TAMS Analyzer Version 1.0 1

TAMS Analyzer 1.0 docs

This documentation is really just to get people started and give them an
overview of what is necessarily a complex system. This is not comprehensive
documentation. However, after many complaints I've been convinced that the
existing and out of date documentation needs to be supplemented. This is the
first attempt at creating a manual for the current version: 1.0. Here’s contact
information:

Dr. Matthew Weinstein

Assoc. Professor of Science Ed.

Kent State University

404D White Hall

KSU

Kent, OH 44242

mweinste@kent.edu

htep://educ.kent.edu/~-mweinste/tams/
rev. 1

[. What is TAMS Analyzer

TAMS Analyzer (TA) is a software program for analyzing qualitative,
textual information such as interviews, observations/field notes, and other
textual documents.

A. TAMS

The analysis of a document is done by you, the reader-ethnographer, in
this program. TA just keeps track of (actually embeds) the information
you indicate. You read the document, select sections and indicate what
such a selection represents.

TAMS stands for text analysis mark-up system. It’s sort of HTML'ish or
XML-ish, but it is very distinctive. People have asked why I’'m not using
XML, and my initial response is that multiple independent ways that we
(qual. researchers) have to analyze texts doesn’t work easily with XML
which, for instance, doesn’t allow overlapped sections. To just make clear
that I am not using XML or any other standard, I use “{“ and “}” to

mark my tags. At some point someone (maybe me, maybe you) will
create a TAMS to XML converter.

B. Coding

TAMS Analyzer Version 1.0 2

1.

TA’s first job is to help you code, that is to mark sections of documents as
to their significance. Whether importing documents or creating them
in TA your first job is to select text and indicate what it means.

C. Analyzing

TA’s second job is to extract information from a marked up document.
Basically TA just compiles a table of text meeting specified criteria. This
is called analysis.

D. License issues

TAMS is released under the GPL license, the text of which is available at
www.gnu.org. At some point I'll do the tedious work of including a
statement in every source file regarding it; there are also some parts of
the program which are released under Apple’s License which is not as
liberal as GPL; so be careful (in particular the parts of the program
concerning the find text dialog box).

Getting started with a project

A project consists of a series of files each of which usually represent one
thing: an interview, an observation. A project also should consist of a
centralized code file. This is a file that contains all the codes used across the
files along with their definitions.

A. Case 1: the files already exist

If you have already typed in your interviews, save them as RTF
documents and drop them on the TAMS icon; you can also save them as
text (make sure they end with .txt or .rtf).

Then create a new file in TA and save it in some appropriate place with a
name like “codefile”. This will be your centralized code file. Find your
workbench window and select the name of the code file and click on the
“Code Source” button (second button from the top):

TAMS Analyzer Version 1.0 3

' Files

."'. i
mock dialog.rtf itk

f Code Sc

" Add

" Add all
f < Rem

il
- << Remc

E Centralized Coding: codes-veqg.rtf

Init file:
Fig. 1

In the above figure I've just designated a file called codes-veg.rtf as my
centralized code file (I did this by selecting it and pressing the second
button down, the one with the word “Code” showing).

If all has gone well the file name will appear at the bottom and
Centralized Coding will be checked.

Now Go to SII.C and save your project.
B. Case 2: creating data files in TA

If you are typing in your files in TA make sure that you save them as
RTFDocuments (you can chose this when you do a save, save as, or save
to) so that the files keep their formatting. Before typing in your first
document create a new empty file and save it with a name like Codes or

TAMS Analyzer Version 1.0 4

Code File; since this will hold the code list and definitions. Then go to
the workbench, select this file, and click the “Code Source” button to
indicate that this will be your centralized code source.

Files

mock dialog.rtf
 codes-veg

TR T T

i
T

faner
A

.

L

TR
|

Fig. 2

If all has gone well, the name of your code file appear at the bottom,

and “Centralized Coding” will be checked.

Now you can enter your data; get another new file (from the File
menu) and transcribe your interview into the document part of that
window. Save often, and save it as an RTFDocument type!!!

TAMS Analyzer Version 1.0 K)

NOTE and WARNING: Every time you add a new file to the project

remember to save your workbench as well as the file. See SII.C.
C. Saving & restoring projects

TAMS can remember the files involved in your project and open them
all and select the central code file.

