Sound and Music on the NeXT Computer

by David Jafe, Julius Smith, and Lee Boton
1989, NeXT Computer Inc.

This document is somewhat old and out of date. It isuseful in that it provides an overview of the NeXT music
software, but some details may have changed since it was written. For accurate details, see elsewhere in the
LocalLibrary/Documentation/MusicKit+DSP documentation.

The NeXT Computél provides a pwerful system for creating and manipulating sound and mi$ie.top-leel software for this system is\ided into
two object-oriented libraries kim askits:

* The Sound Kifl provides object-oriented access to the basic sound capabilities of the NeXT Cowmipmiarg sound recording, playback, displa!
and editing.

* The Music Kit] provides classes for composing, storing, performing, and synthesizing music. It lets you communicatenvihsynthesizers as
well as create yourven software instruments.

Both kits are implemented in ObjeaiC. While they are lagely independent of each oth#rey can also be used to a uaifiend. Br instance, with the
Sound Kit you can record sound data that can be used in a Music Kit performance.

Below the Sound and Music Kits lies the DSP56001 digital signal process@%fe The Music Kit uses the DSP as a general music synthesizer; t
Sound Kit uses it to perform signal processing (such as formegrsion).

This paper gies an gerview of the NeXT Sound and Music kits andaenines their use of the DS#articularly with rgard to music synthesi# brief
description of the NeXT sound hardw is also included.

Hardware

Voice-Quality Input
At the back of the monitor is a high-impedence microphone jacls thathected to an analog-to-digital eerier knevn as theCODEC The CODEC
converter complete with anti-aliasingltiér on input, uses an 8-bit muaAl@ncoded quantization and a sampling rate of 8012.8iz.is generally

considered to beabt and accurate enough for telephone-quality speech ifpetCODEC output intesfes to the rest of the system through a DMA
interface implemented in aate array

The CODEGCS mu-lav encoding alls a 12-bit dynamic range to be stored in 8-bits. In otleedsy an 8-bit sound with muvleencoding will yield the
same amplitude range as an unencoded 12-bit sound.

High-Quality Sound Output

The stereo digital-to-analog ogerter operates at 44100 samples per second (in each channel) with a 16-bit linear quantization, the same as in ¢
CD players.A 1 kHz maximum-amplitude sinusoid played through t#e«COvill generate a 2olt RMS signal at the audio outputhe cowerter includes
full de-glitching and anti-aliasingliérs so no xternal hardware is necessary for basic operation.

The NeXT computer contains a speghuilt into the monitor as well as stereo headphone and line-out jacks at the back of the mowitay ga to
connect the computer to your stereo for greater playbaeltyi The wlume of the internal speakand headphones can be controlled from ¢égbdard.

The DSP

Digital Signal Processing (DSP) harahe includes:

* The Motorola DSP56001 cloeld at 25MHz
« Memory-mapped and DMA access (5MBytes/sec) to the DSP hosaggerf
¢ 8K 24-bit words of zero-wit-state RAM, pnate to the DSP

« D-15 connector bringing out the DSP SSI and SCI ports

The DSP harduare is described in greater detail later in this paper

Conventions
The descriptions of the Sound and Music Kits use theviailp corventions rgarding Objectie-C syntax:
« All Objective-C class names ti@ with a capital letter

« Class names are used to denote instances when thetésmlear For exkample, “Performers send Notes to Instruments” implies “instances of ti

Performer class send instances of the Note class to instances of the Instrument class”.

* Instance methods appear in balt#, as iperform.

The Sound Kit

The Sound Kifl provides object-oriented access to the basic sound capabilities of the NeXT Comlfnmierg sound recording, playback, displapd
editing. It's designed to accommodate both casual use of soiaetsefs well as detailedtamination and manipulation of sound data.

To store a sound, the Sound Kit can write its datasasiadfie, a fle format preided by NeXT The etensible, language-independent sodedfirmat is
also used by NeX¥'pasteboad, a data structure that lets applications share data.

The Sound Kit maés extensie use of the virtual memory and infeocess messaging pided by Mach, the operating system used by the NeXT
Computer This allavs efficient manipulation of lgie sounds by minimizing data relocation.

The Sound Class

The most important class in the Sound Kit is Sound. Ihdefan Objeote-C wrapper around the data structure that contamsaeand data and prices
the basic recording, playback, and editing operatidine class also manages the binding of names to Sound objegim@liosimple, symbolic ay to
locate and share sounds within an application.

Sound objects can be instantiated from a solendifom the pasteboard, or created empty (ready for recording). Reading from aedindfi
instantaneous—theldis pages are simply mappethe data isr’actually brought in from disk until &'referenced.

Basic Sound Operations

To record into or play a Sound object, you simply sendétcard or aplay message. Recording &kdata from the CODEC microphone input; playbse
sends the data to the internal spgand to the headphone and line-out jacks. Digital sound can also be directed toeafmriakthe DSP port to allo
external cowersion.

Playback and recording operations are performed asynchronously by backiyreadd(a thread is a lightweight Mach subprocess that shares addrt
space with its parent proces§yhen you inoke theplay or record method, a playback or recording thread is instantiated and the method returns
immediately When the threadrfishes, the Sound object sends a ruatifon message to a usssttable object calleddelgyate For example, the
soundDidPlay: message is sent to the dgie when a Sound hasifihed playing.The delgate, which can inherent fromyanlass, introduces a limited
emulation of multiple inheritance.

At ary time, Sounds can be written to a souedfi copied onto the pasteboaMith the basic editing methods you can delete angt aggection of a
Sound, and you can insert one Sound into another

Sound Data M anagement

The Sound Kit rarely mes sound data; insteadsitemapped in virtual memoryopying operations empjo“copy on write” protocol: A copied section
of sound is pisically shared in memory until one gois written, requiring the pfsical memory for that section of the gap be allocatedThis memory
management is transparent to the programmer and Eseexample, gen though the sampled data in an edited Sound can become fragmented in
memory the Sound can be immediately played back ytiame.

Sound Formats

A number of formats for representing sampled sounds are supported, from comprasbaddieidth sounds to highetlity, CD-quality data.To
accommodate theAC, which only accepts 16-bit data at either 22.05 or 44.1 kHz, the Sound object uses the DSP for run-time fensiahcon
Instantaneous playback of most of thaiable formats is thus made possible.

In addition to sampled sounds, the Sound class also supports DSP sound synthesis instructions: Instead of samples, the Sound object contai
DSP code and data streams. In either case, playback of a Sound is tran¥paraster need to knw whether a Sound contains samples or DSP coc
order to play it. Havever, the basic editing operations only apply to sampled soundscéimt be used to manipulate DSP code.

While Sound objects are multi-channel, the system throughput imposes a limit on the number of chanwels samling rate that can be played in

real time. The standard sound output (44.1 kHz stereo, 16-bit linear data) is a good match for the throughput abilities of both the optical and th
drives.

