| v

ERLANG

SSH

Copyright © 2005-2014 Ericsson AB. All Rights Reserved.
SSH2.1.1
September 29 2014

Copyright © 2005-2014 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

September 29 2014

Ericsson AB. All Rights Reserved.: SSH | 1

1 Reference Manual

The SSH application is an erlang implementation of the secure shell protocol.

2 | Ericsson AB. All Rights Reserved.: SSH

ssh

ssh

Erlang module

Interface module for the SSH application.

SSH

« sshrequiresthe crypto and public_key applications.
e Supported SSH-versionis 2.0

e Currently supports only a minimum of mac and encryption algorithmsi.e. hmac-shal, and aes128-cb and 3des-
cbe.

COMMON DATA TYPES

Type definitions that are used more than once in this module:

bool ean() = true | false

string() = 1list of ASCII characters

ssh_daenon_ref() - opaque to the user returned by ssh: daenon/[1, 2, 3]
ssh_connection_ref () - opaque to the user returned by ssh:connect/3

i p_address() - {NL, N2, N3, N4} % I Pv4 | {K1, K2, K3, K4, K5, K6, K7, K8} % | Pv6

subsyst em spec() = {subsyst em nane(), {channel _cal I back(),
channel _init_args()}}

subsystem nanme() = string()

channel _cal l back() = atom() - Nane of the erlang nodule inplenenting the
subsystem usi ng the ssh_channel behavi or see ssh _channel(3)

channel init_args() = list()

Exports

cl ose(Connecti onRef) -> ok
Types.

Connecti onRef = ssh_connection_ref ()
Closes a ssh connection.

connect (Host, Port, Options) ->

connect (Host, Port, Options, Tinmeout) -> {ok, ssh_connection_ref()} | {error,
Reason}

Types:
Host = string()
Port = integer()

The default is 22, the registered port for SSH.
Options = [{Option, Value}]
Timeout = infinity | integer(mlliseconds)

Ericsson AB. All Rights Reserved.: SSH | 3

ssh

Connectsto an SSH server. No channel is started thisis done by calling ssh_connect:session_channel/2.
Options are:
{user _dir, string()}

Sets the user directory e.i. the directory containing ssh configuration files for the user such asknown_host s,
id rsa, id_dsaandauthorized key. Defaultstothe directory normally referredtoas~/ . ssh

{dsa_pass_phrase, string()}

If the user dsakey is protected by a pass phrase it can be supplied with this option.
{rsa_pass_phrase, string()}

If the user rsakey is protected by a pass phrase it can be supplied with this option.
{silently_accept_hosts, bool ean()}

When true hosts are added to the file known_host s without asking the user. Defaults to false.
{user __interaction, boolean()}

If false disables the client to connect to the server if any user interaction is needed such as accepting that the
server will be added totheknown_host s file or supplying a password. Defaultsto true. Even if user interaction
isallowed it can be suppressed by other options such as silently _accept_hosts and password. Do note that it may
not always be desirable to use those options from a security point of view.

{public_key alg, ssh_rsa | ssh_dsa}

Setsthe preferred public key algorithm to use for user authentication. If the the preferred algorithm fails of some
reason, the other algorithm istried. The default istotry ssh_r sa first.

{connect _tineout, timeout()}
Sets atimeout on the transport layer connection. Defaults to infinity.
{user, String}

Provide a user name. If this option is not given, ssh reads from the environment (L OGNAME or USER on unix,
USERNAME on Windows).

{password, string()}

Provide a password for password authentication. If this option is not given, the user will be asked for a password
if the password authentication method is attempted.

{user _auth, Fun/ 3}

Provide a fun for password authentication. The fun will be called asf un(User, Password, Opts) and
shouldreturnt r ue or f al se.

{key_cb, atom() = KeyCal | backMbdul e}

Provide a special call-back module for key handling. The call-back module should be modeled after
the ssh_file module. The functions that must be exported are: private host rsa key/ 2,
private_host dsa key/2, | ookup_host key/3 and add_host key/ 3. This is considered
somewhat experimental and will be better documented later on.

{fd, file_descriptor()}

Allow an existing file-descriptor to be used (simply passed on to the transport protocol).
{i p_v6_di sabl ed, bool ean()}

Determines if SSH shall use IPv6 or not.

4 | Ericsson AB. All Rights Reserved.: SSH

ssh

connection_i nfo(ConnectionRef, [Option]) ->[{Option, Value}]
Types.

Option = client_version | server_version | peer

Value = term))

Retrieves information about a connection.

daermon(Port) ->
daemon(Port, Options) ->
daenon(Host Address, Port, Options) -> ssh_daenon_ref()
Types:
Port = integer()
Host Address = ip_address() | any
Options = [{Option, Value}]
Option = aton()
Value = term)

Starts a server listening for SSH connections on the given port.
Options are:

{subsystens, [subsystem spec()]
Provides specifications for handling of subsystems. The "sftp" subsystem-spec can be retrieved
by calling ssh_sftpd:subsystem_spec/1. If the subsystems option in not present the value of
[ssh_sftpd: subsystem spec([])] will beused. It isof course possible to set the option to the empty
list if you do not want the daemon to run any subsystems at al.
{shell, {Mddule, Function, Args} | fun(string() = User) - > pid() |
fun(string() = User, ip_address() = PeerAddr) -> pid()}
Defines the read-eval-print loop used when a shell is requested by the client. Example use the erlang shell:
{shell, start, []} whichisthedefault behavior.
{ssh_cli, {channel _call back(), channel init_args()}}
Provide your own cli implementation, e.i. a channel callback module that implements a shell and command
execution. Note that you may customize the shell read-eval-print loop using the option shel | which is much
less work than implementing your own cli channel.
{user _dir, String}

Sets the user directory e.i. the directory containing ssh configuration files for the user such asknown_host s,
id rsa, id _dsaandauthorized key. Defaultstothedirectory normally referredtoas~/ . ssh

{systemdir, string()}

Setsthe system directory, containing the host filesthat identifiesthe host for ssh. The defaultis/ et ¢/ ssh, note
that SSH normally requires the host files there to be readable only by root.

{aut h_net hods, string()}

Comma separated string that determines which authentication methodes that the server should support and in
what order they will betried. Defaultsto " publ i ckey, keyboard_i nt eracti ve, passwor d"

{user _passwords, [{string() = User, string() = Password}]}

Provide passwords for password authentication.They will be used when someone tries to connect to the server
and public key user authentication fails. The option provides a list of valid user names and the corresponding
password.

Ericsson AB. All Rights Reserved.: SSH | 5

ssh

{password, string()}

Provide a global password that will authenticate any user. From a security perspective this option makes the
server very vulnerable.

{pwdf un, fun/2}

Provide a function for password validation. Thisis called with user and password as strings, and should return
t r ue if the password isvalid and f al se otherwise.

{fd, file_descriptor()}

Allow an existing file-descriptor to be used (simply passed on to the transport protocol).
{i p_v6_di sabl ed, bool ean()}

Determines if SSH shall use IPv6 or not (only used when HostAddress is set to any).

shel | (Host) ->
shel | (Host, Option) ->
shel | (Host, Port, Option) -> _

Types.
Host = string()
Port = integer()

Options - see ssh:connect/3

Starts an interactive shell to an SSH server on the given Host . The function waits for user input, and will not return
until the remote shell is ended (e.g. on exit from the shell).

start() ->

start(Type) -> ok | {error, Reason}

Types:
Type = permanent | transient | tenporary
Reason = term()

Starts the Ssh application. Default type is temporary. See aso application(3) Requires that the crypto application has
been started.

stop() -> ok
Stops the Ssh application. See aso application(3)

st op_daenon(DaenonRef) ->
st op_daenon(Address, Port) -> ok
Types.
DaenonRef = ssh_daenon_ref ()
Address = i p_address()
Port = integer()
Stops the listener and all connections started by the listener.

stop_listener (DaenonRef) ->
stop_listener(Address, Port) -> ok
Types:

6 | Ericsson AB. All Rights Reserved.: SSH

ssh

DaenonRef = ssh_daenon_ref ()
Address = ip_address()
Port = integer()
Stops the listener, but |eaves existing connections started by the listener up and running.

Ericsson AB. All Rights Reserved.: SSH | 7

ssh_channel

ssh_channel

Erlang module

Ssh services are implemented as channels that are multiplexed over an ssh connection and communicates via the ssh
connection protocol. This module provides a callback API that takes care of generic channel aspects such as flow
control and close messages and lets the callback functions take care of the service specific parts.

COMMON DATA TYPES

Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

bool ean() = true | false
string() = 1list of ASCII characters
timeout () = infinity | integer() - in mlliseconds.

ssh_connection_ref () - opaque to the user returned by ssh:connect/3 or sent to
a ssh channel process

ssh_channel _id() = integer()

ssh_data_type_code() = 1 ("stderr”) | O ("normal") are currently valid val ues
see RFC 4254 section 5. 2.

Exports

cal | (Channel Ref, Msg) ->
cal |l (Channel Ref, Msg, Tinmeout) -> Reply | {error, Reason}
Types:
Channel Ref = pid()
Asreturned by start_link/4
Meg = term)
Ti meout = tinmeout ()
Reply = tern()
Reason = cl osed | timeout
Makes a synchronous call to the channel process by sending a message and waiting until areply arrives or a timeout

occurs. The channel will call Cal | backModul e: handl e_cal | / 3 to handle the message. If the channel process
doesnot exist{ error, cl osed} isreturned.

cast (Channel Ref, Msg) -> ok
Types:
Channel Ref = pid()
Asreturned by start_link/4
Msg = term)
Sends an asynchronous message to the channel process and returns ok immediately, ignoring if the destination node or
channel process does not exist. The channel will call Cal | backModul e: handl e_cast / 2 to handle the message.

8 | Ericsson AB. All Rights Reserved.: SSH

ssh_channel

enter | oop(State) -> _
Types:
State = tern() - as returned by ssh_channel :init/1
Makes an existing process into assh_channel process. Does not return, instead the calling process will enter the
ssh_channel processreceiveloop and becomeassh_channel process. Theprocess must have been started

using one of the start functionsin proc_lib, see proc_lib(3). The user isresponsible for any initialization of the process
and needs to call ssh_channel:init/1.

init(Options) -> {ok, State} | {ok, State, Tinmeout} | {stop, Reason}
Types:

Options = [{Option, Value}]
The following options must be present:

{channel _cb, atom()}
The module that implements the channel behavior.

{init_args(), list()}

Thelist of argumentsto the callback modulesinit function.
{cm connection_ref()}

Reference to the ssh connection.
{channel _id, channel _id()}

Id of the ssh channel.

Note:

This function is normally not called by the user, it is only needed if for some reason the channel
process needs to be started with help of proc_|ib instead calling ssh_channel :start/4 or
ssh_channel : start _|ink/4

reply(dient, Reply) -> _
Types:
Cient - opaque to the user, see explanation bel ow
Reply = term()
This function can be used by a channel to explicitly send areply to aclient that called cal | / [2, 3] when the reply
cannot be defined in the return value of Cal | backMbdul e: handl e_cal | / 3.

d i ent must be the Fr omargument provided to the callback function handl e_cal | / 3. Repl y is an arbitrary
term, which will be given back to the client as the return value of ssh_channel : cal I /[2, 3] .

start (SshConnecti on, Channelld, Channel Cb, CblnitArgs) ->

start_link(SshConnection, Channelld, Channel Cb, CblnitArgs) -> {ok,
Channel Ref} | {error, Reason}

Types:
SshConnecti on = ssh_connection_ref()
Channel Id = ssh_channel _i d()
Asreturned by ssh_connection:session_channel/[2,4]
Channel Cb = at on()

Ericsson AB. All Rights Reserved.: SSH | 9

ssh_channel

The name of the module implementing the service specific parts of the channel.
ChlnitArgs = [term)]

Argument list for the init function in the callback module.

