Coding for Beginners with TAMS Analyzer: A tutorial
Matthew Weinstein
mweinste @kent.edu
http://educ.kent.edu/~mweinste/tams/
(updated for TA 2.4)

This is not comprehensive documentation of the TAMS Analyzer. It is more
of a tutorial, or actually the necessary nuts and bolts to get going on a
qualitative research project. From this documentation, users can read the
documentation for the program and the coding system.

I What is coding?
Coding is simply a way of transforming raw information into data. In
qualitative research (i.e., research relying primarily on interviews,
observations, document collection) analysis proceeds by sifting through
these raw (or if transcribed, semi-raw) pieces of information and deciding
what each portion represents. In even modest size projects this can
produce what is known as a data burden, i.e., too much information to be
comfortably handled. Coding is one way to handle this. Using computers,
sticky-notes, or scribbles in margins (and much more complex systems
have been devised) relevant passages are “coded,” i.e., labeled as to what
that passage represents. Single chunks of text should be able to receive
multiple codes, and in most modern coding systems they can receive
various refinements to those codes, i.e., they can be subcoded (this isn’t
just an example of X--whatever that may be--but a subtype of X called Y;
in TAMS the code would be X>Y; the “>” symbol is used to indicate
various levels of sub-coding). An example would help....

Consider a project involving studying the sounds that children think
animals make. We might begin to collect songs and rhymes that have
animal sounds in them as well as interviews about animal sounds. Of
course, Old MacDonald would be part of our data. Take just this verse:

Old Macdonald had a farm EIEIO

and on his farm he had a pig, EIEIO

with an oink oink here and an oink oink there

here an oink, there an oink, everywhere an oink, oink

Old Macdonald had a farm EIEIO

We would like to mark “oink, oink™ as the sound a pig makes. Now we
may have a lot of codes and collect a lot of different information,
including a lot of peripheral information about what children think
animals are, so we need to design our code system carefully so we’ll be
able to keep track of all the information we’ll have commg in. For our
study, whenever we have an example of a sound we’ll mark it with the
code “sound” and then a subcode for the type of animal it is. So we

would want to mark “oink, oink™ with (and I’'m using TAMS sytax here;
if you use a different system this would be different) with “sound>pig”. If
we get information about what children know about pigs we will mark it
“idea>pig”. How we do that will be described later, but it could be done
a lot of ways: sticky’s hanging off the side with idea>pig on it, for
instance. Computer coding usually involves selecting the text and
somehow picking the code from a list.

. What is TAMS?

TAMS, which stands for text analysis markup system, is simply a way of
indicating in texts what the codes you’re using are. It looks a lot like html
and xml, which are languages used for making web pages, and I certainly
was influenced by those ways of marking up text. The idea was to make a
system that was easy to use; easy to see; and flexible enough that it could
be done with any number of tools. Before I wrote TAMS Analyzer, for
instance, I used a word processor for coding and a small program (still
available at the TAMS website) to pull out the information I needed; then
I used programs like Excel to do the actual analysis of that data.

To mark up text you surround the part of the text you are interested in
by “tags” which have in them a “code.” Together they look like this:
{mycode}. To indicate the end of the section of text you’re interested in
you put another tag with a “/” in front of the code name: {/mycode}. So
in our animal example we would “type” into the text “{sound>pig}”
before the words “oink, oink™ and “{/sound>pig}” after those immortal
words (oink, oink). Now that text has been coded! It would look like
“{sound>pig}oink, oink{/sound>pig}” This means in TAMS that “oink,
oink™ is an example of sound subtype pig. You could do it with any
wordprocessor!

. What is TAMS Analyzer (aka TA)?

TAMS Analyzer was my attempt, after using TAMS for a while, to create
a more complete application for coding, searching for codes, and recoding
(going back through and adding levels to the codes). TA is still not the
whole megilla, it doesn’t have graphing, for instance. For many projects
you will still want to save the results and use Excel or other programs
(Panorama is a wonderful database for this sort of analysis) to do the
more refined counting and graphing of results; but TA can take you at
least 4/5 of the way there! For many simple projects it may be all you
need.

. Starting TA and understanding the parts

When you first run TA you will notice that you have one very
complicated window. It is called the workbench or project window. Every
research project you have has to have one of these. The file attached to
this window (or better stated the file created when you save this window)
contains project wide information like the location of your interviews and

other files as well as the codes (which will be explained later) and their
definitions. Once you have your project files all showing on the
workbench you can save the project by using the Save option on the file
menu.

A. The Workbench window
The workbench or project window ties your files together. The
purpose of the workbench is threefold. This is the window you use to
define your codes. It is also the window where you can put together
multi-file searches. Finally, it is the window that allows you to save
and recall your whole project (a topic we wont explore in this
introduction; see the documents for a brief discussion of saving
projects)

The top part of the workbench is for specifying

search criteria for analyzing your data.

86066 Untitled
e (Search) Codes
earc
The left hand : P e
anel and .
P Fraw Cempy O Bxact The right
buttonsarefor | \ =™ =7 =
; Simple = Sets w hand panel
managing the : d butt
——— B and buttons
files (field notes, =) C — .
. . Def. in the
interviews, etc.)
i sein el st N — — —_—————— e Yo fay= center are
. Open) (Remove Add ™ .
your proj _Open_ for is for
Sets | | Files Search List N
selecting
the files to
be searched
= (Addall >>) using the
o) criteria
- (< Remove) .
entered in
(<< Remove all) the top half
of the
window.

Init file:

Path mode: A

File count: 0

The init file
is simply
the first file

searched

Figure 1. The Workbench

Just so that you know that I’m not trying to hide anything, the init
file is simply the first file searched in a multi-file search. It might be an
important file for some since one could put special text in that file
which controls how your results look.

B. Document Windows
To make a document window you need to click the new button on
the project window. The new button is right over the “Files” list box
on the right side of the workbench window, under the dividing line:

4 . .

Mew Open " Ren

sets | Files
Untitled 2

Figure 2. The New button on the workbench
makes blank documents windows

The document window is a sort of specialized word processor (or text
editor) designed for coding data.

Here is my guided tour of the document window: In document
windows there is a toolbar running across the top which is where you
can put text and codes you use a lot. The document window toolbar
also has a button to push the workbench to the front and to save the
current document. Underneath this are two tabs, like those for a
rolodex. One says edit, the other says search. We’ll just work in Edit
mode for now, which is the one that the program starts in. The other
tab is for searching for data in this file.

The Edit pane is divided (for practical purposes) into two halves: the
left side which has buttons and fields for managing codes (well,
there’s one button here which toggles the ruler, but everything else is
about codes on the left side of the window. On the right side is a big
pane which is where you can enter your text. (Note: this was
written before 2.41 when an additional set of buttons was added
to the left side of the window. While everything in this
documentation holds, you do have to overlook the ‘“media
player’’: a sort of built-in transcription machine which has
buttons labeled +, <<, >, A and v. To read more about the
media player see the Audio-Visual How To in the How Tos
folder.)

® 06 Untitled 2 -]

s B

Customize @ Save Warkbench
{ Edit | Search -

. o : Old Macdonald had a farm EIEIO
Media (audio and visual) and on his farm he had a pig, EIEIO
control panel/player. with an gink ink here and an oink cink there

here an oink, there an oink, everywhere an oink, oink

s Cld Macdonald had a farm EIEID
(A=Y () 10 W
L e T W

-

/ Code to mnlhar__- 'f Def | / Ruler \

Text area where you type in your

(Refresh) (_Code) (New) data (or import it from another
sound> pig word processor). TA can use both
- rtf and text documents.
Codes
sound>pig

Coding side of the
document window where
new codes are added and
old codes are listed...

A

Figure 3. The document window and its parts (Edit mode)

The buttons are worth a little explanation. The ruler button toggles a
ruler in the Text Area (the right hand side), the other five buttons deal
with codes.

"r_{:ude to mr_'nll:uar-“ 'FDE;f-“ 3 Fr.ulnar_%~
“Refresh ¥ Code f_NEHQZL\\\\\\\\\\
sound=pi o, ype in a new code
P19 here and press the
‘New” button.

Codes

Existing codes will be
listed in this panel here.

Figure 2. Adding a new code using the button panel

Code to toolbar: This button will take whatever code is selected in the
code list and make a toolbar button for it... Makes it easy to access
codes you use a lot.

Def: This button will pop up a definition of the code in a window, to
remind you what your codes meant when you first used them

Refresh: updates the code list (the list under the word codes: here
empty) with the latest codes, in case changes have happened (never
really needed, a vestigial limb from TA’s early years)

Code: Applies the selected code to the selected text. Rarely used.
Normally you would just select your text and double click the code
name in the code list.

New. Obviously my program isn’t telepathic, it has to learn the codes
from you to place in the code list. To add a new code you type it in
the little window under the button and press “New”. (See figure 2)

Once a new code is added it will appear in a list under the word
Codes (in the above window, no codes have been added to the
project yet). As we will discuss in the next section, the general way

you code text is by selecting the text you want in the right side of the
window and double clicking the code from the list on the left side.
But this will be handled in the next section: my purpose here is just to
point out the anatomy of this window.

C. Other windows
There are a couple of other important windows which I’m not going
to talk about yet... The most important of these are the windows that
contain your “results”, by which I mean the results of searches for
relevant data. This will be discussed in Analysis for Beginners with
TAMS Analyzer also included with the program.

V. How do I code in TA?

A. Adding codes with the code browser
We’ve seen one way to add new codes: using the new button.
Sometimes, however, a researcher comes to a project with codes
already in mind and want to enter them, even before transcribing an
interview and applying the codes as you find them. One way to add
such “a priori” codes is through the code browser. To get to the
code browser go to the workbench window for your project and click
the button marked “C.B.” Alternatively go to the Project menu and
pick code browser. (To save time I'll simply write Project->Code
Browser to indicate from the Project window pick code browser, in
the future). That should pop up the following window:

| Code Browser

Codes Name | Eﬁ Active

(Save/Clear Y [Delete) “ Exit

Figure 3. The code browser

The name of our first code will be sound>goat. We’ll enter that next
to “Name.” In the big box underneath the name box enter the

definition: “Marks text showing what children think goat sounds
should be”

Code Browser

Mame sound:>goat Eﬁ Active

" Marks text showing what children think goat sounds should
be

Figure 4. Filling in information in the code browser

Let’s enter a second code. Click the “Save/Clear” button and add a
code “sound>dog” with the definition “Marks text showing what
dogs sound like to children”

When you are done typing the definition, click the “Exit” button. The
program will save the definition in the project window, but you have
to save the project window to save the codes to disk. BUT the
workbench wont let you do that until it knows that each of your open
document windows have been saved, so if you want to save your
definitions and your project file make sure all your other windows are
saved first.

. Adding a new code from the document window

Let’s code “Old MacDonald’s farm,” or at least one verse so that we
get the idea. This reiterates what we talked about initially with the
“New” button. Make sure you have an open document window. If
you don’t already, Click the ‘“New’’ button on the workbench.

This is the new button you should be
looking for, not the one in the code buttons.

;_ Ne x ; Open x ’iﬂemnve_x ; Add x

Sets | Files " '

[Init File |
(Add >)

— | Add all ==

o

,;,_ - -

- [< Remove

[<< Remove al

Figure 5. The new button to make a new window
This should provide a blank window.
Type the pig verse into the window:

Old Macdonald had a farm EIEIO
and on his farm he had a pig, EIEIO
with an oink oink here and an oink, oink there

here an oink, there an oink, everywhere an oink, oink
Old Macdonald had a farm EIEIO

This will go on the right hand side. Let’s now assign the code
“sound>pig” to the “oink, oink”. Select “oink, oink’ and then on
the left hand side type in “sound>pig”:

®0O6e Untitled 2 (=]

% B &

Customize @ Save Warkbench
{ Edit | Search
Old Macdonald had a farm EIEIO
and on his farm he had a pig, EIEIO
with an oink oink here and an oink oink there
here an oink, t an oink, everywhere an oink, oink
—c Old Macdonald a farm EIEIC
(¥ @ N (VY () | 1.0 [
B 1) Select the
(Code to toolbar) (Def) (Ruler) relevant text

I'_’Refresh‘_f! Ir Code \.l "_’ Mew ?'

sound> pig

' Codes
sound>pig

2) Fill in the new code here
3) Click the “New” button

Figure 6. Creating a new code

Then click the New button. This is the one in the button panel. A
dialogue will drop down asking for the code’s definition.

macdon ke

|_L_] Dabeii®e codic Louid=@ig
S
F L] ;] The sourd chuidmen stinbule o oo

"Caée icacibar | |
]
. Upafreah | Cod
| - |

:
| sound=pig

.:".'hl-l-l

]
Figure 7. Adding a definition

Clicking the Ok button will have 3 effects:

10

1. This code and definition will be added to the code list in the
workbench (remember to save it before quiting)

2. The code list on the left of your document window now has a one
code in it (sound>pig) and

3. “oink, oink” has now been coded:

®06 Untitled 2
yit) ZLIE A
% E ®
Customize Save Workbench

E Edit | Search

Old Macdonald had a farm EIEIQ
and on m s N -
with g {sound=pigloink oink{/sound=pig} her®
here MQINk, there an oink, everywhere an g
Old Macdona o =

and an oink oink there
L, Dink

WDERGYWD (™ (10 B
J_Codem toalbar | ’E\ Jﬂ\
(Refresh) (Code) [New | Effects of the “New” button
sound=>pig
Codes
sound:>pig =

Figure 8. The effects of the New button

. Using existing codes

Once you’ve taught your project a bunch of new codes applying
existing codes is a breeze. Simply select text and double click the
code from the code list (that’s the list of codes on the left side of each
document window). We could just keep selecting “oink™’s for
instance and double click sound>pig from the left side of the window.

11

With a second code “sound>cat” the document might look like this:

Old Macdonald had a farm EIEIO

and on his farm he had a pig, EIEIO

with an {sound>pig }oink, oink{/sound>pig} here and an
{sound>pig}oink, oink{/sound>pig} there

here an oink, there an oink, everywhere an {sound>pig }loink,
oink{/sound>pig}

Old Macdonald had a farm EIEIO

Old Macdonald had a farm EIEIO

and on his farm he had a cat, EIEIO

with a {sound>cat}meow, meow{/sound>cat} here and a meow,
meow there

here a meow, there a meow, everywhere a {sound>cat}meow,

meow{/sound>cat}
Old Macdonald had a farm EIEIO

While this will be dealt with later: codes can be overlapped and
nested. Both of the following are perfectly fine. In the following
example I’ve also coded the place that children think animal lives with
a setting code, here subcoded to setting>rural:

{setting>rural}Old Macdonald had a farm EIEIO

and on his farm he had a cat, EIEIO

with a {sound>cat}meow, meow{/sound>cat} here and a meow,
meow there

here a meow, there a meow, everywhere a {sound>cat}meow,

meow{/sound>cat}
Old Macdonald had a farm EIEIO{/setting>rural}

Here, the sound code (sound>cat) is twice coded inside a stretch of
setting>rural.

. Recalling the definition of a code

When you have a lot of codes and sub-codes (pig is a subcode of
sound in our example) it is often hard to remember the definition you
gave a code. No problem. Click one time on the code you’re curious
about from the code list and click the “Def” button. There’s one on
the workbench and on your document window. Your definition will

pop up-:

17

sound>pig

A,
|'~. {ﬂ>t£/, Marks text showing what pigs sound like to children
o

Figure 9. Code definition

E. Working with codes
As has been noted codes can be overlapped and nested. Furthermore,
related codes can be nested and overlapped. There are no problems
for instance with

{a}This is my {a>b} text {/a>b}/a}

even though a>b is a subtype of a. That’s fine. From TAMS point of
view they are as different as pickles and tomatoes. That doesn’t mean
that codes can’t cause trouble; they certainly can. See the section on
“Problems with codes.”

There are several tools that make working with codes easy. These are
on the Coding menu. Often while coding I find that I want to relocate
the beginning or end tag. I'll read the next paragraph and realize that
should be included in the coded passage. Start by selecting the code.
One way to do that is to click in the middle of the tag and pick “Find
current code” from the menu. That will select the whole tag. Now
you can use the mouse to drag and drop the end tag to a new
location.

You may also want to find the other end of a code pair. By a code
pair I mean the front code (that is the one that looks like {a}) and the
back code (the one with the slash: {/a}). Just click in the middle of
one end and pick “Find paired code” from the Coding menu.

Sometimes you may want to just move through the document code
by code. This is easily done with repeated use of “Find current code”
and “Find next code”.

Deleting code pairs is also something that TA makes easy. If you have
just inserted the code by double clicking or using new, you can pick
undo from the edit menu (though for new codes, this will not do
anything to the code list, only to the document). Alternatively you
can click on one of the tags (i.e., anywhere inside the braces) and pick
“Delete code pair” from the Coding menu.

13

Finally, all of the codes in a selection of text can be removed by
selecting the portion of text you want stripped and picking “Remove
codes from selection”.

F. Problems coding
There are a number of problems with coding that can crop up; and
TA provides two tools to help you catch these problems.

1. Broken up codes: sometimes the mouse slips and tags can end up
in tags: {setting>ru{sound>cat}ral}. Here {sound>cat} has
accidentally been inserted inside of {setting>rural}. This will not make
any sense to TA. If you pick “Check for pairs” this will select
problem tags, basically tags that don’t seem to have an end or
beginning. The one it shows you probably is not the problem tag, but
it will be near the problem tag. It is a clue as to where the problem is.
For some reason, TA can’t find it’s other end.

2. Incomplete codes: Sometimes in working with a document, a tag at
one end or the other will get deleted. The solution is the same as for
problem #1. Choose “Check for pairs” off of the Coding menu. A
tag will be selected if there are problems (i.e., if there are not an even
of beginning and ending tags). This is a clue to the problem; for
some reason, TA did not find a match for this.

3. Nested codes: Sometimes the same codes can end up inside each
other. This might be represented by the following situation:

{a}Some text{a} that I'm {/a} trying to code {/a}.

This is not the sort of nested code that works with TA. It would be
fine if the inner code was any code including a subcode of a; if it were
a>b, for instance. The problem is that TA can’t figure out where the
passage ends, and it will choose the shortest passage. The phrase
“trying to code” is not seen by TA. These problems can be found by
picking “Check for nested” from the Coding menu.

The moral of the story is clear, run “Check for pairs” and “Check
for nested” often.

G. Saving
TA does not automatically document windows save. Save often.
Furthermore, your workbench (also called your project file) will quietly
be filling with unsaved information as you add new codes. Once your
project file is saved it will save automatically as codes are added. Result
and document windows you must save on your own.

14

VL

Concluding comments

This is only the “A’s” of the ABC’s of coding. Once codes are added
as described, you will find them available to every file in your project.

TAMS provides all sorts of additional tools for working with codes.
There are also different types of codes, to start with. There are codes
that describe entire documents (this file is an interview), there are
codes that describe a section of a file (this is bob talking), and the
codes we’ve been working with, which are called data codes, and
which identify themes. See the users guide.

Some of the things that you might pursue through the users guide,
exploring the program preferences, and continuing to work with your
data are:

* How to assign colors to different codes

* How to group codes together into code sets

* How add comments to a particular coded passage

* How to use results windows to add layers of codes to already

coded passages.

15

