
Computer Music on the NeXT Computer

Julius Smith

IEEE WASPAA
October, 1989

DSP Hardware:

• Motorola DSP56001 clocked at 25MHz

• Memory-mapped Host Interface

• DMA to/from Host Interface (2-5MBytes/sec)

• 8K 24-bit words of zero-wait-state private static RAM

• D-15 connector: SSI and SCI serial ports of the DSP

DSP Software

Computer Music

• Real Time Signal Processing

• Short Fixed Vector Size

• Real Sampled Data Streams (needing DMA buffers)

• Contiguous Signal Vectors

• Timed Message Support (needing message buffer)

• Untimed and ‘ ‘Timed 0’ ’ Messages

Array Processing

• Non-Real Time

• Arbitrary Vector (Array) Size

• Real or Complex Vectors or Matrices

• Matrix Access = Vector Access using ‘ ‘Skip Factor’ ’

• Complex Access = Real Access using ‘ ‘Skip Factor’ ’

• Simple Load and Go Protocol

P X Y

System System

Memory Args
User

Y Data

Array

Processing

Program Mu-Law ROM
Sine

Cycle

ROM

System System System

User

Subroutines

P X Y

User

X Data

User

Y Data

User X Data

Array Processing External DSP Memory Map 1

Array Processing Internal DSP Memory Map

DegMon

A-Law ROM

P X Y

System

User P

User

X Data

User

Y Data

Array Processing External Memory Map 2

System

• X and Y physically separate
• P overlays X
• Memory halved in size

P X Y

DegMon
System

L Memory Args

Memory
Arguments

Per Tick
Updates

Sine
Cycle
ROM

System System System

User Subroutines

P X Y

Data Tables
Patch Points

Y Memory Args

 X Patch Points

Music Kit External DSP Memory Map

Music Kit Internal DSP Memory Map

System

 Y Patch Points

L Memory Args

A-Law ROM

Mu-Law ROMUnit
Generator
Patches

Unit Generators

X Memory Args

Orchestra Loop Structure

The Orchestra Loop is a DSP sound synthesis program.
The loop executes once for each “ tick” of output sound.
A “ tick” is currently 16 samples.
All timed messages occur on a tick boundary.
The Orchestra Loop has the following structure:

System Updates

Switch DMA Buffers & issue DMA request, if necessary
Execute all timed messages having time-stamp ≤ “now”
Add 16 to 48-bit sample counter (“now”)
Reset the 3 memory argument pointers (x, y, and l)

Sound Synthesis

Unit Generator 1
• • •

Unit Generator n

Possibly Leap to Off-Chip Memory
Unit Generator n+ 1

• • •
Unit Generator m

Go To System Updates

Example Orchestra Program

––
;; DSP56001 Assembly Language for DSP Orchestra Loop

include ’music_macros’
beg_orch ’ test’

new_yib yvec,16,0 ; Allocate y patch point
beg_orcl ; Begin orchestra loop

unoise p,1,y,yvec,0 ; Noise unit generator
out2sum p,1,y,yvec,0.5,0.5 ; Panning stereo output

end_orcl ; End orchestra loop
end_orch ’ test’ ; End test program

––

• Actual stand-alone test program

• Used only for unit generator development

• Music Kit manages the equivalent program dynamical ly, driven by score
performance needs.

Unit Generator Structur e

• Each Unit Generator is a section of DSP synthesis code.
• Unit-Generator macros expanded in line (no subroutines).
• Signals are passed as pointers to 16-sample “patch points.”
• Tables and delay-lines typically a multiple of 16 samples.
• Parameter update rate is sampling-rate / 16.

Each Unit Generator operates as follows:

Load ALU Registers from Memory Arguments
Move input/output signal pointers to Rn address regs.
Move coefficients and state (e.g. filters) to Data ALU.
Access arguments using auto-increment addressing.

Execute Tick Loop
Perform DO loop for 16 samples (no loop overhead).
Access signals with auto-increment addressing.

Save State to Memory Arguments
Save run-time state (e.g. oscillator phase, filter delays).
Leave memory arg pointers set for next unit generator.

DSP56001 Index Register Assignments

R_X = R0 = x memory argument pointer
R_Y = R4 = y memory argument pointer
R_L = R2 = l memory argument pointer

R_I1 = R1 = input 1 pointer (unrestricted)
R_I2 = R5 = input 2 pointer (unrestricted)
R_O = R6 = output pointer (unrestricted)

R_HMS = R3 = host message stack pointer
R_DMA = R7 = DMA transfer pointer

Analogous names are used for the N and M registers, e.g.,
N_X = N0 and M_X = M0.