Once your workbench file list has all the files listed in your project, and
your central code file has been designated, you can save it by filling in a
name in the field in the lower right corner and pressing the new button.

Ve \'
e all |
—

@)

tool bar test -#] If_ Save WB :I I:_REL'r]” WEI-_:I
Wﬁ
Fig. 3

Here I've called my mock project “veggies”.

The next time you open TAMS close the blank window provided, and
then select your project from the menu in the lower right corner of the
workbench and press “Recall WB”. This will load your files and set your
central code file.

If you add or subtract any files from the project select the project from
the menu at the lower right corner of the workbench (in Fig. 3 it says
tool bar test, but it should have the name of YOUR project) and pick
“Save WB”.

TAMS Analyzer Version 1.0 6

WARNING: That little z (for zap) button will delete all your saved
projects, not the files, thank goodness, just the memory of what files
were involved in what projects. Delete just removes the project currently
selected (tool bar test til I hit the New button and veggies is added and
selected)..

III. Coding
A. What is a code

A code is a name that identifies the meaning or significance of a passage
of text. In TAMS the passage is surrounded by tags that have the code
and other information with it. Codes can be nested and overlapped
without problem.

1. Valid characters
The names of codes can have letters, numbers, and underscores (“_”).
They cannot have spaces. Codes can be hierarchical, i.e., you can
create a whole family of codes, indicating the various levels with “>”.
For instance, to create a “food” family with carrot, parsley, and

cilantro in it you would name the codes

food>carrot
food>parsley
food>carrot

carrot, parsley, and cilantro are subcodes of food. Note that TAMS is
case sensitive. Note you can still use food (no subcode) as a code.

You could specify further levels of coding such as

food>parsley>curly
food>parsley>italian

2. From codes to tags
In your text to indicate that something is coded you surround the
passage with “tags” which contain the “code”. Showing is easier than
telling in this case. Say that you are going to code the following
passage in your document.

Parsley makes me sick.

TAMS Analyzer Version 1.0 7

To do so in TAMS you just surround it with tags containing the
code:

{food>parsley}Parsley makes me sick.{/food>parsley}

The end tag must begin with a slash, the front tag must not have a
slash, just like HTML. Every open data tag must have a matching
close tag. Your Coding menu has a couple of diagnostic tools to help
you find “bad” tags. Note here you can see that tags contain codes

but are not the same thing as codes. They have that other stuff
(“4“”}” and “/”) as well.

Note you could just type all that junk in, but what would be the
purpose of my program? In TA you select the text and either pick
the code out of a list or type it in a box on the side of the document
(if it’s a new code).

3. Signed tags
To support multiple coders, TA 1.0 introduced a new syntax that
added a signature to a tag. A signature is a group of letters (no
spaces) that are your handle for coding. These are stuck in brackets
after the code inside the tag. If my handle is “mgw” then I could
sign the passage by coding it as

{food>parsley [mgw]}I hate parsley.{/food>parsley [mgw]}

note the code and the signature must match!!!

Again, it would be silly for you to type all that. You indicate that
you want to sign your tags in TA’s preferences dialog on TAMS
Analyzer menu.

4. Tags with comments
Sometimes you want to leave yourself a little memo about the
passage. TAMS does this by allowing you to leave it in the close tag
after the signature (if there is one). The memo is offset from the
code or signature by a space.

{food>parsley [mgwl]}I hate parsley.{/food>parsley [mgw] This guy’s

crazy!!l}

You can also insert it with a colon after the signature (or code if
there is no signature)

TAMS Analyzer Version 1.0 8

{food>parsley [mgw]}I hate parsley.{/food>parsley [mgw]: This guy’s
crazy}

which makes it look a little nicer.

TA does not facilitate adding memos (or comments, as I prefer to
call them), you just type them in. Now you can see that tags have a
lot more than just the code, they also include signatures and
commments.

B. Adding a new code
TA makes it easy to add a new code.
eFirst, select the text that will be coded.

*Second, just fill in the name of the new code in the box on the left side
of a document window and press new.

