
Gri
A Program to Make Science Graphs

Version 2.12.18
2007

Dan E. Kelley (dankelley@users.sourceforge.net)

Copyright c© 1991-2007 Dan Kelley

Gri 1

Gri

Gri is an extensible plotting language designed for scientists. It can draw x-y plots, contour
plots, and image plots, and has rudimentary programming capabilities. It is not mouse
driven, nor gui-based; rather, it is an interpreted scriping language. Users regard it as an
analogue to the latex document formatting language: users gain considerable power, at the
price of a moderate learning curve.

This manual describes Gri version 2.12.18 (c) 1991-2007, Dan Kelley at email address
dankelley@users.sourceforge.net

Gri is released with the GNU Public License (Chapter 19 [License], page 245).

2 Gri

Chapter 1: Introduction 3

1 Introduction

Gri is a programming language for drawing science-style graphs. It is not mouse-driven,
and it does not draw business-style graphs (e.g. pie charts, three-dimensional graphs). Gri
has substantial power in advanced applications. It has been proven to be easy to learn; for
simple applications, the learning curve is less than an hour. Many users regard Gri as the
plotting equivalent of the LaTEX document preparation system.

Computers Gri works on: unix computers of many types, plus Microsoft Windows,
and Macintosh OSX. You’ll find Gri pre-packaged for various unixes, e.g. linux/debian,
linux/redhat, and freeBSD.

Capabilities of Gri are those scientists commonly want, since Gri was written by a
scientist. It is not so useful for business people – e.g., Gri draws xy graphs (Chapter 5
[X-y Plots], page 21), contour plots (Chapter 6 [Contour Plots], page 25), and image plots
(Chapter 7 [Images], page 31), but it will not draw pie-charts unless you teach it how.
The list of capabilities of Gri is similar to many packages, but unlike many of the other
packages, Gri gives you control over line widths, fonts, grayscales, etc. (Chapter 4 [Getting
More Control], page 13), and it is a programming language of moderate power.

The Gri drawing metaphor is that of pen on paper. The ink in the pen is opaque. An
item drawn in white ink will erase a previously drawn underlying object drawn in black ink.
For example, to draw a timeseries curve in which the region between positive data values
and the y=0 axis is filled with black ink, you might use (draw curve filled) to draw the
timeseries with black ink (the default color), blackening the area between the curve and
the lower axis. Then you could load white ink into the pen (using the set graylevel 1 or
set graylevel white command) and white-out a box drawn between the zero line and the
lower axis. Then you’d load black ink back into the pen (set graylevel 0) and draw the
curve again, so that the negative part would appear again.

Input/output in Gri may be interactive or non-interactive. For interactive use, type
gri at the system commandline prompt. For non-interactive use, with Gri commands in a
command-file called ‘cmd.gri’, type gri cmd.gri.

Gri output is in the PostScript page description language. The output is therefore of
high quality, device-independent, capable of being inserted into popular text processors (e.g.
LaTeX), and easily displayed.

Online help: the Gri command help makes Gri list the first words of all known com-
mands, along with a hint for getting further help. To get more information, type help
followed by a command-name (e.g. help read). There is also a tiny bit of information
stored online and categorized by topic. Get this by typing for example help - strings
(Section 10.2 [Online Help], page 146).

Data analysis in Gri is limited. It has rudimentary data analysis functions, such as
regression, column manipulation, smoothing, etc, but it is not intended as an integrated
analysis/graphics package.

System calls are an easy and important facet of Gri. It is easy to use operating system
commands within Gri (Section 9.3.50 [System], page 139; Section 10.16 [Operating System],
page 183; Section 9.3.13 [Get Env], page 97). This allows you to use familiar, powerful tools,
and keeps Gri simple. Particularly useful is the ability to read files through operating system
filters (Section 9.3.28 [Open], page 102).

Programming Gri is quite straightforward, and users familiar with other programming
languages find it easy. If Gri lacks a drawing method, you can add it fairly easily, since Gri
has programming elements such as if statements (Section 10.6 [If Statements], page 157),
while loops (Section 9.3.52 [While], page 141), facilities for interacting with the user (Sec-

4 Gri

tion 9.3.31 [Query], page 106), and mechanisms for storing numbers in "variables" (Sec-
tion 10.4 [Variables], page 147), and text strings in "synonyms" (Section 10.5 [Synonyms],
page 151). The Gri syntax can be augmented easily (Section 10.11 [Adding New Com-
mands], page 173), and these augmentations can be stored in a startup file (Section 10.17
[Resource File], page 185), creating personalized versions of Gri.

Manuals: Gri has an online texinfo manual, a PostScript manual, a WWW manual, a
cookbook and several reference cards. It also has several discussion groups (Section 11.3
[Discussion Group], page 190).

Version Numbering Scheme

When you launch Gri interactively (without naming a commandfile, i.e. by just typing
gri at the unix prompt), you’ll see something like

gri - scientific graphic program (version 2.12.18)
GPL Copyright 2007 by Dan E. Kelley.

Type ‘help’ for an overview of Gri commands, or see the
full manual at

/usr/share/doc/gri-2.12.18/html/index.html
and its text-only version in the ’gri’ INFO node.

Visit http://gri.sourceforge.net for updates and resources.
gri:

The last line is a prompt, suggesting that you type in Gri commands. You may type
quit to get out of gri.

The first line gives the version number. You can also get this by running Gri with
the command gri -v. Version numbers have three numbers separated by periods. The
first number increments for major changes, the second for smaller changes, the third for
still smaller changes. The second number also indicates whether a copy is an experimental
version or a more reliable release version. Experimental versions have the second digit being
an odd integer, while release versions have this digit being even.

Chapter 2: Simple Gri Program and How to Run it 5

2 Simple Gri Program and How to Run it

This chapter introduces Gri with a common example: an x-y graph. The example is dis-
cussed in detail later (Chapter 5 [X-y Plots], page 21). The data files and command files here
and throughout the manual should be available to you in a directory ‘.../gri/examples’
on unix machines.

2.1 Gri Command file

Here is a Gri command file to plot a linegraph of a set of (x,y) data, stored as space-separated
columns in a file called ‘example1.dat’:

Example 1 -- Linegraph of data in separate file
open example1.dat # Open the data file
read columns x y # Read (x,y) columns
draw curve # Draw data curve
draw title "Example 1"# Title above plot

The first line is a comment, as are all things following hash symbols (#). (An exception to
this rule is made within strings contained within the double-quote character ". This allows
sed system commands to work as expected; (Section 9.3.50 [System], page 139).)

The other lines are Gri command lines; (Chapter 5 [X-y Plots], page 21) for more expla-
nation.

2.2 Data File

The data file ‘example1.dat’ looks like:
0.05 12.5 # first point
0.25 19 # second point
0.5 15 # third point
0.75 15 # ... you get the idea!
0.95 13

Note that spaces (or tabs) separate numbers. Any data line may have a comment on it,
just as any command line may.

2.3 Running The Command File

Type ‘gri example1.gri’ at the system prompt. Gri will create a PostScript file called
‘example1.ps’. For details on running Gri see Chapter 3 [Invoking Gri], page 7.

6 Gri

2.4 Output Graph

The output PostScript file is called ‘example1.ps’.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

12

13

14

15

16

17

18

19

y

Example 1

To view Gri output, use your favorite PostScript previewer.
Note that in the above example, Gri automatically chose reasonable scales for the axes,

based on the range of the data. The next chapter illustrates that Gri also gives you control
over such things.

Chapter 3: Invoking Gri 7

3 Invoking Gri

3.1 Invoking Gri in a nutshell

First, the short story. In 90 percent of cases, Gri is run as
gri myscript

where the file ‘myscript.gri’ holds a script (list of Gri commands), and Gri will create
a PostScript file called ‘myscript.ps’ with the output.

Some folks like to give the ‘.gri’ suffix explicitly, so they would invoke Gri as
gri myscript.gri

instead.
If you’d rather not have ‘myscript.ps’ as the PostScript output file name (let’s say you

prefer ‘graph1.ps’) you’d do
gri -output graph1.ps myscript.gri

Few readers will need to know more than this. But, for the rest, the table in the next
section gives full details on all the optional arguments that Gri can handle.

3.2 Using Gri to draw things

To draw things, invoke Gri as
gri [OPTIONS] [CmdFile [optional_arguments]]

where the square brackets indicate that the enclosed items are optional. The OPTIONS item
may consist of one or more of the following (explained below):

[-batch]
[-b]
[-chatty N]
[-c N]
[-debug]
[-d]
[-directory_default]
[-directory pathname]
[-help]
[-h]
[-no_bounding_box]
[-no_cmd_in_ps]
[-no_startup_message]
[-output PS_file_name|SVG_file_name]
[-private]
[-no_private]
[-publication]
[-p]
[-superuser N]
[-trace]
[-t]
[-yes]
[-y]

8 Gri

[-version]
[-v]
[-warn_offpage]
[-no_warn_offpage]

Here, the optional optional_arguments are a mechanism to customize the action of
the given Gri script from the commandline. After Gri processes standard arguments (e.g.
-t for tracing), it puts the remaining commandline arguments into a list. This behavior
is borrowed from C and othe languages, so Gri borrows the name of the list as well: it’s
called the "arg" list, and its elements are available with the RPN operators named ‘argc’
(Section 10.9.6 [Solitary Operators], page 168) and ‘argv’ (Section 10.9.5 [Unary Operators],
page 164).

For a note on usage within the Emacs gri-mode, see Section 12.7 [Filename arguments
when running gri], page 203.

Details of command-line options

• -batch or -b Stops Gri from printing out prompts and hints.
• -chatty N or -c N Make Gri print out various informative messages. The numerical

value gives a level of chattiness. A value of 1, the default if the -chatty code is not
supplied, tells Gri to keep you informed of some important things, like the success in
gridding data for contouring. Higher values make Gri tell you more:
Information printed at various chatty levels:
• 0 The bare minimum is printed. Thus invoking Gri as gri -c 0. . . will make it as

quiet as can be.
• 1 or higher (the default) The full filenames of the commandfiles are displayed at

startup time.
convert columns to grid prints percentage of grid filled, as well as a suite of
diagnostics, if you’ve let it calculate the region of influence automatically. It also
prints a warning of the time it expects to take, before starting the calculation.
convert grid to image prints characteristics of image created, including amount
of image clipped.
read grid data reports number of data values it could not read (since they were
nonnumeric).
draw symbol reports number of data points not drawn because they were missing
or outside clip region (if one exists).

• 2 or higher draw contour prints value of contour being drawn.
open "...|" prints the command to be passed to the operating system as well as
the name of the temporary file being created; also notifies user when the temporary
file is destroyed.
show image reports histograms in intensity bands of 8 units, instead of the default
16 units.

• 3 or higher show image reports histograms in intensity bands of 4 units, instead
of the default 16 units.

• -debug or -d Sets the built-in variable flag ..debug.. that you can use to isolate blocks
of code.

• -directory_default Reports directory where ‘gri.cmd’ is expected to be found, either
in the default location or the one specified by -directory commandline option.

Chapter 3: Invoking Gri 9

• -directory pathname Specifies the directory where Gri looks for the startup file
‘gri.cmd’. (This file teaches Gri the standard commands; Gri will report an error
and die if it cannot find this file.) If this switch is not provided – and it is normally
not – then Gri looks for ‘gri.cmd’ in a standard system directory (sometimes,
but not always, ‘/usr/local/share/gri/2.12.18’) which was specified during the
compilation of the Gri program itself. For more on how Gri looks for ‘gri.cmd’, see
the subsection below.

• -no_bounding_box Make the so-called “bounding box” in the PostScript file be the
full page. The bounding box is used by some PostScript previewers to clip the image
to just the drawn parts of the page, and is used by the epsfbox macro in latex to
automatically determine the geometry of the graph for inclusion in text. Normally the
bounding box is calculated automatically, to enclose all the items drawn on the page.
But the box may also be set with the set bounding box command (Section 9.3.41.5
[Set Bounding Box], page 116).

• -no_cmd_in_ps Prevent Gri from inserting the lines of the commandfile into the
PostScript file as comments. (These comments can be used by the -creator
commandline option (see above), but they take up a little bit of space and users might
sometimes want to get rid of them.)

• -no_warn_offpage Do not warn if items are offpage. (Contrast this with -warn_
offpage.)

• -output PS_file_name Specify the PostScript filename. If this is not specified, the
PostScript filename is derived from the name of the commandfile (e.g. ‘mygraph.gri’
produces ‘mygraph.ps’), or, for interactive use, it will have a name like ‘gri-00.ps’,
or ‘gri-01.ps’ if the former file exists, etc.

• -output SVG_file_name Specify the SVG filename. This is a pre-feature, as of version
2.12.x, meaning that SVG output is not working properly yet. If you specify an SVG
file name, you will see a long list of warnings. These are debugging messages, and
are not specific to your actual Gri script. For example, you will see warnings about
centring strings, even if you are not centering any strings. This manual does not
contain a list of working features (or broken features) for SVG output; the idea is that
a discussion of such things be done using the bug-reporting system of the Gri website
Section 15.2 [Reporting Bugs], page 227. In addition to bugs, the author is interested
in users’ opinions on the scheme of the SVG, especially the hieararchy of groupings of
graphical elements. It is because such things are being altered that this is designated
a pre-feature.

• -no_startup_message Stops Gri from printing the startup message.
• -private Prevents inserting any information about the user into the PostScript file (see

-no_private, next). As of version 2.12.10, this privacy option is assumed by default.
• -no_private Instructs Gri to include comments in the PostScript file that identify

the user, state the commandline arguments used in invoking Gri, and that list all the
commands that were executed. This information can be recovered by calling Gri on the
PostScript file, with the -creator commandline argument. Until version 2.12.10, the
default was to include this information, but a change was made out of privacy concerns.

• -publication or -p Sets the built-in variable ..publication.. to 1. You may use
this to distinguish between working plots and publication plots, as in this example:

if !..publication..
draw time stamp
draw title "working version of plot"

end if

10 Gri

• -superuser (This option is included here only for completeness. It should only be used
by developers (who will alter the code to print debugging information if -superuser
is set in addition to -debug). An optional value can be inserted (e.g. -superuser
2) to set the debugging level (retrievable by the function superuser()) to indicated
integer value. Specifying the -superuser command-line option sets the built-in variable
..superuser.. to 1 or the specified value.)
For flag meanings, see superuser command (Section 9.3.49 [Superuser], page 139).
Using the question-mark symbol ? instead of a flag number makes Gri print out the
list of flags.

• -trace or -t Makes Gri print out command lines as they are executed; this has the
same effect as the set trace command.

• -version or -v Display version information and exit successfully.
• -warn_offpage Causes warnings to be issued for all items drawn far off a 8.5x11 inch

page. This is the default. (Contrast with -no_warn_offpage.)
• -yes or -y Bypasses all query commands, making Gri act as though the user typed a

carriage-return (thus giving the default) for each query.
• -help or -h Prints explanation of options.
• CommandFile If a command file CommandFile is specified, then commands will be read

from that file instead of the keyboard. If the chatty level is 1 or larger, Gri prints the
names of the commandfiles at startup time. It is conventional but not necessary that
the filename ends in .gri. If the filename does end in .gri, you may delete this suffix;
Gri will assume it as implied.

Executable scripts. If you don’t need to supply commandline options, you can put the
following line as the first line in your Gri program

#!/usr/bin/gri

(or point to wherever Gri is located on your machine), and chmod +x the file. Then you
can run Gri simply by naming the file. There is no particular advantage in this, except for
saving the typing of a few characters, but some folks like this.

How Gri locates the ‘gri.cmd’ file. In a normal installation, Gri finds the ‘gri.cmd’ file
all by itself. However, developers and some others may wish to control where Gri looks for
this file. The rules below specify how Gri looks for ‘gri.cmd’.

Case 1 If -directory was given on the commandline used to invoke Gri (e.g. gri
-directory /some/place mycommand_file.gri), then Gri will use the
‘gri.cmd’ in the named directory. An error will result if ‘gri.cmd’ is not
found there.

Case 2 If -directory was not given on the commandline, then Gri looks for ‘gri.cmd’
in a location that was specified during compilation. If ‘gri.cmd’ is found there,
then it is used. If it is not found, then Gri checks to see if an environment
variable named GRI_DIRECTORY_LIBRARY is defined. If so, then Gri takes this
to be the name of a directory that contains the ‘gri.cmd’ file. If ‘gri.cmd’ is
not found there, an error results.

3.3 Extracting commandfile from a PostScript file

gri -creator PostScriptFile

See also -no_cmd_in_ps.

Chapter 3: Invoking Gri 11

The -creator flag makes gri examine the indicate PostScript file, and produce a facsimile
of the command file (or interactively-typed commands) that created this PostScript file.
(This only works if the Gri command that created the PostScript file used the -no_private
commandline argument.)

12 Gri

Chapter 4: Controlling Axes, Fonts, Colors, etc 13

4 Controlling Axes, Fonts, Colors, etc

Gri provides a great many things that you can control, if you want to. An introduction to
some of these things is presented in the sections below.

4.1 An example

Below is a followup to the previous example, which names the x and the y axes.
Fancier version of Example 1
open example1.dat
read columns x y
set x name "Time, hours"
set y name "U, m/s"
draw curve

The difference is that the x and y axes are named with a set command. There are many
set commands, and they are all pretty simple, e.g. set x size 15 makes the x-axis be 15
centimeters long, instead of the default of 10 centimeters. Indeed, you can control anything
you want in gri, e.g. graph size, line width, fonts, etc etc. Speaking of fonts, the α
type of latex formatting of Greek letters is supported in a limited way. Also, Gri handles
ISO-Latin-1 encodings as well as the U.S. style.

The example below illustrates a few more set commands. This example is intentionally
complicated, being about a good example of the level of complexity of many plots made by
Gri. Read the comments to see what is being done, and consult the plot as you read the
commandfile.

14 Gri

0 0.25 0.5 0.75 1
t0

10

15

20

F

0 0.25 0.5 0.75 1
t0

10

15

20

F

Example 3 −− scales, axes, etc

Example 3 -- Controlling scales, etc
#
Example of how to control axis scales, etc. This example makes
two panels, plotting the same data in different ways.
#
#
----- PANEL 1 --
#
Set up the x axis.
#
Make the x axis run from 0 to 1, with labelled tics each 0.25.
set x axis 0 1 .25
Make the x-axis be 5 cm long; in other words, make the plot 5 cm wide.
set x size 5
Put 2 cm of space between the left edge of the plot and the left
edge of the paper.
set x margin 2
Give the x-axis the name "t" with subscript 0.
set x name "t_0"
#

Chapter 4: Controlling Axes, Fonts, Colors, etc 15

Set up the y axis.
#
Make the y axis run from 10 to 20, with labelled tics at intervals
of 5 and smaller, unlabelled tics, at intervals of 1. Other
commands are similar to those for the x-axis.
set y axis 10 20 5 1
set y size 10
set y margin 2
set y name "F"
#
Now, read our simple data set.
open example1.dat
read columns x y
close
#
Draw a curve connecting these (x,y) data. Note that the axes, as
defined above, will be drawn automatically along with the curve.
draw curve

#
----- PANEL 2 --
#
OK, now for a more complicated version. We’ll keep the same data, but
redraw it in a new panel, to the right of the first graph. So, the
first step is to increase the x margin. The {rpn} command simply
creates a number which is the sum of the old x margin (stored in
the variable ..xmargin..) and the old plot width (stored in
the variable ..xsize..), plus an extra 1 cm
set x margin {rpn ..xsize.. ..xmargin.. + 1 +}
#
Set the line thickness for the curve to 1 point (0.3 mm) and the
axis line thickness to 0.2 points (0.1 mm).
set line width 1.0 # points
set line width axis 0.2 # points
Set the tics to be 1.5 mm.
set tic size 0.15 # centimetres
Draw axes and frame, with axes offset from frame. Some
people find this more attractive.
set axes style offset
draw axes 1
Now draw the actual curve.
draw curve
Superimpose dots (diameter 1.5 mm) at the data.
set symbol size 0.15
draw symbol bullet
#
All done.
Draw a title above the plot.
set font size 20
\label = "Example 3 -- scales, axes, etc"

16 Gri

draw label "\label" at \
{rpn 8.5 2.54 * "\label" width - 2 /} \
{rpn ..ytop.. yusertocm 2 +}\
cm

4.2 Axis scaling

Gri normally assumes that you are plotting scientific graphs, and therefore whenever it sees
a command like draw curve or draw symbol, it draws an appropriate axis first. You can
turn this feature off, by using draw axes none before the other draw command.

Furthermore, Gri picks axis scales by itself, by scanning the (x, y) columns. If you don’t
like the scales Gri picks, you can override them (Section 4.5 [Range], page 17).

Gri normally draws axes labelled at left and bottom, and with an axis frame with tics all
around. If you don’t like this default axis style you can specify other styles. For example, if
the commands draw x axis and draw y axis are placed before the draw curve command,
Gri will realize you’ve already specified axes, and just draw them on the left and bottom
sides of the box, without completing the axis frame.

For your general use, Gri stores the minimum and maximum x and y values of the axes
in the variables ..xleft.., ..xright.., ..ybottom.., and ..ytop... It also stores the
increments used in labelling these axes in the ..xinc.. and ..yinc.. variables.

To determine the minimum and maximum values of column data, you may use the
built-in RPN functions min, max, and mean (Section 10.9.7 [Manipulation of Columns etc],
page 169).

Gri stores the last (x,y) pair on a curve (whether data or axis) in the ..xlast.. and
..ylast.. variables

Gri stores the axis sizes in ..xsize.. and ..ysize... It stores the space to the left of
the plot in ..xmargin.. and the space below the plot in ..ymargin...

4.3 Logarithmic and linear axes

Axes are linear by default; to make logarithmic axes, use commands set x type log and
set y type log.

4.4 Axis Length

The axes are normally 10 centimetres long. To set the axis lengths (in centimetres), use
commands like set x size 5 and set y size 7. Some people like the ratio of axes to be in
the so-called golden ratio (root(5)-1)/2; to get that, you could do this:

set x size 15
set y size {rpn ..xsize.. 5 0.5 power 1 - 2 / *}

For maps, you’ll want the plot scaled so that shapes retain their aspect ratio. To do
this, do set x size .cm. and then do resize y for maps (or vice versa).

Chapter 4: Controlling Axes, Fonts, Colors, etc 17

4.5 Axis Range

To override axis ranges set by Gri, use set x axis and set y axis. With these commands,
you specify the range of the axes; you may also set the interval for numbered tics, and an
interval for unnumbered tics. The unnumbered tics must be at an interval that divides
evenly into the numbered tic interval, but the numbered tic interval need not divide into
the min/max range. Thus, set x axis 0 1.1 0.5 will create an axis that will range from 0
to 1.1, with labelled tics at the values 0, 0.5 and 1.

4.6 Axis Name

To set the name of the x axis, use set x name "string", and similarly for the y-axis. The
default names are x and y.

4.7 Axis location

If you don’t like the default position of axes (at left and bottom), you may get Gri to draw
axes anywhere you like, using commands like draw y axis at right (so the y axis is at the
right-hand end of the x range) or draw x axis at top (so the x axis is at the top of the
plot); you may even specify an exact location, such as draw x axis at 22.2.

Normally, the x axis is placed at the bottom end of the y axis, and the y axis is placed
at the left end of the x axis. Some people prefer a style in which the axes are positioned
a small offset away from these locations. To get this effect, you may either position the
axes yourself, or simply use the set axes style offset command (Section 9.3.41 [Set],
page 115). If you want this axis style for all their plots, put the line set axes style
offset in your ‘~/.grirc’ startup file (Section 10.17 [Resource File], page 185).

4.8 Fonts

Fonts are selected with set font to (Section 9.3.41.20 [Set Font To], page 121) and font
sizes are selected with set font size (Section 9.3.41.19 [Set Font Size], page 121).

Much more about text, including how to draw mathematical symbols, how to use sub-
scripts and superscipts, how to write non-English (accented) European text, etc, is discussed
(Section 10.10 [Text], page 170).

4.9 Colour of ink in pen

The darkness of the “pen” used in drawing commands (for either lines or for text) is set
by set graylevel .brightness.. A brightness value of 0 corresponds to black ink, and a
brightness value of 1 corresponds to white ink. Values outside this range are clipped to the
nearer endpoint. Values inside this range choose a proportional graylevel in between; for
example, set graylevel 0.5 gives a 50 percent gray tone.

The graylevel applies to text as well as lines. Often you’ll want to draw a gray line and
a black label beside it, or you’ll want to set a graylevel temporarily. Here’s how to do it:

Save old graylevl, set, then reset to old
.old_gray. = ..graylevel..

18 Gri

set graylevel 0.5
draw curve
set graylevel 0
draw label for last curve "TEST"
set graylevel .old_gray.

The color of the "pen" may be set to any value you can describe with an RGB (red,
green, blue) or HSB (hue, saturation, brightness) specification, or a color name. This pen
color applies to everything, even text.
The set color \name command

Set the pen color to the indicated name. There are two types of names: hexadecimal-
triplet names and English names.

Hexadecimal-triplet names are of a form often used in web-pages. They consist of exactly
6 characters, which are divided by Gri into three sets of two characters, specifying the red
component, the green component, and the blue component of the color, respectively. These
components are in hexadecimal notation, i.e. ranging from 00 to FF, indicating values from
0 to 255. For example,

set color ACD4EF

sets a pastel blue color, almost the color of a robin’s egg.
The English colors are written simply in the form

set color blue

where the color is from the following list. (Gri requires that you use the exact form shown,
including the capitilization.) The color mixes are identical to those used in X11.

NAME RED GREEN BLUE
"white" 1.000 1.000 1.000
"LightGray" 0.827 0.827 0.827
"darkslategray" 0.184 0.310 0.310
"black" 0.000 0.000 0.000
"red" 1.000 0.000 0.000
"brown" 0.647 0.165 0.165
"tan" 0.824 0.706 0.549
"orange" 1.000 0.647 0.000
"yellow" 1.000 1.000 0.000
"green" 0.000 1.000 0.000
"ForestGreen" 0.133 0.545 0.133
"cyan" 0.000 1.000 1.000
"blue" 0.000 0.000 1.000
"skyblue" 0.529 0.808 0.922
"magenta" 1.000 0.000 1.000

To get more colors than those provided in the above list, use the read colornames com-
mand.

You should do a test case for your printer to see which colors you find most to your
liking. You’ll want to pick colors that look different from each other. In some cases you
might want to avoid dithered colors, since they look too broken on really thin lines. For
example, on my printer I like the following colors: black, red, yellow, green, cyan, and
magenta.
The set color rgb .red. .green. .blue. command

Chapter 4: Controlling Axes, Fonts, Colors, etc 19

This command sets the color using the red-green-blue color model. If you are familiar
with how colors add (e.g. red plus green yields yellow), then you might like this, but most
people find it easier to use the set color hsb ... style described below.

Set the individual color components as follows. The numbers .red., .green. and .blue.
range from 0 (for no contribution of that color component to the final color) to 1 (for
maximal contribution). Values less than 0 are clipped to 0; values greater than 1 are
clipped to 1. EXAMPLES:

set color rgb 0 0 0 # black
set color rgb 1 1 1 # white
set color rgb 1 0 0 # bright red
set color rgb 0.5 0 0 # dark red
set color rgb 0 1 0 # pure green
set color rgb 1 1 0 # yellow: red + green

The set color hsb .hue. .saturation. .brightness. command

In this color model, the color ("hue") is specified with a single parameter. Many people
find this easier than using the corresponding rgb command.

Set the individual color components as follows. The numbers .hue., .saturation.
and .brightness. range from 0 to 1. The color, represented by .hue., ranges from 0 for
pure red, through 1/3 for pure green, and 2/3 for pure blue, and back to 1 again for pure
red. (HINT: It is a good idea to limit the total range of hue you use to 2/3, instead of
1; otherwise you’ll get confused by (nearly) repeated colors at the crossover. For example,
limit the hue to range from 1/3 to 1, or 0 to 2/3.) The purity of the color, represented
by .saturation., ranges from 0 (none of the hue is visible) to 1 (the maximal amount is
present). Less saturated colours are like those you would get from mixing black paint into
colored paint. The brightness of the color, represented by .brightness., ranges from 0
(black) to 1 (maximal brightness). Lowering brightness is like decreasing the intensity of
the light you shine on a painting.

Hue, saturation, and brightness values are all clipped to the range 0 to 1. EXAMPLES:
set color hsb 0 1 1 # pure, bright red
set color hsb 0 1 0.5 # half black, half red
set color hsb .333 1 1 # pure, bright green

20 Gri

Chapter 5: X-Y Plots 21

5 X-Y Plots

5.1 Linegraphs

The following Gri commands will draw a linegraph. For the output graph (Chapter 4
[Getting More Control], page 13).

This plots a simple linegraph:
Example 1 -- Linegraph using data in a separate file

open example1.dat # Open the data file
read columns x y # Read (x,y) columns
draw curve # Draw data curve
draw title "Example 1" # Title above plot

Here’s what the command lines mean:
• The first line is a comment. Anything to the right of a hash-mark # is considered to

be a comment. (This symbol is also called a "pound".)

• The second line is blank. Gri ignores blank lines between commands.

• open example1.dat tells Gri to open the indicated file (in the current directory)
as an input data file. You can specify files outside the current directory by us-
ing conventional unix-shell pathnames (e.g., open ~/data/TS/section1/T_S.dat or
open ../data/file.dat). You can even use "synonyms" (Section 10.5 [Synonyms],
page 151.) in filenames, as in open \BASENAME.dat.

• read columns x y tells Gri to start reading columnar data, the first column being x,
the second y. x and y are predefined names for whatever ends up on the horizontal
and vertical axes.

The number of data needn’t be specified. Gri reads columns until a blank line or end-
of-file is found. You can tell Gri how many lines to read with a command like read
columns 10 x y. Multiple datasets can reside within one file; provided that they are
separated by a single blank line, Gri can access them by multiple read commands.

Like C, Gri expects numbers to be separated by one or more spaces or tabs. Commas
are not allowed. If the columns were reversed, the command would be read columns
y x. If there were an initial column of extraneous data, the command would be read
columns * x y, or read columns x=2 y=3 (Section 9.3.33.2 [Read Columns], page 107).

• draw curve tells Gri to draw a curve connecting the points in the x and y columns.
A nice scale will be selected automatically. (You can change this or any other plot
characteristics easily, as you’ll see later.)

• draw title tells Gri to write the indicated string centered above the plot. The title
must be enclosed in quotes.

• quit tells Gri to exit.

Gri will draw axes automatically, and pick its own scales.
If you wish to draw several curves which cross each other, you should try using draw

curve overlying instead of draw curve. This will make it easier to distinguish the different
curves.

22 Gri

5.2 Scattergraphs

This section contains two examples, the first being a fuller explanation of all the bells and
whistles, the second being a simple explanation of how to get a very quick plot, given just
a file containing a matrix of grid data.

To get a scattergraph with symbols at the data points, substitute draw symbol for draw
curve. Both symbols and a curve result if both draw curve and draw symbols are used.
See Chapter 4 [Getting More Control], page 13 for an example.

By default, the symbol used is an x. To get another symbol, use a command like draw
symbol 0 or draw symbol plus.

To change the symbol size from the default of 0.2 cm use commands like set symbol
size 0.1 to set to 1 mm (Section 9.3.41.41 [Set Symbol Size], page 129).

5.2.1 Coding data with symbols

To get different symbols for different data points, insert symbol codes from the above list as
a column along with the x-y data, and substitute the command read columns x y z, and
then draw them with draw symbol. Gri will interpret the rounded-integer values of the z
columns as symbol codes. Note that even if you’ve read in a z column which you intend
to represent symbols, it will be overridden if you designate a specific symbol in your draw
symbols command; thus draw symbol 0 puts a + at the data points whether or not you’ve
read in a symbol column.

5.2.2 Drawing a symbol legend

The following example shows how you might write a symbol legend for a plot. The legend
is drawn 1 cm to the right of the right-hand side of the axes, with the bottom of the legend
one quarter of the way up the plot; Section 9.3.9.30 [Draw Symbol Legend], page 92. The
lines in the legend are double-spaced vertically. To change the location of the legend, alter
the .legend_x. = and .legend_y. = lines. To change the spacing, alter the .legend_y.
+= line.

set x axis -1 5 1
set y axis -1 5 1
read columns x y z
0 0 0
1 1 1
2 2 2
3 3 3

draw symbol

Legend
.leg_x. = {rpn ..xmargin.. ..xsize.. + 1 +}
.leg_y. = {rpn ..ymargin.. ..ysize.. 4 / +}
draw symbol legend 0 "Foo" at .leg_x. .leg_y. cm
.leg_y. += {rpn "M" ascent 2 *}
draw symbol legend 1 "Bar" at .leg_x. .leg_y. cm
.leg_y. += {rpn "M" ascent 2 *}

Chapter 5: X-Y Plots 23

5.2.3 Coding data with symbol colors

To get different colors for different symbols, read a color code into the z column, and do for
example draw symbol bullet color hue z. The numerical color code ranges from 0 (red)
through to 1, passing through green at 1/3 and blue at 2/3.

5.3 Formula Plots

There are two methods for formula graphs.
1. Use the system yourself. Do as in this example:

open "awk ’BEGIN{for(i=0;i<3.141;i+=0.05)\
{print(i,cos(i))}}’ |"

read columns x y
close
draw curve

2. Let Gri calculate things for you

The simplest is to let Gri calculate things for you with the create columns from
function command (Section 9.3.5 [Create], page 80). The command assumes that
you have defined the synonym called \function which defines y in terms of x.
Gri uses the program awk to create the columns, and cannot work without it.
Here is an example of using create columns from function:

show "First 2 terms of perturbation expansion"
set y axis name horizontal
set y name "sea-level"
set x name "ωt"

\b = "0.4" # perturbation parameter b=dH/H
\xmin = "0"
\xmax = "6.28"
\xinc = "3.14 / 20"
\function = "cos(x)"
set x axis \xmin \xmax
create columns from function
draw curve
draw title "SOLID LINE \function"

\function = "(cos(x)+\b/2*(1-cos(2*x)))"
create columns from function
set dash 1
draw curve
draw title "DASHED LINE \function"

draw title "b = \b"

Here’s another example, in which the curve y = 1/(\int + \sl*x) is drawn through
some data. Note how sprintf is used to set \xmin and \xmax using the scales that
Gri has determined in reading the data.

open file.data
read columns x y

24 Gri

close
draw symbol bullet
\int = "-0.1235"
\sl = "0.003685"
sprintf \xmin "%f" ..xleft..
sprintf \xmax "%f" ..xright..
\function = "1/(\int + x * \sl)"
create columns from function
draw curve

Chapter 6: Contour Plots 25

6 Contour Plots

Contour plots can be done with either pregridded data or randomly distributed (ie, ungrid-
ded) data.

6.1 Pre-gridded Data

This section presents two examples of contouring pre-gridded data, the first example illus-
trating a boilerplate program to contour data stored in a simple matrix form in a file, the
second example illustrating a case with more control of the details (e.g., a nonuniform grid).

6.1.1 Simple example

This example was hardwired to know the size of the grid, etc. Here’s an example which is
more general, in that it determines the dimensions of the grid data from using unix system
commands. Note that the grid is set to run from 0 to 1 in both x and y; you’ll most likely
want to change that after you see the initial plot, but this should get you started.

\file = "somefile.dat"
\rows = system wc \file | awk ’{print $1}’
\cols = system head -1 \file | awk ’{print NF}’
set x grid 0 1 /\cols
set y grid 0 1 /\rows
open \file
read grid data \rows \cols
close
draw contour

26 Gri

6.1.2 Complicated example

To get a simple contour graph based on pre-gridded data, with full control of axes, etc, do
something like this:

65

4

3

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

10

11

12

13

14

15

16

17

18

19

20

y

Example 4

Example 4 -- Simple contour graph

#
Read x-grid; blank-line means stop reading.
read grid x
0
.2
1

Note that the x-grid was irregular. The y-grid
in this example is regular, so we can just set
it to range from 10 to 20, incrementing by 2.5.

Chapter 6: Contour Plots 27

set y grid 10 20 2.5
Thus we now have a grid 3 wide and 5 high. Let’s
read the actual data now.
read grid data
1 2 3
2 3 4
3 4 5
4 5 6
5 6 7

Now draw contours (automatically set; we could
have done ‘draw contour 2’ to draw contour for
value 2 or ‘draw contour 1 10 2’ to draw contours
ranging from 1 to 10 with an increment of 2.)
draw contour
draw title "Example 4"

Here several new things have been introduced.
First, you’ve got to define a grid in xy space. This example uses a non-uniform x-grid,

and reads it in from the commandfile. In this form, the blank line is essential; it tells Gri
that the end of data has been located; if you like, you can specify the number of lines to
read, as in read grid x 3.

The y-grid for this example is uniform, however, so it may be specified with the set y
grid command. It obtains values (10, 12.5, 15, 17.5, 20). The set x|y grid commands
accept negative increments. Furthermore, it is possible to specify the number of steps,
rather than the increment size, by putting / before the third number; thus set x grid 0 1
/5 and set x grid 0 1 0.2 are equivalent.

Having defined a grid, it is time to read in the gridded data. Here this is done with the
read grid data command. Since Gri already knows the grid dimensions, it will read the
data appropriately. You could also have told it (read grid data 3 5).

The first dataline is the top of the y-grid. In other words, the data appear in the file
just as they would on the graph, assuming that the x-grid and y-grid both increase.

Sometimes you want to read in the transpose of a matrix. Gri lets you do that. If the
bycolumns keyword is present at the end of the read grid command, the first dataline will
contain the first column, of the data.

If you have an extraneous column of data to the left of your data matrix, do read grid
data * 2 3

Now Gri has the grid in its head. We tell it to draw some contours with the draw
contour command. As the comments in the example show, the contour values will be
selected automatically, but you can alter that.

6.2 Ungridded data

When you have f=f(x,y) points at random x and y, you must cast them onto a grid to
contour them. This is a difficult problem. There are many ways to grid data, and all have
both good and bad features. You should try various methods, and various settings of the
parameters of the methods. If you have a favorite gridding method that you prefer, you
should probably pre-grid the data yourself. If not, Gri can do it for you. Gri has two
methods for doing this, the “boxcar” method and the “objective analysis” method. Each

28 Gri

method puts holes in the grid wherever there are too few data to map to grid points, unless
you specifically ask to fill in the whole grid.

The next two sections show first an example, then a discussion of the methods and how
to use them.

6.2.1 Example

This example uses data taken from Figure 5 of S. E. Koch and M. DesJardins and P. J.
Kocin, 1983. “An interactive Barnes objective map anlaysis scheme for use with satellite

Chapter 6: Contour Plots 29

and conventional data,”, J. Climate Appl. Met., vol 22, p. 1487-1503. Readers should
compare Figures 5 and 6 of that paper to the results shown here.

0 2 4 6 8 10 12
x

0

2

4

6

8

10

y

11
14

12

17 17
16

34
27

24 25 24 21 16
17

27

25

9 28 27
19

23
29

28

18 22

7 16 22

17
18

19

30

28

28

26

26

26

24

24

24

2222

22

20

20

20

20

18

18

16

16

14

14

14

12

12

10

8

Example 5 -- wind (Fig5 Koch et al, 1983)

30 Gri

Example 5 - Contouring ungridded data, from figure
5 of Koch et al., 1983, J. Climate Appl. Met.,
volume 22, pages 1487-1503.
open example5.dat
read columns x y z
close
set x size 12
set x axis 0 12 2
set y size 10
set y axis 0 10 2
draw axes
set line width symbol 0.2
set symbol size 0.2
draw symbol bullet
set font size 8
draw values
set x grid 0 12 0.25
set y grid 0 10 0.25

Use default method (Barnes)
convert columns to grid

set font size 10
draw contour 0 40 2
set font size 12
draw title "Example 5 -- wind (Fig5 Koch et al, 1983)"

6.2.2 Discussion of Methods

The various commands for converting columns to a grid are given in (Section 9.3.4.1 [Convert
Columns To Grid], page 75). Generally, the Barnes method is best.

Chapter 7: Image Plots 31

7 Image Plots

Gri can read in images stored in various formats. It can also create image data internally,
by converting gridded data, which is quite handy in some contouring applications.

Note: if your diagram is to be reproduced by a journal, it is unlikely that the reproduction
will be able to distinguish between any two graylevels which differ by less than 0.2. Also,
graylevels less than 0.2 may appear as pure black, while those of 0.8 or more may appear as
pure white. These guidelines are as specified by American Geophysical Union (publishers
of J. Geophysical Res.), as of 1998.

7.1 Reading and Creating Image Data

Gri can do black and white image plots, such as satellite images. There are several ways to
create image data in Gri
• Create images from gridded data using convert grid to image. For examples see

Section 8.3 [Grayscale Images], page 43), Section 8.4 [Combination], page 46, and
Section 8.2 [Contouring], page 39.

• Read raw ascii image data files. Use read grid.
• Read PGM (portable graymap) ascii files. (That is, a file with magic characters P1 or

P3 at the start.) Use the read image pgm command, for a file opened in ascii mode
with open filename.

• Read raw binary data, with or without headers. Use read image, after skipping any
header bytes using the skip command, for a file opened in binary mode with open
filename binary.

• Read a Sun “rasterfile” file (but only in uncompressed form). Use read image
rasterfile for a file opened in binary mode with open filename binary.

• Read a PGM (portable graymap) binary file. (A file with magic characters P2 or P4
at the start.) Use the read image pgm for a file opened in binary mode with open
filename binary.

• Aside: Images can be converted to grids (for contouring) using convert image to grid
(Section 9.3.4 [Convert], page 74).

Once the image is created, its grayscale/colorscale may be manipulated with the
commands set image grayscale and set image colorscale, which permit linear and
histogram-equalized blendings over the grayscale or color range, or with read image
grayscale and read image colorscale, which permit reading in the grayscale or color
values individually, one for each of the 256 pixel values.

It is important to understand the structure of image data. Gri works only with 8-bit
image data. This means that a given pixel of the image may have only one of 256 possible
values. The example below uses a satellite image of surface temperature. The suppliers of
the data dictate that pixel value 0 corresponds to a temperature of 5C, and a pixel value
of 255 corresponds to 30.5C, so the resolution is 0.1C per pixel value. This resolution will
be apparent if the output of the example below is previewed on a grayscale/color monitor
— notice the quantization in the palette. This resolution issue is not very important with
satellite images, since you have to use what you are given by the suppliers of the data.
However, the issue is very important when you are converting grid data to images. When
Gri converts grid data to image data, it neccessarily discards information, because the grid
data have resolution to about 6 digits, whereas the image data have only 8-bit (2-3 digit)
resolution. The set image range commands determines the range of this 8-bit resolution in

32 Gri

terms of user units. All other things being equal, it would be preferable to use the smallest
range consistent with the range of your data. If your grid data ranged from 0 to 1, say,
you might set image range 0 1. This would give a resolution in the image of 1/255 in
the user units. But, when Gri converts the grid into an image, it will clip all data outside
the indicated range. In this case, any data greater than 1 in the grid would translate to
exactly 1 in the image. Naturally there is a tradeoff between having a range large enough to
encompass any data in the grid, and a range small enough to yield adequate resolution. In
most cases, 8-bit resolution will be adequate, but it is good to be aware of the limitations.
One should always draw image palette, and check it on a color monitor for bandedness,
which is a sign of resolution problems.

7.2 About The PostScript Output

Programmers Note: Gri inserts some special comments in the PostScript file, to help pro-
grammers extract the image data; to extract the information, you’ll have to understand
how PostScript handles images. Gri inserts a single comment line before a line ending in
the token im:

%BEGIN_IMAGE
170.70 170.70 534.86 534.86 128 128 im

The first four numbers are the (x,y) locations of the lower-left and upper-right corners of
the image, in units of points on the page (72 points = 1 inch). The fifth and sixth numbers
are the width of the image and the height of the image. The keyword im is always present
on this line. Gri inserts the following comment line at the end of the image data

%END_IMAGE

7.3 Example (Satellite image)

Here’s an example that will plot different types of images, depending on your answers to
query questions. The file called ‘\filename’ is the data file, in binary format with one byte
(unsigned char in C) for each pixel, stored with the northwest pixel first, and the pixel
to the east of that next. The file called \mask is in the same format, and the numbers are
0 if the point is over the sea and 1 if over land. The mask file is used in computing the
histograms, which is done if \histo is 1.

The file in this example covers 128 * 128 pixels over the Gulf of Maine. The numbers in
\filename correspond to surface temperatures according to the equation

T = 5 + 0.1 * pixel_value

which explains the following lines in the command file:
\0val = "5" # 0 in image
\255val = "30.5" # 255 in image

Depending on \histo, the graymap will be linear or histogram-enhanced. The histogram
method consists of dividing the cumulative histogram for the values in the image up into 256
levels, and assigning a graylevel to each. This has the effect of creating maximal contrast
in all ranges of graylevel. It points up features really well, but it is a nonlinear mapping, so
it is not good for telling you where gradients are strong or weak.

Chapter 7: Image Plots 33

Examples are shown for linear mapping and histogram mapping.

0 32 64 96 128 160 192 224 256
km

0

32

64

96

128

160

192

224

256

km

10 11 12 13 14 15

5 10 15 20 25 30 35
10-4
10-3
10-2
10-1

1

Example 6: grayscale linear 10 to 15

34 Gri

0 32 64 96 128 160 192 224 256
km

0

32

64

96

128

160

192

224

256

km

10 11 12 13 14 15

5 10 15 20 25 30 35
10-4
10-3
10-2
10-1

1

Example 6: grayscale histogram enhanced

Chapter 7: Image Plots 35

Example 6 -- Plot IR image of Gulf of Maine
Define characteristics of norda images
Note that the pixel to temperature conversion formula is
#
Temperature = 5C + pixel_value / 10
#
where pixel_value ranges from 0 to 255. Thus, a pixel value of 0
corresponds to a temperature of 5C, and 255 corresponds to 30.5C;
this is why the limits \0val and \255val, for use by the ‘set image
range’ command, take on these values.
\0val = "5" # 0 in image
\255val = "30.5" # 255 in image
.rows. = 128
.cols. = 128
.pixel_width. = 2
.km. = {rpn .cols. .pixel_width. *}

get filenames
query \filename "Name image file" ("example6image.dat")
query \maskname "Name mask file" ("example6mask.dat")

get data, then mask, each in 8-bit image format
open \filename 8bit
set image range \0val \255val
read image .rows. .cols. box 0 0 .km. .km.
close
open \maskname 8bit
read image mask .rows. .cols.
close

find out what grayscale method to use
query \histo "Do histogram enhancement? (yes|no)" ("no")
query \minT "T/deg for white on page? " ("10")
query \maxT "T/deg for black on page? " ("15")
\incT = "1"

set up scales.
set x size 12.8
set y size 12.8
set x name "km"
set y name "km"
set x axis 0 .km. 32
set y axis 0 .km. 32

plot image, grayscale, and histogram
if {"\histo" == "yes"}

set image grayscale using histogram black \maxT white \minT
else

set image grayscale black \maxT white \minT
end if
draw image

36 Gri

draw image palette left \minT right \maxT increment \incT
draw image histogram
if {"\histo" == "yes"}

draw title "Example 6: grayscale histogram enhanced"
else

draw title "Example 6: grayscale linear \minT to \maxT"
end if

Chapter 8: Real-world examples 37

8 Real-world examples

The example files in this manual should be available to you directly, having been installed
with Gri; if not, ask your system manager to check the FTP site.

Additionally, I’ve collected a few real life examples here. Other sources are the Gri
cookbook, available at http://gri.sourceforge.net/gri-cookbook/index.html.

8.1 Box plots

Box plots were invented by Tukey for eda (exploratory data analysis). They show nonpara-
metric statistics. The centre of the box is the median. The box edges show the first quartile
(q1) and the third quartile (q3). The distance from q3 to q1 is called the inter-quartile
range. The whiskers (lines with crosses on them) extend to the furthest points still within
1.5 inter-quartile ranges of q1 and q3. Beyond the whiskers, all outliers are shown, in open
circles up to a distance of 3 inter-quartile ranges beyond q1 and q3, and in closed circles

38 Gri

beyond that. Below is an example that uses a "new command" to define each box plot
(Section 10.11 [Adding New Commands], page 173).

1 2 3
Density Ratio, Rρ

10–2

10–1

1

101

E
ffi

ci
en

cy
, Γ

Example 7 −− Box plot

Chapter 8: Real-world examples 39

Example 7 -- Box plots of mixing efficiency vs density ratio (meddy)

‘Draw y boxplot from \file at .x.’
Draw a y boxplot for data in given file, at given
value of x.
{

open \.word4.
read columns * y
close
draw y box plot at \.word6.

}
if !..publication..

draw time stamp
end if
set x axis 1 3 1 0.1
set x name "Density Ratio, R_ρ"
set x margin 4
set y axis -2 1 1
#
Must fool gri into not drawing the axes, because the y data
are already in logspace.
draw axes none
Draw y boxplot from example7a.dat at 1.3
Draw y boxplot from example7b.dat at 1.4
Draw y boxplot from example7c.dat at 1.5
Draw y boxplot from example7d.dat at 1.6
Draw y boxplot from example7e.dat at 1.7
Draw y boxplot from example7f.dat at 1.8
Draw y boxplot from example7g.dat at 1.9
delete y scale
set y name "Efficiency, Γ"
set y type log
set y axis 0.01 10 1
draw axes
draw title "Example 7 -- Box plot"

8.2 Contouring

This example plots a section of dT/drho vs x and rho (actually, sigma-t, as the label
indicates). The contours are unlabelled; I’m only interested in the zero crossings.

There are some other useful tricks in this example, such as calling awk and wc from the
unix system.

40 Gri

(In the plot shown, all query questions were answered with carriage return, yielding the
defaults; the -p flag was specified on execution, so the time stamp was not drawn.)

300 200 100 0
km

28.1

28.0

27.9

27.8

σT

Example 8

Chapter 8: Real-world examples 41

Example 8 -- Plot T=T(x,rho) section of eubex data

‘Initialize Parameters’
{

\FILE_DATA = "example8a.dat" # T vs rho
\FILE_LOCN = "example8b.dat" # section distances
set missing value -99.0
#
Following values from ~/eubex/processing/to_rho_bins/do_rho_inter
\RHO_MIN = "28.1"
\RHO_MAX = "27.5"
\RHO_INC = "-0.002"
\NY = "301"
\xmin = "350"
\xmax = "0"
\xinc = "-100"
\ymin = "28.1"
\ymax = "27.8"
\yinc = "-0.1"
\zmin = "0"
\zmax = "2.5"

}
‘Initialize Axes’
/*
Set up axes
*/
{

set x name "km"
set x size 10
set x axis \xmin \xmax \xinc
set y name "σ_T"
set y size 5
set y axis name horizontal
set y axis \ymin \ymax \yinc
set y format "%.1f"

}
‘Initialize Files’
{

query \data "Data file? " ("\FILE_DATA")
query \locn "Station locn?" ("\FILE_LOCN")

}
‘Read Data’
{

Read x-locations
system awk ’{print $2}’ < \locn > TMP
system wc TMP | awk ’{print $1}’ > NUM
open NUM
read .gridx_number.
close
system rm NUM
open TMP

42 Gri

read grid x .gridx_number.
close
system rm TMP
Create y-locations
set y grid \RHO_MIN \RHO_MAX \RHO_INC
#
Read data
open \data
read grid data \NY .gridx_number.
close

}
‘Plot Contours’
{

set graylevel .contour_graylevel.
set clip on
set line width 0.5
draw contour -3 3 0.25 unlabelled
#
wide line at 0 degrees
set line width 2
draw contour 0 unlabelled

}
‘Plot Image And Maybe Contours’
{

\imagefile = "image"
set image range \zmin \zmax
convert grid to image box \xmin \ymin \xmax \ymax
query \dohisto "Do histogram scaling? (yes|no)" ("yes")
\incs = "no"
if {"\dohisto" == "yes"}

set image grayscale using histogram
else

\zinc = "0.25"
query \incs "In linear scaling, band at an increment of \zinc?" ("yes")
if {"\incs" == "yes"}

set image grayscale black \zmin white \zmax increment \zinc
else

set image grayscale black \zmin white \zmax
end if

end if
write image rasterfile to \imagefile
show "wrote image rasterfile ‘\imagefile ’"
draw image
draw image palette
query \do_contours "Do contours as well (yes|no)" ("yes")
if {"\do_contours" == "yes"}

Plot Contours
end if
draw title "Example 8 -- \data black=\zmin white=\zmax"
if {"\dohisto" == "yes"}

draw title "Histogram enhanced grayscales"

Chapter 8: Real-world examples 43

else
if {"\incs" == "yes"}

draw title "Grayscale banded at intervals of \zinc"
end if

end if
}
Initialize Parameters
Initialize Axes
Initialize Files
Read Data
query \doimage "Draw image (yes|no)" ("no")
if {"\doimage" == "yes"}

.contour_graylevel. = 1 # white contours
Plot Image And Maybe Contours

else
.contour_graylevel. = 0 # black contours
Plot Contours
draw title "Example 8"

end if

8.3 Image created from coarsely gridded data

This example reads gridded ascii station data (Read Data), creates an interpolated image
(convert grid ...), and then plots the image.

There are some other useful tricks in this example, such as calling awk and wc from the
unix system.

44 Gri

(In the plot shown, all query questions were answered with carriage return, yielding the
defaults; the -p flag was specified on execution, so the time stamp was not drawn.)

300 200 100 0
km

28.1

28.0

27.9

27.8

σT

Example 9

Chapter 8: Real-world examples 45

Example 9 -- Plot dTdrho-rho section

‘Initialize Parameters’
{

\FILE_DATA = "example9a.dat" # T vs rho
\FILE_LOCN = "example9b.dat" # section distances
#
Following values from ~/eubex/processing/to_rho_bins/do_rho_inter
\RHO_MIN = "28.1"
\RHO_MAX = "27.5"
\RHO_INC = "-0.002"
\NY = "301"
set missing value -99.0
\xmin = "350"
\xmax = "0"
\xinc = "-100"
\ymin = "28.1"
\ymax = "27.8"
\yinc = "-0.1"
\zmin = "-10" # black
\zmax = "0" # white

}
‘Initialize Axes’
Set up axes.
{

set x name "km"
set x size 10
set x axis \xmin \xmax \xinc
set y size 5
set y name "σ_T"
set y axis name horizontal
set y axis \ymin \ymax \yinc
set y format %.1lf
draw axes none

}
‘Initialize Files’
{

query \data "Data file? " ("\FILE_DATA")
query \locn "Station locn?" ("\FILE_LOCN")

}
‘Read Data’
{

Read x-locations
system awk ’{print $2}’ < \locn > TMP
system wc TMP | awk ’{print $1}’ > NUM
open NUM
read .gridx_number.
close
system rm NUM
open TMP
read grid x .gridx_number.

46 Gri

close
system rm TMP
Create y-locations
set y grid \RHO_MIN \RHO_MAX \RHO_INC
#
Read data
open \data
read grid data \NY .gridx_number.
close

}
Initialize Parameters
Initialize Axes
Initialize Files
Read Data
set image range \zmin \zmax
set image colorscale hsb 0 1 1 \zmin hsb .6 1 1 \zmax
convert grid to image box \xmin \ymin \xmax \ymax
#
Draw the image, then draw the axes. Note that the image has
extends beyond the axes frame, so we will turn clipping
on before drawing it, to make a clean picture.
set clip postscript on
draw image
set clip postscript off
draw axes

#
All done.
draw title "Example 9"
if {"\dohisto" == "yes"}

draw title "Histogram enhanced grayscales"
end if

8.4 Combination of image and contour

The following example reads gridded data and creates an image as in the previous example,
but also superimposes unlabelled white contour lines.

Chapter 8: Real-world examples 47

(In the plot shown, all query questions were answered with carriage return, yielding the
defaults; the -p flag was specified on execution, so the time stamp was not drawn.)

0 0.5 1
distance along cove

0

81

tim
e

0 0.5 1
distance along cove

0

81

tim
e

0 5 10 15 20

Example 10 −− file=example10.dat header=‘0.300000 variable_area = 0’

48 Gri

Example 10 -- Draw image plot of flushing of dye out of cove
if !..publication..

draw time stamp
end if
\file = "example10.dat"
query \contours "Superimpose contours? (yes|no)" ("yes")
query \file "Input file name " ("\file")
open \file
read line \header
read \D
read .nx.
read .ny.
set x name "distance along cove"
set y name "time"
set x grid 0 1 /.nx.
set x axis 0 1 0.5 0.1
set y grid 0 .ny. / .ny.
set y axis 0 .ny.
read grid data * * .ny. .nx.
set image range 0 20
set image grayscale black 20 white 0 increment 5
convert grid to image
draw image
if {"\contours" == "yes"}

set graylevel 1.0
draw contour 0 20 1 unlabelled
set graylevel 0.0

end if
draw axes
draw image palette left -1 right 21 increment 5
draw title "Example 10 -- file=\file header=‘\header’"

Example 10color -- Draw color image plot

Test various colorscales.
INSTRUCTIONS: Uncomment one of the following ’\scale = ’ statements

CASE 1: From black at high values to white at low values
#\scale = "rgb 0 0 0 20.0 rgb 1 1 1 0.0 increment 5"

CASE 2: From skyblue at 20 to tan for 0; traverse RGB space
See also case 5, which names the colors.
#\scale = "rgb 0.529 0.808 0.922 20.0 rgb 0.824 0.706 0.549 0.0 increment 5"

CASE 3: From skyblue at 20 to tan for 0; traverse HSB space
Is it just me, or is this uglier than case 2?
#\scale = "hsb 0.548 0.426 0.922 20.0 hsb 0.095 0.334 0.824 0.0 increment 5"

CASE 4: Use a spectrum; traverse HSB space
#\scale = "hsb 0 1 1 20.0 hsb 0.6666 1 1 0.0 increment 5"

CASE 5: From skyblue to tan, traversing RGB space (by default)

Chapter 8: Real-world examples 49

(Compare case 2, which uses similar endpoints, with
colors specified with RGB values, and larger increment.)
#\scale = "skyblue 20.0 tan 0.0 increment 2"

CASE 6: From skyblue to tan, traversing RGB space (by default)
Compare 2 and 5; note this has continuous increment
#\scale = "skyblue 20.0 tan 0.0"

CASE 7: From blue to brown
\scale = "blue 20.0 brown 0.0 increment 2.5"

open example10.dat
read line \header
read \D
read .nx.
read .ny.
set x name "distance along cove"
set y name "time"
set x grid 0 1 /.nx.
set x axis 0 1 0.5 0.1
set y grid 0 .ny. / .ny.
set y axis 0 .ny.
read grid data * * .ny. .nx.
set image range 0 20
convert grid to image
set image colorscale \scale
draw image

Draw contours in white ink
set graylevel 1.0
draw contour 0 20 1 unlabelled
set graylevel 0.0

draw axes # redraw in case whited out
draw image palette left -1 right 21 increment 5
set font size 9

Title tells what method used
draw title "Used ‘draw image colorscale \scale’"

50 Gri

8.5 Fancy x-y linegraph

The following code shows a fancy plot with lots of bells and whistles.

1965 1970
Year

−3

−2

−1

0

1

2

3

A
re

a
/ 1

05 km
2

1955 1960 1965 1970 1975 1980

Example 11 (Arctic ice anomaly)

Chapter 8: Real-world examples 51

Example 11 -- Fancy plot
Pen sizes, etc.
#
.thin. = 0.5 # for whole data set
.thick. = 2 # for bravo time period
.gray_for_guiding_lines. = 0.75 # for guiding lines
.tmin. = 1964 # time axis
.tmax. = 1974
.tinc. = 5
.tincinc. = 1
.missing_value. = -9
\file = "./example11.dat"
#
Guiding lines to draw on both panels.
#
.1xl. = 1962
.1yb. = -3
.1xr. = 1968
.1yt. = 3
.1slope. = {rpn .1yt. .1yb. - .1xr. .1xl. - /}
.1intercept. = {rpn .1yb. .1slope. .1xl. * -}
.2xl. = 1966.4
.2yb. = 3
.2xr. = 1980
.2yt. = -1
.2slope. = {rpn .2yt. .2yb. - .2xr. .2xl. - /}
.2intercept. = {rpn .2yb. .2slope. .2xl. * -}
#
PANEL 1: Bravo time period.
#
set x margin 3
set x size 15
set y margin 3
set y size 5
Draw border big enough for this and next panel.
draw border box {rpn ..xmargin.. 2 -} \

{rpn ..ymargin.. 2 -} \
{rpn ..xmargin.. ..xsize.. + 2 +} \
{rpn ..ymargin.. ..ysize.. 2 * 3 + + 2 +} \
0.2 0.75

set missing value .missing_value.
set ignore error eof
set x name "Year"
set x axis .tmin. .tmax. .tinc. .tincinc.
set y name "Area / 105km2"
set y axis -3 3 1
draw axes
#
Draw index lines 1 and 2.
#
Upward sloped line.

52 Gri

set line width .thin.
set graylevel .gray_for_guiding_lines.
if {rpn .1intercept. ..xright.. .1slope. * + ..ytop.. <}

draw line from \
..xleft.. \
{rpn .1intercept. ..xleft.. .1slope. * +} \
to \
{rpn ..ytop.. .1intercept. - .1slope. /} \
..ytop..

else
draw line from \

..xleft.. \
{rpn .1intercept. ..xleft.. .1slope. * +} \
to \
..xright.. \
{rpn .1intercept. ..xright.. .1slope. * +}

end if
set graylevel 0
#
Downward sloped line.
set line width .thin.
set graylevel .gray_for_guiding_lines.
if {rpn .2intercept. ..xleft.. .2slope. * + ..ytop.. <}

draw line from \
{rpn ..ytop.. .2intercept. - .2slope. /} \
..ytop.. \
to \
..xright.. \
{rpn .2intercept. ..xright.. .2slope. * +}

else
draw line from \

..xleft.. \
{rpn .2intercept. ..xleft.. .2slope. * +} \
to \
..xright.. \
{rpn .2intercept. ..xright.. .2slope. * +}

end if
set graylevel 0
#
Finally, draw the data curve on top, after first
whiting out a background.
set input data window x .tmin. .tmax.
open \file
read columns x y
close
y /= 1e5
set line width ..linewidthaxis..
draw zero line
set line width {rpn .thick. 3 *}
set graylevel 1
draw curve

Chapter 8: Real-world examples 53

set graylevel 0
set line width .thick.
draw curve

#
PANEL 2: Longer timescale.
#
delete x scale
set x margin bigger 5
set x size 10
set x name ""
set y name ""
set y margin bigger {rpn ..ysize.. 3 +}
#
Draw long data set in thin pen.
set input data window x off
open \file
read columns x y
close
y /= 1e5
#
Draw guiding lines, axes, etc.
set x axis 1952 1980 5 1
draw axes frame
set line width .thin.
set graylevel .gray_for_guiding_lines.
draw line from .1xl. .1yb. to .1xr. .1yt.
draw line from .2xl. .2yb. to .2xr. .2yt.
set graylevel 0
set line width ..linewidthaxis..
draw zero line

draw x axis at bottom
.old. = ..fontsize..
set font size 0
draw y axis at left
set font size .old.
delete .old.
#
Draw full curve (first whiting out region around it).
set line width {rpn .thin. 4 *}
set graylevel 1
draw curve
set graylevel 0
set line width .thin.
draw curve
#
Draw bravo time period (first whiting out region around it).
set input data window x .tmin. .tmax.
open \file

54 Gri

read columns x y
close
y /= 1e5
set line width {rpn .thick. 3 *}
set graylevel 1
draw curve
set graylevel 0
set line width .thick.
draw curve
#
Done
set font size 20
\label = "Example 11 (Arctic ice anomaly)"
draw label "\label" at \

{rpn 8.5 2.54 * "\label" width - 2 /} \
{rpn ..ytop.. yusertocm 0.7 +} \
cm

if !..publication..
draw time stamp

end if

Chapter 8: Real-world examples 55

8.6 Legends and annotated lines

The following example shows how to handle annotated curves and legends.