The SoundView Class
The Soundéw class pruides a mechanism for displaying the sampled data in a single Sound dbfmind\iew object can dna itself on the screen,
and can scale, translate, and rotate its coordinates. Cureestlynd can be displayed as an oscilloscogveferm or as an outline of its amplitude
envelope.

A SoundVlew maintains aelectionthat's generally defied by the user with the mouse, and can perform basic edit operations—such as cut and p:
the selection. Li& a Sound object, a Souridi¢ maintains a usesettable delgate to which it sends notifition messages when the selection changes

An example SoundMw is shavn in figure 1.

o {Locallibrary/Sounds/FAeaScream.snd x|

K= 2

Figure 1A Sound\iew

The Music Kit

The Music Kit] provides tools for designing music applicatioriese tools address three topics: music representation, performance, and synthe
(digital sound generation and processinbfie Objectie-C classes defed in the Music Kitdll neatly into these three areas and are presented as sur
below.

The design goal of the Music Kit is to combine the intevadjiestural control of MIDI with the precise timbral control of MUSIC 5-type systems in &
extensible, object-oriented ginonment.To this end, the Music Kit is capable of fully representing MIDihe Music Kit accepts MIDI in and can send
MIDI out through the tw serial ports at the back of the computidpnetheless, the Music Kit igiimited by the MIDI specifiation; for @&le, its
resolution of frequencand amplitude is muchner than MIDI5S highly quantizedalues.

The Music Kit generates sounds by sending synthesis instructions to th@ Sgenerality of the synthesis saodine fir surpasses that of commercial
synthesizersWhile most synthesizers emplonly one type of synthesis—tamaha DX7 uses only frequeganodulation, for eample—the Music
Kit can implement virtually ansound synthesis strate And since the synthesis engine (the DSP) and the control stream are brought together in
high-performance computaghe Music Kit maks possible an unprecedentedtlef expressie control.

Music Representation
Music is represented in a threedéhierarcly of Score, Brt, and Note objects. Scores amdt®are analogous to orchestral scores and the instrumer
parts that the contain: a Score represents a musical composition while esicboPresponds to a particular means of realizati@nts Ronsists of a time
sorted collection of Notes, each of which contains data that describes a muesicahen you play MIDI into a Music Kit application, tharious
MIDI channels become separat@fobjects and the MIDI commands are turned into Notes.

A Score can contain gmumber of Rrts and a &t ary number of Notes. Methods are pided for rapid insertion, deletion, and lookup of Notes withi
Part and Rrts within a Score.

The Note Class

The Note is the basic package of musical informatifime information in a Note objedilfs into four catgories:
« Alist of attribute-value pairs callegarametes that describe the characteristics of a musieahe

* A noteTypethat determines the general character of the Note

« Anidentifying intgger called aoterg, used to associate flifent Notes with each other

« AtimeTg, or the onset time of the Note

Parameters

A parameter supplies alue for a particular attrite of a musical sound, itiequencyor amplitude for exkample. A parametes value can be simple—ar
integer, floating point numbeor character string—or it can be another obj&tte Note object prades special methods for setting traue of a
parameter as an Eelope object or #aveTable object.With the Ewvelope object you can createalue that aries wer time. TheWaveTable object
contains sound or spectrum data thated in \®vetable synthesis.

The manner in which a parameter is interpreted depends on the Instrument that realizes the Note (the Instrumergstasspiefocol for all objects
that realize Notes). df example, one Instrument could interpret a heightdmeghtnessparameter by increasing the amplitude of the sound, while
another Instrument, ggn the same Note, might increase the sauspiectral content. In thisay parameters are similar to ObjeetiC messagesthe
precise meaning of either depends ow tiwey are implemented by the object that reesithem.

NoteTypes and NoteTags
A Note’s notepe and notedg are used together to help interpret a [SqgiatametersThere are fie noteJpes:

« NoteDur represents an entire musical note (a note with a duration)
+ NoteOn establishes thediening of a note

« NoteOf establishes the end of a note

« NoteUpdate represents the middle of a note

* Mute is general-purpose; its use is deél by the application

NoteDurs and noteOns both establish thgirbeng of a musical noteThe diference between them is that the noteDur also has information that tell:
when the note should ené note created by a noteOn simplgeps sounding until a not@bmes along to stop it. In either case, a noteUpdate can
change the attriltes of a musical note whilestsounding.The mute notejipe is used to representyaadditional information. & example, you can
represent barlines and rehearsal numbers in Notes of type mute.

A noteTag is an arbitrary ingeer thats used to identify diérent Notes as part of the same musical note or phrasexdmple, a note®fs paired with a
noteOn by matching noted \alues.You can create adato passage with a series of noteOns, all with the sameagotedncluded by a single notéOf

The Music Kits note®g system soks maw of the problems inherent in MIDI, which uses a combinatiorepiiumber and channel to identifyests
that are part of the same musical phrase. ekample, the Music Kit can create and manage an unlimited number of simultamgeoapleases while
MIDI can only manage 16 (in MIDI mono mode)lso, with MIDI’s tagging system, mixing streams of notes isatliffi—notes can easily get clobbere:

or linger on bgond their appointed end’he Music Kit aoids this problem by reassigning unique natg¥alues when streams of Notes are edix
together

TimeTags

A Note’s timeTag speciis when the Note is to be performédmeTag \alues are measuredbeatsfrom the bginning of the performance, where the
value of a beat can be set by the usethe Note is a noteDyits duration is also computed in beats.

Storing Music
An entire Score can be stored inaefie. The scorefe format is designed to represeny amformation that can be put in a Note object, including the
Part to which the Note belongs. Scdefiare iPASCII format and can easily be created and mediifiith a t&t editor In addition, the Music Kit

provides a language call&@toeFile that lets you add simple programming constructs suchrébles, assignments, and arithmethjeressions to your
scorefie.

Music Kit Performance

During a Music Kit performance, Note objects are dispatched, in time, twd#ijects that realize them in some manner—usually by making a sount
the DSP or on arxéernal MIDI synthesizerThis process wolves, primarily instances of Performdnstrument, and Conductor:

« A Performer acquires Notes, either by openingealfioking in a Brt or Score, or generating them itself, and sends them to one or more Instru
* AnInstrument recees Notes sent to it by one or more Performers and realizes them in some distinct manner

* The Conductor (thers'usually only one Conductor object per performance) acts as a schedsieing that Notes are transmitted from Performe
to Instruments in order and at the right time.

Before a Performer can send a Note to an Instrument, thelfigcts must be connectel single Performer has a collection of outputs, each of whict
can be connected toyanumber of Instrument inputs. Performance connections are dyndauican connect and disconnect Instruments and
Performers during a performance.

The Conductor prdades control ger the timing of a performance by letting you set the tempo dynamically as well as pause and resume an entire
performance.You can also pause and resumeviatlial PerformersA method is preided for updating the Conductemotion of the current time when
an asynchronousrent, such as a mouse click, is reeel. This males it easy to incorporate the actions of the user in an interagplication.

This system is useful for designing a wideigty of applications that process Notes sequenti&tly example, a Music Kit performance can be

configured to perform MIDI or DSP sequencing, graphic animation, MIDI real-time processing (such as echo, channel mapping, or doubling), s
editing on a fe, mixing and ftering of Note streams under interaeticontrol, and so on.

Performer and Instrument Subclasses

Both Performer and Instrument are abstract clasBeis. means that you wner create and use instances of these classes directly in an application, |
they defne common protocol (for sending and reed Notes) thas used by their subclassekhe subclasseailid on this protocol to generate or realiz
Notes in some application-specifnanner

The Music Kit prevides a number of Performer and Instrument subclag$esprinciple Performer subclasses are:

« ScorePerformer andaRPerformer These read Notes from a designated Score artdrEspectiely. ScorePerformer is actually a collection of
PartPerformers, one for eachrPin the Score.

« ScorefiePerformer reads a scotefi, forming Note objects from the contents of tfee fi

« Midiln creates Note objects from the byte stream generated bytema MIDI synthesizer attached to a serial port.

The Instrument subclasses yined by the Music Kit are:
« Synthinstrument objects realize Notes by synthesizing them on the DSP

« MidiOut turns Note objects into MIDI commands and sends the resulting byte stream back outéonah DI synthesizer connected to a seria
port.

* ScoreRecorder andaRRecorder rece¢ Notes and add them to a Score aad, Pespectiely.
« ScorefieWriter writes scorelfes.

« NoteFilter is a subclass of Instrument that also implements Perferi@e-sending protocol, thus it can both ree@ind send Note&ny number
of NoteFilter objects can be interposed between a Performer and an Instrument. NoteFilter is, itself Thieséretadin a NoteFilter object &dkin
response to recgng a Note is defied by the subclass.ofFexample, you can create a NoteFilter subclass that creates asadescti ne Performer
for every Note it receies.

Music Synthesis

By using the DSP for music synthesis, the Music Kit can generate sound with an attention to detail that equals MUSIC 5-type systems—and it
real time, without fist writing the results as sampled data.

The principal synthesis classes are UnitGeneratorthData, Synthd®ch, and Synthinstrument:
« UnitGenerators and SynthData are the basilcling blocks of DSP synthesis; theorrespond directly to code or data on the DSP
« A SynthRatch object is a comfuration of SynthElements that deds a particular synthesis stgytde.g. frequencmodulation).

« Synthinstrument is a subclass of Instrument that realizes Notes by assigning them to particulatcByingtBnces. It performs what in MIDI
synthesizers is called éice allocation”.

Another class, Orchestra, is pied to manage the DSP for youorfnstance, allocation of all UnitGenerators, SynthData and SgtuthBbjects is
handled by the Orchestra. Each DSP is represented by a single Orchestralbijbetsic NeXT corduration has one DSP; thus there is ordinarily o
one instance of Orchestra@he state of an Orchestra can beesbas DSP code in a souredfi

The UnitGenerator and SynthData Classes

Each subclass of UnitGeneratan abstract class, implements a particular synthesis functiamediéfy the corresponding DSP unit generator 56000
assembly code macrd@he Music Kit supplies classes that implement oscillatokglepe handlers,Ifers, miers, and so on. In addition, you can cre¢
your ovn UnitGenerator subclasses from DSP macro source using the pidgpamap.

SynthData objects correspond to DSP data menfanymportant use of SynthData is to piae patchpointsor locations that can be written to by one
UnitGenerator and read by anoth&or example, simple frequeganodulation can be implemented by setting the output of an oscillator to write to ¢
patchpoint thag read by the frequepanput of another oscillatorSynthData objects can also be used to halettables, delay memargonstants, and s
on.

The SynthPatch Class

SynthRatch is also an abstract class; each subclass representgaratinfi of UnitGenerator and SynthData objedise SynthRBtch class defies a
standard set of methods that are implemented by each subclassedttefnanner in which a Nadgparameters are applied. In general, the manner i
which parameters are interpreted depends on thesNui&2 Jpe:

* AnoteOn heralds a meNote stream (a phrase consisting of Notes with the sameagteiTrearticulation of arxisting stream.
* When a noteUpdate is reced, the Synth&tch males a transition to accommodate thesparameter alues.

« A noteOf causes the Syntllch to wind dwn. For example, if enelope handlers are used,ytae told to bgin the release portion of the
envelopes.The SynthRtch will continue to respond to noteUpdates after it vesea note@fand before it reaches the actual end of the Note.

« AnoteDur is treated l&a noteOnA noteOf is automatically created to correpond to the end of the nateDur

The Synthinstrument Class

Each Synthinstrument object kms haw to create and manage instances of a particular SytathBlass When it receies a Note, the Synthinstrument
decides whether to create awn8ynthRitch instance or to apply the Note to a SyatbR thats already running. It mals this decision by looking at the
Note’s note®g.

Each SynthRtch instance that a Synthinstrument manages corresponds to a particukzg.nitiedn a Note is recezd, the Synthinstrument checks to
see if a Synth@ch with that notedg is running, passing the Note along to the SyattiPif it exists, creating a mwe SynthRitch if it doesrt. The total
number of Synth&ches that a Synthinstrument can create is limited by the memory restrictions of thié @Sghthinstrument catrfind the resources
to play a ner Note, it normally preempts its oldest running SyatisR. Haevever, you can subclass Synthinstrument tovjite a diferent preemption
strat@y, such as one based on amplitude.

Allocation can be done automatically or manually automatic allocation, meSynthRitches are obtained from the Orchestra and returned to the
Orchestra.Thus, SynthBtches are shared among all Synthinstruments. In manual allocation, each Synthinstrument is assidnpebbdi

SynthRatches from which it allocates particular instances. Manual allocation requires more forethgugbarbalso result in more efiént use of DSP
resources.

Music Processing

Music processing is a Wil variant of music synthesisYou merely use a dérent UnitGenerator in your Synthfth—the In1aUG reads the left chann
of the sound input stream, while the In1bUG reads the right channel of the sound input stream.

Real-Time Issues

The DSP can only do so much computing and remain in real time. In cases where the Di&paiy with real time, music can be precomputed,
possibly in multiple passes, and stored in a solenfdii later playback.

Any interactve music application requires that the latehetween a uses’action and its musical result bepk to a minimum. MIDI synthesizers, for
example, operate in this realm—the lag between pushing ddey and the instantiation of the note must be imperceptiiecall thiscritical real time
The Music Kit design philosoptis to pravide critical real-time response without saciifg generalityextensibility and clarity of design.

Sound and Music Kit Summary

The DSP

The Sound and Music Kits both pide Objectve-C classes supporting music and souftile they are lagely independent of each othtrey also
interact. Br instance, with the Sound Kit you can record sound data that can be played in a Music Kit performance. In the other direction, we
provide a soundfé type that contains an arbitrary musical performance using the Musialkgady, Music Kit UnitGenerators are being used tid
system beep-type soundegfts. Short, DSP-generated sounds gk much less disk space than sampled data, and usuaiynmake of the disk during
playback.