Unit Generator Memory Ar gument Access

move x:(R_X)+,R_I1 ; Input 1 address to R_I1
move y:(R_Y)+,R_I2 ; Input 2 address to R_I2
move y:(R_Y)+,R_O ; Output address to R_O

move x:(R_L)+,A ; Long datum to A

move x:(R_X)+,X0 y:(R_Y)+,Y0 ; Load data to X0 and Y0

Notes
• Pointer loads can only happen one at a time.
• Two data loads may be possible in parallel.
• Long loads are always done using two parallel data moves.

A DSP Unit Generator Example - Add2

;; DSP56001 assembly language for the add2 unit generator.
;; The output signal is the sum of the input signals 1 and 2.
;; The macro is invoked with args i1spc, i2spc, and ospc,
;; which expand to ‘x’ or ‘y’ to specify the memory space of
;; input 1, input 2, and the output signals. I_NTICK is 16,
;; and add2_pfx expands to a globally unique string.

move y:(R_Y)+,R_I2 ; input 2 address to R_I2
move y:(R_Y)+,R_O ; output address to R_O
move x:(R_X)+,R_I1 ; input 1 address to R_I1
move i2spc:(R_I2)+,A ; load input 2 to A
move i1spc:(R_I1)+,X0 ; load input 1 to X0

do #I_NTICK,add2_pfx\ tickloop ; enter do loop
add X0,A i1spc:(R_I1)+,X0 ; add and fetch input 1
if “ i1spc”==’x’& & “ i2spc”==’y’ ; xy{x,y}

if “ospc”==’x’ ; xyx
move A,sout:(R_O)+ i2spc:(R_I2)+,A ; fast!

else ; xyy
move A,sout:(R_O)+ ; slower
move i2spc:(R_I2)+,A

endif
else

move A,sout:(R_O)+
move i2spc:(R_I2)+,A

endif
add2_pfx\ tickloop

Examples of Existing Unit Generator Macros

Asymp
One segment of a piecewise exponential envelope.

SlpDur
Piecewise linear envelope from specification of the slope
and duration of each segment.

Biquad
Two-pole, two-zero filter section.

Delay
Digital delay line.

Dswitch
Delayed switch (for topology switch on a sample).

Oscgafi
Osci l lator with general address mask, and envelopes on
 amplitude and frequency. The wave table is interpolated.

Scl1Add2
Add scaler times first input signal to the second.

There are many additional oscillator, mixer, and filter variations, and various
signal generators (noise, im-pulses, etc.). Some have tick-based versions
computing 1 rather than 16 values.

Use of DSP56001 Host Flags

• HF0 – Tell DSP to abort current program

• HF1 – Tell DSP requested DMA transfer is pending

• HF2 – Tell host DSP is busy executing last message

• HF3 – Tell host Timed Message Queue is full
 or array-processing function still running

• HF2 & HF3 – Tell host DSP is in debugger

Interrupt Priority Le vels Used in the DSP

0 – Default (used by all unit generators and most updates)

1 – Host (DMA word, message interrupts, host commands)

2 – Serial port interrupts (SSI serial port sound in or out)

3 – Critical sections and non-maskable interrupt service

Automatic C and Documentation Generation

Each array-processing or unit-generator macro source file has leading comments
resembling a UNIX “ man page.” These comments contain information for
automatically generating
three types of on-line documentation, and C software which which “ wraps”
each macro, marrying it to the host software environment.

The comment fields are used by program dspwrap to generate:

• A file containing a one-line summary for each macro
• A file containing calling-sequences for each macro
• A file containing a “ man page” for each macro
• An invoking C function for each array processing macro
• A prototype master Objective C class for each unit generator
• Leaf classes in Objective C for each unit-generator variation

(There’s a variation for each input/output space combination)

Source-Code Comment Fields

Documentation Generation:

NAME
One-line description of the macro’s function.

SYNOPSIS
One-line summary of the macro invocation syntax.

MACRO ARGUMENTS
One-line summary of the nature of each macro argument.

DSP MEMORY ARGUMENTS
One-line summary of the nature of each memory argument.

DESCRIPTION
A complete description of the macro’s purpose and function.

PSEUDO-C NOTATION
Describes the macro’s function in a DSP-extended C language.

DSPWRAP C SYNTAX
Calling-sequence summary for array processing C function.

Source-Code Comment Fields (continued)

C Code Generation:

DSPWRAP ARGUMENT INFO
Declares the type of each macro argument.

General I nformation:

MINIMUM EXECUTION TIME
MAXIMUM EXECUTION TIME

Execution time per element (AP) or for one tick (UG).

CALLING DSP PROGRAM TEMPLATE
Test main program in DSP56001 assembly language.

SOURCE
Pointer to on-line macro source file.

MEMORY USE
Words of DSP program memory used by macro expansion.

REGISTER USE
Which ALU registers are used and what they contain.