800 820 840 860 880 900 920 940 960
Height

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

T
ot

al
 E

ne
rg

y

1

2

3

4
1 = Model 1A

2 = Model 2A

3 = Model 1B

4 = Model 2B

Example 12 −− Total heating vs height of boundary layer

56 Gri

Example 12 -- Linegraph with key inside plot
set font size 10 # points (1in = 72pt)
set x size 10 # cm
set y size 10 # cm
set x name "Height"
set y name "Total Energy"

Following axis setups not necessary; will autoscale if you
remove these.
set x margin 3
set x axis 800 960 20
set y margin 3
set y axis -0.4 1 0.2

Read data. Format is columns (x, y1, y2, y3, y4)
open example12.dat
read columns x y
draw curve
draw label for last curve "1"

rewind
set line width {rpn ..linewidth.. 1.5 *}
read columns x * y
draw curve
draw label for last curve "2"

rewind
set line width {rpn ..linewidth.. 1.5 *}
read columns x * * y
draw curve
draw label for last curve "3"

rewind
set line width {rpn ..linewidth.. 1.5 *}
read columns x * * * y
draw curve
draw label for last curve "4"

Draw the key.
NOTES:
(1) This key is inside the plot; its location was chosen
after looking at the data. To put the key in a different
location, alter the .key_topleft_x. and .key_topleft_y.
variables. For example, you could put the key to the
right of the plot by changing the next line to:
‘.key_topleft_x. = {rpn ..xsize.. 0.5 +}’
(2) The variable .dy_inc. is the spacing between lines in
the key. It should be OK even if you change the
font size above.
.key_topleft_x. = 0.5 # cm right of left axis
.key_topleft_y. = 0.5 # cm below top axis

Chapter 8: Real-world examples 57

.dy_inc. = {rpn ..fontsize.. pttocm 1.5 *}

draw label "1 = Model 1A" at \
{rpn ..xleft.. xusertocm .key_topleft_x. +} \
{rpn ..ytop.. yusertocm .key_topleft_y. -} cm

.key_topleft_y. += .dy_inc.
draw label "2 = Model 2A" at \

{rpn ..xleft.. xusertocm .key_topleft_x. +} \
{rpn ..ytop.. yusertocm .key_topleft_y. -} cm

.key_topleft_y. += .dy_inc.
draw label "3 = Model 1B" at \

{rpn ..xleft.. xusertocm .key_topleft_x. +} \
{rpn ..ytop.. yusertocm .key_topleft_y. -} cm

.key_topleft_y. += .dy_inc.
draw label "4 = Model 2B" at \

{rpn ..xleft.. xusertocm .key_topleft_x. +} \
{rpn ..ytop.. yusertocm .key_topleft_y. -} cm

draw title "Example 12 -- Total heating vs height of boundary layer"

8.7 Drawing gray polygons

The following example shows how to draw polygons of a graylevel that is read in. It also
draws a bullet (within the polygon). See the help lines at the start.

‘Draw Polygon And Bullet’
Draw a polygon of a given graylevel, with a bullet
(black dot) at an indicated location. The polygon
coordinates are read in by this command, as are
the graylevel and the location of the bullet.

Variables used:
.black.
.white.

Input data read:

line 1:
A code (which is ignored) and a graylevel
to draw the polygon with. The value for this
graylevel ranges from .black. (which codes
to black ink on the paper) to .white.
(which codes to blank paper).

line 2:
An (x,y) location for the bullet.

line 3:

58 Gri

Skipped.

line 4-n:
Locations of vertices of polygon, ended with a blank line.

{
read .code. .graylevel. # Read line 1
read .x. .y. # Read line 2
skip # Skip line 3
read columns x y # Read a polygon
Adjust .graylevel. to range between 0
(for black ink) and 1 (for white paper),
then set graylevel and draw polygon.
.graylevel. = {rpn .graylevel. \

.black. - .white. .black. - /}
set graylevel .graylevel.
draw curve filled
Draw black bullet
set graylevel 0
draw symbol bullet at .x. .y.
Clean up local storage.
delete .code.
delete .graylevel.
delete .x.
delete .y.

}

Chapter 8: Real-world examples 59

8.8 Temperature-Salinity Diagram

Here is how you might draw an oceanographic "TS" (temperature salinity) diagram:

34 34.5 35
Salinity / PSU

2

3

4

5

6

7

8

9

10

P
ot

en
tia

l T
em

pe
ra

tu
re

 /
°C

27

27

Example 13 −− TS diagram, with isopycnals

60 Gri

Example 13 -- TS diagram, with isopycnals
#
Draw Axes
set line width axis 0.25
set line width 0.75
.tic_size. = 0.1 # cm
set symbol size 0.03
.isopycnal_fontsize. = 8 # for isopycnal labels
.axes_fontsize. = 10 # for axes
set font size .axes_fontsize.
set x margin 2
set x size 10
set y margin 2
set y size 10
.Smin. = 33.4
.Smax. = 35.0
.Sinc. = 0.5
.Sincinc. = 0.1
.thetamin. = -2.0
.thetamax. = 11.0
.thetainc. = 1.0
.thetaincinc. = 1.0
set tic size .tic_size.
set x name "Salinity / PSU"
set y name "Potential Temperature / \circC"
set x axis .Smin. .Smax. .Sinc. .Sincinc.
set y axis .thetamin. .thetamax. .thetainc. .thetaincinc.
set axes style offset
draw axes 1
set clip on
.old. = ..fontsize..
set font size .isopycnal_fontsize.
draw isopycnal 26.00
draw isopycnal 26.50 unlabelled
draw isopycnal 27.00
draw isopycnal 27.50 unlabelled
draw isopycnal 28.00
draw isopycnal 28.50 unlabelled
draw isopycnal 29.00
set clip off
set font size .old.
#
Draw the data.
open example13.dat
read columns x y
draw symbol bullet
set font size ..
draw title "Example 13 -- TS diagram, with isopycnals"

Chapter 8: Real-world examples 61

8.9 Probability Density Function Diagram

A common application is to draw the probability density function for (x,y) data. Gri has
no builtin facility to do this, but the following example shows how to create the gridded
PDF data using a call to the perl system command. The gridded data thus generated are
contoured, creating a PDF diagram. As the comments in the program state, the first call
to Perl is specific to a particular dataset, and can be ignored on first reading; it just creates
the file ‘tmp-xy.\.pid.’.

Draw prob-density-function TS diagram for Bravo data

This first call to perl is specific to the
particular (weird) dataset. All that matters
is that a file of (x,y) data is created, and
stored in the file called ‘tmp-xy.\.pid.’
system perl <<"EOF"
#
Slurp in x[], y[] data
$dir = "/users/dek/kelley/Labrador/bravo/data";
$Sfile = "$dir/S_25db_1day";
$Tfile = "$dir/T_25db_1day";
open(S, "$Sfile") || die "Can’t open input $Sfile";
open(T, "$Tfile") || die "Can’t open input $Tfile";
open(ST, ">tmp-xy.\.pid.")

|| die "Can’t open tmp-xy.\.pid.";
$day = 5;
$year = 1964;
while(<S>) {

@S = split;
$_ = <T>;
@T = split;
if (240 < $day && $day < 360) {

for ($i = 0; $i < $#S; $i++) { #all depths
print ST "$S[$i] $T[$i]\n";

}
}
$day += 1;
if ($day > 365) {

$year++;
$day = 0;

}
if ($year > 1967) { last; }

}
EOF

#
Create 2D PDF for (x,y) data in file \infile
storing the results in \outfile. X ranges
between the indicated limits, with the indicated
binsize, as does y. The synonyms defined
on the next 4 lines are the only input this

62 Gri

perlscript needs; the perlscript itself is
quite general. For details of what it does,
particularly the scaling of the PDF, see
the perl comments.
\xmin = "33.5"; \xmax = "35.5"; \xinc = "0.05";
\ymin = "-2.0"; \ymax = "11.0"; \yinc = "0.25";
\infile = "tmp-xy.\.pid."
\outfile = "tmp-grid.\.pid."
system perl <<"EOF"
#
Prepare 2 dimensional probability-density-function
dataset for contouring by Gri. This reads (x,y)
data from a file called $infile (defined below)
and creates an output file called $outfile
(also defined below) containing the
x-grid, the y-grid, and then the grid data,
suitable for reading/contouring by the Gri
commands
open tmp-grid.\.pid.
read .number_of_data.
read grid x
read grid y
read grid data
draw contour
#
The values in the output grid are defined so
that they sum to the reciprocal of the
product of the x binsize and y binsize (see
definition of $factor below).
#
$xmin = \xmin; $xmax = \xmax; $xinc = \xinc;
$ymin = \ymin; $ymax = \ymax; $yinc = \yinc;
$infile = "\infile";
$outfile = "\outfile";
#
Slurp in the x[], y[] data, storing
the total number of data in $n.
open(IN, "$infile") || die "Can’t open infile";
open(OUT, ">$outfile") || die "Can’t open outfile";
$n = 0;
while(<IN>) {

($x[$n], $y[$n]) = split;
$n++;

}
#
Zero out matrix (stored in a linear array scanned
as one reads a book).
$cols = int(1 + ($xmax - $xmin) / $xinc);
$rows = int(1 + ($ymax - $ymin) / $yinc);
for ($y = $ymax; $y > $ymin; $y -= $yinc) {

for ($x = $xmin; $x < $xmax; $x += $xinc) {

Chapter 8: Real-world examples 63

$l = int(($x - $xmin) / $xinc
+ $cols * int(($y - $ymin) / $yinc));

$sum[$l] = 0;
}

}
#
Cumulate (x,y) data into the matrix
$inside = 0;
for ($i = 0; $i < $n; $i++) {

if ($ymin <= $y[$i] && $y[$i] <= $ymax
&& $xmin <= $x[$i] && $x[$i] <= $xmax) {
$l = int(($x[$i] - $xmin) / $xinc

+ $cols * int(($y[$i] - $ymin) / $yinc));
$sum[$l]++;
$inside++;

} else {
print STDERR "($y[$i], $x[$i]) clipped\n";

}
}
#
Print number of points (to allow renormalization
if the user wishes)
print OUT "$inside\n";
#
Print x grid, y grid, then grid itself
for ($x = $xmin; $x < $xmax; $x += $xinc) {

printf OUT "%lg\n", $x;
}
print OUT "\n";
for ($y = $ymax; $y > $ymin; $y -= $yinc) {

printf OUT "%lg\n", $y;
}
print OUT "\n";
#
The $factor variable scales the PDF.
$factor = 1 / $xinc / $yinc / $inside;
for ($y = $ymax; $y > $ymin; $y -= $yinc) {

for ($x = $xmin; $x < $xmax; $x += $xinc) {
$l = int(($x - $xmin) / $xinc

+ $cols * int(($y - $ymin) / $yinc));
printf OUT "%lg ", $factor * $sum[$l];

}
print OUT "\n";

}
EOF

Axes
set x margin 3
set x margin 6
set x name "Salinity [PSU]"
set y name "Potential Temperature [\circC]"

64 Gri

set x axis 34.5 34.8 0.1
set y axis 5 9 1
draw axes

PDF
open tmp-grid.\.pid.
read .number_of_data.
read grid x
read grid y
read grid data
.smooth. = 0

Contours. Use clipping, since the axes are
zooming in on part of the PDF.
set font size 8
set contour label position centered
set clip postscript on
set line width rapidograph 4x0
draw contour 0.2 2.2 0.4 unlabelled
set line width rapidograph 0
draw contour 0.4 2.4 0.4
set clip postscript off
end if

8.10 Running-Mean Skyline Diagram

Timeseries data are often cast into running means; e.g. a temperature record might be
cast into monthly mean values. The following example shows how to use a perl script to
accomplish this easily, producing a graph with both the raw data (bullets) and the running
mean (a skyline plot).

‘Bin with x .min. .max. .inc. \in_file \out_file’

Creates \out_file from \in_file. In each of these
files, column 1 represents x and column 2 represents
y. The \out_file file contains the average values
of y in x bands of width .inc., centred at .min.,
(.min.+.inc.), up to .max, and with missing values
inserted in bands with no x-data in \in_file.
Each x-band is represented in \out_file by a
plateau in y, and adjacent bands with
non-missing data are connnected by vertical
lines; the effect is a skyline plot of the
banded means. Sample application: plot
monthly means of a variable.
{

if {rpn \.words. 8 !=}
show "ERROR: ‘\.proper_usage.’ called without"
show " giving all parameters"
quit 1

end if

Chapter 8: Real-world examples 65

system perl <<"EOF"
$min = \.word3.;
$max = \.word4.;
$inc = \.word5.;
open(IN, "\.word6.")

|| die "‘\.proper_usage’: no \\in_file";
open(OUT, ">\.word7.")

|| die "‘\.proper_usage’: no \\out_file";

$n = ($max - $min) / $inc;
#
Set up bins.
for($i = 0; $i <= $n; $i++) {

$xx[$i] = 0;
$yy[$i] = 0;
$nn[$i] = 0;

}
while(<IN>) {

($x, $y) = split(’ ’);
$i = int(0.5 + ($x - $min) / $inc);
$i = 0 if $i < 0;
$i = $n - 1 if $i > $n - 1;
$xx[$i] += $x;
$yy[$i] += $y;
$nn[$i]++;

}
for($i = 0; $i <= $n; $i++) {

if ($nn[$i] > 0) {
$xx[$i] /= $nn[$i];
$yy[$i] /= $nn[$i];
$xleft = $min + $inc * ($i - 0.5);
$xright = $min + $inc * ($i + 0.5);
#
If datum to left non-missing,
just draw vertical line
down to the last yy value.
if ($i > 0 && $nn[$i - 1] > 0) {

print OUT "$xleft $yy[$i - 1]\n";
} else {

print OUT "$xleft \.missingvalue.\n"
}
print OUT "$xleft $yy[$i]\n";
print OUT "$xright $yy[$i]\n";

}
}

EOF
}

Bin into months
Bin with x 1964 1974 {rpn 1 12 /} \

timeseries.dat tmp.dat

66 Gri

open tmp.dat
read columns x y
close
draw curve # skyline of means
open timeseries.dat
read columns x y
close
draw symbol bullet # data
system rm -f tmp.dat # clean up

8.11 Finite Element Model mesh

Finite Element Models (used in fluid mechanics) employ non-rectangular meshes, and plot-
ting these meshes requires a few intermediate steps. Consider the common case of triangular
elements. Suppose two data files exist describing the mesh, the first, ‘model.nodes’ say,
consists of a description of the x-y coordinates of the nodes (vertices) of the triangles. The
second, ‘model.elements’ say, consists of a description of which triplet of nodes defines each
triangle in the mesh. Here, from a sample application, is a node file called ‘model.nodes’:

1 1 1
2 2 1
3 1 2
4 3 1.5
5 2 2
6 1.5 3

Here is the corresponding file of the elements, called ‘model.elements’
1 1 2 3
2 2 5 3
3 2 4 5
4 3 5 6

In each of these files, the first column is a reference number. Thus, ‘model.elements’
indicates that the first triangle is defined by the nodes numbered 1, 2 and 3 as defined in
‘model.nodes’. More specifically, the triangle is defined by vertices at (x,y) locations (1,1),
(2,1), and (1,2).

A Gri program, named ‘FEM.gri’, to draw the nodes is the following.
set missing value -99.99
Create data using perl-script ...
system FEM.pl model.nodes model.elements > tmp
... then plot it ...
open tmp
read columns x y
close
draw curve
... and, finally, clean up the temporary file
system rm tmp

The work of interpreting the data files is done by the perlscript that follows, named ‘FEM.pl’
#!/usr/bin/perl -w
$missing = -99.99; # missing value
$node_file = $ARGV[0];

Chapter 8: Real-world examples 67

$element_file = $ARGV[1];
open (NODE, $node_file)

or die "Cannot open ’$node_file’ file";
open (ELEM, $element_file)

or die "Cannot open ’$element_file’ file";

Read in node information, creating arrays
named $node_x[] and $node_y[]. Check that
the first column (the index) makes sense.
$max_node = 1;
while(<NODE>) {

($index, $node_x[$max_node], $node_y[$max_node])
= split;

die "Node mismatch at index=$index"
if ($index != $max_node);

$max_node++;
}

Read in triangle elements, into arrays
$a[], $b[], and $c[]. Check that the
first column (the index) makes sense.
$max_elem = 1;
while(<ELEM>) {

($index, $a[$max_elem], $b[$max_elem], $c[$max_elem])
= split;

die "Element mismatch at index=$index"
if ($index != $max_elem);

$max_elem++;
}

Print out triangles suitable for plotting in gri.
for ($i = 1; $i < $max_elem; $i++) {

print $node_x[$a[$i]], " ", $node_y[$a[$i]], "\n";
print $node_x[$b[$i]], " ", $node_y[$b[$i]], "\n";
print $node_x[$c[$i]], " ", $node_y[$c[$i]], "\n";
Repeat first, to close the triangle.
print $node_x[$a[$i]], " ", $node_y[$a[$i]], "\n";
print $missing, " ", $missing, "\n";

}

8.12 Handling Data

8.12.1 Handling headers

Case 1 – known number of header lines. This is easy. If you know that the file has, say, 10
header lines, you can just do this:

open file
skip 10
read columns x y

68 Gri

...

Case 2 – header itself indicates number of header lines. Quite often the first line of a
file will indicate the number of header lines. For example, suppose the first line contains a
single number, indicating the number of header lines to follow:

open file
read .skip.
skip .skip.
read columns x y
...

Case 3 – header lines marked by a textual key. Sometimes header lines are indicated by
a textual key, for example, the characters HEADER at the start of the line in the file. The
easy way to skip such a header is to use a system command. Depending on your familiarity
with the operating system (here presumed to be Unix), you might choose to use Grep, Awk,
or Perl. Here are examples:

open "grep -v ’^HEADER’ file |"

For more on the | mechanism, see Section 9.3.28 [Open], page 102. The Grep command
prints lines which do not match the indicated string (because of the -v switch), and the ^
character stands for the start of the line (Section 11.2.2 [Grep], page 189). Thus all lines
with the key word at the start of the line are skiped.

Case 4 – reading and using information in header. Consider a dataset in which the first
line gives the time of observation, followed by a list of observations. This might be, for
example, an indication of the data taken from a weather balloon released at a particular
time from a fixed location, with the main data being air temperature as a function of
elevation of the balloon. The time indication might be, for instance, the hour number. One
might need to know the time to print a label on the diagram. You could do that by:

open file
read .time.
read columns x y
draw curve
sprintf \label "Time of observation is %f hour" .time.
draw title "\label"

where the sprintf command has been used to change the numerical time indication into
a synonym that can be inserted into a quoted string for drawing the title of the diagram
(Section 9.3.47 [Sprintf], page 138). Here the time has been assumed to be a decimal hour.
You might also have three numbers on the line, perhaps a day, an hour and a minute. Then
you could do something like

open file
read .d. .h. .m.
read columns x y
draw curve
sprintf \label "Obs. %.0f:%.0f, day %.0f" .h. .m. .d.
draw title "\label"

Here the %.0f code is used to ensure no numbers will be written after the decimal point.
Naturally, you could convert this to a decimal day, by e.g.

...

.dday. = {rpn .day. .hour. 24 / .min. 24 / 60 /}
sprintf \label "Decimal day is %.4f" .dday.
...

Chapter 8: Real-world examples 69

(Some of you might know how many minutes in a day, but I’m silly so I kept the extra
mathematical step – nothing is lost by being straightforward!)

8.12.2 Ignoring columns that are not of interest

Quite often a dataset will have many columns, of which only a couple are of interest to you.
Consider for example oceanographic data which has columns storing, in order, these vari-
ables: (1) depth in water column, (2) "in situ" temperature, (3) "potential" temperature,
(4) salinity, (5) conductivity, (6) density, (7) sigma-theta, (8) sound speed, and (9) oxygen
concentration. But you might only be interested in plotting a graph of salinity on the x-axis
and depth on the y-axis. Here are several ways to do this:

open file
read columns y * * x
draw curve

where the * is a place-keeper to indicate to skip that column. For a large number of columns,
or as an aesthetic choice, you might prefer to write this a

open file
read columns y=1 x=4
draw curve

Many users would just as soon not bother with this syntax, preferring instead to use
system tools with which they are more familiar. So a Gawk user might write

open "gawk ’{print($1, $4)}’ file |"
read columns y x
draw curve

For more on the Gawk command see Section 11.2.4 [Awk], page 189.

8.12.3 Algebra on column data

Suppose the file contains (x,y), but you wish to plot 2y times x. You could do the doubling
of y within Gri, as

open file
read columns x y
y *= 2
draw curve

or you could use a system tool, e.g. gawk, as in this example (Section 11.2.4 [Awk],
page 189).

open "gawk ’{print($1,2*$2)}’ file|"
read columns x y
draw curve

The latter is preferable in the sense that it is more powerful. The reason for this is
that Gri allows you to manipulate the x and y columns, using so-called RPN mathematics
(Section 10.9 [rpn Mathematics], page 161), but you cannot blend the columns. For example,
you cannot easily form the ratio y/x in Gri. (Actually, you can, by looping through your
data and doing the calculation index by index, but if you knew that already you wouldn’t
need to be reading this section!) Such blending is trivial in the operating system, though,
as in the following Gawk example (Section 11.2.4 [Awk], page 189).

open "gawk ’print {($1, $2/$1)}’ file |"

70 Gri

read columns x y
draw curve

8.12.4 Combining columns from different files

Suppose you want to plot a column (y, say) from one file versus a second column (x) from a
second data file. The easy way is to use a system command to create a new file, for example
the Unix command paste – but of course you don’t want to clutter your filesystem with
such files, so you should do this withing Gri:

open "paste file1 file2 |"
read columns x y
draw curve

8.12.5 Plotting several y-columns versus on x-column

Sometimes you’ll have a datafile with the first column being x, and the other columns being
various things to plot versus x. For example, you might have the data

1 8 11 9
2 22 21 20
3 11 10 9
4 20 15 10

in a file called test.dat. Let’s say the x-column is time, and the y-columns are the readings
from three temperature sensors. The following illustrates how you might plot these data.
If you think the new-command which starts this script is useful, just insert it in your
‘~/.grirc’ file and you can just use it without re-defining it each time. This will give Gri
a command called draw curves.

‘draw curves \xname \y1name ...’
Draw multiple y columns versus an x column. Assumes
that the datafile is open, and that x is in the first
column, with the y values in one or more following
columns.

The number of columns is figured out from the options,
as is the name of the x-axis, and the labels to be
used on each of the y curves.
{
NB. the 3 below lets us skip the words ’draw’
and ’curves’, and the name of the x-column.
.num_of_y_columns. = {rpn wordc 3 -}
if {rpn .num_of_y_columns. 1 >}
show "ERROR: ‘draw curves’ needs at least 1 y column!"
quit

end if

set x name {rpn 2 wordv}
set y name ""

Loop through the columns.
.col. = 0

Chapter 8: Real-world examples 71

while {rpn .num_of_y_columns. .col. <}
The x-values will be in column 1, with y-values
in columns 2, 3, ..., of the file.
.ycol. = {rpn .col. 2 +}
rewind
read columns x=1 y=.ycol.
At this point, you may want to change line thickness,
thickness, color, dash-type, etc. For illustration,
let’s set dash type to the column number.
set dash .col.
draw curve
draw label for last curve {rpn .col. 3 + wordv}
.col. += 1

end while
}

open test.dat
draw curves time y1 y2 y3

72 Gri

Chapter 9: List of Commands in the Gri Language 73

9 List of Commands in the Gri Language

9.1 Overview of Gri Commands

The Gri commands may be divided roughly into a few categories, as indicated in the fol-
lowing list.
• Working with files: Commands are open, close, skip, read, and rewind.
• Controlling parameters of the drawn material: Various set commands control values

of parameters, like size of plot, linewidth, font, etc.
• Drawing things: Various draw commands let you draw data, axes, etc.
• Interacting with the user: The query command gets instructions from the user. The

show command displays messages to user.
• Controlling program flow: The if statement controls optional execution of commands

(Section 10.6 [If Statements], page 157). The while statement allows loops.
• Moving around in directories: The pwd, cd and ls commands do the usual unix things.
• Using the operating system The system command passes instructions to the operating

system; the output may be saved into a synonym by using \syn = system The
get env command determines the value of any unix environment variables the system
has defined. For more discussion (Section 10.16 [Operating System], page 183).

• Statistical operations: Some very limited capabilities exist; for example, regress does
linear regression.

• Mathematical operations: Simple mathematical manipulation of column, grid, and
image data is provided. Also, wherever Gri expects a number, it will accept a reverse-
polish expression; for example, set x size 10 could also be written set x size {rpn
20 2 /}. For details (Section 10.8 [Mathematics], page 159).

9.2 Command syntax

The syntax description is enclosed within angled single quotes, optional items are enclosed
in square brackets, multiword items are enclosed in curly braces, and vertical bars separate
different legitimate choices. For example, the documentation item for the command for
drawing contours

‘draw contour \
[.value. | \

{.min. .max. .inc. [.inc_unlabelled.]}] \
[unlabelled]’

indicates that following are legal:
draw contour # gri selects levels
draw contour unlabelled # " but unlabelled
draw contour 10 # single contour line
draw contour 10 unlabelled # " but unlabelled
draw contour 0 100 10 # contours at z=0,1,
draw contour 0 10 1 unlabelled # " but unlabelled
contours at 0, 0.1, ... labelled at 0, 1
draw contour 0 10 1 0.1

Note that items enclosed in braces must appear in their entirety; for example,

74 Gri

draw contour 0 10 # WRONG; missing .inc.

which might look similar draw contour .min. .max. .inc. to you, looks like garbage to
Gri. Gri will recognize it as an attempt at the draw contour command (because the first 2
words match the syntax) but it will then get confused, spit out an error message, and quit.

9.3 List of all Gri commands

Commands are listed below in the order in which they are defined in the ‘gri.cmd’ file
(Chapter 3 [Invoking Gri], page 7). What you see here is similar to, but not identical to,
the text of the online help. Gri usually accepts both American and English spellings (As an
example of spelling latitude, Gri accepts grey anywhere the manual says gray, and colour
for color.)

9.3.1 assert

‘assert .condition. ["message"]

The condition may be a variable, a synonym, or an RPN expression. If this condition is true
(i.e. evaluates to a non-zero number), do nothing. If the condition is false, the program will
terminate with an error condition (in unix, it will terminate with a non-zero exit code).

Before termination, a message will be printed, the form of which depends on the optional
"message" string.

If no "message" string is given, the the printed message will indicate the name of the
command-file and the line at which the assert command was encountered.

If a "message" string is given, and if it ends in a newline ("\\n"), then this string is
printed.

If a "message" string is given, and if it does not end in "\\n", then the string is printed
along with an indication of the location in the command-file.

(Perl users will recognize this as being patterned on the "die" command.)

9.3.2 cd

‘cd [\pathname]’

If a pathname specified, change to that directory. Normal unix filenames are used, as in the
C-shell convention. For example, the commands cd ~/src and cd $HOME/src are equivalent.
You may specify relative pathnames as in cd ../sister_directory.

If no \pathname directory path is specified, go to the home directory, exactly as cd ~
and cd $HOME do.

9.3.3 close

‘close [\filename]’

If no filename is specified, close the most recently opened data-file; otherwise close the
indicated file.

9.3.4 The convert commands

Chapter 9: List of Commands in the Gri Language 75

9.3.4.1 convert columns to grid

Various forms exist:
‘convert columns to grid OPTIONS’

where the OPTIONS may be omitted or selected from this list:
‘neighbor’
‘boxcar [.xr. .yr. [.n. .e.]]’
‘objective [.xr. .yr. [.n. .e.]]’
‘barnes [.xr. .yr. .gamma. .iter.]’

For more discussion on the methods see Section 6.2 [Ungridded Data], page 27.
All these commands “grid” columnar (x,y,z) data. That is, they fill up a grid based on

some form of interpolation of the possibly randomly-spaced columnar data. There are many
methods in existence for doing this, and Gri implements several of them as alternatives.

The grid will have been defined by commands such as set x grid, set y grid, read
grid x and read grid y. As of version 2.1.9, Gri does not require a grid to have been
pre-defined; it will create a regular 20 by 20 grid, spanning the range of x and y data, as a
default. This is a good starting point in many cases.

‘neighbor’ method
Very fast but very limited.

‘boxcar’ method
Slower but a lot better. Still, this can produce noisy contours if the data are
not densely and uniformly ditributed through domain.

‘objective’ method
Somewhat slower than ‘boxcar’, but produces better fields since the averaging
function is smooth.

‘barnes’ method
Somewhat slower than ‘objective’, but only by a constant factor (that is, inde-
pendent of number of data). This produces by far the best results, since the
smoothing function has variable spatial scale. This is the default method if no
method is supplied.

All except the neighbor method may take optional arguments to define the x and y
scales of the smoothing function (called .xr. and .yr.). (The barnes method has two
other optional arguments – see below.) If you do not supply these arguments, Gri will
make a reasonable choice and inform you of its decision. Many users find that it is best to
convert columns to grid with no additional parameters as a first step, to get advice on
values to use for the optional parameters.

The default .xr. and .yr. are calculated by determining the span in x and in y direc-
tions, and dividing each by the square root of the number of data points. These numbers
are then multiplied by the square root of 2. The method is as proposed by S. E. Koch
and M. DesJardins and P. J. Kocin, 1983. “An interactive Barnes objective map anlaysis
scheme for use with satellite and conventional data,”, J. Climate Appl. Met., vol 22, p.
1487-1503.

If .xr. and .yr. were supplied but negative, then Gri interprets this as an instruction
to modify the default values, described in last paragraph, by multiplying by the absolute
values of the negative numbers given, instead of muliplying by square root of 2.

If the chatty option is turned on then Gri will print out the values of (dx,dy) that it
has calculated; this gives you some guidance for supplying your own values of (.xr.,.yr.)

76 Gri

if you choose to supply them yourself. It is also a good idea to let these parameters be a
guide for your grid spacing; for example, Koch et al., 1983, suggest using grid spacing of
0.3 to 0.5 times (dx,dy).

And now, the details . . .
• “Neighbor” method The convert columns to grid neighbor method is useful for

(x,y,z) data which are already gridded (i.e., for which x and y take only values which
lie on the grid), or nearly gridded. The (x,y,z) data are scanned from start to finish.
For each data point, the nearest grid point is found. Nearness is measured as Carte-
sian distance, with scale factor given by the distance between the first and second grid
points. In other words, distance is given by D=sqrt(dx*dx+dy*dy) where dx is ratio
of distance from data point to nearest grid point, in x-units, divided by the difference
between the first two elements of the x-grid, and dy is similarly defined. Once the grid
point nearest the data point is determined, Gri adds the z-value to a list of possible
values to store in the grid. Once the entire data set has been scanned, Gri then goes
back to each grid point, and chooses the z-value of the data point that was nearest
to the grid point – that is, it stores the z value of the (x,y,z) data triplet which has
minimal D value. Note that this scheme is independent of the order of the data within
the columns.
The neighbor method is useful when the data are already pre-gridded, meaning that
the (x,y,z) triplets have x and y values which are already aligned with the grid. Com-
putational cost: For P data points, X x-grid points, and Y y-grid points, the method
calculation cost is proportional to P*[log2(X)+log2(Y)] where log2 is logarithm base
2. As discussed below, this is often several orders of magnitude lower than the other
methods of gridding.

• “Objective” method In the objective method, a smoothing technique known as ob-
jective mapping is applied. It is essentially a variable-size smoothing filter of approx-
imately Gaussian shape (it is method “two” of Levy and Brown [1986 J. Geophysical
Res. vol 91, p 5153-5158]) The parameters .xr. and .yr. give the width of the filter.
With the optional additional parameters .n. and .e. are specified, then grid val-
ues will be assigned the missing value if there are fewer than .n. (x,y,f) data in the
neighborhood of the gridpoint, even after enlarging the neighborhood by widening and
heightening by root(2) up to .e. times. (The enlargement is only done if fewer than
.n. points are found.) If these parameters are not specified in the command, then
values .n.=5 and .e.=1 are assumed. The special case where .e. is negative tells Gri
to always fill in each grid point, by extending the neighborhood to enclose the entire
dataset if necessary.
Computational cost: For P data points, X x-grid points, and Y y-grid points, the method
calculation cost is proportional to P*X*Y. Given that X and Y are determined by the
requirement for smoothness of contours and the size of the graph, they are more or
less fixed for all applications. They are often in the range of 20 or so – on 10 cm wide
graph, this yields a contour footprint of 1/2 cm, which is often small enough to yield
smooth contours. Therefore, the computational cost scales linearly with the number of
data points. Compared to the “neighborhood” method, this is more costly by a factor
of X*Y/log_2(X)/log_2(Y) which is normally in the range from 20 to 50.

• “Boxcar” method In the boxcar method, the grid points are derived from simple
averages calculated in rectangles .xr. wide and .yr. tall, centred on the gridpoints.
The .n. and .e. parameters have similar meanings as in the “objective” method.
Computational cost: Roughly same as objective method described above.

• “Barnes” method This is the default scheme.

Chapter 9: List of Commands in the Gri Language 77

The Barnes algorithm is applied. If no parameters are specified, .xr. and .yr. are
determined as above, with .gamma. set to 0.5, and .iter. set to 2 so that two iterations
are done. On successive iterations, the smoothing lengthscales .xr and .yr are each
reduced by multiplying by the square root of .gamma.. Smaller .gamma. values yield
better resolution of small-scale features on successive iterations. Koch et al., 1983,
recommend using a .gamma. value in the range 0.2 to 1, with two iterations.
Provided that all the grid points are close enough to at least some column data, the
entire grid is filled. But if .xr. and .yr. are too small, the weighting function can
fall to zero, since it is exponential in the sum of the squares of the x-distance/.xr.
and the y-distance/.yr.; in that case missing values result at those grid points. On
a 32 bit computer, the weighting function will fall to zero when x-distance/.xr. and
y-distance/.yr. are less than about 15 to 20.
If weights have been read in (Section 9.3.33.2 [Read Columns], page 107), then these
values are applied in addition to the distance-based weighting. (The normalization
means that weights for two data points of e.g. 1 and 2 will yield the same result as if
the weights had been given as 10 and 20.)
The computational cost at each iteration scales as P*X*Y). This is comparable to that
of the “objective” and “boxcar” methods. Since normally two iterations are done,
“barnes” is about double the cost of these methods. (Note: versions prior to 2.1.8 were
much slower for large datasets, being proportional to P*P.)
References: (1) Section 3.6 in Roger Daley, 1991, “Atmospheric data analysis,” Cam-
bridge Press, New York. (2) S. E. Koch and M. DesJardins and P. J. Kocin, 1983. “An
interactive Barnes objective map anlaysis scheme for use with satellite and conventional
data,”, J. Climate Appl. Met., vol 22, p. 1487-1503.

The Barnes algorithm is as follows:
The gridded field is estimated iteratively. Successive iterations retain largescale features

from previous iterations, while adding details at smaller scales.

The first estimate of the gridded field, here denoted G
(0)
ij (the parenthetic superscript

indicating the order of the iteration) is given by a weighted sum of the input data, with zk

denoting the k-th z value.

G
(0)
ij =

∑nk

1 W
(0)
ijkzk∑nk

1 W
(0)
ijk

The weights W (0)
ijk are defined in terms of a Gaussian function decaying with distance

from observation point to grid point:

W
(0)
ijk = exp

[
−(xk −Xi)2

L2
x

− (yk − Yj)2

L2
y

]

Here Lx and Ly are lengths which define the smallest (x, y) scales over which the gridded
field will have significant variations (for details of the spectral response see Koch et al.
1983).

Note: if the user has supplied weights then these are multiplied into the normal distance-
based weights; i.e. wiWijk is used instead of Wijk.

The second iteration derives a grid G
(1)
ij in terms of the first grid G

(0)
ij and “analysis

values” f (0)
k calculated at the (xk, yk) using a formula analogous to the above. (Interpolation

78 Gri

based on the first estimate of the grid G(0)
ij can also be used to calculate f (0)

k , with equivalent
results for a grid of sufficiently fine mesh.) In this iteration, however, the weighted average is
based on the difference between the data and the gridded field, so that no further adjustment
of the gridded field is done in regions where it is already close to through the observed values.
The second estimate of the gridded field is given by

G
(1)
ij = G

(0)
ij +

∑nk

1 W
(1)
ijk (fk − f (0)

k)∑nk

1 W
(1)
ijk

where the weights wik,1 are defined by analogy with W (0)
ik except that Lx and Ly are replaced

by γ1/2Lx and γ1/2Ly. The nondimensional parameter γ (0 < γ < 1) controls the degree to
which the focus is improved on the second iteration. Just as the weighting function forced
the gridded field to be smooth over scales smaller than Lx and Ly on the first iteration,
so it forces the second estimate of the gridded field to be smooth over the smaller scales
γ1/2Lx and γ1/2Ly.

The first iteration yields a gridded field which represents the observations over scales
larger than (Lx, Ly), while successive iterations fill in details at smaller scales, without
greatly modifying the larger scale field.

In principle, the iterative process may be continued an arbitrary number of times, each
time reducing the scale of variation in the gridded field by the factor γ1/2. Koch et al.
1983 suggest that there is little utility in performing more than two iterations, providing
an appropriate choice of the focussing parameter γ has been made. Thus the gridding
procedure defines a gridded field based on three tunable parameters: (Lx, Ly, γ).

9.3.4.2 convert columns to spline

‘convert columns to spline \
[.gamma.] \
[.xmin. .xmax. .xinc.]’

Fit a normal or taut interpolating spline, y=y(x), through the (x,y) data. Then sub-
sample this spline to get a new set of (x,y) data. If the spline x-values, .xmin., etc, are
not specified, the spline ranges from the smallest x-value with legitimate data to the largest
one, with 200 steps in between.

The parameter .gamma. determines the type of spline used. If .gamma. is not specified,
or is given as zero, a standard interpolating spline is used. A knot appears at each x
location, with cubic polynomials spanning the space between the knots. If .gamma. lies
between 0 and 6, a taut spline is used; this tends to have fewer wiggles than a normal
spline. If .gamma. lies in the range 0 to 3, a taut spline is used, with the possible insertion
of knots between interior x pairs. The value 2.5 is used commonly. If .gamma. lies in the
range 3 to 6, extra knots are permitted in the x pairs at the ends of the domain. A value
of 5.5 is used commonly.

Reference Chapter 16 of Carl de Boar, 1987. “A Practical Guide to Splines” Springer-
Verlag.

read columns x y # function is y=x^2
0 0
1 1
2 4
3 9
4 16

Chapter 9: List of Commands in the Gri Language 79

set symbol size 0.2
draw symbol bullet
convert columns to spline
draw curve

9.3.4.3 convert grid to columns

‘convert grid to columns’

Create column data from grid data. Each non-missing gridpoint is translated into a single
(x,y,z) triplet. If column data already exist, then they are first erased. This command is
useful in changing the grid configuration, perhaps from a non-uniform grid to a uniform
grid. In the following example, a new grid with x=(0, 0.05, 0.1, ..., 0.1) and y=(10, 11, ...,
20) is created. The default gridding method (convert columns to grid) is used here, but
of course one is free to adjust the method as usual.

... read/create grid
convert grid to columns
delete grid
set x grid 0 1 0.05
set y grid 10 20 1
convert columns to grid

9.3.4.4 convert grid to image

‘convert grid to image [size .width. .height.] \
[box .xleft. .ybottom. .xright. .ytop.]’

With no options specified, convert grid to a 128x128 image, using an image range as previ-
ously set by set image range.

Interpolation method: The interpolation scheme is the same used for contouring. Image
points that lie outside the grid domain are considered missing. For points within the grid,
the first step is to locate the patch of the grid upon which the pixel lies. Then the 4
neighboring grid points are examined, and one of the following cases holds.
1. If 3 or more of them are missing, the pixel is considered missing.

2. If just one of the neighboring grid points is missing, then the image pixel value is
determined by bilinear interpolation on the remaining 3 non-missing grid points. (This
amounts to fitting a plane to three measurements of height.)

3. If all 4 of the grid points are non-missing, then the rectangle defined by the grid patch
is subdivided into four triangles. The triangles are defined by the two diagonal lines
joining opposite corners of the rectangle. An “image point” is constructed at the
center of the grid patch, with f(x,y) value taken to be the average of the values of the
four neighbors. This value is taken to be the value at the common vertex of the four
triangles, and then bilinear interpolation is used to calculate the image pixel value.

With the size options .width. and .height. specified, they set the number of rectan-
glular patches in the image.

With the box options specified, they set the bounding box for the image. If box is not
given, the image spans the same bounding box as the grid as set by set x grid and set y
grid.

80 Gri

Normally, missing values in the grid become white in the image, but this can be changed
using the set image missing value color to. . . command.

9.3.4.5 convert image to grid

‘convert image to grid’

Convert image to grid, using current graylevel/colorlevel mapping. For example, if one had
a linear mapping of pixel values 0->255 into the user values 10->20, as in

set image range 10 20
set image grayscale black 10 white 20

then the output grid will be of value 10 where the pixel value is 0, etc. If the image is
in color, the grid values will represent the result of mapping the colors to grayscale in the
standard way (Foley and VanDam, 1984). [BUG: as of 1.063, the colorscale is ignored
completely, and I’m not sure what happens.] The image data are interpolated onto the grid
using a nearest-neighbor substitution. This command insists that the image x/y grids have
already been defined.

9.3.5 The create commands

9.3.5.1 create columns from function

‘create columns from function’

Plot a function of x which is defined in synonym \function.
ENVIRONMENT
\function = function to plot.
\xmin = minimum x value
\xmax = maximum x value
\xinc = increment in x values

EXAMPLE
\function = "cos(x)"
\xmin = "0"
\xmax = "2 * 3.14"
\xinc = "0.1"
create columns from function
draw curve

NOTE: This only works on machines which have the awk command available at the com-
mandline. This means most unix machines and some vax machines.

9.3.5.2 create image grayscale

‘create image grayscale banded .band.’

Make a banded grayscale with in units of .band. pixel values each. Thus, pixel values 0 to
(.band. - 1) on the image will map to 0, while values from .band. to (2 * .band. - 1) will
map to .band., etc. For example, .band. = 2 gives grayscale = (0 0 2 2 4 4 6 6 ... 252 252
254 254).

Chapter 9: List of Commands in the Gri Language 81

9.3.6 debug

‘debug [.n.]|[clipped values in draw commands]|off’

With no optional parameters, sets the value of ..debug.. to 1. (Normally, ..debug.. is
0.) You may use ..debug.. in if statements, etc. Note that ..debug.. is also set to 1
when gri is invoked with the commandline switch -d.

With .n. specified, ..debug.. is set to .n.; a value of zero for .n. turns debugging off,
while 1 turns it on. Higher values may be used for deeper debugging, if you choose:

if {rpn ..debug.. 2 <}
Code to do if ..debug.. is greater than 2.

end if

Note that you can assign to ..debug.. as you can to any other variable; debug .n. is
equivalent to ..debug.. = .n..

With the clipped option, Gri prints any clipped data encountered during any draw ...
commands, EXCEPT in the case of postscript clipping, where no check is possible. (Note
that ..debug.. is not affected.)

All these forms of debugging are cancelled by debug off.

9.3.7 delete

‘delete .variable.|\synonym [.variable.|\synonym [...]]’
‘delete columns [where missing]’
‘delete columns [randomly .fraction.]’
‘delete grid’
‘delete [x|y] scale’

Delete some item or characteristic.
• delete .variable. Delete definition of variable .variable., making it undefined.

Any number of variables or synonyms may be specified on one line.
• delete \synonym Delete definition of synonym \synonym, making it undefined. Any

number of variables or synonyms may be specified on one line.
• delete \@alias Delete the item named by the alias (Section 10.5.4 [Alias Synonyms],

page 155).
• delete with an & item Delete the item in the calling program.
• delete columns Delete column data.
• delete columns where missing Completely delete all column data for which any one

of x, y, etc is missing.
• delete columns randomly .fraction. Randomly select fraction .fraction. of the

non-missing column data, and designate them as being missing.
• delete grid Delete grid data.
• delete scale Delete scales for both x and y, so next read columns will set it.
• delete x scale Delete scales for x, so next read columns will set it.
• delete y scale Delete scales for y, so next read columns will set it.

9.3.8 differentiate

‘differentiate {x|y wrt index|y|x} | {grid wrt x|y}’

82 Gri

Differentiate column data or grid data. Only the x and y columns may be differentiated.
They may be differentiated either with respect to (“wrt”) the index (forming a first dif-
ference) or with respect to the other column. The derivative is done with the backwards-
difference algorithm. Grid data may differentiated with respect to x direction or y direc-
tion. Grid differentiation is done with a centred difference, with endpoints being assigned
the derivative of the neighboring interior point (so that the second derivative is zero at the
edges of the grid).

9.3.9 The draw commands

Draw commands do actual drawing on the page. You can draw axes, lineplots, symbols,
contours, images, and text.

NOTE Gri likes drawings to have axes, so if a draw command is executed before any
axes have been drawn, Gri will draw axes after it draws the item. (You can get drawings
without axes by preceding any other draw commands with the command draw axes none.)
Many users have been surprised by the results of this rule. For example, if you do set
graylevel 0.5 before draw curve, you’ll find that the axes are drawn in gray also. To
avoid this, make sure to do draw axes before you modify the graylevel.)

9.3.9.1 The draw arc command

‘draw arc [filled] .xc_cm. .yc_cm. .r_cm. .angle_1. .angle_2.’

Draw an "arc", that is, a portion of a circle. The center of the circle is at the coordi-
nate (.xc_cm., .yc_cm.), and the circle radius is .r_cm., all three quantities being in cm
on the page, not in user-units. The arc starts at angle .angle_1., measured in degrees
counterclockwise from a horizontal line, and extends to angle .angle_2., in the same units.

If the keyword filled is present, the arc is filled with the current color. Otherwise it is
drawn with the current "curve" linewidth Section 9.3.41.33 [Set Line Width], page 126.

9.3.9.2 draw arrow

draw arrow from .x0. .y0. to .x1. .y1. [cm]

With no optional parameters, draw an arrow from (.x0., .y0.) to (.x1., .y1.), where
coordinates are in user units. The arrow head will be at (.x1., .y1.), and its size is as set
by most recent call to set arrow size. With the cm keyword present, the coordinates are
in centimetres on the page. NOTE: This will not cause auto-drawing of axes.

9.3.9.3 draw arrows

‘draw arrows’

Draw a vector field consisting of arrows emanating from the coordinates stored in the (x,
y) columns. The lengths and orientations of the arrows are stored in the (u, v) columns,
and the scale for the (u,v) columns is set by set u scale and set v scale. See also (1) To
set arrow size, use set arrow size. (2) To get a single arrow, use draw arrow.

9.3.9.4 draw axes if needed

‘draw axes if needed’

Chapter 9: List of Commands in the Gri Language 83

Draw axes frame if required. Used within gri commands that auto-draw axes. NOTE: this
should only be done by developers.

9.3.9.5 draw axes

‘draw axes [.style.|frame|none]’

With no style (.style.) specified, draw x-y axes frame labelled at left and bottom. The
value of .style. determines the style of axes:
• .style. = 0 Draw x-y axes frame labelled at left and bottom. Since this is the default,

it’s best to leave it out altogether to make your code easier to understand.
• .style. = 1 Draw axes without tics at top and right
• .style. = 2 Draw axes frame with no tics or labels; same as draw axes frame

With the keyword frame specified, draw axes frame with no tics or labels (just like
.style. = 2, but preferable because it makes for code that is easier to read and understand).

With the keyword none specified, prevent Gri from automatically drawing axes when
drawing curves.

Note: set axes style can also be used to set axes properties, and then simply using
draw axes, or letting axes be auto-drawn, will result in the desired effect (Section 9.3.41.1
[Set Axes Style], page 115). However, if the draw axes command explicitly asks for a
particular style, then it over-rides the style set by Set Axes Style.

9.3.9.6 draw border box

‘draw border box .xleft. .ybottom. .xright. .ytop. \
.width_cm. .brightness.’

Draw gray box, as decoration or alignment key for pastup. The box, with outer lower left
corner at (.xleft., .ybottom.) and outer upper right corner at (.xright., .ytop.) – both
coordinates being in centimetres on the page – is drawn with thickness .width_cm. and
with graylevel .brightness. (0 for black; 1 for white). The gray line is drawn inside the
box. After drawing the gray line, a thin black line is drawn along the outside edge.

If the geometry is not specified with .xleft. and the other parameters, then a rea-
sonable margin is used around the present axes area, and the defaults (.border. = 0.2,
.brightness. = 0.75) are used.

NOTE: This command does not cause auto-drawing of axes.

9.3.9.7 draw box

‘draw box filled .xleft. .ybottom. .xright. .ytop. [cm|pt]’

Draw filled box spanning indicated range, with lower-left corner at (.xleft., .ybottom.)
and upper-right corner at (.xright., .ytop.). The corners are specified in user coordinates,
unless the optional cm or pt keyword is present, in which case they are in centimetres or
points on the page. An error will result if you specify user coordinates but they aren’t
defined yet.

No checking is done on the rectangle; for example, there is no requirement that .xleft.
be to the left of .xright. in your coordinate system.

NOTE: if the box is specified in user units, this command will cause auto-drawing of
axes, but not if the box is specified in cm or pt units

84 Gri

‘draw box .xleft. .ybottom. .xright. .ytop. [cm|pt]’

Draw box spanning indicated range, with lower-left corner at (.xleft., .ybottom.) and
upper-right corner at (.xright., .ytop.).

The corners are specified in user coordinates, unless the optional cm or pt keyword is
present, in which case they are in centimetres or points on the page. An error will result if
you specify user coordinates but they aren’t defined yet.

No checking is done on the rectangle; for example, there is no requirement that .xleft.
be to the left of .xright. in your coordinate system.

9.3.9.8 draw circle

draw circle with radius .r_cm. at .x_cm. .y_cm.

Draw circle of specified radius (in cm) at the specified location (in cm on the page).

9.3.9.9 draw contour

‘draw contour [{.value. \
[unlabelled | {labelled "\label"}]} \
| {.min. .max. .inc. \
[.inc_unlabelled.] [unlabelled]}]’

This command draws contours based on the "grid" data previously read in by a read grid
data command or created by gridding column data with a create grid from columns
command. If the grid data don’t exist, or if the x and y locations of the grid points do not
exist (see set x grid, set y grid, etc), Gri will complain.

With no optional parameters, draw labelled contours at an interval that is picked auto-
matically based on the range of the data.

With a single numerical value (.value.), draw the indicated contour. With the addition
of labelled "\label", put the indicated label instead of a numeric label. This can be useful
for using scientific notation instead of computer notation for exponents, e.g. draw contour
1e-5 labelled "10$^{-5}$".

With (.min., .max. and .inc.) given, draw contours for z(x,y) = .min., z(x,y) = .min.
+ .inc., z(x,y) = .min. + 2*.inc., ..., z(x,y) = .max.

With the additional value .inc_unlabelled. specified, extra unlabelled contours are
drawn at this finer interval.

With the optional parameter unlabelled at the end of any form of this command (except
the labelled "\label" variation, of course), Gri will not label the contour(s).

Hint: It can be effective to draw contours at a certain interval with labels, and a thicker
pen, e.g.

set line width rapidograph 3x0
draw contour -2 5 1 0.25
set line width rapidograph 1
draw contour -2 5 1

Interpolation method: The interpolation scheme is the same used for converting grid-
values to image values (Section 9.3.4.4 [Convert Grid To Image], page 79).

See also set contour labels

Chapter 9: List of Commands in the Gri Language 85

9.3.9.10 draw curve

Several forms exist.
‘draw curve’

Draws a curve connecting the points (x,y), which have been read in by a command like
read columns x y. Line segments are drawn between all (x,y) points, except: (1) no line
segments are drawn to any missing data (see set missing value), and (2) if clipping is
turned on (see set clip on), no line segments are drawn outside the clipping region. See
also draw curve overlying

‘draw curve overlying’

Like draw curve, except that before drawing, the area underneath the curve (+/- one
linewidth) is whited out. This clarifies graphs where curves overlie other curves or the
axes. See also draw curve.

‘draw curve filled [to {.y. y}|{.x. x}]’

The form draw curve filled ... draws filled curves. If the to .value. is not specified,
fill the region defined by the x-y points using the current paint colour (see set graylevel).
To complete the shape, an extra line is drawn between the first and last points.

The form draw curve filled to .y. y fills the region between y(x) and y = .y.; do
not connect the first and last points as in the case where to .yvalue. is not specified.

The form draw curve filled to .x. x fills the region between x(y) and x = .x.

9.3.9.11 draw essay

‘draw essay "text"|reset’

Draw indicated text on the page. Succeeding calls draw text further and further down the
page, starting at the top.

The current font size is used; to alter this, use set font size before draw essay.
When reset is present instead of text, the drawing position is reset to the top of the

page. Use this after a new page command to ensure that the next text lines will appear at
the top of the page as expected. EXAMPLE:

set font size 2 cm
draw essay "Line 1, at top of page"
draw essay "Line 2, below top line"

9.3.9.12 draw gri logo

‘draw gri logo .x_cm. .y_cm. .height_cm. .style. \fgcolor \bgcolor’

Draw a Gri logo at given location with given style and colors. The lower-left corner of the
logo will be .x_cm. centimeters from the left-hand side of the page and .y_cm. centime-
ters from the bottom of the page. The logo will be .height_cm. centimeters tall. The
textual parameters \fgcolor and \bgcolor give the foreground and background colors,
respectively, and these are used in styles as noted in the table below

.style. style
======= ===================

0 stroke curve
1 fill with color \fgcolor, no background
2 fill with color \fgcolor it in tight box of color \bgcolor

86 Gri

3 as 2 but in square box
4 draw in \fgcolor on top of shifted copy in \bgcolor

An example is given below
draw gri logo 1 1 3 4 blue green

9.3.9.13 draw grid

‘draw grid’

Draw plus-signs at locations where grid data are non-missing.

9.3.9.14 draw image histogram

‘draw image histogram \
[box .llx_cm. .lly_cm. .urx_cm. .ury_cm.]’

With no optional parameters, draw histogram of all unmasked parts of the image, placing
it above the current top of the plot.

When the box options are present, they specify the box (in centimetre coordinates on
the page) in which the histogram plot is to be done.

9.3.9.15 draw image palette

‘draw image palette
[axisleft|axisright|axistop|axisbottom]
[left .left. right .right. [increment .inc.]]
[box .xleft_cm. .ybottom_cm. .xright_cm. .ytop_cm.]’

With no optional parameters, draw palette for image, placed above the current top showing
values ranging from .min_value. to .max_value. as given in set image range.

Optional keywords (axisleft, etc) control the orientation of the palette, the default
being axisbottom.

The optional parameters .left. and .right. may be used to specify the range to be
drawn in the palette. If the additional optional parameter .inc. is present, it specifies the
interval between tics on the scale; if not present, the tics are at increments of 2 * (.right.
- .left.). (If .inc. has the wrong sign, it will be corrected without warning.)

When the optional box parameters are present, they prescribe the bounding box to
contain the palette. The units are centimetres on the page. If these parameters are not
present, the box will be drawn above the image plot.

Hint It is a good idea to make the palette range .left. to .right. extend a little
beyond the range of full white and full black, since otherwise neither pure white nor pure
black will appear in the colorbar. For example

set image grayscale black 0 white 1 increment 0.1
draw image palette left -0.1 right 1.1 increment 0.1

Hint Continuous-tone images with superimposed contours are often effective. To get the
contour lines drawn on the image palette, do something like this

draw image
.left. = 0
.right. = 9
.inc. = 1

Chapter 9: List of Commands in the Gri Language 87

.space. = 3

.height. = 1
draw image palette left .left. \
right .right. \
increment .inc. \
box \
..xmargin.. \
{rpn ..ymargin.. ..ysize.. + .space. + } \
{rpn ..xmargin.. ..xsize.. +} \
{rpn ..ymargin.. ..ysize.. + .space. + .height. + }

draw contour .left. .right. .inc. unlabelled

.c. = .left.
while {rpn .right. .c. <= }
.c_cm. = {rpn .c. .left. - \
.right. .left. - / \
..xsize.. * ..xmargin.. +}

draw line from \
.c_cm. \
{rpn ..ymargin.. ..ysize.. + .space. + }\
to \
.c_cm. \
{rpn ..ymargin.. ..ysize.. + .space. + .height. +} \
cm

.c. += 1
end while

9.3.9.16 draw image

‘draw image’

Draw black/white image made by convert grid to image or by read image.

9.3.9.17 draw isopycnal

‘draw isopycnal \
[unlabelled] .density. [.P_sigma. [.P_theta.]]’

Draw isopycnal curve for a temperature-salinity diagram. This curve is the locus of tem-
perature and salinity values which yield seawater of the indicated density, at the indicated
pressure. The UNESCO equation of state is used.

For the results to make sense, the x-axis should be salinity and the y-axis should be
either in-situ temperature or potential temperature.

The .density. unit is kg/m^3. If the supplied value exceeds 100 then it will be taken
to indicate the actual density; otherwise it will be taken to indicate density minus 1000
kg/m^3. (The deciding value of 100 kg/m^3 was chosen since water never has this density;
the more intuitive value of 1000 kg/m^3 would be inappropriate since water can have that
density at some temperatures.) Thus, 1020 and 20 each correspond to an actual density of
1020 kg/m^3.

88 Gri

The reference pressure for density, .P_sigma., is in decibars (roughly corresponding to
meters of water depth). If no value is supplied, a pressure of 0 dbar (i.e. atmospheric
pressure) is used.

The reference pressure for theta, .P_theta., is in decibars, and defaults to zero (i.e.
atmospheric pressure) if not supplied. This option is used if the y-axis is potential tempera-
ture referenced to a pressure other than the surface. Normally the potential temperature is,
however, referenced to the surface, so that specifying a value for .P_theta. is uncommon.

By default, labels will be drawn on the isopycnal curve; this may be prevented by
supplying the keyword unlabelled. If labels are drawn, they will be of order 1000, or of
order 10 to 30, according to the value of .density. supplied (see above). The label format
defaults to "%g" in the C-language format notation, and may be controlled by set contour
format. The label position may be controlled by set contour label position command
(bug: only non-centered style works). Setting label position is useful if labels collide with
data points. Labels are drawn in the whiteunder mode, so they can white-out data below.
For this reason it is common to draw data points after drawing isopycnals.

If the y-axis is in-situ temperature, the command should be called without specifying .P_
sigma., or, equivalently, with .P_sigma. = 0. That is, the resultant curve will correspond
to the (S,T) solution to the equation

.density. = RHO(S, T, 0)

where RHO=RHO(S,T,p) is the UNESCO equation of state for seawater. This is a curve of
constant sigma T.

If the y-axis is potential temperature referenced to the surface, .P_theta. should not be
specified, or should be specified to be zero. The resultant curve corresponds to a constant
value of potential density referenced to pressure .P_sigma., i.e. the (S,theta) solution to
the equation

.density. = RHO(S, theta, .P_sigma.)

For example, with .P_sigma.=0 (the default), the result is a curve of constant sigma theta.
If the y-axis is potential temperature referenced to some pressure other than that at the

surface, .P_theta. should be supplied. The resultant curve will be the (S,theta) solution
to the equation

.density. = RHO(S, T’, .P_sigma.)

where
T’=THETA(S, theta, .P_theta., .P_sigma.)

where THETA=THETA(S,T,P,Pref) is the UNESCO formula for potential temperature of a
water-parcel moved to a reference pressure of Pref. Note that theta, potential temperature
referenced to pressure .P_theta., is the variable assumed to exist on the y-axis.

9.3.9.18 draw isospice

‘draw isospice .spice. [unlabelled]’

Draw an iso-spice line for a "TS" diagram, using (S, T) data stored in files in a subdirectory
named iso-spice0 in a directory named by the unix environment variable GRI_EOS_DIR.
You must set this environment variable yourself, in the normal unix way. If GRI_EOS_DIR
is not defined, Gri looks in the directory ‘/data/po/ocean/EOS/iso0’; of course, this will
work only for people on the same machine as the author.

Only certain iso-spice lines are stored in these files, so only certain values of .spice.
are allowed. They are 21.75, 22.00, 22.25, ..., 30.75. You must supply .density. in exactly

Chapter 9: List of Commands in the Gri Language 89

this format (with 2 decimal places), or else Gri will not find the appropriate TS file, and
will give a "can’t open file" error. NB: isopycnals ranging from about 23.00 to 26.00 cross
a TS diagram spanning 34<S<36 and 0<T<10.

The line is labelled at the right with the density value, unless the unlabelled option is
given.

Clipping should be on when drawing iso-spice lines. A warning will be given if the
isospice line does not intersect the clipping region.

EXAMPLE
set clip on
draw isospice line 27.00
draw isospice line 27.50 unlabelled

9.3.9.19 draw label

‘draw label boxed "string" at .xleft. .ybottom. [cm]’

Draw boxed label for plot, located with lower-left corner at indicated (x,y) position (specified
in user units or in cm on the page). The current font size and pen color are used. The
geometry derives from the current font size, with the label being centered within the box.

9.3.9.20 draw label whiteunder

‘draw label whiteunder "\string" at .xleft. .ybottom. [cm]’

Draw label for plot, located with lower-left corner at indicated (x,y) position (specified in
user units or in cm on the page). Whiteout is used to clean up the area under the label.
BUGS: Cannot handle angled text; doesn’t check for super/subscripts.

9.3.9.21 draw label for last curve

‘draw label for last curve "label"’

Draw a label for the last curve drawn, using the ..xlast.. and ..ylast.. built-in variables.

9.3.9.22 draw label

‘draw label "\string" [centered|rightjustified] \
at .x. .y. [cm|pt] \
[rotated .deg.]’

With no optional parameters, draw string at given location in USER units.
With the cm or pt keyword is present, the location is in centimetres or points on the

page.
With the rotated keyword present, the angle in degrees from the horizontal, measured

positive in the counterclockwise direction, is given.
With the keyword centered present, the text is centered at the given location; similarly

the keyword rightjustified makes the text end at the given location.

9.3.9.23 draw line from ... to

‘draw line from .x0. .y0. to .x1. .y1. [cm|pt]’

90 Gri

With no optional parameters, draw a line from (.x0., .y0.) to (.x1., .y1.), where co-
ordinates are in user units. With the cm or pt keyword present, the coordinates are in
centimetres or points on the page. NOTE: This will not cause auto-drawing of axes.

9.3.9.24 draw line legend

‘draw line legend "label" at .x. .y. [cm] [length .cm.]’

Draw a legend identifying the current line type with the given label. A short horizontal line
is drawn starting at the location (‘.x.’, .y.), which may be specified in centimetres or, the
default, in user coordinates. The line length is normally 1 cm, but this length can be set
by the last option. The indicated label string is drawn 0.25 cm to the right of the line.

See also draw symbol legend
EXAMPLE (of keeping track of the desired location for the legend)

.offset. = 1 # cm to offset legends
... get salinity data
set line width 0.25
draw curve
draw line legend "Salinity" at .x. .y.
... get temperature data
set line width 1.0
set dash 0.45 0.05
draw curve
.y. += .offset.
draw line legend "Temperature" at .x. .y.

9.3.9.25 draw lines

‘draw lines {vertically .left. .right. .inc.} | \
{horizontally .bottom. .top. .inc.}’

Draw several lines, either vertically or horizontally. This can be useful in drawing gridlines
for axes, etc. The following example shows how to draw thin gray lines extending from the
labelled tics on the x axis (ie, at 0, 0.1, 0.2, ... 1):

set x axis 0 1 0.1 0.05
set y axis 10 20 10
draw axes
set graylevel 0.75
set line width 0.5
draw lines vertically 0 1 0.1
set graylevel 0

9.3.9.26 draw patches

‘draw patches .width. .height. [cm]’

With the optional cm keyword not present, draw column data z(x,y) as gray patches accord-
ing to the grayscale as set by most recent set image grayscale. The patches are aligned
along the horizontal, and have the indicated size in user units.

With the optional keyword cm is present, the patch size is specified in centimetres.

Chapter 9: List of Commands in the Gri Language 91

9.3.9.27 draw polygon

‘draw polygon [filled] .x0. .y0. .x1. .y1. [other pairs] [user|cm|pt]’

Draw a polygon connecting the indicated points, specified in user units. The last point is
joined to the first by a line segment. At least two points must be specified. If the filled
keyword is present, the polygon is filled with the current pen color. If no unit is given, user
units are used.

9.3.9.28 draw regression line

‘draw regression line [clipped]’

Fit and draw a regression line to column data, of the form y = ..coeff0.. + ..coeff1..
* x, exporting ..coeff0.., ..coeff0_sig.., ..coeff1.. and ..coeff1_sig.. as global
variables (Section 9.3.34 [Regress], page 113).
Normally, the line is not clipped to the axes frame, but it will be if the keyword clipped is
given.
HINT: to label the plot you might do the following:

sprintf \label "y = %f + %f * x. R2=%f" \
..coeff0.. ..coeff1.. ..R2..

draw title "The linear fit is \label"

9.3.9.29 draw symbol ... at

‘draw symbol .code.|\name at .x. .y. [cm|pt]’

Draw a symbol at given (single) location. The location is normally in user coordinates; it
will be in centimetres on the page if the optional cm or pt keyword is given.

With the optional numerical/name code specified, then the symbol of that number or
name is drawn at each (x,y) datum, whether or not a z-column exists. The numerical/name
codes are:

name description
-- ---- -----------
0 plus +
1 times x
2 box box
3 circ circle
4 diamond diamond
5 triangleup triangle with base at bottom
6 triangleright triangle with base at left
7 triangledown triangle with base at top
8 triangleleft triangle with base at right
9 asterisk *
10 star star of David
11 filledbox filled box
12 bullet filled circle
13 filleddiamond filled diamond
14 filledtriangleup filled triangleup
15 filledtriangleright filled triangleright
16 filledtriangledown filled triangledown
17 filledtriangleleft filled triangleleft

92 Gri

9.3.9.30 draw symbol legend

‘draw symbol legend \symbol_name "label" \
at .x. .y. [cm]’

Draw indicated symbol at indicated location, with the indicated label beside it. The label
is drawn one M-space to the right of the symbol, vertically centered on the indicated .y.
location.

9.3.9.31 draw symbol

‘draw symbol [[.code.|\name] \
| [graylevel z] \

[color [hue z|.h.] \
[brightness .b.] \
[saturation .s.]]]’

With no optional parameters, draw symbols at the (x,y) data. If a z-column has been read
with read columns, then its value codes the symbol to draw, according to the table below.
(The value of z is first rounded to the nearest integer.) If no z-column has been read, the
symbol X is drawn at each datum.

With the optional numerical/name code specified, then the symbol of that number or
name is drawn at each (x,y) datum, whether or not a z-column exists. The numerical/name
codes are:

name description
-- ---- -----------
0 plus +
1 times x
2 box box
3 circ circle
4 diamond diamond
5 triangleup triangle with base at bottom
6 triangleright triangle with base at left
7 triangledown triangle with base at top
8 triangleleft triangle with base at right
9 asterisk *
10 star star of David
11 filledbox filled box
12 bullet filled circle
13 filleddiamond filled diamond
14 filledtriangleup filled triangleup
15 filledtriangleright filled triangleright
16 filledtriangledown filled triangledown
17 filledtriangleleft filled triangleleft

With the optional graylevel z fields specified, the graylevel is given by the z column
(0=black, 1=white).

With the optional color field specified, the color is specified, either directly in the
command (the hue .h. form) or in the z column. For more information on color, refer to
the set color hsb ... command.

Examples: both draw symbol bullet color and draw symbol bullet color hue z
draw bullets whose hue is given by the value in the z column. The hue (or the color, in

Chapter 9: List of Commands in the Gri Language 93

other words) blends smoothly across the spectrum as the numerical value ranges from 0 to
1. The value 0yields red, 1/3 yields green, 2/3 yields blue, etc. If the brightness and the
saturation are not specified, they both default to the value 1, which yields pure, bright
colors.

Example: draw all in green dots draw symbol bullet color hue 0.333 brightness 1
saturation 1

Example: display spectrum of dots
set symbol size 0.3
open "awk ’END{ \

for(c=0;c<1;c+=1/40) \
print(c,c,c)}’ | "

read columns x y z
close
draw symbol bullet color hue z

9.3.9.32 draw time stamp

‘draw time stamp \
[fontsize .points. \

[at .x_cm. .y_cm. cm \
[with angle .deg.]]]’

Draw the command-file name, PostScript file name, and time, at the top of graph. Normally,
the timestamp is drawn at the top of the page, in a fontsize of 10 points. But the user
can specify the fontsize, and additionally the location (in cm) and additionally the angle
measured in degrees anticlockwise from the horizontal.

NOTE: If you want to have the plot drawn in landscape mode, ensure that set page
landscape precedes draw time stamp.

9.3.9.33 draw title

‘draw title "\string"’

Draw the indicated string above the plot.

9.3.9.34 draw values

draw values \
[.dx. .dy.] \
[\format] \
[separation .xcm. .ycm.]

Draw values of z column, at corresponding (x, y) locations. If the separation keyword is
present, the distance between successive points is checked, and points are skipped unless
the x and y separations exceed the indicated distances.
• draw values Draw the values of z(x,y), positioned 1/2 M-space to the right of (x,y)

and vertically centred on y. The values are written in a good general format known as
%lg, in C terminology.

• draw values %.2f Draw values of z(x,y) positioned as described above, but using the
indicated format string. This format string specifies that 2 numbers be used after the

94 Gri

decimal place, and that floating point should be used. See any C manual for format
codes.

• draw values .dx. .dy. Print values of z(x,y) at indicated offset vector (.dx.,.dy.),
measured in centimeters, from the values of (x,y) at which the data are defined.

• draw values .dx. .dy. %.3f Print values of z(x,y) at indicated distance from (x,y),
indicated format.

9.3.9.35 draw x axis

draw x axis [at bottom|top|{.y. [cm]} [lower|upper]]

Draw an x axis, optionally at a specified location and of a specified style.
• draw x axis Draw a lower x axis (ie, one with the numbers below the line) at the

bottom of the box defined by set y axis.
• draw x axis at bottom Draw a lower x axis (ie, one with the numbers below the line)

at the bottom of the box defined by set y axis.
• draw x axis at top Draw an upper x axis (ie, one with the numbers above the line) at

the top of the box defined by set y axis (or above any existing stacked x axes there)
• draw x axis at .y. Draw a lower x axis at indicated value of .y..
• draw x axis at .y. upper Draw an upper x axis at indicated value of .y.

9.3.9.36 draw x box plot

draw x box plot at .y. [size .cm.]

Draw Tukey box plots (which give a summary of histogram properties). Box plots were
invented by Tukey for eda (exploratory data analysis). The centre of the box is the median.
The box edges show the first quartile (q1) and the third quartile (q3). The distance from
q3 to q1 is called the inter-quartile range. The whiskers (i.e., the lines with crosses at the
end) extend from q1 and q3 to the furthest data points which are still within a distance of
1.5 inter-quartile ranges from q1 and q3. Beyond the whiskers, all outliers are shown: open
circles are used for data within a distance of 3 inter-quartile ranges beyond q1 and q3, and
in closed circles beyond that.

As a side effect, this command stores q1, q2, and q3 into variables ..q1.., ..q2.., and
..q3...
• draw x box plot at .y. Draw Tukey’s box plot, spreading in the x direction, centered

at y=.y. and of default width 0.5 cm.
• draw x box plot at .y. size .cm. Draw Tukey’s box plot, spreading in the x direc-

tion, centered at y=.y. and of width .cm. centimetres.

9.3.9.37 draw y axis

draw y axis [at left|right|{.x. cm} [left|right]]

Draw a y axis, optionally at a specified location and of a specified style.
• draw y axis Draw a left-hand-side y axis (ie, one with the numbers to the left of the

line) at left of box defined by ‘set x axis’
• draw y axis at left Draw a left-hand-side y axis (ie, one with the numbers to the left

of the line) at left of box defined by set x axis.

Chapter 9: List of Commands in the Gri Language 95

• draw y axis at right Draw a right-hand-side y axis (ie, one with the numbers to the
right of the line) at right of box defined by set x axis.

• draw y axis at .x. Draw a left-hand-side y axis (ie, one with the numbers to the left
of the line) at indicated value of .x.

• draw y axis at .x. right Draw a right-hand-side y axis (ie, one with the numbers to
the right of the line) at indicated value of .x.

9.3.9.38 draw y box plot

draw y box plot at .x. [size .cm]

Draw Tukey box plots (which give summary of histogram properties).
• draw y box plot at .x. Draw Tukey’s box plot, spreading in the y direction, centered

at x=.x. and of default width 0.5 cm.
• draw y box plot at .x. size .cm. Draw Tukey’s box plot, spreading in the y direc-

tion, centered at x=.x. and of width .cm. centimetres.

As a side effect, this command stores q1, q2, and q3 into variables ..q1.., ..q2.., and
..q3...

9.3.9.39 draw zero line

draw zero line [horizontally|vertically]

Draw lines corresponding to x=0 or y=0.
• draw zero line Draw line y=0 if it is within axes.
• draw zero line horizontally Draw line y=0 if it is within axes.
• draw zero line vertically Draw line x=0 if it is within axes.

9.3.9.40 end grouip

end group

Command not implemented yet. Syntax may change.

9.3.10 expecting

expecting version a.b
expecting version a.b.c

Show a list of incompatibilites that have been introduced since the named version. This
command can make your commandfiles more reliable against changes to Gri.

There are two forms of the version number. Modern versions use the triplet form, e.g.
expecting version 2.8.7, but prior to October 1996 the version numbers were written in
decimal form, so that you would write expecting version 1.069 for example.

9.3.11 filter

• filter column x|y|z|u|v|weight recursively a[0] a[1] ... b[0] b[1] ...
Filter indicated column, using a two-pass recursive filter. The first pass runs from the
start to the end, while the second pass runs from the end to the start; in this way, the

96 Gri

phase shift inherent in this type of filter is removed entirely. The coefficients are used
in the following formula (demonstrated on the x column):

x_new[i] = b[0] * x[i] \
+ b[1] * x[i-1] \
+ b[2] * x[i-2] \
+ ... \
- a[1] * x_new[i-1] \
- a[2] * x_new[i-2] \
- ...

Thus, for example, setting a[i] = 0 results in a simple backwards-looking moving-
average filter applied in two passes. The real power of this type of filter, however,
comes when non-zero a[i] coefficients are given, thus adding recursion (i.e., x_new[i]
depends on x_new[i-...]). See any standard reference on digital filters for an expla-
nation. You might find that the Matlab command butter an easy way to design filter
coefficients. Here are some examples:

Filter x column with simple 2-point moving
average. (This slurs into a 3-point moving
average, in effect, since the filter is run
forwards and then backwards.)
filter column x recursively 0 0 0.5 0.5

Use filter designed with the Matlab
command butter(2,0.1), which creates a
2nd order lowpass butterworth filter
with a cutoff frequency of 0.1
(in units which have a frequency
of 1 corresponding to one-half the
sampling rate).
filter column x recursively \

1 -1.561 0.6414 \
0.0201 0.0402 0.0201

• filter grid rows|columns recursively a[0] a[1] ... b[0] b[1] ... Apply recur-
sive filter (see filter column ... recursively for meaning of this filter operation) to
the individual rows or columns of the grid data. For example, the command filter
grid columns recursively 0 0 0.5 0.5 applies a 2-point moving average filter across
the columns, smoothing the grid in the x-direction.

• filter image highpass Remove low-wavenumber components from image (ie, sharpen
edges). Do this by subtracting a Laplacian smoothed version of the image.

• filter image lowpass Remove high-wavenumber components from image (ie, smooth
shapes). Do this by Laplacian smoothing.

See also Section 9.3.45 [Smooth], page 137.

9.3.12 flip

‘flip grid|image x|y’

Flip grid or image by relecting it about a horizontal or vertical centerline.
• flip grid x Flip grid so right-hand side becomes left-hand side.
• flip grid y Flip grid so bottom side becomes top side.

Chapter 9: List of Commands in the Gri Language 97

• flip image x Flip image so right-hand side becomes left-hand side.
• flip image y Flip image so bottom side becomes top side.

9.3.13 get env

‘get env \result \environment_variable’

Get the value of an "environment variable" from the unix operating system, and store the
result in the indicated synonym. This makes most sense on unix systems (hence the name,
patterned after the unix command getenv). This command can be useful in making gri
programs resistant to changes in data-file locations. Suppose, for example, there is a file
called ‘data’, normally in a local directory called Bravo. The line open Bravo/data will
fail if the Bravo directory is moved. But if the name of the datafile is stored in an unix
environment variable, DIR_BRAVO say, then the gri program will work no matter where the
Bravo data are moved, so long as an appropriate environment variable is modified when the
data are moved. Example:

get env \dir DIR_BRAVO
if {rpn "\dir" "" ==}

show "Cannot determine location of the Bravo data,"
show "which should be stored in the environment"
show "variable DIR_BRAVO. You should"
show "do something like"
show "export DIR_BRAVO=’/data/Bravo/’"
show "in your ~/.environment file"
quit

end if
open \dir/data
...

9.3.14 group

‘group ["\name"]’

Command not implemented yet. Syntax may change.

9.3.15 heal

heal columns|{columns along x|y}

The heal command heals over gaps in either columnar or gridded data. This is done by
linear interpolation across the missing-value gaps.
• heal columns Fill in missing values in x, y, z, ... columns, by linear interpolation to

neighboring valid data. All gaps in the data will get replaced by a linear function of
index which matches the data at the indices just before and just after the gap. For
example, if the y data were like

111
3
-9
-9
-9
7
333

98 Gri

where -9 is the missing-value code, then they would get replace by
111
3
4
5
6
7
333

Notes: (1) This is done independently for all existing columns. (2) Gaps at the start
and end of the columns are not filled in.

• heal grid along x Scan in the x direction, filling in missing values by linear interpo-
lation. Since this uses the the x-grid, you must first have done read grid x or set x
grid.

• heal grid along y Scan in the y direction, filling in missing values by linear interpo-
lation. Since this uses the the y-grid, you must first have done read grid y or set y
grid.

9.3.16 help

‘help [*|command_name|{- topic}]’

Give help on a command or topic.
• help Print a general help message.
• help * Prints complete help info.
• help command_name Prints help on the command whose name begins with the string

command_name. The string may be several words long; e.g. help set or help set x
axis.

• help - topic_name The minus sign tells Gri that the string to follow it is a topic, not
a command. Topics Gri knows about are listed by the one-word help request.

9.3.17 if

(See also Section 10.6 [If Statements], page 157.)
‘if {[!] .flag.}|\flag|{{"string1" == "string2"}}’

Control program flow. The if block is ended with a line containing end if. Optional else
and else if blocks are allowed. Note that rpn expressions are allowed, and a special form
of string comparison is allowed, as in the examples below.

if .flag.
List of Gri commands to be done if .flag. is 1.
This list may extend across any number of lines.

end if

If the variable .flag. is not equal to 0, do the code between the if line and the end if
line.

if .flag.
Commands done if .flag. is 1

else
Commands done if .flag. is 0

end if

Chapter 9: List of Commands in the Gri Language 99

If the variable .flag. is not equal to 0, do the code between the if line and the else line.
If .flag. is equal to 0, do the code between the else line and the end if line.

if ! .flag.
Commands done if .flag. is 0

end if

If the variable .flag. is equal to 0, do the code between the if line and the end if line.
if {rpn .flag. 10 <}
Commands done if 10 is less than .flag.

end if

If the variable .flag. is greater than 10, do the code between the if line and the end if
line.

if \smooth
Commands done if \smooth is 1

else
Commands done if \smooth is 0

end if

If the number stored in the synonym \smooth is not equal to 0, do the code between the
if line and the else line. If the synonym stores a representation of a number not equal to
zero, do the else part. If the synonym contains text that does not decode to a number,
generate error message.

if {"\item" == "Temperature"}
Commands done if the synonym \item is equal to the
indicated text string.

end if

If the synonym \item has the value Temperature stored in it, do the indicated code.
if {rpn "\item" "Temperature" ==}
Commands done if the synonym \item
equals indicated text string.

end if

As above, but using the rpn calculator (Section 10.9 [rpn Mathematics], page 161).
if {rpn "\item" "Temperature" !=}
...

end if

As above, but do the indicated code if \item is not equal to Temperature.

9.3.18 ignore

‘ignore last .n.’

Ignores last .n. lines read by read columns.

9.3.19 input

‘input \ps_filename \
[.xcm. .ycm. \
[.xmag. .ymag. \

[.rot_deg.]]]’

100 Gri

Input the named PostScript file directly into the Gri output PostScript file. (If the file-
name has punctuation, insert it in double quotes, e.g. input "../thefile".) If no options
are specified, the file is input at normal scale, with normal margins. (Aside to PostScript
programmers: the named file is sandwiched between gsave and grestore commands.) If
.xcm. and .ycm. are specified, then the origin is moved to the named location first. If,
in addition, .xmag. and .ymag. are specified, then these are used as scale factors after
translation. Finally, if .rot_deg. is specified in addition, then the indicated counterclock-
wise rotation is applied after translation and scaling. Hint: if the results look wrong, the
first thing to do is to think carefully about the order of the (translation, scaling, rotation)
operations.

9.3.20 insert

‘insert \filename’

Perform the commands in the indicated file.
If the file name is absolute (i.e. starts with ., or with / or with ~) then an error results

if the file is not present (or cannot be read by this user).
However, if the file name starts with a normal letter, Gri will try harder to locate the

file. If it is not in the local directory, and if a set path to "PATH" for commands has been
done, then Gri will search the colon-separated directories for the file (Section 9.3.41.39 [Set
Path To], page 129).

If you don’t want path-searching done, use the source command instead (Section 9.3.46
[Source], page 138).

9.3.21 interpolate

interpolate x grid to .left. .right. .inc.|{/.cols.}’
interpolate y grid to .bottom. .top. .inc.|{/.rows.}’

Transform grid by interpolating between existing grid data, according to a new x or y
grid specified in the manner of set x grid and set y grid. Note that the new grid is
neccessarily regular, while the first grid needn’t have been. The data of the new grid are
constructed by interpolation, using the same interpolation algorithm as the convert grid
to image command.

9.3.22 list

‘list \command-syntax’

List the source of a gri command. Often this is just the name of a C function internal to gri
(try list list for an example), but when the command is written in the gri programming
language the source will be more understandable (try list set panel).

9.3.23 ls

‘ls [\file_specification]’

List files in current directory. (The current directory can be printed by the gri command
pwd and can be set by the gri command cd.) ls \file_specification lists files in current
directory which match the file specification. Normal unix file specification options are
understood.

Chapter 9: List of Commands in the Gri Language 101

9.3.24 mask

‘mask the image [to {uservalue .u.}|{imagevalue .i.}]’

Examine both the image and the mask pixel by pixel. For any pixels which have a mask
value of 1 (which indicates an invalid region of the image), change the image value. If
no to phrase is present, change the image value to 0 in pixel units. If the to uservalue
.u. phrase is present, change the pixel to hold the imagevalue that corresponds to this
uservalue (see set image range command for a discussion of this correspondance). If the
to imagevalue .i. phrase is present, change the pixel to hold that imagevalue (in range 0
to 255 inclusive for 8-bit images).

9.3.25 new

new .variable_name. | \synonym_name \
[.variable_name. | \synonym_name \
[...]]

new sets aside storage for new version of the named variable(s) and/or synonym(s). Any
number of variables and synonyms may be specified. If a given variable/synonym already
exists, this will create a new version of it, and future assignments will be stored in this new
version without affecting the pre-existing version. If the variable/synonym is deleteed, the
new version is deleted, making the old, unaltered, version accessible again.

This command is used mostly for temporary use, to prevent clashing with existing values.
Suppose you want to change the font size inside a new command or an if block. Then you
might do the following, where the variable .tmp. is used to store the old font size. Note
that the use of the new/delete statements prevents the assignment to the local version of
the variable .tmp. from affecting the value known outside the if block, if in fact .tmp.
happened to exist outside the block.

set font size 10
draw label "This is in fontsize 10" at 10 2 cm
if .want_title.
new .tmp.
.tmp. = ..fontsize..
set font size 22
draw label "This is 22 font" at 10 5 cm
set font size .tmp.
delete .tmp.

end if
draw label "This is 10 font" at 10 8 cm

Special case: for local synonyms (e.g. \.word1., etc.), the new operator checks to see
whether the synonym is standing for an "ampersand" argument, signalling a changeable
argument that is a variable or a synonym. In such a case, new creates a new instance of the
item in the calling context. The test suite has examples (Chapter 16 [Test Suite], page 233).

9.3.26 new page

‘new page’

Finish the present page, and start a new page. All settings (of linewidth, axes, land-
scape/portrait, etc) are retained on the new page. Among these settings is the flag that
tells gri whether you need axes plotted along with your data.

102 Gri

9.3.27 new postscript file

‘new postscript file "name"’

Finish the present Postscript file, and start a new page with the given name. All settings
(of linewidth, axes, landscape/portrait, etc.) and data are retained on the new file.

9.3.28 open

There are two styles of open command. In the first style, a simple file is to be opened.
In the second style a unix-like "pipe" is opened, i.e. Gri will read the output of a system
command instead of a file.

9.3.28.1 Opening simple files

Ascii Files Most applications involve ascii files, and these are very easy to handle in Gri.
For example given a data file named ‘foo.dat’, just use the command

open foo.dat

and then you can read the data using various commands. Thus a complete program might
be

open foo.dat
read columns x y
draw curve

If a filename contains blanks or punctuation symbols, you must put it in double quotes
("), e.g.

open "foo bar.dat"

Indeed, Gri accepts double-quotes on any open command and some folks use it on all
commands, as a matter of habit.

Gri can handle compressed files appropriately, e.g.
open foo.data.gz

so that there is no need to uncompress data for use with Gri.
Gri is quite persistant in looking for your file, and if a given file is not found, it will then

check to see if a compressed version is available, and use that instead. Thus
open foo.dat

will look for a file named ‘foo.dat.gz’ if ‘foo.dat’ is not available. (Only files compressed
with the GNU gzip utility are handled.)

If the open command was successful in opening the file, it will set the value of the
synonym \.return_value. to the full pathname of the file. Thus, if open a.dat is done in
directory /home/gri, then \.return_value. will equal the string /home/gri/a.dat.

Binary Files Like most computer programs, Gri has some trouble with binary files. One
big issue is the so-called "endian" character of the computer. Some computers store multi-
byte values with the most significant bytes first, while others store them with the most
significant bytes last. The problem is that nothing is stored in data files to indicate which
convention was employed. For this reason, a version of Gri compiled on a so-called "big-
endian" computer will misinterpret multi-byte values that were created on a so-called "little-
endian" computer. Many folks in the scientific community have converted to using the

Chapter 9: List of Commands in the Gri Language 103

NetCDF format (see next section) for precisely this reason, since this format is independent
of the endian character of the computer.

Presuming an appropriate endian character, however, reading is straightforward. A
command of the form

open foo.dat binary

tells Gri that the data are stored in a binary format. With the above syntax, Gri expects
images to be in unsigned char (8 bits), while other data, such as columns and grids, are
expected to be in 32-bit format (suitable for reading into a so-called "float" variable in the
C programming language).

You may also specify the format directly, as in the following examples; Gri then interprets
all data as being in the indicated format and then converts to the internal format before
using the data.

open \filename binary uchar
open \filename binary 8bit
open \filename binary int
open \filename binary float
open \filename binary double
open \filename binary 16bit

As with ascii files, Gri will automatically uncompress any files that are compressed, and
if it fails to find a given filename, it will try to open a compressed version of it (i.e. one
with a ‘.gz’ suffix).

NetCDF Files The NetCDF format provides the best of both worlds. It is binary, so
that data are relatively compact, and may be read very quickly. (Reading ascii data is time-
consuming in C++, the language in which Gri is written.) But it does not suffer the endian
problem problem of normal binary files (see previous section), since information about the
endian character is stored in the file itself, and Gri uses this information to decode the data
without difficulty, regardless of the endian characteristics of the computer on which Gri is
running and of the computer that created the data.

For more information on netCDF format, see
http://www.unidata.ucar.edu/packages/netcdf/index.html

The syntax of opening NetCDF files is as below
open foo.nc netCDF

and the syntax for reading such files is described in sections on the various read commands
(see e.g. Section 9.3.33.2 [Read Columns], page 107).

9.3.28.2 Opening pipes

Sometimes it makes sense to get Gri to work with the results of another command in the
OS. Gri handles this by creating a so-called "pipe", thus reading the output from the other
command. (Readers familiar with the unix OS will know what pipes are all about, and
especially why they are a good thing. Other readers might wish to skip this section.)

Suppose we wish to plot an x-y plot using just the first few lines of a datafile named
‘foo.dat’. Unix users will know that a good way to see the first few lines of such a file
would be to type the command head foo.dat. They also know that these lines could be
provided to a second unix command, named ‘do_foo’ say, by the command head foo.dat
| do_foo. This uses a so-called "pipe", designated by the vertical line (called a pipe symbol
below).

104 Gri

Gri can read the output from system commands by using a syntax in which the (quoted)
system command ends in a pipe symbol, e.g.

open "head foo.dat |"

as in the example above.
Aside: When pipe-open commands are used, Gri creates a temporary file (often located

in ‘/usr/tmp’, but that varies with machine). This is automatically cleaned up when Gri
completes executation, but if Gri dies (or is interrupted) before it finishes, you’ll be left
with an extra file in this temporary-storage directory. It’s up to you to clean that directory
up from time to time.

Some common examples of pipe-open commands are given below.
1. Comma-separated values are common in files created by, or intended for, spreadsheets.

Since Gri expects data elements to be separated by blanks (or tabs), you’ll have to
convert the commas into blanks. There are many ways to do that using pipes, e.g.
‘sed’ system utility, e.g.

open "sed -e ’s/,/ /g’ foo.dat |"

Other unix facilities, such as tr will also work, of course. If the file has headers, you’ll
want to remove them also. This can be done with the skip command (Section 9.3.43
[Skip], page 136) but you could also do it at the open stage, e.g. to remove the first
two lines, use

open "sed -e ’s/,/ /g’ foo.dat | tail +2 |"

2. Manipulating column data is done by e.g.
open "cat foo.dat | awk ’{$1, $2 * 22}’ |"

where ‘awk’ has been used to multiply the second column in the file named ‘foo.dat’
by 22.

3. Time-based and geographical data are sometimes encountered. For an example, sup-
pose that longitude/latitude (i.e. x/y) data are stored in Hour.minutesecond format,
e.g. 12.2133 means hour 12, minute 21, second 33. Gri doesn’t read HMS format, but
gawk can be told to:

open "cat datafile.HMS | \
awk ’{ \
split($1, hms, \".\"); \
h = hms[1]; \
m = int(hms[2] / 100); \
s = hms[2] - 100 * m; \
x = h + m / 60 + s / 3600; \
split($2, hms, \".\"); \
h = hms[1]; \
m = int(hms[2] / 100); \
s = hms[2] - 100 * m; \
y = h + m / 60 + s / 3600; \
print(x,y) \
}’ | "
read columns x y

4. Timeseries data are often stored in formats that blend letters and numbers. For one
thing, using letters (e.g. aug) removes an ambiguity in numerically-based data. (Ex-
ample: 02/03/2000 means one thing to an American and another thing in the rest
of the world. However, everybody agrees on what 2000-Feb-03 means.) Suppose, for
example, that we have data in a format such as

Chapter 9: List of Commands in the Gri Language 105

Tue_Jul_25_11:07:51 0.62
Tue_Jul_25_11:22:51 0.59
Tue_Jul_25_11:37:51 0.56

(stored in a file called ‘foo.dat’ say) and we want a graph of the y-variable (0.62, 0.59,
0.56) versus x-variable, time expressed say as seconds in the day. Then here is how
that could be done:

open "cat foo.dat |\
sed -e ’s/_/ /g’ -e ’s/:/ /g’ |\
awk ’{print ($4*3600+$5*60+$6, $7)}’ |"

read columns x y
draw curve

Note that the actual day information is skipped in this example; seasoned awk users
could easily fill in the code to handle datasets spanning several days.

9.3.28.3 Opening URLs

Gri can open a URL, if you have the wget program on your machine. (wget is available
from the GNU website http://www.gnu.org/software/wget/.)

The URL must be enclosed in quotes (since otherwise, Gri will interpret the // sequence
as indicating an old way of denoting comments). For example,

open "http://gri.sourceforge.net/gridoc/examples/example1.dat"
read columns x y
show columns

If you don’t have wget installed on your machine, the above won’t work, but you can
always use another fetching program, with a system call, as in the following:

\url = "http://gri.sourceforge.net/gridoc/html/examples/example1.dat"
open "lynx -dump \url |"
read columns x y
draw curve

9.3.29 postscript

‘postscript \string’

Write the indicated string to the PostScript output file, after substitution of synonyms if
there are any. Example:

\a = "45" # angle
\w = "8.5" # page width
postscript gsave \w 72 mul 0 translate \a rotate
... other code to do stuff
postscript grestore

Here is how to draw an image palette vertically instead of horizontally:
\X = "3" # cm
\Y = "10" # cm
\a = "90" # degrees counterclockwise
postscript gsave \X 28.35 mul \Y 28.35 mul translate \a rotate
Palette is at user’s origin
draw image palette box 0 0 10 1
postscript grestore

106 Gri

NOTE: the postscript command is very dangerous, and should normally only be used
by developers. Most of the code concerning this is in the file ‘doline.cc’; look for the string
postscriptCmd to find the relevant code.

9.3.30 pwd

‘pwd’

Print current directory (which can be set by cd).

9.3.31 query

‘query \synonym|.variable. \
["\prompt" ["\default"|.default.]]’

Ask the user for the value of a variable (number) or synonym (text string). Gri recognizes
the type of the item being asked for, either a variable or synonym, by the presence of a
dot or backslash in the second word of the command line. If a prompt string is given (in
quotes), then this string is shown to the user. If a default is given (in parentheses), then it
will be displayed also, and if the user types carriage-return, then that item will be assigned
to the variable or synonym. If the default has more than one item, then Gri considers this a
restrictive list of possibilities, and will demand that the answer be in that list, going into an
infinite query loop until an item from the list (or carriage-return, meaning take first item)
is found. The items in the list are to be separated by spaces, not commas or any other
non-whitespace characters.

NOTE: The -y command-line option bypasses all query commands, fooling Gri into
thinking that the user typed a carriage-return to all questions. Thus the defaults, if they
exist, are selected.

9.3.32 quit

‘quit [.exit_status.]’

Exits the gri program. If an exit status (.exit_status.) is specified, then Gri returns this
value, rounded to the nearest integer, as the “exit status” (a concept meaningful mostly in
the unix environment, where it designates an error).

9.3.33 The read commands

There are several varieties of read command. Those commands used for reading numerical
information (e.g. read columns) are able to decode variables and synonyms as well as
simple numbers.

9.3.33.1 read colornames

‘read colornames from RGB "\filename"’

Read colornames from named file, which is in the X11 format. This format has 4 or more
columns, the first three giving the red, green and blue values in the range 0 to 255, and the
last columns giving the colorname (which may have more than one word). You can create
colors yourself or read an X11 color file. In many cases you will want to read colornames
from RGB "/usr/lib/X11/rgb.txt". Full filenames must be used; the ’~’ syntax is not

Chapter 9: List of Commands in the Gri Language 107

permitted. Once you have read in a colorname table, the named colors may be used as
builtin colors (Section 9.3.41.7 [Set Color], page 117). To view the colors available on your
particular system, use the Unix command xcolors or excolors; to see the RGB values of
all colors on your X11 system, use the showrgb unix command.. To view the names and
RGB values of the colors Gri knows, including builtin ones and ones from read colornames,
use show colornames.

This command is akin to set colorname (Section 9.3.41.8 [Set Colorname], page 118),
except that the latter uses the Gri notation of color constituents being in the range from
0 to 1, whereas for read colornames uses an X11 database, so that the color constitutents
range from 0 to 255.

9.3.33.2 read columns

‘read columns ...’

Read numbers into columns. These columns have predefined meanings and names. For
example, read columns x y instructs Gri to read data into columns called x and y; it is
these data that Gri will use if you tell it to draw curve. Other columns are: z, used for
contouring a function z=z(x,y); weight, used for weighting data points; u and v, used for
arrow (vector) plots.

If the keyword appending is given as the last word on the read columns line, then the
new data will be appended to any existing columnar data; otherwise they will overwrite
any existing data.

As a special case, if the x column is not indicated (e.g. read columns y) then Gri creates
x-values automatically, in the sequence 0, 1, 2, etc.
• read columns x y Read x in column 1, y in column 2 until blank-line found. Only the

first two numbers on each line will be read; any extra numbers (or words) on the line
will be ignored.

• read columns * y * * x Read x in column 5, y in column 2. The * character is a spacer.
It instructs Gri to skip the first, third, and fourth words on the data line. These words
need not be numbers. This example illustrates a general mechanism of using the *
character to skip over unwanted items in the data file. Note that there is no need to
supply * characters for trailing extraneous words; Gri will skip them anywary. Finally,
note that any order of x and y (and the other columns; see below) is allowed.

• read columns y=2 x=5 or read columns x=5 y=2 As above; read x in column 5 and y
in column 2. The column number may be specified in this manner for all the named
column variables. No spaces are allowed before or after the = sign. The first column
is called column 1. Whether this format is used or the * format is a matter of choice,
except that numbered format also permits using a given number to fill several variables
(for example read columns x=1 y=2 u=1 v=2).

• read columns x="netCDF_name" ... If the file is a netCDF file, opened by e.g. open
myfile.nc netCDF, then the netCDF variables for the columns, e.g.

open latlon.nc netCDF
read columns x="longitude" y="latitude"

Note: the data must be stored as the netCDF “float” type.
For more information on netCDF format, see
http://www.unidata.ucar.edu/packages/netcdf/index.html

• read columns * y z * x Read x in column 5, y in column 2, and z in column 3. The z
column is used for contouring.

108 Gri

• read columns x y u v Read x and y in first two columns, and the “arrow” data u and
v as third and fourth columns.

• read columns .rows. x y Read .rows. rows of column data.

Sometimes you’ll have x in one file and y in another. In that case, use the operating
system or an editor to put the columns in one file. In unix, the easy way is

open "paste file_with_x file_with_y |"
read columns x y

NOTE FOR BINARY FILES: For ascii files, Gri will proceed to a new line after it has
read the items requested; it skips any words appearing on the data line after the last object
of interest. Thus read columns x y will read the first two columns and ignore any other
columns that might be present. But for binary files, Gri has no way of knowing how to
"skip" to the next line (see skip command), so you will have to flesh out the read columns
command with as many spacers as are present in your data. For example, if you have four
numbers in each data record and want to interpret the first two as x and y, you would use
read columns x y * * to read the data.

RETURN VALUE: Sets \.return_value to N rows N non-missing N inside-clip-
region

9.3.33.3 read grid

read grid commands read grid characteristics. (The “grid” is the object that is contoured.)
For normal ascii or binary files, the commands to read the grid’s x-locations, y-locations

and data are:
‘read grid x [.rows.]’
‘read grid y [.rows.]’
‘read grid data [spacers] \
[.rows. .cols.] [spacers] [bycolumns]’

For netCDF files, the commands are as follows (note that it is not possible to specify the
number of data to read, nor to read the grid by columns).

‘read grid x = "variable_name"’
‘read grid y = "variable_name"’
‘read grid data = "variable_name"’

The ordering of the y-grid data is the same as if they were read from a normal file: the first
number is considered to be at the top of the plot.

For more information on netCDF format, see
http://www.unidata.ucar.edu/packages/netcdf/index.html

Details of the non-netCDF commands:
• read grid x [.cols.] Read the x locations of the grid points, one number per line. If

.cols. is supplied, then that many values will be read; otherwise, reading will stop at
end-of-file or blank-line.

• read grid y [.rows.] As above, but for y grid; .rows. is the number of rows. The
first number to be read corresponds to the location of the top edge of the grid. Thus,
if you were to view the column of numbers with a text editor, they would be oriented
the same way as the corresponding elements will appear on the page.

• read grid data [.rows. .cols.] Read data for a grid having .rows. and .cols.
columns. (If .rows. and .cols. are not supplied, but the grid already exists, then
those pre-existing values are used. If they are specified here, then they are checked

Chapter 9: List of Commands in the Gri Language 109

for consistency with the pre-existing values if they exist.) Gri will read .rows. lines,
each containing .cols. numbers. (Extra information in the file can be skipped; see
discussion of the * keyword below.) Gri will interpret the first line it reads as the grid
data corresponding to a value of y equal to y[.rows.]. Thus, file should be arranged
like this:

f(x[1], y[.rows.]) ... f(x[.cols.], y[.rows.])
.
.
.

f(x[1], y[3]) ... f(x[.cols], y[3])
f(x[1], y[2]) ... f(x[.cols], y[2])
f(x[1], y[1]) ... f(x[.cols], y[1])

• read grid data [.rows. .cols.] bycolumns As above, but the bycolumns keyword
tells Gri to read the data one column at a time, instead of one row at a time. Each
line is expected to contain .rows. numbers (as opposed to .cols. numbers, as in the
format where the bycolumns keyword is not present). (Extra information in the file
can be skipped; see discussion of the * keyword below). The first line of the data file
contains the first column of the gridded data, corresponding to x equal to x[1]). The
file should look like this:

f(x[1], y[1]) ... f(x[1], y[.cols.])
f(x[2], y[1]) ... f(x[2], y[.cols.])
f(x[3], y[1]) ... f(x[3], y[.cols.])

.

.

.
f(x[.rows.],y[1]) ... f(x[.rows.], y[.cols.])

• read grid data * * [.rows. .cols.] As read grid data .rows. .cols. except that
the first two words on each line are skipped. As usual, trailing extraneous numbers are
also skipped.

See also set x grid, set y grid

RETURN VALUE:
read grid x sets \.return_value to N cols

read grid y sets \.return_value to N rows

read grid data sets \.return_value to N rows N cols

9.3.33.4 read image colorscale

‘read image colorscale [rgb|hsb]’

Read colorscale for image, from 256 lines each containing values for Red, Green, and Blue
(or Hue, Saturation and Brightness), separated by whitespace. The values are expected to
be in the range 0 to 1, and are clipped to these limits if not.

For hints on how to create such an input file, Section 9.3.33.5 [Read Image Grayscale],
page 110. If the example given there has the following code instead,

open "awk ’BEGIN { \
for(i=0;i<256;i++) { \
print((i - 50)/50, 1, 1) \

} \
}’ |"

110 Gri

read image colorscale hsb

then a linear full-color spectrum running from red at 10C to magenta at 15C is achieved.

9.3.33.5 read image grayscale

‘read image grayscale’

Read grayscale for an image, from 256 lines each containing a single value. The values are
expected to be in the range 0 to 1, and are clipped to these limits if not. For 8-bit images,
Gri multiplies these values by 255, and uses this list for the grayscale mapping. Such a list
is created by write image grayscale.

As an example, consider the code fragment (Chapter 7 [Images], page 31).
set image range 5 30.5
set image grayscale black 10 white 15

is equivalent to
set image range 5 30.5
open "awk ’BEGIN {\
for(i=0;i<256;i++) {\
print(1-(i-50)/50)\

} \
}’ |"
read image grayscale
close

because the image formula is
Temperature = 5C + 0.1C * pixelvalue

where the pixelvalue ranges from 0 to 255. Therefore, a temperature of 10C is a pixelvalue
of 50, and 15C is 100. To get a grayscale ranging between these values, therefore, we create
a linear function which maps the 50th pixelvalue into grayvalue 1, and the 100th pixelvalue
into grayvalue 0. That is what the awk line does; to see the actual numbers, you could
insert the line write image grayscale to TMP and look at the file ‘TMP’ (bear in mind that
Gri will clip the values to the range 0 to 1).

Sometimes you will have a file, say named ‘map.dat’, with RGB numbers in the range
0-255, rather than 0-1 as Gri requires. To read them, use the operating system to convert
the numbers for you (Section 9.3.28 [Open], page 102).

open "cat map.dat \
| awk ’{print(($1+$2+$3)/3/255)}’ |"

read image grayscale
close

9.3.33.6 read image mask

‘read image mask rasterfile|{.rows. .cols.}’

Read image mask. The mask is associated with the image read in by the read image
command in the following way. When computing image histograms, Gri ignores any pixels
in the image for which the corresponding pixel in the mask is set to 1.
• read image mask rasterfile The image size is specified in the rasterfile file itself, so

it is not specified.
• read image mask .rows. .cols. The file must contain .rows.*.cols. binary data.

Chapter 9: List of Commands in the Gri Language 111

Pixel order is the same as for images.

9.3.33.7 read image

There are several types of read image commands, depending on the file format. If the file is
"raw", with no embedded information about things like the width and height, then we need
to specify everything, as in the first format given below. The other formats make use of the
header information in, e.g. PGM files.

Headerless images

‘read image .rows. .cols. \
[box .xleft. .ybottom. .xright. .ytop.] \
[bycolumns]’

With no options specified (read image .rows. .cols.), read binary data defining an image.
The image range must have previously have been set by set image range. The data are as
written by "unsigned char" format in C.

When the box option is specified, the geometry of the image, in user coordinates, is
specified in terms of the cartesian coordinates of the lower-left corner (.xleft., .ybottom.)
and upper-right corner (.xright., .ytop.). If the box option is not specified, this geometry
can be specified with either read x grid or set x grid, plus either read y grid or set y
grid.

With the bycolumns keyword present, the image is read sweeping from top-to-bottom,
then left-to-right, instead of the usual order.

Sun rasterfile images

‘read image rasterfile [box .xleft. .ybottom. .xright. .ytop.]’

Read image in Sun rasterfile format. Image geometry is inferred from the header, so .rows.
and .cols parameters are not given.

PGM images

‘read image pgm [box .xleft. .ybottom. .xright. .ytop.]’

Read image in PGM (Portable Gray Map) format. Image geometry is inferred from the
header, so .rows. and .cols parameters are not given. Both ascii and binary PGM formats
are supported (that is, files with magic characters of P2 and P5).

NOTE that there are many image formats and Gri doesn’t try to deal with them all.
The idea is to use another program to convert images to a file format that Gri understands.
In the future Gri may support PNG and other popular formats, especially in the Linux
versions, for which libraries exist to ease the input.

9.3.33.8 read from \filename

‘read from \filename’

Cause future read commands to read from the indicated file. If that file is not open, an
error message will result. Use read from \filename to shuffle reading among several open
files.

Gri can look up filenames for read from in terms of their full pathnames or their local
pathnames. Thus, a local file called a.dat in the directory /home/gri can be referred to
by read from a.dat or by read from /home/gri/a.dat, which comes in handy if you need
to work with two files of the same name, in other directories. However, since Gri has the
ability to search for files in a "path" (Section 9.3.41.39 [Set Path To], page 129), you may

112 Gri

not have specified an exact path name; this is why the open command provides a return
value which names the full pathname (Section 9.3.28.1 [Opening Simple Files], page 102).

9.3.33.9 read synonym/variable

‘read [* [*...]] \synonym|.variable. [\synonym|.variable. [...]]}’

Read one or more items from the next line of the input file. These items may be synonyms
or variables. The token * indicates that the word in the datafile should be skipped. As
usual, the datafile may be embedded in the commandfile, providing the last data line is
blank.

Normally one would use synonyms for words, and variables for numbers. The items
are separated by one or more "whitespace" characters (e.g. space or TAB). Thus, if a file
contained the line

Temperature 10.3

then the line
read \var_name .var_value.

would have the same result as
\var_name = "Temperature"
.var_value. = 10.3

This command ignores any trailing items on the line. That is, the next read command
will start on the next line of the file. In a sense then, you get just one shot at analysing the
input line in your datafile. If you need flexibility, you may wish to read the whole contents
of the line into a synonym, which may be done using the read line command instead, to
read it in as a string. (Section 9.3.33.10 [Read Line], page 113).

If the input file is in the netCDF format, the indicated item will be read. For example,
read \time:_MissingValue reads the missing value for the variable called time. This
conveniently allows your data file to dictate axes names, units, missing values, etc. Example:

Plot profile of TU81N (age-corrected tritium)
open profile.nc netCDF
read columns x="TU81N" y="z"
read \{z:_FillValue} # assume same for all
read \{z:long_name}
read \{z:units}
read \{TU81N:long_name}
read \{TU81N:units}
close
set missing value \{z:_FillValue}
set x name "\{TU81N:long_name} (\{TU81N:units)}"
set y name "\{z:long_name} (\{z:units)}"
set y axis decreasing
draw curve

For more information on netCDF format, see http://www.unidata.ucar.edu/packages/netcdf/index.html

9.3.33.10 read line

‘read line \synonym’

Read the next line of the datafile (or commandfile), trim off a trailing comment if there is
one, and then store the next line of datafile into the named synonym.

Chapter 9: List of Commands in the Gri Language 113

9.3.34 regress

‘regress {y vs x [linear]}|{x vs y [linear]}’

Perform linear regression of y as a function of x or x as a function of y.
• regress y vs x Linear regression of y vs x. Several quantities are reported and also

saved into builtin variables. The intercept is defined as ..coeff0.., its 95 percent con-
fidence limit is defined as ..coeff0_sig... Thus the confidence range is ..coeff0..-
..coeff0_sig.. to ..coeff0..+..coeff0_sig... Similarly the slope and confidence
limit are stored in ..coeff1.. and ..coeff1_sig..

The squared correlation coefficient is stored in ..R2...
Historical note prior to version 2.1.15, a different meaning was attached to ..coeff0_
sig.. and ..coeff1_sig..; they used be defined as standard errors, without having
been multiplied by the appropriate student-t coefficient.

• regress x vs y Linear regression of x vs y; for notation see above.
• regress y vs x linear Linear regression of y vs x; for notation see above.
• regress x vs y linear Linear regression of x vs y; for notation see above.

9.3.35 reorder

‘reorder columns randomly \
|{ascending in x|y|z} \
|{descending in x|y|z}’

Reorder the columns in various ways.
In the randomly style, the column data are shuffled randomly by index, retaining the

correspondance between a given x and y. This is useful with draw symbol using colored dots
– it prevents the overpainting of one dot on another from biasing the color field to values
that happened to occur near the end of the column data. If you prefer the overpainting to
be done in random order, use this command to reorder the columns randomly. The random
number is selected using the system rand call, with the seed being provided by the PID
(process ID) of the job.

The ascending and descending styles do what you’d expect.

9.3.36 rescale

‘rescale’

Re-determine the scales for the x and y axes. Typically used after a column math operation,
when you want the new data to be auto-scaled. (Note: normally, if the axes have already
been drawn, Gri won’t rescale automatically just because you modify the column data.
This is designed so that you can add offsets to curves, etc, while staying in saved axes.
But if the axes have not been drawn yet when you modify the column data, then Gri will
automatically rescale the axes it is planning to draw.)

9.3.37 resize

‘resize {x for maps}|{y for maps}’

Resize the axes frame region in such a way that geographical objects appear in correct
proportions. This assumes that y is degrees latitude and x is degrees longitude.

114 Gri

• resize x for maps Resize the plot width for maps, assuming that x represents longi-
tude and y represents latitude. Before using this, you must have defined scales for both
x and y, and a size for y (ie, you must have done set x axis ..., set y axis ... and
set y size); this command sets the x size, thus eliminating set x size. The result is
that, at the central latitude (y), a centimetre on the page will correspond to an equal
distance on the earth, in both the north-south and east-west directions.

• resize y for maps Resize the plot height for maps, assuming that x represents longi-
tude and y represents latitude. Before using this, you must have defined scales for both
x and y, and a size for x (ie, you must have done set x axis ..., set y axis ... and
set x size); this command sets the y size, thus eliminating set y size. The result is
that, at the central latitude (y), a centimetre on the page will correspond to an equal
distance on the earth, in both the north-south and east-west directions.
See also resize x for maps.

9.3.38 return

‘return’

Return early from a user-defined function or an insert file. Or, in the main gri program,
do the same thing as quit.

9.3.39 rewind

‘rewind \filename’

Rewind a data-file to the beginning. If no filename is given, this is done for the currently
active file; otherwise the named file is rewound.

9.3.40 rpnfunction

‘rpnfunction name replacement-words’

Create a new keyword for use in rpn expressions. Inside any RPN expression which follows
this line, the word name will be substituted with the indicated replacement words.

For example, the following shows the definition and use of a function which computes
the sine of twice an angle, by multiplying whatever is on the stack by 2, and then taking
the sine of the result.

rpnfunction sin2 2 * sin
show "expect the number 1 to follow: " {rpn 45 sin2}

The replacement words will have any synonyms in them translated first, unless they
start with an underscore followed by a double backslash. Similarly, variables are substituted
unless they start with an underscore. These exceptions are to allow the use of the defined
operator (Section 10.9 [rpn Mathematics], page 161).

Note: The mathematical constants e and pi are stored using rpnfunctions. Also, two
rpnfunctions are provided for finding the slope and intercept of a line joining two points,
e.g.

Expect answers 1 and 10 ...
show "slope=" {rpn 0 1 1 11 linear_slope}
show "inter=" {rpn 0 1 1 11 linear_intercept}

These are useful in set grid missing above .intercept. .slope. and set z missing
above .intercept. .slope..

Chapter 9: List of Commands in the Gri Language 115

9.3.41 The set commands

Set various flags and parameters which Gri will use in later commands.

9.3.41.1 set axes style

set axes style .style. \
| {offset [.dist_cm.]} \
| rectangular|none|default

Tell Gri how you want the axes to look, when they are drawn later.
• set axes style 0 Set axes to be rectangular, with an x-y axis frame labelled at the

left and bottom and tic marks on all axes.
• set axes style 1 As style 0, but only put tics on the lower and left axes.
• set axes style 2 As style 0 but without labels or tics on any axis, i.e. just an axis

frame.
• set axes style offset [.dist_cm.] Set axes so that the actual x and y axes will be

drawn with a space separating them from the data area. The space, if not set by the
.distance_cm. option, will be equal to the current tic size (see set tic size). This
command can be used together with any other set axes style command. It applies
to both the draw axes command and with any draw x|y axis command in which the
axis location is not explicitly given.

• set axes style rectangular Set axes to be rectangular, with an x-y axes frame la-
belled at the left and bottom.

• set axes style none Tell gri not to bother drawing axes before drawing curves, etc.
• set axes style default Same as set axes style 0, and with offset turned off.

9.3.41.2 set arrow size

‘set arrow size .size. \
| {as .num. percent of length} \
| default’

Set the arrowsize (which is stored in the builtin variable ..arrowsize..).
• set arrow size .size. Set the arrow size (ie, half-width of the arrowhead) to .size.

centimetres.
• set arrow size as .num. percent of length Set the arrow size to be the indicated

percentage of arrow length, as in "HWP" in the singles ads. (As a flag to this,
..arrowsize.. is set to the negative of the fractional size measured in percent.)

• set arrow size default Set the arrow size to the default of 0.2 cm.

9.3.41.3 set arrow type

set arrow type .which.

Set type of arrow, according to the value of .which., rounded to the nearest integer.
A rounded .which. value of 0 yields the default arrows, drawn with three line strokes.
Value 1 yields outlined arrows, sometimes used on definition sketches. Value 2 yields filled,
swept-back arrow heads.

116 Gri

This command uses the “line join” parameters that are presently active (Section 9.3.41.32
[Set Line Join], page 125). So, by default, the arrow ends are rounded (because the default
line-join parameter is 1). To get pointy ends, first set the line join parameter to 0.

9.3.41.4 set beep

‘set beep on|off’

The command set beep on makes gri beep on errors and query. set beep off (the default)
turns this beeping off.

9.3.41.5 set bounding box

‘set bounding box .xleft. .ybottom. .xright. .ytop. [pt|cm]’

Set the PostScript bounding box for the graph to the indicated values. The bounding box
is used by some programs to determine the region of the page on which marks have been
made. For example, LaTEX uses the bounding box to decide how to position figures in
documents.

Normally, the bounding box is computed automatically unless the -no_bounding_box
commandline option has been specified; (Chapter 3 [Invoking Gri], page 7). But if set
bounding box is done, the automatically computed value is ignored and the given box is
used instead. Use this if Gri makes mistakes in its automatic selection of bounding box.

The coordinates of the bounding box may be specified in (1) user coordinates, as defined
at the moment the command is executed, or (2) in points on the page, measured from
an origin at the lower-left (72 point per inch), or (3) in centimeters on the page. Which
coordinate system is used depends on the last keyword – use pt for points, cm for centimeters,
and nothing at all for user-units.

The most common use is in points, since that is how many other application packages,
e.g. LaTEX and dvips, specify the bounding box.

If the box is specified in the user units, the user units in effect at the moment of executing
the set bounding box command are used. This must be born in mind if the coordinate
system is changing during the execution of the program, e.g. if margins are changing or the
x and y axes are changing. For this reason it often makes sense to put this command at the
end of the commandfile.

9.3.41.6 set clip

‘set clip [postscript] \
{on [.xleft. .xright. .ybottom. .ytop.]} \
{to curve} \
| off’

Control clipping of following drawing commands. Note that the commands have two styles,
one of which includes the keyword postscript. PostScript clipping does a cleaner job, but
it results in larger file sizes. Important if you are using postscript clipping, then you be
sure to turn it off using set clip postscript off, instead of set clip off; otherwise Gri
will get mixed up.
• set clip on Don’t plot data outside axes.

• set clip postscript on As above, but Postscript clipping.

Chapter 9: List of Commands in the Gri Language 117

• set clip on .xleft. .xright. .ybottom. .ytop. Don’t plot data outside indicated
box.

• set clip postscript on .xleft. .xright. .ybottom. .ytop. As above, but
Postscript clipping.

• set clip off Plot all data, whether inside the axes or not.
• set clip postscript off As above, but Postscript clipping.
• set clip to curve set clip to the curve, as would be drawn by a draw curve filled

command, i.e. to the polygon constructed by running along the xy points, in order,
followed by a final segment from the last point back to the first point. This is a
"postscript" clip, as explained in the next item.

• set clip postscript to curve As above, but Postscript clipping.
draw axes
set clip postscript on 10 20 0 1
draw curve
set clip postscript off

• set clip postscript off Turn PostScript clipping off. See also set input data
window.

9.3.41.7 set color

‘set color \name | \
{rgb .red. .green. .blue.} | \

{hsb .hue. .saturation. .brightness.}’

Set the color of the “pen” used for drawing lines and text. Normally lines and text are
drawn in the same color, but the text color can be specified independently if desired (Sec-
tion 9.3.41.17 [Set Font Color], page 120). This might be useful to get contour lines of one
color and labels of another. The spelling colour is also accepted.

In the set color \name style, set the drawing color to the indicated name, either from
the builtin list (white, LightGray, darkslategray, black, red, brown, tan, orange,
yellow, green, ForestGreen, cyan, blue, skyblue, magenta), or from a list created by
read colornames. In the latter case, if the colorname has more than one word in it, use
quotes, e.g. set color "ghost white".

In the set color rgb ... style, set the individual color components as indicated. The
numbers .red., .green. and .blue. range from 0 (for no contribution of that color com-
ponent to the final color) to 1 (for maximal contribution). Values less than 0 are clipped to
0; values greater than 1 are clipped to 1. EXAMPLES:

set color rgb 0 0 0 # black
set color rgb 1 1 1 # white
set color rgb 1 0 0 # bright red
set color rgb 0.5 0 0 # dark red (only 50 percent)
set color rgb 0 1 0 # pure green
set color rgb 1 1 0 # yellow: red + green

In the set color hsb ... style, set the individual color components as indicated. The
numbers .hue., .saturation. and .brightness. range from 0 to 1. The color, represented
by .hue., ranges from 0 for pure red, through 1/3 for pure green, and 2/3 for pure blue, and
back to 1 again for pure red. The purity of the color, represented by .saturation., ranges
from 0 (none of the hue is visible) to 1 (the maximal amount is present). The brightness of

118 Gri

the color, represented by .brightness., ranges from 0 (black) to 1 (maximal brigntness).
Values less than 0 are clipped to 0; values greater than 1 are clipped to 1. EXAMPLES:

set color hsb 0 1 1 # pure, bright red
set color hsb 0 1 0.5 # half black, half red
set color hsb .333 1 1 # pure, bright green

9.3.41.8 set colorname

‘set colorname \name {rgb .red. .green. .blue.} \
| {hsb .hue. .saturation. .brightness.}’

Create a colorname with the indicated color. The color components range from 0 to 1, and
will be clipped to these values if they are outside this range. EXAMPLE (borrowing a color
from ‘/usr/lib/X11/rgb.txt’):

set colorname peachpuff rgb 1 {rpn 218 255 / } {rpn 185 255 / }
draw box filled 2 2 3 3 cm

This command is akin to read colornames (Section 9.3.33.1 [Read Colornames],
page 106), except that the latter uses an X11 database, so the color constituents range
from 0 to 255, whereas for set colorname they range from 0 to 1.

9.3.41.9 set contour format

‘set contour format \style|default’

Normally, Gri draws the numeric labels of contours using a format code called %g in the "C"
language. You may specify any other "long" format using this command. For example, set
contour format %.1f tells Gri to use one decimal place in the numbers, and also to prefer
the "float" notation to the exponential notation. set contour format default resets to
the default %f format. You may use quotes around the format if you need to, to make the
item be a single word (e.g. set contour format "%.1f m/s").

9.3.41.10 set contour label for

‘set contour label for lines exceeding .x. cm’

Make it so contour lines shorter than .x. centimeters will not be labelled.

9.3.41.11 set contour label position

‘set contour label position \
{.start_cm. .between_cm.} \
| centered \
| default’

By default, contour labels are drawn at the location 1 cm into the contour curve, measured
from the startpoint of the contour (e.g., for contours crossing the axes frames, the label will
be 1 cm from the frame), and then at a uniform distance along the contour. By default, this
uniform distance is the average dimension of the plotting area inside the axes. If .start_
cm. and .between_cm. are specified, the first label is drawn at a distance .start_cm. from
the start of the contour, and thereafter at a separation of .between_cm..

If the centered option is used, then the contour labels are centered along the length of
the line.

Chapter 9: List of Commands in the Gri Language 119

9.3.41.12 set contour labels

set contour labels rotated \
| horizontal \
| whiteunder \
| nowhiteunder

The first two options control whether contour labels are rotated to line up with the contour
lines, or whether they are horizontal (the default).

The second two options control whether the region under contour labels is whited out
before drawing the label. The default is whiteunder, which has the visual effect of the label
having been drawn on a piece of paper and then pasted on. This can look jarring when the
material under the contour is an image. When nowhiteunder is specified, the contour line
is broken to make space for the text, but no whiting out is done.

9.3.41.13 set dash

‘set dash [.n.|{.dash_cm. .blank_cm. ...}|off]’

Control dash-style for following draw curve and draw line commands.
• set dash Set to dashed line (0.4cm dashes, 0.1cm blanks).

• set dash .n. Set to indicated pre-defined dashed line, according to table:

.n. dash/cm blank/cm
0 - - ... (Solid line)
1 0.2 0.1
2 0.4 0.1
3 0.6 0.1
4 0.8 0.1
5 1.0 0.1
10 w w
11 w 2w
12 w 3w
13 w 4w
14 w 5w
15 w 6w

Where w is written, it indicates the current linewidth. Thus, types 10 through 15 give
square-dotted lines.

• set dash .dash_cm. .blank_cm. .dash_cm. .blank_cm. ... Set to indicated dashed
line. The series of lengths .dash_cm. and .blank_cm. give the lengths of dash and
blank portions (measured in centimeters). Any number of dash/blank lengths may be
given. For example, set dash 0.5 0.1 0.1 0.1 looks good.

• set dash off Turn dashing off, setting to a solid line.

9.3.41.14 set environment

‘set environment’

Set environment (graylevel, axis length, etc) so that following plotting commands will make
use of anything set by either a set command or by direct manipulation of builtin variables
like ..xsize.., etc. NOTE: this should only be done by developers.

120 Gri

9.3.41.15 set error

‘set error action to core dump’

Make Gri dump core when any error is found, to facilitate debugging.

9.3.41.16 set flag

‘set flag \name [off]’

Set the indicated flag to YES. The name of the flag is contained in a single word, e.g. set
flag dan_28sep_test. The action of the flags may change with time and is undocumented.
This command is provided to enable selected users (e.g., the developer himself) to use test
features of Gri before they are frozen into a fixed syntax and action. The keyword off turns
the indicated flag off. NOTE: this should only be done by developers.

FLAG DATE ACTION

jinyu1 29sep94 ’convert columns to grid’
outputs (x,y,z,z_predicted)

emulate_gre 9jun97 ’E’ format on axes yields
scientific notation

kelley1 17jun97 for kelley only - quit contour
trace if hit nonlegit

kelley2 17jun97 for kelley only: print
info while contour tracing

9.3.41.17 set font color

set font color \name | \
{rgb .red. .green. .blue.} | \

{hsb .hue. .saturation. .brightness.}

The syntax is the same as set color, except that this applies to text only. By default, text
is drawn in the same color as lines, so text color is changed as line color is changed (e.g.
by using the set color or set graylevel commands)). However, once set font color is
used in a Gri program, the font thereafter maintains a separate color from the lines.

9.3.41.18 set font encoding

set font encoding PostscriptStandard | isolatin1

Permits one to control the so-called “font encoding” used in text. The default font encoding
is ISO-Latin-1, which is best for English and other European languages. To learn how to
enter accents in a text editor, and for a brief overview of font encodings, (Section 10.10.3
[Non-English Text], page 172).

If the so-called “Postscript Standard” font encoding is required, this command permits
changing the encoding.

Note: few users will ever need this command. If you don’t even know what “font
encoding” is about, ignore this command!

Chapter 9: List of Commands in the Gri Language 121

9.3.41.19 set font size

‘set font size {.size. [cm]}|default’

Set the size of the font for drawing of text.
• set font size .size. Set font size to .size. points. (A point is 1/72 of an inch, or

1/28 of a centimetre.)
• set font size .size. cm Set font size to .size. centimetres.
• set font size default Set font size to default = 12 pts.

If your figure is to be reproduced by a journal, you should check with them about the
range of font size they need. This will, of course, depend on whether your figure is reduced
or enlarged during reproduction. For example, American Geophysical Union (publishers of
J. Geophysical Res.) recommends that one use fonts no smaller than 8 points. They also
recommend that the range in fontsize in a given figure not exceed 2.

9.3.41.20 set font to

‘set font to \fontname’

Set font to named style. Note that the backslash is not to be written, but here merely means
that this word has several alternatives. For example, one might say set font to Courier.
The allowed fontnames are: Courier, a typewriter font (and the only monospaced font
in Gri); Helvetica (the default), a sans-serif font commonly used in drafting scientific
graphs; HelveticaBold, a bold version of Helvetica; Times (also called TimesRoman), a
font used in most newspapers; TimesBold, a bold version of Times; Palatino (also called
PalatinoRoman), similar to Times; Symbol, included for completeness, is a mathematical
font in which "a" becomes α of the math mode, etc. For reference on these fonts
see any book on PostScript. The default font is Helvetica.

9.3.41.21 set graylevel

‘set graylevel .brightness.|white|black’

Set graylevel for lines to indicated numerical value between 0=black and 1=white, or to the
named color.

Note: if your diagram is to be reproduced by a journal, it is unlikely that the reproduction
will be able to distinguish between any two graylevels which differ by less than 0.2. Also,
graylevels less than 0.2 may appear as pure black, while those of 0.8 or more may appear as
pure white. These guidelines are as specified by American Geophysical Union (publishers
of J. Geophysical Res.), as of 1998.

9.3.41.22 set grid missing

General format is
‘set grid missing \
{above|below .intercept. .slope} \
| {inside curve}’

The style
‘set grid missing above|below .intercept. .slope’

122 Gri

sets grid to missing value for all points above/below the line defined by y = .intercept. +
.slope.x

The style
‘set grid missing inside curve’

sets the grid to the missing value throughout an area described by the curve last read in
with read columns. This is useful for e.g. excluding land areas while contouring ocean
properties. The curve may contain several "islands," each tracing (clockwise) a region
inside of which the grid is to considered missing. If the first point in an island doesn’t
match the last, then an imaginary line is assumed which connects them. Multiple islands
may be separated by missing-value codes.

See also Set Z Missing.

9.3.41.23 set ignore initial newline

‘set ignore initial newline [off]’

Make Gri ignore a newline if it occurs as the first character of the next data file. This is
used for files made by FORTRAN programs on VAX/VMS computers.

9.3.41.24 set ignore error eof

‘set ignore error eof’

Stop Gri from considering that to encounter an end of file in future read commands consi-
tutes an error; Gri will simply warn about future EOFs.

9.3.41.25 set image colorscale

set image colorscale hsb .h. .s. .b. .im_value. \
hsb .h. .s. .b. .im_value. [increment .im_value.]

set image colorscale rgb .r. .g. .b. .im_value. \
rgb .r. .g. .b. .im_value. [increment .im_value.]

set image colorscale \
\name .im_value. \
\name .im_value. \
[increment .im_value.]

Set colorscale mapping for image, using HSB (hue, saturation, brightness) specification,
RGB (red, green, blue) color specification, or named colors. The image range must previ-
ously have been set by set image range, so that the .im_value. values will have meaning.
Two pairs of (color, image-value) are given, and possibly an increment. Normally the colors
are smoothly blended between the endpoints, but if an increment is supplied, the colors
are quantized. The HSB method allows creation of spectral palettes, while the other two
methods create simple blending between the two endpoints.

EG: To get a spectrum ranging between pure red (H=0) for image value of -10.0, and
pure blue (H=2/3) for image value of 10.0, do this:

set image colorscale hsb 0 1 1 -10 hsb .666 1 1 10

EG: To get a scale running from pure red (at image-value 10.0) into pure blue (at image-
value 25.1), but with the colors blending intuitively in between (i.e., blending as paint
might), use rgb color specification, as follows:

set image colorscale rgb 1 0 0 10 rgb 0 0 1 25.1

Chapter 9: List of Commands in the Gri Language 123

EG: To get a quantized blend between the X11 colors skyblue at image value of 0 and
tan at image value of 20, and with steps at image values incrementing by 5, do this:

set image colorscale skyblue 0 tan 20 increment 5

Note that the traversal is through RGB space, so it is intuitive, not spectral. See set color
for a list of X11 colors known to Gri.

See also read image colorscale (Section 9.3.33.4 [Read Image Colorscale], page 109).

9.3.41.26 set image grayscale

‘set image grayscale using histogram \
[black .bl. white .wh.]’

‘set image grayscale \
[black .bl. white .wh. [increment .inc.]]’

Set up a grayscale mapping for images. The image range must have previously have been
set by set image range.

‘set image grayscale using histogram [black .bl. white .wh.]’

Create a grayscale mapping using linearized cumulative histogram enhancement. The image
range must have previously have been set by set image range.

This creates maximal contrast in each range of graylevels, and is useful for tracing subtle
features between different images (for example, it makes it easier to trace fronts between
successive satellite images). The entire histogram is expanded, from the smallest value in
the image to the largest.

With no options specified, the histogram is done from 0 in the image to 255 in the image.
If the black/white options are specified, the histogram is done between these values.

‘set image grayscale \
[black .bl. white .wh. [increment .inc.]]’

With no optional parameters, create a grayscale mapping for the current image, scaling it
from black for the mininum value in the image to white for the maximum value. The image
range must have previously have been set by set image range.

The optional parameters .wh. and .bl. specify the values to be drawn in white and
black in the image, with smooth linear blending in between.

Normally the blending from white to black is smooth (linear), but if the additional
optional parameter .inc. is specified, the blending is quantized, jumping to darker values
at (.wh. + .inc.), (.wh. + 2* .inc.), etc. (The sign of .inc. will be altered, if necessary, to
ensure that (.wh. + .inc.) is between .wh. and .inc..) The colour switches to pure white
at the value .wh., and remains pure white everywhere on the "white" side of this value.
Similarly, the transition to pure black occurs at the value .bl.. In other words, neither
pure white nor pure black is present inside the interval from .wh. to .bl.. Therefore,
when using the draw image palette command, you might want to extend the range by one
increment so as to get an example of both pure white and pure black.

.w. = 0

.b. = 1

.i. = 0.2
set image grayscale white .w. black .b. increment .i.
draw image palette left \
{rpn .w. .i. -} \
right {rpn .b. .i. +} \

124 Gri

increment .i.

9.3.41.27 set image missing value color

set image missing value color to white|black|\
{graylevel .brightness.}|{rgb .r. .g. .b.}

Set the color of “missing” pixels (white by default). The image range must have previously
have been set by set image range. Pixels with missing values can result from creating
images from grids which have missing values; see the convert grid to image command.
The .brightness. parameter in the graylevel style ranges from 0 for black to 1 for
white. The rgb parameters allow setting to full color.

9.3.41.28 set image range

set image range .0value. .255value.

Specify maximum possible range of values that images can hold, in user units. Gri needs to
know this because it stores images in a limited format capable of holding only 256 distinct
values. Unlike some other programs, Gri encourages (forces) the user to specify things in
terms of user-units, not image-units. This has the advantage of working regardless of the
number of bits per pixel. Thus, for example, set image grayscale, set image colorscale,
draw image grayscale, etc, all use user units.

When an image is created by convert grid to image, values outside the range spanned
by .0value. and .255value. are clipped. (There is no need, however, for .0value. to be
less than .255value..) This clipping discards information, so make sure the range you give
is larger than the range of data in the grid.

EXAMPLE: consider a satellite image in which an internal value of 0 is meant to corre-
spond to 0 degrees Celsius, and an internal value of 255 corresponds to 25.5 degrees. (This
is a common scale.) Then the Gri command set image range 0 25.5 would establish the
required range. If this range were combined with a linear grayscale mapping (see set image
grayscale), the resultant granularity in the internal representation of the user values would
be (25.5-0)/255 or 0.1 degrees Celsius; temperature variations from pixel to pixel which were
less than 0.1 degrees would be lost.

All other image commands require that the range has been set. Thus, all these commands
fail unless set image range has been done: draw image, draw image palette, read image,
convert grid to image, set image grayscale, and set image colorscale.

NOTE: If a range already exists when set image range is used, then the settings are
altered. Thoughtless usage can therefore lead to confusing results. (The situation is like
setting an axis scale, plotting a curve with no axes, then altering the scale and plotting the
new axes. It is legal but not necessarily smart.)

9.3.41.29 set input data window

‘set input data window x|y {.min. .max.}|off’

Create a data window for following read statements.
• set input data window x .min. .max. For future reading commands, ignore all data

with x less than .min. or x greater than .max. The data not in the interval will not
be read in at all. This will hold until set data window x off is done, in which case all
data will be read in.

Chapter 9: List of Commands in the Gri Language 125

• set input data window x off Return to normal conditions, in which all data are read
in.

• set input data window y .min. .max. Analgous to command for x.
• set input data window y off Analagous to command for x.

EXAMPLE: To set the input data window as the current x axis plus a border of 5
centimetres to left and right, do the following:

set input data window x \
{rpn ..xleft.. xusertocm 5 - xcmtouser} \
{rpn ..xright.. xusertocm 5 + xcmtouser}

See also set clip

9.3.41.30 set input data separator

‘set input data separator TAB|default’

Set the separator between data items. The default method is to assume that data items
are separated by one or more spaces or tabs, and also to ignore any spaces or tabs at the
start of a data line.

In the TAB method the data are assumed to be separated by a SINGLE tab character.
(Multiple tabs will result in null values being assigned to items – almost certainly not what
you want!) Also, initial spaces and tabs on lines are NOT skipped.

Use the TAB method only after thinking carefully about the above, since the assignment
of null values is problematic.

9.3.41.31 set line cap

‘set line cap .type.’

Set the type of ends (caps) of lines. Use .type. of value 0 for square ends, cut off precisely
at the end of line, or 1 for round ends which overhang half the line width, or 2 for square
ends which overhang half the line width. The selected style is used for the ends of line
segments, as well as at corners. In PostScript parlance, therefore, this command sets both
the linecap and the linejoin parameters.

This command only applies to lines drawn with draw curve, draw line and draw
polygon. Axes are always drawn with a line cap of 0.

9.3.41.32 set line join

‘set line join .type.’

Set the type of intersection of lines. Use .type. of value 0 for mitered joins (pointy ends
that may extend beyond the data points), a value of 1 for rounded ends (the default), or a
value of 2 for bevelled (squared-off) ends. See the setlinejoin command in any text on
the PostScript language for more information.

This command only applies to lines drawn with draw curve, draw line and draw
polygon. Axes are always drawn with a line join of 0.

9.3.41.33 set line width

‘set line width \

126 Gri

[axis|symbol|all] \
.width_pt. \
| {rapidograph \name} \
| default’

Set the width of lines used to draw curves (default), axes, symbols, or all of the above.
The width may be set to a value specified in points (conversion: 72 pt = 1 inch), to a
named rapidograph width, or to the default value. The initial default values are: 0.709pt
(or rapidograph 3x0) for curves; 0.369pt (or rapidograph 6x0) for axes; 0.369pt (or rapi-
dograph 6x0) for symbols. (To learn more about standard pen widths, see the ISO 9175-1
documents.)

If your figure is to be reproduced by a journal, you should check with them about the
range of line thicknesses they recommend. This will, of course, depend on whether your
figure is reduced or enlarged during reproduction. For example, American Geophysical
Union (publishers of J. Geophysical Res.) recommends that one use line thicknesses no less
than 0.5 points and no more than 4 points.

The rapidograph settings match the standard set of widths used in technical fountain
pens. The table below gives width names along with the width in points and centimetres,
as given in the specifications supplied with Rapidograph technical fountain pens. Names
marked by the symbol * are in sequence increasing by the factor root(2). Texts on technical
drawing often suggest using linewidths in the ratio of 2 or root(2). On many printers, the
variation in width from root(2) increase is too subtle to see, so the factor-of-2 rule may be
preferable. To get sizes in a sequence doubling in width, pick from the list (6x0, 3x0, 1,
3.5 7). To get a sequence increasing in width by root(2), pick from the list (6x0, 4x0, 3x0,
0, 1, 2.5, 3.5, 6, 7). The eye can distinguish curves with linewidths differing by a factor
of root(2) if the image is of high quality, but a factor of 2 is usually better. Similarly, for
overhead projections and projected slides, one would do well to use linewidths differing by
a factor of 4.

This is the list of rapidograph linewidths:
Name pt cm
==== ===== =====

* 6x0 0.369 0.013
* 4x0 0.510 0.018
* 3x0 0.709 0.025

00 0.850 0.03
* 0 0.992 0.035
* 1 1.417 0.05

2 1.701 0.06
* 2.5 1.984 0.07

3 2.268 0.08
* 3.5 2.835 0.1

4 3.402 0.12
* 6 3.969 0.14
* 7 5.669 0.2

9.3.41.34 set missing value

‘set missing value .value.|none’

If a numerical value is given, set the missing-value code to that value, and also store this
value in the builtin variable ..missingvalue.. and the builtin synonym \.missingvalue..

Chapter 9: List of Commands in the Gri Language 127

also. After this command, Gri will ignore any data that are within 0.1 percent of this value.
(This feature is commonly used in geophysical data.)

If none is given, turn off this feature.
The default is that the feature is turned off.

9.3.41.35 set page size

‘set page size letter|legal|folio|tabloid|A0|A1|A2|A3|A4|A5’

Set the page dimension, as indicated below.

letter American "letter" size: 8.5 x 11 inches

legal American "legal" size: 8.5 x 14 inches

folio American "folio" size: 8.5 x 13 inches

tabloid American "tabloid" size: 11 x 17 inches

A5 Metric size: 14.8 x 21.0 cm

A4 Metric size: 21.0 x 29.7 cm

A3 Metric size: 29.7 x 42.0 cm

A2 Metric size: 42.0 x 59.4 cm

A1 Metric size: 59.4 x 84.1 cm

A0 Metric size: 84.1 x 118.9 cm

The effect is to possibly alter the PostScript "bounding box." If all the drawn material
fits within the indicated page, then the bounding box is not altered. (In other words, Gri
will still keep the bounding box tight on the drawn items.)

However, if any drawn item extends beyond the indicated size, it will be clipped to the
boundary.

9.3.41.36 set page

‘set page portrait \
| landscape \
| {factor .mag.} \
| {translate .xcm. .ycm.}’

Control orientation or scaling of what is drawn on the paper.
• set page portrait Print graph normally (default).
• set page landscape Print graph sideways.
• set page factor .mag. Scale everything to be drawn on the paper by the indicated

magnification factor. This must be called before any drawing commands.
• set page translate .xcm. .ycm. Translate everything to be drawn on the paper by

the indicated x/y distances. This must be called before any drawing commands.

Note: The order of the factor/translate commands matters, so you may need to experi-
ment. For example,

set page translate 2 1
set page factor 0.5

128 Gri

moves anything that would have been drawn at the lower-left corner of the paper onto the
point 2cm from the left side and 1cm from the bottom side of the paper, and then applies
the multiplication factor. Reversing the order gives quite different results. PostScript gurus
should note that the following two commands are inserted into the PostScript file:

56.900000 28.450000 translate
0.500000 0.500000 scale

9.3.41.37 set panel

set panel .row. .col.

Establish the geometry for the panel in the indicated row and column; that is, select which
defined panel to draw into. The bottom row has .row. = 1, and the leftmost column has
.col. = 1. This must be used only after defining the panel layout using Panels .row.
.col. .dx_cm. .dy_cm..

9.3.41.38 set panels

set panels .rows. .cols. [.dx_cm. .dy_cm.]

Set up for multipanel plots, with spacing .dx_cm. between the columns and .dy_cm. be-
tween the rows. If the spacings are not supplied, 2cm is used. The panels fill the rectangle
which would otherwise contain the single axis frame, as set by set x size and set x margin,
etc.

The global variables .panel_dx., .panel_dy., .panel_xmargin., .panel_ymargin.,
.panel_xsize., and .panel_ysize are created, to be used by later calls to set panel.

EXAMPLE
Draw 2 panels across, 3 up the page.

The Panel interiors will be in region cornered
by (2,2), (12,22) cm
set x margin 2
set y margin 2
set x size 10
set y size 20
set panels 2 3

Create dummy scale
set x axis 0 1
set y axis 0 1

Draw blank axes
et panel 1 1
raw axes
set panel 1 2
draw axes
set panel 1 3
draw axes
set panel 2 1
draw axes
set panel 2 2

Chapter 9: List of Commands in the Gri Language 129

draw axes
set panel 2 3
draw axes

See also set panel .row. .col.

9.3.41.39 set path

set path to "\path"|default for data|commands

Set the directory path that open will search for data files, or that insert will search for
command files. This search will not be done if the filename starts with a /, ~, or . character.

The path is formatted in a colon-separated manner, following the normal Unix conven-
tion, and searching is from left to right. For example, the path ".:/usr/lib/gri" tells Gri
to search for the file first in the local directory (named ‘.’), and if it is not found there, to
look next in the directory named ‘/usr/lib/gri’.

The indicated path is stored in either \.path_data. or \.path_commands., as appro-
priate. At startup time, each of these paths is set to ‘"."’, the current directory, and this
value is reset if the default keyword is provided to this command.

If you need to know where the file was eventually found, save the \.return_value. just
after the open command was executed. For example, the following defines the synonym \uk,
which is the full pathname of the file containing some sort of data about Great Britain.

set path to "/atlases/world:/atlases/northern_hemisphere" for data
open britain.dat # we don’t know where file is ...
\gb = "\.return_value." # ... until now!

Can later do command such as
read from \gb
or
rewind \gb
to work with this particular file, even if
there is another file open that also is
named "britain.dat".

9.3.41.40 set postscript filename

‘set postscript filename "\name"’

Set name of PostScript file, over-riding the present name.

9.3.41.41 set symbol size

‘set symbol size .diameter_cm.|default’

Control the diameter of symbols drawn by draw symbol command.
• set symbol size .diameter_cm. Make symbol size be .diameter_cm. centimeters in

diameter.
• set symbol size default Set to default diameter of 0.1 cm.

9.3.41.42 set tic size

‘set tic size .size.|default’

130 Gri

Control size of tics on axes.
• set tic size .size. Set tic size to .size. centimetres.
• set tic size default Set tic size to default of 0.2 cm.
• set tics in|out Make axis tics point inward or outward. The default is outward.

9.3.41.43 set trace

‘set trace [on|off]’

Control printing of command lines as they are processed.
• set trace Make Gri print command lines as they are processed.
• set trace on Same as set trace.
• set trace off Prevent printing command lines (default).

9.3.41.44 set transparency

‘set transparency .transparency.’

Set the transparency of drawn items, 0 for opaque and 1 for invisibly faint. This command
is provisional, as of summer 2004, and this part of the documentation needs to be fleshed
out so users can build intuition on transparency. For example, a quick quiz: what color do
you think comes from drawing red on top of yellow, or on top of blue?

9.3.41.45 set u scale

‘set u scale .cm_per_unit.|{as x}’

Set scale for x-component of arrows.
• set u scale .cm_per_unit. Set scale for u component of arrows.
• set u scale as x Set scale for u component of arrows to be the same as the x-scale.

Equivalent to set u scale as {rpn ..xsize.. ..xright.. ..xleft.. - /}.

NOTE: this only works if the x-scale is LINEAR (see set x type).

9.3.41.46 set v scale

‘set v scale .cm_per_unit.|{as y}’

Set scale for y-component of arrows.
• set v scale .cm_per_unit. Set scale for v component of arrows.
• set v scale as y Set scale for v component of arrows to be the same as the y-scale.

Equivalent to set v scale as {rpn ..ysize.. ..ytop.. ..ybottom.. - /}.

NOTE: this only works if the y-scale is LINEAR (see set y type).

9.3.41.47 set x axis

‘set x axis top’
‘set x axis bottom’
‘set x axis increasing’
‘set x axis decreasing’

Chapter 9: List of Commands in the Gri Language 131

‘set x axis unknown’
‘set x axis .left. .right. [.incBig. [.incSml.]]’
‘set x axis labels [add] .position_1. "label_1" [.position_2. "label_2" [...]]’
‘set x axis labels automatic’

Control various things about the x axis.
• set x axis top Make next x-axis to be drawn have labels above the axis.
• set x axis bottom Make next x-axis to be drawn have labels below the axis.
• set x axis increasing Make next x-axis to be drawn have numeric labels increasing

to the right. This applies only if autoscaling is done; otherwise, the supplied values
(.left. .right. [.incBig. [.incSml.]]) are used.

• set x axis decreasing Make next x-axis to be drawn have numeric labels decreasing
to the right. This applies only if autoscaling is done; otherwise, the supplied values
(.left. .right. [.incBig. [.incSml.]]) are used.

• set x axis unknown Make Gri forget any existing scale for the x axis, whether set
by another set x axis command or automatically, during reading of data. This is
essentially a synonym for delete x scale.

• set x axis .left. .right. Make x-axis range from .left. to .right.

• set x axis .left. .right. .incBig. Make x-axis range from .left. to .right.,
with labelled increments at .incBig. Note: In the case of log axes, and provided that
set x type log has been called previously, the .incBig. parameter has a different
meaning: it is the interval, in decades, between numbered labels; the default is 1.

• set x axis .left .right. .incBig. .incSml. Make x-axis range from .left. to
.right., with labelled increments at .incBig., and small tics at .incSml. NOTE:
if the axis is logarithmic, the value of .incSml. takes on a special meaning: if it is
positive then small tics are put at values 2, 3, 4, etc. between the decades, but if
.incSml. is negative then no such small tics are used.

• set x axis labels .position. "label" [.position. "label" [...]] Override the
automatic labelling at axis tics, and instead put the indicated labels at the indicated
x values. For example, a day-of-week axis can be created by the code:

set x axis 0 7 1
set x axis labels 0.5 "Mon" 1.5 "Tue" 2.5 "Wed" \

3.5 "Thu" 4.5 "Fri" 5.5 "Sat" \
6.5 "Sun"

The command replaces any existing labels, unless the ‘add’ keyword is present, in which
case the new label information is appended to any existing information.

• set x axis labels automatic Return to automatically-generated axis labels, undoing
the command of the previous item.

9.3.41.48 set x format

‘set x format \format|default|off

Set format for numbers on x axis. The format is specified in the manner of the "C"
programming language. The C formats (i.e., %f, %e and %g) are permitted. For example,
set x format %.1f tells Gri to use 1 decimal place, and to prefer the "float" notation to
the exponential notation. The form set x format off tells Gri not to write numbers on
the axis. To get spaces in your format, enclose the format string in double-quotes, e.g., you
might use set x format "%.0f\circ W" for a map, or set x format "%f " to make the
numbers appear to the left of their normal location.

132 Gri

The default format is %lg.

9.3.41.49 set x grid

‘set x grid .left. .right. .inc.|{/.cols.}’

Create x-grid for contour or image. If a grid already exists, an error will be declared; the
way to interpolate from an existing grid to a new one is with the interpolate x grid
command.
• set x grid .left. .right. .inc. Create x-grid ranging from the value .left. at the

left to .right. at the right, stepping by an increment of .inc..
• set x grid .left. .right. /.cols. Create x-grid with .cols. points, ranging from

the value .left. at the left to .right. at the right.

9.3.41.50 set x margin

‘set x margin {[bigger|smaller] .size.}|default’

Control x margin, that is, the space between the left-hand side of the page and the left-hand
side of the plotting area. (Note that axis labels are drawn inside the margin; the margin
extends to the axis line, not to the labels.)
• set x margin .size. Set left margin to .size. cm. It is permissible to have negative

margins, with the expected effect.
• set x margin bigger .size. Increases left margin by .size. cm.
• set x margin smaller .size. Decreases left margin by .size. cm.
• set x margin default Set left margin to default = 6 cm.

9.3.41.51 set x name

‘set x name "\name"|default’

Set name of x-axis to the indicated string. An empty string (set x name "") causes the x
axis to be unlabelled. The default is "x".

9.3.41.52 set x size

‘set x size .width_cm.|default’

Set the width of the plotting area. This does not include axis labels, only the interior part
of the plot.
• set x size .width_cm. Set width of x-axis in centimeters.
• set x size default Set width of x-axis to default = 10 cm.

9.3.41.53 set x type

set x type linear|log|{map E|W|N|S}

Control transformation function mapping user units to centimetres on the page.
• set x type linear Set to linear axis.
• set x type log Set to log axis. To avoid clashes in the linear to log transform, this com-

mand should precede the creation of an axis scale, either explicitly through the set

Chapter 9: List of Commands in the Gri Language 133

x axis .left. .right. ... command or implicitly through the read columns com-
mand.

• set x type map E|W|N|S Set to be a map. This means that whole numbers on the axis
will have a degree sign written after them (and then the letter E, etc) and that numbers
which are multiples of 1/60 will be written in degree-minute format, and that similarly
numbers which are divisible by 1/3600 will be in degree-minute-second format. If none
of these things apply, the axis labels will be written in decimal degrees. Note that this
command overrides any format set by set x format.
BUG: this only has an effect if the axis is not already of type log.

9.3.41.54 set y axis

‘set y axis left’
‘set y axis right’
‘set y axis increasing’
‘set y axis decreasing’
‘set y axis .bottom. .top. [.incBig. [.incSml.]]’
‘set y axis labels [add] .position_1. "label_1" [.position_2. "label_2" [...]]’
‘set y axis labels automatic’

Control various things about the y axis.
• set y axis name horizontal Make y-axis name be horizontal.
• set y axis name vertical Make y-axis name be vertical (default).
• set y axis left Make next y-axis to be drawn have labels to the left of the axis.
• set y axis right Make next y-axis to be drawn have labels to the right of the axis.
• set y axis increasing Make next y-axis to be drawn have numeric labels increasing

up the page. This applies only if autoscaling is done; otherwise, the supplied values
(.left. .right. [.incBig. [.incSml.]]) are used.

• set y axis decreasing Make next y-axis to be drawn have numeric labels decreasing
up the page. This applies only if autoscaling is done; otherwise, the supplied values
(.left. .right. [.incBig. [.incSml.]]) are used.

• set y axis unknown Make Gri forget any existing scale for the y axis, whether set
by another set y axis command or automatically, during reading of data. This is
essentially a synonym for delete y scale.

• set y axis .bottom. .top. Make y-axis range from .bottom. to .top.

• set y axis .bottom. .top. .incBig. Make y-axis range from .bottom. to .top.,
with labelled increments at .incBig.

• set y axis .bottom. .top. .incBig. .incSml. Make y-axis range from .bottom. to
.top., with labelled increments at .incBig., and small tics at .incSml. NOTE: if the
axis is logarithmic, the value of .incSml. takes on a special meaning: if it is positive
then small tics are put at values 2, 3, 4, etc. between the decades, but if .incSml. is
negative then no such small tics are used.

• set y axis labels .position. "label" [.position. "label" [...]] Override the
automatic labelling at axis tics, and instead put the indicated labels at the indicated
y values. For example, a physical-condition axis can be created by the code:

set y axis 0 1 0.5
set y axis labels 0.25 "Weak" 0.75 "Strong"

The command replaces any existing labels, unless the ‘add’ keyword is present, in which
case the new label information is appended to any existing information.

134 Gri

• set y axis labels automatic Return to automatically-generated axis labels, undoing
the command of the previous item.

• set y axis name vertical Cause future y axes to be drawn with the name aligned
vertically (the default).

• set y axis name horizontal Cause future y axes to be drawn with the name aligned
horizontally.

9.3.41.55 set y format

‘set y format \format|default|off’

Set format for numbers on y axis. The format is specified in the manner of the "C"
programming language. The C formats (i.e., %f, %e and %lg) are permitted. For example,
set y format %.1f tells Gri to use 1 decimal place, and to prefer the "float" notation to
the exponential notation. The form set y format off tells Gri not to write numbers on
the axis. To get spaces in your format, enclose the format string in double-quotes, e.g., you
might use set y format "%.0f\circ N" for a map, or set y format "%f" to make the
numbers appear to the right of their normal location.

The default format is %lg.

9.3.41.56 set y grid

‘set y grid .bottom. .top. .inc.|{/.rows.}’

Create y-grid for contour or image. If a grid already exists, an error will be declared; the
way to interpolate from an existing grid to a new one is with the interpolate x grid
command.
• set y grid .bottom. .top. .inc. Create y-grid ranging from the value .bottom. at

the bottom to .top. at the top, stepping by an increment of .inc..
• set y grid .bottom. .top. /.rows. Create y-grid with .rows. points, ranging from

the value .bottom. at the bottom to .top. at the top.

9.3.41.57 set y margin

‘set y margin {[bigger|smaller] .size.}|default’

Control y margin, that is, the space between the bottom side of the page and the bottom of
the plotting area. (Note that axis labels are drawn inside the margin; the margin extends
to the axis line, not to the labels.)
• set y margin .size. Set bottom margin to .size. centimeters. It is permissible to

have negative margins, with the expected effect.
• set y margin bigger .size. Increases bottom margin by .size. centimeters.
• set y margin smaller .size. Decreases bottom margin by .size. centimeters.
• set y margin default Set bottom margin to default = 6 cm.

9.3.41.58 set y name

‘set y name "\name"|default’

Set name of y-axis to the indicated string. An empty string (set y name "") causes the x
axis to be unlabelled. The default is "y".

Chapter 9: List of Commands in the Gri Language 135

9.3.41.59 set y size

‘set y size .height_cm.|default’

Set the width of the plotting area. This does not include axis labels, only the interior part
of the plot.
• set y size .height_cm. Set height of y-axis in centimeters.
• set y size default Set width of y-axis to default = 10 cm.

9.3.41.60 set y type

set y type linear|log|{map N|S|E|W}

Control transformation function mapping user units to centimetres on the page.
• set y type linear Set to linear axis.
• set y type log Set to log axis. To avoid clashes in the linear to log transform, this com-

mand should precede the creation of an axis scale, either explicitly through the set
y axis .left. .right. ... command or implicitly through the read columns com-
mand.

• set y type map N|S|E|W Set to be a map. This means that whole numbers on the axis
will have a degree sign written after them (and then the letter N, etc), and that numbers
which are multiples of 1/60 will be written in degree-minute format, and that similarly
numbers which are divisible by 1/3600 will be in degree-minute-second format. If none
of these things apply, the axis labels will be written in decimal degrees. Note that this
command overrides any format set by set y format.
BUG: this only has an effect if the axis is not already of type log.

9.3.41.61 set z missing

set z missing above|below .intercept. .slope.

Set z column to be missing whenever the associated y and x columns are above/below the
line defined by y = .intercept.+ .slope.x

9.3.42 show

‘show ...’

Show some information by printing it to standard output.
• show all Show lots of information about plot.
• show axes Show information about axes.
• show color Show the current pen color used for lines and text. This is not to be

confused with image color, which is independent.
• show colornames Show all colors known by name, as defined by read colornames

command and also the builtin colors defined automatically (e.g. white, black, red,
etc), (Section 9.3.33.1 [Read Colornames], page 106).

• show columns Show x, y, z, u, v column data.
• show columns statistics Show means, std devs, etc for columns.
• show flags Show values of all flags. (Developers only.)
• show grid Show an indication of the grid data (used for contouring).

136 Gri

• show grid mask Show 1 if grid data are valid or 0 if contours will not extend into this
region.

• show image Show information about image, such as a histogram of values, and, if the
image is small enough, the actual data.

• show license Show the license for Gri, which outlines how users are allowed to share
it freely.

• show misc Show miscellaneous information about the plot, the data, etc.
• show next line Show next line of data-file.
• show synonyms Show values of all synonyms, whether built-in or user-defined.
• show stopwatch Show elapsed time since first call to this command in the given Gri

program.
• show time Show the current time.
• show traceback Show traceback (i.e., the tree of commands being done at this instant).
• show variables Show values of all variables, whether built-in or user-defined.
• show .value. Show value of indicated variable.
• show {rpn ...} Show result of computing indicated expression.
• show "some text" Print the indicated string. You may use a double-slash to prevent

Gri from substituting synonym values; thus it is common to do e.g.
\var = "Temperature"
show "Plotting \\var = ’var’"

which will produce the output line
Plotting \\var = ’Temperature’

• show "time=" .time. "; depth=" .depth. Print strings and values as indicated. If
the last item is ellipses (three dots with no spaces between them), then no newline is
printed; this makes the next show statement print on the same line.
To get a newline in a printed string, use the three-character glyph \<<, and to get a
horizontal tab, use \>>, as in the examples below

\a = "HI"
show "\\a=\a"
system echo -e "a\\nb"
show "first line\<<second line"
show "first line\<<\>>(tabbed) second line"
show "first line\<<\>>(tabbed) second line"

9.3.43 skip

‘skip [forward|backward] [.n.]’

• skip For ascii files, skip next line in the data file. For binary files, skip forward 1 byte.
• skip backward For ascii files, skip backward 1 line in the data file. For binary files,

skip backward 1 byte.
• skip .n. or forward .n. For ascii files, skip forward .n. lines in the data file. For

binary files, skip forward .n. bytes.
• skip backward .n. For ascii files, skip backward .n. lines in the data file. For binary

files, skip backward .n. bytes.

Chapter 9: List of Commands in the Gri Language 137

9.3.44 sleep

‘sleep .sec.’

Cause Gri to sleep for the indicated number of seconds, which should be a positive
integer. This command is ignored if .sec. is zero or negative, and the value of .sec. is
first rounded to the nearest integer.

Normally, this command is used only by the developer, as a way to slow down Gri
execution, to allow easier monitoring for debugging purposes. Beware: it is tricky to kill a
sleeping job!

9.3.45 smooth

All these smoothing commands ignore the location of the data. For equispaced data these
algorithms have the standard interpretation in terms of digital filters. For non-equispaced
data, the interpretation is up to the user.

‘smooth {x [.n.]} \
| {y [.n.]} \
| {grid data [.f.|{along x|y}]}’

The smooth x command does smoothing by the following formula
x[i-1] x[i] x[i+1]
------ + ---- + ------
4 2 4

The smooth x .n. command does boxcar smoothing with centred boxcars .n. points
wide. The smooth y command does the same as smooth x, but on the y column.

There are several methods of smoothing grid data. Note that isolated missing values are
filled in by each method. (Let the author know if you’d like that ‘feature’ to be an option.)

The smooth grid data command smooths gridded data, by weighted average in a plus-
shaped window about each gridpoint. The smoothing algorithm replaces each interior grid-
point value z[i][j] by

z[i][j] z[i-1][j] + z[i+1][j] + z[i][j-1] + z[i][j+1]
------- + ---

2 8

Points along the edges are smoothed by the same formula, after inventing image points
outside the domain by planar extrapolation.

The smooth grid data .f. command performs partial smoothing. A temporary fully-
smoothed grid zSMOOTH[i][h] is constructed as above, and a linear combination of this
grid and the original grid is used as the replacement grid:

z[i][j] = (1-f) * z[i][j] + f * zSMOOTH[i][j]

where f is the value indicated on the command line. Thus, smooth grid data 0 performs
no smoothing at all, while smooth grid data 1 is equivalent to smooth grid data.

The smooth grid data along x command smooths the grid data across x (i.e., horizon-
tally), by replacing each value z[i][j] with the value

z[i][j] z[i-1][j] + z[i+1][j]
------- + ---------------------

2 4

Points along the edges are smoothed by the same formula, after inventing image points
outside the domain by linear extrapolation.

138 Gri

The smooth grid data along y command does the same thing as smooth grid data
along x, but the smoothing is along y.

See also Section 9.3.11 [Filter], page 95, a generalization of smooth x|y which allows for
more sophisticated filters.

9.3.46 source

‘source \filename’

Perform the commands in the indicated file.
If the file cannot be found, an error results. Contrast this with the insert command

(Section 9.3.20 [Insert], page 100), which has the ability to search for the file through a
user-specified path (Section 9.3.41.39 [Set Path To], page 129).

9.3.47 sprintf

‘sprintf \synonym "format" .variable. [.variable. [...]]’

Write numbers into a synonym (text string). This is useful for labelling plots.
sprintf \out "a = %lf b = %.2f" .a. .b. - Create a synonym called \out, and print the
values of the variables .a. and .b. into it. If .a. = 1 and .b. = 0.112, then \out will be
"a = 1 b = 0.11"

Formatting codes are as in the C programming language, eg:
%.2f -- Use floating point with 2 decimal places.
%9.2f -- As above, but number takes 9 characters.
%e -- Use exponential notation.

CAUTION: Variables are stored in the floating point in Gri, so you must use a format like
"%f", not an integer code like "%d". If you want an integer, use "%.0f".

9.3.48 state

‘state save|restore|display’

The save operation pushes a record of the graphics state (pen and font characteristics, mar-
gins, axis lengths, min/max/inc values on axes, etc) onto a stack. The restore operation
replaces the present state with whatever is on top of the stack, and then pops the stack.
Use display to see some of the state properties.

The state command is useful for temporary changes of axis properties, etc.
BUG: only line characteristics (width, color) and font characteristics (font, size, color)

are saved so far. In fact, the full list of what should be saved has not yet been finalized by
the author.

9.3.49 superuser

‘superuser [value]’

Allow extra debugging information and commands. Normally, this command and the cor-
responding commandline flag -superuser are only used by programmers altering the Gri
source.

These are the flags and their meanings:
• 1 Print cmdline before/after substituting synonyms.

Chapter 9: List of Commands in the Gri Language 139

• 2 Print cmdline before/after substituting rpn expressions.
• 4 Print all new commands as they are being defined
• 8 Print the system commands that are used with open "...|" and in other instances.
• 128 Changeable; only author should use this.
• 256 Changeable; only author should use this.

Note that all flags are equal to 2 raised to an integer power. Since the flag values are
detected by a bitwise OR, you can combine flags by adding; thus specifying a flag of 5 yields
flags 1 and 4 together; specifying 15 yields flags 1, 2, 4 and 8.

9.3.50 system

‘system \system-command’

Tell the operating system to perform the indicated action. Whatever string follows the
word system is passed directly to the operating system, after substitution of synonyms if
any exist.

If your system command contains double-slashes, you must protect them from Gri (which
will interpret them as comments) by enclosing in double-quotes, e.g. system cat A | sed
-e "s/foo//g" | cat > B. (In the particular case of the sed command you could also do
system cat A | sed -e "s:foo::g" | cat > B.

Note that rpn expressions are not evaluated, and variable values are not substituted
before passing the string to the operating system. The exit status is stored in the builtin
variable ..exit_status...

There are two ways to use the system:
• Assign output to synonym: The form \synonym = system ... does the system com-

mand and then inserts the output from that command into the indicated synonym.)
• Just run a command: The command system ls will list the files in the current directory.

For long commands, there are two approaches, the second preferred:
• Use continuation lines: String a lot of information onto one effective system line, using

the \ line-continuation character at the ends of lines. The problem is that it is very
easy to lose one of these backslashes. The next method is better.

• Here-is syntax The here-is syntax of many unix shells is also provided. If the system
command contains the characters << followed by a word (with no space between!)
then Gri will issue a system command which includes not only this line but also all
succeeding lines, until a line is found which matches the indicated word precisely (with
no leading space allowed). The << "WORD" syntax is also supported, meaning that the
operating system is being told not to mess with the dollar-signs – needed in perl.
Be careful using this inside a new-command. Gri Recognizes the end of the body of
a new-command by a line with } in the first column, and no non-white characters
thereafter. If you system command happens to use a line with a curly brace (as in a
loop in perl, for example), you must put whitespace before the brace. This won’t affect
the system command, but it will let Gri correctly realize that this is not the end of
the new-command. For more information on new-commands (Section 10.11.2 [Parsing],
page 174).
Caution: Before sending the string to the system, Gri first translates any synonyms
present. Be careful with this, since system commands calling awk, etc, very often use
backslashes for the newline character \n within strings. If you have a synonym whose
name starts with \n, you can get a conflict. For example, the awk command print

140 Gri

"foo\nbar"; should print a line with foo on it, followed by a line with bar on it,
but it will instead print a single line with fooMISTAKE, if you had previously defined
a synonym as \nbar = "MISTAKE". One way to avoid this mistake is to make sure any
\n characters appear at the end of strings, and then simply avoid having a synonym
named \n.
Here is a Perl example.

\m = "Foo bar"
system perl <<"EOF"
$a = 100;
print "foo bar is \m, and a is $a\n";
print "BETTER: foo bar is \m, and a is $a\n";
print "Q: was a 100?\n";
EOF

Some more examples:
• To get the first 15 lines of a file called ‘foo.dat’ inserted into another file called

‘bar.dat’, you might do the following. Only the first method works; the second will
fail because .n. will not be translated before passing to the operating system.

\num = "-15"
system head \num foo.dat > bar.dat
Following will not work correctly because .num.
will not be translated
.num. = -15
system head .num. foo.dat > bar.dat

• Issue a unix command to get a listing of files in the current working directory, and pipe
them into the more system command.

system ls -l *c | more

• Store the date and time into a synonym, and use it in a title:
\time = system date
...
draw title "Plotted at time \time"

• Use awk to prepare a two-column table of x, ranging from 0 to 1 in steps of 0.1, and
sin(x). The table is stored in a file whose suffix is the process ID of the Gri job. This file
is then opened, and the data plotted. Finally, a system command is issued to remove
the temporary file.

system awk ’BEGIN { \
for (x=0; x<1; x+=0.1) { \

printf("%f %f\n", x, sin(x)) \
} \

}’ > tmp.\.pid.
open tmp.\.pid.
read columns x y
close
system rm tmp.\.pid.
draw curve

Note: in unix, this command calls the Bourne shell, not the C-shell that is often used
interactively. For many simple uses, the only difference from normal interactive use
will be that ~ is not expanded to the home directory. For example, you should write

system awk -f $HOME/foo/bar/cmd.gawk

Chapter 9: List of Commands in the Gri Language 141

instead of the
system awk -f ~/foo/bar/cmd.gawk

that you might expect from interactive C-shell use. RETURN VALUE: Sets \.return_
value to system status N status

9.3.51 unlink

‘unlink \filename’

Delete a filename and possibly the file to which it refers. On non-unix machines, this simply
means to delete the file. On unix machines, the action is more subtle. The unix OS permits
several processes to use a given file at once. Therefore, unlink doesn’t immediately remove
the file, but instead waits until other processes are done with it. Most users will never
realize the difference, however, and it is safe to think of unlink as simply removing the file.
To learn more, type man unlink in a unix shell.

A common use of unlink is to remove files that were created with the tmpname facility
(Section 10.16.1 [Using OS Inside Gri], page 183), e.g.

\tmp = tmpname
do some system commands to put data into this file
open \tmp
read columns x y
draw curve
unlink \tmp

9.3.52 while

‘while .test.|{rpn ...}’

Perform statements in loop while the value of .test. or the RPN expression is nonzero.
The end of the loop designated by a line containing the words end while. The value .test.
may be an rpn expression. To leave the loop prematurely, use a break statement. Upon
encountering a break statement, Gri jumps to the line immediately following the loop. If
the -chatty option is nonzero, a notification is printed every 1000 passes through the loop,
as a debugging measure to catch unintended infinite loops.
Examples:
• Loop forever, printing a message over and over.

while 1
show "This loops forever. Need to ’break’"

end while

• Read number pairs from a file, plotting bullets at the indicated locations. Note the
use of an infinite loop, with a break condition following an end-of-file test. (Do not be
tempted to write such loops as while !..eof.. because that would not catch the end
of file until the next time through the loop. The result would be to draw the last bullet
twice, since the read will not update the variables when the end of file is encountered.)

while 1
read .x. .y.
if ..eof..

break
end if
draw symbol bullet at .x. .y.

142 Gri

end while

• Loop 10 times, printing the values of .i. as they range 0, 1, . . . , 9. After exiting from
the loop, .i. will equal 10. Be careful to use the correct rpn greater-than test to avoid
an infinite loop.

.i. = 0
while {rpn .i. 10 >}
show .i.
.i. += 1

end while

9.3.53 The write commands

The write commands write various things.
If the filename is ‘stdout’, the information is written to the standard output device (ie,

the screen); if it is ‘stderr’, the information is written to the standard error device (ie, the
screen).

IMPORTANT NOTE: The write commands append to the output file, as opposed to
overwriting the contents of the file. Therefore if you’ve run the Gri script before, and want
fresh output, make sure to do something like the following

system rm -f the_grid.dat
write grid to grid.dat

9.3.53.1 write columns

‘write columns to \filename’

Append data columns to the end of the indicated file.

9.3.53.2 write contour

‘write contour .value. to \filename’

Append to the named file the (x,y) pairs defining the contour of the indicated value.
The first line of output is a header line, containing two numbers: the contour value and

the missing value. Then the (x,y) pairs are written a line at a time, with missing values
being used to indicate ends of segments. A blank line is written after the last data pair. For
example, if the contour contained two closed regions, Gri would output a pair of missing
values as one of the xy pairs, to denote the separation of the two curves. You could read
and plot the output as in this example

write contour 10 to contour.out
open contour.out
read .contour_value. .missing.
set missing value .missing.
read columns x y
draw curve

9.3.53.3 write grid

‘write grid to \filename [bycolumns]’

Chapter 9: List of Commands in the Gri Language 143

Append grid to the end of the named file. Storage is in %f format, and is in normal image
order. If the keyword bycolumns is present, then the grid is transposed first, in such a
way that read grid data bycolumns performed on that file will read back the original grid
data.

9.3.53.4 write image

‘write image ... to \filename’

The variants of this command write various things about the image to the named file, as
illustrated in the following table.
• write image to image.dat Append image to the end of the named file. Storage is by

unsigned-char, and is in normal image order. There is no header.
• write image rasterfile to image.dat Append image to the end of the named file,

in Sun Rasterfile format.
• write image pgm to mask.dat Append image mask to the end of the named file, in

PGM ’rawbits’ format.
• write image mask to mask.dat Append image mask to the end of the named file.

Storage is by unsigned-char, and is in normal image order.
• write image mask rasterfile to mask.dat Append image mask to the end of the

named file, in Sun Rasterfile format.
• write image mask pgm to mask.dat Append image mask to the end of the named file,

in PGM ’rawbits’ format.
• write image colorscale to colorscale.dat Append image colorscale transform to

the end of the named file. Storage is a series of 256 lines, each containing 3 numbers
(for Red, Green and Blue) in the range 0 to 1. The file is suitable for reading with the
read image colorscale command.

• write image grayscale to grayscale.dat Append image grayscale transform to the
end of the named file. Storage is a series of 256 lines, each containing a number in the
range 0 to 1. The file is suitable for reading with the read image grayscale command.

144 Gri

Chapter 10: Programming in the Gri Language 145

10 Programming in the Gri Language

The Gri programming language has if statements to control program flow, and a while
statement to repeat commands. There are two data types in Gri: “variables” (to store num-
bers) and “synonyms” (to store character strings). Gri recognizes commands by matching
statements against its list of known commands. This list is extensible; it is easy to add new
commands as extensions to Gri.

10.1 Defaults

At startup time, Gri sets the values of some things, like font size. Since Gri is still under
development, some of these defaults might change, so you should not rely on them remaining
the same. Presently, the defaults are equivalent to:

set arrow size 0.2 # (cm)
set axes style 0
set beep off
set clip off
set clip postscript off
set contour format %lg
set contour label position ? ?
set contour labels horizontal
set contour labels whiteunder
set dash off
set font size 12 # (pt)
set font to helvetica
set graylevel 0 # Black ink
set ignore initial newline off
set input data window x off
set input data window y off
Following set (curve, axes, symbol) widths to width
of rapidograph pens called (6x0, 3x0, 6x0)
set line width 0.709 # (pt) for curves
set line width axis 0.369 # (pt) for axes
set line width symbol 0.369 # (pt) for symbols
set missing value 1.0e22
set page portrait
set page factor 1
set symbol size 0.1 # (cm)
set tic size 0.2 # (cm)
set tics out
set trace off
set x format %lg
set x margin 6.0 # (cm)
set x name "x"
set x size 10 # (cm)
set x type linear
set y axis name vertical
set y format %lg
set y margin 6.0 # (cm)
set y name "y"

146 Gri

set y size 10 # (cm)
set y type linear

(NOTE: Programmers may alter the gri source file ‘defaults.h’ and then recompile Gri,
if they feel the need to change these things. Also, see the file ‘startup.c’ and the function
gr_begin() in ‘gr.c’.)

10.2 Online Help

Type help to get a list of available commands and other topics of interest. Here’s how Gri
responds

Type ‘help’ followed by a command-name:
assert cd close convert
create debug delete differentiate
draw expecting filter flip
get help if ignore
input insert interpolate list
ls mask move new
open pwd query quit
read regress reorder rescale
resize return rewind set
show skip sleep smooth
source sprintf state superuser
system write
Or type ‘help -’ followed by a topic from this list:
example extending files math
strings synonyms variables manual

Some commands have more words than shown. You can type these additional words to
narrow the help down; otherwise Gri will give you help on all commands that begin with
the indicated words. For example, try help set and help set x. When you ask for help
on a multi-word command, Gri tells you about all commands which begin with the words
you’ve typed. Thus,

help
help draw
help draw zero
help draw zero line

narrow in on the command draw zero line. The response to the most complete request is
‘draw zero line [horizontally|vertically]’
draw zero line
Draw line y=0 if it is within axes

draw zero line horizontally
Draw line y=0 if it is within axes

draw zero line vertically
Draw line x=0 if it is within axes

The part enclosed in angled quotes is the syntactical description of the command.
(NOTE: The square brackets indicate an optional word (in this case) or words. The ver-
tical bar indicates that either the item on the left or the item on the right may appear; it
is a logical OR operator. The only other special characters in syntax descriptions are the
braces {}, which are used to enclose multiple words which act as one unit; they are used
to clarify the choices presented to the OR operator.) Following the syntactical description

Chapter 10: Programming in the Gri Language 147

are examples. Each example is indented 2 spaces, and a description of it (which always
starts with an upper-case character and ends with a period, to indicate that it is an English
description) follows that, indented by an additional 2 spaces.

10.3 Long Command Lines

To extend a command across several lines, use a backslash \ at the very end of all lines but
the last:

draw line from \
10 20 \
to \
10 30

10.4 Variables

10.4.1 About variables

Variables store numbers. As it reads your program, Gri substitutes variable values any
place a variable appears where a number normally would. For example, in the code below
.number. is a variable storing the value 10, so the two read statements have the same
effect:

.number. = 10
read columns .number. x y
read columns 10 x y

Variable names begin and end with a single period (example: .num.). (Gri uses this odd
notation to distinguish variable names from “normal” words, which is necessary because Gri
does not have a limited list of keywords as other languages do. Thus, the C programming
language is happy to let you use a variable name like latitude, since it is not a keyword,
but Gri is not, since it might like to use that word itself in a new command.)

You should not use names beginning and ending with double periods, because Gri uses
names like that to store built-in variables for its own use (e.g., ..xsize.. saves the width
of the plot).

To store a number into a variable, use a command like
.time. = 10

or
.time. = {rpn 10 sin}

Storage is automatically set aside when you assign into a nonexistent variable; no “dec-
laration” statements are required as in the C language.

The Gri command, new (Section 9.3.25 [New], page 101), allows you to have several “ver-
sions” of a variable. This is useful for local storage in new commands, inside if statements,
etc, since it lets you use temporary variables without worrying about overwriting values
outside the local block of code. The syntax is new .variable. = value (where, as usual,
value may be an rpn expression (Section 10.9 [rpn Mathematics], page 161). Here is an
example:

‘foo bar’
{

148 Gri

new .a. # Get storage
.a. = 10 # Store a local value
show "Locally, .a.=" .a. " (expect 10)"
delete .a. # Delete this local one

}
.a. = 1
show "Global version has .a.=" .a. " (expect 1)"
foo bar

To see if a given named variable (or synonym) exists, use the RPN operator defined
(Section 10.9 [rpn Mathematics], page 161).

10.4.2 User variables

You can get Gri to read values for variables from your file. Here’s how to read a number
from a header line and then read that many lines of columnar data:

open file.dat
read .num.
read columns .num. x y

You can define variables within the Gri program:
.num. = 10
read columns .num. x y

You can get variables interactively from the user, using the query command. (If the
user types carriage-return, or if the command-line flag -y was specified when invoking Gri,
the value 100 will be assigned to .num.). For example,

query .num. "Number of rows to read?" (100)
read columns .num. x y

Gri allows you to use a previous value of the variable in the default string, as in this
example:

.start. = 8 # default

.stop. = 2 # default
query .start. "Start time? " (.start.)
query .stop. "Stop time? " (.stop.)

Variables can be manipulated using reverse polish notation (RPN) mathematical oper-
ations (Section 10.9 [rpn Mathematics], page 161).

Variables are often useful in if statements. Here are some examples:
read .num_pts.
if .num_pts.
show "There are some data"
read columns .num_pts. x y

else
show "There are no data"

end if
...
read .latitude.
if {rpn .latitude. 10 <}
read .num.
read .num. x y
draw curve

Chapter 10: Programming in the Gri Language 149

else
show "Skipping data North of 10deg N"
read .num.
skip .num.

end if

10.4.3 Built-in variables

Built-in variables ([Index of Builtins], page 259) have names which begin and end with two
periods. For example, ..xsize.. is the width of the x-axis in centimetres. You may use
these variables as you wish (example: ..xsize.. = 4 is an alternative to set x size 4), but
you must be aware that these are not “free” variables for you to use for arbitrary purposes.
You can find out what the built-in variables are by the command show variables.

There are two types of variables
• Startup variables, which are created by Gri at startup time. These variables can be

relied upon to exist (barring changes in Gri itself), unless you delete them.
• Spontaneous variables (which are created by certain Gri commands, and only exist if

these commands have been executed). For example, the regress command defines
..coeff0.. (the intercept of the fitted line), ..coeff1.. (the slope of the fitted line),
..R2.. (the correlation coefficient).

To see the values of the built-in variables (along with the user variables), use show
variables. Here are some useful builtin variables:
• ..arrowsize.. Stores either a positive number representing the halfwidth of arrow-

heads measured in centimetres, or a negative number giving the negative of the ratio
of arrowhead halfwidth to arrow length (Section 9.3.41.2 [Set Arrow Size], page 115).

• ..batch.. Flag used for batch mode.
• ..debug.. Equal to 1 if the -debug command-line flag was set. Flag used for debugging

(Chapter 3 [Invoking Gri], page 7). The ..debug.. built-in variable is useful in isolating
code to use only in test runs. For example, you might use

if ..debug..
show "Following are the column data"
show columns

end if

When you run the program with command-line gri -debug file.gri the code in the
if block will print out the columnar data, but when you run it with gri file.gri
these lines are not printed.

• ..eof.. Flag indicating whether an end-of-file was encountered on the last read
columns.

• ..words_in_dataline.. Number of words on last dataline. This is useful in constructs
like

open tmp.dat
.num. = 0
while 1
read .a. .b.
if !..words_in_dataline..
show "Got empty line or EOF, so break loop"
break

end if

150 Gri

show "a=" .a. "b=" .b.
show "; words in line=" ..words_in_dataline..
.num. += 1

end while
show "Got " .num. "data lines."

• ..fontsize.. Size of letters, measured in points; there are 72.27 points in an inch and
28.45 points in a centimetre. The mathematical operators pttocm and cmtopt, which
do conversion between points and centimetres, are often useful in labelling data curves
(Section 10.9 [rpn Mathematics], page 161).

• ..graylevel.. Graylevel to use in drawing lines, text, etc. Black ink is 0; white paper
is 1. See also ..red.. etc.

• ..image_height.. Height of image, or 0 if no image defined yet.
• ..image_width.. Width of image, or 0 if no image defined yet.
• ..length_dash.. Length in cm of dashes in dashed lines.
• ..length_blank.. Length in cm of blanks in dashed lines.
• ..linewidth.. Width of lines for data curves (Section 9.3.41.33 [Set Line Width],

page 126).
• ..linewidthaxis.. Width of lines on axes (Section 9.3.41.33 [Set Line Width],

page 126).
• ..linewidthsymbol.. Width of lines in symbols (Section 9.3.41.33 [Set Line Width],

page 126).
• ..missingvalue.. Missing value code, also stored in the synonym \.missingvalue.;

(Section 9.3.41.34 [Set Missing Value], page 127).
• ..num_col_data.. Number of column data that exist. You might want to use this after

read columns to see if a data file actually had any data in it, or use it in accessing
individual elements of columns (Section 10.9 [rpn Mathematics], page 161).

• ..publication.. Flag for final copy of plot. The command-line option -p sets the
value of ..publication.. to 1. A typical, and highly recommended, code fragment is

if !..publication..
draw time stamp

end if

• ..red.., ..green.., ..blue.. Description of present color. The values are between
0 and 1, with (0,0,0) being black and (1,1,1) being white. If color is gray, all these will
be equal. You may assign to these, but it will not change the color.

• ..symbolsize.. Size of symbols in centimetres.
• ..superuser.. Equal to 0 if the flag was not set, or equal to the flag if it was.
• ..tic_direction.. Direction of axis tics, 1 for inside or 0 for outside.
• ..tic_size.. Size of axis tics in centimetres.
• ..trace.. Equal to 1 if the -trace command-line flag was set. Used for tracing

program execution.
• ..xinc.. x increment on axes.
• ..xleft.. x value at left of plot.
• ..xmargin.. Left margin, in centimetres.
• ..xright.. x value at right of plot.
• ..xsize.. x-axis length in centimetres.
• ..ybottom.. y value at bottom of plot.

Chapter 10: Programming in the Gri Language 151

• ..yinc.. y increment on axes.
• ..ymargin.. Bottom margin in centimetres.
• ..ysize.. y-axis length in centimetres.
• ..ytop.. y value at top of plot
• ..exit_status.. The exit status from the most recent system call (or 0 if no system

calls have been done yet).

You may use any of these built-in variables anywhere. For example, here’s how to stack
3 graphs vertically on the page:

.offset. = {rpn ..ysize.. 3 + }
open file1
read columns x y
close
draw axes
draw curve

..ymargin.. += .offset.
open file2
read columns x y
draw axes
draw curve
close

..ymargin.. += .offset.
open file3
read columns x y
draw axes
draw curve
close

The first line needs a bit of explanation. It is a reverse-polish expression. The format is {
followed by rpn followed by an expression followed by }. Within the expression, spaces must
separate operands. This makes .offset. equal to the height of y-axis plus 3 cm, so plots
are separated by 3 cm. To learn more about {rpn ... } (Section 10.9 [rpn Mathematics],
page 161).

Another possibly unfamiliar thing is the code +=. It means take the thing on the left
hand side, and add to it the thing on the right hand side. (In this case, it is used to increase
the y margin by the value of .offset..)

10.5 Synonyms

Synonyms are used by Gri to store character strings. Gri denotes synonyms with words
beginning with backslash (e.g., \syn), following the TEX convention.

10.5.1 Naming convention for synonyms

Synonym names begin with a backslash (e.g., \filename). After the backslash, Gri expects
a letter (upper or lower case) or one or more periods. Following this is an arbitrary string
of letters, numbers, or underscores. If there are periods at the start, then the same number
of periods must be used at the end. The following are some examples

152 Gri

\simple = "Howdie"
\.longer_example. = "Dots and underscores are ok too"
\a2 = "OK for number at end ..."
\a3bb = "... and inside"

Gri defines several synonyms for its own use, so that if you modify these, you may get
strange results. Each of these starts and ends with a single period.

There is an exception to the above rule, one which mostly comes up when using netCDF
files which may have variable names that may contain punctuation. Gri permits synonym
names to have punctuation characters (but not blanks or tabs) in synonym names, provided
that the second character in the name is an opening brace and that the last character is a
closing brace, e.g.

\{foo.bar} = "Foo bar"

This is used particularly for files in the netCDF format, for reading variable attributes,
which by netCDF convention use a colon (:) to separate variable name and attribute name
(Section 9.3.33.9 [Read Synonym or Variable], page 112). For more information on netCDF
format, see

http://www.unidata.ucar.edu/packages/netcdf/index.html

Synonyms may be freely embedded in strings (a common example is draw title "Data
from file ‘\datafile’". They may also appear anywhere in commands (e.g., open
\filename). The exception to this rule is that Gri ignores your synonyms within math
mode, in order to prevent clashes (e.g. you might define \alpha as a synonym storing the
value "foo bar", but Gri will ignore this within math-mode, so that α will still
mean the Greek letter alpha).

To get a backslash in a string without Gri thinking it is part of a synonym, use two back-
slashes (e.g., show "The backslash character \\ is used for synonyms."). This may
sometimes be required in system commands (Section 9.3.50 [System], page 139), to prevent
Gri from converting substrings like \n (which many system commands use to represent the
newline character). For example, the command system perl -e ’print "foo\nbar";’ will
be mangled if Gri has already been told that \nbar is a synonym. (There will be no problem
if \nbar is not an existing synonym, since Gri will then just leave it in place.) To be sure
that no mangling can occur, replace each backslash with two backslashes. This tells Gri
not to try to substitute a synonym at that location. In the example below, the first system
call prints fooled you! on one line line, because Gri substituted for what it thought was a
synonym called \nbar; the second (correctly) prints foo on one line and bar on the next.

\nbar = "led you!"
system perl -e ’print "foo\nbar\n";’
system perl -e ’print "foo\\nbar\\n";’

Similarly, if your system command is expecting to see \t (for a tab character), then you
must write \\t to prevent Gri from trying to substitute a synonym named \t.

The show command has a special syntax for permitting newlines and tabs in strings
(Section 9.3.42 [Show], page 135).

10.5.2 Some uses for synonyms

Synonyms store strings and are useful for anything strings are useful for, e.g. filenames,
plot labels, names of variables, etc.

Chapter 10: Programming in the Gri Language 153

10.5.2.1 Using synonyms to generalize code

Synonyms are often used to store filenames, since then only a single line of a file may need
to be altered, in order to work with another file, e.g.

\filename = "columns.dat"
open \filename
a lot more code using the file name

10.5.2.2 Using synonyms to store OS output

Synonyms provided a convenient way to store information from the OS.
Show the date.
\date = system date
show "Time is \date"

Show the command file name, then use the system
to construct a filename with the same beginning
but ".dat" as the ending instead of ".gri".
show "The commandfile name is \.command_file."
\fn = system echo ‘basename \.command_file. .gri‘.dat
show "A filename constructed from this is \fn"

This example uses the Unix system commands echo and basename to construct a file-
name ending in ‘.dat’, from the command file name (stored in the builtin string \.command_
file.), assuming that the command file name ends in ‘.gri’.

NOTE: As usual, if the system command contains the Gri comment designator (the
string #), protect it with double-quotes (Section 9.3.50 [System], page 139).

10.5.2.3 Storing user responses via query

You can ask the user for the contents of strings:
query \filename "What’s the data file?" ("file.dat")

The prompt What’s the name of the data file? is typed to the terminal, and whatever
string the user types is inserted into the synonym \filename. If the user types nothing,
but simply presses carriage return, the (optional) default string (which must be enclosed
in parentheses as shown) is put into \filename. Note that the default is ignored if it is
not written properly: it must be enclosed in double quotes enclosed in parentheses, with no
intervening spaces.

10.5.2.4 Storing File Contents

You can read the contents of synonyms from a file:
open \directory_file
read \file_name
close
open \file_name
read columns x y

154 Gri

The first (space-separated) word is read into the the first synonym after the read command,
the second word into the second synonym, and so on. If the word you want is not near the
front of the line, you can use the command read line to get the whole line, then use the
method described above to extract the word you want. Indexing begins with 0, remember.

10.5.2.5 Working with words within strings

Sometimes a synonym will contain several words that you need to work with indidually (e.g.
it might contain a list of files that should be processed). There are two ways to do this.

The word of syntax.
\sentence = "This sentence has five words"
\first_word = word 0 of "\sentence"
\last_word = word 4 of "This sentence has five words"

The [] syntax
Individual words of synonyms may be accessed by prefixing the synonym name
with the index number of the word (starting at 0) enclosed in square brackets.
The number in the square brackets may be a constant, a variable, or a synonym,
but not a more complicated expression. If the index value is a floating-point
number, it is first rounded to the nearest integer. If the index value is negative
or exceeds the number of words minus 1, then an empty string is retrieved.
If no number appears in the square brackets, the result is the number of words
in a synonym.

\syn = "This has 4 words in it"
show "\[0]syn ... gives ’This’"
show "\[1]syn ... gives ’has’"
.i. = 3
show \[.i.]syn ... gives ’words’"
\i = "3"
show \[\i]syn ... gives ’words’"
show "\[]syn ... gives ’6’, i.e. number of words"

10.5.3 Some important builtin synonyms

Within mathematics mode (portions of strings enclosed within dollar-signs), Gri stores
the definitions of many Greek letters and mathematical symbols as math-mode synonyms
(Section 10.10.2 [Mathematical Text], page 171).

Global synonyms are shared among commands. To see the built-in global synonyms ([In-
dex of Builtins], page 259) use show synonyms, which produces output that looks something
like the following.

Synonyms...
\.missingvalue. = "10000000000000000000000.000000"
\.return_value. = ""
\.version. = "2.7.0"
\.pid. = "3043"
\.wd. = "/home/kelley"
\.time. = "Sun May 20 13:18:32 2001"
\.user. = "kelley"
\.host. = "Intrusion.phys.ocean.dal.ca"

Chapter 10: Programming in the Gri Language 155

\.system. = "unix"
\.home. = "/home/kelley"
\.lib_dir. = "/usr/share/gri"
\.command_file. = "stdin"
\.readfrom_file. = "stdin"
\.ps_file. = "gri-00.ps"
\.path_data. = "."
\.path_commands. = "."

These things will be obvious to unix users; for example \.pid. is the process ID of the
job (often used in names for temporary files), and \.wd. is the working directory (often
used in draw title commands to indicate in which directory the gri job was run.

Some commands set \.return_value. to non-blank; the meaning of the return value
varies from command to command.

10.5.4 Alias synonyms: the \@alias syntax

Sometimes you need to work with a variable or a synonym whose name can only be deter-
mined at run-time, perhaps through interaction with the user, examination of a datafile, or
examination of the command provided to the OS when invoking Gri.

Gri handles this by so-called "alias" synonyms, which store the names of other items.
The syntax is simple. Suppose that a synonym, called \pointer say, contains the name

of another synonym, or a variable. Then you may use \@pointer anyplace you would
normally use the item named.

Illustrations of using the value of a named item
The following prints an approximation to Pi followed by the name of movie
star.

.pi. = 3.14
\pi_pointer = ".pi."
show \@pi_pointer # just like ’show .pi.’

\hero = "Gregory Peck"
\our_hero = "\\hero"
show "\@our_hero" # just like ’show "\hero"’

Illustrations of assigning to a named item
The following prints an approximation to 2*Pi and yet another star; the point
is that the alias appears to the left of an assignment operator.

Print approximation to 2*Pi
.pi. = 3.14
\pi_pointer = ".pi."
\@pi_pointer *= 2
show .pi.

Stars don’t shine alone
\hero = "Gregory Peck"
\our_hero = "\\hero"
\@our_hero = "Harrison Ford"
show "\hero"

156 Gri

10.5.5 Local synonyms

Local synonyms are created by Gri upon entry to a Gri command. You use them to parse
the command line that was used in calling the new command, to look for options, gather
filenames, etc. Local synonyms are known only from within the local Gri command. They
are not listed by show synonyms, but they can be used freely in commands like show "Number
of words is \.words.".
• Within any new Gri command, the number of words in the line that called the com-

mand is available in \.words.. The RPN operator wordc also yields the same value
(Section 10.9.6 [Solitary Operators], page 168).

• The first word in the calling line is \.word0., the second \.word1., etc. (Note that this
is the C convention, not the FORTRAN convention. If \.words. is 2, then \.word0.
and \.word1. are defined, but \.word2., which FORTRAN programmers expect, will
not be defined.) If you don’t know the place of the synonym in advance (i.e. 0 versus
1, for \.word0. versus \.word1.), then use the RPN operator wordv instead (Sec-
tion 10.9.5 [Unary Operators], page 164).

• Within any new Gri command, the proper calling usage is available in \.proper_
usage.. This is useful in tests of syntax (Section 10.11 [Adding New Commands],
page 173). For example:

‘draw depths from \file’
Draw depth data stored in indicated file. If the
filename contains periods or slashes, you’ll
have to enclose it in double quotes, as
in the second example:
draw depths from file upper_cove
draw depths from file ../old_data/upper_cove

{
if {rpn \.words. 4 !=}

show "FATAL ERROR in ‘\.proper_usage.’:"
show " Need 4 words; got \.words. words."
quit

end if
Right number of words, so continue onward...

}

These synonyms help you scan for optional words in commands. Suppose you have
defined a new command New Thing [option]. If you call it with New Thing, then (within
New Thing) \.words. will be "2", \.word0. will be "New" and \.word1. will be "Thing".
On the other hand, if you call it with New Thing 22.3 then \.words. will be 3, \.word0.
will be "New", \.word1. will be "Thing" as before, and \.word2. will be "22.3".

EXAMPLE Here is a new command to label lines drawn by draw curve:
‘Draw Label For Last Curve "label"’
Draw a label for the last curve drawn, using
..xlast.. and ..ylast.. built-in variables.
{
new .draw_label_for_last_curve_graylevel.
.draw_label_for_last_curve_graylevel. = ..graylevel..
set graylevel 0
draw label "\.word5." at \

{rpn ..xlast.. xusertocm 0.1 + xcmtouser} \

Chapter 10: Programming in the Gri Language 157

{rpn ..ylast.. yusertocm \
..fontsize.. pttocm 2 / -
ycmtouser}

set graylevel .draw_label_for_last_curve_graylevel.
delete .draw_label_for_last_curve_graylevel.

}
open file.dat
read columns x y
draw curve
\label = "Illustration"
Draw Label For Last Curve "\label"

(Note that Gri has a built-in command draw label for last curve "\label" written much
as above, so there is no need for you to enter this new command into your ‘.grirc’ file.
But you might want to check ‘gri.cmd’ to see how a full command does checking of the
calling syntax (Chapter 3 [Invoking Gri], page 7).

10.6 If Statements

Gri has if statements to make your programs more flexible. Here’s an example:
query \thick "Use thick lines? (0 or 1)" ("0")
if \thick
set line width 2

else
set line width 0.5

end if

If you answer 1 to the question, the line thickness will be set at 2 points. If you answer 0
then a thin line will be used. If you press carriage return a thin line will be used.

The item following the if can be
• a number (1 means true; anything else means false)
• a variable (1 means true; anything else means false). Example:

if .plot_contours.
draw contour

end if

• a synonym which expands to a number (1 means true; anything else means false).
Example:

\plot_contours = "1"
if \plot_contours
draw contour

end if

(Don’t worry about the fact that synonyms are strings; Gri expands the string value
before interpreting the if statement.)

• an expression of the form {string1 == string2 }. The symbol == is an operator which
tests for string equality. This expands to 1 if the strings are equal, or 0 otherwise. The
strings may be either synonyms or string constants. If the string constant contains
only one word, then it is not necessary to enclose it in quotes, but it is clearer to do
so. Examples:

if {"\variable" == "Salinity"}
set x name "Salinity"

158 Gri

else
set x name "Unknown"

end if

• a rpn (reverse polish notation) expression (Section 10.9 [rpn Mathematics], page 161):

if {rpn .time. 100 <}
ie, (100 < time), not (time < 100)
show "Time > 100"

else if {rpn .time. 100 >}
show "Time < 100"

else if {rpn "\item" "later" ==}
show "Time ... later babe"

else
show "Time is equal to 100"

end if
if {rpn .time. 10 * 100 ==}
show "Time is equal to 10"

else
show "Time is not equal to 10"

end if

There is no need to put the else part in if you don’t need it. You can do
set line width 0.5
if \use_thick_lines
set line width 2

end if

if you wish.
If you want just the else part, you can do

if ! \use_thick_lines
set line width 0.5

end if

(The exclamation point denotes logical negation: ! true equals false.)
If statements may be nested many levels deep. You may also have else if blocks, as in:

if {"\variable" == "S"}
set x name "Salinity"
set x axis 32 33 0.5 .1

else if {"\variable" == "T"}
set x name "Temperature"
set x axis 15 20 1 0.5

else
set x name "Unknown"

end if

10.7 Loops

Gri provides only one type of loop, the while loop, described elsewhere (Section 9.3.52
[While], page 141).

Chapter 10: Programming in the Gri Language 159

10.8 Mathematics

Gri lets you do some simple mathematical manipulations on your column and grid data.

10.8.1 Column data

The column operators are =, +=, -=, *=, /=, ^= (exponentiation) and _= (logarithm). There
must be spaces before and after the operators, but no space between the 2 letters of the
operators. The operations may be applied not only to x and y as shown, but also to z (used
to hold data to be contoured or written as symbols), and u and v (used to store vector
fields).

The axis scales are not changed by mathematical operations on the columns, regardless
of whether the scales were set manually or by Gri command (Section 4.2 [Axis Scaling],
page 16).

Elements of columns are available by the @ reverse polish operator (Section 10.9 [rpn
Mathematics], page 161).

Examples:
• To multiply all the x data by 10, use x *= 10; to add 5 to each y-value, use y += 5.
• To set all the y data to 10, do y = 10. (This will only work if you’ve already read

column data.)

See also Section 10.9.3 [Tertiary Operators], page 162 for a method of assigning or
altering column data using the RPN operator.

10.8.2 Grid data

Various commands let you alter grid data as used in contouring (Chapter 6 [Contour Plots],
page 25). Possible commands are as follows.

grid data = number
grid data += number
grid data -= number
grid data *= number
grid data /= number
grid data ^= number # take data to power ’number’
grid data _= number # take log base ’number’
grid x = number
grid x += number
#... others as in ‘grid data’
grid y = number
grid y += number
#... others as in ‘grid data’

10.8.2.1 Image data

Various commands let you alter image data (Chapter 7 [Images], page 31.). Possible com-
mands are as follows.

image += number
image -= number

160 Gri

image *= number
image /= number
image ^= number # power
image _= number # logarithm

10.8.2.2 Image grayscale/colorscale

Various commands let you alter image data (Chapter 7 [Images], page 31). Possible com-
mands are as follows.

image grayscale += number
image grayscale -= number
image grayscale *= number
image grayscale /= number
image grayscale ^= number # power
image grayscale _= number # logarithm
image colorscale += number
image colorscale -= number
image colorscale *= number
image colorscale /= number
image colorscale ^= number # power
image colorscale _= number # logarithm

10.8.2.3 Variables

Possible commands are:
.variable. = number
.variable. += number
.variable. -= number
.variable. *= number
.variable. /= number
.variable. ^= number # power
.variable. _= number # logarithm

Chapter 10: Programming in the Gri Language 161

10.9 Rpn (reverse-polish notation) Calculator

Gri can do simple mathematics on numbers. The syntax is reverse-polish notation (rpn),
which is used in some calculators. Most users can learn rpn in a few minutes, so don’t worry
if you don’t know RPN yet.

Syntax: rpn expressions can be used anywhere Gri expects a number. RPN expressions
start with a opening curly brace ({) which is immediately followed by the word rpn. rpn
expressions end with a closing curly brace (}). Instead of set x size 10 you could write
set x size {rpn 20 2 /}, where the expression {rpn 20 2 /} tells Gri to insert the number
20 onto a stack, then insert the number 2 above it on the stack, and then divide the top
two items on the stack. The following are equivalent:

set x size {rpn 20 2 /} # 10 = 20/2
set x size {rpn 30 2 / 5 -} # 10 = (30/2-5)
set x size {rpn pi 3.1415 / 10 *} # 10 = 10*pi/pi

If an rpn expression contains a variable whose value is “missing”, then the value of the
result of the expression will also be missing (unless the value of the missing variable is
thrown away with a “pop” operator). However, if a missing value just happens to occur as
the result of an intermediate calculation, then the result is not considered to be missing.

RPN operations can be divided roughly into the following groups.

10.9.1 Stack Operators

Stack operators manipulate or display the stack.
pop removes the top item from the stack (Section 10.9.5 [Unary Operators], page 164).
dup duplicates the top item on the stack (Section 10.9.5 [Unary Operators], page 164).
exch reorders the top two items on the stack (Section 10.9.4 [Binary Operators],

page 162).
pstack prints the items on the stack (without changing the stack).
roll_right rolls the items to the right.
roll_left rolls the items to the left.
For example, the following shows how you might use exch or roll_right to change the

sense of a subtraction.
show {rpn 1 2 -} " ... yields -1"
show {rpn 1 2 exch -} " ... yields 1"
show {rpn 1 2 roll_right -} " ... yields 1"

10.9.2 Rpn function Operators

rpnfunction operators are user-defined operators. The parser replaces any such operator
with the user-defined rpn expression. The rpnfunction operators are both general and
powerful. An rpnfunction may be composed of any legal primitive rpn constructs or even
other legal rpnfunction constructs. For details, (Section 9.3.40 [Rpnfunction], page 114).

162 Gri

10.9.3 Tertiary Rpn Operators

{rpn 0 4 "hello" substr }
Extract 4 characters from the indicated string, starting at character number 0
(i.e. the start of the string). In other words, replace the three items on the top
of the stack with the single item \"hell\".

10.9.4 Binary Operators

Binary operators act on the top two items on the stack. Most binary operators replace
two items on the stack with one item, e.g. {rpn 1 2 /} yields 0.5. However, a few binary
operators replace one pair of items with a new pair of items, e.g. the xyusertocm oper-
ator replaces an (x,y) pair in user coordinates with an (xcm,ycm) pair in coordinates of
centimeters on the page.

The binary operators are illustrated below, in rough alphabetical order.

{rpn 3 2 +}
Add 2 to 3.

{rpn 3 2 -}
Subtract 2 from 3.

{rpn 3 2 *}
Multiply 3 by 2.

{rpn 3 2 /}
Divide 3 by 2.

{rpn 3 2 <}
Test whether 2 is less than 3, yielding 1. Note: this convention may be confusing
to users who are familiar with HP calculators from decades past. Present-day
calculators use this convention, but possibly older calculators used the reverse
convention, using > where Gri uses <.

{rpn 3 2 <=}
Test whether 2 is less than or equal to 3.

{rpn 3 2 >}
Test whether 2 is greater than 3, yielding 0.

{rpn 3 2 >=}
Test whether 2 is greater than or equal to 3, yielding 0.

{rpn 3 2 ==}
Test whether 2 and 3 are equal, yielding 0. (Do not confuse this with the
asignment operator =, described next.)

{rpn 10 ".ten." =}
Assign the value 10 to the variable named .ten.. The variable name must be
put in quotes, or else Gri will insert the value of the variable (if it exists) into
the expression, instead of trying to assign to it.
After the assignment is done, the stack is cleared of both the value and the
variable name. For example, in the following code

{rpn 3.1415 ".pi." =}
show .pi.

Chapter 10: Programming in the Gri Language 163

the first line evaluates to a blank line, and the second prints the value of Pi.
NOTE: Do not confuse this with the == equality operator described above.

{rpn "hello" "\\greeting" =}
Assign the value "hello" to the synonym \greeting. See notes at the above
item.

{rpn 3.14159 0 "x" =}
Assign the value Pi to the first element (at index 0) of the x column. All
columns may be assigned to in this way, e.g. the following is a technique for
plotting a quadratic function:

.i. = 0

.n. = 10
while {rpn .i. .n. >}

{rpn .i. .n. 1 - / .i. "x" =}
{rpn x .i. @ 2 power .i. "y" =}
.i. += 1

end while
draw curve

{rpn 0 1 &}
Test whether 0 and 1 are both true, yielding 0.

{rpn 0 1 and}
Test whether 0 and 1 are both true, yielding 0.

{rpn y x area}
Calculate the area under the curve y=y(x). For details (Section 10.9.7 [Manip-
ulation of Columns etc], page 169).

{rpn 0 1 |}
Test whether either 0 or 1 is true, yielding 1.

{rpn 0 1 or}
Test whether either 0 or 1 is true, yielding 1.

{rpn 2 3 exch}
Exchange 2 and 3 on the stack, yielding 3 2 on the stack. (See also pop and
dup.)

{rpn x 0 @}
Yields the value of the first number in the x column. A similar form also works
for y, etc. (Section 10.9.7 [Manipulation of Columns etc], page 169).

{rpn 2 3 inf}
Pick the smaller of two values, yielding 3. (Opposite to sup.)

{rpn 2 3 power}
Take 2 to the 3rd power, yielding 8. Note: This convention may be confusing
to users who are familiar with HP calculators from decades past. Present-day
calculators use this convention, which they write as y^x, but older calculators
used the reverse convention, labelling the key x^y.

{rpn 2 3 remainder}
Calculate the remainder after dividing 2 by 3, yielding 2. The return value
for {rpn A B remainder} is B - n * A, where n is the quotient of A/B, rounded
towards zero to an integer. In this case, 2/3 rounds to an n value of zero,
yielding 2 as the resulting remainder.

164 Gri

{rpn "heLLo" "s/L/l/g" sed}
Switch all instances of L into l, yielding the string "hello" on the stack. This
can be helpful for working with filenames, etc. The work is preformed with
a system call to the sed utility (present on unix systems), and therefore this
command will fail if sed is not installed, or if the OS cannot be contacted.

{rpn "file" ".dat" strcat}
Concatenate the two strings, yielding the string "file.dat".

{rpn 2 3 sup}
Pick the larger of two values, yielding 3. (Opposite to inf.)

10.9.5 Unary Operators

Unary operators replace the last item on the stack with another item. For example, the
sin operator takes the sine of the number on the top of the stack; e.g., {rpn 45 sin} yields
the sine of 45 degrees.

The unary operators are illustrated below, in rough alphabetical order.

{rpn 0 !} Replace 0 (false) with its logical negation 1 (true).

{rpn 0 not}
Replace 0 (false) with its logical negation 1 (true).

{rpn -3 abs}
Calculate the absolute value of -3.

{rpn 0.5 acos}
Calculate the inverse cosine of 0.5, yielding 60 (degrees).

{rpn 2 acosh}
Calculate the inverse hyperbolic cosine of 2, yielding 1.317. (Note: argument
must equal or exceed 1, or an error results.)

{rpn "filename" age}
Calculate the “age” of the indicated file, in seconds. An age of zero indicates
that the file was created, or last modified, within 1 second of the execution of
the age operator.
On unix (and similar) machines, the calculation is done on unix machines with
the stat() subroutine. On other machines, the age operator may cause an
error.
The age of a non-existent file is reported as the number of seconds since the
system clock’s reference time, i.e. since 1970-jan-1 on unix machines. This
convention is so that scripts like that in the example below will work as intended.
A typical use of this command is the creation of data-files from shell scripts,
as illustrated below. The idea is to update (or create) the file ‘file.dat’ using
the system-executable script ‘creator.pl’, but only to do so if ‘creator.pl’
is younger than ‘file.dat’.

if {rpn "file.dat" age "creator.pl" age <}
system "./creator.pl > file.dat"

end if
open file.dat

For the convenience in such usage, a non-existent file is assigned the maximum
possible file age on the given OS, e.g. on a unix machine, the age is reported

Chapter 10: Programming in the Gri Language 165

as though the non-existent file had been created on January 1, 1970 on a unix
machine.

{rpn 0.5 asin}
Calculate the inverse sine of 0.5, yielding 30 (degrees).

{rpn 1 atan}
Calculate the inverse tangent of 1, yielding 45 (degrees).

{rpn 0.5 atanh}
Calculate the inverse hyperbolic tangent of 0.5, yielding 0.549306 (radians).

{rpn 0 argv}
Returns the name of the Gri command-file, which is considered as the first
"optional" argument. (It may seem odd that the name of the command-file
is considered an option, but Gri does this for consistency with C and other
languages. It is useful.) Other arguments provided when Gri was invoked are
provided as rpn 1 argv, etc.
A string consisting of a single blank character results if one tries to access
beyond the list of arguments that were actually supplied. See also the argc
solitary operator (Section 10.9.6 [Solitary Operators], page 168), which returns
the number of optional arguments.
For example, if Gri is invoked as

gri myscript.gri file1.dat file2.dat

and if ‘myscript.gri’ contained
.n. = {rpn argc}
.i. = 0
while {rpn .n. .i. <}

show "argument " .i. " is " {rpn .i. argv}
.i. += 1

end while

then the output would be
argument 0 is myscript.gri
argument 1 is file1.dat
argument 2 is file2.dat

For usage within the Emacs gri-mode, see Section 12.7 [Filename arguments
when running gri], page 203.

{rpn "hi" ascent}
Determine ascent of this string (in cm), in the present font and fontsize. (See
also descent and width.)

{rpn "3.1" atof}
Calculate the numerical value contained in indicated string.

{rpn 1.5 ceil}
Calculate the next higher integer, yielding 2. (Opposite of floor.)

{rpn 45 cos}
Calculate the cosine of 45 degrees, yielding 0.707.

{rpn 1 cosh}
Calculate the hyperbolic cosine of 1 (radian), yielding 1.543.

166 Gri

{rpn 1 cmtopt}
Convert from 1 centimeter to so-called “point” units, yielding 28.45. (Opposite
of pttocm.)

{rpn 170 dec2hex}
Convert a number into a string which is its hexadecimal representation. Before
the conversion, the number is rounded to the nearest integer, and if the result
is negative, an error results. The string is double-quoted, with letters (if there
are any) being in upper case.
For example \hex = {rpn 63 dec2hex} is equivalent to \hex = "3F".
Compare with hex2dec, the inverse.

{rpn "\\syn" defined}
Test whether the synonym is defined at the moment, returning 1 if so and 0 if
not. (Note the double-backslash in the synonym name, which is required.)

{rpn ".var." defined}
Test whether the variable is defined at the moment, returning 1 if so and 0 if
not.

{rpn "\\@alias" defined}
Test whether the variable/synonym item that is named by the alias (Sec-
tion 10.5.4 [Alias Synonyms], page 155) is defined at the moment, returning
1 if so and 0 if not.

{rpn "hi" descent}
Calculate the descent (below the baseline in cm) for the given string, in the
present font and fontsize. (See also ascent and width.)

{rpn "/home/me/data/timeseries" directory_exists}
Determine whether indicate directory exists, yielding 1 if it does and 0 other-
wise. (See also file_exists.)

{rpn 2 dup}
Duplicate the top item on stack, yielding 2 2 on the stack. (See also exch and
pop.)

{rpn 1 exp}
Calculate the value of e raised to the indicated power, yielding 2.71828.

{rpn 2 exp10}
Calculate the value of 10 raised to the indicated power, yielding 100.

{rpn "foo.dat" file_exists}
Determine whether the indicate file exists, yielding 1 if it does and 0 otherwise.
(See also directory_exists.)

{rpn 1.5 floor}
Calculate the nearest smaller integer, yielding 1. (Opposite of ceil.)

{rpn "AA" hex2dec}
Convert a string, representing a hexadecimal value, into an integer. The string
must be double-quoted, and it may contain either lower- or upper-case letters;
this is in contrast to the inverse function, dec2hex, which returns upper-case.
This operator is most often used in working with colours, since Gri handles
colour components in decimal terms, whereas many other applications refer to
the components in hexadecimal notation.
Compare with dec2hex, the inverse.

Chapter 10: Programming in the Gri Language 167

{rpn 3 ismissing}
Yields 1 if the indicated value is a “missing value” or 0 otherwise.

{rpn 100 log}
Calculate the base-10 logarithm of 100, yielding 2.

{rpn 10 ln}
Calculate the natural logarithm of 10, yielding 2.30259.

{rpn x mean}
Yields the mean value of the (non-missing) numbers in the x column. A similar
form also works for y, etc. (Section 10.9.7 [Manipulation of Columns etc],
page 169).

{rpn x max}
Yields the largest value of the (non-missing) numbers in the x column. A
similar form also works for y, etc. (Section 10.9.7 [Manipulation of Columns
etc], page 169).

{rpn x min}
Yields the smallest value of the (non-missing) numbers in the x column. A
similar form also works for y, etc. (Section 10.9.7 [Manipulation of Columns
etc], page 169).

{rpn 28.45 pttocm}
Calculate the number of centimeters in 28.45 printers points, yielding 1. (Op-
posite of cmtopt.)

{rpn 1 2 pop}
Remove the top item from the stack, yielding 1 on the stack. Generates an
error if the stack is empty. (See also exch and dup.)

{rpn 4 sqrt}
Calculate the square root of 4, yielding 2. (Negative arguments yield errors.)

{rpn 45 sin}
Calculate the sine of 45 (degrees), yielding 0.707107.

{rpn 2 sinh}
Calculate the hyperbolic sine of 2, yielding 3.62686.

{rpn "hello" strlen}
Determine the number of characters in string, e.g. 6 here.

{rpn "date" system}
Call the indicated system function and insert its ouput on the stack, yielding
the date as a character string.

{rpn 45 tan}
Calculate the tangent of 45 (degrees), yielding 1.

{rpn tanh}
Calculate the hyperbolic tangent of 2, yielding 0.964028.

{rpn "hi" width}
Determine width of this string (in cm), in the present font and fontsize. (See
also ascent and descent.)

{rpn 0 wordv}
Returns the first word used in invoking the present command. Similar to the
\.word0. synonym (Section 10.5.5 [Local Synonyms], page 156). Example:

168 Gri

‘let us test .it.’
{
.w. = 0
while {rpn .w. wordc >}

show "The " .w. "-th word is ‘" {rpn .w. wordv} "’."
.w. += 1

end while
}
let us test "this thing"
let us test "this" "thing"
let us test "Pi is" {rpn 3.14}

If you are using this to parse options given to the command, it is up to you
to skip the non-optional words in the command. In this case, for example, we
skipped the first three words (let, us, and test).

{rpn 1 xusertocm}
Calculate the x coordinate, in centimeters measured from left-hand side of page,
corresponding to a user-value of x=1. (Opposite of xcmtouser.)

{rpn 1 xcmtouser}
Calculate the x value, in user units, for a point that is 1 centimeter from the
left-hand edge of the paper. (Opposite of xusertocm.)

{rpn 1 yusertocm}
Calculate the y coordinate, in centimeters measured from bottom side of page,
corresponding to a user-value of x=1. (Opposite of ycmtouser.)

{rpn 1 ycmtouser}
Calculate the y value, in user units, for a point that is 1 centimeter from the
bottom edge of the paper. (Opposite of yusertocm.)

10.9.6 Solitary Operators

Solitary operators do not act on items on the stack; rather, they generate items themselves
and insert them on the stack.

The solitary operators are illustrated below, in alphabetical order.

{rpn argc}
Yields number of command-line arguments given by the user when Gri was
invoked. Thus, invoking Gri as

gri myfile.gri file1.dat file2.dat

yields 3, for arguments ‘myfile.gri’, file1.dat, and file2.dat. These argu-
ments are accessible through the argv unary operator (Section 10.9.5 [Unary
Operators], page 164).

{rpn e} Yields the base of natural logarithms, i.e. 2.718...

{rpn pi} Yields Pi, i.e. 3.141...

{rpn rand}
Generate a random number in the range 0 to 1, using the C subroutine
drand48() if it is available, otherwise the less well-distributed rand()
subroutine.

Chapter 10: Programming in the Gri Language 169

{rpn wordc}
Returns number of words used in invoking the present command. Similar to
the \.words. synonym (Section 10.5.5 [Local Synonyms], page 156). Example:

‘let us test .it.’
{
show "This command has " {rpn wordc} " words"

}
let us test 10
let us test {rpn 3 1 +}
let us test "this"
let us test "this thing"

The operator wordv may be used to extract the words of the command (Sec-
tion 10.9.5 [Unary Operators], page 164).

10.9.7 Manipulation of Columns etc

10.9.7.1 Columns

Individual data in the x, y, z, u, v and weight columns can be accessed with the @ operator.
The first point has index 0. Examples:

show "first x is " {rpn x 0 @ }
show "last x is " {rpn x ..num_col_data.. 1 - @ }
show "and here are all the data:"
.i. = 0
while {rpn .i. ..num_col_data.. >}

show {rpn x .i. @ }
.i. += 1

end while

The mean value is available from the mean operator (e.g., .xmean. = {rpn x mean },
while the standard deviation is given by stddev, the skewness is given by skewness, and the
kurtosis is given by kurtosis (using the definition that yields 3 for a gaussian distribution).

The minimal and maximal values are given by min and max.
The area under the curve y=y(x) is found by {rpn y x area }, defined by

1

2(
∑n−1

1
(yi+yi−1)(xi−xi−1)) for data with i ranging 0–..num col data..− 1

10.9.7.2 Grid

Grid data can be accessed with e.g. {rpn grid min } , {rpn grid max } , and {rpn grid
mean } .

The value of the grid at a given (.x.,.y.) coordinate may be found by by e.g. {rpn grid
.x. .y. interpolate}. The interpolation scheme is the same as that used in converting
grids to images.

10.9.8 rpn Examples

Here are some reverse-polish expressions and the corresponding algebraic interpretations:

170 Gri

• {rpn 1 2 + 10 / } = (1+2)/10
• {rpn .a. .b. + .c. + .d. / } = (.a.+.b.+.c.)/.d.
• {rpn e 2 / } = e/2 (Gri knows values of “e” and “pi”)
• {rpn 23 sin 100 * 12 cos + } = cos(12) + 100sin(23)
• {rpn 5 2 power } = 25
• {rpn 2 log exp } = exp(log 2)
• {rpn 2 ln exp10 } = 10^ln2
• {rpn 1.7 floor } = 1 (rounds down to nearest integer. Note that the floor of -1.7 is

-2)
• {rpn 10.1 2 remainder } = 0.1 (remainder of 10.1 after division by 2; see C function

remainder(x,y))
• {rpn -10.1 2 remainder } = -0.1
• {rpn -10.1 -2 remainder } = -0.1
• {rpn .num. 10 > } = 1 if 10 exceeds .num., or 0 otherwise

NOTES:

• The units of sin, cos, etc, are degrees, not radians.
• The scales of the plot are accessible to rpn. For example, with the command

draw label "hi" at 10 20

you draw the indicated string at the indicated location in user coordinates. To put it
0.15 centimetres to the right of this location and 0.1 centimetres lower, you could do
as follows:

draw label "\label" at \
{rpn .x. xusertocm 0.15 + xcmtouser} \
{rpn .y. yusertocm 0.10 - ycmtouser}

(Note that the x and y scales have individual translations from "user" to "cm" coor-
dinates.)

• Some conversion factors are built into rpn; cmtopt converts from centimetres to points
(by dividing by 28.45; the conversion factor to inches is 72.27) while pttocm converts
from points to centimetres. For example, here is how to label a data curve with a label
placed near the last y-value of the data set:

draw curve
.y. = {rpn ..ylast.. yusertocm 0.5 - ycmtouser}
draw label "Smoothed" at ..xlast.. .y.

10.10 Text Strings

Any text can be drawn in any size; Gri does not limit font size to a list, e.g. 10 point,
12 points, etc. Several fonts are available in Gri, e.g. Times, Helvetica, etc.; these are all
standard PostScript fonts. Support for some non-English languages (e.g. French) is also
provided. And, finally, Gri supports inclusion of simple mathematical expressions (Greek
letters, superscripts, etc.) in text, using a LaTeX-style syntax.

10.10.1 Embedding synonyms in quoted text strings

Outside math strings, you can embed your synonyms at will. For example, you can include
the name of a data file in the title of your plot as follows

Chapter 10: Programming in the Gri Language 171

query \filename "File to read from?" ("data.file")
open \filename
read columns x y
draw curve
draw title "data from \filename"

Within math strings (ie, between matched dollar-signs), these synonyms are disabled,
and only the mathematical symbols and Greek letters work.

10.10.2 Mathematical text

10.10.2.1 Subscripts

As in TEX and LaTEX, you must be in math-mode to use subscripts; in other words, you
must enclose the string or substring in dollar-signs. For single-character subscripts, insert
an underline prior to the character to be subscripted:

draw title "a_2"

For multiple-character subscripts, insert braces before and after the item to be subscripted:
draw title "a_{22}"

10.10.2.2 Superscripts

As in TEX and LaTEX, you must be in math-mode to use superscripts; in other words, you
must enclose the string or substring in dollar-signs. For single-character superscripts, insert
a carat prior to the character to be superscripted:

draw title "a^2"

For multiple-character superscripts, insert braces before and after the item to be super-
scripted:

draw title "a^{22}"

10.10.2.3 Mathematical symbols

As in TEX and LaTeX, you indicate mathematical symbols and Greek letters with backslash
sequences. The following LaTeX symbols are defined in math mode in Gri (cf tables in
Lamport’s section 3):

(\Delta, ∆), (\Downarrow, ⇓), (\Gamma, Γ), (\Im, =), (\Lambda, Λ), (\Leftarrow,
⇐), (\Leftrightarrow, ⇔), (\Omega, Ω), (\Phi, Φ), (\Pi, Π), (\Psi, Ψ), (\Re, <),
(\Rightarrow, ⇒), (\Sigma, Σ), (\Theta, Θ), (\Uparrow, ⇑), (\Upsilon, Υ), (\Xi, Ξ),
(\alpha, α), (\approx, ≈), (\ast, ∗), (\beta, β), (\bullet, •), (\chi, χ), (\circ, ◦),
(\cong, ∼=), (\delta, δ), (\div, ÷), (\downarrow, ↓), (\epsilon, ε), (\equiv, ≡), (\eta,
η), (\exists, ∃), (\forall, ∀), (\gamma, γ), (\geq, ≥), (\gg, �), (\in, ∈), (\int,

∫
),

(\infty, ∞), (\iota, ι), (\kappa, κ), (\lambda, λ), (\langle, 〈), (\leftarrow, ←),
(\leftrightarrow, ↔), (\leq, ≤), (\ll, �), (\mu, µ), (\nabla, ∇), (\neq, 6=), (\nu, ν),
(\omega, ω), (\partial, ∂), (\phi, φ), (\pi, π), (\pm, ±), (\prod,

∏
), (\propto, ∝), (\psi,

ψ), (\rangle, 〉), (\rho, ρ), (\rightarrow, →), (\sigma, σ), (\sim, ∼), (\subset, ⊂),
(\subseteq, ⊆), (\sum,

∑
), (\supset, ⊃), (\supseteq, ⊇), (\surd,

√
), (\sqrt,

√
), (\tau,

τ), (\theta, θ), (\times, ×), (\uparrow, ↑), (\upsilon, υ), (\varpi, $), (\wedge, ∧), (\xi,

172 Gri

ξ), (\zeta, ζ), (\vartheta, ϑ), (\varsigma, ς), (\varphi, ϕ), (\aleph, ℵ), (\oplus, ⊕),
(\otimes, ⊗), (\wp, ℘), (\prime, ′), (\emptyset, ∅), (\angle, 6), (\neg, ¬), (\clubsuit,
♣), (\diamondsuit, ♦), (\spadesuit, ♠) (\cdot, ·) (\lfloor, b) (\lceil, d) (\rceil, e)
(\rfloor, c)
For example, you might use these as follows:

draw title "α = thermal expansion coefficient"

Sometimes you’ll want a mathematical symbol to be adjacent to a normal text string,
with no space between. You can do this by enclosing in braces, as in LaTeX.

TEX and LaTEX handle combinations of superscripts and subscripts very cleanly, putting
one above the other. Presently, Gri does not do this; for example set x name "A_1^2"
will have the 2 appearing to the right of the 1 instead of above it. Proper positioning will be
added to a later version of Gri, but in the meantime you can achieve the desired effect with
the TEX “negative thinspace” psuedo-character in math-mode. Using this feature will not
hurt you when the new Gri becomes available. The symbol for a negative thinspace is \!
in math-mode. It has no meaning in nonmath mode. A thinspace is 1/6 of an “em-space”
(a TEX term, normally equal to the width of the character “M” in the current font). In
most fonts, numbers are half the width of the letter “M”, so that 3 negative thinspaces will
move leftward over a single number. Thus, if the example above becomes set x name "$A_
1\!\!\!^2", the 2 will be positioned above the 1. (Equivalently, you could write set x name
"$A^2\!\!_1$".) Depending on the actual characters you have in the super/subscripts, you
might need more or less thinspaces; some experimentation might be required. Also, note
that the symbol \, in math mode is a positive thinspace (which moves the next character a
little bit to the right). Thus, you can add a little extra spaces between characters by doing
something like set x name "A$\,$B".

To get a hat over a single character, do something like the following (which draws a hat
over the character "h"):

draw label "h${\!\!\!^{^\wedge}}$" at 10 12 cm

To get an overbar on a rho, do this:
draw label "$\rho\!\!\!\!^-$" at 3 3 cm

10.10.3 Non-English characters

Gri relies on the “standard” PostScript fonts, however, and it suffers all limitations of these
fonts.

Gri supports both English and some other European-derived languages, permitting text
with accents on letters. (It does not support Oriental or other languages at this time.) The
accents are supported by using the so-called ISO-Latin-1 font-encoding scheme (also called
the ISO-8859-1 scheme), and so, from what the author can gather from his reading, Gri
should support various languages from western European, e.g. English, French, Spanish,
Catalan, Basque, Portuguese, Italian, Albanian, Rhaeto-Romanic, Dutch, German, Danish,
Swedish, Norwegian, Finnish, Faroese, Icelandic, Irish, Scottish, and as well as Afrikaans
and Swahili.

Gri uses the ISO-Latin-1 font encodings by default, although the so-called ‘standard’
font-encoding may also be selected with the Set Font Encoding command (Section 9.3.41.18
[Set Font Encoding], page 120). For more on font encodings see any book on PostScript
fonts ... although the bottom line is that if you are using accented characters in your work,
then you probably already know about encodings, and if you don’t use accents then you
needn’t learn about this topic except for the pleasure of learning about other languages.

Chapter 10: Programming in the Gri Language 173

The method of handling accented characters is very simple. If you can type it, Gri can
draw it! It is up to you to determine how to enter the accents. Most text editors permit
this. Since many users will prefer the Emacs editor, a few words about that are in order.

For complete information about entering iso-latin-1 characters in Emacs, consult your
Emacs manual in the section which describes the available methods suitable for the Emacs
version you are using. A few examples are nevertheless provided below.

Consider the task of inserting French text, with the Emacs text-editor. There are several
ways of doing this (and you may wish to consult your emacs info manual). A method that
works in emacs-19 up to current emacs-20 versions uses the emacs ‘iso-transl.el’ package
by putting the following in your ‘~/.emacs’ file:

(require ’iso-transl)
(iso-transl-set-language "French")
(standard-display-european t)

Loading the iso-transl package defines three ways of entering the non-ASCII printable
characters with codes above 127: the prefix C-x 8, or the 〈Alt〉 key, or a dead accent key.
For example, you can enter uppercase A-umlaut as C-x 8 " A or Alt-" A (if you have an
Alt key) or umlaut A (if you have an umlaut/diaeresis key).

A more recently introduced method is to enter the mode which allows quick insertion of
iso-latin-1 characters. Do the Emacs command M-x iso-accents-mode (either manually, or
in a hook that’s done automatically). Now, suppose the x-axis is to represent temperature.
All you’d have to do is type in the command

set x name "Temp’erature"

As you type, the quote mark will dissappear, and reappear as an accent on the e. And
then, Gri will recognize this accented , and it will draw the accent on the axis label.

Perhaps the future default way of accomplishing this task is to use MULE support
directly. First, customize MULE using M-x customize-group RET mule setting the current
language environment (e.g. latin-1) and the default input method (e.g. latin-1-prefix).
Then, invoking M-x toggle-input-method (e.g. 〈C-\〉) toggles into a mode similar to the
iso-accents-mode minor-mode described above.

10.10.4 Adjustment Of Character Position

Micro-positioning is available within math-mode, via the symbols \! (which means go left
one thin-space) and \, (which means go right one thin-space). (A thin-space is 1/6 the
width of the letter “M”).

10.11 Adding new commands to Gri

Gri provides so-called "newcommands" as a sort of subroutine syntax on steroids.

10.11.1 Purpose of newcommands

Gri can be extended easily. Primitive commands (e.g. set x name) can be supplemented
with so-called "new commands." New commands are a little like subroutines other pro-
gramming languages. For example, you might find that you often draw filled curves with
a particular graylevel (say 0.5), and then return the graylevel to the previous value. This
requires you to do the following each time:

174 Gri

new .old_graylevel.
.old_graylevel. = ..graylevel..
set graylevel 0.5
draw curve filled to 0 y
set graylevel .old_graylevel.
delete .old_graylevel.

This gets a bit tedious, and it would obviously be nicer to just say something like
Draw my kinda curve

To make this shortcut, you’d tell Gri about the existence of a new command called Draw
my kinda curve, and tell it that the new command can be accomplished by the longer code
fragment written above.

Once you’ve learned how to make new commands, you are likely to use them a lot. The
following explains how you add new commands. For advice on programming style, etc.,
(Section 10.17 [Resource File], page 185).

10.11.2 How Gri parses commands

Whenever Gri reads a command line, it compares it with its list of commands. This list is
searched in this order: (1) the universal ‘gri.cmd’ file (Chapter 3 [Invoking Gri], page 7),
(2) your resource file (Section 10.17 [Resource File], page 185), if it exists, and then (3)
your command file itself. Gri stops searching when it finds a Gri command that matches
the command line. "Matching" means that the command line is identical in all words in a
Gri command, scanning from the left, until it encounters a word containing
• A quote (e.g. "string")
• A synonym name (e.g. \file)
• A variable name (e.g. .number.)
• An opening square bracket (e.g. [option])
• An opening brace (e.g. {a|b})
• A choice between two items (e.g. first|second)
• A variable-name with a & character immediately to the left (e.g. &.var.). This is

a signal that the variable may be changed inside the newcommand (Section 10.11.5.1
[The Ampersand Syntax], page 177).

• A synonym-name with a & character immediately to the left (e.g. &\syn). This is a
signal that the synonym may be changed inside the newcommand (Section 10.11.5.1
[The Ampersand Syntax], page 177).

When Gri finds a command that matches your command line, it assumes that this is
the intended command, and searches no further. This means that you must be careful
not to have your command hidden by other commands. For example, if your resource file
contained these lines, Gri would never execute the second new command, because calls to it
match the first command. To avoid this, you may either reverse the order of the definitions,
so that Gri will find the proper routine, or rename one of the routines.

‘Draw foo’
Draw a foo.
{
show "drawing a foo"

}
‘Draw foo bar’

Chapter 10: Programming in the Gri Language 175

Draw a foo bar.
{
show "drawing a foo bar"

}

Gri searches the ‘gri.cmd’ file first, so any new command that you create that clashes
with built-in commands will be ignored by Gri (Chapter 3 [Invoking Gri], page 7). Gri will
warn you of this, and proceed, ignoring your newer definition. To get around this, you can
use capital letters to begin the words of your new command. By convention, Gri never uses
capital letters in this way, so a clash is impossible (except with any similar command you
might have defined previously, such as in your ‘~/.grirc’ file).

10.11.3 Simple example of a new command

To make a new command called Show The Time insert the following into your ‘~/.grirc’
resource file or into your command-file somewhere near the top, or at least before you use
the command.

‘Show The Time’
New command to show the time of day.
{
show "\.time."

}

EXPLANATION:
• The name of the new command is enclosed in angled single-quote marks. The words of

the new command should begin with upper-case letters to prevent a name clash with
a present or future built-in Gri command. Formatting convention: Make sure that
the entire definition string, from the opening angled quote to the ending angled quote,
appears on one line. Otherwise Gri will give an error like

ERROR: Can’t extract syntax for new command

• Following the name line, you may optionally insert any number of lines which will
become the help information for the new command. See the file ‘gri.cmd’ for the
recommended stylistic conventions in writing help information (Chapter 3 [Invoking
Gri], page 7). If your help text includes an example that uses an opening brace ({)
you must escape the brace with a backslash, e.g. (\{).

• Following the help lines, if they exist, the body of the new command is given, sand-
wiched between a starting line containing an opening brace ({) as the only nonwhite
character, and an ending line containing a closing brace (}) as the only nonwhite char-
acter. Any valid Gri commands may be used in the body of the new command. It
is acceptable to use other new commands in the body. Recursion is also allowed – a
new command is allowed to call itself (although there is a limit on nesting, of perhaps
a thousand or so; this varies with the version of Gri). Formatting convention: It is
usual, but not necessary, to use an indentation level of 2 spaces in the body of the new
command.

The new command is invoked by Show The Time. Help for the command is found by help
Show The Time or help Show.

176 Gri

10.11.4 Complicated example of a new command

The following example from the global ‘gri.cmd’ file illustrates how to parse/check the
commandline (Section 10.5.5 [Local Synonyms], page 156), which is a good practice in any
code you expect to re-use. The first if statement checks that the word at is in the right
place (this would not have been checked by the syntax matcher, the word having followed
a string). The presence of the keyword cm is checked for, and user units or cm units are
used accordingly. Local variables are created (new) and then destroyed (delete) so that
this new command cannot affect outside code.

‘draw label whiteunder "\string" at .xleft. .ybottom. [cm]’
Draw label for plot, located with lower-left corner
at indicated (x,y) position (specified in user
units or in cm on the page). Whiteout is used
to clean up the area under the label. BUGS:
Cannot handle angled text; doesn’t check for
super/subscripts.
{

if {rpn "\.word4." "at" !=}
show "ERROR: 5th word must be ‘at’, not ‘\.word4.’"
show traceback
quit

end if
new .x. .y. .oldgray. .space.
if {rpn \.words. 7 ==}

.x. = {rpn \.word5. xusertocm}

.y. = {rpn \.word6. yusertocm}
else if {rpn \.words. 8 ==}

if {rpn "\.word7." "cm" !=}
show "ERROR: Require 8th word to be ‘cm’"
show traceback
quit

end if
.x. = \.word5.
.y. = \.word6.

else
show "ERROR: Require 7 or 8 words, not \.words."
show traceback
quit

end if
Coordinates now in cm. Next, white out a box
under the text (and .space. centimetres
beyond text), then draw label.
.space. = 0.1 # Space of 1mm
.oldgray. = ..graylevel..
set graylevel white
draw box filled \

{rpn .x. .space. -} \
{rpn .y. .space. -} \
{rpn .x. "\.word3." width + .space. +} \
{rpn .y. "M" ascent + .space. + } cm

Chapter 10: Programming in the Gri Language 177

set graylevel .oldgray.
draw label "\.word3." at .x. .y. cm
delete .x. .y. .oldgray. .space.

}

10.11.5 Altering command arguments – the & syntax

The Gri language permits a newcommand to change variables and synonyms passed as
arguments, using a syntax that is quite similar to that employed by the C++ language.

10.11.5.1 Overview of the & syntax

Normally the arguments to a newcommand are parsed into either numerical values or strings,
before execution is passed into the newcommand. This is a akin to the scheme called "call
by value" in some programming languages. Gri also provides a syntax, borrowed from C++,
that permits a newcommand to alter the contents of variable or synonym arguments.

The technique is simple. To permit a newcommand to modify an argument that is a
variable or a synonym, just put a & to the left of the item on the calling line. Then, within
the newcommand, the corresponding local synonym (i.e. \.word1., etc.) will behave as
though it were the instance of the original variable or synonym.

The & is placed to the left of the variable-name or synonym-name without intervening
space. For example foo &.var. &\syn tells the parser that the newcommand named foo
may possibly alter the values of the variable .var. and the synonym \syn, as they exist in
the calling context.

It is important to note that Gri pays very little attention to the & in a syntax-declaration
line. All it does is to note that the item to the right of the & is not a fixed word in the
newcommand being defined; this follows the usual rules for parsing newcommand syntax
(Section 10.11.2 [Parsing], page 174).

10.11.5.2 Example: doubling a variable

Consider the task of adding a fixed amount to a variable. If the variable we wish to double
is .x., we might write

‘double_a_particular_variable’
{

.x. = {rpn .x. 2 *}
}
.x. = 10
double_a_particular_variable

Code such as that presented above occurs in many applications. (Turn the multiplication
into an addition, and change .x. to ..ymargin.., and you’ll start to see the core of an
application that draws multiple graph panels, one above another.) However, the code is too
specific to be of much general use!

What if we want to double some other variable instead? The code below shows how to
do that.

‘double &.value.’
{

\.word1. = {rpn \.word1. 2 *} # line 3

178 Gri

}
.x. = 10 # line 5
double &.x.
.y. = 3.14
double &.y.

At line 3 Gri interprets the \.word1. to the left of the equals sign as a reference to the
variable that is set to the value 10 in line 5. Similarly, the \.word1. to the right of the
equals sign evaluates to 10, the value in the calling program.

Gri automatically determines whether an item is a variable or a synonym, and does the
correct thing. Thus, for example, if line 3 above were written as

\.word1. = "hello" # ERROR

an error would be reported, since double was called with a variable as an argument, and
variables cannot hold strings.

10.11.5.3 Example: manipulating a synonym

Synonyms are treated in the same way, as is illustrated in the following example.
Q: what does the following print?

‘add_a_dat &\filename’
{

\.word1. = {rpn "\.word1." ".dat" strcat}
}
\filename = "test"
add_a_dat &\filename
show "\filename"

A: it prints test.dat.

10.11.5.4 Nesting

One newcommand may call another, letting a deeply-nested newcommand alter values of
synonyms and variables that may otherwise be hidden behind new items of the same name.
This is done by using the & notation at each step. The following provides an example of
passing a variable through two levels of newcommands.
Q: what does the following print?

‘food critic &food’
{

\.word2. = "\.word2.s"
yummy &\.word2.

}
‘yummy &foods’
{

\.word1. = "\.word1. are tasty"
}
\a = "apple"
food critic &\a
show "\a"

A: it prints apples are tasty.

Chapter 10: Programming in the Gri Language 179

10.11.5.5 About new and delete

If new and delete are executed on local synonyms inside newcommands (e.g. new \.word1.)
they create and destroy variables and synonyms in the context of the calling program.

For example, consider the following.
Q: what does the following print?

‘poetry &\s’
{

new \s # line 3
\s = "rose"
\.word1. = "\.word1. is a \s" # line 5
delete \s # line 6

}
\s = "A rose " # line 8
poetry &\s
show "\s"

A: it prints A rose is a rose.
The key point here is that the instance of the synonym named \s in the calling program,

set in line 8, is modified by the poetry newcommand, in line 6. This modification involves
the use of a synonym, also named \s, that "lives" wholly within the newcommand, being
created in line 3 and destroyed in line 6.

10.11.5.6 Determining calling information

Newcommands may determine the name and the nesting level of changeable calling argu-
ments. To get the name, put a single ampersand after the backslash of the local synonym
of interest. To get the nesting level (0 for main program, etc.) put two ampersands after
the backslash.

‘NC &.var.’
{

show "\&.word1. (expect ’.a.’)"
show "\&&.word1. (expect 0)"

}
.a. = 1
NC &.a.

Note: neither of these items may be used an lvalue. That is, they may not be used to the
left of an equals sign. But you can always get around that by clever use of alias synonyms
(Section 10.5.4 [Alias Synonyms], page 155).

10.11.5.7 How Gri implements the & syntax

When the parser encounters an unquoted & followed immediately by the name of a variable
or a synonym, it converts the whole token (& plus name) into a specially-encoded string
that can be recognized inside newcommands. (This is only done if the & and the variable
name are not enclosed in double quotes.)

This specially-encoded string contains not just the name of the variable or synonym, but
also the current level of nesting of newcommands. In this way a newcommand can have

180 Gri

its own private versions of variables, created by new, that won’t be misinterpreted for the
identically-named variables in the calling program.

The format of these specially-encoded strings is #\bn\ba\bm\be\b:\bN \b_
\bl\be\bv\be\bl\b:\bL#\b, where N stands for the name of the variable/synonym, L
stands for the current level, and \b is the backspace character (hexadecimal 08 in the
ascii table). This string is designed to be strange enough that users are unlikely to use
it themselves. The coding scheme is not entirely arbitrary, however; note that if the
backspace characters are ignored the result has the form name:N_level:L. It’s also worth
noting that if this string were printed on a terminal that erased characters when typing
backspaces the result would be of the form N_L.

Examples: .a. in the main program (i.e. at level 0) encodes to #\bn\ba\bm\be\b:\b.a.
\b_ \bl\be\bv\be\bl\b:\b0#\b and &\my_syn inside a newcommand called by the
main program (i.e. at level 1) encodes to #\bn\ba\bm\be\b:\b\my_syn \b_
\bl\be\bv\be\bl\b:\b1#\b.

Inside a newcommand, Gri checks to see if builtin synonyms (e.g. \.word1.) hold
such specially-encoded strings. If so, then the appropriate versions of the variables are
used in preference to any variables that may have been newly created by new inside the
newcommand.

10.12 Hints for Gri Programming

Here are some hints for good Gri programs:
• Whenever working with grids (for contouring) or images, make use of the show grid

or show image commands. They will give you useful information about the statistics
(min/max/histogram) of the items.

• Use the operating system, not Gri, to manipulate your data. For example, if you have
a file whose first column is x times 100, and third is the arcsin of y, you could do:

open "gawk ’{print $1/100, sin($3)}’ |"
read columns x y

If you have x and y in a non-decimal geographical format (e.g. hour.minute-second
format), use the operating system to convert for you (Section 9.3.28 [Open], page 102).

• Use the pstack operator liberally in your rpn expressions to see what is going on
(Section 10.9 [rpn Mathematics], page 161).

• While developing programs, put a show columns statistics command after every
read column command, to check that the data have been read correctly.

• Development time can be minimized by limiting the number of data being processed.
For example, in a multi-panel plot, it is often necessary to try various alternatives
before aesthetic scales and page layout is achieved. The process can be speeded up by
limiting the number of data being processed, as shown below. (If Gri finds fewer data
in the file than specified, it will simply use the data that it found; so when the program
works, just change .n. into something large.)

.n. = 100 # 10000 for later

...
Panel 1
read columns .n. x y
...
Panel 2
read columns .n. x y

Chapter 10: Programming in the Gri Language 181

...

• Create new commands to do repetitive work.
• Use draw time stamp on all plots except for publication versions:

if !..publication..
draw time stamp

end if

• For multiple panels on one page, do delete x scale or delete y scale before each
new panel, so you will start afresh. Clearly identify code for particular panels with
comments. This reduces errors you might get if you shuffle things later.

• Use the ..num_col_data.. built-in variable to see how many data have passed the set
input data window data window in the last read columns command. The following
example shows how to avoid drawing an unwanted curve:

open \f
read columns x y
close
if ..num_col_data..
draw curve
draw label "\f" at \

{rpn ..xlast.. xusertocm 0.5} \
{rpn ..ylast.. yusertocm 0.2} cm

end if

• Use synonyms and query for filenames. This makes programs much more flexible. Note
that you can string synonyms together:

\dir = "~/EOS/iso0/"
query \file "Give file in directory \dir" ("1.dat")
open \dir/\file

It is also a good idea to give a restrictive list of possibilities in your query command,
to avoid complicated if commands later (Section 9.3.31 [Query], page 106).

• Use multiple draw title commands:
draw title "Atlantic water entering Arctic Ocean"
draw title "\.command_file. \.time."

• Use the query command to interact with the user (Section 9.3.31 [Query], page 106).
The results can be stored in variables and synonyms.

10.13 Debugging Gri Programs

Here are some hints for debugging Gri programs:
• If no data appear on an xy plot, insert show columns statistics or show columns

after the read columns command. It may be that you have fixed your axes, and that
the axes frame does not include the data.

• If you get an error message, rerun your Gri program using the -trace command-line
option, to see which line is causing the problem. This often reveals logic errors (e.g. in
(if statements). You may also turn tracing on or off at any point in your Gri program
by setting the built-in variable ..trace.. to 1 or 0. Many Gri users have the Gri
command aliased to be in trace mode by default.

• If Gri complains of a syntax error, consult the printed manual, one of the online man-
uals, or the online help facility (Section 10.2 [Online Help], page 146).

182 Gri

• Check the version number (printed at startup) to see if a new version of Gri has been
installed, and check the manual for known incompatabilities.

• Sprinkle show commands throughout your program, to see what’s happening. Even
when you are sure your program works, it is a good idea to embed show statements so
are they executed if the -debug flag is set:

if ..debug..
show "X=" .x. "and label is ‘\label’"

end if

• If your draw commands don’t draw anything, check to see whether you’ve fooled yourself
by enforcing an improper scaling; remove explict scaling (set x axis ...), clipping
(set clip), data selection windows (set input data window x|y) and missing values
(set missing value). Another trick is to read only a portion of the data set (read
columns 10 x y) and then print out all the values (show columns).

If you determine that the bug is in Gri, not in your program, please report the bug, so
that other users will not have the same hassle; (Section 15.2 [Reporting Bugs], page 227).

10.14 Error Messages

Gri error messages are in three types:
1. Operating system error messages, such as segmentation fault. These should never

appear, and indicate a bug in Gri. Please report these to the author (Section 15.2
[Reporting Bugs], page 227).

2. Internal Gri error messages. The message starts with the words FATAL error, and
quotes a file number and a line number, e.g.

FATAL error: startup.c:199: ...

Such errors indicate either a deficiency in your computer (e.g. insufficient storage space)
or an internal bug in Gri. If the message does not indicate running out of storage, please
report the error to the author (Section 15.2 [Reporting Bugs], page 227).
For fatal error messages on a unix system, Gri dumps core, unless you have turned
that feature off, with the ulimit -c 0 unix command in a startup file. This creates a
file called ‘core’, which can help you in diagnosing the Gri bug. If you have the gdb
debugger, just type gdb gri core and then type where to get a traceback stack. Please
email this with your other information about the Gri bug.

3. An indication that your commandfile is flawed, either in syntax or in meaning. These
messages end with a line indicating the offending line in your commandfile, e.g. the
command set x axis 0 1 -1 yields:

ERROR: ‘set x axis .left. .right. .incBig.’
has .incBig. of wrong sign

Bad command: ‘set x axis 0 1 -1 ’

Normally, such error messages do not indicate a flaw in Gri, but rather in your reason-
ing, so report them to the author only if you are very sure that a Gri bug must underly
them.

10.15 Missing data

Most Gri commands will ignore data points equal to a "missing value." For example, draw
curve connects only points which are not equal (to within 0.01 percent) of the missing value.

Chapter 10: Programming in the Gri Language 183

The curve has holes at missing data. Initially the missing-value is set to 1.0e22. You may
alter this value with set missing value .value.. The built-in variable ..missingvalue..
stores the current value of the missing-value.

Additionally, Gri will ignore anything it reads that is equal to the string NaN or Inf.
These are produced by matlab, C, and other programs when dividing by zero, etc.

Gri also ignores mathematical operations on data items which are equal to the missing
value. Thus, for example, if your missing value is -99 then the command x += 1 will not
change the values equal to -99 to -98, since this would have the side-effect of making the
datum no longer be considered missing.

10.16 Interaction Between Gri and Operating System

10.16.1 Using the OS from within Gri

Gri uses the operating system internally for things like paging through help information.
The operating system may be called within Gri commands, using a syntax borrowed

from the Bash unix shell. After substituting synonyms in the commandline, Gri scans for
dollar-parenthesis blocks (e.g. \$(system-command), replacing them with the textual result
of sending the indicated system-command to the OS. The replacements are done from left
to right in the commandline, starting at the deepest nesting level.

Often the dollar-parentheis syntax is used in title commands, to indicate the full path-
name of the Gri commandfile, e.g.

draw title "\$(pwd)/\.command_file."

In assignment to synonyms, expansion of dollar-parenthesis is not done. Thus the oper-
ating system is called twice on the second line below, and not at all on the first line; to see
this, run it as gri -s8 -t.

\dir = "\$(echo $MY_DIR)"
show "\$(head -1 \dir/MY_FILE)"

Syntax Note Dollar-parenthesis blocks must be prefixed with backslash to avoid confusion
with math expressions within strings, for example to avoid breaking draw label "(x,y)"
at 3 3 cm. This is an example of how TEX notation and unix shell notation collide.

Example It is a good idea to employ unix environment variables to name directories
containing data, so that Gri scripts will work unchanged even if the data are moved (so
long as the environment variables are altered), e.g.

Figure how many lines in a file
\dir ="$(echo DIRECTORY_WHERE_I_STORE_SOLAR_DATA)"
open "\dir/solar_data_file_name‘
...
open "\$(echo DIR_ANOTHER)/another_data_set"

Another method is to pass instructions to the operating system with the system command.
This discards output. Whatever follows the word system is first scanned for synonyms (but
not rpn expressions or variables); after replacement of any existing synonyms, the line is
passed directly to the operating system. Any results are printed on the terminal.

Frequently used system commands are awk, head, grep and sed. Examples:
• Here’s how to paste several files together to form a temporary file for plotting. (Notice

that a temporary file incorporating the PID of the job is created and later removed.)

184 Gri

system paste -d" " 1.dat 2.dat 3.dat > tmp.\.pid.
open tmp.\.pid.
read columns x y
close
system rm tmp.\.pid.

• Here’s how to plot each line in a file called ‘inp’ which has the string ; at the start of
the line.

system cat inp | grep -v "^;" | cat > tmp.\.pid.
open tmp.\.pid.
read columns x y
system rm tmp.\.pid.

• Here’s how to use the awk system command to create a tabulated function for plotting.

system awk \
’BEGIN { \

for (x=0; x<1; x+=0.1) { \
printf ("%f %f\n", x, sin(x)) \

} \
}’ \
> tmp.\.pid.

open tmp.\.pid.
read columns x y
close
system rm tmp.\.pid.
draw curve

This example is more cleanly written using the piping facility of the open command
(which automatically creates a temporary file, and destroys it when close is done)

open "awk ’BEGIN { \
for(x=0;x<1;x+=0.1) { \

print(x,sin(x)) \
} \

}’|"
read columns x y
close
draw curve

• Sometimes you need just a single output item from the operating system. In this
case, you can store the results from the operating system in a synonym by using the
\synonym = system ... assignment command.

• subroutine A related command is \synonym = tmpname, which stores in the synonym
the name of a temporary file created by the system. The file is created with the
tmpname system call, so it is guaranteed not to clash with any existing files. Typically,
the filename is something like ‘/usr/tmp/griAAAa1233’. In many cases you’ll want
to remove the file within Gri, once you’re done, and that can be done with unlink
(Section 9.3.51 [Unlink], page 141) or with a system rm -f command. A useful bit of
code is as follows

\file = tmpname
system ... SOME_SYSTEM_COMMANDS ... > \file
... use this new file for something ...
unlink \file

Chapter 10: Programming in the Gri Language 185

10.16.2 Using Gri from within the OS

This section only applies to unix systems.

Save the following into a file called ‘p’ and then make it executable using chmod. It runs
Gri on a named file, with the -yes flag set so that any query commands are automati-
cally answered in the affirmative, and then displays the results in a Ghostscript window.
(USAGE: p cmdfile.gri)

#!/usr/bin/sh
Run Gri, then plot in gs window
case $# in
1)

base=‘basename $1 .gri | sed -e s/.*,#‘
gri -yes $base.gri && ghostview $base.ps
;;

*)
echo "Proper usage: $0 cmdfile.gri"
;;

esac

10.17 Sample Resource File

The following shows a sample ‘~/.grirc’ resource file. Much of the code here is adding
new commands (Section 10.11 [Adding New Commands], page 173.)

Some folks like tics to point inwards ...
set tics in

Hey, I’m bored with Helvetica font, and
Palatino is a bit prettier than Times
set font to PalatinoRoman

Now for something a bit less trivial.
This lets me draw a set of y-values
against a single x-value, by e.g.
open xyyy.dat
draw curves time T1 T2 T3
where the first column of the file is
time, and the others are temperatures
at various sensors.
‘draw curves \xname \y1name ...’
Draw multiple y columns versus an x column. Assumes
that the datafile is open, and that x is in the first
column, with the y values in one or more following
columns.

The number of columns is figured out from the options,
as is the name of the x-axis, and the labels to be
used on each of the y curves.
{
NB. the 3 below lets us skip the words ’draw’

186 Gri

and ’curves’, and the name of the x-column.
.num_of_y_columns. = {rpn wordc 3 -}
if {rpn .num_of_y_columns. 1 >}
show "ERROR: ‘draw curves’ needs at least 1 y column!"
quit

end if

set x name {rpn 2 wordv}
set y name ""

Loop through the columns.
.col. = 0
while {rpn .num_of_y_columns. .col. <}
The x-values will be in column 1, with y-values
in columns 2, 3, ..., of the file.
.ycol. = {rpn .col. 2 +}
rewind
read columns x=1 y=.ycol.
At this point, you may want to change line thickness,
thickness, color, dash-type, etc. For illustration,
let’s set dash type to the column number.
set dash .col.
draw curve
draw label for last curve {rpn .col. 3 + wordv}
.col. += 1

end while
}

Chapter 11: Environment 187

11 Environment

Gri comes with a few ancillary programs that may be useful. Gri also provides a simple
scheme to use other system tools (e.g. awk). These are discussed here. And speaking of
discussing, this chapter ends with a note about a mail-list Gri discussion group.

11.1 Extra things provided with Gri

11.1.1 gri_merge – combine PostScript files

Merge separate PostScript files, created by Gri, into one page. To learn how it works, type
gri_merge -h at the system prompt, to see:

PURPOSE: Strings Gri PostScript files together.

BUGS: With old versions, of gri, make sure to match each ‘set clip
postscript on’ with a ‘set clip postscript off’.

USAGE (style 1):
gri_merge [OPTIONS] CxR a.ps b.ps ... > merged_file.ps

Merges the files onto one page, in ’C’ columns and ’R’ rows. The C*R
files are given in the order of words on a page. The page is
presumed to be 8.5x11 in size, as are all the input files, and the
input files are sized to fit, and kept in natural scale.

USAGE (style 2):
gri_merge [OPTIONS] xcm ycm enlarge a.ps [b.ps ...] > merged_file.ps

Where ‘enlarge’ is a scale factor applied after offsetting ‘xcm’ to
the right and ‘ycm’ upward.

EXAMPLE (style 2):
The following
gri_merge 2 12 .5 a.ps \

12 12 .5 b.ps \
2 2 .5 c.ps \
12 2 .5 d.ps > all.ps

produces 4 panels from gri plots done using margins and sizes
as specified in the following lines in a gri commandfile
set x margin 2
set x size 15
set y margin 2
set y size 15

The OPTIONS, available if your ’perl’ has ’getopts’ library, are:
-u graylevel -- set graylevel for underlay beneath panels, by default 0.75.

Values range from 0 (black) to 1 (white), although a value
of precisely 1 means do NOT draw underlay.

-b graylevel -- Set value for background under individual panels, again 0
for black to 1 for white, with 1 meaning no drawing.

-h -- Print this help message and quit.

188 Gri

11.1.2 gri_unpage – split pages into files

Given a multipage PostScript file, gri_unpage creates several new PostScript files, one for
each page. To learn how it works, type gri_unpage -h at the system prompt, to see:

PURPOSE: Chop multipage Gri PostScript file into one file per page.
USAGE: gri_unpage name.ps -- create files name-1.ps, name-2.ps, etc, one

for each page of name.ps.
gri_unpage -h -- print this help message

BUGS: 1. Bounding box is always 8.5x11 inches.
2. Assumes that all Gri fonts are used even if they aren’t.

11.2 Using System Tools With Gri

Using system tools to manipulate your data makes sense for several reasons. First, you may
be familiar with those tools already. Second, learning these tools will help you in all your
work.

11.2.1 Introduction

Each of the programs listed in the sections below is available for Unix. Some (e.g. Perl
and the Awk variant called Gawk) are available on other operating systems as well. Each
of these tools is fully documented in Unix manpages, so here I’ll just give an indication of
a couple of useful techniques you might want to use.

Bear in mind that these tools can do very similar jobs. For example, Awk can do much
of what Sed and Grep can do, but also a whole lot more. If you don’t know Sed or Grep, I
suggest you learn Awk instead. Then again, Perl can also do anything Gawk can do, and a
whole lot more! (For one thing, it is easier to work with multiple files in Perl.) In fact, Perl
is the most powerful of this list. If you know none of these tools, you might want to learn
Perl instead of the others. But Perl is more complicated for simple work than Awk is, so
the most reasonable path might be to learn both Awk and Perl.

For simple applications, you will probably want to use these tools in a piped open
command, e.g.

open "awk ’{print $1, $3/$2}’ MyFile |"

which creates a temporary file (automatically erased when Gri finishes) which contains the
output from running the system command that preceeds the pipe symbol (|) (Section 9.3.28
[Open], page 102).

(Here and in all the examples of this chapter, it is assumed that the user’s input file is
named ‘MyFile’.)

For more complicated appplications, you may use the Gri system command as follows.
system perl >tmp <<"EOF"
open(IN, "MyFile");
while(<IN>) {

($x, $y) = split;
print "$x", " ", cos($y), "\n";

}
EOF
open tmp

Chapter 11: Environment 189

read columns x y
draw curve
system rm -f tmp

Here a temporary file, named ‘tmp’, has been used to store the results of the calculation.
Note that this file was specifically cleaned up by the second system command. (Many folks,
including the author, would prefer to take the perl script out of the above and make it a
standalone executable script, calling it from Gri with the one-line form. But it is just a
matter of style.)

11.2.2 Grep

The most common application of Grep is to select lines matching a pattern, or not matching
a pattern. Here is how to skip all lines with the word "HEADER" in them:

open "grep -v ’HEADER’ MyFile |"
...

Note that Gawk and Perl do this just as easily.

11.2.3 Sed

Sed is normally used for simple changes to files. For example, if you have columnar data
which are separated with comma characters instead of whitespace, you could make it Gri
compatible by

open "sed -e ’s/,/ /g’ MyFile |"

Where the -e flag indicates that the next item is a command to Sed, in this case a command
to switch ("s") the comma character with the blank character, globally ("g") across each
line of the file. See also the overview of Perl.

11.2.4 Awk

Awk is great for one-liners. If your system lacks Awk, you can procure the GNU version,
called Gawk, from the web for free. For better or worse, Gawk is not fully compatible
with Awk. The good thing is that Gawk is pretty much the same on all operating systems,
whereas the installed Awk may not be. I use Gawk instead of Awk, for this reason and
because it is normally faster.

The main concept in Awk is of "patterns" and "actions." In the Awk syntax, actions
are written in braces following patterns written with no braces. (This will become clear
presently.)

Whenever a line in the data file matches the pattern, the action is done.
The default pattern is to match to every line in the file. This is done if no pattern is

supplied.
The default action is to print the line, and this is done if no action is supplied.
Here are a few examples. To skip first 10 lines of a file:

open "awk ’NR>10’ MyFile |"
read ...

Here the pattern was that NR (a special Awk variable for the number of the record, starting
with 1 for the first line of the file) exceeded 10. And the action was taken by default since
nothing was supplied between braces, to print this line.

190 Gri

To plot the cosine of the second column against the first column:
open "awk ’{print ($1, cos($2))}’ MyFile |"
read columns x y
draw curve

Here no pattern was supplied, so the action was done for every line.
Combining these two forms, then, and supplying both a pattern and an action, here is

how one might print the first and eighth columns of the file ‘MyFile’, but only for the first
10 lines of the file:

open "awk NR<=10 {print ($1, $8)} MyFile |"

11.2.5 Perl

Perl can do almost anything with your data, since it is a full programming language designed
to also emulate several Unix utilities.

In perl, as in other commands, the commandline switch -e indicates that a Perl command
is given in the next word of the command line. The commandline switch -p indicates to
print the line, after any indicated Perl actions have been done on it. Here, for example, is
how one would emulate a Sed replacement of comma by blank:

open "perl -pe ’s/,/ /g’ MyFile |"

Perl also has a commandline switch -a indicating that lines should be "autosplit" into
an array called $F. The first element of this array is $F[0]. Splitting is normally done on
white-space character(s), although this may be changed if desired. Here, for example, is
how to take the cosine of the second column of a file, and print this after the first column:

open "perl -pea ’print($F[0], cos($F[1]))’ MyFile |"

11.3 Gri Discussion Group

Before emailing to the Gri newsgroup, it is a good idea to consult the list of answers to
Frequently Asked Questions.

As of summer 2000, Gri traffic has been moved to the web-based discussion groups at the
SourceForge website http://gri.sourceforge.net about which little need be said here,
because the website is very easy to use.

Chapter 12: Editing Gri Files in GNU Emacs 191

12 Editing Gri Files in GNU Emacs

If you use the GNU Emacs (or XEmacs) text editor, writing Gri command files is made easier
with the Gri editing mode (gri-mode.el), written by Peter S. Galbraith <psg@debian.org>.

12.1 About Gri Mode

Gri mode has all the wonderful things you’ve come to expect from Emacs modes. Here’s a
brief overview of the features:
• It can complete partially typed commands, builtin variables and synonyms (gri-

complete, 〈M-Tab〉) and help you edit the syntax that was thus inserted for you (gri-
option-select, C-c C-o; gri-option-kill, C-c C-k).

• It can provide a short help synopsis concerning the command on the current line (gri-
help-this-command, C-c C-h), or load the info manual for that command (gri-info-
this-command, C-c C-i). It knows the list of all Gri commands, and can provide help
or info regarding any of them (gri-help, C-c M-h; gri-info, C-c M-i) using command
name completion at the prompt (〈Tab〉).

• All Gri commands are listed in a pull-down menu from the menubar, which you can
use to either enter the text of the selected command, or obtain help or info about it.

• It can help you find an unknown command by listing all containing a given word (gri-
apropos, C-c C-a).

• It fontifies your Gri code using colour coding.

• It indents if statements, loops, and so on (gri-indent-line, 〈Tab〉).

• It can let you run Gri and view its output without leaving the editor (gri-run, C-c
C-r). If an error is encountered, Emacs will rearrange the buffer so the cursor is on the
bad line of the Gri command-file.

• If you’ve already run Gri, and therefore have a PostScript output file, the mode will
let you view that file (gri-view, C-c C-v) even if that file is compressed.

Thus one never has to leave Emacs; type C-c C-r to run Gri, and if there is no error, the
graph comes up automatically. If there was an error, gri-mode will move editing point to
the line with the error and display the error message. Given that the mode can complete
partially typed commands, this means a substantial saving in development time.

Inside gri-mode, type C-h m for help on the mode, including a list of all commands and
key definitions.

12.2 Gri-mode screenshots, what it looks like.

In the first screenshot, the user has entered the text set font and has pressed 〈M-Tab〉 twice
to see the list of possible completions. The ‘*Completions*’ buffer is displayed in a separate

192 Gri

frame because the user is using the ‘framepop.el’ add-on package. A similar effect can be
obtained using special display buffers in Emacs.

Chapter 12: Editing Gri Files in GNU Emacs 193

Here, the user has selected the command set font to and, forgetting what valid font
name could be used, then invoked C-c C-h to get help about that command. The user
found the needed information and finished typing in ‘Helvetica’.

194 Gri

Here we see the user cascading through the Gri commands pull-down menu until draw
axes is reached.

Chapter 12: Editing Gri Files in GNU Emacs 195

With the output previewed in a gv window after pressing C-c C-v, the user is ready to
print the file using a pull-down menu.

196 Gri

12.2.1 Screenshot 1

In the first screenshot, the user has entered the text set font and has pressed 〈M-Tab〉 twice
to see the list of possible completions. The ‘*Completions*’ buffer is displayed in a separate
frame because the user is using the ‘framepop.el’ add-on package. A similar effect can be
obtained using special buffers in Emacs.

12.2.2 Screenshot 2

Here, the user has selected the command set font to and, forgetting what valid font name
could be used, then invoked C-c C-h to get help about that command. The user found the
needed information and finished typing in ‘Courier’. Meanwhile, an idle timer displays the
default setting for this command in the minibuffer after a few seconds of inactivity.

12.2.3 Screenshot 3

Here we see the user cascading through the Gri commands pull-down menu until draw axes
is reached. This menu can be used to display Info (or help) about a given command, or to
insert the selection. The default is Info. This menu is a good way to browse for a command
when you don’t exactly remember its name.

12.2.4 Screenshot 4

With the output previewed in a gv window after pressing C-c C-v (or pressing the gv icon
in the toolbar, or selecting it from the Perform pull-down menu), the user is ready to print
the file, here using the Perform pull-down menu.

12.3 Installing gri-mode.el, the nuts and bolts.

The Emacs ‘gri-mode.el’ file is now bundled with gri, so odds are you already
have it. If not, you will find it at gri’s web site http://cvs.sourceforge.net/cgi-
bin/viewcvs.cgi/gri/gri/gri-mode.el

The following installation steps appear a bit complicated. That’s only because gri has
changed how it gets installed a few times, and gri-mode.el works with all of these various
methods. If you use gri from a Linux package (Debian or Red Hat) or if you compiled it
yourself using the default configuration, you won’t need to do much.

To install ‘gri-mode.el’, follow these 4 steps. If gri-mode is already installed, you can
skip the first two steps and move on to the last two, in which you tell Emacs that you’d like
to use Gri mode when you edit files that end in ‘.gri’, the Gri suffix. (Actually, if you’re
using Debian linux, you can skip all of these steps since the system will assume that you
want gri-mode if you’re editing a Gri file.)

12.3.1 Placing gri-mode.el where Emacs can find it.

(Those using gri from gri’s RPM package, a Debian package or a Red Hat package users
can skip this, as it is done for them)

Chapter 12: Editing Gri Files in GNU Emacs 197

Extra ‘.el’ files like ‘gri-mode.el’ that are not part of Emacs should be stored in a
directory where Emacs will find them when you ask it to load them. The files should
therefore be found in Emacs’ load-path. To see the directory list currently in the load-path,
do this in Emacs:

C-h v load-path

If you have access to system directories, put gri-mode.el in a site-lisp directory, such as
‘/usr/local/share/emacs/site-lisp/’ That way all users will have access to the files.

If you don’t have access to a site-lisp directory (e.g. you have only a user account),
then create a directory where your extra ‘.el’ files will be stored and add it to Emacs’
load-path. For example, say you created the directory ‘~/emacs’ and stored gri-mode.el
there, you would then put this near the top of your ‘~/.emacs’ file:

(setq load-path (cons "~/emacs" load-path))

12.3.2 Telling gri-mode where gri resides

(Those using gri from gri’s RPM package, a Debian package or a Red Hat package users
can skip this, as it is done for them)

You may skip this section if gri is installed on your system as ‘/usr/local/bin/gri-2.12.18’
and ‘/usr/local/share/gri/2.12.18/gri.cmd’ (the default when compiling gri yourself).
If not, then you may need to set the Emacs variable gri*directory-tree in a startup file
such as in your ‘~/.emacs’ file.

The Emacs variable gri*directory-tree is used to configure gri-mode to tell it where
Gri is installed on your system. For the default gri installation paths used in this gri
release, gri-mode expects to find the gri executable and the file gri.cmd as: gri*directory-
tree/2.12.18/gri.cmd and /usr/local/bin/gri-2.12.18 where gri*directory-tree is
by default set to ‘/usr/local/share/gri/’.

If you have only one version of gri installed on your system, gri-mode will also look to
find ‘gri.cmd’ and the gri executable like so:
1. Gri executable in the PATH, with startup file ‘gri*directory-tree/gri.cmd’.

2. Gri executable in the PATH, with startup file ‘gri*directory-tree/lib/gri.cmd’.

3. Gri executable gri*directory-tree/bin/gri, with startup file gri*directory-
tree/lib/gri.cmd.

However, gri-mode was designed to support, and ease the use of, multiple installed
versions of gri. To use this feature, you must use the gri version number as a directory
name under the gri*directory-tree path, like this:

gri*directory-tree/VERSION/bin/gri
gri*directory-tree/VERSION/lib/gri.cmd

(e.g. ‘/opt/gri/2.040/bin/gri’ and ‘/opt/gri/2.040/lib/gri.cmd’ with
gri*directory-tree set to "/opt/gri")

or without the lib and bin subdirectories if the executable is found in the PATH
named like ‘gri-VERSION’ (This is the way Debian packages are set up): the file
‘gri*directory-tree/VERSION/gri.cmd’ and the ‘gri-VERSION’ executable in the
PATH (e.g. ‘/usr/share/gri/2.1.18/gri.cmd’ and ‘/usr/bin/gri-2.1.18’ with
gri*directory-tree set to "/usr/share/gri")

Important note: You may have more than one tree and make a list of them:
(setq gri*directory-tree ’("/opt/gri/" "/usr/share/gri/"))

198 Gri

Examples:

1. If you use a RedHat package installed like:
/usr/bin/gri
/usr/share/gri/gri.cmd

then you’d also use:
(setq gri*directory-tree "/usr/share/gri/")

but gri-mode would know of only one installed version of gri.
2. If you use a Debian GNU/Linux installation like:

/usr/bin/gri -> /usr/bin/gri-2.1.18
/usr/share/gri/2.1.18/gri.cmd

then you’d use:
(setq gri*directory-tree "/usr/share/gri/")

Note that all gri binaries must exist in the path with version number suffixes (e.g.
‘gri-2.1.18’) since there is no ‘/usr/share/gri/2.1.18/bin/’ directory (using a sim-
ilar structure to ‘opt/gri’ below) where gri-mode can find the binary corresponding
to a given version number.

3. If you had multiple versions of Gri installed like so (this reflects the installation paths
used in older gri releases):

/opt/gri/2.040/bin/gri
/opt/gri/2.040/lib/gri.cmd
/opt/gri/2.041/bin/gri
/opt/gri/2.041/lib/gri.cmd

then you’d use:
(setq gri*directory-tree "/opt/gri/")

12.3.3 Telling emacs to load gri-mode

(Those using a Debian package can skip this, as it is done for them)
To tell emacs to use this mode with ‘.gri’ files, you can load gri-mode whenever a new

emacs session is starting by adding the following line to your ‘~/.emacs’ file:
(require ’gri-mode)

This is a good method when you only start emacs once a week and use it for every file
you edit (as you should).

If you startup a fresh emacs every time you edit then you probably only want to load
gri-mode into emacs when you need it. In that case, instead of the require statement
above, add the following lines to your ‘~/.emacs’ file:

(autoload ’gri-mode "gri-mode" "Enter Gri-mode." t)
(setq auto-mode-alist (cons ’("\\.gri$" . gri-mode) auto-mode-alist))

The first line tells Emacs that it will find out what it needs to know about running
the command M-x gri-mode by loading the file ‘gri-mode.el’. The second line tells it to
run the command M-x gri-mode when a file with extension ‘.gri’ is visited (thus using
gri-mode with all those files).

12.3.4 Extra user configuration of gri-mode

All users should do this at some time.

Chapter 12: Editing Gri Files in GNU Emacs 199

At this point, gri-mode should start up when you edit a gri file. You may optionally
customize gri-mode by:
1. using the Custom interface (see the Help or Gri-Help menu or run the command M-x

gri-customize), or

2. manually setting variables in your ‘~/.emacs’ file. These are briefly described by typ-
ing C-h m while in gri-mode. Then, for further infomation, use emacs’ describe-
variable command, bound to C-h v. For example, for more information about the
gri*WWW-program variable, you’d type C-h v gri*WWW-program (note that emacs does
〈Tab〉 completion, so pressing the 〈Tab〉 key after typing-in gri will display all gri related
variables.)

12.4 Major Gri-mode commands.

This section describes the major gri-mode commands, briefly showing how they can increase
your productivity.

12.4.1 How gri-mode names Gri commands

A major feature of Gri mode is the completion of partially typed commands. Let’s examine
how gri-mode decides to name gri commands. A name is determined by removing bracketed
options from the syntax line of a given command. This is different from what the gri parser
does. In this way, the gri command

draw label "\string" [centered|rightjustified] at .x. .y. [cm] [rotated .deg.]

is named by gri-mode simply draw label at. Note how the ‘at’ stays in the name because
it is not optional. So when you see draw label at in gri-mode’s menus or prompts, you are
more likely to associate the name with what the command actually does.

12.4.2 Possible completions of gri command names

When you press 〈M-tab〉 to complete a command name (or a variable or synonym name as
described below), gri-mode will expand it as much as it can and do nothing further. If
you type in nothing more and insist by using gri-complete (〈M-tab〉) again, gri-mode will
respond by showing all possible completions in the ‘*completions*’ buffer. In this way
you can use gri-complete word-by-word to abbreviate commands without ever displaying
completions, like you would for file completion in emacs or bash.

If a completion is ambiguous, but could be exact, invoke gri-complete a second time to
complete it. e.g.

sh〈M-tab〉

expands to
show

and informs you that 12 possible completions exists; then
show〈M-tab〉

will display these completions in the completions buffer; then typing 〈M-tab〉 again forces
completion to a complete but not unique possibility:

show .value.|{rpn ...}|"\text" [.value.|{rpn ...}|text [...]]

200 Gri

Completions are shown immediately (without invoking gri-complete again) if the com-
pletions window is already displayed or if there are 3 possibilities or less. In this case they
are displayed in the minibuffer.

Note: The ‘*completions*’ window is deleted after a command is fully completed. gri-
complete uses its own ‘*completions*’ buffer, which is not displayed in the buffer-list to
avoid clutter.

12.4.3 Command name abbreviation

gri-mode uses command name abbreviations in a non-Unix way in that all words that
compose the command name may be abbreviated (and not only the word preceding the
cursor). For example, one can type in

dr x a〈M-tab〉

and it will expand1 all the words to
draw x axis [at bottom|top|{.y. [cm]} [lower|upper]]

This is reminiscent of VMS, which the author was used to when gri-mode.el was initially
created. It’s likely that a gri-mode.el rewritten from scratch wouldn’t have this feature since
it’s not part of the Unix mindset.

12.4.4 Variable (and synonym) completion

It’s also possible to do 〈M-tab〉 completion on gri builtin variable and synonym names while
editing a command. Simply type in the leading . (dot) or \ (slash) character and invoke
completion with 〈M-tab〉.

For example,
..x〈M-tab〉

displays a completions buffer listing the possible completions:
..xmargin.. ..xsize..
..xleft.. ..xright..
..xlast..

Typing in an extra m will complete to ..xmargin.. and the following help information will
be displayed in the minibuffer:

margin to left of axis area. Default is 6 cm.

12.4.5 Editing the syntax output by gri-complete

You might wonder what to do with all the bracketed code left behind by gri-complete. It
certainly won’t go through the gri parser without error, so you have to edit it out.

The tools provided in gri-mode are gri-option-select (C-C C-o) and gri-kill-
option (C-C C-k) to narrow in on a particular gri command, given a syntax description left
on the line by gri-complete. The cursor location is used to decide which gri command(s)
to narrow to.

For example, if gri-complete is used on the line ‘dr x a’, the result will be a line like
draw x axis [at bottom|top|{.y. [cm]} [lower|upper]]

This is the gri way of describing many commands at once. The above syntax description
is a shortcut formulation for all of:

Chapter 12: Editing Gri Files in GNU Emacs 201

draw x axis
draw x axis at bottom
draw x axis at bottom top
draw x axis at bottom bottom
draw x axis at top
draw x axis at top top
draw x axis at top bottom
draw x axis at .y. cm
draw x axis at .y. cm lower
draw x axis at .y. cm upper

The gri-option-select (C-C C-o) command provides easy navigation to select one of
these commands. The narrowing process is governed by the cursor position. For example,
to get the command narrowed down to

draw x axis at bottom [lower|upper]

place the cursor somewhere in the word ‘bottom’ and invoke gri-option-select. To
complete the narrowing process, selecting

draw x axis at bottom lower

move the cursor to some place in the word ‘lower’ and invoke gri-option-select again.
On the other hand, to get

draw x axis at bottom

you would have put the cursor over either the word ‘lower’ or ‘upper’, and invoke gri-
kill-option (C-C C-k) instead.

You might want to practice using this example to learn how to do it. If you make a
mistake, note that the normal Emacs undo works.

12.4.6 User commands with gri-mode

User gri commands defined in ‘~/.grirc’ (Section 10.17 [Resource File], page 185) or at the
beginning of a gri file can also be used with gri-complete. Note that user commands are
added from the current buffer whenever ‘gri-mode’ is invoked. They may override previous
user commands, but not gri system commands.

12.4.7 Inserting gri code fragments in Emacs

Since gri version 1.063, gri has special commands that begin with a question mark ‘?’. These
special commands have no options, and are composed only of standard gri commands. Their
purpose is to provide a short-cut for entering many lines of gri at once (e.g. bits of sample
code about contouring grids, or your own preamble which you use at the time to set fonts
and line widths).

gri-complete acts in a special way with these commands, by replacing the abbreviated
name which you are completing by all the lines contained within the gri command.

The user is allowed to define new fragments in ‘~/.grirc’, and also to override the gri
system fragments. You can therefore fine-tune gri’s fragments to your taste. To see the
names of all gri fragments, type in a question mark at the beginning of a line in a gri buffer
and press 〈M-Tab〉 twice to gri-complete it and display possible choices. The gri commands
used to replace them are found in the ‘*gri-syntax*’ buffer.

202 Gri

12.4.8 Info interface for help on current command

The Info system is built into Emacs (C-h i), and provides an easy method of navigation
on-line help (including this manual). We suggest that you install the gri info files on your
system (they are already installed with packaged versions of gri in Debian or Red Hat
formats).

Not only will Info (C-h i) be able to navigate through all of gri’s inline manual, but
gri-mode’s function gri-info-this-command (C-c C-i) will display the correct info page
about the gri command being edited on the current line.

Additionally, gri-mode has the command gri-info (C-c M-i) which will prompt you
(using 〈tab〉 completion) for any command to list Info about. There’s also a menu-bar pull-
down menu which lists all gri commands, and you can get to Info from that too.

12.5 Other features of gri-mode

• IMenu support: IMenu is a GNU/Emacs package used to source code files. It can
be setup for a particular mode to list a menu of function definitions and variable
declarations. In gri-mode, the IMenu is available from the menubar and provides links
to new command declarations as well as value settings for variables and synomyns.

• Toolbar support: XEmacs21 and Emacs-21 have support for a toolbar (a set of iconic
buttons that are shortcuts for commands), however the two editors don’t not have
compatible toolbar setups. Currently gri-mode only defines a single icon for XEmacs
(to run gri on the current buffer) and defines three for GNU/Emacs (to run gri, to view
the postscript file, and to lookup Info about the command on the current line).

• Idle Help: When GNU/Emacs sits idle with the cursor on a command line, it looks up
any defaults the command may have and displays the information in the minibuffer.
For example, sitting on a line that says set font size 10, it will display set font
size: default is 12 point in variable ..fontsize...

12.6 Dealing with many Gri versions, gri-mode handles it.

Earlier we explained that you might have many versions of gri installed on your system
(Section 12.3 [Installing gri-mode.el], page 196). You may use gri-mode to access these
various versions with the following gri-mode commands:
• gri-set-version: Tells gri-mode to use a given version as the default for all your

gri files. Tab completion is available listing all available versions (if they are not
all listed, that means that the Emacs variable gri*directory-tree is not correctly
set (Section 12.3 [Installing gri-mode.el], page 196)). Your selection is stored in the
file ‘~/.gri-using-version’ and is remembered across editing sessions. If you se-
lect default as your answer, gri-mode reverts to using the default version of gri as
installed on your system (which may change after you update it) and deletes the
‘~/.gri-using-version’ file.

• gri-set-local-version: Tells gri-mode to use a given version of gri this gri file (the
one currently being edited when you invoke the command). Tab completion is again
available to list all available versions. Your selection overrides the default version
selected by gri-set-version for this file, and is stored as an Emacs variable at the
bottom of the gri file. It is remembered across editing sessions. If you select default

Chapter 12: Editing Gri Files in GNU Emacs 203

as your answer, gri-mode reverts to using the default version of gri as selected by
gri-set-version and deletes the Emacs variable setting at the bottom of the gri file.

12.7 Filename arguments when running gri

Usually, gri is run specifying only a gri command file to process, which lends itself well to
the gri-mode command gri-run. But Gri can be also invoked from the command line using
optional arguments, usually filenames but not necessarily, e.g.

$ gri somefile.gri datafile.dat datafile2.dat ...

or
$ gri somefile.gri *.dat

The arguments are accessed with RPN operators ‘argc’ and ‘argv’ (Section 10.9.5 [Unary
Operators], page 164).

gri-mode provides a method to set the arguments (usually filenames) to use when gri-
run is called in a specific gri script. Use the gri-mode command gri-set-command-
postarguments to setup a string that gri-mode will use, and the gri-mode command
gri-unset-command-postarguments to clear it. For ease-of-use, these commands are
made available from the menubar under the Perform -> Run Settings entries. The spec-
ified string will be stored in the locally-defined (aka buffer-local) variable gri-command-
postarguments and will be written within a gri comment at the bottom of the file such
that Emacs remembers it across editing sessions.

204 Gri

Chapter 13: History of Gri Versions 205

13 History of Gri Versions

Gri, like many modern software projects, has two “streams” of development running side by
side. One is called “stable,” the other “unstable.” Most users should use the stable stream,
which has been well tested. (The unstable version is for users who wish to try out new
features that are under development.)

Stable versions always have an even number as the middle number in their version
designation, e.g. 2.6.0, while unstable versions always have an odd number there, e.g.
2.7.0. This middle number indicates a sort of family of related releases. Within a stable
stream, all versions sharing a given middle number have the same features; new releases are
made only to fix bugs. Thus, version 2.6.1 fixed bugs in version 2.6.0.

To learn more about the bugs, and their resolution, visit the bugs page at
gri.sourceforge.net and adjust the "status" menu to read "closed".

13.1 Stable Stream

In any given stable stream, only the version with a 0 as the last number in the triplet has
new features; the later versions only correct flaws. For example, version 2.6.0 offers new
features compared to any of the 2.4.x versions, but 2.6.1 differs only in the fixing of bugs.

13.1.1 Version 2.12

13.1.1.1 Version 2.12.18 [2008 Sep 8 International Literacy Day]

Bug Fixes

• Improve security of temporary-file handling.
• Fix SourceForge bug #1985862 . . . SVG output had axis linewidth equal to curve line

width.

13.1.1.2 Version 2.12.17 [2008 May 29 Oak Apple Day (England)]

New Features

• Add GNU readline support so that interactive mode will have history, command editing,
etc.

Bug Fixes

• Fix SourceForge bug #1913577 . . . superscripts did not end correctly, if preceeded by
an inline {} block.

• Fix SourceForge bug #1761562 . . . y axis name printed upside down, for log axes in
which user specified a high values at the bottom end of the axis

13.1.1.3 Version 2.12.16 [2007 Jul 20 anniversary of the first moon
landing]

Bug Fixes

http://sourceforge.net/tracker/?func=browse&group_id=5511&atid=105511
http://en.wikipedia.org/wiki/International_Literacy_Day
http://sourceforge.net/tracker/index.php?func=detail&aid=1985862&group_id=5511&atid=105511
http://en.wikipedia.org/wiki/Oak_Apple_Day
https://sourceforge.net/tracker/?func=detail&atid=105511&aid=1913577&group_id=5511
https://sourceforge.net/tracker/index.php?func=detail&aid=1761562&group_id=5511&atid=105511
http://en.wikipedia.org/wiki/Apollo_11
http://en.wikipedia.org/wiki/Apollo_11

206 Gri

• Fix Debian bug #130802 . . . postscript problem in landscape mode, refreshed in gv
viewer

• Fix Debian bug #434010 . . . set page landscape requires set page size first, but it
should really default to something reasonable instead.

13.1.1.4 Version 2.12.15 [2007 Apr 16 celebration of birthday of
Muhammad]

Bug Fixes

• Fix SourceForge bug #1700978 . . . html concept index mostly broken
• Fix SourceForge bug #1698924 . . . box plots show missing data
• Fix Debian bug #417217 . . . will not compile in GCC 4.3
• Fix SourceForge bug #1698116 . . . poorly-positioned name of RHS y-axis

13.1.1.5 Version 2.12.14 [2007 Jan 08: Coming-of-Age Day
(Japan)]

Bug Fixes

• Fix SourceForge bug #1630768 . . . Fix to segfault in clipped images (a bug that may
have developed after version 2.13.3)

13.1.1.6 Version 2.12.13 [2006 Nov 06: Constitution Day
(Tajikistan)]

Bug Fixes

• Fix SourceForge bug #1591475 . . . Fix to compile in Solaris CC
• Fix SourceForge bug #1591062 . . . Fix to compile in OpenBSD

13.1.1.7 Version 2.12.12 [2006 July 16: Yellow Pigs Day]

Bug Fixes

• Fix SourceForge bug #1523033 . . . Malloc error (freeing something already freed?)
• Fix SourceForge bug #1523032 . . . create columns from function bug, if there is an

existing directory called tmp.
• Fix SourceForge bug #1491105 . . . set x axis labels had no affect for log axes (same

for y)

13.1.1.8 Version 2.12.11 [2006 Mar 30: Hindu New Year]

Bug Fixes

• Fix SourceForge bug #1449546 . . . x axis limits not correctly inferred from set x grid
(same for y).

13.1.1.9 Version 2.12.10 [2006 Jan 26: Australia Day]

Bug Fixes

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=130802
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=434010
http://en.wikipedia.org/wiki/Mawlid
http://en.wikipedia.org/wiki/Mawlid
https://sourceforge.net/tracker/index.php?func=detail&aid=1700978&group_id=5511&atid=105511
https://sourceforge.net/tracker/index.php?func=detail&aid=1698924&group_id=5511&atid=105511
https://sourceforge.net/tracker/index.php?func=detail&aid=1698116&group_id=5511&atid=105511
http://en.wikipedia.org/wiki/Seijin_shiki
http://en.wikipedia.org/wiki/Seijin_shiki
https://sourceforge.net/tracker/index.php?func=detail&aid=1630768&group_id=5511&atid=105511
http://en.wikipedia.org/wiki/Public_holidays_in_Tajikistan
http://en.wikipedia.org/wiki/Public_holidays_in_Tajikistan
https://sourceforge.net/tracker/index.php?func=detail&aid=1591475&group_id=5511&atid=105511
https://sourceforge.net/tracker/index.php?func=detail&aid=1591062&group_id=5511&atid=105511
http://en.wikipedia.org/wiki/Yellow_Pig%27s_Day
https://sourceforge.net/tracker/index.php?func=detail&aid=1523033&group_id=5511&atid=105511
https://sourceforge.net/tracker/index.php?func=detail&aid=1523032&group_id=5511&atid=105511
https://sourceforge.net/tracker/index.php?func=detail&aid=1491105&group_id=5511&atid=105511
https://sourceforge.net/tracker/index.php?func=detail&aid=1449546&group_id=5511&atid=105511

Chapter 13: History of Gri Versions 207

• Fix SourceForge bug #1408259 . . . PostScript file contained private information. This
was fixed by adding new commandline arguments -private and -no_private, the
former of which (the new default) means to not include the user’s name, the invocation
arguments, or the command-file contents (Chapter 3 [Invoking Gri], page 7).

• Fix SourceForge bug #1285180 . . . NaN was mishandled. (The bug may have arisen
in version 2.12.7 or thereabouts.)

• Port to the FreeBSD operating system, with help from Christopher Illies and Roman
Neuhauser.

• Fix SourceForge bug #1217273 . . . missing some version numbers within docs
• Fix SourceForge bug #1196613 . . . user-supplied x-axis labels can run offscale (fix for

y-axis later...)
• Fix SourceForge bug #1198341 . . . x-axis labels incorrectly rotated (sometimes)
• Fix SourceForge bug #1199280 . . . warning about malloc for RPN assignments
• Fix SourceForge bug #1196115 . . . gri_unpage and gri_merge mis-installed
• Fix SourceForge bug #1153209 . . . Emacs mode incompatible with new version of gv

PostScript viewer
Fix SourceForge bug #1101172 . . . gri -help incorrectly stated meaning of last argu-
ment(s)

• Fix SourceForge bug #835711 . . . draw gri logo fails.
• Fix SourceForge bug #1098269 . . . problem compiling on AMD64 machine. (Solution

provided by Andreas Jochens, a Debian user.)
• Fix SourceForge bug #867515 . . . problem with junk appearing in images.
• Fix SourceForge bug #875881 . . . problem compiling with gcc 2.95.3 compiler.

13.1.1.10 Version 2.12.9 [2005 Jan 6: Feast of Epiphany]

Bug Fixes

• Fix SourceForge bug #1094087 . . . set path to incorrectly parsed colon-separated
paths

• Fix SourceForge bug #1085788 . . . image *=, image /=, image ^=, and image _= all
gave incorrect results

• Fix SourceForge bug #1084123 . . . does not compile in fink
• Fix SourceForge bug #676767 . . . on fink systems, help does not work

13.1.1.11 Version 2.12.8 [2004]

Bug Fixes

• Fix SourceForge bug #1019141 . . . draw arc ignores the present pen color
• Fix SourceForge bug #997741 . . . PostScript broken on images with y-axis decreasing,

and enclosed by PostScript clipping
• Fix SourceForge bug #978822 . . . documentation wrong on set path to

• Fix SourceForge bug #932203 . . . misplaced labels caused by set x axis labels

• Fix SourceForge bug #928277 . . . draw polygon should take cm and pt units
• Fix SourceForge bug #930259 . . . fix draw arc’s drawing of an extra line (thanks for

the fix, Wolfgang Voegeli)

https://sourceforge.net/tracker/?func=detail&atid=105511&aid=1408259&group_id=5511
http://sourceforge.net/tracker/index.php?func=detail&aid=12851803&group_id=5511&atid=105511
http://www.freebsd.org/
http://sourceforge.net/tracker/index.php?func=detail&aid=1217273&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=1196613&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=1198341&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=1199280&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=1196115&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=1153209&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=1101172&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=835711&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=1098269&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=867515&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=875881&group_id=5511&atid=105511
http://en.wikipedia.org/wiki/Epiphany_%28feast%29
http://sourceforge.net/tracker/index.php?func=detail&aid=1094087&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=1085788&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=1084123&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=676767&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=1019141&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=997741&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=978822&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=932203&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=928277&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=930259&group_id=5511&atid=105511

208 Gri

• Fix SourceForge bug #923719 . . . draw curve overlying ignored the effect of set
dash

• Fix SourceForge bug #914125 . . . offpage points in axes were reported as having been
drawn by draw curve.

• Fix SourceForge bug #877613 . . . help (and other commands using temporary files)
does not work in OSX/Fink version.

• Fix SourceForge bug #874483 . . . state save doesn’t keep track of dash settings.
• Fix SourceForge bug #873245 . . . inaccurate times are given in the warnings about

slow operations on OSX platform (days are reported instead of seconds)
• Fix SourceForge bug #871477 . . . the ‘missing value’ feature should not be the default.

The solution involved adding a new command set missing value none, which is now
the default.

13.1.1.12 Version 2.12.7 [2003 Sep 4]

Bug Fixes

• Fix SourceForge bug #800022 AKA Debian bug #208589, . . . did not build on some
Debian platforms because it was based on an old version of automake.

13.1.1.13 Version 2.12.6 [2003 Sep 1: Labour Day]

New Features

• Add age RPN function, for testing file ages ([age-rpn-operator], page 164).

Bug Fixes

• Fix SourceForge bug #773850 . . . bounding-box is increased by draw symbol even if
(rectangular) postscript clipping is active.

• Fix SourceForge bug #760130 . . . Solaris cannot compile with 〈C-l〉 in Makefile.
• Fix SourceForge bug #743134 . . . bounding box not limited by set clip postscript
• Fix SourceForge bug #750561 . . . during compilation, make rebuilds HTML docs even

if up-to-date

13.1.1.14 Version 2.12.5 [2003 May 19: Victoria Day]

New Features

• Apply a patch provided Kawamura Masao, relating to (a) errors in the documentation
of file locations and (b) a programming error hidden behind an unset precompiler flag.

• Add hexadecimal colornames ([pen-color-hexadecimal], page 18).

Bug Fixes

• Fix SourceForge bug #739761 . . . draw time stamp named the command-file incor-
rectly

• Fix SourceForge bug #720607 . . . the emacs mode looked for html documentation files
in an incorrect location on linux/redhat systems

13.1.1.15 Version 2.12.4 [2003 Apr 06]

Bug Fixes

http://sourceforge.net/tracker/index.php?func=detail&aid=923719&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=914125&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=877613&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=874483&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=873245&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=871477&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=800022&group_id=5511&atid=105511
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=208589
http://sourceforge.net/tracker/index.php?func=detail&aid=773850&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=760130&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=743134&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=750561&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=739761&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=720607&group_id=5511&atid=105511

Chapter 13: History of Gri Versions 209

• Fix SourceForge bug #696073 . . . did not handle \$() syntax correctly.
• Fix SourceForge bug #715884 . . . mixup on protected-quotes within double-quoted

strings
• Fix Debian bug #183912 . . . would not compile on m86k architecture.
• Fix SourceForge bug #711354 . . . Creator: comment in PostScript file named the

command-file incorrectly, if there were options on the gri invocation command. Since
this naming of the command-file was not especially useful, and since nobody has com-
plained of this bug but the author, the feature has simply been deleted. Just complain
if you want it back!

• Fix SourceForge bug #706202 . . . A hint about the page orientation was not given
in the Postscript comments. The lack of this hint has no affect on printing, etc., only
viewing in some viewers.

13.1.1.16 Version 2.12.3 [2003 Mar 1]

Bug Fixes

• Fix SourceForge bug #685919 . . . -output commandline argument failed on ‘.eps’
file extension.

13.1.1.17 Version 2.12.2 [2003 Feb 7: Munro Day at Dalhousie
University]

Bug Fixes

• Fix SourceForge bug #675304 . . . Segmentation fault can occur on read image pgm if
an image already exists, e.g. created by convert grid to image.

• Fix SourceForge bug #647234 . . . Source file ‘draw.cc’ will not compile on MAC OS
X 10.1.5 at optimization level 2, so drop the level to no optimization, as a temporary
measure.

• Fix SourceForge bug #671022 . . . flip image x|y did not flip images correctly, except
in special circumstances.

• Fix SourceForge bug #669603 . . . skip backward .n. erroneously skipped forward
• Fix SourceForge bug #667754 . . . read image pgm segfaults on memory if an image

has already been created by convert grid to image

• Fix SourceForge bug #664388 . . . read image pgm fails if an image already exists
• Fix SourceForge bug #654129 . . . ignoring ‘~/.grirc’ file
• Fix SourceForge bug #654127 . . . configure scripts are broken
• Fix SourceForge bug #649132 . . . removed unused LDFLAGS phrase from Makefile
• Fix SourceForge bug #649134 . . . tweak gcc optimization
• Fix SourceForge bug #649136 . . . examples 8 and 9 broken
• Fix SourceForge bug #641406 . . . RPN too aggressive on missing values

13.1.1.18 Version 2.12.1 [2002 Sep 25]

Bug Fixes

• Fix SourceForge bug #613075 . . . RPN operators sin, cos, and tan were limited in
range (new bug in last release)

http://sourceforge.net/tracker/index.php?func=detail&aid=696073&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=715884&group_id=5511&atid=105511
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=183912
http://sourceforge.net/tracker/index.php?func=detail&aid=711354&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=706202&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=685919&group_id=5511&atid=105511
http://www.dal.ca/
http://www.dal.ca/
http://sourceforge.net/tracker/index.php?func=detail&aid=675304&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=647234&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=671022&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=669603&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=667754&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=664388&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=654129&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=654127&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=649132&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=649134&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=649136&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=641406&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=613075&group_id=5511&atid=105511

210 Gri

13.1.1.19 Version 2.12.0 [2002 Sep 15: Terry Fox Day, Canada.]

New Features

• Add sed RPN operator, to work on strings Section 10.9.4 [Binary Operators], page 162.
• Add skewness and kurtosis RPN operators, to work on columns Section 10.9.7 [Ma-

nipulation of Columns etc], page 169.

Removed Features

• n/a

Bug Fixes

• Fix SourceForge bug #606303 . . . web-pages were not valid html-4.0.
• Fix SourceForge bug #593958 . . . missing-values should be ignored if they occur in

intermediate results of RPN calculations.
• Fix SourceForge bug #600395 . . . won’t compile with recently released version (3.2)

of GCC compiler.
• Fix SourceForge bug #600233 . . . segfaults if some RPN operators are used on stacks

that do not contain enough entries (e.g. show {rpn cosh}).

13.1.2 Version 2.10

13.1.2.1 Version 2.10.1 [2002 Jun 1]

Bug Fixes

• Fix SourceForge bug #562911 . . . won’t build with ‘gcc-3.0’ compiler. This was
reported by the Debian hppa builder as Debian bug #148572.

• Fix SourceForge bug #562558 . . . draw title terminates program if have non-positive
data and had initially specified log axes.

• Fix SourceForge bug #562014 . . . won’t build if popt library is unavailable. This was
reported by the Debian ia64 builder as Debian bug #148493.

• Fix SourceForge bug #558463 . . . in HTML docs, the “press” margin tag was misdi-
rected.

• Fix SourceForge bug #562017 . . . parser fails with DOS end-of-line.
• Fix SourceForge bug #562113 . . . new page postscript error in ‘gv’ viewer.

13.1.2.2 Version 2.10.0 [2002 May 20: Victoria Day]

New Features

• In the documentation, change the names of some variables to be clearer: ll_x is now
written xleft, etc.

• Add RPN binary operators and, or for logical operations Section 10.9.4 [Binary Oper-
ators], page 162, along with negation operator not Section 10.9.5 [Unary Operators],
page 164.

• Add draw arc command (Section 9.3.9.1 [Draw Arc], page 82).
• Add set x axis labels (Section 9.3.41.47 [Set X Axis], page 130) and set y axis

labels (Section 9.3.41.54 [Set Y Axis], page 133) commands.

http://www.terryfox.org/
http://sourceforge.net/tracker/index.php?func=detail&aid=606303&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=593958&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=600395&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=600223&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=562911&group_id=5511&atid=105511
http://bugs.debian.org/148572
http://sourceforge.net/tracker/index.php?func=detail&aid=562558&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=562014&group_id=5511&atid=105511
http://bugs.debian.org/148493
http://sourceforge.net/tracker/index.php?func=detail&aid=558463&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=562017&group_id=5511&atid=105511
http://sourceforge.net/tracker/index.php?func=detail&aid=562113&group_id=5511&atid=105511

Chapter 13: History of Gri Versions 211

• Permit specification of pt units for draw label (Section 9.3.9.22 [Draw Label], page 89),
draw box (Section 9.3.9.7 [Draw Box], page 83), draw symbol at (Section 9.3.9.29
[Draw Symbol At], page 91), and draw line from (Section 9.3.9.23 [Draw Line From],
page 89).

• Add set clip to curve (Section 9.3.41.6 [Set Clip], page 116) command. Caution:
this needs extension, and may have a bug if called twice in succession [but is this with
an intervening set clip off]

• Add group and end group commands, in preparation for SVG output. So far these
commands do nothing, and are basically just a signal that users should not create
commands with these names since Gri will need them soon.

• Add ..xinc.. and ..yinc.. builtin variables (Section 4.2 [Axis Scaling], page 16).
• Make the open command accept URLs as filenames (Section 9.3.28 [Open], page 102).

Removed Features

• Remove gri -repair old.ps new.ps since (a) it was only half functional, (b) it was
hard to code in the new scheme of argument-processing and (c) the author was not
aware of anybody every having used it.

• Make the -chatty commandline option require a value (Chapter 3 [Invoking Gri],
page 7).

Bug Fixes

• Fix SourceForge bug #552009 (rpn can segfault if != operator is written as =!)
• Fix SourceForge bug #546109 (bounding box wrong if postscript clipping used)
• Fix SourceForge bug #514495 in which set clip to curve failed to handle missing

values in the curve.
• Fix SourceForge bug #450465 (create columns from function was broken).

13.1.3 Version 2.8

13.1.3.1 Version 2.8.7 [2002 Apr 03]

• Fix SourceForge bug #482120 (regress ignores data weights)
• Fix SourceForge bug #508657 (missing backslash in drawing undefined synonyms)
• Fix SourceForge bug #523450 (log axes detect non-positive values too late)
• Fix SourceForge bug #521045 (installation/compilation with Solaris Workshop V6 Up-

date 2 compiler)

13.1.3.2 Version 2.8.6 [2002 Feb 14]

• Fix SourceForge bug #513002 (minor documentation error in set clip)
• Fix SourceForge bug #509592 (HTML docs had midordered indices)
• Fix SourceForge bug #506534 (map axes give wrong minutes in negative regions).

Thanks, Brian, for the patch on this!
• Fix SourceForge bug #508088 (grimode: gv should update, not be relaunched)
• Fix SourceForge bug #506490 (-v commandline option returned wrong version number)

212 Gri

13.1.3.3 Version 2.8.5 [2001 Dec 13]

• Fix SourceForge bug #492472 (inf rpn operator caused segfault)

13.1.4 Version 2.8.4 [2001 Oct 4]

• Fix SourceForge bug #467973 (gri -version gave wrong version number, breaking
the Emacs Gri mode.)

• Fix SourceForge bug #468014 (draw grid disobeyed pencolor.)

13.1.4.1 Version 2.8.3 [2001 Oct 1]

• Fix SourceForge bug #462243 (endian problem in Rasterfile images + reading problem
in PGM images).

13.1.4.2 Version 2.8.2 [2001 Sep 19]

• Fix SourceForge bug #461444 (wouldn’t compile with the mingw32 compiler, for win-
dows 32 machines).

• Fix SourceForge bug #454557 (wouldn’t compile with the pre-release version 3.0.1 of
the GNU c++ compiler, in the case in which netCDF was already installed)

13.1.4.3 Version 2.8.1 [2001 Sep 7]

• Fix SourceForge bug #450465 (create columns from function was broken).
• Fix SourceForge bug #454557 (wouldn’t compile with the pre-release version 3.0.1 of

the GNU c++ compiler)

13.1.5 Version 2.8.0 [2001 Jul 30]

New command syntax

• Add unlink command as a unix-familiar way to delete files (Section 9.3.51 [Unlink],
page 141).

• Add set page size command to clip to a given page size (Section 9.3.41.36 [Set Page],
page 127).

• Add substr RPN operator to permit extraction of sub-strings (Section 10.9.3 [Tertiary
Operators], page 162).

• Add default possibility for the set x name and the set y name commands.
• Add Perl-like ability to put underscores in numerical constants, to guide your eye.

These underscores are ignored by Gri, so that for example .v. = 1_000 and .v. =
1000 are equivalent as far as Gri is concerned.

Emacs mode (Chapter 12 [Emacs Mode], page 191)
• Give 〈M-Tab〉 the ability to complete builtin variables and synonyms as well as commands
• Add “idle-timer minibuffer help” to display defaults for builtin variables under the

cursor.
• Add fontification of builtin variables only if they are spelled correctly.

Chapter 13: History of Gri Versions 213

Developer changes

• Add make source-arch-indep target in sources. This will build a source tar file in
which all the architecture-independent material (documentation in HTML, postscript
and Info formats) is pre-made. This makes it easier to install gri on a host that doesn’t
have TeX and ImageMagick installed.

• Complete the port to IBM’s compiler for their AIX operating system.

13.1.6 Version 2.6

13.1.7 Version 2.6.4 [2001 Jul 9: Dan’s birthday]

• Fix SourceForge bug #435688 (remnants of polar column type, no longer supported,
remained in documentation)

• Fix SourceForge bug #435603 (set dash produced broken PostScript)
• Fix SourceForge bug #431114 (-0 could appear on axes)

13.1.8 Version 2.6.3 [2001 Jun 22]

• Fix SourceForge bug #433250 (draw symbol ignored dashing state sometimes)
• Fix SourceForge bug #432549 (contours sometimes unlabelled)
• Tweak internal coding for compilation on AIX compilers.

13.1.8.1 Version 2.6.2 [2001 May 19]

• Fix SourceForge bug #425174 (synonym interpolation broken on e.g. show "[\syn]"

• Fix SourceForge bug #425175 (while !..eof.. acted ignored end of file)

13.1.8.2 Version 2.6.1 [2001 May 10]

• Fix SourceForge bug #420499 (gri-mode.el compatibility issues with emacs-21; Mostly
bad old code.)

• Fix SourceForge bug #421076 (byte-compiled gri-mode.el has broken IMenu support;
Affects Debian package.)

• Fix SourceForge bug #419599 (wouldn’t compile under GNU g++ 3.x compiler)
• Fix SourceForge bug #418065 (documentation mentions back-tic notation, which is

not available)
• Fix SourceForge bug #417333 (vague error message RPN string operator)
• Fix SourceForge bug #415277 (make fails on MSDOS)
• Fix SourceForge bug #415149 (file.cc parse error on MSDOS)
• Fix SourceForge bug #414520 (draw symbol ... at should automatically produces

axes unless the location is in cm coordinates)
• Fix SourceForge bug #414010 (items in the html concept index were in an odd order)
• Fix SourceForge bug #413986 (~username was broken in open)
• Fix SourceForge bug #411904 (/ was ugly in math mode)

214 Gri

13.1.8.3 Version 2.6.0 [2001 April 1]

• Permit rewind to take a filename.
• Make open set \.return_value. to the full pathname of the file that was opened.
• Add set path command (Section 9.3.41.39 [Set Path To], page 129).
• Remove functioning of GRIINPUTS environment variable, since this is more cleanly

handled with the newly added set path to command (Section 9.3.41.39 [Set Path To],
page 129).

• Remove \.awk. synonym, which was deemed to be unhelpful. Users with many scripts
that use this variable might wish to put a line like

\.awk. = "gawk"

in their ‘~/.grirc’ file.
• Change the format of images in the PostScript output file, as a workaround for a bug

in the ps2pdf program.
• Add “ampersand” (\& and \&&) syntax to permit newcommands to look up the name

and nesting level of changeable arguments (Section 10.11.5 [Changeable Command
Arguments], page 177).

• Add “at-sign” (@) syntax for aliases (Section 10.5.4 [Alias Synonyms], page 155).
• Add ability to embed newlines in show commands with the \<< sequence (Section 9.3.42

[Show], page 135).
• Add ability to embed TAB characters in show commands with the \>> sequence (Sec-

tion 9.3.42 [Show], page 135).
• Make various read commands (Section 9.3.33 [Read], page 106) able to decode syn-

onyms as well as variables and simple numbers.
• Add strlen RPN operator (Section 10.9.5 [Unary Operators], page 164).
• Add default option to set x format and set y format commands.
• Add new postscript file (Section 9.3.27 [New Postscript File], page 102) command.
• Switch email list from majordomo to GNU mailman.
• No longer remove comments from data lines that are read. This served little function,

interfered with recent user code, and could be accomplished by reading through a sed
pipe in any case.

• Make the first element of the argv array be the name of the command-file. (This makes
Gri consistent with languages such as C.)

• Add chapter on test suite (Chapter 16 [Test Suite], page 233).
• Let newcommands have changeable arguments (Section 10.11.5 [Changeable Command

Arguments], page 177).
• Remove -s as an abbreviation for the commandline option -superuser.
• Remove the : syntax from the commandline options.
• Add commandline option -output PS_file_name.
• Add assert command (Section 9.3.1 [Assert], page 74).
• Add test suite (mainly for developers).
• Add sleep command (Section 9.3.44 [Sleep], page 137).
• Remove command show hint of the day, since I no longer permission to use cgi-bin

to provide the hints via web-server.
• Permit indexing of synonym words with variables, in addition to constants.

Chapter 13: History of Gri Versions 215

• Fix bug in interpolating synonyms in the test-expression of while loops.
• Put source on the Source Forge open-source development website, at

http://gri.sourceforge.net. Gri users can benefit from this site in may
ways. First, it is a great way to keep track of new versions. With a mouse-click you
can cause SourceForge to email you whenever a new version of Gri is released. Second,
SourceForge has newsgroups (http://sourceforge.net/forum/?group_id=5511)
and email lists (http://sourceforge.net/mail/?group_id=5511) devoted to Gri.
These are archived, so that you can stop monitoring them for a while and then go
back and see what you’ve missed. Third, Source Forge has a powerful bug-tracking
facility. (http://sourceforge.net/bugs/?group_id=5511) With this you may check
for existing bugs reported by users, submit new bug reports, and also track the
process of bug removal (e.g. optionally receiving emails when the bug is removed).

• Add set colorname command (Section 9.3.41.8 [Set Colorname], page 118).
• Add source command (Section 9.3.46 [Source], page 138).
• Add RPN operators wordc (Section 10.9.6 [Solitary Operators], page 168) and wordv

(Section 10.9.5 [Unary Operators], page 164) for accessing the words in the present Gri
command.

• Add RPN operators argc (Section 10.9.6 [Solitary Operators], page 168) and argv
(Section 10.9.5 [Unary Operators], page 164) for accessing the command-line arguments
used when Gri was invoked from the operating system.

• Add automatic support for compressed data files. So far, this only works with gzipped
files (Section 9.3.28 [Open], page 102).

• Add two new RPN operators, file_exists and directory_exists (Section 10.9.5
[Unary Operators], page 164).

• Reorganize parts of manual (e.g. changing the section about the Emacs ‘gri-mode.el’
into a chapter, with screen snapshots).

• Improve the HTML form of the manual (e.g. color-code the Gri syntax in examples,
provide access to all the indices, use Jpeg format, et.).

• Add several new features to gri-mode.el:
1) Add a menubar pull-down menu listing all Gri commands, allowing the user to get
Help or Info on any command or Insert it in the current Gri file.
2) Add a menubar pull-down entry to Perform to set gri-run settings such as flag
options passed to gri.
3) Gri info file can have .info extension now.
4) Made gri-apropos an alias for gri-help-apropos.
5) gri-mode now uses the customize interface (See gri-customize).
6) The ~/.gri-syntax file has changed format. As a side-effect, spaces are used
instead of hyphens to display Gri commands, and one can now select a command with
the mouse in the Completions buffer.

13.1.9 Version 2.4

13.1.9.1 Version 2.4.4 [2000 May 7]

Change so that only a warning is printed if mathematical operations are requested on
empty arrays (e.g. y += 10). Previously, an error was reported and Gri exited with an error
condition, which is bothersome in scripts that rely on successful completion of the Gri job.

216 Gri

Port to the BeOS operating system.

13.1.9.2 Version 2.4.3 [2000 Apr 1]

Change location of all files, to be consistent with Redhat convention. Previously, things
were in /opt/gri; now they are in more standard locations.

13.1.9.3 Version 2.4.2 [2000 Mar 25]

Remove bug in which convert grid to image produced incorrect images, visible as a patchy
appearance with coarse grids.

13.1.9.4 Version 2.4.1 [2000Jan 31]

Remove bug in which convert image to grid failed to take note of the gri minimum and
maximum, so that contouring of the grid was not possible for grids created from images.

13.1.9.5 Version 2.4.0 [2000 Jan 05]

Add set input data separator. Make read columns work with various input separators.
Make read .x., etc, work with various input separators.

13.1.10 Version 2.2

13.1.10.1 Version 2.2.6 [1999 Nov 25]

Make web-based manual easier to read by putting a light-grey background under sample
code.

13.1.10.2 Version 2.2.5 [1999 Nov 10]

Fix bug in RPN calculations that prevented using a negative exponent.

13.1.10.3 Version 2.2.4 [1999 Nov 7]

Add set font encoding, and also change the encoding to ISO-Latin-1. (This doesn’t hurt
old code since Gri didn’t make any claims to handle characters outside the normal printing-
set before anyway.)

Fix bug in which there were 4 dead links in the HTML version of manual.
Clean up some problems with Debian distribution (thanks, Peter Galbraith!).

13.1.10.4 Version 2.2.3 [1999 Jun 30]

Fix bug in which word-of-synonym (e.g. \[0]mysyn) was not detected correctly (thanks to
bug report from Kazuhiko Nakayama in Japan)

Chapter 13: History of Gri Versions 217

13.1.10.5 Version 2.2.2 [-]

Clean a few spelling and cross-reference errors in documentation.

13.1.10.6 Version 2.2.1 [1999 Mar 31]

For debian, properly locate the netcdf library, if it is installed.
Remove remnants of old commands for polar axes.
Correct error in which the right-most and upper-most pixel of images created by convert

grid to image may be blank (or not, depending on roundoff error) under certain conditions
of exact matchup between grid spacing and image spacing.

Don’t create PostScript file if the commandfile is non-existent, or if there were errors on
the commandline.

13.1.10.7 Version 2.2.0 [1999 Mar 25]

First debian release. Versions exist for intel, alpha, 68K and powerpc.

13.2 Unstable Stream

13.2.1 Development Version

The list below shows changes that have been made in the development version of Gri, i.e.
the version on CVS at http://gri.sourceforge.net. Some or all of these features may
enter the next stable stream of Gri, but it is important to note that anything that’s listed
here may be changed without notice! The main exception is bug fixes, which will enter the
stable stream unless they are found to create new bugs.

13.2.1.1 New Features

• n/a

13.2.1.2 Removed Features

• n/a

13.2.1.3 Bug Fixes

• Fix SourceForge bug #618041 . . . solaris compile error, relating to the subroutine
gethostname() in the ‘startup.cc’ source code file.

13.2.2 Plans

Some plans for future versions are given below. A more extensive list, together with target
timescales and notes on the progress towards completion, is available in the to-do list at

http://sourceforge.net/tracker/index.php?func=detail&aid=618041&group_id=5511&atid=105511

218 Gri

the development site (http://gri.sourceforge.net), which is also the place to go if you
have suggestions for other changes to Gri.

13.2.2.1 High Priority

1. Add ability to generate SVG (scalable vector graphics) output. This file type can be
edited with GUI-based tools, making it easy for users to put the final touches on graphs
"manually." This feature will require a great deal of work, mainly to do with grouping
of graphical elements, and so I’ll need to rely on advice from users.

2. Switch to popt library for the processing of command-line options. (Docs on this are
at http://cvs.gnome.org/lxr/source/popt.)

3. Change set axes style from number-based selection to word-based selection, and
print a deprecation warning if the number-based syntax is used.

4. Switch from tmpname to mkstemp subroutine, for temporary filenames.
5. Add readline support, to handle history, command-line editing, etc, for interactive usage

(Docs on this are at http://cnswww.cns.cwru.edu/~chet/readline/readline.html.)

13.2.2.2 Medium priority

1. Add optimal interpolation as another method for gridding data (Section 9.3.4.1 [Con-
vert Columns To Grid], page 75).

2. Add ability to read PNG images (Section 9.3.33.7 [Read Image], page 111) (Docs on
this are at http://www.libpng.org/pub/png/.)

13.2.2.3 Low priority

1. Add non-RPN mathematics.
2. Add graphical output to the screen as commands are executed.
3. Add support for both little-endian and big-endian binary data.

13.3 Deprecated Commands

• version 2.9.0
• Replace set y axis label horizontal with set y axis name horizontal.
• Replace set y axis label vertical with set y axis name vertical.

Chapter 14: Installing Gri 219

14 Installing Gri

14.1 Unix Installation

14.2 Archiving Old Versions

Gri, like other complex programs, sometimes changes in such a way as to break old scripts.
This is less so of changes since about 1998 or so, since the syntax became pretty firm about
that time.

Still, disk costs are so cheap that you would be well-advised to keep a backup version
of Gri, whenever you update. This is pretty simple; you need to keep a copy of the exe-
cutable and the library file, and you need to write a tiny shellscript that calls this particular
executable with this particular library file. For example, you might do the following

mkdir -m 755 -p /usr/local/share/gri/2.12.18
cp /usr/bin/gri /usr/local/share/gri/2.12.18
cp /usr/share/gri/gri.cmd /usr/local/share/gri/2.12.18

and then create a shellscript called ‘/usr/local/bin/gri-2.12.18’ containing
#!/usr/bin/sh
/usr/local/share/gri/2.12.18/gri \

-directory /usr/local/share/gri/2.12.18 \
"$@"

to invoke this version of Gri.
To be able to access this old version of gri from within the Emacs gri-mode, you would

reset the Emacs variable gri*directory-tree like so in the file ‘~/.emacs’ (Section 12.3.2
[Step 2], page 197 in Section 12.3 [Installing gri-mode.el], page 196)

(setq gri*directory-tree
’("/usr/local/share/gri/" "/usr/share/gri/"))

14.2.1 Installation on Linux computers

Installation is easy on RedHat and Debian flavors of linux. Versions are available from the of-
ficial distributions and also at ‘http://sourceforge.net/project/showfiles.php?group_id=5511’

The RedHat version supports intel platforms only, while the Debian version supports in-
tel, alpha, 68K and powerpc. Installation follows the normal method for these distributions
... if you have the distribution, you surely know what to do. If you don’t, you may want to
switch when you see that you can install Gri by clicking an icon in a window, or by typing,
e.g. in RedHat linux:

rpm -i gri-2.12.18

Debian-linux installation may be done with any of several GUI-based tools, or with the
following system command:

dkpg -i gri_2.12.18-1_i386.deb

or via a properly configured apt interface that will fetch the latest version from the net:
apt-get install gri

220 Gri

14.2.2 Pre-compiled unix versions

Pre-compiled versions of Gri exist for various computers, e.g. SPARC (both sunOS and
solaris), IBM-RS, Sequent, and Linux. The following instructions, which assume a version
number 2.12.18, and a SPARC solaris machine, show how to install these.

The compressed tar file, with a name like ‘gri-binary-SunOS5-2.12.18.tar.gz’ (in
this example a Sun OS 5 binary is assumed, with gri version number 2.12.18) contains a
directory which holds the executable Gri file, ‘gri’, the library file ‘gri.cmd’, an instructions
file, ‘README’, and a Makefile to install Gri.

Here’s how to install Gri, starting with this tar file:
1. First, uncompress (unzip) the file, and un-tar it, by doing

gunzip -c gri-binary-SunOS5-2.12.18.tar.gz | tar xvf -

or
zcat gri-binary-SunOS5-2.12.18.tar.gz | tar xvf -

This will yield a new directory, with a name like ‘gri-binary-SunOS5-2.12.18’, which
contains the indicated files.

2. Follow the instructions in the ‘README’ file to install Gri.

14.3 Compilation on Unix computers

The following steps indicate how to compile Gri on unix computers. The procedure is quite
standard.

Requirements
You’ll need a C++ compiler that is modern enough to handle ’templates’ (i.e.
almost any compiler from 1998 onward). Don’t worry – if your compiler isn’t
new enough, you’ll see that in a minute or two!
You’ll need TeX and texinfo to make the info files, and optionally the netCDF
library (if you wish gri to be able to read netCDF binary data files). To make
the HTML manual, you’ll need imagemagick, info, gs and its fonts.
On Debian GNU/Linux systems, the required packages are listed as Build-
Depends in the ‘control’ file found in the ‘debian’ directory, to which you
must add the package ‘build-essential’.

Unpack the source
Type

gunzip gri-2.12.18.tgz
tar xvf gri-2.12.18.tar

(or similar commands) to uncompress and untar the contents. This will yield
a new directory named ‘gri-2.12.18’ which contains many files.

Move to the Gri directory
cd gri-2.12.18

Configure your compiler
Next you must "configure" the Gri source files. During this step, a series of tests
will be made about your operating system and your compiler. Most of these
tests need no interaction from you, but there is one overall choice that you may
wish to make: the place on your filesystem where Gri (and many associated

Chapter 14: Installing Gri 221

library and documentation files) will reside. To get the default installation,
with files residing within the directory ‘/usr/local’, type

./configure

at this time. If you’d rather the files go into another location, run the configure
script differently, e.g. to get the Gri files to reside within the ‘/opt’ directory,
type:

./configure --prefix=/opt

In response, you’ll see the results of several tests of the properties of your op-
erating system, your C++ compiler, etc. Normally you can ignore these results.
As an example, typing ./configure without a --prefix option yields the
directory tree (... indicates several files not displayed in this list, for brevity).
In this example, the most up-to-date version is 2.12.18, but a previous version
2.12.17 has also been retained. (Note that only one copy of the documentation
is retained; this is all that’s needed, since old versions are documented there as
well as new versions.)

/usr/local
|-- bin
| |-- gri -> gri-2.12.18
| |-- gri-2.12.18
| |-- gri-2.12.17
| |-- gri_merge
| ‘-- gri_unpage
|-- info
| |-- ...
‘-- share

‘-- gri
|-- 2.6.0
| |-- gri.cmd
| |-- license.txt
| |-- logo.dat
| ‘-- startup.msg
|-- 2.4.0
| |-- gri.cmd
| |-- license.txt
| |-- logo.dat
| ‘-- startup.msg
‘-- doc

|-- examples
| |-- ...
‘-- html

|-- ...
|-- resources
| |-- ...
‘-- screenshots

|-- ...

Trouble-shooting 1: If the permission of the ‘configure’ file is wrong, you’ll get
an error like Permission denied; if so, try typing sh ./configure to run it in
the Bourne shell. If that fails, you are going to have to do some old-fashioned
work! Start by copying the generic Makefile called ‘Makefile.generic’ into

222 Gri

‘Makefile’, and try the following steps, perhaps editing the ‘Makefile’ if you
run into errors.

Trouble-shooting 2: Gri uses a C++ feature called ’templates’. Unfortunately,
templates are handled in different ways by different compilers. At least as
of Spring 1997, the GNU compiler, vsn 2.7.x (used by many Gri folks) has
problems with templates. Therefore the configure script will check to see if
you are using the GNU c++ compiler, and if you are it will check whether the
("template repository") compiler flag -frepo is known on your machine. If it
is not, an alternative method of templates will be used. But if it is, you’ll be
asked, for confirmation, whether you wish to use the -frepo flag. On many
machines (e.g. Solaris) you should answer n to this question. The prompt will
explain. Also, note that you can avoid the prompt by running configure as
either of the two below:

./configure --enable-frepo

./configure --disable-frepo

(Such switches will be ignored unless you’re using the GNU compiler.)

Trouble-shooting 3: If optional system libraries like the netCDF library, if
it exists, are installed in nonstandard places, you might have to change the
unix environment variable LD_LIBRARY_PATH. For example, on my machine the
netcdf library is not installed in ‘/usr/lib’, as the configure script assumes,
but rather in ‘/usr/local/share/netcdf/lib’. Therefore I have the following
line in one of my startup files:

export LD_LIBRARY_PATH=/usr/lib:/usr/local/share/netcdf/lib

Compiling Gri
Now compile Gri by typing

make

Testing Gri
Type

make test

to do some tests on the version of Gri that you just compiled. If no errors are
reported, you may go to the next step.

Installing Gri
Assuming compilation succeeds, install ‘gri’ and the ancillary file ‘gri.cmd’,
by typing

make install

If you wish to see where files where be installed, first try a dry run typing

make -n install

Cleaning up
Once these things are done, you may type

make clean
cd doc ; make clean

to clean up some files. Of course, you could just erase the whole source, but
the source is probably worth a penny of hard-drive space, isn’t it?

Chapter 14: Installing Gri 223

14.4 Compilation on x86 (PC-style) Computers

Versions exist for MSDOS, windows, and Linux operating systems. (Actually, the windows
version is just the MSDOS version, which can be run inside an msdos window within
windows-95, windows-NT, etc.)

14.4.0.1 MSDOS Operating System

To compile and install Gri under MSDOS, do this:
1. To begin, install DJGPP V2, if it is not on your system already. It can be found at

http://www.delorie.com/djgpp
2. Uncompress and extract from gri source package (Section 14.3 [Uncompiled Unix],

page 222).
3. Type make -f Makefile.dj2 to compile. If it fails, you might have to edit the file

‘Makefile.dj2’ to match the characteristics of your system. Please inform the author,
Dan Kelley at Dan.Kelley@Dal.CA, if you think your modifications might be useful to
others.

4. Type make -f Makefile.dj2 install to install it (normally on the C: drive).

If you encounter problems, read the first few lines of the Makefile (i.e. the file
‘Makefile.dj2’) for hints on things to try. For example, in the present version of
‘Makefile.dj2’ these hints are given:
1. There is a good chance that this Makefile will work as is, so try that first.
2. If you have the ‘netcdf’ library (used for certain types of atmospheric and oceano-

graphic datasets), then un-comment and possibly edit the appropriate NETCDF_...
lines below, as instructed by the comments preceding these lines.

3. If you don’t want Gri inserted in the directory ‘c:/gri’, edit the instdir = ... line
below.

4. If you get error messages about the ‘stdcxx’ library, edit the LIBS line below, rewriting
‘-lstdcxx’ as ‘-lstdcx’.

5. If you get compilation errors relating to time or to ftime, try putting the token -
DHAVE_FTIME=1 in the list of similar token in the DEFS = ... line. For consistency
(basically, so the author can help you if you do this), put it right after the -D_GRI_=1
token.

To view the output, use a PostScript viewer such as GSview. (http://www.cs.wisc.edu/~ghost/index.html).

14.4.0.2 LINUX Operating System

Linux is a good emulation of unix, and it is free. Gri for linux is compiled and installed
according to the normal unix instructions. The compiled version is with a name like gri-
binary-solaris-2.1.10.tar.gz; treat it as in other unix systems (Section 14.3 [Uncom-
piled Unix], page 222).

14.5 Compilation under OS/2

Gri compiles, using the gcc compiler under OS/2, provided that the included Makefile.os2
is used. Be sure to edit the first few lines to change filenames as required, especially taking
care to account for whether the netCDF library is installed, etc.

224 Gri

14.6 Compilation in Macintosh OS X

The OS X system provides a BSD unix that suites Gri very well. With the (free) developer
package, it also provides a very up-to-date version of the gcc compiler. Thus, installing Gri
on Macintosh can be done using the normal Unix instructions.

But there are also easier ways. Gri is compatible with Fink and Darwinports, the two
popular packaging systems on OS X. If you use OS X and do not have Fink or Darwinports
installed, then you should probably install one, or both. Each distribution has strengths,
and each has weaknesses, and it is difficult to provide a firm recommendation between the
two.

Caveat. As of mid-2007, neither distribution appears to handle package dependencies
as well as is done by popular linux distributions. For example, in working through the
steps listed below, the author found that his Darwinports system had a problem with a
system library that handles internationalization. The "update" operation of the system
was insufficient to solve the problem, and so it was necessary to do some web searching
to find a patch. The patch failed, but another search revealed a second (hand-edit) patch
that got it working. In excess 4 CPU hours were required to rebuild the packages that were
broken.

If you’d like to build a local Darwinports version of Gri, to get the latest version instead
of whatever version is provided by Darwinports, follow these steps:
• Download the source from CVS at SourceForge. (If you don’t know what the previous

sentence means, you will quite likely have difficulties with the other steps.)
• Visit the darwinports directory of the newly-created directory tree, and type

sudo port -d -v build

to build it. This will take several minutes, during which you may find it
helpful to do a search on "darwinport build". For example, the O’Reilly page
(http://www.oreillynet.com/pub/a/mac/2004/04/09/darwinports.html?page=3,
last checked in July 2007) is very good. Note that you will be building from the
source that is stored on SourceForge, not from the Darwinports source. That’s the
trick of issuing the build version of the port command.

• Do a "destroot" operation:
sudo port -d -v destroot

• Install it:
sudo port -d -v install

Note: if you already have an older version of Gri in the Darwinports system, you must
first issue the command

sudo port deactivate gri

14.7 Compilation under BeOS

The BeOS system compiles Gri cleanly without modification; just follow the instructions
for unix.

Chapter 15: Bugs 225

15 Bugs

15.1 Known bugs

To get a list of known bugs, in the present or past versions, visit http://sourceforge.net/tracker/?atid=105511&group_
id=5511&func=browse.

15.2 Reporting Bugs

Bug reports help make Gri more reliable and useful for all users, so please report any bugs
you find. The scheme will be familiar to you, if you’ve participated in open-source work
before.
1. Visit the bug-tracking part of the Source Forge Gri development site, at

http://sourceforge.net/bugs/?group_id=5511 to see whether your bug has
already been reported. You may find that it has been reported and fixed already
in a new version, in which case you should archive your existing Gri version and
upgrade. If the bug has been reported and not fixed, then you may still wish to add a
supplemental bug report, so the author knows that this bug is of concern to you as
well as the others. (Plus, reporting it this way ensures that you’ll receive an email
when the bug is fixed.)

2. Debugging is made easier if the problem is reduced in scope. Therefore, please reduce
your application and your data to the simplest case that produces the error.

3. If you know how, please try to find the bug yourself. After all, Gri is open-source for
a reason! The procedure is described in the next section (Section 15.3 [Killing Bugs],
page 227).

15.3 Killing Bugs

15.3.1 Software that you’ll need

This section is intended to help you find and kill bugs yourself, by indicating how the author
does this work. Since Gri is open-source, all users are invited to try to kill bugs themselves!

If you know nothing of C or C++, you may as well not read further, since there is little
chance of your making progress. On the other hand, experienced programmers won’t need
any of the advice I give below.

You’ll need the Gri source and a C++ compiler. It also helps if you have gdb, the GNU
debugger, installed; the instructions below assume that’s the case. Also, the instructions
assume that you’re using the Emacs editor, and running gdb from within Emacs. Otherwise,
you’ll want to glance at the documentation on gdb to see how to use it in standalone mode.

15.3.2 Debugging at a glance

The list below is a sketch of what you might try, and in what order.
• Check the bug list to see if other users have found your bug, and also to see if there is

a workaround.

226 Gri

• Try a more recent version of gri. If it works, you might wish to archive the version you
have at the moment and upgrade.

• If you suspect your bug has something to do with system calls, as in the system
command (Section 9.3.50 [System], page 139) or as in piped input files (Section 9.3.28
[Open], page 102), you should re-run the script with gri -superuser8 instead of with
gri. This will cause Gri to print out all commands that it is handing over to the
operating system; you may see the error that way. (Hint: it may help to interactively
cut/paste the commands into your OS shell to see what the action of the command is.)

• If your bug results in early termination, you should run Gri inside a debugger (e.g.
GDB, assumed henceforth). When the program terminates, type where to see where
termination occured. Often this will give a clue. In many cases, early termination
results from faults in memory allocation. To check memory allocation, you’ll need to
recompile Gri, linking it against a debugging memory allocator. Many such tools exist;
see comments in the Makefile for a hint at how to use a popular one, called “Electric
Fence.”

• If your bug does not result in early termination, you may find the best scheme is to
trim your example down as much as possible, and then run Gri inside the GDB (or
other debugger) so that you can monitor program execution. The next section explains
this in detail.

15.3.3 A debugging Example

Let’s take a recent bug as an example. Peter Galbraith found that the gri script
set color hsb 0.999 1 1
draw box filled 2 2 3 3 cm
set color hsb 1.000 1 1
draw box filled 4 2 5 3 cm

produced odd results in a previous version of Gri; the color patches should have been of
nearly the same color, but the first one was red, as expected, and the second was magenta.

The list below shows how I found Peter’s bug. Experienced C or C++ programmers will
find all of this very familiar, and will really only need to read item 6 of the list below, since
that’s the only action that is really specific to Gri. (Note: for display purposes, I’ve broken
some of the lines in the files into two lines in this list.)
1. Copy the above script (called ‘test.gri’) into the Gri source directory, and the script

into an Emacs buffer. Note: all the following steps are done within Emacs, and the
items in parentheses are the Emacs keys to get the indicated actions.

2. If you’re working from a pre-compiled version, you’ll need to get the source first and do
a compile yourself (Section 14.3 [Uncompiled Unix], page 222). Then do a make tags
command (type this to the unix shell) to create a so-called "tag" table.

3. Run Gri in this emacs buffer (C-cC-r) noting from the postscript window that pops
up that the colors are, indeed, mixed up.

4. Load up the gdb debugger by typing M-x gdb gri. This will open a new Emacs buffer
in which you may type commands. We’ll be switching back and forth between this
buffer and various source files.

5. Reasoning that the error probably occurs at set color or draw box, try replacing the
latter by a command such as draw label "hi" at 3 3 cm". The color is still wrong,
indicating that it is the set color command that has the problem.

Chapter 15: Bugs 227

6. Next, we must find where the C++ code corresponding to the set color command
resides. As it turns out, all set commands are defined in the source file set.cc, and
this command is defined in a subroutine called set_colorCmd(). But the author knows
this – how would you? The answer is to look in the ‘gri.cmd’ file, for the set color
command. (Search for the string ‘set color .) Then read down to see the body of
the command, enclosed in braces; you’ll see

{
extern "C" bool set_colorCmd(void);

}

which indicates that the subroutine name is set_colorCmd().
7. Next we need to edit this subroutine to see what it is doing. There are several ways to

find it (e.g. grep through the source files), but the easiest is to use the "tags" feature of
Emacs, by typing M-. set_colorCmd. This will bring you to the indicated subroutine.

8. Have a look through this subroutine to see what it is doing. It looks very much like
many other Gri subroutines. A check is done on the number of words provided to the
command, in the

switch (_nword) {

line. (That’s line ‘set.cc:484’ at the moment – but it may be different by the time
you read this file, if I’ve changed it!) We are calling it with 6 words (set color hsb
1.000 1 1), so move down to the line

case 6:

and you’ll see that there is an if statement seeing whether this word is rgb or hsv.
These statements are checking _word[2], which is the third word of the command. (In
Gri, as in C, words start at zero. Thus, for this command, _word[0] is set, _word[1]
is color, and _word[2] is expected to be either rgb or hsb. We are having problems
with the hsb style, so we’ll move down to that code. The code that’s being executed
is as follows.

} else if (!strcmp(_word[2], "hsb")) {
// ‘set color hsb .hue. .saturation. .brightness.’
double hue, saturation, brightness;
Require(getdnum(_word[3], &hue),

READ_WORD_ERROR(".hue."));
Require(getdnum(_word[4], &saturation),

READ_WORD_ERROR(".saturation."));
Require(getdnum(_word[5], &brightness),

READ_WORD_ERROR(".brightness."));
// Clip if necessary
CHECK_HSB_RANGE(hue);
CHECK_HSB_RANGE(saturation);
CHECK_HSB_RANGE(brightness);
gr_hsv2rgb(hue, saturation, brightness,

&red, &green, &blue);
PUT_VAR("..red..", red);
PUT_VAR("..green..", green);
PUT_VAR("..blue..", blue);
c.setHSV(hue, saturation, brightness);
_griState.set_color_line(c);
if (_griState.separate_text_color() == false)

_griState.set_color_text(c);

228 Gri

return true;

The Require lines are ensuring that we could decode the values of the variables hue,
etc, from the commandline. Then we clip the range of these values. Then we convert
from hsb color format to rgb color format, save the values of the colors in Gri variables
with PUT_VAR, and then set the color with c.setHSV. Finally we save this color in the
Gri "state" with _griState.set_color_line(c).
As it turns out, Gri outputs all colors to the PostScript file in RGB format, so the we
may well suspect that the problem is in the gr_hsv2rgb() line.

9. We have an idea where to look now, so let’s go to the line just after it, in the editor,
and insert a "breakpoint" there by typing C-x SPC. Then move to the gdb buffer and
re-run Gri by typing

run -directory . test.gri

to run Gri on our script. Then, magic happens! Gri stops at the indicated breakpoint,
and Emacs will display both the gdb buffer and the set.cc buffer. The latter has a
margin indication telling what line were are on. You may now type gdb commands in
the gdb buffer. In particular, type

p hue

to print the hue. Then type
p red

to see the red value. Then type
c

to continue running Gri. It will pause again. Check the hue and red values again, as
above. If you like, play around with hue value in the Gri script ‘test.gri’ and run gri
again (type r in gdb). This seems to indicate that the conversion is working strangely.

10. To see how the conversion is done, clear the breakpoints by typing delete in the gdb
buffer, then insert a breakpoint before gr_hsv2rgb is called. Then, run Gri again (r
in the gdb buffer). When it stops just before this subroutine, type s to "step into" the
subroutine. Then you’ll see a conversion code from the (wonderful) textbook of Foley
and Van Dam. You’ll see

void
gr_hsv2rgb(double h, double s, double v,

double *r, double *g, double *b)
{
h = 6.0 * pin0_1(h);
s = pin0_1(s);
v = pin0_1(v);
int i = (int) floor(h);
if (i > 5)
i = 5; // Prevent problem if hue is exactly 1
double f = h - i;
double p = v * (1.0 - s);

...

in the present version of Gri, but in the previous (buggy) version, the if statement was
missing. Without this if statement, Gri produced wrong colors. With the statement,
the colors are correct.

And so ends the example. You may wish to read the Foley and Van Dam textbook to
see just what I’m doing in gr_hsv2rgb, but suffice it to say that the problem in the (older)

Chapter 15: Bugs 229

version of Gri was that i could take the value 6 if the hue was exactly equal to 1, and that
was erroneous.

In reading the code, you may notice that it is formatted in a uniform way: the Kernighan
and Ritchie scheme (from their classic C textbook), with 8-character indents. I get this by
putting the following lines in the ‘~/.emacs’ file, which is used to customize the Emacs
editor:

(defun my-c-mode-common-hook ()
(c-set-style "K&R")
(setq c-basic-offset 8)
)

(add-hook ’c-mode-common-hook ’my-c-mode-common-hook)

If you submit patches, please use the same format as I’ve done, so that I can more easily
see the changes you’ve made.

230 Gri

Chapter 16: Test Suite 231

16 Test Suite

The following test files are invoked by typing make test, after compiling Gri. They are
provided here because they are examples of scripts that are known to work for the version
of Gri described in this manual.

Heavy use is made of the assert command (Section 9.3.1 [Assert], page 74) in these test
files. Thus the code itself demonstrates the features, instead of comments in the code. This
is advantageous since comments tend to be incorrect!

Test file ‘tst_IO.gri’:

232 Gri

� �
show "doc/tst_suite/tst_IO.gri ..." ...

Test some I/O features. NOTE: this will make _no_ sense
to you unless you have a look at the test files!

Read columns from file with newline at the end ...
open tst_IO_1.dat
read columns x y
close
assert {rpn ..num_col_data.. 2 ==} " failed test 1-a"
assert {rpn x 0 @ 1 ==} " failed test 1-b"
assert {rpn x 1 @ 2 ==} " failed test 1-c"
assert {rpn y 0 @ 11 ==} " failed test 1-d"
assert {rpn y 1 @ 22 ==} " failed test 1-e"

... as above, but from a file without newline at the end.
open tst_IO_2.dat
read columns x y
close
assert {rpn ..num_col_data.. 2 ==} " failed test 2-a"
assert {rpn x 0 @ 1 ==} " failed test 2-b"
assert {rpn x 1 @ 2 ==} " failed test 2-c"
assert {rpn y 0 @ 11 ==} " failed test 2-d"
assert {rpn y 1 @ 22 ==} " failed test 2-e"

Read a line into a synonym.
open tst_IO_1.dat
read line \s
assert {rpn "\s" "1 11" ==} " failed test 3-a"
read line \s
assert {rpn "\s" "2 22" ==} " failed test 3-b"
close
open tst_IO_2.dat
read line \s
assert {rpn "\s" "1 11" ==} " failed test 3-c"
read line \s
assert {rpn "\s" "2 22" ==} " failed test 3-d"
close

Read variable/synonym, in various orders.
open tst_IO_1.dat
read .a. .b.
assert {rpn .a. 1 ==} " failed test 4-a"
assert {rpn .b. 11 ==} " failed test 4-b"
read \a \b
assert {rpn "\a" "2" ==} " failed test 4-c"
assert {rpn "\b" "22" ==} " failed test 4-d"
rewind
read .a. \b
assert {rpn .a. 1 ==} " failed test 4-e"
assert {rpn "\b" "11" ==} " failed test 4-f"
read \a .b.
assert {rpn "\a" "2" ==} " failed test 4-g"
assert {rpn .b. 22 ==} " failed test 4-h"
close
open tst_IO_2.dat
read .a. .b.
assert {rpn .a. 1 ==} " failed test 4-i"
assert {rpn .b. 11 ==} " failed test 4-j"
read \a \b
assert {rpn "\a" "2" ==} " failed test 4-k"
assert {rpn "\b" "22" ==} " failed test 4-l"
rewind
read .a. \b
assert {rpn .a. 1 ==} " failed test 4-m"
assert {rpn "\b" "11" ==} " failed test 4-n"
read \a .b.
assert {rpn "\a" "2" ==} " failed test 4-o"
assert {rpn .b. 22 ==} " failed test 4-p"
close

if 0 # NOTE: change to 1 do some non-assert tests
Grids
open tst_IO_1.dat
read grid x
show grid
close
open tst_IO_2.dat
read grid x
show grid
close
open tst_IO_1.dat
read grid y
show grid
close
open tst_IO_2.dat
read grid y
show grid
close

end if

show " passed"
 	

Chapter 16: Test Suite 233

Test file ‘tst_control.gri’:

234 Gri

� �
show "doc/tst_suite/tst_control.gri ..." ...

If statements
if 0

assert 0 " failed test 1"
end if
if 1
else

assert 0 " failed test 2"
end if

Loops.

Loop with if inside
.i. = 0
while {rpn .i. 3 >}

.i. += 1
if 1
else

assert 0 " failed test 3"
end if

end while
assert {rpn .i. 3 ==} " failed test 4"

Loop inside if
if 1

.i. = 0
while {rpn .i. 3 >}

.i. += 1
end while
assert {rpn .i. 3 ==} " failed test 5"

else
assert 0 " failed test 6"
.i. = 0
while {rpn .i. 3 >}

.i. += 1
end while
assert 0 " failed test 7"

end if

Nested loops
.i. = 0
while {rpn .i. 2 >}

.j. = 0
while {rpn .j. 4 >}

.j. += 1
end while
.i. += 1

end while
assert {rpn .i. 2 ==} " failed test 8"
assert {rpn .j. 4 ==} " failed test 9"

show " passed"
 	

Chapter 16: Test Suite 235

Test file ‘tst_rpn.gri’:

236 Gri

� �
show "doc/tst_suite/tst_rpn.gri ..." ...

rpnfunction same - abs 1e-5 > # Are numbers virtually same?

Simple arithmetic
.a. = 0
assert {rpn .a. !} " failed test 1.1"
.a. += 1
assert .a. " failed test 1.2"
.a. += 1
assert {rpn .a. 2 same} " failed test 1.3"
.a. *= 2
assert {rpn .a. 4 same} " failed test 1.4"
.a. /= 4
assert {rpn .a. 1 same} " failed test 1.5"
assert {rpn 2 1 - 1 same} " failed test 1.6"
assert {rpn 2 1 + 3 same} " failed test 1.7"
assert {rpn 3 2 * 6 same} " failed test 1.8"
assert {rpn 4 2 / 2 same} " failed test 1.9"

Conversions (lower-case ok on input, but output is upper-case)
assert {rpn "aa" hex2dec 170 ==} " failed test 2.1"
assert {rpn "AB" hex2dec 171 ==} " failed test 2.2"
assert {rpn 63 dec2hex "3F" ==} " failed test 2.3"
assert {rpn 193 dec2hex "C1" ==} " failed test 2.4"

Logic
assert {rpn 1 0 or} " failed test 3.1"
assert {rpn 0 1 or} " failed test 3.2"
assert {rpn 1 0 |} " failed test 3.3"
assert {rpn 0 1 |} " failed test 3.4"
assert {rpn 1 0 and not} " failed test 3.5"
assert {rpn 1 0 & !} " failed test 3.6"

Logs, powers
.a. _= 10
assert {rpn .a. 0 same} " failed test 4.1"
.a. = 2
.a. ^= 8
assert {rpn .a. 256 same} " failed test 4.2"
assert {rpn -2 4 power 16 ==} " failed test 4.3"
assert {rpn -2 3 power -8 ==} " failed test 4.4"
assert {rpn -2 2 power 4 ==} " failed test 4.5"
assert {rpn 2 3 power 8 ==} " failed test 4.6"

String operations
\a = {rpn "file" ".dat" strcat}
assert {rpn "\a" "file.dat" ==} " failed test 5.1"
\sentence = "This sentence has five words"
\w1 = word 0 of "\sentence "
assert {rpn "\w1" "This" ==} " failed test 5.2"
\w2 = word 1 of "\sentence "
assert {rpn "\w2" "sentence" ==} " failed test 5.3"
assert {rpn 0 4 "hello" substr "hell" ==} " failed test 5.4"

Q: will the below work on all OS?????
NB. better to switch with something more universal
\six = system "date | wc | awk ’{print $2}’"
assert {rpn \six 6 ==} " failed test 6.1"

Statistical operations
read columns x
1
3
2
9
3

assert {rpn x mean 3.6 same} " failed test 7.1"
assert {rpn x stddev 3.1305 same} " failed test 7.2"
assert {rpn x skewness 0.882432 same} " failed test 7.3"
assert {rpn x kurtosis 1.88008 same} " failed test 7.4"

----------- FILL IN LATER -----------------
Math functions (e.g. sin, ...)
Stack operations push, pop, and exch.
assert {rpn 45 cos 0.7071 same} " failed test 8.1"
assert {rpn 45 sin 0.7071 same} " failed test 8.2"
assert {rpn 45 tan 1 same} " failed test 8.3"

Missing-values
set missing value -99
read .x. .y.
1 -99
assert {rpn .y. ismissing} " failed test 9.1"
assert {rpn .y. -99 == } " failed test 9.2"
assert {rpn .y. -99 != !} " failed test 9.3"
assert {rpn .y. 0 != } " failed test 9.4"
some boolean tests need not check that both values exist
assert {rpn .y. 0 & !} " failed test 9.5"
assert {rpn 0 .y. & !} " failed test 9.6"
assert {rpn .y. 1 & } " failed test 9.7"
assert {rpn .y. 1 | } " failed test 9.8"
assert {rpn 1 .y. | } " failed test 9.9"
if {rpn .y. -99 !=}

show " failed test 9.10"
end if

show " passed"
 	

Chapter 16: Test Suite 237

Test file ‘tst_var_syn.gri’:

238 Gri

� �
show "doc/tst_suite/tst_var_syn.gri ..." ...
rpnfunction same - abs 1e-10 > # Are numbers virtually same?

New and delete (variables)
.v. = 1
new .v.
.v. = 2
assert {rpn .v. 2 same} " failed test 1.1"
assert {rpn ".v." defined} " failed test 1.2"
delete .v.
assert {rpn .v. 1 same} " failed test 1.3"
assert {rpn ".v." defined} " failed test 1.4"
delete .v.
assert {rpn ".v." defined !} " failed test 1.4"

New and delete (synonyms)
\v = "hi"
new \v
\v = "hello"
assert {rpn "\v" "hello" ==} " failed test 2.1"
assert {rpn "\\v" defined} " failed test 2.2"
delete \v
assert {rpn "\v" "hi" ==} " failed test 2.3"
assert {rpn "\\v" defined} " failed test 2.4"
delete \v
assert {rpn "\\v" defined !} " failed test 2.5"

Multi-word synonyms
\h = "Hi there buddy"
assert {rpn \[]h 3 ==} " failed test 3.1"
.i. = \[]h
assert {rpn .i. 3 ==} " failed test 3.2"
assert {rpn "\[0]h" "Hi" ==} " failed test 3.3"
assert {rpn "\[1]h" "there" ==} " failed test 3.4"
assert {rpn "\[2]h" "buddy" ==} " failed test 3.5"
\h = "Hi means \"hello\""
assert {rpn "\[0]h" "Hi" ==} " failed test 3.6"
assert {rpn "\[1]h" "means" ==} " failed test 3.7"
assert {rpn "\[2]h" "\"hello\"" ==} " failed test 3.8"
.i. = 1
assert {rpn "\[.i.]h" "means" ==} " failed test 3.9"
\i = "1"
assert {rpn "\[\i]h" "means" ==} " failed test 3.10"

Setting by quoted name
set ".var." to 10
assert {rpn .var. 10 ==} " failed test 4.1"
set "\\syn" to "hi"
assert {rpn "\syn" "hi" ==} " failed test 4.2"

Setting by quoted name, in a new command
‘hi pi "\\Greeting" ".Pi."’
{

set "\.word2." to "hi"
set "\.word3." to 3.14

}
hi pi "\\g" ".p."
assert {rpn "\g" "hi" ==} " failed test 5.1"
assert {rpn .p. 3.14 ==} " failed test 5.2"

Execution of synonyms
\ret = "\string = \"Hello\""
\ret
assert {rpn "\string" "Hello" ==} " failed test 6.1"

Parsing of individual words in synonyms (tests SourceForge bug 114983)
‘Newcommand "\pat"’’
{

\t = "A .2"
assert {rpn "\[0].word1." "\[0]t" ==} " failed test 7.1"

}
Newcommand "A .2"

Test aliased synonyms

Part 1. check to see if can delete without either a
single or a double backslash, and either with
enclosing double-quotes, or not.
\a = "HI"
assert {rpn "\\a" defined } " failed test 8.1"
delete \a
assert {rpn "\\a" defined ! } " failed test 8.2"
\a = "HI"
delete \a
assert {rpn "\\a" defined ! } " failed test 8.3"

new \a
assert {rpn "\\a" defined } " failed test 9.1"
\a = "greeting"
assert {rpn "\\a" defined } " failed test 9.2"
delete \a
assert {rpn "\\a" defined ! } " failed test 9.3"

Part 5. sprintf
sprintf \a "%.1f" 10
assert {rpn "\a" "10.0" == } " failed test 10.1"
\alias_for_a = "\\a"
sprintf \@alias_for_a "%.1f" 20
assert {rpn "\a" "20.0" == } " failed test 10.2"

Part 6. Environment variables (SF bug 117415)
\alias_for_a = "\\a"
get env \@alias_for_a "SHELL"
get env \b "SHELL"
assert {rpn "\a" "\b" ==} " failed test 11.1"

Part 7 ’read’ (SF bug 117412)
\TMPFILE = tmpname
system echo "Hello" > \TMPFILE
open "\TMPFILE"
read \a
assert {rpn "\a" "Hello" ==} " failed test 12.1"
\a = "JUNK"
\alias_for_a = "\\a"
rewind
read \\a
assert {rpn "\a" "Hello" ==} " failed test 12.2"
\a = "JUNK"
\alias_for_a = "\\a"
rewind
read \@alias_for_a
close
assert {rpn "\a" "Hello" ==} " failed test 12.3"
system rm -f \TMPFILE

Part 8 -- ensure not trying to evaluate inside ’false’ if parts.
\str = "Hello"
\t = {rpn "\s" "tr" strcat} # construct a name
if {rpn "\\t" defined} # test if defined

.val. = 1
end if
if {rpn "\\x" defined} # this one is not defined

.val. = 2
end if
assert {rpn .val. 1 ==} " failed test 12.4"

#
\a1 = "1"
\b1 = "2"
\a2 = "10"
\b2 = "20"
read columns x y
\a1 \b1
\a2 \b2

assert {rpn x 0 @ 1 ==} " failed test 13.1"
assert {rpn x 1 @ 10 ==} " failed test 13.2"
assert {rpn y 0 @ 2 ==} " failed test 13.3"
assert {rpn y 1 @ 20 ==} " failed test 13.4"

‘NC ...’
{

read columns x y
\.word1 \.word2.

}
NC 1 10
assert {rpn x 0 @ 1 ==} " failed test 14.1"
assert {rpn y 0 @ 10 ==} " failed test 14.2"

\a = "1 2"
\b = "10 20"
\index = "0"
read columns x y
\[\index]a \[1]b

assert {rpn x 0 @ 1 ==} " failed test 15.1"
assert {rpn y 0 @ 20 ==} " failed test 15.2"

‘NC2 ...’
{

read columns x y
\[0].word1. \[0].word2.
\[1].word1. \[1].word2.

}
NC2 "1 2" "100 200"
assert {rpn x 0 @ 1 ==} " failed test 16.1"
assert {rpn x 1 @ 2 ==} " failed test 16.2"
assert {rpn y 0 @ 100 ==} " failed test 16.3"
assert {rpn y 1 @ 200 ==} " failed test 16.4"

Part 9. New commands with variables

Rvalue: synonyms/variables
‘ampersand_rvalue &.v. &\s’
{

new \syn
\syn = "Shadow"
new .a.
.a. = 0
assert {rpn \.word1. 1 ==} " failed test 17.1"
assert {rpn "\.word2." "Brightness" ==} " failed test 17.2"
delete \syn
delete .a.

}
.a. = 1
\syn = "Brightness"
ampersand_rvalue &.a. &\syn

Rvalue + Lvalue: synonym
‘append &\s’
{

\.word1. = "\.word1. and bye"
}
\a = "hi"
append &\a
assert {rpn "\a" "hi and bye" ==} "failed test 18.3"

Rvalue + Lvalue: variable in the = form of assignment
‘double &.var.’
{

\.word1. = {rpn \.word1. 2 *}
}
.a. = 10
double &.a.
assert {rpn .a. 20 ==} "failed test 18.4"

‘Double &.var.’
{

\.word1. *= 2
}
.a. = 10
Double &.a.
assert {rpn .a. 20 ==} " failed test 18.5"

‘halve &.var.’
{

\.word1. = {rpn \.word1. 2 /}
}
halve &.a.
assert {rpn .a. 10 ==} " failed test 18.6"

‘NC3 &\friendly’
{

\.word1. = "Howdy"
}
\greeting = "Hi"
NC3 &\greeting
assert {rpn "\greeting" "Howdy" ==} " failed test 18.7"

‘postpend_dat &\filename’
{

\.word1. = {rpn "\.word1." ".dat" strcat}
}
\filename = "test"
postpend_dat &\filename
assert {rpn "test.dat" "\filename" ==} " failed test 18.8"

new
‘test_new &\s’
{

new \.word1.
new \a
\a = "This will dissapear"
\.word1. = "Think locally"
delete \a

}
\a = "Act globally"
test_new &\a
assert {rpn "\a" "Think locally" ==} " failed test 18.9"
delete \a
assert {rpn "\a" "Act globally" ==} " failed test 18.10"

‘test_new_delete &\s’
{

new \a
\a = "Insurrection"
assert {rpn "\.word1." "Act globally" ==} " failed test 18.11"
delete \.word1.
assert {rpn "\.word1." "Or else" ==} " failed test 18.12"
delete \a

}
\a = "Or else"
new \a
\a = "Act globally"
test_new_delete &\a

Nexting
‘nest2 &.v. &\s’
{

assert {rpn "\.word1." "HI" ==} " failed test 18.13"
assert {rpn \.word2. 0.5 ==} " failed test 18.14"

}
‘nest1 &.v. &\s’
{

nest2 &\.word2. &\.word1. # reversed
}
.a. = 0.5
\s = "HI"
nest1 &.a. &\s
defined
‘check_defined &.v.’
{

assert {rpn "\\.word1." defined} " failed test 18.15"
delete .a.
assert {rpn "\\.word1." defined !} " failed test 18.16"

}
.a. = 100
check_defined &.a.

System
\t = system perl <<"EOF"
{print "Hi"};
EOF
assert {rpn "\t" "Hi" ==} " failed test 19.1"
\t = system perl <<"EOF"
{print "Hello"};
EOF
assert {rpn "\t" "Hello" ==} " failed test 19.2"
‘NC4’
{

\t = system perl <<"EOF"
{print "Howdie"};

EOF
}
NC4
assert {rpn "\t" "Howdie" ==} " failed test 19.3"
‘NC5’
{

\t = system perl <<"EOF"
{print "G’day"};

EOF
}
NC5
assert {rpn "\t" "G’day" ==} " failed test 19.4"

BLOCK 20
Alias as lvalue (e.g. \@ptr = ...)
(1) lvalue synonyms
\greeting = "You say goodbye"
\alias = "\\greeting"
\@alias = "And I say hello"
assert {rpn "\greeting" "And I say hello" ==} " failed test 20.1"
(2) lvalue variables
.b. = 1
\bptr = ".b."
\@bptr *= 2
assert {rpn .b. 2 ==} " failed test 20.2"
\@bptr = 10
assert {rpn .b. 10 ==} " failed test 20.3"

Alias as rvalue (e.g. show "\@ptr")
(1) rvalue synonyms
\a = "HI"
\aptr = "\\a"
assert {rpn "\@aptr" "HI" ==} " failed test 20.4"
\@aptr = "BYE"
assert {rpn "\@aptr" "BYE" ==} " failed test 20.5"
\aa = "\@aptr"
assert {rpn "\@aptr" "BYE" ==} " failed test 20.6"
(2) rvalue variables
.a. = 1
\aptr = ".a."
assert {rpn \@aptr 1 ==} " failed test 20.7"
.aa. = {rpn .a. 1 +}
assert {rpn .aa. 2 ==} " failed test 20.8"

Missing values
set missing value 0
.x. = 0
assert {rpn .x. ismissing} " failed test 21.1"
assert {rpn .x. 1 + ismissing} " failed test 21.2"
set missing value 1e33

show " passed"
 	

Chapter 17: Gri in the Press 239

17 Gri in the Press

A gentle introduction to Gri is provided in a Linux Journal article, available at
http://www2.linuxjournal.com/lj-issues/issue75/3743.html on the web.

In March 2000, I emailed some Gri users to ask for the names of scientific journals in
which they have published Gri-produced graphs. The list, which mainly arrived on Sunday
in response to an email I sent Saturday (don’t Gri users take a break?) is presented below,
to indicate the range of Gri use in the press.

Journals in Oceanography, Atmospheric Science, Earth Science, etc.

• Bulletin on Coastal Oceanography (in Japanese with English abstract)
• Fisheries Oceanography

• Deep-Sea Research

• EOS, Transactions of the American Geophysical Union

• Estuarine, Coastal and Shelf Science

• Geophysical Research Letters

• Journal of Atmospheric and Oceanic Technology

• Journal of Geophysical Research

• Journal of Marine Research

• Journal of Plankton Research

• Journal of Physical Oceanography

• Journal of the Japan Scoiety for Marine Surveys and Technology (in Japanese with
English abstract)

• Limnology and Oceanography

• Marine Biology

• Marine Ecology Progress Series

• Monthly Weather Review

• Oceanography

• Paleoceanography

• Progress in Oceanography

• Quaternary Research

• Scientia Marina

• South African Journal of Marine Science

• Umi no Kenkyu (Japanese version for Journal of Oceanography, in Japanese with
English abstract)

Journals in Physics, Chemistry, etc.

• Applied Physics A

• Journal of Fluid Mechanics

• Journal of Physical Chemistry B

• Physica D

• Physics of Fluids

• Physics A

• Physics Letters B

• Physical Review C

240 Gri

• Physical Review Letters

• Research on Chemical Intermediates

• Theoretical Computational Fluid Dynamics

Other Journals

• Nature

Books, Monographs, etc.

• The Atlas of Hawai’i (University of Hawai’i Press)
• Differential Equations with Applications to Biology (American Mathematical Society)
• Ocean Drilling Program publications

Chapter 18: Acknowledgments 241

18 Acknowledgments

Over the years, many Gri users have been kind enough to help in its development. Some
have done so by sending in bug reports, others by requesting features, others by submit-
ting patches. A few of their names are: Ivo Alxneit, Karin Bryan, Sara Bennett, Luke
Blaikie, Dave Brickman, Steve Cayford, Clyde Clements, Andrew Collier, Pierre Flament,
Peter Galbraith, Dave Hebert, David A. Holland, Christopher Illies, Cody Kirkpatrick,
Thomas Larsen, Alejandro Lpez-Valencia, Kawamura Masao, Steve Matheson, Brian May,
Ed Nather, Roman Neuhauser, Carl Osterwisch, Richard Andrew Miles Outerbridge, Tim
Powers, Jinyu Sheng, Toru Suzuki, Keith Thompson, David Trueman, Wolfgang Voegeli,
Jeff Whitaker, and George White.

Prime among these is Peter Galbraith, who has been a close collaborator in Gri devel-
opment and in my scientific work, for well over a decade.

To all, thanks.

242 Gri

Chapter 19: License 243

19 License

Gri is distributed under the GPL public license, an Open Source license that provides certain
rights and freedom to users, notably the access to source code and the right to modify it
and/or redistribute it. The full text of the GPL license is given below.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software
Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute
verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to
take away your freedom to share and change it.
By contrast, the GNU General Public License is
intended to guarantee your freedom to share and
change free software--to make sure the software
is free for all its users. This General Public
License applies to most of the Free Software
Foundation’s software and to any other program
whose authors commit to using it. (Some other
Free Software Foundation software is covered by
the GNU Library General Public License instead.)
You can apply it to your programs, too.

When we speak of free software, we are
referring to freedom, not price. Our General
Public Licenses are designed to make sure that
you have the freedom to distribute copies of free
software (and charge for this service if you
wish), that you receive source code or can get it
if you want it, that you can change the software
or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make
restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights.
These restrictions translate to certain
responsibilities for you if you distribute copies
of the software, or if you modify it.

For example, if you distribute copies of such a
program, whether gratis or for a fee, you must
give the recipients all the rights that you have.

244 Gri

You must make sure that they, too, receive or can
get the source code. And you must show them
these terms so they know their rights.

We protect your rights with two steps: (1)
copyright the software, and (2) offer you this
license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we
want to make certain that everyone understands
that there is no warranty for this free software.
If the software is modified by someone else and
passed on, we want its recipients to know that
what they have is not the original, so that any
problems introduced by others will not reflect on
the original authors’ reputations.

Finally, any free program is threatened
constantly by software patents. We wish to avoid
the danger that redistributors of a free program
will individually obtain patent licenses, in
effect making the program proprietary. To
prevent this, we have made it clear that any
patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying,
distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License applies to any program or other
work which contains a notice placed by the
copyright holder saying it may be distributed
under the terms of this General Public License.
The "Program", below, refers to any such program
or work, and a "work based on the Program" means
either the Program or any derivative work under
copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim
or with modifications and/or translated into
another language. (Hereinafter, translation is
included without limitation in the term
"modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and

Chapter 19: License 245

modification are not covered by this License;
they are outside its scope. The act of running
the Program is not restricted, and the output
from the Program is covered only if its contents
constitute a work based on the Program
(independent of having been made by running the
Program). Whether that is true depends on what
the Program does.

1. You may copy and distribute verbatim copies
of the Program’s source code as you receive it,
in any medium, provided that you conspicuously
and appropriately publish on each copy an
appropriate copyright notice and disclaimer of
warranty; keep intact all the notices that refer
to this License and to the absence of any
warranty; and give any other recipients of the
Program a copy of this License along with the
Program.

You may charge a fee for the physical act of
transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the
Program or any portion of it, thus forming a work
based on the Program, and copy and distribute
such modifications or work under the terms of
Section 1 above, provided that you also meet all
of these conditions:

a) You must cause the modified files to carry
prominent notices stating that you changed
the files and the date of any change.

b) You must cause any work that you
distribute or publish, that in whole or in
part contains or is derived from the Program
or any part thereof, to be licensed as a
whole at no charge to all third parties under
the terms of this License.

c) If the modified program normally reads
commands interactively when run, you must
cause it, when started running for such
interactive use in the most ordinary way, to
print or display an announcement including an
appropriate copyright notice and a notice
that there is no warranty (or else, saying
that you provide a warranty) and that users
may redistribute the program under these

246 Gri

conditions, and telling the user how to view
a copy of this License. (Exception: if the
Program itself is interactive but does not
normally print such an announcement, your
work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as
a whole. If identifiable sections of that work
are not derived from the Program, and can be
reasonably considered independent and separate
works in themselves, then this License, and its
terms, do not apply to those sections when you
distribute them as separate works. But when you
distribute the same sections as part of a whole
which is a work based on the Program, the
distribution of the whole must be on the terms of
this License, whose permissions for other
licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to
claim rights or contest your rights to work
written entirely by you; rather, the intent is to
exercise the right to control the distribution of
derivative or collective works based on the
Program.

In addition, mere aggregation of another work not
based on the Program with the Program (or with a
work based on the Program) on a volume of a
storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or
a work based on it, under Section 2) in object
code or executable form under the terms of
Sections 1 and 2 above provided that you also do
one of the following:

a) Accompany it with the complete
corresponding machine-readable source code,
which must be distributed under the terms of
Sections 1 and 2 above on a medium
customarily used for software interchange;
or,

b) Accompany it with a written offer, valid
for at least three years, to give any third
party, for a charge no more than your cost of
physically performing source distribution, a

Chapter 19: License 247

complete machine-readable copy of the
corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on
a medium customarily used for software
interchange; or,

c) Accompany it with the information you
received as to the offer to distribute
corresponding source code. (This alternative
is allowed only for noncommercial
distribution and only if you received the
program in object code or executable form
with such an offer, in accord with Subsection
b above.)

The source code for a work means the preferred
form of the work for making modifications to it.
For an executable work, complete source code
means all the source code for all modules it
contains, plus any associated interface
definition files, plus the scripts used to
control compilation and installation of the
executable. However, as a special exception, the
source code distributed need not include anything
that is normally distributed (in either source or
binary form) with the major components (compiler,
kernel, and so on) of the operating system on
which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is
made by offering access to copy from a designated
place, then offering equivalent access to copy
the source code from the same place counts as
distribution of the source code, even though
third parties are not compelled to copy the
source along with the object code.

4. You may not copy, modify, sublicense, or
distribute the Program except as expressly
provided under this License. Any attempt
otherwise to copy, modify, sublicense or
distribute the Program is void, and will
automatically terminate your rights under this
License. However, parties who have received
copies, or rights, from you under this License
will not have their licenses terminated so long
as such parties remain in full compliance.

5. You are not required to accept this License,
since you have not signed it. However, nothing

248 Gri

else grants you permission to modify or
distribute the Program or its derivative works.
These actions are prohibited by law if you do not
accept this License. Therefore, by modifying or
distributing the Program (or any work based on
the Program), you indicate your acceptance of
this License to do so, and all its terms and
conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or
any work based on the Program), the recipient
automatically receives a license from the
original licensor to copy, distribute or modify
the Program subject to these terms and
conditions. You may not impose any further
restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible
for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or
allegation of patent infringement or for any
other reason (not limited to patent issues),
conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict
the conditions of this License, they do not
excuse you from the conditions of this License.
If you cannot distribute so as to satisfy
simultaneously your obligations under this
License and any other pertinent obligations, then
as a consequence you may not distribute the
Program at all. For example, if a patent license
would not permit royalty-free redistribution of
the Program by all those who receive copies
directly or indirectly through you, then the only
way you could satisfy both it and this License
would be to refrain entirely from distribution of
the Program.

If any portion of this section is held invalid or
unenforceable under any particular circumstance,
the balance of the section is intended to apply
and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce
you to infringe any patents or other property
right claims or to contest validity of any such
claims; this section has the sole purpose of
protecting the integrity of the free software

Chapter 19: License 249

distribution system, which is implemented by
public license practices. Many people have made
generous contributions to the wide range of
software distributed through that system in
reliance on consistent application of that
system; it is up to the author/donor to decide if
he or she is willing to distribute software
through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear
what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the
Program is restricted in certain countries either
by patents or by copyrighted interfaces, the
original copyright holder who places the Program
under this License may add an explicit
geographical distribution limitation excluding
those countries, so that distribution is
permitted only in or among countries not thus
excluded. In such case, this License
incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish
revised and/or new versions of the General Public
License from time to time. Such new versions
will be similar in spirit to the present version,
but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version
number. If the Program specifies a version
number of this License which applies to it and
"any later version", you have the option of
following the terms and conditions either of that
version or of any later version published by the
Free Software Foundation. If the Program does
not specify a version number of this License, you
may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the
Program into other free programs whose
distribution conditions are different, write to
the author to ask for permission. For software
which is copyrighted by the Free Software
Foundation, write to the Free Software
Foundation; we sometimes make exceptions for

250 Gri

this. Our decision will be guided by the two
goals of preserving the free status of all
derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF
CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO
THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE
LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT
HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it
to be of the greatest possible use to the public,
the best way to achieve this is to make it free
software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the
program. It is safest to attach them to the
start of each source file to most effectively
convey the exclusion of warranty; and each file
should have at least the "copyright" line and a

Chapter 19: License 251

pointer to where the full notice is found.

<one line to give the program’s name and a
brief idea of what it does.> Copyright (C)
yyyy <name of author>

This program is free software; you can
redistribute it and/or modify it under the
terms of the GNU General Public License as
published by the Free Software Foundation;
either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU
General Public License along with this
program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Also add information on how to contact you by
electronic and paper mail.

If the program is interactive, make it output a
short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) yyyy
name of author Gnomovision comes with
ABSOLUTELY NO WARRANTY; for details type
‘show w’. This is free software, and you are
welcome to redistribute it under certain
conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’
should show the appropriate parts of the General
Public License. Of course, the commands you use
may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu
items--whatever suits your program.

You should also get your employer (if you work as
a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if

252 Gri

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’ (which
makes passes at compilers) written by James
Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit
incorporating your program into proprietary
programs. If your program is a subroutine
library, you may consider it more useful to
permit linking proprietary applications with the
library. If this is what you want to do, use the
GNU Library General Public License instead of
this License.

Index, general 253

Index, general

!
! rpn operator . 164

&
& rpn operator . 163
& syntax, how it is parsed 179

*
* rpn operator . 162

+
+ rpn operator . 162

-
- rpn operator . 162
-batch command-line option 8
-chatty command-line option 8
-creator command-line option 10
-debug command-line option 8
-directory command-line option 9
-directory_default command-line option 8
-help command-line option 10
-no_bounding_box command-line option 9
-no cmd in ps . 9
-no_private command-line option 9
-no_startup_message command-line option. 9
-no_warn_offpage command-line option 9
-output PS file name commandline option 9
-output SVG file name commandline option 9
-private command-line option 9
-publication command-line option 9
-superuser command-line option 10
-trace command-line option 10
-version command-line option 10
-warn_offpage command-line option 10
-yes command-line option . 10

/
/ rpn operator . 162

<
< comparison operator in rpn expressions 162
< rpn operator . 162
<= rpn operator . 162

=
= rpn operator assigns to variables, synonyms, and

columns . 162
== comparison operator in rpn expressions 162

>
> comparison operator in rpn expressions 162
>= rpn operator . 162

@
@ rpn operator, for accessing columnar data . . . 163

[
[] syntax for optional words in commands 7
[] syntax for selecting words in synonyms 154

\
\$() syntax for system commands 183
\& and \&& notation . 179
\.return_value., from read columns 108
\.return_value., from read grid 109
\.return_value., from system 141
\.return_value., general 155
\.wd. synonym, storing working directory 154
\<<, for newline in show commands 136
\>>, for horizontal tab in show commands 136
\@alias notation . 155
\\.path_commands. builtin synonym 10, 129
\\.path_data. builtin synonym 129

|
| rpn operator . 163

~
‘~/.grirc’ initialization file 185

A
abs rpn operator . 164
accented characters in text 172
acknowledgments . 243
acos rpn operator . 164
acosh rpn operator . 164
adding new commands to Gri 173
adding new commands, complicated example . . 176
age rpn operator . 164
Alejandro Lopez-Valencia (contributor) 243

254 Gri

alias synonyms, checking for existence of 166
alias synonyms, with the \@alias notation. . . . 155
aligning superscripts and subscripts with \! . . 172
American Geophysical Union, recommended font

size . 121
American Geophysical Union, recommended gray

levels . 121
American Geophysical Union, recommended image

gray levels . 31
American Geophysical Union, recommended line

thickness. 126
and rpn operator . 163
Andrew Collier (contributor) 243
annotating lines . 55
arc, drawing . 82
area rpn operator . 169
area under curve . 169
argc rpn operator, yielding number of

commandline arguments 168
argc, RPN operator to access commandline

arguments . 8
arguments on command line, accessing with argv

rpn operator . 165
arguments on commandline, accessing 8
arguments to new commands, how to alter 177
argv rpn operator, access commandline arguments

. 165
argv, RPN operator to access commandline

arguments . 8
arrows . 115
arrows, drawing single . 82
arrows, how to read direction field 108
arrows, setting size of heads 115
arrows, size of heads stored in ..arrowsize..

. 149
ascent rpn operator . 165
asin rpn operator . 165
assert command, for debugging 74
assigning to columns, variables and synonyms

within RPN expressions 162
atan rpn operator . 165
atof rpn operator . 165
awk system tool . 189
awk, sample of use . 183
axes, and mathematical operations on columns

. 16
axes, automatic drawing of 44
axes, autoscaling of . 16
axes, displaying information about 135
axes, forcing rescaling . 113
axes, guide to choosing length of 16
axes, labels for . 17
axes, length of . 150
axes, linear . 16
axes, location of . 17
axes, logarithmic . 16
axes, range of values on . 17
axes, scales . 13

axes, setting tic size . 130
axis labels, controlling . 131
axis sizes, scaled with golden ratio 16

B
Barnes method for gridding data 28
batch processing . 8, 149
beeping on errors . 116
beginners, simple example . 5
BeOS unix compilation . 226
big-endian vs little-endian data, caution 102
big-endian vs little-endian data, plans 218
binary data . 102
binary operators in rpn expressions 162
bounding box . 9
bounding box, setting . 116
Brian May, contributor . 243
bug, resulting in bus error 227
bug, resulting in segmentation fault 227
bugs in Gri . 227
bugs, how to kill them . 227
bugs, how to report . 227
built-in synonyms, global . 154
built-in synonyms, local . 156
built-in variables . 149
builtin colors, list of. 18
builtin synonym \\.path_commands. 10, 129
builtin synonym \\.path_data. 129
bus error, what to do . 227

C
calling OS from within strings 183
Carl Osterwisch (contributor) 243
cd command . 74
ceil rpn operator . 165
changeable arguments, using delete on 179
changeable arguments, using new on 179
changes to Gri, protection against 95
changing directories . 74
character variables (synonyms) 151, 153
checking for missing value in rpn expressions . . 164
Christopher Illies (contributor) 243
circles, drawing . 84
clipping data using set input clip 117
clipping data using set input data window . . . 125
close command . 74
closing files . 74
Clyde Clements (contributor) 243
cmtopt rpn operator . 166
Cody Kirkpatrick (contributor) 243
colon on commandline . 8
color, displaying names and RGB values of . . . 136
color, for text . 120
color, symbols . 23
colors, list of . 18
colors, reading from X11 database 106

Index, general 255

colorscale modification . 160
colorscale of image, reading from file 109
colorscale, drawing . 86
colorscale, setting for images 122
colour vs Color spelling . 74
column dat, assigning within RPN expressions

. 162
column data, accessing individual values and stats

. 169
column data, statistics . 169
column data, writing to a file 142
column data, x in one file and y in another . . . 108
column mathematics . 159
column, displaying statistics of 136
columns, assigning within RPN expressions . . . 162
columns, creating from grid 79
columns, filtering . 95, 137
columns, reordering . 113
comma-separated values . 104
command arguments, how to alter 177
command files . 10
command files, path to search for 129
command lines, parsing in new Gri commands

. 156
command-line interface . 218
command-line option -creator 10
command-line option -warn_offpage 10
command-line options . 8
command-line, specifying command file 10
CommandFile command-line option 10
commandfile, pathname . 183
commandline arguments, accessing 8
commandline arguments, accessing with argv rpn

operator . 165
commandline flag colon. 8
commandline option -output PS_file_name. 9
commandline option -output SVG_file_name . . . 9
commands extending over several lines 147
commands, complete list of 74
commands, how to add new ones to Gri 173
comments, # style . 21
comments, and system commands 139
comparison operators in rpn expressions 162
compilation in Macintosh OS X 226
compilation under BeOS . 226
compilation under Linux . 225
compilation under MSDOS 225
compilation under OS/2 . 225
compiling gri . 222
compressed files, opening . 102
computational cost, of convert columns to grid

command . 76
configure script, how to use to compile gri 222
continued lines . 147
contour data, writing to a file 142
contouring . 84
contouring, clipping out invalid areas 121
contouring, interpolating to new grid 100

contours . 25
contours on images . 46
contours, orientation of labels 119
contours, pre-gridded data . 25
contours, smoothing grid data 137
contours, spacing of labels on 118
contours, ungridded data . 27
contours, whiting/nowhiting under the labels . . 119
contributor and bug-fixer, Wolfgang Voegeli . . 243
contributor, Alejandro Lopez-Valencia 243
contributor, Andrew Collier 243
contributor, Brian May. 243
contributor, Carl Osterwisch 243
contributor, Christopher Illies 243
contributor, Clyde Clements 243
contributor, Cody Kirkpatrick 243
contributor, Dave Brickman 243
contributor, Dave Hebert . 243
contributor, David A. Holland 243
contributor, David Trueman 243
contributor, Ed Nather . 243
contributor, George White 243
contributor, Ivo Alxneit . 243
contributor, Jeff Whitaker 243
contributor, Jinyu Sheng . 243
contributor, Karin Bryan . 243
contributor, Kawamura Masao 243
contributor, Keith Thompson 243
contributor, Luke Blaikie . 243
contributor, Peter Galbraith 243
contributor, Pierre Flament 243
contributor, Richard Andrew Miles Outerbridge

. 243
contributor, Roman Neuhauser 243
contributor, Sara Bennett 243
contributor, Steve Cayford 243
contributor, Steve Matheson 243
contributor, Thomas Larsen 243
contributor, Tim Powers . 243
contributor, Toru Suzuki . 243
conversion between user and page units 162
conversion, hour-minute-second to decimal hour

. 104
conversion, string to number, in rpn expressions

. 164
convert columns to grid command 75
convert columns to spline command 78
convert grid to columns command 79
convert grid to image command 79
convert image to grid command 80
converting decimal values to hexadecimal strings

. 166
converting grids to images . 31
converting hexadecimal strings to decimal values

. 166
cookbook . 37
cos rpn operator . 165
cosh rpn operator . 165

256 Gri

create columns from function command 80
csv data . 104
curves, drawing . 85

D
darwinport . 226
dashed lines . 119
data files, opening . 102
data files, path to search for 129
data files, positioning within 136
data files, protecting against movement of 16
data files, words in lines . 149
data format . 21
data in columns, writing to a file 142
data in contours, writing to a file 142
data in grid, writing to a file 143
data in image, writing to a file 143
data, clipping using set input clip 117
data, clipping using set input data window . . . 125
data, comma-separated values 104
data, csv . 104
data, dealing with odd datasets 67
data, from a spreadsheet . 104
data, images . 31
data, missing values . 183
data, spreadsheet . 104
data, stored in comma-separated values 104
date . 155
Dave Brickman (contributor) 243
Dave Hebert (contributor) 243
David A Holland (contributor) 243
David Trueman (contributor) 243
day-of-week axis . 131
debian . 221
debug command . 81
debug command-line option 149
debugger used with Gri . 227
debugging . 81
debugging Gri programs . 181
debugging using superuser flags 139
debugging, using ..debug.. 149
debugging, with assert command 74
default values . 145
defining rpn functions . 114
delete command . 81
delete, used on changeable arguments 179
deleting variables, synonyms, scales, etc 81
deprecated commands . 218
descent rpn operator . 166
developer command set environment 119
developer command set flag 120
differentiate command. 81
differentiation . 81
direction field, how to read 108
directories, changing . 74
directory listing . 100
directory structure of Gri installation. 221

directory, how to find out 106
directory, stored in synonym \.wd. 154
directory_exists rpn operator 166
discussion Group . 190
dollar-parenthesis syntax for system commands

. 183
draw arrows command . 82
draw axes command . 83
draw axes if needed command 82
draw border box command 83
draw box command . 83
draw circle command . 84
draw contour command . 84
draw curve command . 85
draw essay command . 85
draw gri logo command . 85
draw grid comman . 86
draw image comman . 87
draw image histogram command 86
draw image palette comman 86
draw isopycnal command . 87
draw isospice command . 88
draw label boxed command 89
draw label command . 89
draw label for last curve command 89
draw label whiteunder command 89
draw line command . 89
draw line legend command 90
draw lines command . 90
draw patches command . 90
draw polygon command . 91
draw regression line command 91
draw symbol at command . 91
draw symbol command . 92
draw symbol legend command 92
draw time stamp command 93
draw title command . 93
draw values command . 93
draw x axis command . 94
draw x box plot command 94
draw y axis command . 94
draw y box plot command 95
draw zero line command . 95
drawing arcs . 82
drawing contours . 84
drawing contours of pregridded data 26
drawing contours of ungridded data 28
drawing curves . 85
drawing data lines . 21
drawing image plots . 33
drawing labels . 89
drawing labels for data curves 170
drawing labels on xy curves 89
drawing legends . 55
drawing linegraphs . 21
drawing patches . 90
drawing polygons . 91
drawing satellite images . 33

Index, general 257

drawing single symbols . 91

drawing text strings . 89

drawing titles. 21

drawing x-y graphs, simple . 5

dup rpn operator . 166

dup rpn stack operator . 161

E
e, base of natural logarithms, in RPN expressions

. 168

Ed Nather (contributor) . 243

editing Gri code with Emacs 191

electric fence, for debugging 227

emacs, editing mode for Gri 191

email list . 190

end group command . 95

endian file compatibility, caution 102

endian file compatibility, plans 218

environment variables . 97

eof on files . 122

error messages . 182

errors, beeping . 116

example 01, linegraph using data in a separate file
. 5, 6, 21

example 03 (controlling scales, etc) 13

example 03, controlling scales, etc 14

example 04 (contouring pregridded data) 26

example 05 - Contouring ungridded data, from
figure . 30

example 06, plot IR image of Gulf of Maine 35

example 07, box plots of mixing efficiency vs
density ratio (meddy) . 39

example 08, plot T=T(x,rho) section of eubex data
. 41

example 09, plot dTdrho-rho section 45

example 10 (image plot with contours) 47

example 10, draw image plot of flushing of dye out
of cove . 48

example 11, fancy plot . 51

example 12, linegraph with key inside plot 56

example 13, TS diagram, with isopycnals 59

examples of rpn mathematics 161

exch rpn operator . 163

exch rpn stack operator . 161

existence of a synonym, testing 166

existence of a variable, testing 166

existence of an alias synonym, testing 166

exp rpn operator . 166

exp10 rpn operator . 166

expecting command . 95

exponentiation . 159

extending Gri by adding new commands 173

extending Gri by adding new commands,
complicated example . 176

F
fancy plot . 50
FEM mesh plot . 66
file age, determined with the age rpn operator

. 164
file permissions, testing with file_exists and

directory_exists . 166
file, saving results into . 142
file, selecting between open files 111
file, temporary . 184
file_exists rpn operator 166
filename, temporary . 184
filenames, constructing using the operating system

. 153
files, ‘~/.grirc’ initialization file 185
files, closing . 74
files, Command-file . 10
files, listing . 100
files, positioning within . 136
files, testing for eof . 122
filled regions. 85
filter command . 95
filtering column data . 95
filtering image data . 95
Finite Element Model mesh 66
fink . 226
first-time usage . 5
flip command . 96
flipping grids and images . 96
floor rpn operator . 166
font encoding . 120
font size . 121
font, selecting . 13
font, setting color of . 120
font, setting encoding vector of 120
font, size . 150
format for columnar data . 21
format, for sprintf command 138
formulae, how to plot . 23
French accents in text . 172
FTP site, cookbook . 4
functions in rpn expressions 114
functions, how to plot . 23

G
gawk system tool . 189
gawk, sample of use . 139
gawk, using to convert files from HMS to decimal

. 104
geography, converting hour-minute-second to

decimal hour . 104
George White (contributor) 243
get env command . 97
global built-in synonyms . 154
global synonyms . 154
golden ratio, used for axes sizes 16
graphics state, saving and restoring 138

258 Gri

gray level . 150
gray level, example for polygons 57
gray vs Grey spelling . 74
graylevel for lines, example 50
graylevel, command . 121
graylevel, explanation . 17
grayscale modification . 160
grayscale of image, reading from file 110
grayscale, setting for images 123
greek Letters . 171
grep system tool . 189
grey vs Gray spelling . 74
gri code, editing . 191
gri commands, categories of 73
gri commands, complete list of 74
Gri newsgroup . 4
gri version . 4
gri-mode, command name abbreviation 200
gri-mode, Configuring gri-mode to where gri lives

on your system . 197
gri-mode, editing gri syntax 200
gri-mode, editing in emacs 191
gri-mode, enter chunks of code with short-cuts

. 201
gri-mode, Extra user configuration of gri-mode

. 198
gri-mode, gri code fragments 201
gri-mode, gri command names 199
gri-mode, handling argv and argc 203
gri-mode, handling filename command arguments

. 203
gri-mode, handling multiple Gri versions 202
gri-mode, how it names gri commands 199
gri-mode, imenu support . 202
gri-mode, Info interface . 202
gri-mode, installing . 196
gri-mode, major commands 199
gri-mode, Placing gri-mode.el where Emacs can

find it. 196
gri-mode, possible completions 199
gri-mode, screenshots . 191
gri-mode, sysnonym completion 200
gri-mode, Telling emacs to load gri-mode 198
gri-mode, toolbar . 202
gri-mode, user-defined commands 201
gri-mode, variable completion 200
‘gri.cmd’, how it is located 10
gri merge . 187
gri unpage . 188
grid data – accessing individual values and stats

. 169
grid data – minimum, maximum, mean 169
grid data mathematical operations 159
grid data, determining geometry from file 25
grid data, displaying . 136
grid data, smoothing . 137
grid data, write to file . 143
grid data, writing to a file 143

grid mask, displaying . 136
grid, converting to image . 31
grid, creating from image . 80
grid, deleting . 81
grid, flipping . 96
grid, interpolating from one to another 100
grid, interpolating to given (x,y) value 169
grid, missing values . 121
grid, reading . 108
gridding data, advice on methods 27
group command . 97
gzipped files, opening . 102

H
Handling errors with set error command 120
handling multiple gri versions 223
hat, drawing hat on top of character 172
header lines, reading information from 68
header lines, skipping . 67
heal command . 97
help command . 98
help, online . 146
hexadecimal, converting to decimal 166
hexadecimal, converting to from decimal 166
hint, color palette range . 19
hint, contour lines on image palette 86
hint, first-time usage . 5
hint, palette range . 86
hint, using query to interact with user. 181
hints . 180
histogram enhancement of image plots 33
hms format . 104
hour, minute, second data 104
how to compile gri . 222
HP calculators, RPN notation different from

. 162, 163

I
if command . 98
if statements . 98, 157
ignore command . 99
image colorscale, reading . 109
image data, determining geometry from file 25
image data, write to file . 143
image data, writing to a file 143
image formats, other than 8-bit 218
image grayscale, reading . 110
image grayscale/colorscale modification 160
image mask data, write to file 143
image mask, reading . 110
image mathematical operations 160
image palette data, write to file 143
image plot, with contours . 46
image plots, general . 31
image plots, setting colorscale 122
image plots, setting grayscale 123

Index, general 259

image, banded . 80
image, creating from grid . 79
image, data format . 31
image, displaying histogram of 136
image, drawing colorscale palette 86
image, drawing palette . 86
image, flipping . 96
image, histogra . 86
image, interpolation from grid 79
image, masking . 101
image, PostScript output . 32
images, filtering . 95
images, histogram scaling. 32
images, linear scaling. 32
images, reading . 111
incompatibilities, keeping track of 95
inf rpn operator . 163
inf rpn operator, finds smaller of pair 162
initialization commands . 185
input command . 99
input data window . 125
insert command . 100
installation, debian linux . 221
installation, linux redhat/debian 221
installation, redhat linux . 221
interaction with user, -y command-line option . . 10
interaction with user, query command. . . 106, 148,

153, 157, 171
interpolate command . 100
interpolating grid to given (x,y) value 169
interpolation, from grid to image 79
ismissing rpn operator . 167
ISO latin 1 font encoding . 120
iso-latin-1 font encoding . 172
isopycnals . 59, 87
Ivo Alxneit (contributor) . 243

J
Jeff Whitaker (contributor) 243
Jinyu Sheng (contributor) 243

K
Karin Bryan (contributor) 243
Kawamura Masao (contributor) 243
Keith Thompson (contributor) 243
keywords of Gri commands 73
kurtosis, calculating for column data 169

L
labels on contour lines, controlling orientation and

white-under . 119
labels, drawing text anywhere 89
labels, example . 50
labels, for xy curves . 89
labels, on axes . 17, 158

labels, on contours . 118
labels, on data curves . 170
landscape orientation of page 127
larger of two numbers, rpn operator sup 162
latex overline command, emulating 172
legend for symbol . 22
legends . 55
length of axes . 150
length of axes, guide on choosing 16
license . 245
line cap . 125
line join . 125
line width . 126
linear axes . 16
linear interpolation . 114
linear regression . 113
linear_intercept rpn operator 114
linear_slope rpn operator 114
linegraphs . 21
lines in data files, parsing 113
lines, dashed . 119
lines, gray, command . 121
lines, gray, explanation . 17
linux compilation . 225
LINUX compilation . 225
linux distributions . 221
list command . 100
little-endian vs big-endian data, caution 102
little-endian vs big-endian data, plans 218
ln rpn operator . 167
local built-in synonyms . 156
local synonyms . 156
log rpn operator . 167
logarithmic axes . 16
logarithms . 159
logical negation, ! rpn operator 164
logical negation, not rpn operator 164
logical operators in rpn expressions. 162
logo, how to draw . 85
loops . 141
ls command . 100
Luke Blaikie (contributor) 243

M
macintosh unix compilation. 226
makefiles, emulating action with the age rpn

operator . 164
mapping page location units to user units 170
maps, converting hour-minute-second to decimal

hour . 104
maps, format of x axis . 133
maps, format of y axis . 135
maps, scales . 114
maps, scaling . 16
margins . 150
mask command . 101
mask for image, reading . 110

260 Gri

masking image . 101
math on columns, rescaling after 113
mathematical operators in rpn expressions 162
mathematical Symbols . 171
mathematics, on columns . 159
mathematics, on grid data 159
mathematics, on image grayscale/colorscale . . . 160
mathematics, on images . 160
mathematics, on variables 160
mathematics, rpn notation, description 161
mathematics, rpn notation, example 151, 170
mathematics, trigonometric operations 170
maximum, column data . 169
maximum, grid data . 169
mean, calculating for column data 169
mesh plot for FEM . 66
minimum, column data . 169
minimum, grid data . 169
missing value code . 183
missing value, checking for in rpn expressions . . 164
missing values . 127
MSDOS compilation . 225
Multi-panel plots . 128
multiple datasets in one file 21
multiple gri versions . 223
multiple panels . 13
multiple panels, example . 50

N
name, of PostScript file . 129
naming convention for synonyms 151
NaN for missing value code 183
negation, ! rpn operator . 164
negation, not rpn operator 164
netcdf data . 103
netCDF files, opening . 102
netCDF files, reading attributes, units, etc 112
netCDF files, reading columns 107
netCDF files, reading grid data 108
new command . 101
new commands, complicated example 176
new commands, how they are parsed 174
new commands, how to add to Gri 173
new commands, simple example 175
new page command . 101
new postscript file command 102
new, used on changeable arguments 179
newcommand arguments, how to alter 177
newcommands, determining calling argument level

with \&& . 179
newcommands, determining calling argument

names with \& . 179
newline, in a show command 136
newline, in a system command 152
newline, using \<< in show 136
newsgroup . 4
no private, command-line flag 9

non-English language text 172
not rpn operator . 164
numbers, stored in variables 147
numbers, using underscore to separate thousand

parts . 213

O
oceanographic plots . 59
oceanographic plots isopycnals on TS diagram . . 87
oceanographic plots, iso-spice lines on TS diagrams

. 88
oceanographic plots, isopycnals on TS diagrams

. 59
online help . 146
open command . 102
opening compressed files . 102
opening data files . 102
opening files through pipes 184
opening gzipped . 102
operating system commands, assigned to synonyms

. 139, 153, 183
operating system commands, printing results of

. 139, 183
operating system, environment variables 97
operating system, example of using to construct

filenames . 153
operating system, filtering datafiles 102
operating system, getenv . 97
optional words in commands, [] syntax. 7
options on Gri command-line 8
or rpn operator . 163
orientation of page, landscape 127
orientation of page, portrait 127
OS, embedding system output into strings 183
OS/2 unix compilation . 225
overbar, drawing line on top of character 172
overhead projection images, suggested line widths

. 126
overline, emulating latex command 172
overview of awk system tool 189
overview of grep system tool 189
overview of gri commands . 73
overview of perl system tool 190
overview of sed system tool 189

P
page breaks . 101
page orientation, landscape 127
page orientation, portrait . 127
page units . 170
page units, converting to user units 162
paint regions with color . 85
palette for image colorscale, drawing 86
parsing headers in data files 113
parsing of the & syntax . 179
patches, drawing . 90

Index, general 261

path, for command files . 129

path, for data files . 129

pathname of commandfile 183

perl system tool . 190

perl, use to create probability density function . . 61

Peter Galbraith (contributor) 243

pi, in RPN expressions . 168

Pierre Flament (contributor) 243

pipes, opening files through them 103, 184

plans for future versions . 218

polygons, drawing . 91

polygons, filled . 57

pop rpn operator . 167

pop rpn stack operator . 161

portrait orientation of page 127

positioning axes . 17

postscript bounding box . 9

postscript command . 105

PostScript file name, specifying 9

postscript file, write to . 105

postscript filename . 129

postscript output, embedded images 32

postscript-standard font encoding 120

power rpn operator . 163

powers, of columns or variables 159

private, command-line flag . 9

probability density function diagram 61

problems and how to cope with them 181

process, causing Gri to sleep 137

programming in Gri. 145

programming, complete list of Gri commands . . 73

programming, if statements 157

programming, parsing command lines 156

programming, synonyms . 151

programming, using local built-in synonyms . . 156

programming, variables . 147

projected images, suggested line widths 126

protecting Gri programs against datafile movement
. 183

protection against changes to Gri 95

pstack rpn stack operator 161

pttocm rpn operator . 167

publication quality plots, built-in variable
..publication.. 150

publication quality, command-line flag 9

pwd command . 106

Q
query command . 106

quit command . 106

quiting Gri . 106

quoting in system commands 139

R
rand RPN operator . 169
random numbers, generating in RPN expressions

. 169
range of axes . 17
rapidograph scaling for line width 126
read ... command . 112
read colornames command 106
read columns command . 107
read command . 106
read from command . 111
read grid command . 108
read image colorscale command 109
read image command . 111
read image grayscale command 110
read image greyscale command 110
read image mask command 110
read line command . 113
read line raw command . 113
reading attributes in NetCDF files 112
reading columns of data . 21
reading data, checks . 149
reading grid data . 108
reading information from header lines 68
reading synonyms . 112, 113
reading variables . 112, 113
recovering commands from a PostScript file 10
redhat . 221
region painting . 85
regress command . 113
regression, linear . 113
remainder rpn operator . 163
removing files with unlink 141
reorder command . 113
reordering Columns . 113
rescale command . 113
rescaling axes . 113
resize x command . 114
resource files . 185
restoring graphics state . 138
return command . 114
return value, \.return_value. 154
rewind command . 114
RGB values of known colors 136
Richard Andrew Miles Outerbridge (contributor)

. 243
roll_left rpn stack operator 161
roll_right rpn stack operator. 161
Roman Neuhauser (contributor) 243
RPM version of installation package 221
rpn functions . 114
rpn mathematics, examples 161
RPN notation, difference from old-series HP

calculators . 162, 163
rpn operator ! . 164
rpn operator & . 163
rpn operator * . 162
rpn operator + . 162

262 Gri

rpn operator - . 162
rpn operator / . 162
rpn operator < . 162
rpn operator <= . 162
rpn operator = . 162
rpn operator == . 162
rpn operator > . 162
rpn operator >= . 162
rpn operator | . 163
rpn operator abs . 164
rpn operator acos . 164
rpn operator acosh . 164
rpn operator age . 164
rpn operator and . 163
rpn operator area . 169
rpn operator argc, yielding number of

commandline arguments 168
rpn operator ascent . 165
rpn operator asin . 165
rpn operator atan . 165
rpn operator atof . 165
rpn operator ceil . 165
rpn operator cmtopt . 166
rpn operator cos . 165
rpn operator cosh . 165
rpn operator descent . 166
rpn operator directory_exists 166
rpn operator dup . 166
rpn operator exch . 163
rpn operator exp . 166
rpn operator exp10 . 166
rpn operator file_exists 166
rpn operator floor . 166
rpn operator inf . 163
rpn operator inf, finds smaller of pair 162
rpn operator interpolate 169
rpn operator ismissing . 167
rpn operator linear_intercept 114
rpn operator linear_slope 114
rpn operator ln . 167
rpn operator log . 167
rpn operator not . 164
rpn operator or . 163
rpn operator pop . 167
rpn operator power . 163
rpn operator pttocm . 167
RPN operator rand . 169
rpn operator remainder . 163
rpn operator sed . 164
rpn operator sin . 167
rpn operator sinh . 167
rpn operator sqrt . 167
rpn operator strcat . 164
rpn operator strlen . 167
RPN operator substr . 162
rpn operator sup . 164
rpn operator sup, finds larger of pair 162
rpn operator system . 167

rpn operator tan . 167
rpn operator tanh . 167
rpn operator width . 167
RPN operator wordc . 169
RPN operator wordv . 168
rpn operator xcmtouser . 168
rpn operator xusertocm . 168
rpn operator ycmtouser . 168
rpn operator yusertocm . 168
rpn stack operator dup . 161
rpn stack operator exch . 161
rpn stack operator pop . 161
rpn stack operator pstack 161
rpn stack operator roll_left 161
rpn stack operator roll_right. 161
rpn, conversion of string to number 164
rpn, system calls . 164
rpnfunction command . 114
running a commandfile . 138
Running-Mean Skyline Diagram 64

S
Sara Bennett (contributor) 243
satellite images . 32
save results in a file . 142
saving graphics state . 138
scalar operations. 160
scales . 13
scales, accessing . 170
scales, deleting . 81
scaling for maps . 16
scattergraphs . 22
scientific journals with Gri graphs 241
screen snapshots, using Gri 191
sed rpn operator . 164
sed system tool . 189
segmentation fault, what to do 227
set arrow size command 115
set arrow type command 115
set axes style command 115
set beep command . 116
set bounding box command 116
set clip command . 116
set color command . 117
set color name command 118
set colour command . 117
set command . 115
set contour format command 118
set contour label for command 118
set contour label position command. 118
set contour labels command 119
set dash command . 119
set environment command 119
set error command . 120
set flag command . 120
set font color command 120
set font colour command 120

Index, general 263

set font encoding command 120
set font size command . 121
set font to command . 121
set graylevel command . 121
set greylevel command . 121
set grid missing command 121
set ignore error eof command 122
set ignore initial newline command. 122
set image colorscale command 122
set image colourscale command 122
set image grayscale command 123
set image grayscale using histogram command

. 123
set image greyscale command 123
set image greyscale using histogram command

. 123
set image missing value color command 124
set image missing value colour command . . . 124
set image range command 124
set input data separator command 125
set input data window command 124
set line cap command . 125
set line join command . 125
set line width command 126
set missing value command 127
set page command . 127
set page size command . 127
set panel command . 128
set panels command . 128
set path command . 129
set postscript filename command 129
set symbol size command 129
set tic size command . 130
set trace command . 130
set transparency command 130
set u scale command . 130
set v scale command . 130
set x axis command . 130
set x format command . 131
set x grid command . 132
set x margin command . 132
set x name command . 132
set x size command . 132
set x type command . 132
set y axis command . 133
set y format command . 134
set y grid command . 134
set y margin command . 134
set y name command . 135
set y size command . 135
set y type command . 135
set z missing command . 135
setting line cap type . 125
setting line join type . 125
setting line width . 126
setting symbol size . 129
show command . 135
show command, \>> for horizontal tab 136

show command, how to get a newline 136
show command, how to get a tab 136
show command, using \<< for newline 136
show stopwatch command 136
sin rpn operator . 167
sinh rpn operator . 167
skewness, calculating for column data 169
skip command . 136
skipping header lines . 67
sleep command . 137
sleep, causing Gri to . 137
slides, suggested line widths 126
smaller of two numbers, rpn operator inf 162
smooth command . 137
smooth grid data command 137
smoothing column data 95, 137
smoothing grid data . 137
snapshots of computer screen, using Gri 191
source command, for running another command

file . 138
space in text . 172
specifying the PostScript file name 9
specifying the SVG file name 9
spelling of gri commands . 74
spice lines, on TS diagram . 88
spline, fitting to (x,y) data 78
spreadsheet data . 104
sprintf command . 138
sqrt rpn operator . 167
standard deviation, calculating for column data

. 169
standard deviation, column data 169
startup commands . 185
startup message . 9
statistics of column data . 136
statistics, column data . 169
statistics, performing regression 113
Steve Cayford (contributor) 243
Steve Matheson (contributor) 243
stopping Gri . 106
stopwatch, for timing things 136
strcat rpn operator . 164
string, conversion to number in rpn expressions

. 164
strings, embedding OS output into 183
strings, storing variable values within. 138
strlen rpn operator . 167
subscripts . 171
substr RPN operator . 162
substrings, getting with RPN operator substr

. 162
suite of test files . 233
sup rpn operator . 164
sup rpn operator, finds larger of pair 162
superscripts . 171
superscripts and subscripts – how to align using \!

. 172
superuser command . 139

264 Gri

superuser flags. 139
SVG file name, specifying . 9
symbol legend . 22
symbol size, stored in ..symbolsize.. 150
symbols . 22
symbols in color . 23
symbols, drawing single ones 91
symbols, setting size . 129
synonym, and the & syntax 177
synonyms, aliasing with the \@alias notation

. 155
synonyms, assigning values to 153
synonyms, assigning within RPN expressions . . 162
synonyms, built-in, list of 154
synonyms, checking for existence of 166
synonyms, constructing using the operating system

. 153
synonyms, deleting . 81
synonyms, displaying list of 136
synonyms, embedding in quoted text strings . . 171
synonyms, extracting individual words from . . 153
synonyms, for storing character strings 151
synonyms, for storing output from system

commands . 153
synonyms, global . 154
synonyms, local. 156
synonyms, making local versions 101
synonyms, multiple copies of 101
synonyms, naming convention 151
synonyms, reading . 112, 113
synonyms, storing variable values within 138
syntax of Gri commands . 73
system calls in rpn expressions 164
system calls, using dollar-parenthesis shell syntax

. 183
system command . 139
system command, how to get a newline. 152
system command, how to get a tab 152
system commands acting as datafiles 102
system commands, assigned to synonyms. 139,

153, 183
system commands, example of using to construct

filenames . 153
system commands, printing results of 139, 183
system rpn operator . 167

T
T-S diagram, drawing isopycnals on 87
T-S diagram, drawing spice lines on 88
T-S diagram, example of drawing 59
tab, in a show command . 136
tab, in a system command 152
tab, using \>> in show. 136
tan rpn operator . 167
tanh rpn operator . 167
temperature-salinity diagram 59

temperature-salinity diagram, drawing isopycnals
on . 87

temperature-salinity diagram, drawing spice lines
on . 88

temporary file allocation . 184
test suite . 224, 233
testing for end of file . 122
testing for existence of a synonym 166
testing for existence of a variable 166
testing for existence of an aliased synonym . . . 166
testing for file eof . 122
text strings, drawing . 89
text strings, embedding synonyms within 171
text, color used for . 120
text, encoding vector of . 120
text, Greek letters . 171
text, inserting forward/backward space 172
text, ISO characters . 172
text, mathematical symbols 171
text, subscripts . 171
text, superscripts . 171
text, thin-spaces within . 173
the &.variable. notation 177
the &\synonym notation . 177
thin-space in text . 173
Thomas Larsen (contributor) 243
thousand parts, indicating in numbers using

underscore . 213
tic size, setting . 130
Tim Powers (contributor) 243
time . 155
timing things . 136
titles, drawing above plot . 21
tmpname . 184
Toru Suzuki (contributor) 243
traceback . 136
tracing execution, command-line option 10
tracing execution, using ..trace.. 181
transforming page location units to user units

. 170
trigonometric operations in rpn math 170
types of gri commands . 73

U
underscore, in numbers . 213
unix environment variables 97
unix, dollar-parenthesis notation within Gri

commands . 183
unlink command . 141
unlink, to remove files . 141
URL, how to open . 105
user input to Gri . 243
user interaction, query command 106
user units . 170
user units, converting to page units 162
user-defined synonyms . 153
user-defined variables . 148

Index, general 265

using environment variables for directory names
. 183

V
variables . 147
variables, and the & syntax 177
variables, assigning within RPN expressions. . . 162
variables, built-in . 149
variables, checking for existence of 166
variables, defined by user . 148
variables, deleting . 81
variables, displaying list of. 136
variables, making local versions 101
variables, multiple copies of 101
variables, reading . 112, 113
variables, storing values within synonyms (strings)

. 138
vector field, how to read . 108
version 2.10 . 210
version 2.12 . 205
version numbers . 4
versions, handling multiple 223

W

while command . 141
width rpn operator . 167
Window-pane plots . 128
Wolfgang Voegeli (contributor and bug fixer) . . 243
wordc RPN operator . 169
wordv RPN operator . 168
working directory, stored in synonym \.wd. . . . 154
write command . 142
write PostScript commands directly to output file

. 105
writing to a file, column data 142
writing to a file, contour data 142
writing to a file, grid data 143
writing to a file, image data 143

X
x-y graphs . 21, 85
X11 colors, reading . 106
xcmtouser rpn operator . 168
xusertocm rpn operator . 168

Y
ycmtouser rpn operator . 168
yusertocm rpn operator . 168

266 Gri

Index of Commands 267

Index of Commands

A
assert . 74

C
cd . 74
close . 74
convert columns to grid . 75
convert columns to spline 78
convert grid to columns . 79
convert grid to image . 79
convert image to grid . 80
create . 80
create image grayscale . 80

D
debug . 81
delete . 81
differentiate . 81
draw . 82
draw arc . 82
draw arrows . 82
draw axes . 83
draw axes if needed . 82
draw border box . 83
draw box . 83
draw circle . 84
draw contour . 84
draw curve . 85
draw essay . 85
draw gri logo . 85
draw grid . 86
draw image . 87
draw image histogram . 86
draw image palette . 86
draw isopycnal . 87
draw isospice. 88
draw label . 89
draw label boxed . 89
draw label for last curve 89
draw label whiteunder . 89
draw line . 89
draw line legend . 90
draw lines . 90
draw patches . 90
draw polygon . 91
draw regression line . 91
draw symbol . 92
draw symbol at . 91
draw symbol legend . 92
draw times stamp . 93
draw title . 93
draw values . 93

draw x axis . 94
draw x box plot . 94
draw y axis . 94
draw y box plot . 95
draw zero line . 95

E
end group . 95
expecting . 95

F
filter . 95
flip . 96

G
get env . 97
group . 97

H
heal . 97
help . 98

I
if . 98
ignore . 99
input . 99
insert . 100
interpolate . 100

L
list . 100
ls . 100

M
mask . 101

N
new . 101
new page . 101
new postscript file . 102

O
open . 102

268 Gri

P
postscript . 105
pwd . 106

Q
query . 106
quit . 106

R
read . 112
read colornames . 106
read columns. 107
read from . 111
read grid . 108
read image . 111
read image colorscale . 109
read image grayscale . 110
read image mask . 110
read line . 113
regress . 113
reorder . 113
rescale . 113
resize x . 114
return . 114
rewind . 114
rpnfunction . 114

S
set . 115
set arrow size . 115
set arrow type . 115
set axes style . 115
set beep . 116
set bounding box . 116
set clip . 116
set color . 117
set colorname . 118
set colour . 117
set contour format . 118
set contour label for . 118
set contour label position 118
set contour labels . 119
set dash . 119
set environment . 119
set error . 120
set flag . 120
set font color . 120
set font colour . 120
set font encoding. 120
set font size . 121
set font to . 121
set graylevel . 121
set greylevel . 121
set grid missing . 121
set ignore error eof . 122
set ignore initial newline 122

set image colorscale . 122
set image colourscale . 122
set image grayscale . 123
set image grayscale using histogram 123
set image greyscale . 123
set image greyscale using histogram 123
set image missing value color 124
set image missing value colour 124
set image range . 124
set input data separator 125
set input data window . 124
set line cap . 125
set line join . 125
set line width . 126
set missing value. 127
set page . 127
set panel . 128
set panels . 128
set path . 129
set postscript filename 129
set symbol size . 129
set tic size . 130
set trace . 130
set transparency . 130
set u scale . 130
set v scale . 130
set x axis . 130
set x format . 131
set x grid . 132
set x margin . 132
set x name . 132
set x size . 132
set x type . 132
set y axis . 133
set y format . 134
set y grid . 134
set y margin . 134
set y name . 135
set y size . 135
set y type . 135
set z missing . 135
show . 135
skip . 136
smooth . 137
smooth grid data . 137
source . 138
sprintf . 138
state command . 138
superuser . 139
system . 139

U
unlink . 141

W
while . 141
write . 142

Index of Built-in Variables and Synonyms 269

Index of Built-in Variables and Synonyms

.

..arrowsize.., size of arrows 149

..batch.., flag used for batch mode 149

..blue.. 150

..debug.., flag used for debugging 149

..debug.., for debugging (by normal users) . . 8

..eof.., flag indicating end-of-file 149

..exit_status.., exit status from system call

. 151
..fontsize.., size of letters 150
..graylevel.., graylevel (0=black) 150
..image_height.., height of image 150
..image_width.., width of image 150
..length_blank.., length/cm of blanks 119,

150
..length_dash.., length/cm of dashes 119,

150
..linewidth.., width of lines 150
..linewidthaxis.., width of lines on axis

. 150
..linewidthsymbol.., width of lines in

symbols . 150
..missingvalue.., missing value code 150
..missingvalue.., value for missing data

. 183
..num_col_data.., number column data 150,

169
..publication.., flag for final copy of plot

. 150
..superuser.., for debugging (by developers)

. 10
..superuser.., was -superuser flag set?. . . 150
..symbolsize.., size of symbols 150
..tic_direction.., direction of axis tics

. 150
..tic_size.., size/cm of axis tics 150

..trace.., for tracing program execution

. 150
..use_default_for_query.., simulate -yes

commandline flag . 10
..words_in_dataline.. 149
..xinc.., x increment on axes 16, 150
..xlast.., last drawn x value 16
..xleft.., x value at left of plot 16, 150
..xmargin.., left margin 16, 150
..xright.., x value at right of plot . . . 16, 150
..xsize.., x-axis length 16, 150
..ybottom.., y value at bottom of plot 16,

151
..yinc.., y increment on axes 16, 151
..ylast.., last drawn y value 16
..ymargin.., bottom margin 16, 151
..ysize.., y-axis length 16, 151
..ytop.., y value at top of plot 16, 151

\
\.command_file., command-file name 154
\.home., home directory 154
\.missingvalue., command-file name 154
\.pid., process ID of job 154
\.proper_usage. 156
\.ps_file., PostScript file name 154
\.readfrom_file., data file name 154
\.return_value., Return value 154
\.system., operating system name 154
\.time., time and date . 154
\.user., user’s login name 154
\.version., version of Gri 154
\.wd., working directory 154
\.word0. 156
\.word1. 156
\.words. 156

270 Gri

i

Short Contents

Gri . 1

1 Introduction. 3

2 Simple Gri Program and How to Run it 5

3 Invoking Gri . 7

4 Controlling Axes, Fonts, Colors, etc 13

5 X-Y Plots . 21

6 Contour Plots . 25

7 Image Plots . 31

8 Real-world examples . 37

9 List of Commands in the Gri Language 73

10 Programming in the Gri Language 145

11 Environment . 187

12 Editing Gri Files in GNU Emacs 191

13 History of Gri Versions . 205

14 Installing Gri . 219

15 Bugs . 225

16 Test Suite . 231

17 Gri in the Press . 239

18 Acknowledgments . 241

19 License. 243

Index, general . 253

Index of Commands . 267

Index of Built-in Variables and Synonyms 269

ii Gri

iii

Table of Contents

Gri. 1

1 Introduction . 3

2 Simple Gri Program and How to Run it 5
2.1 Gri Command file . 5
2.2 Data File . 5
2.3 Running The Command File . 5
2.4 Output Graph . 5

3 Invoking Gri. 7
3.1 Invoking Gri in a nutshell . 7
3.2 Using Gri to draw things. 7
3.3 Extracting commandfile from a PostScript file 10

4 Controlling Axes, Fonts, Colors, etc 13
4.1 An example . 13
4.2 Axis scaling . 16
4.3 Logarithmic and linear axes . 16
4.4 Axis Length . 16
4.5 Axis Range . 16
4.6 Axis Name . 17
4.7 Axis location . 17
4.8 Fonts . 17
4.9 Colour of ink in pen . 17

5 X-Y Plots . 21
5.1 Linegraphs. 21
5.2 Scattergraphs . 21

5.2.1 Coding data with symbols . 22
5.2.2 Drawing a symbol legend . 22
5.2.3 Coding data with symbol colors 22

5.3 Formula Plots . 23

6 Contour Plots . 25
6.1 Pre-gridded Data . 25

6.1.1 Simple example . 25
6.1.2 Complicated example . 25

6.2 Ungridded data . 27
6.2.1 Example . 28
6.2.2 Discussion of Methods . 30

iv Gri

7 Image Plots . 31
7.1 Reading and Creating Image Data . 31
7.2 About The PostScript Output . 32
7.3 Example (Satellite image) . 32

8 Real-world examples . 37
8.1 Box plots . 37
8.2 Contouring . 39
8.3 Image created from coarsely gridded data 43
8.4 Combination of image and contour . 46
8.5 Fancy x-y linegraph . 49
8.6 Legends and annotated lines . 54
8.7 Drawing gray polygons . 57
8.8 Temperature-Salinity Diagram . 58
8.9 Probability Density Function Diagram 60
8.10 Running-Mean Skyline Diagram . 64
8.11 Finite Element Model mesh . 66
8.12 Handling Data . 67

8.12.1 Handling headers . 67
8.12.2 Ignoring columns that are not of interest 69
8.12.3 Algebra on column data . 69
8.12.4 Combining columns from different files 70
8.12.5 Plotting several y-columns versus on x-column . . 70

9 List of Commands in the Gri Language 73
9.1 Overview of Gri Commands . 73
9.2 Command syntax . 73
9.3 List of all Gri commands. 74

9.3.1 assert . 74
9.3.2 cd . 74
9.3.3 close. 74
9.3.4 The convert commands . 74

9.3.4.1 convert columns to grid 74
9.3.4.2 convert columns to spline 78
9.3.4.3 convert grid to columns 79
9.3.4.4 convert grid to image 79
9.3.4.5 convert image to grid 80

9.3.5 The create commands . 80
9.3.5.1 create columns from function 80
9.3.5.2 create image grayscale 80

9.3.6 debug. 80
9.3.7 delete . 81
9.3.8 differentiate . 81
9.3.9 The draw commands . 82

9.3.9.1 The draw arc command 82
9.3.9.2 draw arrow . 82
9.3.9.3 draw arrows . 82
9.3.9.4 draw axes if needed 82

v

9.3.9.5 draw axes . 83
9.3.9.6 draw border box . 83
9.3.9.7 draw box . 83
9.3.9.8 draw circle . 84
9.3.9.9 draw contour . 84
9.3.9.10 draw curve . 84
9.3.9.11 draw essay . 85
9.3.9.12 draw gri logo . 85
9.3.9.13 draw grid . 86
9.3.9.14 draw image histogram 86
9.3.9.15 draw image palette 86
9.3.9.16 draw image . 87
9.3.9.17 draw isopycnal . 87
9.3.9.18 draw isospice . 88
9.3.9.19 draw label . 89
9.3.9.20 draw label whiteunder 89
9.3.9.21 draw label for last curve 89
9.3.9.22 draw label . 89
9.3.9.23 draw line from ... to 89
9.3.9.24 draw line legend 90
9.3.9.25 draw lines . 90
9.3.9.26 draw patches. 90
9.3.9.27 draw polygon. 90
9.3.9.28 draw regression line 91
9.3.9.29 draw symbol ... at 91
9.3.9.30 draw symbol legend 91
9.3.9.31 draw symbol . 92
9.3.9.32 draw time stamp . 93
9.3.9.33 draw title . 93
9.3.9.34 draw values . 93
9.3.9.35 draw x axis . 94
9.3.9.36 draw x box plot . 94
9.3.9.37 draw y axis . 94
9.3.9.38 draw y box plot . 95
9.3.9.39 draw zero line . 95
9.3.9.40 end grouip . 95

9.3.10 expecting . 95
9.3.11 filter . 95
9.3.12 flip . 96
9.3.13 get env . 97
9.3.14 group . 97
9.3.15 heal . 97
9.3.16 help . 98
9.3.17 if . 98
9.3.18 ignore . 99
9.3.19 input . 99
9.3.20 insert . 100
9.3.21 interpolate . 100

vi Gri

9.3.22 list. 100
9.3.23 ls . 100
9.3.24 mask. 100
9.3.25 new . 101
9.3.26 new page . 101
9.3.27 new postscript file . 101
9.3.28 open. 102

9.3.28.1 Opening simple files 102
9.3.28.2 Opening pipes . 103
9.3.28.3 Opening URLs . 105

9.3.29 postscript . 105
9.3.30 pwd . 106
9.3.31 query . 106
9.3.32 quit. 106
9.3.33 The read commands . 106

9.3.33.1 read colornames 106
9.3.33.2 read columns . 107
9.3.33.3 read grid . 108
9.3.33.4 read image colorscale 109
9.3.33.5 read image grayscale 110
9.3.33.6 read image mask. 110
9.3.33.7 read image . 111
9.3.33.8 read from \filename 111
9.3.33.9 read synonym/variable 112
9.3.33.10 read line . 112

9.3.34 regress . 112
9.3.35 reorder . 113
9.3.36 rescale . 113
9.3.37 resize . 113
9.3.38 return . 114
9.3.39 rewind . 114
9.3.40 rpnfunction . 114
9.3.41 The set commands . 114

9.3.41.1 set axes style . 115
9.3.41.2 set arrow size . 115
9.3.41.3 set arrow type . 115
9.3.41.4 set beep . 116
9.3.41.5 set bounding box 116
9.3.41.6 set clip . 116
9.3.41.7 set color . 117
9.3.41.8 set colorname . 118
9.3.41.9 set contour format 118
9.3.41.10 set contour label for 118
9.3.41.11 set contour label position 118
9.3.41.12 set contour labels 118
9.3.41.13 set dash . 119
9.3.41.14 set environment 119
9.3.41.15 set error . 119

vii

9.3.41.16 set flag . 120
9.3.41.17 set font color . 120
9.3.41.18 set font encoding 120
9.3.41.19 set font size . 120
9.3.41.20 set font to . 121
9.3.41.21 set graylevel . 121
9.3.41.22 set grid missing 121
9.3.41.23 set ignore initial newline 122
9.3.41.24 set ignore error eof 122
9.3.41.25 set image colorscale 122
9.3.41.26 set image grayscale 123
9.3.41.27 set image missing value color 124
9.3.41.28 set image range 124
9.3.41.29 set input data window 124
9.3.41.30 set input data separator 125
9.3.41.31 set line cap . 125
9.3.41.32 set line join . 125
9.3.41.33 set line width . 125
9.3.41.34 set missing value 126
9.3.41.35 set page size . 127
9.3.41.36 set page . 127
9.3.41.37 set panel . 128
9.3.41.38 set panels . 128
9.3.41.39 set path . 129
9.3.41.40 set postscript filename 129
9.3.41.41 set symbol size 129
9.3.41.42 set tic size . 129
9.3.41.43 set trace . 130
9.3.41.44 set transparency 130
9.3.41.45 set u scale . 130
9.3.41.46 set v scale . 130
9.3.41.47 set x axis . 130
9.3.41.48 set x format . 131
9.3.41.49 set x grid . 132
9.3.41.50 set x margin . 132
9.3.41.51 set x name . 132
9.3.41.52 set x size . 132
9.3.41.53 set x type . 132
9.3.41.54 set y axis . 133
9.3.41.55 set y format . 134
9.3.41.56 set y grid . 134
9.3.41.57 set y margin . 134
9.3.41.58 set y name . 134
9.3.41.59 set y size . 134
9.3.41.60 set y type . 135
9.3.41.61 set z missing . 135

9.3.42 show. 135
9.3.43 skip. 136

viii Gri

9.3.44 sleep . 136
9.3.45 smooth . 137
9.3.46 source . 138
9.3.47 sprintf . 138
9.3.48 state . 138
9.3.49 superuser . 138
9.3.50 system . 139
9.3.51 unlink . 141
9.3.52 while . 141
9.3.53 The write commands . 142

9.3.53.1 write columns . 142
9.3.53.2 write contour . 142
9.3.53.3 write grid . 142
9.3.53.4 write image . 143

10 Programming in the Gri Language 145
10.1 Defaults . 145
10.2 Online Help . 146
10.3 Long Command Lines . 147
10.4 Variables . 147

10.4.1 About variables . 147
10.4.2 User variables . 148
10.4.3 Built-in variables . 149

10.5 Synonyms . 151
10.5.1 Naming convention for synonyms 151
10.5.2 Some uses for synonyms . 152

10.5.2.1 Using synonyms to generalize code . . . 152
10.5.2.2 Using synonyms to store OS output . . 153
10.5.2.3 Storing user responses via query 153
10.5.2.4 Storing File Contents. 153
10.5.2.5 Working with words within strings . . . 154

10.5.3 Some important builtin synonyms. 154
10.5.4 Alias synonyms: the \@alias syntax 155
10.5.5 Local synonyms . 155

10.6 If Statements . 157
10.7 Loops . 158
10.8 Mathematics . 158

10.8.1 Column data . 159
10.8.2 Grid data . 159

10.8.2.1 Image data . 159
10.8.2.2 Image grayscale/colorscale 160
10.8.2.3 Variables . 160

10.9 Rpn (reverse-polish notation) Calculator 161
10.9.1 Stack Operators . 161
10.9.2 Rpn function Operators . 161
10.9.3 Tertiary Rpn Operators . 161
10.9.4 Binary Operators . 162
10.9.5 Unary Operators . 164

ix

10.9.6 Solitary Operators . 168
10.9.7 Manipulation of Columns etc 169

10.9.7.1 Columns . 169
10.9.7.2 Grid . 169

10.9.8 rpn Examples . 169
10.10 Text Strings . 170

10.10.1 Embedding synonyms in quoted text strings . . 170
10.10.2 Mathematical text . 171

10.10.2.1 Subscripts . 171
10.10.2.2 Superscripts . 171
10.10.2.3 Mathematical symbols 171

10.10.3 Non-English characters . 172
10.10.4 Adjustment Of Character Position 173

10.11 Adding new commands to Gri . 173
10.11.1 Purpose of newcommands 173
10.11.2 How Gri parses commands 174
10.11.3 Simple example of a new command 175
10.11.4 Complicated example of a new command 175
10.11.5 Altering command arguments – the & syntax . . 177

10.11.5.1 Overview of the & syntax 177
10.11.5.2 Example: doubling a variable 177
10.11.5.3 Example: manipulating a synonym . . 178
10.11.5.4 Nesting . 178
10.11.5.5 About new and delete 178
10.11.5.6 Determining calling information 179
10.11.5.7 How Gri implements the & syntax . . . 179

10.12 Hints for Gri Programming . 180
10.13 Debugging Gri Programs . 181
10.14 Error Messages . 182
10.15 Missing data . 182
10.16 Interaction Between Gri and Operating System 183

10.16.1 Using the OS from within Gri 183
10.16.2 Using Gri from within the OS 184

10.17 Sample Resource File . 185

11 Environment . 187
11.1 Extra things provided with Gri . 187

11.1.1 gri_merge – combine PostScript files 187
11.1.2 gri_unpage – split pages into files 187

11.2 Using System Tools With Gri . 188
11.2.1 Introduction . 188
11.2.2 Grep . 189
11.2.3 Sed . 189
11.2.4 Awk . 189
11.2.5 Perl . 190

11.3 Gri Discussion Group. 190

x Gri

12 Editing Gri Files in GNU Emacs 191
12.1 About Gri Mode . 191
12.2 Gri-mode screenshots, what it looks like. 191

12.2.1 Screenshot 1 . 196
12.2.2 Screenshot 2 . 196
12.2.3 Screenshot 3 . 196
12.2.4 Screenshot 4 . 196

12.3 Installing gri-mode.el, the nuts and bolts. 196
12.3.1 Placing gri-mode.el where Emacs can find it. . . 196
12.3.2 Telling gri-mode where gri resides 197
12.3.3 Telling emacs to load gri-mode 198
12.3.4 Extra user configuration of gri-mode 198

12.4 Major Gri-mode commands. 199
12.4.1 How gri-mode names Gri commands 199
12.4.2 Possible completions of gri command names . . . 199
12.4.3 Command name abbreviation. 200
12.4.4 Variable (and synonym) completion 200
12.4.5 Editing the syntax output by gri-complete 200
12.4.6 User commands with gri-mode 201
12.4.7 Inserting gri code fragments in Emacs 201
12.4.8 Info interface for help on current command 201

12.5 Other features of gri-mode . 202
12.6 Dealing with many Gri versions, gri-mode handles it. . . . 202
12.7 Filename arguments when running gri 203

13 History of Gri Versions 205
13.1 Stable Stream . 205

13.1.1 Version 2.12 . 205
13.1.1.1 Version 2.12.18 [2008 Sep 8 International

Literacy Day] . 205
13.1.1.2 Version 2.12.17 [2008 May 29 Oak Apple

Day (England)] . 205
13.1.1.3 Version 2.12.16 [2007 Jul 20 anniversary of

the first moon landing] 205
13.1.1.4 Version 2.12.15 [2007 Apr 16 celebration of

birthday of Muhammad] 206
13.1.1.5 Version 2.12.14 [2007 Jan 08:

Coming-of-Age Day (Japan)]. 206
13.1.1.6 Version 2.12.13 [2006 Nov 06: Constitution

Day (Tajikistan)] . 206
13.1.1.7 Version 2.12.12 [2006 July 16: Yellow Pigs

Day] . 206
13.1.1.8 Version 2.12.11 [2006 Mar 30: Hindu New

Year] . 206
13.1.1.9 Version 2.12.10 [2006 Jan 26: Australia

Day] . 206
13.1.1.10 Version 2.12.9 [2005 Jan 6: Feast of

Epiphany] . 207

http://en.wikipedia.org/wiki/International_Literacy_Day
http://en.wikipedia.org/wiki/International_Literacy_Day
http://en.wikipedia.org/wiki/Oak_Apple_Day
http://en.wikipedia.org/wiki/Oak_Apple_Day
http://en.wikipedia.org/wiki/Apollo_11
http://en.wikipedia.org/wiki/Apollo_11
http://en.wikipedia.org/wiki/Mawlid
http://en.wikipedia.org/wiki/Mawlid
http://en.wikipedia.org/wiki/Seijin_shiki
http://en.wikipedia.org/wiki/Public_holidays_in_Tajikistan
http://en.wikipedia.org/wiki/Public_holidays_in_Tajikistan
http://en.wikipedia.org/wiki/Yellow_Pig%27s_Day
http://en.wikipedia.org/wiki/Yellow_Pig%27s_Day
http://en.wikipedia.org/wiki/Epiphany_%28feast%29
http://en.wikipedia.org/wiki/Epiphany_%28feast%29

xi

13.1.1.11 Version 2.12.8 [2004] 207
13.1.1.12 Version 2.12.7 [2003 Sep 4]. 208
13.1.1.13 Version 2.12.6 [2003 Sep 1: Labour Day]

. 208
13.1.1.14 Version 2.12.5 [2003 May 19: Victoria

Day] . 208
13.1.1.15 Version 2.12.4 [2003 Apr 06] 208
13.1.1.16 Version 2.12.3 [2003 Mar 1] 209
13.1.1.17 Version 2.12.2 [2003 Feb 7: Munro Day

at Dalhousie University] 209
13.1.1.18 Version 2.12.1 [2002 Sep 25] 209
13.1.1.19 Version 2.12.0 [2002 Sep 15: Terry Fox

Day, Canada.] . 209
13.1.2 Version 2.10 . 210

13.1.2.1 Version 2.10.1 [2002 Jun 1] 210
13.1.2.2 Version 2.10.0 [2002 May 20: Victoria

Day] . 210
13.1.3 Version 2.8 . 211

13.1.3.1 Version 2.8.7 [2002 Apr 03] 211
13.1.3.2 Version 2.8.6 [2002 Feb 14] 211
13.1.3.3 Version 2.8.5 [2001 Dec 13] 211

13.1.4 Version 2.8.4 [2001 Oct 4] . 212
13.1.4.1 Version 2.8.3 [2001 Oct 1]. 212
13.1.4.2 Version 2.8.2 [2001 Sep 19] 212
13.1.4.3 Version 2.8.1 [2001 Sep 7] 212

13.1.5 Version 2.8.0 [2001 Jul 30] . 212
13.1.6 Version 2.6 . 213
13.1.7 Version 2.6.4 [2001 Jul 9: Dan’s birthday] 213
13.1.8 Version 2.6.3 [2001 Jun 22] 213

13.1.8.1 Version 2.6.2 [2001 May 19] 213
13.1.8.2 Version 2.6.1 [2001 May 10] 213
13.1.8.3 Version 2.6.0 [2001 April 1] 213

13.1.9 Version 2.4 . 215
13.1.9.1 Version 2.4.4 [2000 May 7] 215
13.1.9.2 Version 2.4.3 [2000 Apr 1] 216
13.1.9.3 Version 2.4.2 [2000 Mar 25] 216
13.1.9.4 Version 2.4.1 [2000Jan 31] 216
13.1.9.5 Version 2.4.0 [2000 Jan 05] 216

13.1.10 Version 2.2 . 216
13.1.10.1 Version 2.2.6 [1999 Nov 25] 216
13.1.10.2 Version 2.2.5 [1999 Nov 10] 216
13.1.10.3 Version 2.2.4 [1999 Nov 7] 216
13.1.10.4 Version 2.2.3 [1999 Jun 30] 216
13.1.10.5 Version 2.2.2 [-] . 216
13.1.10.6 Version 2.2.1 [1999 Mar 31] 217
13.1.10.7 Version 2.2.0 [1999 Mar 25] 217

13.2 Unstable Stream . 217
13.2.1 Development Version . 217

http://www.dal.ca/
http://www.terryfox.org/
http://www.terryfox.org/

xii Gri

13.2.1.1 New Features . 217
13.2.1.2 Removed Features 217
13.2.1.3 Bug Fixes . 217

13.2.2 Plans . 217
13.2.2.1 High Priority . 218
13.2.2.2 Medium priority . 218
13.2.2.3 Low priority . 218

13.3 Deprecated Commands . 218

14 Installing Gri . 219
14.1 Unix Installation . 219
14.2 Archiving Old Versions . 219

14.2.1 Installation on Linux computers 219
14.2.2 Pre-compiled unix versions 219

14.3 Compilation on Unix computers . 220
14.4 Compilation on x86 (PC-style) Computers 222

14.4.0.1 MSDOS Operating System 223
14.4.0.2 LINUX Operating System 223

14.5 Compilation under OS/2. 223
14.6 Compilation in Macintosh OS X . 223
14.7 Compilation under BeOS . 224

15 Bugs . 225
15.1 Known bugs . 225
15.2 Reporting Bugs . 225
15.3 Killing Bugs . 225

15.3.1 Software that you’ll need . 225
15.3.2 Debugging at a glance . 225
15.3.3 A debugging Example . 226

16 Test Suite . 231

17 Gri in the Press . 239

18 Acknowledgments . 241

19 License . 243

Index, general . 253

Index of Commands . 267

Index of Built-in Variables and Synonyms 269

	Gri
	Introduction
	Simple Gri Program and How to Run it
	Gri Command file
	Data File
	Running The Command File
	Output Graph

	Invoking Gri
	Invoking Gri in a nutshell
	Using Gri to draw things
	Extracting commandfile from a PostScript file

	Controlling Axes, Fonts, Colors, etc
	An example
	Axis scaling
	Logarithmic and linear axes
	Axis Length
	Axis Range
	Axis Name
	Axis location
	Fonts
	Colour of ink in pen

	X-Y Plots
	Linegraphs
	Scattergraphs
	Coding data with symbols
	Drawing a symbol legend
	Coding data with symbol colors

	Formula Plots

	Contour Plots
	Pre-gridded Data
	Simple example
	Complicated example

	Ungridded data
	Example
	Discussion of Methods

	Image Plots
	Reading and Creating Image Data
	About The PostScript Output
	Example (Satellite image)

	Real-world examples
	Box plots
	Contouring
	Image created from coarsely gridded data
	Combination of image and contour
	Fancy x-y linegraph
	Legends and annotated lines
	Drawing gray polygons
	Temperature-Salinity Diagram
	Probability Density Function Diagram
	Running-Mean Skyline Diagram
	Finite Element Model mesh
	Handling Data
	Handling headers
	Ignoring columns that are not of interest
	Algebra on column data
	Combining columns from different files
	Plotting several y-columns versus on x-column

	List of Commands in the Gri Language
	Overview of Gri Commands
	Command syntax
	List of all Gri commands
	assert
	cd
	close
	The convert commands
	convert columns to grid
	convert columns to spline
	convert grid to columns
	convert grid to image
	convert image to grid

	The create commands
	create columns from function
	create image grayscale

	debug
	delete
	differentiate
	The draw commands
	The draw arc command
	draw arrow
	draw arrows
	draw axes if needed
	draw axes
	draw border box
	draw box
	draw circle
	draw contour
	draw curve
	draw essay
	draw gri logo
	draw grid
	draw image histogram
	draw image palette
	draw image
	draw isopycnal
	draw isospice
	draw label
	draw label whiteunder
	draw label for last curve
	draw label
	draw line from ... to
	draw line legend
	draw lines
	draw patches
	draw polygon
	draw regression line
	draw symbol ... at
	draw symbol legend
	draw symbol
	draw time stamp
	draw title
	draw values
	draw x axis
	draw x box plot
	draw y axis
	draw y box plot
	draw zero line
	end grouip

	expecting
	filter
	flip
	get env
	group
	heal
	help
	if
	ignore
	input
	insert
	interpolate
	list
	ls
	mask
	new
	new page
	new postscript file
	open
	Opening simple files
	Opening pipes
	Opening URLs

	postscript
	pwd
	query
	quit
	The read commands
	read colornames
	read columns
	read grid
	read image colorscale
	read image grayscale
	read image mask
	read image
	read from {@tt @rawbackslashxx }filename
	read synonym/variable
	read line

	regress
	reorder
	rescale
	resize
	return
	rewind
	rpnfunction
	The set commands
	set axes style
	set arrow size
	set arrow type
	set beep
	set bounding box
	set clip
	set color
	set colorname
	set contour format
	set contour label for
	set contour label position
	set contour labels
	set dash
	set environment
	set error
	set flag
	set font color
	set font encoding
	set font size
	set font to
	set graylevel
	set grid missing
	set ignore initial newline
	set ignore error eof
	set image colorscale
	set image grayscale
	set image missing value color
	set image range
	set input data window
	set input data separator
	set line cap
	set line join
	set line width
	set missing value
	set page size
	set page
	set panel
	set panels
	set path
	set postscript filename
	set symbol size
	set tic size
	set trace
	set transparency
	set u scale
	set v scale
	set x axis
	set x format
	set x grid
	set x margin
	set x name
	set x size
	set x type
	set y axis
	set y format
	set y grid
	set y margin
	set y name
	set y size
	set y type
	set z missing

	show
	skip
	sleep
	smooth
	source
	sprintf
	state
	superuser
	system
	unlink
	while
	The write commands
	write columns
	write contour
	write grid
	write image

	Programming in the Gri Language
	Defaults
	Online Help
	Long Command Lines
	Variables
	About variables
	User variables
	Built-in variables

	Synonyms
	Naming convention for synonyms
	Some uses for synonyms
	Using synonyms to generalize code
	Using synonyms to store OS output
	Storing user responses via query
	Storing File Contents
	Working with words within strings

	Some important builtin synonyms
	Alias synonyms: the {@tt @rawbackslashxx }@alias syntax
	Local synonyms

	If Statements
	Loops
	Mathematics
	Column data
	Grid data
	Image data
	Image grayscale/colorscale
	Variables

	Rpn (reverse-polish notation) Calculator
	Stack Operators
	Rpn function Operators
	Tertiary Rpn Operators
	Binary Operators
	Unary Operators
	Solitary Operators
	Manipulation of Columns etc
	Columns
	Grid

	rpn Examples

	Text Strings
	Embedding synonyms in quoted text strings
	Mathematical text
	Subscripts
	Superscripts
	Mathematical symbols

	Non-English characters
	Adjustment Of Character Position

	Adding new commands to Gri
	Purpose of newcommands
	How Gri parses commands
	Simple example of a new command
	Complicated example of a new command
	Altering command arguments -- the & syntax
	Overview of the & syntax
	Example: doubling a variable
	Example: manipulating a synonym
	Nesting
	About new and delete
	Determining calling information
	How Gri implements the & syntax

	Hints for Gri Programming
	Debugging Gri Programs
	Error Messages
	Missing data
	Interaction Between Gri and Operating System
	Using the OS from within Gri
	Using Gri from within the OS

	Sample Resource File

	Environment
	Extra things provided with Gri
	gri_merge -- combine PostScript files
	gri_unpage -- split pages into files

	Using System Tools With Gri
	Introduction
	Grep
	Sed
	Awk
	Perl

	Gri Discussion Group

	Editing Gri Files in GNU Emacs
	About Gri Mode
	Gri-mode screenshots, what it looks like.
	Screenshot 1
	Screenshot 2
	Screenshot 3
	Screenshot 4

	Installing gri-mode.el, the nuts and bolts.
	Placing gri-mode.el where Emacs can find it.
	Telling gri-mode where gri resides
	Telling emacs to load gri-mode
	Extra user configuration of gri-mode

	Major Gri-mode commands.
	How gri-mode names Gri commands
	Possible completions of gri command names
	Command name abbreviation
	Variable (and synonym) completion
	Editing the syntax output by gri-complete
	User commands with gri-mode
	Inserting gri code fragments in Emacs
	Info interface for help on current command

	Other features of gri-mode
	Dealing with many Gri versions, gri-mode handles it.
	Filename arguments when running gri

	History of Gri Versions
	Stable Stream
	Version 2.12
	Version 2.12.18 [2008 Sep 8 http://en.wikipedia.org/wiki/International_Literacy_Day, International Literacy Day]
	Version 2.12.17 [2008 May 29 http://en.wikipedia.org/wiki/Oak_Apple_Day, Oak Apple Day (England)]
	Version 2.12.16 [2007 Jul 20 http://en.wikipedia.org/wiki/Apollo_11, anniversary of the first moon landing]
	Version 2.12.15 [2007 Apr 16 http://en.wikipedia.org/wiki/Mawlid, celebration of birthday of Muhammad]
	Version 2.12.14 [2007 Jan 08: http://en.wikipedia.org/wiki/Seijin_shiki, Coming-of-Age Day (Japan)]
	Version 2.12.13 [2006 Nov 06: http://en.wikipedia.org/wiki/Public_holidays_in_Tajikistan, Constitution Day (Tajikistan)]
	Version 2.12.12 [2006 July 16: http://en.wikipedia.org/wiki/Yellow_Pig%27s_Day,Yellow Pigs Day]
	Version 2.12.11 [2006 Mar 30: Hindu New Year]
	Version 2.12.10 [2006 Jan 26: Australia Day]
	Version 2.12.9 [2005 Jan 6: http://en.wikipedia.org/wiki/Epiphany_%28feast%29,Feast of Epiphany]
	Version 2.12.8 [2004]
	Version 2.12.7 [2003 Sep 4]
	Version 2.12.6 [2003 Sep 1: Labour Day]
	Version 2.12.5 [2003 May 19: Victoria Day]
	Version 2.12.4 [2003 Apr 06]
	Version 2.12.3 [2003 Mar 1]
	Version 2.12.2 [2003 Feb 7: Munro Day at http://www.dal.ca/,Dalhousie University]
	Version 2.12.1 [2002 Sep 25]
	Version 2.12.0 [2002 Sep 15: http://www.terryfox.org/,Terry Fox Day, Canada.]

	Version 2.10
	Version 2.10.1 [2002 Jun 1]
	Version 2.10.0 [2002 May 20: Victoria Day]

	Version 2.8
	Version 2.8.7 [2002 Apr 03]
	Version 2.8.6 [2002 Feb 14]
	Version 2.8.5 [2001 Dec 13]

	Version 2.8.4 [2001 Oct 4]
	Version 2.8.3 [2001 Oct 1]
	Version 2.8.2 [2001 Sep 19]
	Version 2.8.1 [2001 Sep 7]

	Version 2.8.0 [2001 Jul 30]
	Version 2.6
	Version 2.6.4 [2001 Jul 9: Dan's birthday]
	Version 2.6.3 [2001 Jun 22]
	Version 2.6.2 [2001 May 19]
	Version 2.6.1 [2001 May 10]
	Version 2.6.0 [2001 April 1]

	Version 2.4
	Version 2.4.4 [2000 May 7]
	Version 2.4.3 [2000 Apr 1]
	Version 2.4.2 [2000 Mar 25]
	Version 2.4.1 [2000Jan 31]
	Version 2.4.0 [2000 Jan 05]

	Version 2.2
	Version 2.2.6 [1999 Nov 25]
	Version 2.2.5 [1999 Nov 10]
	Version 2.2.4 [1999 Nov 7]
	Version 2.2.3 [1999 Jun 30]
	Version 2.2.2 [-]
	Version 2.2.1 [1999 Mar 31]
	Version 2.2.0 [1999 Mar 25]

	Unstable Stream
	Development Version
	New Features
	Removed Features
	Bug Fixes

	Plans
	High Priority
	Medium priority
	Low priority

	Deprecated Commands

	Installing Gri
	Unix Installation
	Archiving Old Versions
	Installation on Linux computers
	Pre-compiled unix versions

	Compilation on Unix computers
	Compilation on x86 (PC-style) Computers
	MSDOS Operating System
	LINUX Operating System
	Compilation under OS/2

	Compilation in Macintosh OS X
	Compilation under BeOS
	Bugs
	Known bugs
	Reporting Bugs
	Killing Bugs
	Software that you'll need
	Debugging at a glance
	A debugging Example

	Test Suite
	Gri in the Press
	Acknowledgments
	License
	Index, general
	Index of Commands
	Index of Built-in Variables and Synonyms