.6 SN Untitled 2

£4 [| Hﬁﬁa
1.3 = _ o=]
Customize Save Workbench

Search]

{ Code to toolbar 1‘ f DEf_\' ; Ruler

“r_Fr.Efresh? " Code " I Mew H

put=new:>codes }here|

Codes

Fig. 4. Entering new codes

Then you’ll be prompted for the definition of your new code and when
you click ok, and

TAMS Analyzer Version 1.0 9

1. your code and definition will be added to the central code file (which
you better save!)

2. added to the codes list under the box you typed in your code name
into

3. as noted, applied to the selected text.

WARNINGS:

NOW SAVE YOUR FILE AND CODE FILE SINCE BOTH WILL
BE CHANGED.

THIS WORKS BEST IF YOU HAVE A CENTRAL CODE FILE IN
PLACE. YOU CAN DO THIS WITHOUT, BUT IT IS NOT
ADVISABLE.

C. Applying an existing code

Now things get really easy. If you already have the code in your list, just
select a passage and double click the code as it appears in the code list.

So in this example just double click food>parsley to code the selected
text.

TAMS Analyzer Version 1.0 10

I Edit l Search]

| hate parsley

(Code to woolbar) (Def) (" Ruler)

{ Refresh -’r Code) [New)

food=>parsley

Codes
food=>parsley

Fig. 5. coding

After double clicking the choice in the “Codes” list on the left side of
the window, this will look like this.

[Edit l Search

{food=parsley [mgw]} hate parsley{food=parsley [mgw]}

{ Code to toolbar) ("Det) (Ruler)
(Refresh) | Code) New)

food=parsley

Codes

Fig 6. After coding

Notice that the text is still selected so you could keep applying codes to
this section of text!

ADVANCED:

TAMS Analyzer Version 1.0 11

When you have a lot of codes, it’s convenient to have a couple of
frequently used ones on the tool bar. To put a code there select a code
from the code list and press “Code to toolbar”

REALLY ADVANCED:

What if you want the button bar to come up each time with certain
codes. Put a metatag at the top of your document which lists the codes
you want on the button bar, you can also have text and insert vertical
bars as well:

{!button food>parsley, |, “{lend}”}

The first time you type this in you need to pick “Build button bar”
from the Coding menu.

This example will create 2 buttons separated by a vertical bar. The left
button will be a coding button that will code selections “food>parsley”.
The other button will insert {!end} when clicked. Note that this second
button has quotes around it. They signal that this is not a code.

This weird syntax with the ! is explained in IIL.E. below.

D. Working with codes

To help you work with tags TA provides some very simple tools to select
and move tags around as well as to delete tag pairs and leap from the
open tag to the close tag of the pair. These are all on the Coding menu.
I wont walk you through them, they should be pretty obvious.

The one practical piece of knowledge that I will share is that I often find
the need to move the end tag of a pair to a different location after I find
that the next paragraph should also have been included. No problem.
Click in the end tag, pick “Find current code” from the Coding menu.
This will select the tag. Now drag it to its new location.

E. Universal codes and metatags (sometimes erroneously called metacodes

by me)

TAMS Analyzer Version 1.0 12

The types of codes we’ve been talking about are data codes. Universal
codes describe a whole document rather than a section of it. For example
you may want to indicate that the type of data you are dealing with is an
interview in this particular file. You could put at the top of the
document the following to remind yourself of this in the output:

{luniversal dataType="Interview"}

This will produce one column in your output called “dataType” and for
records from this document will fill it with fill it with “Interview”.

This type of tag, which starts with a “!” is called a metatag (rather than a
coding tag). It conveys information to the program rather than marks
information. There are a large number of metatags in TA all of which
are listed in the metacode (should fix that at some point) submenu of
the Coding menu.

F. Reminding yourself of a code definition.

At some point after 50 or more codes are added, it is useful to see the
definiton of a code. No problem, pick the code off of the code list and
press the “Def” button. A window explaining the code will pop up! This
only works if you set up a central code file!

G. Problems coding

There are a number of problems with coding that can crop up; and TA
provides two tools to help you catch these problems.

1. Broken up codes: sometimes the mouse slips and tags can end up in
tags: {setting>ru{sound>catjral}. Here {sound>cat} has accidentally been
inserted inside of {setting>rural}. This will not make any sense to TA. If
you pick “Check for pairs” this will select problem tags, basically tags
that don’t seem to have an end or beginning. The one it shows you
probably is not the problem tag, but it will be near the problem tag. It is
a clue as to where the problem is. For some reason, TA can’t find it’s
other end.