Channel Ref = pid()

Starts aprocesses that handles a ssh channel. Will be called internally by the ssh daemon or explicitly by the ssh client
implementations. A channel process traps exit signals by default.

CALLBACK FUNCTIONS

The functions init/1, terminate/2, handle_ssh_msg/2 and handle_msg/2 are the functions that are required to provide
the implementation for a server side channel, such as a ssh subsystem channel that can be plugged into the erlang ssh
daemon see ssh:daemon/[2, 3]. The handle_call/3, handle_cast/2 code_change/3 and enter_|loop/1 functions are only
relevant when implementing a client side channel.

CALLBACK TIMEOUTS

If an integer timeout value is provided in areturn value of one of the callback functions, atimeout will occur unless a
message is received within Ti meout milliseconds. A timeout is represented by theatomt i neout which should be
handled by the handle_msg/2 callback function. The atom infinity can be used to wait indefinitely, thisis the default
value.

Exports

Cal | backModul e: code_change(d dVsn, State, Extra) -> {ok, NewState}
Types:
Converts process state when code is changed.
This function is called by a client side channel when it should update its internal state during a release upgrade/
downgrade, i.e. whentheinstruction{ updat e, Modul e, Change, . . . } whereChange={ advanced, Extr a}

isgiveninthe appup file. See OTP Design Principles for more information. Any new connection will benefit from
aserver side upgrade but already started connections on the server side will not be affected.

Note:

If therearelong lived ssh connectionsand morethan one upgradein ashort timethismay causethe old connections
to fail asonly two versions of the code may be loaded simultaneously.

Inthe case of an upgrade, d dVsn isVsn, and in the case of adowngrade, A dVsn is{ down, Vsn}.Vsn isdefined
by the vsn attribute(s) of the old version of the callback module Modul e. If no such attribute is defined, the version
is the checksum of the BEAM file.

St at e istheinternal state of the channel.
Ext r a ispassed as-isfromthe{ advanced, Ext r a} part of the update instruction.
The function should return the updated internal state.

Cal | backModul e:init(Args) -> {ok, State} | {ok, State, Tineout} | {stop,
Reason}

Types:
Args = term))

10 | Ericsson AB. All Rights Reserved.: SSH

ssh_channel

Last argument to ssh_channel:start_link/4.
State = term))

Ti meout = timeout ()

Reason = term()

Makes necessary initializations and returnsthe initial channel state if the initializations succeed.
For more detailed information on timeouts see the section CALLBACK TIMEOUTS

Cal | backMbdul e: handl e_cal | (Msg, From State) -> Result
Types:
Msg = term()
From = opaque to the user should be used as argunment to
ssh_channel : reply/ 2

State = term)

Result = {reply, Reply, NewState} | {reply, Reply, NewState, Ti neout}
| {noreply, NewState} | {noreply , NewState, Tineout} | {stop, Reason,
Reply, NewState} | {stop, Reason, NewStat e}

Reply = term() - will be the return value of ssh_channel:call/[2, 3]
Ti meout = timeout ()
NewState = term() - a possible updated version of State
Reason = term()
Handles messages sent by callingssh_channel : cal 1 /[2, 3]

For more detailed information on timeouts see the section CALLBACK TIMEOUTS.

Cal | backMbdul e: handl e_cast (Msg, State) -> Result
Types:

Meg = term)

State = term))

Result = {noreply, NewState} | {noreply, NewState, Tinmeout} | {stop,
Reason, NewsSt at e}

NewState = term() - a possible updated version of State
Ti meout = timeout ()
Reason = term()

Handles messages sent by calling ssh_channel : cast/ 2

For more detailed information on timeouts see the section CALLBACK TIMEOUTS

Cal | backModul e: handl e_nsg(Msg, State) -> {ok, State} | {stop, Channelld,
St at e}

Types:
Msg = tineout | term()
State = term))
Handle other messages than ssh connection protocol, call or cast messages sent to the channel.
Possible erlang 'EXIT'-messages should be handled by this function and al channels should handle the following
message.

Ericsson AB. All Rights Reserved.: SSH | 11

ssh_channel

{ssh_channel _up, ssh_channel _id(), ssh_connection_ref()}
Thisisthe first messages that will be received by the channel, it is sent just before the ssh_channel:init/1
function returns successfully. Thisis especially useful if the server wants to send a message to the client
without first receiving a message from the client. If the message is not useful for your particular problem just
ignore it by immediately returning { ok, State} .

Cal | backModul e: handl e_ssh_nsg(Msg, State) -> {ok, State} | {stop,
ssh_channel _id(), State}

Types:
Msg = {ssh_cm ssh_connection_ref(), SshMsg}
SshMsg = tuple() - see nessage |list bel ow
State = term)

Handles ssh connection protocol messages that may need service specific attention.

All channels should handle the following messages. For channels implementing subsystems the handle_ssh_msg-
callback will not be called for any other messages.

{ssh_cm ssh_connection_ref(), {data, ssh_channel _id(), ssh_data_type_code(),
bi nary() = Data}}
Data has arrived on the channel. When the callback for this message returns the channel behavior will adjust
the ssh flow control window.
{ssh_cm ssh_connection_ref(), {eof, ssh_channel _id()}}
Indicteas that the other side will not send any more data.
{ssh_cm ssh_connection_ref(), {signal, ssh_channel _id(), ssh_signal()}}
A signal can be delivered to the remote process/service using the following message. Some systems may not
implement signals, in which case they should ignore this message.
{ssh_cm ssh_connection_ref(), {exit_signal, ssh_channel _id(), string() =
exit_signal, string() = ErrorMsg, string() = LanguageString}}
A remote execution may terminate violently due to asignal then this message may be received. For details on
valid string values see RFC 4254 section 6.10
{ssh_cm ssh_connection_ref(), {exit_status, ssh_channel _id(), integer() =
Exit St at us}}
When the command running at the other end terminates, the following message can be sent to return the exit
status of the command. A zero 'exit_status usually means that the command terminated successfully.

Channelsimplementing a shell and command execution on the server side should also handle the following messages.

{ssh_cm ssh_connection_ref(), {env, ssh_channel id(), boolean() = WantReply,
string() = Var, string() = Value}}
Environment variables may be passed to the shell/command to be started later. Note that before the callback
returns it should call the function ssh_connection:reply _request/4 with the boolean value of Want Repl y as
the second argument.
{ssh_cm ConnectionRef, {exec, ssh_channel _id(), boolean() = Want Reply,
string() = COnd}}
This message will request that the server start the execution of the given command. Note that before the
callback returnsit should call the function ssh_connection:reply request/4 with the bool ean value of
Want Repl y asthe second argument.
{ssh_cm ssh_connection_ref(), {pty, ssh_channel id(), boolean() = WantReply,
{string() = Terminal, integer() = CharWdth, integer() = RowHei ght, integer()
= Pixel Wdth, integer() = PixelH ght, [{aton() | integer() = Opcode,
i nteger() = Value}] = Term nal Modes}}}
A pseudo-terminal has been requested for the session. Terminal is the value of the TERM environment variable
value (e.g., vt100). Zero dimension parameters must be ignored. The character/row dimensions override the

12 | Ericsson AB. All Rights Reserved.: SSH

ssh_channel

pixel dimensions (when nonzero). Pixel dimensions refer to the drawable area of the window. The Opcode
inthe Ter m nal Mbdes list isthe mnemonic name, represented as an lowercase erlang atom, defined in
RFC 4254 section 8, or the opcode if the mnemonic name is not listed in the RFC. Example OP code: 53,
menoni ¢ nane ECHO erl ang atom echo. Note that before the callback returnsit should call the
function ssh_connection:reply_request/4 with the boolean value of \Want Repl y asthe second argument.

{ssh_cm ConnectionRef, {shell, boolean() = WantReply}}
This message will request that the user's default shell be started at the other end. Note that before the callback
returns it should call the function ssh_connection:reply _request/4 with the value of Want Repl y asthe
second argument.

{ssh_cm ssh_connection_ref(), {w ndow change, ssh_channel _id(), integer()

= CharWdth, integer() = RowHeight, integer() = PixWdth, integer() =

Pi xHei ght }}
When the window (terminal) size changes on the client side, it MAY send a message to the other side to inform
it of the new dimensions.

The following message is completely taken care of by the ssh channel behavior

{ssh_cm ssh_connection_ref(), {closed, ssh_channel _id()}}
The channel behavior will send a close message to the other side if such a message has not already been sent
and then terminate the channel with reason normal.

Cal | backModul e: t erm nat e(Reason, State) -> _
Types:
Reason = term()
State = term))
This function is caled by a channel process when it is about to terminate. Before this function is called
ssh_connection:close/2 will be called if it has not been called earlier. This function should be the opposite of

Cal | backModul e: i nit/ 1 and do any necessary cleaning up. When it returns, the channel process terminates
with reason Reason. Thereturn value isignored.

Ericsson AB. All Rights Reserved.: SSH | 13

ssh_connection

ssh_connection

Erlang module

This module provides an API to the ssh connection protocol. Not all features of the connection protocol are officially
supported yet. Only the ones supported are documented here.

COMMON DATA TYPES

Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

bool ean() = true | false
string() = 1list of ASCII characters
timeout () = infinity | integer() - in mlliseconds.

ssh_connection_ref () - opaque to the user returned by ssh:connect/3 or sent to
a ssh channel processes

ssh_channel _id() = integer()

ssh_data_type_code() = 1 ("stderr”) | O ("normal") are currently valid val ues
see RFC 4254 section 5. 2.

ssh_request _status() = success | failure

MESSAGES SENT TO CHANNEL PROCESSES

As a result of the ssh connection protocol messages on the form {ssh_cm ssh_connection_ref (),
term()} will besent to achannel process. The term will contain information regarding the ssh connection protocol
event, for details see the ssh channel behavior callback handle_ssh_msg/2

Exports

adj ust _wi ndow Connecti onRef, Channelld, NunOfBytes) -> ok
Types:

Connecti onRef = ssh_connection_ref()

Channel Id = ssh_channel _i d()

Nunf Bytes = integer()
Adjusts the ssh flowcontrol window.

Note:

Thiswill be taken care of by the ssh_channel behavior when the callback handle ssh_msg/2 has returned after
processing a{ssh_cm, ssh_connection_ref(),{ data, ssh_channel_id(), ssh_data type code(), binary()}} message,
and should normally not be called explicitly.

cl ose(Connecti onRef, Channelld) -> ok
Types:

14 | Ericsson AB. All Rights Reserved.: SSH

ssh_connection

Connecti onRef = ssh_connection_ref()
Channel Id = ssh_channel _id()

Sends a close message on the channel Channel | d

Note:

This function will be called by the ssh channel behavior when the channel isterminated see ssh_channel(3) and
should normally not be called explicitly.

exec(ConnectionRef, Channelld, Conmand, TinmeQut) -> ssh_request_status()
Types:

Connecti onRef = ssh_connection_ref()

Channel I1d = ssh_channel _i d()

Conmmand string()

Ti meout = timeout ()

Will request that the server start the execution of the given command, the result will be received as:

N X {ssh_cm ssh_connection_ref(), {data, ssh_channel _id(),
ssh_data type code(), binary() = