
Vmgen
for Gforth version 0.7.2, February 24, 2013

M. Anton Ertl (anton@mips.complang.tuwien.ac.at)

mailto:anton@mips.complang.tuwien.ac.at

This manual is for Vmgen (version 0.7.2, February 24, 2013), the virtual machine interpreter
generator
Copyright c© 2002,2003,2005,2007,2008 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Table of Contents

1 Introduction . 1

2 Why interpreters? . 3

3 Concepts . 4
3.1 Front end and VM interpreter . 4
3.2 Data handling . 4
3.3 Dispatch . 5

4 Invoking Vmgen . 6

5 Example . 7
5.1 Example overview . 7
5.2 Using profiling to create superinstructions . 8

6 Input File Format . 9
6.1 Input File Grammar . 9

6.1.1 Eval escapes . 10
6.2 Simple instructions . 10

6.2.1 Explicit stack access . 11
6.2.2 C Code Macros . 12
6.2.3 C Code restrictions . 13
6.2.4 Stack growth direction . 13

6.3 Superinstructions . 14
6.4 Store Optimization . 15
6.5 Register Machines . 15

7 Error messages . 17

8 Using the generated code . 18
8.1 VM engine . 18
8.2 VM instruction table . 21
8.3 VM code generation . 21
8.4 Peephole optimization . 22
8.5 VM disassembler . 23
8.6 VM profiler . 23

9 Hints . 25
9.1 Floating point . 25

ii

10 The future . 26

11 Changes . 27

12 Contact . 28

Appendix A Copying This Manual 29
A.1 GNU Free Documentation License . 29

A.1.1 ADDENDUM: How to use this License for your documents
. 35

Index . 36

Chapter 1: Introduction 1

1 Introduction

Vmgen is a tool for writing efficient interpreters. It takes a simple virtual machine descrip-
tion and generates efficient C code for dealing with the virtual machine code in various ways
(in particular, executing it). The run-time efficiency of the resulting interpreters is usually
within a factor of 10 of machine code produced by an optimizing compiler.

The interpreter design strategy supported by Vmgen is to divide the interpreter into two
parts:
• The front end takes the source code of the language to be implemented, and translates

it into virtual machine code. This is similar to an ordinary compiler front end; typically
an interpreter front-end performs no optimization, so it is relatively simple to implement
and runs fast.

• The virtual machine interpreter executes the virtual machine code.

Such a division is usually used in interpreters, for modularity as well as for efficiency. The
virtual machine code is typically passed between front end and virtual machine interpreter
in memory, like in a load-and-go compiler; this avoids the complexity and time cost of
writing the code to a file and reading it again.

A virtual machine (VM) represents the program as a sequence of VM instructions,
following each other in memory, similar to real machine code. Control flow occurs through
VM branch instructions, like in a real machine.

In this setup, Vmgen can generate most of the code dealing with virtual machine instruc-
tions from a simple description of the virtual machine instructions (see Chapter 6 [Input
File Format], page 9), in particular:

VM instruction execution
VM code generation

Useful in the front end.

VM code decompiler
Useful for debugging the front end.

VM code tracing
Useful for debugging the front end and the VM interpreter. You will typically
provide other means for debugging the user’s programs at the source level.

VM code profiling
Useful for optimizing the VM interpreter with superinstructions (see Section 8.6
[VM profiler], page 23).

To create parts of the interpretive system that do not deal with VM instructions, you
have to use other tools (e.g., bison) and/or hand-code them.
Vmgen supports efficient interpreters though various optimizations, in particular
• Threaded code
• Caching the top-of-stack in a register
• Combining VM instructions into superinstructions
• Replicating VM (super)instructions for better BTB prediction accuracy (not yet in

vmgen-ex, but already in Gforth).

Chapter 1: Introduction 2

As a result, Vmgen-based interpreters are only about an order of magnitude slower than
native code from an optimizing C compiler on small benchmarks; on large benchmarks,
which spend more time in the run-time system, the slowdown is often less (e.g., the slowdown
of a Vmgen-generated JVM interpreter over the best JVM JIT compiler we measured is
only a factor of 2-3 for large benchmarks; some other JITs and all other interpreters we
looked at were slower than our interpreter).

VMs are usually designed as stack machines (passing data between VM instructions on a
stack), and Vmgen supports such designs especially well; however, you can also use Vmgen
for implementing a register VM (see Section 6.5 [Register Machines], page 15) and still
benefit from most of the advantages offered by Vmgen.

There are many potential uses of the instruction descriptions that are not implemented
at the moment, but we are open for feature requests, and we will consider new features if
someone asks for them; so the feature list above is not exhaustive.

Chapter 2: Why interpreters? 3

2 Why interpreters?

Interpreters are a popular language implementation technique because they combine all
three of the following advantages:
• Ease of implementation
• Portability
• Fast edit-compile-run cycle

Vmgen makes it even easier to implement interpreters.
The main disadvantage of interpreters is their run-time speed. However, there are huge

differences between different interpreters in this area: the slowdown over optimized C code
on programs consisting of simple operations is typically a factor of 10 for the more efficient
interpreters, and a factor of 1000 for the less efficient ones (the slowdown for programs exe-
cuting complex operations is less, because the time spent in libraries for executing complex
operations is the same in all implementation strategies).

Vmgen supports techniques for building efficient interpreters.

Chapter 3: Concepts 4

3 Concepts

3.1 Front end and VM interpreter

Interpretive systems are typically divided into a front end that parses the input language and
produces an intermediate representation for the program, and an interpreter that executes
the intermediate representation of the program.

For efficient interpreters the intermediate representation of choice is virtual machine
code (rather than, e.g., an abstract syntax tree). Virtual machine (VM) code consists of
VM instructions arranged sequentially in memory; they are executed in sequence by the
VM interpreter, but VM branch instructions can change the control flow and are used for
implementing control structures. The conceptual similarity to real machine code results
in the name virtual machine. Various terms similar to terms for real machines are used;
e.g., there are VM registers (like the instruction pointer and stack pointer(s)), and the VM
instruction consists of an opcode and immediate arguments.

In this framework, Vmgen supports building the VM interpreter and any other com-
ponent dealing with VM instructions. It does not have any support for the front end,
apart from VM code generation support. The front end can be implemented with classical
compiler front-end techniques, supported by tools like flex and bison.

The intermediate representation is usually just internal to the interpreter, but some
systems also support saving it to a file, either as an image file, or in a full-blown linkable
file format (e.g., JVM). Vmgen currently has no special support for such features, but
the information in the instruction descriptions can be helpful, and we are open to feature
requests and suggestions.

3.2 Data handling

Most VMs use one or more stacks for passing temporary data between VM instructions.
Another option is to use a register machine architecture for the virtual machine; we believe
that using a stack architecture is usually both simpler and faster.

However, this option is slower or significantly more complex to implement than a stack
machine architecture.

Vmgen has special support and optimizations for stack VMs, making their implementa-
tion easy and efficient.

You can also implement a register VM with Vmgen (see Section 6.5 [Register Machines],
page 15), and you will still profit from most Vmgen features.

Stack items all have the same size, so they typically will be as wide as an integer, pointer,
or floating-point value. Vmgen supports treating two consecutive stack items as a single
value, but anything larger is best kept in some other memory area (e.g., the heap), with
pointers to the data on the stack.

Another source of data is immediate arguments VM instructions (in the VM instruction
stream). The VM instruction stream is handled similar to a stack in Vmgen.

Vmgen has no built-in support for, nor restrictions against garbage collection. If you
need garbage collection, you need to provide it in your run-time libraries. Using reference
counting is probably harder, but might be possible (contact us if you are interested).

Chapter 3: Concepts 5

3.3 Dispatch

Understanding this section is probably not necessary for using Vmgen, but it may help.
You may want to skip it now, and read it if you find statements about dispatch methods
confusing.

After executing one VM instruction, the VM interpreter has to dispatch the next VM
instruction (Vmgen calls the dispatch routine ‘NEXT’). Vmgen supports two methods of
dispatch:

switch dispatch
In this method the VM interpreter contains a giant switch statement, with one
case for each VM instruction. The VM instruction opcodes are represented by
integers (e.g., produced by an enum) in the VM code, and dispatch occurs by
loading the next opcode, switching on it, and continuing at the appropriate
case; after executing the VM instruction, the VM interpreter jumps back to
the dispatch code.

threaded code
This method represents a VM instruction opcode by the address of the start of
the machine code fragment for executing the VM instruction. Dispatch consists
of loading this address, jumping to it, and incrementing the VM instruction
pointer. Typically the threaded-code dispatch code is appended directly to the
code for executing the VM instruction. Threaded code cannot be implemented
in ANSI C, but it can be implemented using GNU C’s labels-as-values extension
(see Section “Labels as Values” in GNU C Manual).

Threaded code can be twice as fast as switch dispatch, depending on the interpreter, the
benchmark, and the machine.

Chapter 4: Invoking Vmgen 6

4 Invoking Vmgen

The usual way to invoke Vmgen is as follows:
vmgen inputfile

Here inputfile is the VM instruction description file, which usually ends in ‘.vmg’. The
output filenames are made by taking the basename of ‘inputfile’ (i.e., the output files will
be created in the current working directory) and replacing ‘.vmg’ with ‘-vm.i’, ‘-disasm.i’,
‘-gen.i’, ‘-labels.i’, ‘-profile.i’, and ‘-peephole.i’. E.g., vmgen hack/foo.vmg will
create ‘foo-vm.i’, ‘foo-disasm.i’, ‘foo-gen.i’, ‘foo-labels.i’, ‘foo-profile.i’ and
‘foo-peephole.i’.

The command-line options supported by Vmgen are

‘--help’
‘-h’ Print a message about the command-line options

‘--version’
‘-v’ Print version and exit

Chapter 5: Example 7

5 Example

5.1 Example overview

There are two versions of the same example for using Vmgen: ‘vmgen-ex’ and ‘vmgen-ex2’
(you can also see Gforth as example, but it uses additional (undocumented) features, and
also differs in some other respects). The example implements mini, a tiny Modula-2-like
language with a small JavaVM-like virtual machine.

The difference between the examples is that ‘vmgen-ex’ uses many casts, and ‘vmgen-ex2’
tries to avoids most casts and uses unions instead. In the rest of this manual we usually men-
tion just files in ‘vmgen-ex’; if you want to use unions, use the equivalent file in ‘vmgen-ex2’.

The files provided with each example are:
Makefile
README
disasm.c wrapper file
engine.c wrapper file
peephole.c wrapper file
profile.c wrapper file
mini-inst.vmg simple VM instructions
mini-super.vmg superinstructions (empty at first)
mini.h common declarations
mini.l scanner
mini.y front end (parser, VM code generator)
support.c main() and other support functions
fib.mini example mini program
simple.mini example mini program
test.mini example mini program (tests everything)
test.out test.mini output
stat.awk script for aggregating profile information
peephole-blacklist list of instructions not allowed in superinstructions
seq2rule.awk script for creating superinstructions

For your own interpreter, you would typically copy the following files and change little,
if anything:

disasm.c wrapper file
engine.c wrapper file
peephole.c wrapper file
profile.c wrapper file
stat.awk script for aggregating profile information
seq2rule.awk script for creating superinstructions

You would typically change much in or replace the following files:
Makefile
mini-inst.vmg simple VM instructions
mini.h common declarations
mini.l scanner

Chapter 5: Example 8

mini.y front end (parser, VM code generator)
support.c main() and other support functions
peephole-blacklist list of instructions not allowed in superinstructions

You can build the example by cding into the example’s directory, and then typing make;
you can check that it works with make check. You can run run mini programs like this:

./mini fib.mini

To learn about the options, type ./mini -h.

5.2 Using profiling to create superinstructions

I have not added rules for this in the ‘Makefile’ (there are many options for selecting
superinstructions, and I did not want to hardcode one into the ‘Makefile’), but there are
some supporting scripts, and here’s an example:

Suppose you want to use ‘fib.mini’ and ‘test.mini’ as training programs, you get the
profiles like this:

make fib.prof test.prof #takes a few seconds

You can aggregate these profiles with ‘stat.awk’:
awk -f stat.awk fib.prof test.prof

The result contains lines like:
2 16 36910041 loadlocal lit

This means that the sequence loadlocal lit statically occurs a total of 16 times in 2
profiles, with a dynamic execution count of 36910041.

The numbers can be used in various ways to select superinstructions. E.g., if you just
want to select all sequences with a dynamic execution count exceeding 10000, you would
use the following pipeline:

awk -f stat.awk fib.prof test.prof|
awk ’$3>=10000’| #select sequences
fgrep -v -f peephole-blacklist| #eliminate wrong instructions
awk -f seq2rule.awk| #transform sequences into superinstruction rules
sort -k 3 >mini-super.vmg #sort sequences

The file ‘peephole-blacklist’ contains all instructions that directly access a stack or
stack pointer (for mini: call, return); the sort step is necessary to ensure that prefixes
precede larger superinstructions.

Now you can create a version of mini with superinstructions by just saying ‘make’

Chapter 6: Input File Format 9

6 Input File Format

Vmgen takes as input a file containing specifications of virtual machine instructions. This
file usually has a name ending in ‘.vmg’.

Most examples are taken from the example in ‘vmgen-ex’.

6.1 Input File Grammar

The grammar is in EBNF format, with a|b meaning “a or b”, {c} meaning 0 or more
repetitions of c and [d] meaning 0 or 1 repetitions of d.

Vmgen input is not free-format, so you have to take care where you put newlines (and,
in a few cases, white space).

description: {instruction|comment|eval-escape|c-escape}

instruction: simple-inst|superinst

simple-inst: ident ’(’ stack-effect ’)’ newline c-code newline newline

stack-effect: {ident} ’--’ {ident}

super-inst: ident ’=’ ident {ident}

comment: ’\ ’ text newline

eval-escape: ’\E ’ text newline

c-escape: ’\C ’ text newline

Note that the \s in this grammar are meant literally, not as C-style encodings for non-
printable characters.

There are two ways to delimit the C code in simple-inst:

• If you start it with a ‘{’ at the start of a line (i.e., not even white space before it), you
have to end it with a ‘}’ at the start of a line (followed by a newline). In this case you
may have empty lines within the C code (typically used between variable definitions
and statements).

• You do not start it with ‘{’. Then the C code ends at the first empty line, so you
cannot have empty lines within this code.

The text in comment, eval-escape and c-escape must not contain a newline. Ident
must conform to the usual conventions of C identifiers (otherwise the C compiler would
choke on the Vmgen output), except that idents in stack-effect may have a stack prefix
(for stack prefix syntax, see Section 6.1.1 [Eval escapes], page 10).

The c-escape passes the text through to each output file (without the ‘\C’). This is
useful mainly for conditional compilation (i.e., you write ‘\C #if ...’ etc.).

In addition to the syntax given in the grammer, Vmgen also processes sync lines (lines
starting with ‘#line’), as produced by ‘m4 -s’ (see Section “Invoking m4” in GNU m4) and

Chapter 6: Input File Format 10

similar tools. This allows associating C compiler error messages with the original source of
the C code.

Vmgen understands a few extensions beyond the grammar given here, but these exten-
sions are only useful for building Gforth. You can find a description of the format used for
Gforth in ‘prim’.

6.1.1 Eval escapes

The text in eval-escape is Forth code that is evaluated when Vmgen reads the line. You
will normally use this feature to define stacks and types.

If you do not know (and do not want to learn) Forth, you can build the text according
to the following grammar; these rules are normally all Forth you need for using Vmgen:

text: stack-decl|type-prefix-decl|stack-prefix-decl|set-flag

stack-decl: ’stack ’ ident ident ident
type-prefix-decl:

’s" ’ string ’" ’ (’single’|’double’) ident ’type-prefix’ ident
stack-prefix-decl: ident ’stack-prefix’ string
set-flag: (’store-optimization’|’include-skipped-insts’) (’on’|’off’)

Note that the syntax of this code is not checked thoroughly (there are many other Forth
program fragments that could be written in an eval-escape).

A stack prefix can contain letters, digits, or ‘:’, and may start with an ‘#’; e.g., in Gforth
the return stack has the stack prefix ‘R:’. This restriction is not checked during the stack
prefix definition, but it is enforced by the parsing rules for stack items later.

If you know Forth, the stack effects of the non-standard words involved are:
stack ("name" "pointer" "type" --)

(name execution: -- stack)
type-prefix (addr u item-size stack "prefix" --)
single (-- item-size)
double (-- item-size)
stack-prefix (stack "prefix" --)
store-optimization (-- addr)
include-skipped-insts (-- addr)

An item-size takes three cells on the stack.

6.2 Simple instructions

We will use the following simple VM instruction description as example:
sub (i1 i2 -- i)
i = i1-i2;

The first line specifies the name of the VM instruction (sub) and its stack effect (i1 i2
-- i). The rest of the description is just plain C code.

The stack effect specifies that sub pulls two integers from the data stack and puts them
in the C variables i1 and i2 (with the rightmost item (i2) taken from the top of stack;
intuition: if you push i1, then i2 on the stack, the resulting stack picture is i1 i2) and
later pushes one integer (i) on the data stack (the rightmost item is on the top afterwards).

Chapter 6: Input File Format 11

How do we know the type and stack of the stack items? Vmgen uses prefixes, similar to
Fortran; in contrast to Fortran, you have to define the prefix first:

\E s" Cell" single data-stack type-prefix i

This defines the prefix i to refer to the type Cell (defined as long in ‘mini.h’) and, by
default, to the data-stack. It also specifies that this type takes one stack item (single).
The type prefix is part of the variable name.

Before we can use data-stack in this way, we have to define it:

\E stack data-stack sp Cell

This line defines the stack data-stack, which uses the stack pointer sp, and each item
has the basic type Cell; other types have to fit into one or two Cells (depending on whether
the type is single or double wide), and are cast from and to Cells on accessing the data-
stack with type cast macros (see Section 8.1 [VM engine], page 18). By default, stacks
grow towards lower addresses in Vmgen-erated interpreters (see Section 6.2.4 [Stack growth
direction], page 13).

We can override the default stack of a stack item by using a stack prefix. E.g., consider
the following instruction:

lit (#i -- i)

The VM instruction lit takes the item i from the instruction stream (indicated by the
prefix #), and pushes it on the (default) data stack. The stack prefix is not part of the
variable name. Stack prefixes are defined like this:

\E inst-stream stack-prefix #
\E data-stack stack-prefix S:

This definition defines that the stack prefix # specifies the “stack” inst-stream. Since
the instruction stream behaves a little differently than an ordinary stack, it is predefined,
and you do not need to define it.

The instruction stream contains instructions and their immediate arguments, so specify-
ing that an argument comes from the instruction stream indicates an immediate argument.
Of course, instruction stream arguments can only appear to the left of -- in the stack effect.
If there are multiple instruction stream arguments, the leftmost is the first one (just as the
intuition suggests).

6.2.1 Explicit stack access

This feature is not needed and not supported in the 0.6.2 version of vmgen that is docu-
mented here (and that is invoked by default).

Not all stack effects can be specified using the stack effect specifications above. For
VM instructions that have other stack effects, you can specify them explicitly by accessing
the stack pointer in the C code; however, you have to notify Vmgen of such explicit stack
accesses, otherwise Vmgens optimizations could conflict with your explicit stack accesses.

You notify Vmgen by putting ... with the appropriate stack prefix into the stack com-
ment. Then the VM instruction will first take the other stack items specified in the stack
effect into C variables, then make sure that all other stack items for that stack are in mem-
ory, and that the stack pointer for the stack points to the top-of-stack (by default, unless you
change the stack access transformation: see Section 6.2.4 [Stack growth direction], page 13).

Chapter 6: Input File Format 12

The general rule is: If you mention a stack pointer in the C code of a VM instruction,
you should put a ... for that stack in the stack effect.

Consider this example:
return (#iadjust S:... target afp i1 -- i2)
SET_IP(target);
sp = (Cell *)(((char *)sp)+iadjust);
fp = afp;
i2=i1;

First the variables target afp i1 are popped off the stack, then the stack pointer sp is
set correctly for the new stack depth, then the C code changes the stack depth and does
other things, and finally i2 is pushed on the stack with the new depth.

The position of the ... within the stack effect does not matter. You can use several
...s, for different stacks, and also several for the same stack (that has no additional effect).
If you use ... without a stack prefix, this specifies all the stacks except the instruction
stream.

You cannot use ... for the instruction stream, but that is not necessary: At the start of
the C code, IP points to the start of the next VM instruction (i.e., right beyond the end of
the current VM instruction), and you can change the instruction pointer with SET_IP (see
Section 8.1 [VM engine], page 18).

6.2.2 C Code Macros

Vmgen recognizes the following strings in the C code part of simple instructions:

SET_IP As far as Vmgen is concerned, a VM instruction containing this ends a VM
basic block (used in profiling to delimit profiled sequences). On the C level,
this also sets the instruction pointer.

SUPER_END
This ends a basic block (for profiling), even if the instruction contains no SET_
IP.

INST_TAIL;
Vmgen replaces ‘INST_TAIL;’ with code for ending a VM instruction and dis-
patching the next VM instruction. Even without a ‘INST_TAIL;’ this happens
automatically when control reaches the end of the C code. If you want to have
this in the middle of the C code, you need to use ‘INST_TAIL;’. A typical
example is a conditional VM branch:

if (branch_condition) {
SET_IP(target); INST_TAIL;

}
/* implicit tail follows here */

In this example, ‘INST_TAIL;’ is not strictly necessary, because there is another
one implicitly after the if-statement, but using it improves branch prediction
accuracy slightly and allows other optimizations.

SUPER_CONTINUE
This indicates that the implicit tail at the end of the VM instruction dispatches
the sequentially next VM instruction even if there is a SET_IP in the VM in-

Chapter 6: Input File Format 13

struction. This enables an optimization that is not yet implemented in the
vmgen-ex code (but in Gforth). The typical application is in conditional VM
branches:

if (branch_condition) {
SET_IP(target); INST_TAIL; /* now this INST_TAIL is necessary */

}
SUPER_CONTINUE;

Note that Vmgen is not smart about C-level tokenization, comments, strings, or con-
ditional compilation, so it will interpret even a commented-out SUPER END as ending a
basic block (or, e.g., ‘RESET_IP;’ as ‘SET_IP;’). Conversely, Vmgen requires the literal
presence of these strings; Vmgen will not see them if they are hiding in a C preprocessor
macro.

6.2.3 C Code restrictions

Vmgen generates code and performs some optimizations under the assumption that the
user-supplied C code does not access the stack pointers or stack items, and that accesses
to the instruction pointer only occur through special macros. In general you should heed
these restrictions. However, if you need to break these restrictions, read the following.

Accessing a stack or stack pointer directly can be a problem for several reasons:

• Vmgen optionally supports caching the top-of-stack item in a local variable (that is
allocated to a register). This is the most frequent source of trouble. You can deal
with it either by not using top-of-stack caching (slowdown factor 1-1.4, depending on
machine), or by inserting flushing code (e.g., ‘IF_spTOS(sp[...] = spTOS);’) at the
start and reloading code (e.g., ‘IF_spTOS(spTOS = sp[0])’) at the end of problematic
C code. Vmgen inserts a stack pointer update before the start of the user-supplied C
code, so the flushing code has to use an index that corrects for that. In the future, this
flushing may be done automatically by mentioning a special string in the C code.

• The Vmgen-erated code loads the stack items from stack-pointer-indexed memory into
variables before the user-supplied C code, and stores them from variables to stack-
pointer-indexed memory afterwards. If you do any writes to the stack through its
stack pointer in your C code, it will not affect the variables, and your write may be
overwritten by the stores after the C code. Similarly, a read from a stack using a stack
pointer will not reflect computations of stack items in the same VM instruction.

• Superinstructions keep stack items in variables across the whole superinstruction. So
you should not include VM instructions, that access a stack or stack pointer, as com-
ponents of superinstructions (see Section 8.6 [VM profiler], page 23).

You should access the instruction pointer only through its special macros (‘IP’, ‘SET_IP’,
‘IPTOS’); this ensure that these macros can be implemented in several ways for best perfor-
mance. ‘IP’ points to the next instruction, and ‘IPTOS’ is its contents.

6.2.4 Stack growth direction

By default, the stacks grow towards lower addresses. You can change this for a stack by
setting the stack-access-transform field of the stack to an xt (itemnum -- index) that
performs the appropriate index transformation.

Chapter 6: Input File Format 14

E.g., if you want to let data-stack grow towards higher addresses, with the stack pointer
always pointing just beyond the top-of-stack, use this right after defining data-stack:

\E : sp-access-transform (itemnum -- index) negate 1- ;
\E ’ sp-access-transform ’ data-stack >body stack-access-transform !

This means that sp-access-transform will be used to generate indexes for accessing
data-stack. The definition of sp-access-transform above transforms n into -n-1, e.g,
1 into -2. This will access the 0th data-stack element (top-of-stack) at sp[-1], the 1st at
sp[-2], etc., which is the typical way upward-growing stacks are used. If you need a different
transform and do not know enough Forth to program it, let me know.

6.3 Superinstructions

Note: don’t invest too much work in (static) superinstructions; a future version of Vmgen
will support dynamic superinstructions (see Ian Piumarta and Fabio Riccardi, Optimizing
Direct Threaded Code by Selective Inlining, PLDI’98), and static superinstructions have
much less benefit in that context (preliminary results indicate only a factor 1.1 speedup).

Here is an example of a superinstruction definition:

lit_sub = lit sub

lit_sub is the name of the superinstruction, and lit and sub are its components. This
superinstruction performs the same action as the sequence lit and sub. It is generated
automatically by the VM code generation functions whenever that sequence occurs, so if
you want to use this superinstruction, you just need to add this definition (and even that
can be partially automatized, see Section 8.6 [VM profiler], page 23).

Vmgen requires that the component instructions are simple instructions defined before
superinstructions using the components. Currently, Vmgen also requires that all the sub-
sequences at the start of a superinstruction (prefixes) must be defined as superinstruction
before the superinstruction. I.e., if you want to define a superinstruction

foo4 = load add sub mul

you first have to define load, add, sub and mul, plus

foo2 = load add
foo3 = load add sub

Here, sumof4 is the longest prefix of sumof5, and sumof3 is the longest prefix of sumof4.

Note that Vmgen assumes that only the code it generates accesses stack pointers, the
instruction pointer, and various stack items, and it performs optimizations based on this
assumption. Therefore, VM instructions where your C code changes the instruction pointer
should only be used as last component; a VM instruction where your C code accesses a stack
pointer should not be used as component at all. Vmgen does not check these restrictions,
they just result in bugs in your interpreter.

The Vmgen flag include-skipped-insts influences superinstruction code generation.
Currently there is no support in the peephole optimizer for both variations, so leave this
flag alone for now.

Chapter 6: Input File Format 15

6.4 Store Optimization

This minor optimization (0.6%–0.8% reduction in executed instructions for Gforth) puts
additional requirements on the instruction descriptions and is therefore disabled by default.

What does it do? Consider an instruction like
dup (n -- n n)

For simplicity, also assume that we are not caching the top-of-stack in a register. Now,
the C code for dup first loads n from the stack, and then stores it twice to the stack, one
time to the address where it came from; that time is unnecessary, but gcc does not optimize
it away, so vmgen can do it instead (if you turn on the store optimization).

Vmgen uses the stack item’s name to determine if the stack item contains the same value
as it did at the start. Therefore, if you use the store optimization, you have to ensure that
stack items that have the same name on input and output also have the same value, and
are not changed in the C code you supply. I.e., the following code could fail if you turn on
the store optimization:

add1 (n -- n)
n++;

Instead, you have to use different names, i.e.:
add1 (n1 -- n2)
n2=n1+1;

Similarly, the store optimization assumes that the stack pointer is only changed by
Vmgen-erated code. If your C code changes the stack pointer, use different names in input
and output stack items to avoid a (probably wrong) store optimization, or turn the store
optimization off for this VM instruction.

To turn on the store optimization, write
\E store-optimization on

at the start of the file. You can turn this optimization on or off between any two VM
instruction descriptions. For turning it off again, you can use

\E store-optimization off

6.5 Register Machines

If you want to implement a register VM rather than a stack VM with Vmgen, there are two
ways to do it: Directly and through superinstructions.

If you use the direct way, you define instructions that take the register numbers as
immediate arguments, like this:

add3 (#src1 #src2 #dest --)
reg[dest] = reg[src1]+reg[src2];

A disadvantage of this method is that during tracing you only see the register numbers,
but not the register contents. Actually, with an appropriate definition of printarg_src
(see Section 8.1 [VM engine], page 18), you can print the values of the source registers on
entry, but you cannot print the value of the destination register on exit.

If you use superinstructions to define a register VM, you define simple instructions that
use a stack, and then define superinstructions that have no overall stack effect, like this:

Chapter 6: Input File Format 16

loadreg (#src -- n)
n = reg[src];

storereg (n #dest --)
reg[dest] = n;

adds (n1 n2 -- n)
n = n1+n2;

add3 = loadreg loadreg adds storereg

An advantage of this method is that you see the values and not just the register numbers
in tracing. A disadvantage of this method is that currently you cannot generate superin-
structions directly, but only through generating a sequence of simple instructions (we might
change this in the future if there is demand).

Could the register VM support be improved, apart from the issues mentioned above? It
is hard to see how to do it in a general way, because there are a number of different designs
that different people mean when they use the term register machine in connection with VM
interpreters. However, if you have ideas or requests in that direction, please let me know
(see Chapter 12 [Contact], page 28).

Chapter 7: Error messages 17

7 Error messages

These error messages are created by Vmgen:

can only be on the input side
You have used an instruction-stream prefix (usually ‘#’) after the ‘--’ (the
output side); you can only use it before (the input side).

the prefix for this superinstruction must be defined earlier
You have defined a superinstruction (e.g. abc = a b c) without defining its
direct prefix (e.g., ab = a b), See Section 6.3 [Superinstructions], page 14.

sync line syntax
If you are using a preprocessor (e.g., m4) to generate Vmgen input code, you
may want to create #line directives (aka sync lines). This error indicates that
such a line is not in th syntax expected by Vmgen (this should not happen;
please report the offending line in a bug report).

syntax error, wrong char
A syntax error. If you do not see right away where the error is, it may be
helpful to check the following: Did you put an empty line in a VM instruction
where the C code is not delimited by braces (then the empty line ends the VM
instruction)? If you used brace-delimited C code, did you put the delimiting
braces (and only those) at the start of the line, without preceding white space?
Did you forget a delimiting brace?

too many stacks
Vmgen currently supports 3 stacks (plus the instruction stream); if you need
more, let us know.

unknown prefix
The stack item does not match any defined type prefix (after stripping away
any stack prefix). You should either declare the type prefix you want for that
stack item, or use a different type prefix

unknown primitive
You have used the name of a simple VM instruction in a superinstruction defi-
nition without defining the simple VM instruction first.

In addition, the C compiler can produce errors due to code produced by Vmgen; e.g.,
you need to define type cast functions.

Chapter 8: Using the generated code 18

8 Using the generated code

The easiest way to create a working VM interpreter with Vmgen is probably to start with
‘vmgen-ex’, and modify it for your purposes. This chapter explains what the various wrap-
per and generated files do. It also contains reference-manual style descriptions of the macros,
variables etc. used by the generated code, and you can skip that on first reading.

8.1 VM engine

The VM engine is the VM interpreter that executes the VM code. It is essential for an
interpretive system.

Vmgen supports two methods of VM instruction dispatch: threaded code (fast, but
gcc-specific), and switch dispatch (slow, but portable across C compilers); you can use
conditional compilation (‘defined(__GNUC__)’) to choose between these methods, and our
example does so.

For both methods, the VM engine is contained in a C-level function. Vmgen generates
most of the contents of the function for you (‘name-vm.i’), but you have to define this
function, and macros and variables used in the engine, and initialize the variables. In our
example the engine function also includes ‘name-labels.i’ (see Section 8.2 [VM instruction
table], page 21).

In addition to executing the code, the VM engine can optionally also print out a trace
of the executed instructions, their arguments and results. For superinstructions it prints
the trace as if only component instructions were executed; this allows to introduce new
superinstructions while keeping the traces comparable to old ones (important for regression
tests).

It costs significant performance to check in each instruction whether to print tracing
code, so we recommend producing two copies of the engine: one for fast execution, and one
for tracing. See the rules for ‘engine.o’ and ‘engine-debug.o’ in ‘vmgen-ex/Makefile’
for an example.

The following macros and variables are used in ‘name-vm.i’:

LABEL(inst_name)
This is used just before each VM instruction to provide a jump or switch label
(the ‘:’ is provided by Vmgen). For switch dispatch this should expand to ‘case
label:’; for threaded-code dispatch this should just expand to ‘label:’. In
either case label is usually the inst name with some prefix or suffix to avoid
naming conflicts.

LABEL2(inst_name)
This will be used for dynamic superinstructions; at the moment, this should
expand to nothing.

NAME(inst_name_string)
Called on entering a VM instruction with a string containing the name of the
VM instruction as parameter. In normal execution this should be expand to
nothing, but for tracing this usually prints the name, and possibly other infor-
mation (several VM registers in our example).

Chapter 8: Using the generated code 19

DEF_CA Usually empty. Called just inside a new scope at the start of a VM instruction.
Can be used to define variables that should be visible during every VM instruc-
tion. If you define this macro as non-empty, you have to provide the finishing
‘;’ in the macro.

NEXT_P0 NEXT_P1 NEXT_P2
The three parts of instruction dispatch. They can be defined in different ways
for best performance on various processors (see ‘engine.c’ in the example or
‘engine/threaded.h’ in Gforth). ‘NEXT_P0’ is invoked right at the start of the
VM instruction (but after ‘DEF_CA’), ‘NEXT_P1’ right after the user-supplied
C code, and ‘NEXT_P2’ at the end. The actual jump has to be performed by
‘NEXT_P2’ (if you would do it earlier, important parts of the VM instruction
would not be executed).
The simplest variant is if ‘NEXT_P2’ does everything and the other macros do
nothing. Then also related macros like ‘IP’, ‘SET_IP’, ‘IP’, ‘INC_IP’ and ‘IPTOS’
are very straightforward to define. For switch dispatch this code consists just
of a jump to the dispatch code (‘goto next_inst;’ in our example); for direct
threaded code it consists of something like ‘({cfa=*ip++; goto *cfa;})’.
Pulling code (usually the ‘cfa=*ip++;’) up into ‘NEXT_P1’ usually does not
cause problems, but pulling things up into ‘NEXT_P0’ usually requires changing
the other macros (and, at least for Gforth on Alpha, it does not buy much,
because the compiler often manages to schedule the relevant stuff up by it-
self). An even more extreme variant is to pull code up even further, into, e.g.,
NEXT P1 of the previous VM instruction (prefetching, useful on PowerPCs).

INC_IP(n)
This increments IP by n.

SET_IP(target)
This sets IP to target.

vm_A2B(a,b)
Type casting macro that assigns ‘a’ (of type A) to ‘b’ (of type B). This is
mainly used for getting stack items into variables and back. So you need to
define macros for every combination of stack basic type (Cell in our example)
and type-prefix types used with that stack (in both directions). For the type-
prefix type, you use the type-prefix (not the C type string) as type name (e.g.,
‘vm_Cell2i’, not ‘vm_Cell2Cell’). In addition, you have to define a vm X2X
macro for the stack’s basic type X (used in superinstructions).
The stack basic type for the predefined ‘inst-stream’ is ‘Cell’. If you want a
stack with the same item size, making its basic type ‘Cell’ usually reduces the
number of macros you have to define.
Here our examples differ a lot: ‘vmgen-ex’ uses casts in these macros, whereas
‘vmgen-ex2’ uses union-field selection (or assignment to union fields). Note that
casting floats into integers and vice versa changes the bit pattern (and you do
not want that). In this case your options are to use a (temporary) union, or to
take the address of the value, cast the pointer, and dereference that (not always
possible, and sometimes expensive).

Chapter 8: Using the generated code 20

vm_twoA2B(a1,a2,b)
vm_B2twoA(b,a1,a2)

Type casting between two stack items (a1, a2) and a variable b of a type that
takes two stack items. This does not occur in our small examples, but you can
look at Gforth for examples (see vm_twoCell2d in ‘engine/forth.h’).

stackpointer

For each stack used, the stackpointer name given in the stack declaration is
used. For a regular stack this must be an l-expression; typically it is a variable
declared as a pointer to the stack’s basic type. For ‘inst-stream’, the name is
‘IP’, and it can be a plain r-value; typically it is a macro that abstracts away
the differences between the various implementations of NEXT_P*.

IMM_ARG(access,value)
Define this to expland to “(access)”. This is just a placeholder for future ex-
tensions.

stackpointerTOS
The top-of-stack for the stack pointed to by stackpointer. If you are using top-
of-stack caching for that stack, this should be defined as variable; if you are
not using top-of-stack caching for that stack, this should be a macro expanding
to ‘stackpointer[0]’. The stack pointer for the predefined ‘inst-stream’ is
called ‘IP’, so the top-of-stack is called ‘IPTOS’.

IF_stackpointerTOS(expr)
Macro for executing expr, if top-of-stack caching is used for the stackpointer
stack. I.e., this should do expr if there is top-of-stack caching for stackpointer;
otherwise it should do nothing.

SUPER_END
This is used by the VM profiler (see Section 8.6 [VM profiler], page 23); it
should not do anything in normal operation, and call vm_count_block(IP) for
profiling.

SUPER_CONTINUE
This is just a hint to Vmgen and does nothing at the C level.

MAYBE_UNUSED
This should be defined as __attribute__((unused)) for gcc-2.7 and higher.
It suppresses the warnings about unused variables in the code for superinstruc-
tions. You need to define this only if you are using superinstructions.

VM_DEBUG If this is defined, the tracing code will be compiled in (slower interpretation,
but better debugging). Our example compiles two versions of the engine, a fast-
running one that cannot trace, and one with potential tracing and profiling.

vm_debug Needed only if ‘VM_DEBUG’ is defined. If this variable contains true, the VM
instructions produce trace output. It can be turned on or off at any time.

vm_out Needed only if ‘VM_DEBUG’ is defined. Specifies the file on which to print the
trace output (type ‘FILE *’).

Chapter 8: Using the generated code 21

printarg_type(value)
Needed only if ‘VM_DEBUG’ is defined. Macro or function for printing value in
a way appropriate for the type. This is used for printing the values of stack
items during tracing. Type is normally the type prefix specified in a type-
prefix definition (e.g., ‘printarg_i’); in superinstructions it is currently the
basic type of the stack.

8.2 VM instruction table

For threaded code we also need to produce a table containing the labels of all VM in-
structions. This is needed for VM code generation (see Section 8.3 [VM code generation],
page 21), and it has to be done in the engine function, because the labels are not visible
outside. It then has to be passed outside the function (and assigned to ‘vm_prim’), to be
used by the VM code generation functions.

This means that the engine function has to be called first to produce the VM instruction
table, and later, after generating VM code, it has to be called again to execute the generated
VM code (yes, this is ugly). In our example program, these two modes of calling the engine
function are differentiated by the value of the parameter ip0 (if it equals 0, then the table
is passed out, otherwise the VM code is executed); in our example, we pass the table out
by assigning it to ‘vm_prim’ and returning from ‘engine’.

In our example (‘vmgen-ex/engine.c’), we also build such a table for switch dispatch;
this is mainly done for uniformity.

For switch dispatch, we also need to define the VM instruction opcodes used as case
labels in an enum.

For both purposes (VM instruction table, and enum), the file ‘name-labels.i’ is gen-
erated by Vmgen. You have to define the following macro used in this file:

INST_ADDR(inst_name)
For switch dispatch, this is just the name of the switch label (the same name as
used in ‘LABEL(inst_name)’), for both uses of ‘name-labels.i’. For threaded-
code dispatch, this is the address of the label defined in ‘LABEL(inst_name)’);
the address is taken with ‘&&’ (see Section “Labels as Values” in GNU C Man-
ual).

8.3 VM code generation

Vmgen generates VM code generation functions in ‘name-gen.i’ that the front end can call
to generate VM code. This is essential for an interpretive system.

For a VM instruction ‘x (#a b #c -- d)’, Vmgen generates a function with the proto-
type

void gen_x(Inst **ctp, a_type a, c_type c)

The ctp argument points to a pointer to the next instruction. *ctp is increased by
the generation functions; i.e., you should allocate memory for the code to be generated
beforehand, and start with *ctp set at the start of this memory area. Before running out of
memory, allocate a new area, and generate a VM-level jump to the new area (this overflow
handling is not implemented in our examples).

Chapter 8: Using the generated code 22

The other arguments correspond to the immediate arguments of the VM instruction
(with their appropriate types as defined in the type_prefix declaration.

The following types, variables, and functions are used in ‘name-gen.i’:

Inst The type of the VM instruction; if you use threaded code, this is void *; for
switch dispatch this is an integer type.

vm_prim The VM instruction table (type: Inst *, see Section 8.2 [VM instruction table],
page 21).

gen_inst(Inst **ctp, Inst i)
This function compiles the instruction i. Take a look at it in
‘vmgen-ex/peephole.c’. It is trivial when you don’t want to use superin-
structions (just the last two lines of the example function), and slightly more
complicated in the example due to its ability to use superinstructions (see
Section 8.4 [Peephole optimization], page 22).

genarg_type_prefix(Inst **ctp, type type_prefix)
This compiles an immediate argument of type (as defined in a type-prefix
definition). These functions are trivial to define (see ‘vmgen-ex/support.c’).
You need one of these functions for every type that you use as immediate
argument.

In addition to using these functions to generate code, you should call BB_BOUNDARY at
every basic block entry point if you ever want to use superinstructions (or if you want to
use the profiling supported by Vmgen; but this support is also useful mainly for selecting
superinstructions). If you use BB_BOUNDARY, you should also define it (take a look at its
definition in ‘vmgen-ex/mini.y’).

You do not need to call BB_BOUNDARY after branches, because you will not define superin-
structions that contain branches in the middle (and if you did, and it would work, there
would be no reason to end the superinstruction at the branch), and because the branches
announce themselves to the profiler.

8.4 Peephole optimization

You need peephole optimization only if you want to use superinstructions. But having the
code for it does not hurt much if you do not use superinstructions.

A simple greedy peephole optimization algorithm is used for superinstruction selection:
every time gen_inst compiles a VM instruction, it checks if it can combine it with the last
VM instruction (which may also be a superinstruction resulting from a previous peephole
optimization); if so, it changes the last instruction to the combined instruction instead of
laying down i at the current ‘*ctp’.

The code for peephole optimization is in ‘vmgen-ex/peephole.c’. You can use this file
almost verbatim. Vmgen generates ‘file-peephole.i’ which contains data for the peephole
optimizer.

You have to call ‘init_peeptable()’ after initializing ‘vm_prim’, and before compiling
any VM code to initialize data structures for peephole optimization. After that, compiling
with the VM code generation functions will automatically combine VM instructions into
superinstructions. Since you do not want to combine instructions across VM branch targets

Chapter 8: Using the generated code 23

(otherwise there will not be a proper VM instruction to branch to), you have to call BB_
BOUNDARY (see Section 8.3 [VM code generation], page 21) at branch targets.

8.5 VM disassembler

A VM code disassembler is optional for an interpretive system, but highly recommended
during its development and maintenance, because it is very useful for detecting bugs in the
front end (and for distinguishing them from VM interpreter bugs).

Vmgen supports VM code disassembling by generating ‘file-disasm.i’. This code has
to be wrapped into a function, as is done in ‘vmgen-ex/disasm.c’. You can use this file
almost verbatim. In addition to ‘vm_A2B(a,b)’, ‘vm_out’, ‘printarg_type(value)’, which
are explained above, the following macros and variables are used in ‘file-disasm.i’ (and
you have to define them):

ip This variable points to the opcode of the current VM instruction.

IP IPTOS ‘IPTOS’ is the first argument of the current VM instruction, and ‘IP’ points to
it; this is just as in the engine, but here ‘ip’ points to the opcode of the VM
instruction (in contrast to the engine, where ‘ip’ points to the next cell, or even
one further).

VM_IS_INST(Inst i, int n)
Tests if the opcode ‘i’ is the same as the ‘n’th entry in the VM instruction
table.

8.6 VM profiler

The VM profiler is designed for getting execution and occurence counts for VM instruction
sequences, and these counts can then be used for selecting sequences as superinstructions.
The VM profiler is probably not useful as profiling tool for the interpretive system. I.e., the
VM profiler is useful for the developers, but not the users of the interpretive system.

The output of the profiler is: for each basic block (executed at least once), it produces
the dynamic execution count of that basic block and all its subsequences; e.g.,

9227465 lit storelocal
9227465 storelocal branch
9227465 lit storelocal branch

I.e., a basic block consisting of ‘lit storelocal branch’ is executed 9227465 times.
This output can be combined in various ways. E.g., ‘vmgen-ex/stat.awk’ adds up the

occurences of a given sequence wrt dynamic execution, static occurence, and per-program
occurence. E.g.,

2 16 36910041 loadlocal lit

indicates that the sequence ‘loadlocal lit’ occurs in 2 programs, in 16 places, and has
been executed 36910041 times. Now you can select superinstructions in any way you like
(note that compile time and space typically limit the number of superinstructions to 100–
1000). After you have done that, ‘vmgen/seq2rule.awk’ turns lines of the form above into
rules for inclusion in a Vmgen input file. Note that this script does not ensure that all
prefixes are defined, so you have to do that in other ways. So, an overall script for turning
profiles into superinstructions can look like this:

Chapter 8: Using the generated code 24

awk -f stat.awk fib.prof test.prof|
awk ’$3>=10000’| #select sequences
fgrep -v -f peephole-blacklist| #eliminate wrong instructions
awk -f seq2rule.awk| #turn into superinstructions
sort -k 3 >mini-super.vmg #sort sequences

Here the dynamic count is used for selecting sequences (preliminary results indicate that
the static count gives better results, though); the third line eliminates sequences containing
instructions that must not occur in a superinstruction, because they access a stack directly.
The dynamic count selection ensures that all subsequences (including prefixes) of longer
sequences occur (because subsequences have at least the same count as the longer sequences);
the sort in the last line ensures that longer superinstructions occur after their prefixes.

But before using this, you have to have the profiler. Vmgen supports its creation by
generating ‘file-profile.i’; you also need the wrapper file ‘vmgen-ex/profile.c’ that
you can use almost verbatim.

The profiler works by recording the targets of all VM control flow changes (through
SUPER_END during execution, and through BB_BOUNDARY in the front end), and counting
(through SUPER_END) how often they were targeted. After the program run, the numbers
are corrected such that each VM basic block has the correct count (entering a block without
executing a branch does not increase the count, and the correction fixes that), then the
subsequences of all basic blocks are printed. To get all this, you just have to define SUPER_
END (and BB_BOUNDARY) appropriately, and call vm_print_profile(FILE *file) when you
want to output the profile on file.

The ‘file-profile.i’ is similar to the disassembler file, and it uses variables and func-
tions defined in ‘vmgen-ex/profile.c’, plus VM_IS_INST already defined for the VM dis-
assembler (see Section 8.5 [VM disassembler], page 23).

Chapter 9: Hints 25

9 Hints

9.1 Floating point

How should you deal with floating point values? Should you use the same stack as for inte-
gers/pointers, or a different one? This section discusses this issue with a view on execution
speed.

The simpler approach is to use a separate floating-point stack. This allows you to choose
FP value size without considering the size of the integers/pointers, and you avoid a number
of performance problems. The main downside is that this needs an FP stack pointer (and
that may not fit in the register file on the 386 arhitecture, costing some performance, but
comparatively little if you take the other option into account). If you use a separate FP
stack (with stack pointer fp), using an fpTOS is helpful on most machines, but some spill
the fpTOS register into memory, and fpTOS should not be used there.

The other approach is to share one stack (pointed to by, say, sp) between integer/pointer
and floating-point values. This is ok if you do not use spTOS. If you do use spTOS, the
compiler has to decide whether to put that variable into an integer or a floating point
register, and the other type of operation becomes quite expensive on most machines (because
moving values between integer and FP registers is quite expensive). If a value of one type
has to be synthesized out of two values of the other type (double types), things are even
more interesting.

One way around this problem would be to not use the spTOS supported by Vmgen, but
to use explicit top-of-stack variables (one for integers, one for FP values), and having a kind
of accumulator+stack architecture (e.g., Ocaml bytecode uses this approach); however, this
is a major change, and it’s ramifications are not completely clear.

Chapter 10: The future 26

10 The future

We have a number of ideas for future versions of Vmgen. However, there are so many
possible things to do that we would like some feedback from you. What are you doing with
Vmgen, what features are you missing, and why?

One idea we are thinking about is to generate just one ‘.c’ file instead of letting you
copy and adapt all the wrapper files (you would still have to define stuff like the type-
specific macros, and stack pointers etc. somewhere). The advantage would be that, if we
change the wrapper files between versions, you would not need to integrate your changes
and our changes to them; Vmgen would also be easier to use for beginners. The main
disadvantage of that is that it would reduce the flexibility of Vmgen a little (well, those
who like flexibility could still patch the resulting ‘.c’ file, like they are now doing for the
wrapper files). In any case, if you are doing things to the wrapper files that would cause
problems in a generated-‘.c’-file approach, please let us know.

Chapter 11: Changes 27

11 Changes

User-visible changes between 0.5.9-20020822 and 0.5.9-20020901:
The store optimization is now disabled by default, but can be enabled by the user (see

Section 6.4 [Store Optimization], page 15). Documentation for this optimization is also
new.

User-visible changes between 0.5.9-20010501 and 0.5.9-20020822:
There is now a manual (in info, HTML, Postscript, or plain text format).
There is the vmgen-ex2 variant of the vmgen-ex example; the new variant uses a union

type instead of lots of casting.
Both variants of the example can now be compiled with an ANSI C compiler (using

switch dispatch and losing quite a bit of performance); tested with lcc.
Users of the gforth-0.5.9-20010501 version of Vmgen need to change several things in

their source code to use the current version. I recommend keeping the gforth-0.5.9-20010501
version until you have completed the change (note that you can have several versions of
Gforth installed at the same time). I hope to avoid such incompatible changes in the future.

The required changes are:

TAIL; has been renamed into INST_TAIL; (less chance of an accidental match).

vm_A2B now takes two arguments.

vm_twoA2B(b,a1,a2);
changed to vm twoA2B(a1,a2,b) (note the absence of the ‘;’).

Also some new macros have to be defined, e.g., INST_ADDR, and LABEL; some macros have
to be defined in new contexts, e.g., VM_IS_INST is now also needed in the disassembler.

Chapter 12: Contact 28

12 Contact

To report a bug, use https://savannah.gnu.org/bugs/?func=addbug&group_id=2672.
For discussion on Vmgen (e.g., how to use it), use the mailing list

bug-vmgen@mail.freesoftware.fsf.org (use http://mail.gnu.org/mailman/listinfo/help-vmgen
to subscribe).

You can find vmgen information at http://www.complang.tuwien.ac.at/anton/vmgen/.

https://savannah.gnu.org/bugs/?func=addbug&group_id=2672
mailto:bug-vmgen@mail.freesoftware.fsf.org
http://mail.gnu.org/mailman/listinfo/help-vmgen
http://www.complang.tuwien.ac.at/anton/vmgen/

Appendix A: Copying This Manual 29

Appendix A Copying This Manual

A.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix A: Copying This Manual 30

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: Copying This Manual 31

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

Appendix A: Copying This Manual 32

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: Copying This Manual 33

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: Copying This Manual 34

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: Copying This Manual 35

A.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 36

Index

#
can only be on the input side error 17
#line . 9

-
–help, command-line option . 6
–version, command-line option 6
‘-disasm.i’ output file . 23
‘-gen.i’ output file . 21
-h, command-line option . 6
‘-labels.i’ output file . 21
‘-peephole.i’ output file . 22
‘-profile.i’ output file . 23
-v, command-line option . 6
‘-vm.i’ output file . 18

\
\C . 9
\E . 10

A
accessing stack (pointer) . 13
advantages of interpreters . 3
advantages of vmgen . 3
assumptions about C code . 13

B
basic block, VM level . 12
basic type of a stack . 11
BB_BOUNDARY in profiling . 24
branch instruction, VM . 4

C
C code restrictions . 13
C escape . 9
casts example . 7
casts in type cast macros . 19
Changes from old versions . 27
code generation, VM . 21
conditional compilation of Vmgen output 9

D
default stack of a type prefix 10
defining a stack . 11
defining superinstructions . 14
‘disasm.c’ . 23
disassembler, VM code . 23

Dispatch of VM instructions . 5

E
effect, stack . 10
efficiency features overview . 1
eliminating stack stores . 15
engine . 18
‘engine.c’ . 18
error messages . 17
escape to Forth . 10
eval escape . 10
example files . 7
example of a Vmgen-based interpreter 7
example overview . 7
executing VM code . 18
explicit stack access . 11

F
FDL, GNU Free Documentation License 29
format, input file . 9
free-format, not . 9
front-end . 4
functionality features overview 1
future ideas . 26

G
garbage collection . 4
generated code, usage . 18
grammar, input file . 9

H
hints . 25

I
IMM ARG . 20
immediate argument, VM instruction 4
immediate arguments . 4
immediate arguments, VM code generation 21
include-skipped-insts . 14
input file format . 9
input file grammar . 9
instruction pointer definition 20
instruction pointer, access . 13
instruction stream . 4, 11
instruction stream, basic type 19
instruction table . 21
instruction, simple VM . 10
instruction, VM . 4
interpreters, advantages . 3

Index 37

Invoking Vmgen . 6
IP, IPTOS in disassmbler . 23

L
labels for threaded code . 21

M
macros recognized by Vmgen 12
main interpreter loop . 5
modularization of interpreters 4

N
newlines, significance in syntax 9

O
opcode definition . 21
opcode, VM instruction . 4
optimization, stack stores . 15

P
peephole optimization . 22
‘peephole.c’ . 22
prefix for this combination must be defined

earlier error . 17
prefix, stack . 11
prefix, type . 10
prefixes of superinstructions 14
‘profile.c’ . 23
profiling example . 8
profiling for selecting superinstructions 23

R
reference counting . 4
register machine . 4
Register VM . 15
register, VM . 4
restrictions on C code . 13

S
‘seq2rule.awk’ . 23
simple VM instruction . 10
size, stack items . 4
speed for JVM . 2
speed of interpreters . 3
stack access, explicit . 11
stack basic type . 11
stack caching . 20
stack caching, restriction on C code 13
stack definition . 11
stack effect . 10

stack growth direction . 13
stack item size . 4
stack machine . 4
Stack pointer access . 11
stack pointer definition . 20
stack pointer, access . 13
stack prefix . 11
stack stores, optimization . 15
stack-access-transform . 13
‘stat.awk’ . 23
store optimization . 15
SUPER_END in profiling . 24
superinstructions and profiling 23
superinstructions and tracing 18
superinstructions example . 8
Superinstructions for register VMs 15
superinstructions, defining . 14
superinstructions, generating 22
superinstructions, restrictions on components . . 13
switch dispatch . 5
sync line syntax error . 17
sync lines . 9
syntax error, wrong char error 17

T
TAIL;, changes . 27
threaded code . 5
too many stacks error . 17
top of stack caching . 20
TOS . 20
tracing of register VMs . 15
tracing VM code . 18
type cast macro . 19
type casting between floats and integers 19
type of a stack, basic . 11
type prefix . 10

U
unions example . 7
unions in type cast macros . 19
unknown prefix error . 17
unknown primitive error . 17
Using vmgen-erated code . 18

V
virtual machine . 4
VM . 4
VM branch instruction . 4
VM code generation . 21
VM disassembler . 23
VM instruction . 4
VM instruction execution . 18
VM profiler . 23
VM register . 4
vm_A2B , changes . 27

Index 38

VM_IS_INST in profiling . 24

vm_prim, definition . 21

vm_prim, use . 22

vm_twoA2B , changes . 27

‘vmgen-ex’ . 7

‘vmgen-ex2’ . 7

W
wrapper files . 7

	Introduction
	Why interpreters?
	Concepts
	Front end and VM interpreter
	Data handling
	Dispatch

	Invoking Vmgen
	Example
	Example overview
	Using profiling to create superinstructions

	Input File Format
	Input File Grammar
	Eval escapes

	Simple instructions
	Explicit stack access
	C Code Macros
	C Code restrictions
	Stack growth direction

	Superinstructions
	Store Optimization
	Register Machines

	Error messages
	Using the generated code
	VM engine
	VM instruction table
	VM code generation
	Peephole optimization
	VM disassembler
	VM profiler

	Hints
	Floating point

	The future
	Changes
	Contact
	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index