TAMS Analyzer Version 1.0 13

2. Incomplete codes: Sometimes in working with a document, a tag at
one end or the other will get deleted. The solution is the same as for
problem #1. Choose “Check for pairs” off of the Coding menu. A tag
will be selected if there are problems (i.e., if there are not an even # of
beginning and ending tags). This is a clue to the problem; for some
reason, T'A did not find a match for this.

3. Nested codes: Sometimes the same codes can end up inside each other.
This might be represented by the following situation:

{a}Some text{a} that 'm {/a} trying to code {/a}.

This is not the sort of nested code that works with TA. It would be fine
if the inner code was any code including a subcode of a; if it were a>b, for
instance, or even if it was done by a different coder (with a different
signature);. The problem is that TA can’t figure out where the passage
ends, and it will choose the shortest passage. The phrase “trying to code”
is not seen by TA. These problems can be found by picking “Check for

nested” from the Coding menu.

The moral of the story is clear, run “Check for pairs” and “Check for
nested” from the Coding menu often.

IV. Documents, sections, and repeat information
A. Breaking a document into sections

Often qualitative documents have a sort of natural syntax: interviews
have speakers, field notes have time coded passages, etc. One reason I
created TAMS was so that there was a way to have associated
information: the name of the speaker, the time code of the field notes,
included with the results of queries into the data. The first thing you
will need to do, and TA offers few tools to help with this, is mark the
ends of these natural sections with {!lend} tags (or {lendsection} tags, see

SIV.C.)

HINT:

TAMS Analyzer Version 1.0 14

You may want to check out Nisus for this (though Nisus at present
doesn’t work with rtf... coming soon I think) or TexEdit Plus both of
which have very fancy search and replace functions which can save a lot
of time in marking up documents initially.

HINT:

TA will let you turn a passage of text into a tool bar button. After the
first time you type {lend} (or pick it from the Metacode submenu of the
Coding menu) select it and pick “Turn selection into toolbar button”
from the Coding menu. Then it’s a simple, single click to stick {!end}s
where you need them.

What you need to do is put {!lend} tags after each portion of the
document: you need to figure out what a portion is, but for interviews it
will be after each person’s turn speaking, in field notes it will be where
you have a time code. etc. It’s your decision, but what you’re marking are
spots that “variables” (who is talking) are going to change. Continue to
the next section for how to attach that information to results.

B. Repeat Codes and the Repeat tag

I will be using the example of an interview here, but we could be talking
about field notes in which case time_code would probably substitute. In
an interview, | always want to know who is speaking when I look at
results. (Unfortunately if a coded passage crosses speakers, only the first
will be included). To include that information I need to take two steps:
first, indicate who the speaker is, second indicate where that
information is found.

To mark whom the speaker is just code it as you would any data. We
might call the speaker “speaker” for instance:

{speaker}John{/speaker}: {food>parsley}l hate
parsley.{/food>parsley}{!end}

TAMS Analyzer Version 1.0 15

Now, speaker is really a different sort of code than food>parsley. One
indicates data, the other information you want attached to that data.To
indicate that “speaker” is a special sort of code that isn’t data you put a
metatag at the top that says that this is what I call a “repeat code”

{!repeat speaker}

If you have time code information, you could also add that like this
{Irepeat speaker, time_code}, and so on. But see the next section for
problems that could arise.

C. end vs. endsection

Normally, when TAMS hits an {lend} tag it clears all the repeats that it
has found. None of the values will carry forward from the previous part
of the document. Using {lendsection} rather than {!end} is one answer to
this. It keeps the last values, so that if only a few change in the next part
the previous values are retained. In the previous example with an
interview where you are tracking who is talking and maybe only
occasionally entering a time_code you will want to use !endsection, but
be careful to mark all the speakers, or you will think the wrong people
are saying the things you are finding!!! Also make sure that you put in
an {lendsection} whenever the value of speaker changes, or you will be
seriously mislead as to who is speaking.

ADVANCED NOTE

An alternative to the {lendsection} metatag is the {!dirty} and {!clean}
metatags which can be sprinkled throughout your document. They
handle how {lend} metatags are handled. {!dirty} tells the TAMS
processor to carry old values forward when it finds an {lend}; {!clean} tells
TAMS to zero values when it finds an {lend}. By default TAMS assumes
that {!lend}s should be {!clean}.

V. Getting information out of documents
A. Workbench vs. Document searches

After you have coded your documents you will want to extract
information from them. This generally involves looking up different

TAMS Analyzer Version 1.0 16

codes and sifting through the results. There are two ways to do this on
TA: through the workbench and through the Search tab of each
document window (if I port this to X11/Linux, only workbench searches
are likely to be supported). If you want to search across documents you
need to use the workbench.

1. Workbench searches
To search from the workbench, first put together your search list.
This means moving files over by selecting them from the file list
clicking the “Add” and “Remove” buttons to move them onto the
right hand, search list. Put a code into the “Search” field and hit the
button called “search”. That’s pretty much all there is. Ok, there are
a few details still to cover.

2. Document searches
Really, it works the same way only results will be for this document
only.

B. The unlimited search

This simply refers to searching without putting in a code into the search
field; just leaving it blank. It will return a record for every coded passage
in your document. That means the following will generate two results
records:

{veggie}{food>parsley}I like eating things with
parsley{/veggie}{/food>parsley}

One for veggie and one for food>parsley, even though the data will be
almost identical. This is coded twice and it will provide two results in an
unlimited search.

(Note: the tags do not have to be properly nested, as this example shows,
the end tags could be in either order).

C. Looking for particular codes

Of course, more often you will want to look for particular codes. With
centralized coding you just double click the code from the list on the
workbench and hit search. You could also manually type them into the
search field and hit the search button. By the way, searching for “food”
will return the whole food family: food, food>parsley, etc. If you want to

TAMS Analyzer Version 1.0 17

find only food, search for ‘food. That’s a single quote and the word food.
This is called an exact search, and you could do it through turning on
the exact flag (under the search) as well.

What if you want to find both food (and its family) OR things coded
likes>food which is part of the “likes” family. You can search for food at
any coding level by searching for “>food”. This indicates that it should
look for food at all levels of the code.

What if you wanted to find food or good or neighborhood. You could
search for “*ood” this basically just searches the code name for a
substring.

D. And and Or

I’'m no lexical analyzer maker, and TA’s slowness, lack of indexing and
lack of proper boolean search features shows that. Sorry. But you can do
and’s and or’s. And’s are indicated with the “+” sign and or’s with a
comma “,”. And’s take higher precedence than or’s and there is no
grouping with parentheses, so you have to distribute things yourself.

Again, so sorry. But at least the feature is there!!!

So to search for either food>parsley or food>carrot you would enter
“food>parsley, food>carrot” To find passages that are both food>carrot
and loves>vegetarians you would search for
“food>carrot+loves>vegetarians”

E. Search Flags

In both the document search pane and on the workbench there are four
flags or check boxes that control how TA does searches
1. Raw searches
Raw simply means that the tags are shown in the results. TAMS will
show you all the tags that are open for the start of the found passage,
by the way. For actually putting things into papers you will want to
turn off the raw flag when you search. By the way, returns are
substituted with “\n” and tabs with “\t”. The original characters
would be confusing to Excel or other databases.
2. Simple searches
There are two types of searches that TA can do given a mix of codes.
Either it can search for the tags that match what you’ve indicated

TAMS Analyzer Version 1.0 18

and return passages that meet the criteria you've set, or it can check
at each character whether this character is in a “zone” that meets the
criteria you've set. Consider searching for “food, veggie” for a
document that contained this passage:

{veggie}{food>parsley}I like eating things with
parsley{/veggie}{/food>parsley}

If you are doing a simple search both food>parsley and veggie meet
the criteria. So TA will generate a result for each tag. If you turn off
simple searches, TA will ask if each character in “I like eating...” is in
a zone that is either food or veggie and return it as meeting the
criteria. There will only be one result record for this. TA indicates
that this is not a simple search by prefixing the code in the results

window with a “+” or “-”. Generally you will want the simple flag

checked.
NOTE: Searches with “and” (“+”) are always non-simple searches.

WARNING: Only simple search results can be recoded!!! This is
because passages returned from searches with “And” may not be at
tag boundaries.

3. Empty searches
Usually, when you search for data you only want to know what
passages meet certain criteria. If you turn on the empty switch TA
will produce a record, data or not, at every lend (or lendsection if you
turn on that feature in the preferences panel). This way you can find
out how many times someone didn’t mention X, Y or Z...

4. Exact searches
Normally if you search for food, you will get the whole food family:
food
food>parsley
food>carrot
etc.

To look for only those things coded food, but not food>carrot, turn
on the exact flag.

NOTE: you could also prefix a ' (single quote) in front of food.

F. Searching for coders

TAMS Analyzer Version 1.0 19

If you want results only from a certain coder you could simply put in
their code in the “Coder IDs” field of either the workbench or the
document. You could also list coder’s separated by commas. If you want
to include unsigned tags use * (no this doesn’t mean wildcard in the
context of the “Coder IDs” field). To look for unsigned and tags signed

by mgw I'd fill in “*, mgw”.

You can do much more complex searches however by including coder
information in the search field! if I want all cases of food coded by mgw,
I could search for “food[mgw]”, or if I wanted unsigned results as well I
could do “food[mgw; *]”. Notice that the coders are separated by
semicolons rather than commas . If I wanted only unsigned results I'd
look for “food[*]”. If there was another coder with bob as his initials I

»

could look for “food[mgw; bob]” or if I want to know what both mgw
and bob coded as food I could look for “food[mgw]+food[bob]”

ADVANCED FEATURE:

You can set up pretty complex coder name systems and search for all
sorts of subsets by using the ~ (tilde) in a search. Searching for [~m] will
return all coder’s whose name begins with m. Or searching for
“food[~m;*]” will return all passages coded as food by anyone whose
name starts with m or was unsigned. Again this is not done in the

“Coder IDs” field but in the Search field itself.
G. Saving for Excel and databases

When you have results, you may want to save them to a database. TA
produces very nice tab delimited files readable pretty much straight away
by Excel and other databases. Just pick Save To: and pick DocumentType
from the file format menu. If you accidently forget to switch it to
Document type, your file will be named with a .tam at the end. This will
confuse Excel (or whatever you are feeding it into); just rename it with a
Xt extension.

BEWARE:

If you’re using a classic environment database you’ll need to pick “Use
old Mac new line character for results” from the preferences menu
before you do a search.

TAMS Analyzer Version 1.0 20

BEWARE:

Panorama database stops reading things at the end of quotes. Put the
following metatag at the top of your documents: {!noquote}. This will
turn quotes into \Q for double quotes and \q for single quotes.

VL. Interactively reworking your coding

Based on what you find in your searches you will want to go back and
“recode” your document; which usually means adding another layer of
subtlety to your codes. First time through you may have just wanted to catch
any mention of veggies. So you coded anything that seemed slightly
relevant “veggies”. Then you want to see what people are saying about
vegetables, so after searching for veggies you’ll want to change those codes to
veggies>good, veggies>bad, veggies>whatever.

A. Finding the results in the text

The first way you could do it is “manually”. To go back to the original
place in the text from a result window, click on the record (row) you
want to look at in the original context, and then just click the “Find
record” button and the coded text in the original document will pop up!

Consider this section of a mock interview

T __+ F F F r r r r Fr r
P P B B P E

i{frepeat speaker}
{speaker}Sam{/speaker}:
{veggies}l hate carrots; they're stupid fruits {/vegagies}
{lend}
{speakeriMany/speaker):
{veggies}They're not stupid, and they're not fruits; they're an
important source of vitamin A{veggies}
{'end}

TAMS Analyzer Version 1.0 21

Fig. 7. A mock interview

If you do an unlimited search you should get a results window like the
following;:

Sort column “ {veggies}l hate carrots; they're stupid fruits {vegagie

Find record

" Refresh

speaker _code _data
5am veggies {veggiesH hat
Mary veggies {veggiesThey

Fig. 8. Unlimited results from the mock interview

Here, the first row is selected (you can see the text for that record in the
browser above). Now click on “Find record” and you’ll be taken back to
that first record, with it selected:

g - - - Ay e
{'repeat speaker}

{speaker}Sam{/speaker):
{veggies}l hate carrots; they're stupid fruits.{/veggies}
{lend}
{speakeriMary{/speaker}:
{veggies}They're not stupid, and they're not fruits; they're an
important source of vitamin A{/veggies}
{lend}

Fig. 9. Find record takes us back to the original text

TAMS Analyzer Version 1.0 22

NOTE: This is an important tool for examining context!!! This takes
you back to your source document and scrolls to the original text.

NOTE: If you want to use this to recode, start with the bottom records
first. As you change text the index will get more and more off. You'll
know that the original text is changed because a check-mark will appear

by the “Refresh” button.:

* Refresh vy
speaker

P Mary

Fig. 10. The result refresh button and a check indicating a changed
document file

You can use the “Refresh” to re-synch your results and your original
documents. This can be a long process, which is why I recommend
starting at the bottom and working your way up; you’ll be less likely to

be off.
B. Marking results

You can also have the program go through and change or add codes to
for you. This involves marking the records you want to change and then
picking “Add code” or “Recode” from the “Recode” submenu of the
Results menu.

To mark records (rows) for adding codes or recoding, select a row and
pick “Mark” from the Results->Recode submenu. That will add a “+”
sign after the record number (your signal tha tthis record is marked).
You can unmark records by picking “Unmark” from the Results-
>Recode submenu.

C. Adding codes

Adding codes simply surrounds passage associated with the marked
records with an additional code; the original code is not affected. After

TAMS Analyzer Version 1.0 23

marking records (See SVI.B) pick Add codes from the Results->Recode
submenu. You will get a dialog like this:

)0 Results
5 e R R e e —
Fin Code to add: speaker _:] f P
e
—3 Mew code T
b
MName: / oK \ T
Definition: 1:
“ cancel)

Fig. 11. The Add code dialog box

You have two ways to go here: you can pick a code that exists from the
menu and press the top OK button, or you can type in a new code into
the Name: field and its definition and press the lower OK.

This may take some time, it’s doing complex cutting and pasting and
then refreshing of the window.

WARNING: See problems section for bad things that can happen when
you add codes.

D. Recoding

Recoding is trickier than adding codes. This goes through and actually
replaces the codes and includes comments that the original codes had.
Note that you cannot recode based on any search that involves an “and”

TAMS Analyzer Version 1.0 24

or is not simple. So be warned. As with adding codes you are presented
with a dialog that either allows you to pick from existing codes or
substitute a new one to the code file:

06 Results
" Sor _Existing code
" Recode to: | speaker TE] ‘oK
“ Ref
New code
: :
1+ Name: veggie>bad i OK

(%]

Definition: [Denotes negative vegetable attitudes

‘ Cancel

Fig. 12. A filled in Recode dialog box

Here I am recoding the first speaker’s comment giving it a negative spin
by defining a new code: veggie>bad. I'll click the lower “OK” since 'm
filling in the lower information, and voila, the code will be changed.
You could see codes disappear from your results window since they may
no longer meet the search criteria. Also see the next section for warnings
about bad side effects from adding and recoding data.

E. Problems with Adding and Recoding

Adding and recoding can make a mess of codes. The general problem is
that you can land up with a nested situation which doesn’t make sense
to TAMS (or anyone else). If the original was

{a}This is {b}some text that {/a} will be recoded {/b}

and we recode b to a, we’ll have

TAMS Analyzer Version 1.0 25

{a}This is {a}some text that {/a} will be recoded {/a}

Basically TA will have no idea that the second {/a} is there or which {a} it
goes with, it will stop looking. And that second {/a} will give all sorts of
problems in any case.

You may not get an error, but you’ll get unexpected results. The answer:
check the syntax by running “Check for nested” from the Coding
menu. Check often.

F. Updating your results

This is redundant with what has been said elsewhere, but if you see a
results window with a check by the “Refresh” button, it means one of
the documents that feed this results window has changed. Clicking the
“Refresh” button should update your results:

Refresh v

speaker
2 Mary
Fig. 13.

Good luck, write if you have problems.

Matthew Weinstein
mweinste@kent.edu

http://educ.kent.edu/-mweinste/

