide if they have
more than one type of function object that needs to be parallelized. If so, then all the function
objects must derive from a common base class, which can then be used as the type of the functor
feature during library instance generation (see Section 3). In fact, PFunc provides such a base
class, pfunc::virtual functor, that is the type of the function object when pfunc::use default is plugged
in for the functor feature. The code given below allows parallelization of any number of function
objects as long as they inherit from pfunc::virtual functor:

/∗ Library instance description ∗/
typedef pfunc::generator<cilkS, pfunc::use default, pfunc::use default> my pfunc;

/∗ First function object ∗/
struct parallel foo : public my pfunc::functor { void operator ()() { ... }; };

/∗ Second function object ∗/
struct parallel bar : public my pfunc::functor { void operator ()() { ... }; };

In the example above, pfunc::use default is used as the value for the functor feature; therefore, PFunc
uses a virtual base class (pfunc::virtual functor). The type of this class can be accessed from the gen-
erate library instance description using the nested type ::functor. Now, invocations of operator ()()
on both parallel foo and parallel bar can be parallelized.

14



If, instead of two or more functors, there is only one functor that needs to be parallelized, it
is more beneficial to directly plug in the type of this functor during library instance description
generation; For example, consider the code sample given below:

/∗ Forward declaration ∗/
struct parallel foo;
/∗ Library instance description ∗/
typedef pfunc::generator<cilkS, pfunc::use default, pfunc::use default> my pfunc;

struct parallel foo { void operator ()() { ... }; };

In this case, parallel foo is the only function object that can be parallelized by the library instance
my pfunc. As the function object is explicitly named, PFunc avoids making virtual function calls
when spawning tasks.

5.1.2 C-style function pointers

PFunc accepts function pointers of the type void (∗)(void ∗). The example below demonstrates how
one such function looks like.

void parallel foo (void ∗ arg) { printf (”PFunc task printing: %s\n”, (char ∗)arg); }

Note that the function only accepts a single argument of type void ∗. Because of the constraints
of a statically typed language, PFunc cannot accept arbitrary function objects as tasks. However,
PFunc provides two function calls - pfunc pack() and pfunc unpack() to facilitate currying arguments
to and from parallel functions (see Section 7).

5.2 Spawning tasks

Once we have initialized the library and created work (functions or function objects), we can
parallelize execution of these work packets using PFunc. In addition to the work packets, each
task is comprised of three additional details. These are:

• attribute: controls the execution of the task (see Section 8). PFunc provides a suitable default value
to this parameter.

• group: enables SPMD-style task groups (see Section 9). PFunc provides a suitable default value to
this parameter.

• task: a handle to the spawned task, which can be used to query the status of the spawned task.

5.2.1 Spawning tasks in C

Consider the code sample give below, which parallelizes the execution of parallel foo():

void parallel foo (void ∗ arg) { printf (”PFunc task printing: %s\n”, (char ∗)arg); }

int main () {
pfunc cilk task t tasks[10];
unsigned int num queues = 4;
const unsigned int num threads per queue[] = {1,1,1,1};
pfunc cilk taskmgr t cilk tmanager;
int i;

/∗ Initialize a global instance of the library ∗/
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pfunc cilk taskmgr init (&cilk tmanager, num queues, num threads per queue, NULL);

/∗ Spawn the tasks ∗/
for (i=0; i<10; ++i) {

pfunc cilk task init (&(tasks[i]));
pfunc cilk spawn c (cilk tmanager, tasks[i], NULL, NULL, parallel foo, ltoa(i));

}

/∗ Wait for the tasks and clear the task handle ∗/
for (i=0; i<10; ++i) {

pfunc cilk wait (cilk tmanager, tasks[i]);
pfunc cilk task clear (&(tasks[i]));

}

/∗ Clear the library ∗/
pfunc cilk taskmgr clear (&cilk tmanager);

return 0;
}

In the above example, we first initialize the Cilk-style library instance using the function call
pfunc cilk taskmgr init(); for this we four use task queues, one thread per queue and allow de-
fault values for thread affinities. Next, we spawn ten instances of parallel foo() using the function
pfunc cilk spawn c(); in this example, we choose to use the default value ,NULL, for both attribute
and group. Unlike in C++, where we use function overloading to supply default values, it is neces-
sary to provide NULL for unused parameters in C. Notice that the task handle has to be initialized
(using pfunc cilk task init()) prior to its use in pfunc cilk spawn c(). This is required as the C types
are mere pointers to their C++ counterparts. Next, we wait for the spawned tasks to finish us-
ing pfunc cilk wait() before clearing the task handles. Finally, we clear the initialized library using
pfunc cilk taskmgr clear(). This deallocates all resources (threads and internal queues) that are in
use by PFunc. Note that we could have use the global runtime facility provided by PFunc in this
example by setting up cilk tmanager using pfunc cilk init().

5.2.2 Spawning tasks in C++

In this section, we will parallelize the execution of a function object that is equivalent to the func-
tion parallelized in the previous section. The code is given below:

/∗ Forward declaration ∗/
struct parallel foo;
/∗ Library instance description ∗/
typedef pfunc::generator<cilkS, pfunc::use default, pfunc::use default> my pfunc;

struct parallel foo {
int id;
void initialize (const int & id) { id = id; }
void operator ()() { std::cout << ”PFunc task number:” << id << std::endl; }

};

int main () {
my pfunc::task tasks[10];
parallel foo work[10];
unsigned int num queues = 4;
const unsigned int num threads per queue[] = {1,1,1,1};

/∗ Initialize an instance of the library ∗/
my pfunc::taskmgr cilk tmanager (num queues, num threads per queue);
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C++ C Description

pfunc::wait() pfunc ∗ wait() Wait till completion of the listed task.

pfunc::wait all() pfunc ∗ wait all() Wait till completion of all the listed tasks.

pfunc::wait any() pfunc ∗ wait any() Wait till completion of any one of the listed tasks.

pfunc::test() pfunc ∗ test() Test for completion (non-blocking) of the listed task.

pfunc::test all() pfunc ∗ test all() Test for completion of all the listed tasks.

Table 2: Different types of wait in PFunc. For the C functions, ∗ must be replaced by one of cilk,
fifo, lifo, and prio depending on which scheduling policy is used.

/∗ Make this instance the global runtime ∗/
pfunc::init (cilk taskmgr);

/∗ Spawn the tasks ∗/
for (int i=0; i<10; ++i) {

work[i].initialize (i);
pfunc::spawn (tasks[i], work[i]);

}

/∗ Wait for the tasks and clear the task handle ∗/
for (int i=0; i<10; ++i) pfunc::wait (tasks[i]);

/∗ Clear the global runtime ∗/
pfunc::clear ();

return 0;
}

This example has many changes from its C counterpart. First, notice that we do not have to ini-
tialize objects such as task, attribute or group as they are initialized on construction. Second, default
values for unused parameters such as affinity (for pfunc::init()), attribute and group (for pfunc::spawn())
are filled in automatically, and consequently, there is no need to explicitly pass their values. Fi-
nally, notice that we use the global version of the functions spawn() and wait() because we set up
cilk tmanager as our global runtime.

5.2.3 Waiting on tasks

In the examples seen till now, we used pfunc::wait() (or pfunc <schedpolicy> wait()) to wait on
spawned tasks. However, there are multiple functions which allow users to check the status of
spawned tasks. These are summarized in Figure 2. Using these new functions, the waiting por-
tion of the code sample in Section 5.2.1 can be rewritten to be pfunc cilk wait all (cilk tmanager, tasks, 10).
Similarly, thewaiting portion of the code sample in Section 5.2.2 can be rewritten to be pfunc::wait all (tasks, 10).
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6 Fibonacci numbers in PFunc

In this section, we will construct a parallel version of a program that calculates the nth Fibonacci
number using what we have learned in Section 3, Section 4 and Section 5. To save space, the
example is constructed in C.

6.1 Parallelizing Fibonacci

Consider the serial version of fibonacci numbers shown below:

int serial fib (int n) {
if (0 == n || 1 == n) return n;
else {

int x, y;
x = serial fib (n−1);
y = serial fib (n−2);

return x+y;
}

}

The function serial fib() recursively divides the task of calculating the N th Fibonacci number (for
N ≥ 2), into the tasks of calculating the (N − 1)st and the (N − 2)nd Fibonacci numbers. As
the tasks of calculating the (N − 1)st and the (N − 2)nd Fibonacci numbers are independent of one
another, they can be executed in parallel. To parallelize the execution of this function using PFunc,
we have to first change serial fib()’s signature to match PFunc’s stipulated void (∗)(void ∗) prototype
(see Section 5.2.1). This transformation can be achieved by means of a C-struct as shown below:

typedef struct { int n; int fib n; } fib t;

void serial fib (void ∗ arg) {
fib t∗ fib arg = (fib t∗) arg;

if (0 == fib arg→ n || 1 == fib arg→ n) fib arg→ fib n = fib arg→ n;
else {

fib t x = {fib arg→ n−1, 0};
fib t y = {fib arg→ n−2, 0};

serial fib (&x);
serial fib (&y);

fib arg→ fib n = x→ fib n + y→ fib n;
}

}

The above version of serial fib() is now ready to be parallelized using PFunc; note the following
properties about serial fib(). First, as it does not require setting of any special attributes, we can use
the default value of NULL. Second, serial fib() is not a SPMD-style program; therefore, groups are
not needed and NULL can be used. With the following in mind, we arrive at the new definition,
which we now call parallel fib().

void parallel fib (void ∗ arg) {
fib t∗ fib arg = (fib t∗) arg;

if (0 == fib arg→ n || 1 == fib arg→ n) fib arg→ fib n = fib arg→ n;
else {

pfunc cilk task t fib task 1;
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pfunc cilk task t fib task 2;
fib t x = {fib arg→ n−1, 0};
fib t y = {fib arg→ n−2, 0};

pfunc cilk task init (&fib task 1);
pfunc cilk task init (&fib task 2);

pfunc cilk spawn c gbl (fib task 1, NULL, NULL, parallel fib, &x);
pfunc cilk spawn c gbl (fib task 2, NULL, NULL, parallel fib, &x);

pfunc cilk wait gbl (fib task 1);
pfunc cilk wait gbl (fib task 2);

pfunc cilk task clear (&fib task 1);
pfunc cilk task clear (&fib task 2);

fib arg→ fib n = x→ fib n + y→ fib n;
}

}

In this version, we have parallelized the execution of parallel fib() for the non-base cases using
PFunc. In our case, we have used Cilk-style scheduling; queue-based or stack-based scheduling
could very well have been used instead. Although the current version of parallel fib() has been
parallelized, it is sub-optimal. When a thread is executing a non-base case of parallel fib(), it is
not necessary to spawn two tasks; it is sufficient to spawn one of the tasks and execute the other
serially. In effect, this will result in the same degree of parallelization without the cost of an
additional task spawn. This version of parallel fib() is given below:

void parallel fib (void ∗ arg) {
fib t∗ fib arg = (fib t∗) arg;

if (0 == fib arg→ n || 1 == fib arg→ n) fib arg→ fib n = fib arg→ n;
else {

pfunc cilk task t fib task;
fib t x = {fib arg→ n−1, 0};
fib t y = {fib arg→ n−2, 0};

pfunc cilk task init (&fib task);

pfunc cilk spawn c gbl (fib task, NULL, NULL, parallel fib, &x);
parallel fib (&y);

pfunc cilk wait gbl (fib task);
pfunc cilk task clear (&fib task);

fib arg→ fib n = x→ fib n + y→ fib n;
}

}

6.2 Setting up the rest of the program

Once the final version of parallel fib() is ready, we proceed to setting up the rest of the program as
shown below:

int main (int argc, char ∗∗ argv) {
pfunc cilk task t root task;
unsigned int num queues = 4;
const unsigned int num threads per queue[] = {1,1,1,1};
pfunc cilk taskmgr t cilk tmanager;
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fib t fib = {35, 0};

/∗ Initialize the cilk run time ∗/
pfunc cilk taskmgr init (&cilk tmanager, num queues, num threads per queue, NULL);

/∗ Make this instance global ∗/
pfunc cilk init (&cilk tmanager);

/∗ Spawn the first task ∗/
pfunc cilk task init (&root task);

pfunc cilk spawn c gbl (root task, NULL, NULL, parallel fib, &fib);

/∗ Wait for the tasks and clear the task handle ∗/
pfunc cilk wait gbl (root task);
pfunc cilk task clear (&root task);

/∗ Clear the global runtime ∗/
pfunc cilk clear ();

/∗ Clear the Cilk runtime ∗/
pfunc cilk taskmgr clear (&cilk tmanager);

return 0;
}

In the above example, we have set up Cilk-style Pfunc runtime with 4 task queues and 1 thread
per task queue; In essence, each threads owns its own task queue. Giving each thread its own
queue is typical of Cilk-style scheduling and is highly recommended. Such a setup minimizes
the contention on the task queues when the programs being parallelized are deeply nested (for
example, the fibonacci program). Furthermore, in deeply nested parallel programs, Cilk-style
work-stealing setup with one task queue per thread minimizes the chances of thread stack space
explosion. Finally, we initialize the root task and launch it to calculate the 35th Fibonacci number.
At the end of the wait (pfunc cilk wait gbl()), fib→ fib n contains the 35th Fibonacci number.

6.3 Runtime details

In the Fibonacci example (Section 6.2), the root task is launched from the main thread of execution.
This thread is not a part of PFunc’s runtime and therefore is not used to execute the spawned task.
The call to pfunc cilk wait gbl() from the main thread turns into a sleep until the task is completed.
When the main thread spawns a task (eg., the root task), it is put on the task queue 0. Since there
has to be at least one task queue in every PFunc runtime, queue 0 always exists. Alternately, the
task attributes can be used to directly specify the queue on which the task needs to be enqueued
(see Section 8). From here, the task is picked up and executed by thread 0, which is assigned to
queue 0. At this point, the other threads (1,2 and 3) have no tasks enqueued on their task queues
and consequently, are looking to steal tasks from one another. The main task (parallel fib() with
N = 35) gives rise to more tasks. By default, these new tasks are spawned on the queue of the
owning thread (task queue 0). At this point, threads 1, 2 and 3 bootstrap by stealing their first task
from queue 0. As execution of parallel fib() is deeply nested, stealing one task gives rise to many
other tasks that keep each thread busy. Therefore, very few steals are necessary.
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7 Packing arguments in C

For a function to be parallelized using PFunc, it must have the signature void (∗)(void ∗); that is,
it must accept a single void ∗ as argument and return void . Unfortunately, this restriction forces
programmers to pack all arguments to their parallel functions into either a single structure or
buffer. Although this is relatively easy to do for functions that accept small number of arguments,
passing arguments back and forth is tedious for most functions. To help passing arguments to
functions, PFunc provides two function calls: pfunc pack() and pfunc unpack(). These two functions
are similar in vein to stdlib’s printf() function in that they both take in a format specifier that allows
us to pack arguments using varargs. Given below is the rewritten Fibonacci example from Section 6
using pfunc pack() and pfunc unpack() instead of struct fib t.

void parallel fib (void ∗ arg) {
int n;
int ∗ fib n;

/∗ unpack the arguments ∗/
pfunc unpack (arg, ”int, int∗”, &n, &fib n);

if (0 == n || 1 == n) ∗fib n = n;
else {

int x, y;
pfunc cilk task t fib task;
char ∗ fib arg 1;
char ∗ fib arg 2;

/∗ Pack the arguments to the function call ∗/
pfunc pack (&fib arg 1, ”int, int∗”, n−1, &x);
pfunc pack (&fib arg 2, ”int, int∗”, n−2, &y);

pfunc cilk task init (&fib task);

pfunc cilk spawn c gbl (fib task, NULL, NULL, parallel fib, fib arg 1);
parallel fib (fib arg 2);

pfunc cilk wait gbl (fib task);
pfunc cilk task clear (&fib task);

∗fib n = x + y;
}

}

Here, we first use pfunc unpack() to get the arguments to the current invocation of parallel fib().
Later, for non-base cases, we utilize pfunc pack() to prepare the arguments for the recursive invo-
cation of parallel fib(). Notice that no memory was allocated for the buffers during pfunc pack() or
that no memory was freed following the call to pfunc unpack(). This is because PFunc internally
allocates/deallocates memory required for the packing and unpacking of the function parameters.

7.1 Caveats

As both pfunc pack() and pfunc unpack() utilize varargs to parse their inputs char , unsigned char ,
float , and user-defined types (struct s) cannot be used as parameters. The valid values inside the
format string of pfunc pack() and pfunc unpack() are: int , unsigned int , long int , int ∗, unsigned int ∗,
long int ∗, int ∗∗, unsigned int ∗∗, long int ∗∗, char∗, unsigned char ∗, char∗∗, unsigned char ∗∗, float ∗,
float ∗∗, double , double ∗, double ∗∗ and void ∗.
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8 Attributes

PFunc is built on the philosophy that not all tasks are created the same; hence, PFunc provides
the users control over the execution of each individual task using the “attribute” mechanism.
In PFunc, a task has many attributes, and are briefly summarized below (for a more detailed
description, please see Section 14.4.1):

• Priority: When the scheduling policy under use utilizes task priorities (eg., prioS), the value of
this attribute is used to prioritize tasks.

• Queue number: The value of this attribute determines the task queue on which the associated
spawned task is put; valid values are [0, nqueues). By default, a task is spawned on the queue
of the thread that is executing the spawning task.

• Num waiters: By default, each task’s completion notification is delivered to only one waiting task
(usally the spawning task). However, users can enable the delivery of multiple task completion
notifications by setting this attribute to a value greater than 1, which is the default value.

• Grouped: The value to this attribute determines if the spawned task is associated with a group
or not; by default, a tasks are not attached to the group they are spawned with. To attach a task
to the group, users should turn set the value of this attribute to true .

• Nested: Nested parallelism is one of the founding principles of task parallelism; without nesting,
it would be difficult to have a large number of tasks be executed in parallel by a small number
of threads. However, users can turn off nested parallelism on a task by task basis by unsetting
this attribute.

8.1 C++

Attributes in C++ are manipulated through objects of type attribute. The following example depicts
how one can enable multiple completion notifications using task attributes.

/∗ Function object that is to be executed ∗/
struct my func obj { void operator () { ... } };

/∗ Library instance description ∗/
typedef pfunc::generator<cilkS, pfunc::use default, my func obj> my pfunc;

const unsigned int num queues = 4;
const unsigned int threads per queue[] = {1, 1, 1, 1};

/∗ Initialize the library ∗/
my pfunc::taskmgr cilk tmanager (num queues, threads per queue);

/∗ Set the number of waiters for this task to be 4 ∗/
my pfunc::attribute my attr;
pfunc::attr num waiters set (my attr, 4);

/∗ Create the task handle ∗/
my pfunc::task my task;

/∗ Spawn the task ∗/
pfunc::spawn (cilk tmanager, my task, my attr, my func obj());

...

/∗ Wait for the task to complete ∗/
pfunc::wait (cilk tmanager, my task);
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Function Explanation Values

attr priority set() Set/Get task’s priority Depends on type

attr priority get() Eg., if priority == int

then, MIN INT to MAX INT

attr queue num set() Set/Get task’s queue number 0 to num queues-1

attr queue num get()

attr num waiters set() Set/Get the number of 1 to num tasks

attr num waiters get() completion notifications

attr grouped set() Set/Get task’s grouped attribute true , false

attr grouped get()

attr nested set() Set/Get task’s nested attribute true , false

attr nested get() nested

pfunc <schedpolicy> attr init() Initialize/Clear the attribute

pfunc <schedpolicy> attr clear()

Table 3: C++ functions (first 10) that are use to set and get the various attributes associated
with each task. Their C counterparts can be deduced by adding the prefix pfunc <schedpolicy> .
For example, the C equivalent of the function attr priority set() for Cilk-style scheduling is
pfunc cilk attr priority set(). Note that in C, task priorities are limited to be int s. The last two func-
tions are strictly C and are required to initialize an clear the attribute structure.

The first portion of the code shown in the above example reinforces the notion of generating
the library instance description and initializing a global object of type taskmgr. In our example,
we have chosen Cilk-style scheduling and initialized the library with 4 threads with each thread
having its own task queue. Next, we set up the task to deliver four task completion notifications
using pfunc::attr num waiters set(); that is, four other tasks can wait on the completion of this task.
The functions that can be used to manipulate task attributes are given in Table 3. If it suffices
to have a task be executed using default values for all the attributes, no object of type attribute is
needed to spawn such a task. In these cases, default values are used.

8.2 C

The only additional step required in case of using the C interface is the initialization of the object
of type attribute. This is required for all PFunc types when using the C interface as they are mere
pointers to C++ objects. The equivalent code of the C++ example described in the previous section
is shown below.

/∗ Function object that is to be executed ∗/
void my func (void ∗ arg) { ... }

const unsigned int num queues = 4;
const unsigned int threads per queue[] = {1, 1, 1, 1};
pfunc cilk taskmgr t cilk tmanager;

/∗ Initialize the library ∗/
pfunc cilk taskmgr init (&cilk tmanager, num queues, threads per queue, NULL);

/∗ Set the number of waiters for this task to be 4 ∗/
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pfunc cilk attr t my attr;
pfunc cilk attr init (&my attr);
pfunc cilk attr num waiters set (my attr, 4);

/∗ Create the task handle ∗/
pfunc cilk task t my task;

/∗ Spawn the task ∗/
pfunc cilk spawn c (cilk tmanager, my task, my attr, NULL /∗group∗/, my func, NULL /∗arg∗/);

/∗ Clear the attribute ∗/
pfunc cilk attr clear (&my attr);

...

/∗ Wait for the task to complete ∗/
pfunc cilk wait (cilk tmanager, my task);

Note that the attribute associatedwith a spawned task can be cleared (using pfunc cilk attr clear)
at anytime after the spawn. Similar to the C++ interface, the C interface provides functions to set
and get all the different attributes that can be associated with a task.
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Function Explanation Value

group id set() Set the group’s Id Type: unsigned int

group id get() Get the group’s Id

group size set() Set the group’s size Type: unsigned int

group size get() Get the group’s size

group barrier set() Set the group’s barrier type BARRIER SPIN (default),

group barrier get() Get the group’s barrier type BARRIER STEAL or BARRIER WAIT

group rank() Get my rank in my group 0 to num tasks

group size() Get my size in my group Type: unsigned int

pfunc <schedpolicy> group init() Initialize the C group

pfunc <schedpolicy> group clear() Clear the C group

Table 4: C++ functions (1-8) that operate on groups and their explanations. Their C counter-
parts can be deduced by adding the prefix pfunc <schedpolicy> (where <schedpolicy> is one of
cilk, lifo, fifo or prio) to the C++ versions. The last two functions are strictly C and are required to
initialize an clear the group structure.

9 Groups

PFunc allows users to mix task parallelism with SPMD-style programming through the use of
task groups. Currently, tasks within the same group can synchronize with one another using the
barrier() primitive (point-to-point and collective operations are being implemented). Each group
has three pieces of information associated with it:

• Id uniquely identifies each group and is used for debugging purposes.

• Size of the group. Each group can have atmost “size” tasks.

• Barrier type to be executed. PFunc provides three types of barriers.

• Spinning (default) It is the ideal barrier type when the wait time is expected to be small.

• Waiting barriers on the other hand can be used when the wait times are expected to be large.

• Stealing barriers enable a thread that is executing a task that is waiting on a barrier to select
and execute tasks from other groups. Note that tasks from the same group cannot be picked
up for execution as this might result in deadlocks.

In addition, each task belonging to a group is given an unique rank in that group that can be used
for point-to-point communications. For a more detailed description, please see Section 14.5.1.

9.1 Groups in C

Groups are accessed through objects of type pfunc <schedpolicy> group t, where <schedpolicy> is
one of cilk, lifo, fifo or prio. The functions that are available to operate on groups are summarized in
Table 4. Consider the following example that demonstrates simple use of the groups:

void parallel foo (void ∗ arg) {
unsigned int rank, size, id;

pfunc cilk group rank(&rank);
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pfunc cilk group size(&size);

/∗ Print the rank and size ∗/
printf (”Here: %u of %u\n”, rank, size);

}

int main () {
pfunc cilk task t tasks[10];
pfunc cilk group t group;
unsigned int num queues = 4;
const unsigned int num threads per queue[] = {1,1,1,1};
pfunc cilk taskmgr t cilk tmanager;
int i;

pfunc cilk taskmgr init (&cilk tmanager, num queues, num threads per queue, NULL);
pfunc cilk group init (&group);
pfunc cilk group size set (group, 10);

for (i=0; i<10; ++i) {
pfunc cilk task init (&(tasks[i]));
pfunc cilk run c (cilk taskmgr, tasks[i], NULL, group, parallel foo, NULL);

}

pfunc cilk wait all (cilk tmanager, tasks, 10);

pfunc cilk group clear (&group);
pfunc cilk taskmgr clear (&cilk tmanager);

return 0;
}

In this example, each spawned task prints its rank along with the size of the group before exiting.
The rank and size are obtained by a calls to pfunc cilk group rank() and pfunc cilk group size(); as
the runtime knows which group each task was spawned with, there is no need to pass the group
explicitly. Note that each task can only belong to one group.

9.2 C++

In C++, task groups are implemented through of type group that can be accessed as a nested type of
the generated library instance description (see Section 3). Other than this, the behavior is similar
to that of the groups in C. The following code sample gives the C++ equivalent of the example in
Section 9.1.

struct parallel foo {
void operator ()() {

unsigned int rank, size, id;

pfunc::group rank(rank);
pfunc::group size(size);

/∗ Print the rank and size ∗/
std::cout << ”Here: ” << rank << ” of ” << size << std::endl;

}
}

/∗ Library instance description ∗/
typedef pfunc::generator<cilkS, pfunc::use default, parallel foo> my pfunc;

int main () {
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my pfunc::task tasks[10];
my pfunc::group group;
parallel foo work[10];
unsigned int num queues = 4;
const unsigned int num threads per queue[] = {1,1,1,1};

/∗ Initialize a global instance of the library ∗/
my pfunc::taskmgr cilk tmanager (num queues, num threads per queue);
pfunc::init (cilk tmanager);

/∗ Set the size of the group ∗/
pfunc::group size set (group, 10);

/∗ Spawn the tasks ∗/
for (int i=0; i<10; ++i) {

work[i].initialize (i);
pfunc::spawn (tasks[i], group, work[i]);

}

/∗ Wait for the tasks and clear the task handle ∗/
pfunc::wait all (tasks, 10);

/∗ Clear the library ∗/
pfunc::clear ();

return 0;
}
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10 Synchronization Primitives

In PFunc, we encourage parallel programming without using low-level constructs such as locks
and atomic operations as these constructs often interfere with task scheduling. However, dis-
cerning users can make use of these constructs to improve performance of their applications. For
this purpose, PFunc provides portable locks and low-level atomic instructions; however, we do
not provide access to condition variables as they interfere exceedingly with task scheduling; in
this section, we briefly explain these constructs. Since synchronization primitives are a secondary
goal in PFunc, all the relevant functions are prototyped in pfunc/pfunc atomics.h, which should be
included to use these functions.

10.1 pfunc::mutex

pfunc::mutex is a C++ class that implements a portable lock that provides lock(), unlock(), and trylock()
operations on all supported platforms. All locking operations occur at thread-scope; that is, when
a task calls lock(), it blocks the thread executing the task till the lock can be acquired. Due to this
reason, users are encouraged to use trylock(), a non-blocking function instead of lock(). Note that
foo.lock(), where foo is a pfunc::mutex, is theoretically the same as while (false ==foo.trylock());; however,
lock() can save computational cycles by putting the calling thread to sleep whereas repeated calls
to trylock() spin the CPU. The precise implementation of pfunc::mutex depends on the platform;
when futexes, a type of user-level fast locks, are supported (≥ Linux kernel 2.6), pfunc::mutex is
designed to use them. In all other cases, pfunc::mutex uses either pthread mutexes or in the case of
Windows, native locks. Like most other features in PFunc, users can choose to implement their
own mutexes and use that instead of pfunc::mutex.

10.2 Atomic operations

An alternative to using lock-based algorithms is to make use of lock-free algorithms; these al-
gorithms make use of atomic operations such as compare-and-swap to ensure atomicity of updates
instead of resorting to locks. PFunc provides four portable atomic operations on 8, 16, 32, and 64
bits.

Compare-and-swap This is a key operation in many lock-free algorithms, including PFunc’s
futex-based implementation of pfunc::mutex. The operation performed by compare-and-swap is
given in pseudo-code below.

intX t pfunc compare and swap X (volatile void ∗ dest, /∗mem location∗/
intX t exchg, /∗new value∗/
intX t comprnd) { /∗old value∗/

if (∗dest == comprnd) { ∗dest = exchg; return exchg; }
else return ∗dest;

}

In the above example, X denotes the number of bits to compare-and-swap; the valid values are
8, 16, 32, and 64.
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Fetch-and-add This primitive allows programmers to atomically read and update 8, 16, 32, or
64 bit values, and hence, is an important operation to support. The operation performed by fetch-
and-add is given in pseudo-code below.

intX t pfunc fetch and add X (volatile void ∗ location, /∗mem location∗/
intX t addend) { /∗to add∗/

result = ∗location; ∗location += addend; return result;
}

Fetch-and-store This primitive allows programmers to atomically read and replace 8, 16, 32, or
64 bit values, which is a slight modification to fetch-and-add. The operation performed by fetch-
and-store is given in pseudo-code below.

intX t pfunc fetch and store X (volatile void ∗ location, /∗mem location∗/
intX t new val) { /∗to store∗/

result = ∗location; ∗location += new val; return result;
}

Read-with-fence This primitive allows programmers to read the most current 8, 16, 32, or 64 bit
value at a memory location by inserting a memory fence just before the read operation. The PFunc
nomenclature for this function is pfunc read with fence X(), where X is 8, 16, 32, or 64.

Write-with-fence This primitive allows programmers to write a 8, 16, 32, or 64 bit value to a
memory location and then ensure that the value is flushed down to memory (i.e., not just writ-
ten to the cached value) by placing a memory fence right after the write operation. The PFunc
nomenclature for this function is pfunc write with fence X(), where X is 8, 16, 32, or 64.
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11 Loop Constructs

Loop parallelism is an important form of parallelism that often results in dramatic speedups. In
fact, constructs such as OpenMP’s ”parallel for” have been exclusively dedicated to parallelizing
for loops, which occur frequently in HPC applications. Task parallelism is a powerful form of par-
allelism that subsumes loop parallelism. In this section, we discuss four experimental constructs
provided in PFunc to simplify parallelizing various loop constructs. As they are experimentatl,
these features aremade available under the special header files: pfunc/experimental/parallel for.hpp>,
pfunc/experimental/parallel reduce.hpp>, and pfunc/experimental/parallel while.hpp>.

11.1 For Loops

Consider a standard for statement that iterates over a randomly accessible set of elements. It is
quite important that the elements be randomly accessible because parallelization may fail to yield
significant performance boost if iteration (that is, “advancing the pointer”) takes longer than the
computation itself. We can devise an elegant divide and conquer mechanism to parallelize the
computations in the following manner:

• At each level (starting with level 0), inspect the iteration space to determine benefit of paral-
lelization.

• If parallelization will help, split the interval into two and execute iterations over the split
iteration space in parallel.

• Repeat until the number of iterations in the iteration space are too few to benefit from paral-
lelization — execute this space serially.

Space In the true spirit of generic design, we devise the concept of Space to as follows:

concept Space<typename Model> : CopyAssignable <Model> {
typename subspace container;
requires Sequence<subspace container>;

const static size t arity;
const static size t dimension;

size t Model::begin() const ;
size t Model::end() const ;
bool Model::can split() const ;
subspace container split() const ;

}

In other words, a “space” must define how many ways it can be split (arity) and its dimension
(eg., 1-D, 2-D, etc). Furthermore, it must define begin() and end(), which provide iterators to the
beginning and end of the iteration space. To help parallelization, every model of space must
provide can split() and split() that help split the iteration space into arity chunks. For example,
consider a 1-D space, which provides a 2-way split and has a base case of 25 elements (i.e., if there
are fewer than 25 elements in the iteration space, they are executed serially). If such a space is
initialized with the half-open interval [0, 100), the following execution sequence occurs.
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[0, 100) — split.

[0, 50), [50, 100) — split.

[0, 25), [25, 50), [50, 75), [75, 100) — no split.

pfunc::parallel for This is a function object akin to for each() in STL. pfunc::parallel for Takes in a
space and a functor, and executes the functor over the given space in parallel. The assumption
is that the functor has the access to the entire container and hence all the harness needs to do is
provide access to the correct iteration range. The functor must be a model of the ForExecutable
concept given below:

concept ForExecutable<typename Model, typename SpaceType> :
Space<SpaceType>, CopyAssignable <Model> {

void Model::operator ()(const SpaceType&) const ;
}

Example Consider the task of scaling each element of a std::vector by a constant factor. The
functor that is needed to execute this scaling operation is given below:

struct vector scale {
private :
std::vector<double >& my vector;
double scaling factor;

public :
vector scale (std::vector<double >& my vector, const double scaling factor) :

my vector (my vector), scaling factor (scaling factor) {}

void operator () (const pfunc::space 1D& space) const {
for (size t i = space.begin(); i<space.end(); ++i) {

my vector[i] ∗= scaling factor;
}

}
};

Notice that vector scale is a model of ForExecutable concept, and can be usedwith pfunc::parallel for.
As the iteration space defined by std::vector is 1-D, we use PFunc’s built-in space 1D, which is a
model of Space concept. Next, we define the PFunc instance to be used in parallelization of the
for loop:

typedef
pfunc::generator <pfunc::cilkS, /∗ Cilk−style scheduling ∗/

pfunc::use default, /∗ No task priorities needed ∗/
pfunc::use default /∗ any function type∗/> generator type;

typedef generator type::attribute attribute;
typedef generator type::task task;
typedef generator type::taskmgr taskmgr;

Notice that we have to use pfunc::use default as the type of the functor because of the way in which
pfunc::parallel for is defined. Finally, we invoke pfunc::parallel for on the entire iteration space in the
following manner:
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taskmgr global taskmgr (/∗nqueues∗/, /∗nthreads−per−queue∗/);
task for loop task;
attribute for loop attribute (false /∗nested∗/, false /∗grouped∗/);
pfunc::parallel for<generator type, vector scale, pfunc::space 1D>

for loop (pfunc::space 1D (0,n),
vector scale (my vector, scaling factor),
global taskmgr);

pfunc::spawn (global taskmgr, for loop task, for loop attribute, for loop);
pfunc::wait (global taskmgr, for loop task);

For the complete example, please see examples/for .cpp.

pfunc::parallel reduce An important variation of a simple for loop is the ability to reduce the
values in a collection to a single value. Examples for such operation include finding the sum of
element in a vector, finding the minimum element in a vector, etc. To execute such loops in par-
allel, PFunc provides pfunc::parallel reduce construct, which is a slight variation of pfunc::parallel for.
Firstly, the functor that executes the reduction operation is required to be amodel ofReduceExecutable
concept that is defined below:

concept ReduceExecutable<typename Model, typename SpaceType> :
Space<SpaceType>, Assignable<Model>, CopyAssignable <Model> {

Model Model::split () const ;
void Model::join (const Model&);
void Model::operator () (const SpaceType&);

}

Notice that ReduceExecutable requires split() and join() functions in addition to operator ()(). Fur-
thermore, operator ()() is non-const to allow it to modify internal state of the functor. To better
understand, let us consider the example of computing the sum of elements in a std::vector; the
code is given below.

struct accumulate {
private :
std::vector<double >& my vector;
double sum;

public :
accumulate (std::vector<double >& my vector, const double init) :

my vector (my vector), sum (init) {}
void operator () (const pfunc::space 1D& space) {

for (size t i = space.begin(); i<space.end(); ++i) sum += my vector[i];
}
accumulate split () const { return accumulate (my vector, 0.0); }
void join (const accumulate& other) { sum += other.get sum (); }
double get sum () const { return sum; }

};

As expected, operator ()() simply accumulates the sum of elements in its iteration space. The cru-
cial portion functions required for parallelization are split() and join(). When pfunc::parallel reduce
determines that the iteration space needs to be split because there is an oppotunity for parallelism,
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it calls split() on the functor; split() is expected to create a properly initialized copy of the functor.
In the case of accumulate, proper initialization is done by setting the sum to 0.0. Similarly, when
all the parallel chunks have completed iteration, the partial results are added up using the join()
operation. In the case of accumulate, join() merely adds up the partial sums. Finally, we invoke
pfunc::parallel reduce on the entire iteration space in the following manner:

taskmgr global taskmgr (nqueues, threads per queue array);

task accumulate task;
attribute accumulate attribute (false /∗nested∗/, false /∗grouped∗/);
accumulate root accumulate (my vector, 0.0);
pfunc::parallel reduce<generator type, accumulate, pfunc::space 1D>

root reduce (pfunc::space 1D (0,n), root accumulate, global taskmgr);

pfunc::spawn (global taskmgr, accumulate task, accumulate attribute, root reduce);
pfunc::wait (global taskmgr, accumulate task);

For the complete example, please see examples/reduce.cpp.

11.2 While Loop

pfunc::parallel for operates when the collection of elements over which we iterate allows random
access. That is, if A is the collection of elements, then, we can access A[i] in constant time. This
property does not hold true for many data structures such as linked lists and trees. If the com-
putation involved when processing every element in such data structures is sufficiently large,
then it is benefical to parallelize the execution of such loops. Due to the nature of the data struc-
tures involved, we do not think of parallelizing over the iteration space, but rather in terms of
processing each element in parallel. Since we do not know the number of elements that need to
be processed, we the parallelization resembles a while loop; hence, the control structure is called
pfunc::parallel while. The operation performed by pfunc::parallel while is equivalent to the operation
performed by serial while() given below:;

template <typename InputIterator, typename Functor>
void serial while (InputIterator first, InputIterator last, Functor func) {

while (first != last) func (∗first++);
}

Similar to serial while(), parallel while takes as input, a pair of iterators (first and last) and a functor in
addition to the PFunc library instance that is used for parallelization. pfunc::parallel while iterates
through the collection contained in (first, last] and spawns a task to process each element in the
collection. Of course, this scheme assumes that processing each task is independent of one another.
For a functor to be parallelized using pfunc::parallel while, it has to model WhileExecutable given
below:

concept WhileExecutable <typename Model, typename ArgumentType> :
CopyAssignable <Model> {

typename argument type;
is convertible <argument type, ArgumentType>;
void Model::operator () (ArgumentType) const ;

}
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To better understand parallelizing while loops, consider a simple example of parallelizing a loop
that applies big func() to each element of a std::list. From our discussion above, big func() must be a
model of WhileExecutable and is defined as follows:

template <typename T>

struct big func {
typedef T∗ argument type;
void operator () (T∗ arg) const { ... }

};

Once we have defined big func(), we can parallelize application of big func to the elements of an
std::list as follows:

struct object {...};
std::list <object∗> my list;
// populate my list

taskmgr global taskmgr (nqueues, threads per queue array);
task while task;
attribute while attribute (false /∗nested∗/, false /∗grouped∗/);
pfunc::parallel while<generator type, std::list<object∗>::iterator, foo<object> >

root while (my list.begin(), my list.end(), big func<object>(), global taskmgr);

pfunc::spawn (global taskmgr, while task, while attribute, root while);
pfunc::wait (global taskmgr, accumulate task);
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12 Exception handling

Checking for errors following function calls has traditionally been under-rated. Many bugs in
programs are due to improper handling of these errors or the failure to detect the errors as soon
as they occur. This problem is more grave when it comes to parallel processing. PFunc provides
a robust error checking mechanism in both its C and C++ interface. In this section, we will see
examples of how this can be achieved in a user program.

12.1 C++

PFunc continues the philosophy of C++ by providing robust exception handling mechanisms.
PFunc’s exception handling mechanism delivers exceptions thrown by a task across threads to the
task that is waiting on it. In the case that the task throwing the exception has more than one task
waiting on it, the thrown exception object is delivered to each of the waiting tasks. All exceptions
thrown by PFunc are derived from the base type pfunc::exception. The following example shows
the use of PFunc’s exception handling.

struct my fn object {
void operator () {

try { ... }
catch (const pfunc::exception& error) {

std::cout << ”Description: ” << error.what () << std::endl;
std::cout << ”Trace: ” << error.trace () << std::endl;
std::cout << ”Code: ” << error.code () << std::endl;

}
}

};

PFunc’s exceptions extend std::exception to provide useful information to the users. There are three
primary methods that help users in determining the cause of the error. These are:

Method Explanation

pfunc::exception::what() Describes the error in string format.

pfunc::exception::trace() Returns the stack trance of the calls through which this exception object was transported.

pfunc::exception::code() Useful when the exception was caused by a system call failure and returns the error number.

It is important to note that PFunc takes care to ensure that exceptions are transported across thread
boundaries so that the exception is delivered to the calling function without loss of any informa-
tion. This is an important as it gives sequential semantics to the program. All the errors that
PFunc throws are of the type pfunc::exception generic impl, which is derived from pfunc::exception.
This class is implemented to ensure seamless transfer of exceptions from one thread to another.
Another important point to note is that if, during execution, PFunc encounters any other exception
(eg., std::bad alloc), it converts it into an exception of the type pfunc::exception generic impl. This is
done so as to enable transfer of standard exceptions between threads. For performance, exception
handling is disabled by default and can be enabled using a compile time flag.

12.1.1 Forwarding exceptions

When an exception object is thrown by a task that is deeply nested, it is often necessary to pro-
pogate this exception all the way to the top-level task. In order to propogate exceptions up the
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stack, it is necessary to first convert them into objects of type pfunc::exception. Consider the follow-
ing example that demonstrates this use case:

struct my fn object {
void operator () {

try { ... }
catch (const pfunc::exception& error) {

pfunc::exception∗ clone = error.clone();
clone→ add to trace (”: from my fn object at ” PFUNC FILE AND LINE());
clone→ rethrow ();

}
}

};

In the above example, any error that is caught by my fn object is rethrown for higher-level tasks to
catch. This is achieved using the following functions:

Method Explanation

pfunc::exception::clone() Creates a replica of the exception object.

pfunc::exception::add to trace() Appends a string that is used by trace().

pfunc::exception::rethrow() Throw’s the cloned exception object.

12.2 C

In C, there is no support for exceptions. All PFunc C APIs return an integer that tells us how the
function call proceeded. The error code returned by C APIs are equivalent to that returned by
pfunc::exception::code() in C++. PFunc defines a number of error values that should be checked for
to ensure that the calls to PFunc have succeeded. As PFunc does not store the return value of the
preceeding calls, it is unable to detect presence of earlier errors. For more information, refer to the
function documentation to check the possible errors that can be returned by each call. Here is an
example of how one might check for errors in C.

void my fn (void ∗) {
if (PFUNC SUCCESS != (error = pfunc init (...))) {

switch (error) {
case PFUNC INITIALIZED: /∗ error message ∗/

break ;
case PFUNC NOMEM: /∗ error message ∗/

break ;
case PFUNC ERROR: /∗ error message ∗/

break ;
default : break ;

}
}

}

Note that all the error values returned by the C interface are less than zero and do not clash
with the system error codes such as EINVAL, EBUSY, etc.

Caveat To enable exception handling, USE EXCEPTIONS flag must be turned ON|On during con-
figuration using CMake.
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13 Performance profiling

PFunc is fully integratedwith the Performance Application Programming Interface (PAPI), thereby
allowing users to profile their applications with ease. PAPI was chosen due to its wide availability
and portability across many hardware platforms. Profiling is handled mainly through the taskmgr
type. Users can specify the events (both PAPI presets and native) that they wish to monitor when
initializing objects of the taskmgr type. Consider the sample code given below:

typedef pfunc::generator<cilkS, /∗ scheduling policy ∗/
pfunc::use default, /∗ compare ∗/
pfunc::use default> my pfunc; /∗function object∗/

enum {nthds=2,
nevents=2

};

struct my perf data: pfunc::perf data {
perf data::event value type storage[nthds][nevents];
int events[nevents];

my perf data () {
events[0] = PAPI L1 DCA;
events[1]= PAPI L1 DCM;

}

int get num events () const { return nevents; }

int ∗ get events () const { return events; }

perf data::event value type∗∗ get event storage () const {
return storage;

}
};

my perf data perf;
my pfunc::taskmgr cilk tmanager (/∗nqueues∗/, /∗nthreads per queue∗/, perf);

In this example, we utilize PFunc to measure L1 data cache behavior. We derive from perf data
to communicate the required measurements to PFunc. PFunc stores the requested event values in
my perf data and these values can subsequently be used for performance tuning.

Caveat To enable performance profiling, please ensure that PAPI is installed on your system and
that USE PAPI flag is turned ON|On during configuration using CMake.
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Detail Explanation

Task priority → No priorities.

Task scheduling policy → Depth-first execution.

Task stealing policy → Breadth-first theft.

Task affinity → Executed by thread encountering the spawn.
→ Can be randomly stolen by any thread.

Task graph structure → Tree.
→ Imposed by the fork-join model.

Task groups → Tasks have no knowledge of one another.
→ Entire task subtrees can be canceled.

Table 5: Table listing the various “little details” in Cilk, which cannot be tweaked by users either
at compile-time or runtime.

14 PFunc: A Design Overview

Existing solutions for task parallelism do not offer users control over the “little details” that de-
termine application performance; for example, Table 14 lists the execution details in Cilk, which
cannot be tweaked by users. As a result, task parallelism only benefits a circumscribed set of ap-
plications. In order for task parallelism to be widely adopted, it is necessary to design tools that
have configurability and extensibility as their key features; PFunc, is designed to be such a tool.
PFunc uses the generic programming methodology to make it both configurable and extensible
without any runtime penalties; by default, PFunc can be used as is and does not require any con-
figuration or extensions. In this section, we explore the various components that constitute PFunc
at runtime as well as the functionality of these components.

14.1 Software Architecture

The primary goal of PFunc is to enable users to portably execute tasks (asynchronous computa-
tions) on shared memory. To achieve this goal, it interfaces with various low-level components
and user applications (see Figure 4). PFunc uses user-level threads to execute tasks; therefore,
it interfaces with an underlying threading library (which is operating system specific). For ex-
ample, on most UNIX-based operating systems, PFunc uses POSIX threads to execute user tasks.
In PFunc, users are allowed to execute tasks on particular processors (i.e., set a task’s affinity);
this capability is necessary for optimal performance on heterogeneous architectures. In order to
support setting task affinities, it is necessary to accurately map individual threads to specific pro-
cessors— a capability that, currently, only the operating systems provide; hence, PFunc interfaces
with operating systems. PFunc implements and uses many concurrent data structures and al-
gorithms. For maximum efficiency, these data structures and algorithms are implemented using
custom synchronization primitives that are built on top of processor-specific atomic operations;
hence, PFunc directly interfaces with the hardware. Finally, PFunc allows users to collect various
hardware statistics about their applications’ execution through the “performance profiler” com-
ponent, which in turn interfaces with the Performance Application Programming Interface (PAPI;
see Section 13).
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Figure 4: An overview of the software architecture of PFunc; only the relevant components are
shown. Components linked by arrows interface with each other. Protrusion of one component
into another implies that a part of the former component is implemented in the latter (e.g., threads
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14.2 Components of PFunc

The design of PFunc revolves around providing users control over six “little details” related to
task execution: priorities, scheduling, stealing, affinities, graph structure, and groups. As PFunc’s
design is “lifted” from the designs of existing task parallel solutions, many components in PFunc
correspond one-to-onewith components in other task parallel solutionswith one important differ-
ence — PFunc’s components can be configured and/or extended. As shown in Figure 5, PFunc’s
components fit into three categories: user-provided (gold colored), generated (pink colored), and
fixed (blue colored). User-provided components (work, task queue, and task predicates) are im-
plemented by the users to suit their needs. The task queue and the task predicate components
from a logical grouping called the task scheduler. PFunc provides a number of built-in choices
for the user-provided components; hence, for many applications, PFunc works “out-of-the-box”.
However, if these built-in choices do not meet the users requirements, they may implement their
own user-provided components. Generated components (attribute, task, and task manager) are
automatically created at compile-time using information from the user-provided components. The
user-provided and generated components can be configured and/or extended to create a variety
of configurations of PFunc (see Section 15). Fixed components are non-configurable and include
group, thread manager, exception handler, and performance profiler. In practice, PFunc compo-
nents are implemented as C++ classes; hence, PFunc at runtime consists of one or more objects of
these classes that are interacting with each other.

14.3 User-provided Components

14.3.1 Task Scheduler

This component is a logical grouping of the task queue and the task predicate components. The
task scheduler is primarily responsible for choosing the next task to be executed by each thread.
The task queue and the task predicate components are chosen at compile-time based on the task
scheduling policy selected by the user (see Section 15). Users can choose from one of the four built-
in scheduling policies (cilkS, prioS, lifoS, and fifoS) or choose to implement their own scheduling
policy. For the built-in scheduling policies, the task queue and task predicate components are pre-
defined. However, if users choose to implement their own scheduling policy, they must define the
task queue and the task predicate components.

There are two situations in which the task scheduler is used: when a task is spawned and
inserted into a task queue, and when a thread is ready to execute a task and this task must be
selected from the task queue. There are three scenarios in which a thread is ready to execute a
task. In the first scenario, the thread is idle and is looking for a task to execute; this is called a
regular scheduling point. In the second scenario, the thread suspends the parent task it is execut-
ing because the parent task starts waiting on one or more of its children to complete execution.
Therefore, a new task must be chosen for this thread to execute; this is called a waiting scheduling
point. In the third scenario, the thread suspends execution of a task because the task has entered
a wait for a group barrier operation; this is called a group scheduling point.

Task Queue The task queue manages multiple internal queues that store references to spawned
tasks, and supports two atomic operations: put() and get(). The put() function is used to add a
newly spawned task to a user-specified queue. The get() function is used to retrieve a task from
the task queue. The exact queue from which get() retrieves the task is determined jointly with the
task predicate component. The nature of the internal queues used by the task queue component
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reflects the scheduling policy being implemented. For example, for the cilkS scheduling policy,
std::deque is used as the type of each internal queue. Similarly, for the lifoS scheduling policy,
std::stack is used as the type of each internal queue.

Task Predicate This component is composed of three predicate pairs — one pair of predicates
for each scheduling point. The regular predicate pair is used during the regular scheduling point,
waiting predicate pairduring thewaiting scheduling point, and group predicate pairduring the group
scheduling point. The first predicate of each pair is used to enforce scheduling when the call-
ing thread’s own queue is non-empty; the second predicate of each pair is used when the calling
thread’s own queue is empty and a task must be stolen from another queue.

In conjunction with the task queue, the task predicate helps implement a variety of schedul-
ing policies. The task predicate is used when a new task has be chosen for execution — when
any of the three scheduling points is reached. When a thread needs a task to execute, it (via the
task manager) calls the get() function of the task queue; the predicate pair corresponding to the
scheduling point is determined and passed in as an argument to get(). Then, get() checks if the
calling thread’s own queue is non-empty. If it is non-empty, depending on the scheduling policy,
candidate tasks are selected and the own predicate is applied to those tasks. The first candidate
task from the calling thread’s own queue to satisfy the predicate is returned to the calling thread
for execution. If the calling thread’s own queue is empty or if there are no eligible tasks in it, get()
tries to steal a task from another randomly selected queue, at which point, the steal predicate is
used.

Work The main purpose of PFunc is to enable asynchronous execution of computations. Work
is the generic representation of a computation and is a part of the task. In PFunc, computations
are restricted to be functions or function objects that meet certain constraints.

14.4 Generated Components

14.4.1 Attribute

The attribute component is central in providing users control over “little details” such as schedul-
ing, priority, affinity, task graph structure, and grouping. Each task contains an attribute, which in
turn is made up of six sub-attributes: priority, queue number, num waiters, grouped, level, and nested.
As there is a task associated with each asynchronous computation, there is also an attribute asso-
ciated with each asynchronous computation. To control the execution of a task, users can specify
the value for the required sub-attributes of the task’s attribute at the time of spawning. The role of
each of these six sub-attributes is summarized below.

priority Many task scheduling policies require that tasks themselves provide hints to help schedul-
ing. For example, the built-in prioS scheduling policy requires each task to have a priority. The
priority sub-attribute can be used to provide hints to the scheduler component to help realize
customized scheduling policies.

queue number PFunc allows control over the affinity of a task by allowing users to specify the
task queue (numbered [0..n), where n is the total number of queues) on which the task must be
spawned. This is a departure from the methodology of existing solutions for task parallelism,
where a task is always put on the queue serviced by the spawning thread. In PFunc, the task is
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put on the queue serviced by the spawning thread only if a queue number is not specified while
spawning the task.

num waiters In PFunc, a task can have multiple parents, which results in the task graph struc-
ture being a DAG, not just a tree. To support DAG-shaped task graph structures, it is neces-
sary to be able to deliver status notifications regarding a task to all its parents. The value of the
num waiters sub-attribute gives the number of parents for the task. If this sub-attribute is unspec-
ified for a task, that particular task is assumed to have a single parent.

grouped PFunc supports SPMD-style parallelization through task groups. When a task is part
of a group, it is automatically given a rank in the group, which it can use to communicate with the
members of its own group. However, when a task is attached to a group, extra instructions are
added to the critical path (see Section 14.5.1); therefore, tasks that use PFunc’s group infrastructure
incur a performance penalty. To avoid performance loss incurred from a task’s membership in a
group, the grouped sub-attribute can be modified so that PFunc only associates the task with its
group when necessary. Most task parallel programs do not make use of groups; by default, tasks
are not attached to any group (i.e., grouped sub-attribute is unset)

level This sub-attribute is used by the task scheduler to ensure that the thread does not exhaust
its stack space by stealing incorrectly. An important function of the task scheduler component is
to ensure that the underlying system resources are not exhausted. Thread stack space is one such
resource. In PFunc, three of the built-in scheduling policies (cilkS, lifoS, and fifoS) utilize the level
sub-attribute to accurately determine the depth of a task in the task graph. Then, by enforcing a
stealing predicate that prohibits a thread from stealing tasks that are higher (closer to the root) in
the task graph than the task currently suspended by the thread, thread stack space is conserved.

nested PFunc inherently supports nested parallelism, in which a task is allowed to spawn other
tasks recursively. As there may be more tasks than threads, to support nested parallelism we need
to suspend a parent task to execute a child task. Such task suspension is automatically carried out
at both the waiting and group scheduling points. However, PFunc’s nested sub-attribute allows
users to prevent automatic task suspension at these synchronization points by turning off nested
parallelism at the task level.

14.4.2 Task

The task is PFunc’s representation of an asynchronous computation; it contains the attribute,
group, exception handler, and work that is related to the computation’s execution. There is one
“active” task for each spawned computation. Task interfaces with users on one end and the task
scheduler and task manager on the other end. When a spawned computation completes its execu-
tion, the task delivers its completion notifications to all its parent tasks. The number of completion
notifications delivered depends on that particular task’s num parents sub-attribute. After all the
completion notifications have been delivered, the task is terminated; at this point, the task is “in-
active” and can be used to spawn another asynchronous computation. When a task enters either
a waiting or group scheduling point, if the task is nested, the task triggers the task manager; the
task manager in turn starts a scheduling cycle.
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14.4.3 Task Manager

The task manager is PFunc’s runtime; it is the component that glues together the task, task sched-
uler, thread manager, and performance profiler components. The task manager’s responsibilities
can be fit into three categories: initialization, scheduling, and shut down.

Initialization: During initialization, users provide two pieces of information: the number of
task queues and the number of threads per task queue. The task manager uses this information to
create the specified number of task queues and attaches the requested number of threads to each
queue. With this facility, users can create an m × n mapping between queues and threads. When
m = n, there is one thread attached to each queue; this is called the work-stealing configuration.
When m = 1, there is one queue to which all n threads are attached; this is called the work-sharing
configuration. Optionally, users can also specify both the affinity of each thread to individual
processors, and the hardware statistics to be collected (see Section 13). At the end of initialization,
the task scheduler, the thread manager, and the performance profiler are configured, and the task
manager is ready to be used to spawn and execute tasks asynchronously.

Scheduling: This phase can alternately be called the spawn-execute-sync phase. When a task is
spawned, the task manager is responsible for placing it in the appropriate queue. When a thread
reaches a tasks scheduling point, the thread manager interfaces with the task scheduler to retrieve
an eligible task for this thread to execute.

Shut down: When the library runtime is no longer needed, the task manager is responsible for
the cleanup of system resources.

14.5 Fixed Components

14.5.1 Group

It is difficult to express all segments of a program in the task parallel model, therefore, PFunc
allows users to mix task parallelism with SPMD-style programming. The group component is
central in providing the support required for SPMD-style programming. A task is allowed to be a
member of only one group, and group membership is assigned to a task at the time of spawning.
Tasks within the same group can communicate using built-in synchronization operations. Each
group has the following three pieces of information associated with it:

Id This is an integer that uniquely identifies each group and may be used for debugging pur-
poses.

Size Also an integer, this specifies the maximum number of tasks allowed in the group. The
group component can be enabled or disabled for each individual task at spawn time using the
grouped sub-attribute (see Section 14.4.1). When a task is spawned with its grouped sub-attribute
enabled, that task is given a unique rank in the group at the time of spawning. The rank of a task
is an integer in the range [0..Size), and is valid only when the task is “active”.
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Barrier type PFunc provides three types of barriers: spinning, waiting, and stealing. The value of
the barrier type determines which of the three barriers is in use. Spinning barriers are the default.
Threads executing tasks in a spinning barrier are incapable of executing other tasks while these
tasks wait on the barrier because the threads must actively poll for barrier completion. Conse-
quently, the spinning barrier is most useful when all the tasks involved in the barrier are tightly
coupled. Furthermore, for the spinning barrier to work properly, there must be a separate thread
for each task executing the barrier. In other words, the size of the group must be less than or equal
to the number of threads used to execute the library instance, or a deadlock may occur. Waiting
barriers are useful when system resources need to be conserved. In waiting barriers, the thread
executing a blocked task is suspended from execution until the barrier is completed. Like the
spinning barrier, the waiting barrier also requires that the size of the group be less than or equal to
the number of threads in the system. Finally, stealing barriers offer the speed of spinning barriers
and the efficiency of waiting barriers. When a task is waiting at a stealing barrier, the thread that
is executing the task can suspend the task and execute another eligible task. Therefore, if the tasks
involved in a barrier are not tightly coupled, the threads executing these tasks can do useful work.
The stealing barrier also requires that the number of tasks in the group be less than or equal to
the number of threads. This constraint is a result of the lack of support for true task suspension in
PFunc.1.

14.5.2 Thread Manager

As PFunc operates exclusively in shared memory, it makes uses of system threads to execute its
tasks. This component is an abstraction that provides portable means of launching, killing, and
yielding threads on various platforms. When PFunc is initialized, the thread manager launches as
many threads as requested and makes them available to service specific task queues. Also, when
the underlying system allows for it, the thread manager provides a portable means of setting
each thread’s processor affinities — an important requirement for optimal performance of many
applications. This feature can be used in conjunction with the task attribute to control the physi-
cal processors on which individual tasks are executed. For example, during library initialization,
users can tie individual threads down to particular processors and determine the task queues ser-
viced by these threads. Then, using the affinity sub-attribute, tasks can be spawned on particular
queues.

14.5.3 Exception Handler

The exception handler aids users in the development of robust applications by ensuring sensible
handling of exceptions in a parallel environment. A parallel execution environment presents two
challenges with respect to exception handling. First, many PFunc routines are inserted between
the child (callee) task which is throwing the exception and the parent (caller) task that is catching
it. Furthermore, the child and the parent tasks may be executed by different threads. Therefore,
exceptions need to be transported across many functions and/or threads. Second, unlike in a
sequential environment, the parent task’s execution is not always suspended until its child task
returns. Therefore, an exception thrown by a task must be stored safely until its parent task is
ready to handle the exception (i.e., waits for the completion of the throwing task). PFunc’s ex-
ception handler not only tackles both these challenges, but is also capable of delivering exception

1True task suspension requires that the entire task (with its stack) be suspended and later resumed by any other
thread
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objects to multiple parent tasks. Therefore, users can handle exceptions as if they were running a
sequential program.

The exception handler defines a new exception class, pfunc::exception, which extends std::exception
to provide two additional pieces of information to the users. First, the trace of the tasks and/or
functions through which an exception object was transported is exposed to the users. Second,
if a task terminated as a result of a failed system call or an error internal to PFunc, this error
code is provided to the users. When a task throws an exception, the task is terminated (de-
activated) and the thrown exception is cloned and stored within the task (which is inactive).
Cloning is necessary in order to transport the exceptions across multiple tasks and/or functions
without loss of information. Cloning requires that the exceptions objects inherit from either
pfunc::exception or std::exception; exception objects that do not meet this requirement are discarded
and a pfunc::exception with an “unknown error” description is propagated in their place. As excep-
tion objectsmay need to be transported from a deeply-nested task to a top-level task, pfunc::exception
also allows users to add tracing information that can be used to like a pseudo stack trace. After
additional tracing information has been added, the exception object can be re-thrown to the next
higher-level task.

Unfortunately, the exception handler has two shortcomings. First, when a parent task waits
on its children to complete, the exception handler must actively check for exceptions. This adds
an extra branch in the critical path and results in a small performance penalty. To remedy this,
the exception handler component is disabled by default, and can be enabled using a compile-time
flag. Second, when a task throws an exception, all the tasks spawned by the throwing task may
have to be cancelled — a capability that is currently lacking in the exception handler.

14.5.4 Performance Profiler

Achieving optimal parallel performance often requires tuning various parameters such as task
scheduling policy, task affinities, etc. To help with such tuning, PFunc provides a performance
profiler component that allows users to collect various hardware statistics related to their appli-
cation run. To collect the hardware statistics, this component interfaces with the Performance Ap-
plication Programming Interface (PAPI), a production-grade, open-source, and portable low-level
interface. The performance profiler component allows users to specify particular events (both
PAPI presets and native) that they wish to monitor at the time of library initialization. Then, using
PAPI, the performance profiler collects the required hardware statistics that can be retrieved at the
end of the application run. Shortly, the performance profiler will also be able to collect various
statistics about PFunc’s components (e.g., number of steals per thread and load per thread) that
occurred during an application run.
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Concept name Parameters Description

Copy Constructible T Requires the ability to create and destroy copies of objects of type T.

Copy Assignable T Requires the ability to assign values to objects of type T.

Default Constructible T Requires the existence of an accessible default constructor for type T.

Same Type T1, T2 Requires that both T1 and T2 have the exact same type.

CallableN F, T1, ..., TN Represents a family of concepts (Callable0, Callable1, ..., CallableN).

Requires that F be callable with given arguments of type T1, T2, ... TN.

Requires that result type be a nested type.

Adaptable Binary Function F, T1, T2 Requires that F be callable with arguments of type T1 and T2.

Requires that first argument type and second argument type be nested types.

Requires that result type be a nested type.

Table 6: A summary of all the external concepts that are used in PFunc. All the listed concepts
(other than the Adaptable Binary Function concept) are defined in ConceptC++. The Binary Function
concept is defined in the Silicon Graphics International’s (SGI) STL technical archives.

15 Customizing PFunc

The novelty of PFunc is that many of its runtime components can be configured and/or extended
using generic programming techniques. PFunc’s policy-based design allows users to customize
its user-provided components, and indirectly, the generated components as well through three
key features: scheduling policy, compare, and work. These features directly influence the selection
and composition of the different components that are used in PFunc at runtime. Furthermore,
underlying the features are different concepts, which the values chosen for these features must
model. Figure 7 depicts the role played by each feature in the selection of the different components
of PFunc. To assist application parallelization “out-of-the-box”, PFunc provides a number of built-
in choices for each feature. In this section, we explore the scheduling policy, compare, and work
features, their related concepts, and their built-in values in detail.

There are many different ways of representing concepts and their models. In this section, all
the concepts and their models are defined using the syntax of ConceptC++, a proposal to add di-
rect support for concepts into the C++ language. An important reason for choosing ConceptC++ is
that we are able to test the correctness of our concepts and their models using the reference Con-
ceptGCC compiler implementation.2 For the sake of brevity, the concepts defined in PFunc make
use of other external concepts; these are summarized in Table 6. As can be seen, PFunc makes use
of concepts from two sources: the ConceptC++ proposal and the Silicon Graphics International’s
(SGI) version of the STL.

15.1 Generator

Like the STL, PFunc is a library template ; in order to use it, users are first required to generate
a concrete library instance description by providing appropriate values to the three customizable
features. These features not only represent the values for the user-provided components, but also
are used to create concrete instances of the generated components. To facilitate this process, PFunc
provides pfunc::generator, a templated generator class that accepts three template parameters, each

2ConceptGCC does not handle templated associated functions; such functions had to be commented out.
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of which represent a value of a particular feature. The definition of pfunc::generator is given below:

template <typename PolicyName, typename Compare, typename Work>
requires SchedulingPolicy<PolicyName, pfunc::detail::task<Compare, Work> > &&

AdaptableCallableN<Compare> &&
Callable0<Work>

struct pfunc:: generator {
/∗ type definitions for user−provided and generated components ∗/

};

As can be seen, each template parameter (feature) is constrained with corresponding concept
requirements. First, PolicyName must be a model of the Scheduling Policy concept, defined in Sec-
tion 15.2. This concept takes in an additional parameter, TaskType (represented by the template
type pfunc::detail::task<T,U>) that must be a model of the PFunc Task concept defined in Figure 8.
Second, Compare is constrained to be a model of one of the the Adaptable CallableN family of con-
cepts, defined in Section 15.3. Finally, Work must be a model of the Callable0 concept, defined in
ConceptC++.

To make PFunc work “out-of-the-box”, we provide pfunc::use default, a special class that can be
used as the default value of any feature. Specialization of pfunc::generator for different positional
combinations of pfunc::use default is used to substitute appropriate built-in values as defaults for
each feature (cilkS for PolicyName, std::less<int > for Compare, and pfunc::detail::virtual functor for
Work). Once the three template parameters are specified, the library instance description is gener-
ated; this instance exposes the required PFunc components (work, attribute, group, task, and task
manager) as nested types, which are required to parallelize user applications.

15.2 Scheduling Policy

The value given to this feature determines the scheduling policy that is used in the generated
library instance description; that is, it determines the task queue and task predicate components.
PFunc offers four built-in values for this feature: cilkS, prioS, lifoS, and fifoS; in addition, users can
define custom scheduling polices. Values given to the scheduling policy feature must model the
Scheduling Policy concept, defined below.

concept SchedulingPolicy <typename PolicyName, typename TaskType> {
/∗ concept requirements ∗/
requires PFuncTask <TaskType>;

/∗ associated types ∗/
typename task queue set;
typename regular predicate pair;
typename waiting predicate pair;
typename group predicate pair;

/∗ associated type requirements ∗/
requires TaskQueueSet <PolicyName, task queue set>;
requires TaskPredicatePair <PolicyName, regular predicate pair>;
requires SameType <TaskType∗, regular predicate pair::value type>;
requires TaskPredicatePair <PolicyName, waiting predicate pair>;
requires SameType <TaskType∗, waiting predicate pair::value type>;
requires TaskPredicatePair <PolicyName, group predicate pair>;
requires SameType <TaskType∗, group predicate pair::value type>;

}
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concept PFuncTask <typename TaskType> {
/∗ concept requirements ∗/
requires CopyConstructible <TaskType> && CopyAssignable <TaskType>;

/∗ associated types ∗/
typename compare type;
typename work type;

/∗ associated type requirements ∗/
requires AdaptableCallableN<compare type>;
requires Callable0<work type>;

/∗ associate functions ∗/
compare type TaskType::get compare () const ;

}

Figure 8: The concept definition of the PFunc Task concept, which governs type of the task objects
in PFunc (of type TaskType.)

The Scheduling Policy concept takes two parameters: PolicyName and TaskType. TaskType, the sec-
ond (additional) parameter, is required because it influences the type of the components (task
queue and task predicate) that implement the scheduling policy. Any type used as TaskType is
required to model the PFunc Task concept defined in Figure 8. In PFunc, the task is a generated
component whose type is jointly determined by the values of both the compare and work features;
it is represented by the template type pfunc::detail::task<T,U>. Briefly, the PFunc Task concept stip-
ulates that any valid TaskType must be a model of both Copy Constructible and Copy Assignable
concepts. Furthermore, it is required to have compare type and work type as associated types. In
turn, compare type is required to be a model of one of the concepts in the Adaptable CallableN
family of concepts (see Section 15.3) and work type is required to be a model of the Callable0 con-
cept (see Section 15.4). Finally, TaskType must define the TaskType::get compare() associated func-
tion, which returns returns an object of type compare type when it is invoked. Models of the
Scheduling Policy concept must define four associated types: task queue set, regular predicate pair,
waiting predicate pair, and group predicate pair. Of these, the task queue set associated type repre-
sents the task queue component and must be a model of the Task Queue Set concept (defined in
Section 15.2.2). The remaining three associated types together form the task predicate component
and must be models of the Task Predicate Pair concept, which is defined in Section 15.2.1.

15.2.1 Task Predicate Pair

Every scheduling policy must define the three predicate pairs that form the task predicate compo-
nent; each pair must model the Task Predicate Pair concept, defined below.

concept TaskPredicatePair <typename PolicyName, typename PredPair> {
/∗ associated types ∗/
typename value type;
typename result type;

/∗ associated functions ∗/
PredPair::PredPair(value type);
result type PredPair::own pred(value type);
result type PredPair::steal pred(value type);
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}

The Task Predicate Pair concept takes two parameters: PolicyName and PredPair. In other words,
Task Predicate Pair ensures that PredPair can be used by the scheduling policy defined by PolicyName.
The Task Predicate Pair concept defines two associated types: value type and result type, and three
associated functions: PredPair::PredPair(), own pred(), and steal pred(). Like the PolicyName, the
value type associated type is used to ensure compatibility between the task predicate and task
scheduling components. At each scheduling point, the thread manager constructs a new PredPair
corresponding to the type of the scheduling point, and passes it as an argument to the task queue
component. Therefore, the time required to construct a predicate pair directly adds to the task
scheduling overhead, and it is advisable to have light task predicates that can be constructed
quickly. New predicate pairs are constructed by invoking their respective initializing construc-
tors (PredPair::PredPair()); at this time, these predicates are passed a pointer to the task previously
executed by the calling thread. This (task) pointer contains information about the previously exe-
cuted task’s attributes, which can be used by the task queue component to evaluate the goodness
of the candidate tasks when picking the next task to execute. To evaluate the candidate tasks in
the calling thread’s own queue, the PredPair::own pred() associated function is used; else (when
stealing), the PredPair::steal pred() associated function is used.

15.2.2 Task Queue Set

For a policy to be a valid value of the scheduling policy feature, it must define a task queue
component. The task queue component is governed by the Task Queue Set concept defined below.

concept TaskQueueSet <typename PolicyName, typename QueueSet> {
/∗ associated types ∗/
typename value type;
typename queue index type;

/∗ associated type requirements ∗/
requires PFuncTask <remove pointer<value type>::result type>;
requires CopyConstructible <queue index type> &&

CopyAssignable <queue index type> &&
DefaultConstructible <queue index type>;

/∗ associated functions ∗/
QueueSet::QueueSet (unsigned int );
void QueueSet::put (queue index type, const value type&);
template <typename PredPair>
requires TaskPredicatePair<PredPair, PolicyName> &&

SameType<TaskPredicatePair<PredPair, PolicyName>::value type, value type>

value type QueueSet::get (queue index type, const PredPair&);
}

The Task Queue Set concept takes two parameters: PolicyName and QueueSet. In other words,
Task Queue Set ensures that QueueSet can be used by the scheduling policy defined by PolicyName.
Models of the Task Queue Set concept manage one or more internal queues, which contain el-
ements of type value type, which is always a pointer to the instantiated task type; PFunc’s task
type’s requirements are captured by the PFunc Task described in Figure 8. Users can spawn tasks
on an individual (internal) queue by specifying the queue’s index in objects of type QueueSet.
Queue indices are of the type queue index type; this type is required to be a model of the Copy
Constructible, Copy Assignable, and Default Constructible concepts. Task Queue Set provides three as-
sociated functions: QueueSet::QueueSet() to construct a new queue set with the required number
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of queues, and QueueSet::put() and QueueSet::get(), which allow atomic insertion and removal of
elements from the selected internal queue. The second argument to QueueSet::get() is a predicate
pair that is required to be a model of the Task Predicate Pair concept (for the same PolicyName). In
addition, the value type associated type of both QueueSet and PredPair are required to be of the
same type (enforced by the Same Type concept).

15.2.3 Example

We illustrate the process of implementing a custom scheduling policy using the built-in fifoS pol-
icy as an example. Notice that in practice, as concepts are not yet supported by the existing C++
standards, we realize concepts mostly through specialization and documentation. First, we de-
fine fifoS as a concrete type so that it can be used as the PolicyName to specialize the classes that
implement the task queue and task predicate components.

struct fifoS {};

Next, we need to create the three predicate pairs that are required to implement the task predicate
component for fifoS scheduling policy. However, PFunc’s default implementation of the three
predicate pairs suffices for fifoS; therefore, we do not need to specialize. For example, consider the
default implementation of the regular predicate pair:

template <typename PolicyName, typename ValueType>

struct regular predicate pair {
typedef bool result type;
typedef ValueType∗ value type;

regular predicate pair (value type previous task=NULL) {}

bool own pred (value type current task) const { return true ; }

bool steal pred (value type current task) const { return own pred (current task); }
};

This default implementation tells the scheduler that there are no additional stipulations on tasks
that are picked from the task queues as both own pred() and steal pred() always return true . Next,
we specialize task queue set, a templatized structure that all scheduling policies are required to
specialize.

template <typename ValueType>

struct task queue set <fifoS, ValueType> {
typedef std::queue<ValueType∗> queue type;
typedef typename queue type::value type value type;
typedef unsigned int queue index type;

task queue set (unsigned int num queues) { /∗ create num queue std::queues ∗/ }

template <typename TaskPredicatePair>
value type get (queue index type queue num, const TaskPredicatePair& cnd) {

/∗ retrieve a task from the set of queues. first , attempt to retrieve from queue num, then steal ∗/
}

void put (queue index type queue num, const value type& value) {
/∗ store at the back of the requested queue ∗/

}
};
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With the completion of this step, the fifoS scheduling policy meets all the requirements of the
Scheduling Policy concept. Therefore, fifoS models the Scheduling Policy concept and can be used as
a value of the scheduling policy feature. For the complete implementation, please see pfunc/fifo.cpp.

15.3 Compare

This feature is used to compare task priorities when the chosen scheduling policy uses priorities.
PFunc stipulates that the value given to the compare feature should model one of the concepts in
the Adaptable CallableN family of concepts; the definition of this family of concepts is given below:

concept AdaptableCallableN <typename Functor> {
/∗ concept requirements ∗/
requires CopyConstructible <Functor> && DefaultConstructible <Functor> && CopyAssignable <Functor>;

/∗ associated types ∗/
typename first argument type;
typename result type;

/∗ associated type requirements ∗/
requires CopyConstructible <first argument type> && DefaultConstructible <first argument type> &&

CopyAssignable <first argument type>;
requires CallableN <Functor, first argument type, ..., first argument type>;
requires SameType <CallableN <Functor, first argument type, ...,first argument type>::result type,

result type >;
}

The Adaptable CallableN family of concepts requires its models to define two associated types:
first argument type and result type. PFunc automatically derives the type of the priority sub-attribute
from the value given to the compare feature; hence, it is necessary to define first argument type.
That is, first argument type is used as the type of the priority sub-attribute. Further, a model of one
of the concepts in the Adaptable CallableN family of concepts must also model the corresponding
concept in the CallableN family of concepts. Furthermore, for a Functor, result type must be the
same in both the CallableN and Adaptable CallableN family of concepts; this constraint is enforced
using the Same Type concept. For example, a model of the Adaptable Callable2 concept is required
to also be a model of the Callable2 concept, and have the same result type. Note that the Adaptable
CallableN family of concepts inherently ensures that only a single type can be used as the type of
the task priority. Finally, both Functor and first argument type must be a model of the Default Con-
structible, Copy Constructible, and Copy Assignable concepts. Because the value given to the compare
feature influences the type of the attribute component, it transitively affects the types of the task,
task queue, and task predicate components.

Although PFunc only requires that the value given to the compare feature be a model of one of
the concepts in the Adaptable CallableN family of concepts, a scheduling policy can place additional
constraints on the value given to this feature. For example, the prioS scheduling policy uses task
priorities to enforce a strict weak ordering; therefore, the value given to the compare feature is
required to be a model of the Partial Order concept. The Partial Order concept is a refinement of the
Adaptable Callable2 concept that requires that its models must be irreflexive, antisymmetric, and
transitive; this concept is defined below.

concept PartialOrder <typename Functor> : AdaptableCallable2 <Functor> {
/∗ concept requirements ∗/
requires SameType<result type, bool >;

axiom Irreflexivity (Functor& f, first argument type one) { false == f(one,one); }
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axiom AntiSymmetry (Functor& f, first argument type one, first argument type two) {
if ( false ==f(one,two)) true == f( two,one);

}
axiom Transitivity (Functor& f, first argument type one, first argument type two, first argument type three) {

if ( f (one,two) && f(two,three)) true == f(one,three);
}

}

For convenience, PFunc allows programmers to use pfunc::use default as the value of the com-
pare feature. This value is then turned into the STL functor std::less<int >, which is a model of the
Partial Order concept. In fact, any function object that models the Adaptable Binary Function concept
is a model of the Adaptable Callable2 concept as well (iff the function parameter types are the same
type).

15.4 Work

This feature allows users to specify the type of the function object that is executed by the tasks.
The value given to this feature must be a model of the Callable0 concept. By allowing the type of
the function object to be specified as a feature, PFunc successfully avoids paying the cost of virtual
function calls in the spawned tasks when there is only one type of function object to parallelize.
This is unlike other libraries such as TBB, in which spawning a new task always incurs the cost
of a virtual function call. However, if more than one type of function object needs to be paral-
lelized, the cost of a virtual function call cannot be avoided. The value given to the work feature
is substituted for the type of work in the task component; therefore, the value given to this feature
influences the type of the work component. Transitively, it also determines the types of the task,
task queue, and task predicate components. Function objects that represent spawned computa-
tions are maintained within PFunc as non-constant references; it is illegal to modify or deallocate
the function object before the associated task is finished.

When pfunc::use default is specified as the value of the work feature, PFunc substitutes it with
pfunc::virtual functor, an abstract base class that is a model of the Callable0 concept. In this case,
all function objects that need to be parallelized must inherit from the type pfunc::virtual functor in
order to be executed in parallel by PFunc.
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