The Sound and Music Kits malit easy to design and use sound and music applications on the NeXT Corhjpuietheless, the Kits are simply tool
boxes, thg arent applications themseds. Their vitality will be determined by the imagination of the saiftevdeelopers who bild on their foundation.
We feel that the concepts on which the Sound and Music Kits are basite @dramevork capable of meeting the needs of a wideety of application
developers.

Figure 2 shws the components for creating, playing, and storing music and sound with theresadd softare of the NeXT Computer

soundfile scorefile midifile

Application

Sound Kit Music Kit

DSP < — serial port

0| Sxpoe LLILLLLLY

microphone in speaker and line out MIDI

Figure 2; Sound and Music on the NeXT Computer

The Motorola DSP56001 microprocessor is a state-of-the-art digital signal processor thatagn¥2.5 million instructions per second and, in a sing
instruction, can perform a 24 by 24-bit multipdy48 plus 56-bit addition, twparallel data mes, an instruction fetch, anddweneral inde updates.
The 24-bit data paths and architecture optimized for digital signal processieghedBSP56001xeeptionally well suited for digital audio.

The DSP host inteate is connected to the host processor through a high-speed DMAdetg@e of twekr independent DMA channels) implementer
in a lage gate array knen as theDMA chip. Moreover, the DMA chip preides memory-mapped access to the eight byisters of the DSP host
interface.

DSP on-chip memory isded into three banks of 512 24-biowds. Thep memory bank pnades 512 wrds of program RAM on chipThex andy
memory banks each pride 256 vords of on-chip data®M (read-only memory) and 256onds of on-chip data RAMThe internal x ®M contains mu-
law andA-law expansion tables, while the internal PRI contains one completgale of a sine \ave. The concatenation of x and y memories into a
single 48-bit verd memory is referred to as thmemory space.

Off-chip DSP memory on the NeXT machinests in two address ranges, each of which spans aktefreal memory In the fist address range (8K to
16K), x, y and p memories areverlaid, that is, anx@ernal memory reference points to the sanfieloip location rgardless of the memory space
specifed. Note that in this address range, there is no | memory space support. (The highweord lre mapped to the samerd.) In the second
address range, 40K to 48K, x and y are split into separate 4K partitions, aneépagsthe entire 8KThis address ggon allavs external | memory use,
and supports algorithms (such as the Motorola benchmandsiimy comple data) which gpect x and y memories to beysitally separate.

The three on-chip DSP memory banks can be accessed in parallel, withyassrtteiee mees in one instructionycle (80ns). Cffchip DSP memory
cant be accessed in parallel, requiring three instructjoies to mee a word in all three memory spaces.

DSP Softwae

This section describes the mapping of a general purpose computer music system to the DSP56001 architecture.

The Music Kit DSP Monitor pnddes timed-message suppamijt geneators (DSP subprograms) for generating computer music, audfiering and
DMA support, and other features needed by the Music Kit.

Thedspwrap program creates an ObjeeiC class from a unit generator macro (written in DSP assembly language). Each of these classes is a
of the Music Kits UnitGeneratorA number of UnitGenerator subclasses areipier by the Music Kit.These include signal generators, digitiéfs,
mixers, and erelope handlers.

The Music Kit DSP Monitor

This section outlines aspects of the DSP Monitor that support ¥helaring and control of DSP musical instruments in real time.

The Orchestra L oop

The orchestra loop is a DSP program thatcetes a lafe block of code repetitely, once for eaclick. A tick is some number (currently 8) of digital
sound samples. If not for effeng considerations, an orchestra prograoulét compute a single sample of digital sound on each iterafios.
architecture of the DSP mexkit much more effient to compute digital sound in little blocks called ticks.

The following is an @ample orchestra progranThe user prepares such a program only whengighg nevly developed unit generators. Unit
generators managed by the Music Kit are dynamically loaded into theaD&Ehe orchestra program isilbup inside the DSP on they/fat run-time.We
shaw it here to illustrate its structure:

;; test.asm
;; To assemble: asm56000 -a -b - -l/usr/include/dsp/smsrc/ test

"

include 'music_macros’

; utility macros

beg_orch test’ ; begin orchestra main program
new_yib yvec,8,0

; Allocate y output ector
beg_orcl ; begin orchestra loop

unoise orch,1,yvec,0
; male noise, seed 0
out2sum orch,1,yvec,0.5,0.5
; center it (.5,.5)
end_orcl ; end of orchestra loop
end_orchtest’ ; end of orchestra main program

The xample allocates a length 8 signattor calledyvecin internal y DSP memory with theviocation of thenew_yib macro. Inside the orchestra rea
time loop, delimited by thbeg_orcl andend_orcl macros, there is an instance of timiseunit generator which simulates white noise, and an instar
of theout2sumunit generator which sums itggament into the sound-outitfer. (This huffer is cleared by code emitted in theg_orcl macro.) The
end_orcl macro simply jumps back to a label at thgibring of the orchestra loop dedid inbeg_orcl. This loop &ecutes until the chip is reset or Hos
Flag 0 is set in the DSP host intezé. This is all there is to an orchestra program running in the DSP

More elaboratexamples arelt up by inserting more unit generatorseliknoiseinto the orchestra loofio do this while the loop is running requires
precisely timed softare devnloads. To be able to drastically relid the orchestra loop between tick computations, there neekistae adequate
supply of uffering of the output sound data in the DS® currently use 1024ands total for the dual stereo sound-out DMAféers.

The macrdeg_orcl emits code to perform the folling once-petick services in the orchestra loop:

* Request DMA transfer of the completed sound-aifiel if necessary

* Compare the time stamp of thexhémed message (queued in DSP memory) to the current DSP time (in samplesgcaiel @l messages timed f
“now”.

* Add 8 to the 48-bit current timeaxiable to update it for one iteration of the orchestra loop.

* Reset the three unit-generator memoguarent pointers R_X, R, ¥ind R_L to their lggnning \alues for the orchestra loop.

The Importance of Vectorized Computations

In the current implementation, the tick size is 8 samples. Sincedhieead of setting up DSP indandALU registers is often comparable to the amot
of actual vork done in the inner loop of a tick computation, a tick size of 8 brings the seetiead for each unit generator close to ten percentin m
cases.

It's important not to makthe tick size anlarger than necessary because it also determines the sipatdfigoint memory thas used for
communication between unit generatorss tighly desirable that all patchpointsdi-chip in the DSPThis is because the threeyvparallel data me
capability of the DSP requires that at least tfithe data mees be to or from on-chip memor®nly one parallelxernal memory read or write is
possible because only one set of data and address pins is brought out of the chip.

The hardvare DO instruction in the Motorola DSP56001 further enhances thetberiefictorized computations by performing the loop test and brar
in parallel with the block iteration; while there is a three instructide-six clock gcle) overhead incurred to set up the loop, thevitlial loop
iterations sufer no test and branciverhead.

Finally, the dual parallel indéng ALUs provide zero-eerhead memory address updates far parallel data transfers, with skigctors, modulo (wrap-
around) addressing, andes bit-reverse indging for FFT data shuffig provided as indeing modes.

Thus, \ectorized computations ararfmore efftient than computing a single audio sample per iteration of the orchestrallw®price for this effieng
is a loss of control bandwidth since parameter updatesl@®e break-points,ifer coefftients, etc.) are only installed once at thgifxeing of each tick.

Unit Generators

Theunit genertor is a fundamentaluilding block of sound synthesis. It can also lgarded as one computational “black box” in a real-time signal
processing diagramAlmost esery unit generator has an output signal that it writes into a patchpeiytténe it runs (once per tickAt the heart of
every unit generator is a DO loop thateutes 8 times (once per sample) to produce an output tick. Most unit generatorgeatstela more signal
inputs that are also 8-sample lorertors.

By carefully arranging the order afecution of unit generators within the orchestra loog dften possible to signifantly reduce the number of
patchpoints required. off ecample, if unit generatoss, B, and C are arranged in a linear chain, Aes> B—> C, and if no other unit generators depel
on their outputs, then only one patch-point is needadtuhs before B and B runs before The patchpoint betweekand B is simply reused as the
patchpoint between B and C.

Note also that the order in which unit generators xeewted in the orchestra loop determines whether or not there is an 8-sample delay in the cor
between them. df example, if in the abee example, the order ofxecution is C,B,A, then then €butput will be delayed mvticks relatve toA’s output
plus whateer delay is bilt into B and C. Br this reason, the Music Kit prioles a vay to control the order ofkecution of unit generators.

The following is a partial list of the NeXT unit generators:

add2 - add two signals to produce a third

allpassl - one-pole digital allpasdtiér section

asymp - one sgment of an xponential (ADSR type) erlope
biquad - direct-form, tvo-pole, two-zero, fiter section
constant - generate a constant signal

delay - sample-based delay line using non-moduloirde

delayticks - tick-based delay line using non-modulo ixideg

dswitch - switch from input 1 to input 2 after delay

impulses - periodic impulse-train generator

mul2 - multiply two signals to produce a third

onepole - one-pole digital fter section

onezeo - one-zero digital fier section

orchloopbegin- begin DSP orchestra loop (inkesbeg_orcl macro only)
orchloopend - end DSP orchestra loop {iwkesend_orcl macro only)

oscg - simplest oscillator with general address mask
oscgaf - oscillator with amplitude and frequgnervelopes
oscgf - oscillator with multiplicatie frequeng input

osci - interpolating oscillator

0scs - simplest oscillator

oscw - oscillator based on 2Dector rotation

out2sum - sum signal gctor into sound outpuulfer.

patch - patch one signalector to another

sawtooth - savtooth oscillator

scale - scale a signalactor by a scalar using wp
sclladd2 - add scaler timesrfit signal to the second
slpdur - linear erelope generation using slopes/durations
twopole - two-pole digital fiter section

unoise - uniform pseudo-random number generator

unoisehp - highpassed uniform pseudo-random number generator

AppendixA provides more information about the unit generator implementation.

DSP M essages

A DSP message is an unsolicited message from the DSP to the host probesothe DSP writes aod to itsTransmit Data rgisters, an interrupt is
generated in the host. In response, the host reads gsvoals as possible and places them into a Mach message which the user can elee¢ torrec
particular Mach port.

Each DSP message is 3 byfEksis is to allov a DSP message to be atomically written into the host-amFfansmit Byte Rgisters. The first byte is an
opcode, and it is follwed by two data bytes. Opcodes between 0 and 127 are normal messages, and opcodes between 128 and 255 are error n
MSB of the fist byte is set if and only if the DSP message is an error message of some kind). Error message are separated from other DSP v
the Mach dwer so that thecan be receed on separate ports. DSP error messages are normallyeidlimmediately by a PC back-trace, the time the
error occurred (in samples), and other transient state information.

Inside the DSPoutgoing messages are enqueued, and the queue is emptied by flreuosit Data interrupt which stek ery time the host reads a
word from the DSPIf the DSP message quedtsfup, the DSP blocks, unless aglhas been set which alle overwriting of unsent DSP messages in
circular tuffer.

If a DSP-to-host DMA transfer is in progress, DSP messages can be enqueétteat,will not be sent until after the DMA terminates. If a host-to-DS
DMA transfer is in progress, DSP messages can be sgitheboe is no interrupt of the host. Instead, the user task must read the hestemgidter ISR
containing the RXDF #ig.When this fhg is set, it means there is data in the veckyte rgisters RXH, RXM, and RXL.

Host M essages

A host message is a message from the host processor to th@z®eare three types:

1. Untimed

2. Timed (absolute or relat)

3. Timed with a time stamp of 0

In more detail,

(1) Untimed messages areceuted immediately at interrupt/k on the DSP

(2) Timed messages are copied to gédlimed Message Queue (TMQ) within the DSP (currently close to 166ds)v They are &ecuted when the
sample counter reaches aceeds the time stamp of the message. Reltithes (not used by the Music Kit) are measured from the DSP sample co
at the time the DSP is cgipg the message to tA&1Q. Only “real time” applications can use timed messages, for unless there ivamattestra loop
no sample counter is maintained. (“Real time” daesetessarily mean true real time, e.g., when directing output to disk.)

(3) A zero time stamp means ‘Wb but deferred to the end of the current tickhis is useful for real-timevents when an orchestra loop is runnifigne
messages will bypass the timed message quatihds will not update unit generator parameters at an unpredictable point in the orchestra loop

execution.

Untimed and timed-zero messages are processed at a higher priority than timed m&hgageso that thewill bypass messages stored up in the tim
message queue.

The easiest ay to eecute a host message from C is to use the function DSPCall from libdsgormat of this call is
ierr = DSPCall(Opcode,Ngg,Agl,...,AgNags);

where all aguments are of type int, a@pcodeis the actual address of the DSP subroutine, or the address of its permanently allocated dispatch ¢
The timed ersion is

ierr = DSPCallimed(timeStamp,Opcode,Ng,Algl,...,AgNags);
A host message consists of a number of writes t@Xheegisters follaved by a host command. E&EX write by the host interrupts the DSR fast,

two-word interrupt handler pushes thend onto the Host Message Stack (HM$hus, the orchestra loop continuesteaite as the guments of the
host message trickle in from the ho$he last agument written is the dispatch address. Finalligost command kicksfgirocessing of the message.

Host Commands

DSP host commands are interrupts generated in the DSP when the host writes the CéentoafRlister (CVR) of the Host Inteate (cf. the
DSP56000 Uses'Manual, p. 79). There are a total of 32 types of interrupts possible within the DB&frst 19 are predefed by Motorola (cf. p.
8-6). The remaining 13 interrupt cases are caflest commandand are either defed by NeXT or aailable for defition and support by the user

The DSP Mach dver reseres two DSP host-commands:

*« DSP_HC_DMANT - DMA write termination (host-to-DSP)

¢ DSP_HC_KERNEL_KK - Interrupt lernel when DSP can accept data

The DSP_HC_DMMVT host command terminates DMA writes to the DSB;rigcessary because host-reeaiterrupts are usurped by the DMA
transfer when the direction is into the D8#reby stithg host messages.

The DSP_HC_KERNEL_EK host command prides a vay for the lernel to sleep when the DSBSy, and obtain an interrupt when the DSP is no
longer lusy. This works because the DSP can acceptty one pending host command while it has host interrupts disablieein the DSP enables ho
interrupts, theack host message ixecuted, and the result is the DSP message DSP_DM_KERNEK which causes an interrupt of the hdste
kernel intercepts the DSP message and goes on withwehéteas doing when the DSP originally bl@zk(typically sending a series of messages to
DSP).

The Music Kit DSP Monitor additionally defs one more DSP host-command:

¢ DSP_HC_XHM - Eecute host message

The DSP_HC_XHM host command triggers all host messages to thelD@Bses the DSP to jump to the address sitting on top of the AMSwill
initiate a subroutine call which implements the host message and consumgsitthenss on the HMS.

When processing a host message, the DSP sets the “DSP Bgs{fifi2). The host looks for thisdp to clear as a signal that the message has been
digested. (More preciselfo avoid a race, the host musateh for HC to cleawait at least 400ns, and themitfor HF2 to cleay

Host Message Format

A host message typically containsaiable number of guments follaved by an opcode (dispatch address) in thetdwo bytes o with a time stamp
type (absolute, relate, or untimed) in the upper byt&imed host messages include also a time stamp after the opcode:

<Argl>...<AgN> {<TimeStamp>} <TmeStampype OpCode> [<hostCommand>]

Timed Message Queue (TMQ)

Timed host messages are enqueued offl@. TheTMQ is a circular bffer similar to the DMA bffers and the HMS. Relat time is comerted to
absolute time before enqueuingimed messages can be inserted only at the top of the queue which means timed messages must be sent.in tim
Real-time preemption of the timed message queue is accomplished using untimed or timed-zero host messages. If the time stamp is earlier th
current DSP time, whether because a messageawit of order or because the host process sent the message too late, iedutslémmediately
and an underrun condition will be logged.

When a host message of maximum size will nahftheTMQ, host fag HF3 is set in the DSP host intex to tell the dvier not to send gnmore. As
soon as a maximum length message ¢ahifi3 clears, and the ger will resume sending timed messagédg maximum host message size is current

30 words for aguments, opcode, and time stamp (if)anLow-level routines in the DSP C library break up long timed messages into digestible chu
This same softare layer also optimizes by combining short messages with the same time stamp into a single Mach message.

The maximum absolute time representable inMAE is 27-1 samples (approximately one centurfhe maximum relatie time is 24-1 samples,
which is about 6 minutes at 44.1 kHz.

Untimed M essage Queue (UTM Q)

The UTMQ contains all timed messages with a time stamp less than or equal to the current sample number at the time thesmessiade The
contents of the UTMQ arexecuted at the lggnning of each tick before checking fhg1Q.

Implementation of Queues

All Queues (FIFOs) are implemented usingrthedulo stoage feature of the DSP5600The benefiof doing this is memory protection.oFexample,
DMA transfers are doublediffered; a tvo-word interrupt handledriven by data transmission interrupts, is set-up which looks, in the host-message
handling case, as folies:

movep x:$FFEB,y:(R_HMS)+
nop

Without modulo storage (M_HMS set to the douhléidr length minus 1), it muld be possible for an unchecktransfer to wipe out DSP y memory
Using modulo storage, the transfer can only spin around inside the storage ring.

Message queues are additionally protected by speciabmsaakthe hginning and endThey are checkd to mak sure thg hase not beenwerwritten.

User Memory Segmentsin the DSP Orchestra

Each user memory space (p)yhas an uppemiddle, and laver sgment, corresponding to the three location counters in each memory spadedcby
the Motorola DSP assemhleFhe following table describes their use by the Music Kit DSP Monitor:

Space Lower Segment Middle Segment ~ Upper Segment
p On-chip subroutines Orchestra tick-loop Off-chip subroutines and
orchestra loop
X On-chip patch points UG aguments Off-chip patch points and data
y On-chip patch points UG aguments Off-chip patch points and data
| On-chip long data UG aguments (No off-chip long data)

The assignment of location counters to each of these menwmnests is gien belov:

Space Lower Middle Upper

p pl: p: ph:
X xl: X: xh:
y yl: y: yh:
| II: I: Ih:

A hard partition is defied by the Orchestra class (in the Music Kit) betweaeitsegment and middle-genent on-chip memonAny on-chip requests
which do not fiin the preided partition are relocatedfeathip (i.e., the laver and upper sgnents are combinedfethip). The on-chip request is
analogous to the géster allocation request in C: it is advised by the programmethe system does not guarantee it will happen.

Note that only the upperg®ment is certainly inxdernal memory The lover sgment can be in either as discussed/ab@he middle p sgment will
often straddle on-chip andfafhip memory A leaperunit generator is inserted to connect the on-chip to fhehgd portion of the orchestra loop.

Within the Music Kit, the memory genents abee are mapped onto logical memorgisents as folls:

« xData - X data memoryAlways of-chip. Used for delay andawe tables.
« yData - Same as x data memory since spaceswangaid of-chip.

* pLoop - Orchestra loop. On-chip withverflow to of--chip.

* pSubr - Orchestra subroutineslways of-chip.

¢ |Arg -L memory agumentsAlways on-chip.

¢ XxArg - X memory aguments. On-chip withwerflow to off-chip.

e YyArg -Y memory aguments. On-chip withwerflow to off-chip.

Use of Host Flags
The four host figs are used as folis:

« HFO -Tell DSP to abort current program

* HF1 -Tell DSP that requested DMA transfer is pending
¢ HF2 -Tell host a host message is beingaited
¢ HF3-Tell hostTimed Message Queue is full

While processing a host message, HF3vigg$ clearedThis is done so that the combination of both HF2 and HF3 may mean that the DSP has a
In this state, the DSP is at a breakpoint, and it must be either restarteénoweakby a debgger

Interrupt Priority Levels
The priority lerels used within the Music Kit DSP Monitor are as fato

* 0- Default (user leel).

« 1-Host communications service (DMA, message interrupts, host commands)
e 2 - Serial port service.

* 3 - Critical sections and non-maskable interrupt service.

Acknowledgements

Douglas Fulton documented the NeXT sound and music system, and has made substantial degégneintpiia clarifying general protocol and the
identity and mechanisms of the classes. He also helped us with this Gaggr Kellogg is the author of the DS®ound, and MIDI déce drivers (with
Doug Mitchell nav taking aver the MIDI driver). Michael McNabb broughtawve table synthesis to the Music Kit and designed aiftidonumber of
UnitGenerator and SyntaRh subclasses. John Strawrote most of the matrix and array processing macrose Miknick helped fiish the DSP array
processing tools and wrote most of the programmiagngles. Roger Dannenigenfluenced both the Music Kit notad design and the design of the
performance mechanism (using a date filiscrete simulation modelAndy Moorer helped shape the@fope stratgy, suggested the unit-generator
memory-agument scheme, and pided epert consultation in marareas. Dana Massie contribd speech coding, sampling-ratevasion, and signal
conditioning modules for the Sound Kit. Dougiglar helped with testing, deloper support, and demo$he softvare ofWilliam Schottstaedt and
others at CCRMA (Stanford Urersity) sered as a model for some of the mechanisms in the Music Kit. Jolwnigyp Max Mathevs and others in the
computer music community @ lent moral, technical, and visionary support. Brilble initiated the decision by NeXT to place a DSP5600¥énye
machine, and Ste Jobsunflagging sense of direction has been critical to the music project.

The Sound Kit s designed and implemented by LegrBon, the Music Kit \as designed and implemented byidalafe, and the DSP computer
music and array-processing saddi@ was designed and implemented by Julius Smith.

Appendix A - DSP Unit Generator Implementation

This appendix discusses araenple unit generatpexplaining its features and discussirgyious issues which were addressed in the design.

An Example Unit Generator

Below is an @ample unit-generator sourcéefi It contains a single unit generator maeaad2 which is found by the Motorola DSP assembler when
assembling a stand-alone orchestra prograon.tfe Music Kit, the macro is automatically wrappeddbgwrap) in a small main DSP program,
assembled in relatt mode, and packaged into an Objext object class which is called upon by the Music Kit to dynamically load an instance of
unit generator into the DSP during a musical performance. In macro stescthg folloving mnemonics are used for the DSP indgisters:

R_X = RO =x memory agument pointer

R_Y = R4 =y memory agument pointer

R_I1 = R1 =input rgister 1 (can be used foryhing)
R_I2 = RS5 =input rgister 2 (can be used foryhing)
R_O = R6 = output rgister (can be used forything)
R_HMS = R3 = pointer to top of host message stack
R_DMA = R7 =inde register used for DMA transfers

Analogous names are used for the N and gisters, e.g.,
N_X = NO and M_X = MO.

The following is the unit generator source code:

;; Modification history
;;» 10/19/87ljos - initial fe created from scale.asm

DOCUMENTATION

NAME
;; add2 (UG macro) - add twsignals to produce a third

5 SYNOPSIS
5 add2 pflic,sout,aout0,ilspc,iladr0,i2spc,i2adr0

;» MACROARGUMENTS
;v pf = global label prefi (ary text unique to imoking macro)

;v ic =instance count (such that pf\ _add2_\ic\ _ is globally unique)
;o sout = output memory space ('gt'y’)

;;aout0 = initial output address in memory sout

;» ilspc =input 1 memory space ('®f'y’)

;; iladr0 = initial input address in memory ilspc

;; i2spc = input 2 memory space ('Br'y’)

;; i2adr0 = initial input address in memory i2spc

;; DSP MEMOF ARGUMENTS
;v Arg accessArgument use
Initialization

;v X((R_X)+ address of input 1 signal iladrO
;v Yi(RLY)+ address of input 2 signal i2adrO
;v Yi(RLY)+ address of output signal aoutO

;; DESCRIPTION

;v The add2 unit-generator sumsotywatch points, forming a

5, third. The output can be the same patch-point as either input.
;v The inner loop is te instructions if the memory spaces

5 forinl, in2, and out are xx In all other cases the

5, inner loop is three instructions.

;; DSPWRAPARGUMENT INFO
;v add2 (prefi)pf,(instance)ic,
o (dspace)sout,aout0,(dspace)ilspc,iladrO,(dspace)i2spc,i2adrO

,, MAXIMUM EXECUTION TIME
;v 116 DSP clockycles for one “tick” which equals eight audio samples.

bey_def 'add2’
; begin macro defiition
define add2_pfx “pf\ _add2_\ic\ _"
; pf = <name>_pfx of imoker
define add2_pfxm “*“add2_pfx™"
; this form need in macrogs
add2 macro pfic,sout,aout0,ilspc,iladr0,i2spc,i2adr0
beg_mac 'add2’
; begin macro body
new_xaig add2_pfxm,iladiladrO
; allocate x memory gument
new_yaig add2_pfxm,i2adi2adr0
; allocate y memory gument
nev_yaig add2_pfxm,aout,aout0
; allocate y memory gument
move y:(R_Y)+,R_I2
; input 2 address to R_I2
move y:(R_Y)+,R_O
; output address to R_O
move x:(R_X)+,R_I1
; input 1 address to R_I1

move i2spc:(R_I2)+,A
; load input 2 tA
move ilspc:(R_I1)+,X0
; load input 1 to X0
do #I_NTICK,add2_pfx\ tickloop
; enter do loop
add X0,A ilspc:(R_I1)+,X0
; do add and fetch input 1
if “ilspc’=="x'&&"i2spc"=="y’
if “ospc”=="X" ; xyx
moveA,sout:(R_O)+ i2spc:(R_I2)+,A ; optimal
else ; xyy
moveA,sout:(R_O)+
move i2spc:(R_I12)+,A
endif
else
maoveA,sout:(R_O)+
move i2spc:(R_I2)+,A
endif
add2_pfx\ tickloop
end_mac 'add2’
endm
end_def 'add2’

There are seeral points to note about thigample. The extensive documentation at the top of thie fis turned into a UNIX -style man page by the
dspwrap program. (Certaindids such as the DSPWRARGUMENT INFO field, used internally bgispwrap in generating Objeate C code, are
suppressed).

The first two macro agumentsprefix (pf) and instance count (ic), are used in generating unique global symbols within the Tiesgroan be arbitrary
text, although, by corention, the instance count increments through thgémsefrom 1, and the prefis a unique label prefipassed den from abwe.

The purpose of hang both a pref and an instance count is to support unique label generation aedliteanestedmacro &pansion.An example
illustrating this feature is gén belov:

; main DSP program illustrating nested unique name generation

include 'music_macros’
; utility macros

beg_def first’

; begin macro defiition
define frst_pfx “pf\ _first_\ic\ _"
; pf = <name>_pfx of woker
define frst_pfxm ““first_pfx™”

; use in macro gs

firstmacro pf,ic
beg_mac ‘fist’
; begin macro body

second fist_pfxm,1

; nested imocation

second fist_pfxm,2
end_mac 'fist’
endm
end_def 'fist’

beg_def second’
define second_pfx “pf\ _second_\ic\ _"

define second_pfxm “*“second_pfx™”
secondmacro pfic
beg_mac second’
msg 'innermost’
second_pfx\ label
dcO
end_macsecond’
endm
end_defsecond’
; orchestra program
beg_orch test’ ; begin orchestra main program
beg_orcl ; begin orchestra loop
first orch,1 ; instance 1 of macrorfit
first orch,2 ; instance 2 of macrorfit
end_orcl ; end of orchestra loop
end_orchtest’ ; end of orchestra main program

When this program is assembled, it prints “innermost” four times, and thevifajléour labels appear in the assembly outpet fi

_SYMBOL P

orch_frst_1__second_1_label | 000056
orch_frst_1__second_2_label | 000057
orch_fist_2__second_1_label | 000058
orch_fist_2__second_2_label | 000059

The benefiof this use of prefiand instance count is theadability of global handles on all interesting quantities at aileof macro xpansion.

After the prefk and instance countguments of the add2 unit generatbeere is the macrogumentsoutwhich can be either y or x. It speesithe
memory space of the output signattor The net macro agyumentaoutQ specifes the address of the output signal. Simijatlspc, iladrO, i2spc, and
i2adr0 specify the memory space and memory address ofdHertgth 8 input patchpoints.

An attempt is made to optimize each memory space combin&tiwdspwrap program emits an Objeeé C UnitGenerator subclass for each
combination of memory spacesorfexample, theadd2 example abwe would generate eight subclasses corresponding to each combination of memr
space for the twinputs and single output.

The statement

nev_xaig add2_pfxm,iladiladrO
; allocate x memory gument

specifes memory gument allocation andpands to

xdef orch_add2_1_iladr
org x:
orch_add2_1_iladr
bsc 1,yec ; allocate x memory gument
org p:

whereorch_add2_1_is the assumedpansion of the macrogumentadd2_pfxm andyvecis the assumedpansion of the macrogumentiladro.
Thus, the ajuments symbolic name isxported by thexdef statement, and the xtesvailable element of internal x memory is allocated as the
corresponding memorygument of the unit generator

Unit Generator Memory Arguments

Memory aguments contain the entiren-time stateof the unit generatorln the &ecution of an orchestra loop, each unit generator loadtilsand
index registers from its memory guments.Any state needed for thextdick’s computation (such as delayed signals in a digitet)fis written by the
unit generator into the memorygaments onxit. To minimize pointer initializationwerhead, the memoryguments are accessed sequentially in
internal x and y RAM in the order needed by the unit generd@tuos eliminates initialization of the three memorgwament pointers xeept once at the
beginning of the orchestra loop. Loading of addresses from menguynants \as shavn in the add2xample abwe and is repeated balo

move y:(R_Y)+,R_I2 ;input 2 address to R_I2
move y:(R_Y)+,R_O ;output address to R_O
move x:(R_X)+,R_I1 ;input 1 address to R_I1

There were no data memorygaments in the addZample, it they are handled inxactly the same ay. Data aguments are things kkamplitude,
frequengy, and current phase of a sinusoidal oscillatodigital fiter coefftients and delayed signadlues. Often, taw data ayuments can be loaded in
parallel, for @ample,

move x:(R_X)+,X0 y:(R_Y)+,YO
; load @inl to X0 and gin2 toY0

Each unit generator is responsible fovleg R_X, R_Y and R_L pointing one past itgament block onét. If a unit generator needs tovearun-time
state (such as currentvetope amplitude), i§ best to place this state last in the memagymaents. Hang all running state in the memongaments
facilitates memory compaction needed with dynamic loading.

In addition to x and y memoryguments, | memory guments are supported. Since | memory is the concatenation of x and y memories (48 bits),
memory aguments are allocatebwnfrom the top of on-chip x and y RAMs. Long memorgwanents are used for oscillator phase and table incren
(which determines frequenof oscillation), &ponential emelope state, and the slope and currahtes of the linear amplitude ramper

All memory aguments are gen symbolic names (as stiwin the add2>ample abwe). These symbols are collected into the assembly outpurfd are
needed to write (or read) thegaments from a host taskhe Music Kit tales care of this linkage for most users.wekeer, these hooks can support moi
general real-time signal processing applications which needvadtérthe Music Kit.

Unit Generator Macro Arguments

Three cases summarize the kinds of unit generator maprments discussed al®

« prefix and instance countte(argumentf andic)
« space and initial address of input and output signals $euf,aout)

« initialization of data memory guments (e.qg. lfer coefftients)

Miscellaneous Considerations when Writing Unit Generators

Our eperience in writing unit generators indicates that the natural limit on the size of a unit generator is thatsapch@ALU and/or inde registers.
If there is a need in the inner loop toagwdata in and out of agister it's a good idea to break up the computation betweemiit generators.

We have found that, it is useful to constrain the input signal memory spaces (for optimum performance) before constraining its output memory
example, gven a choice between readingptimputs in parallel (which requires them to be in opposite memory spaces) and writing the output sign.
single parallel mee (in which case either x or y may be spedifiversus reading one input in parallel with writing the output (which forces the input
in an opposite space relaito the output), the former is preferrethis allovs, when hilding the synthpatch, choosing whiekee output space optimize
the subsequent reading unit generaldris scheme prades optimal structures easily wheaeat most one unit generator reads each output signal.

Appendix B - Update to "An Owerview of the Sound and Music Kits ér the NeXT Computer"

The article "An Oerview of the Sound and Music Kits for the NeXT
Computer" describes the state of the 0.9 release of the music and
sound softare. This update describes the 1.0 release of the
software. Additionally, an upcoming 2.0 release (not described here)
has signiftant nev features, impreed performance and more complete
documentation.

The 1.0 release of the Sound Kit is optimized sigaiftly from the
0.9 \ersion and pnades additional functionalityn 0.9, the Sound
class pruided efftient insert and delete operations of sampled
sounds. In 1.0, the SounigM males use of this abilityThe reading
and writing the pasteboard iswmdlazy”, providing rapid cut and
paste of sound sample¥he SoundMeter class iswmand preides a
simple bargraph meter of a sampled soundttvity while playing or
recording. It displays a ming average of the sound amplitude with
"peak hold".

The 1.0 release of the system saiftevincludes a Mach MIDI drer

that pravides time-stamped parsed input and scheduled output and
communicates with the serial ports on the NeXT machwigh the
addition of an inepensve adaptereach of the te serial ports can
connect to a MIDI cable. Programmingaenples to directly play and
record Standard MIDII# are preided. Higheilevel access to the
Mach MIDI driver is pravided by the 1.0 Music Kit via the Midi class.
Programming xamples are included that illustrate using the Music Kit
to do MIDI echo, MIDI record to and playback from a scéeefitc.

In addition, the Score object carmnoead and write Standard MIDI

files.

The 1.0 Music Kit UnitGenerator Library includes processing modules
such as fiers and oscillators’he Music Kit SynthBtch library

includes general-purpose instruments to support a wide range of
synthesis techniques including simple freqyemodulation with

complex waveforms, cascade and parallel modulation FM, FM with noise
modulation, vave table synthesis with interpolation betweevev

tables, and plu@d string synthesisThe FM and \ave table synthesis
have the option of periodic vibrato, random vibrato, and amplitude and
frequeny envelopes with an arbitrary number of breakpoirfs.

library of wave tables for &rious timbres inarious ranges is

supplied.

Note that there as a change in the Music Kit class hiergrsimce
the article vas publishedThe SynthElement class, whictasithe
superclass of UnitGenerator and SynthDatss @liminated.
UnitGenerator and SynthDatawdnherit directly from Object.

Finally, wed like to acknwledge the contrilitions to the project
made by Mile Minnick and John Stven.

David Jafe & Lee Bgynton

This paper and its illustrations are gdght NeXT Inc., 1989.

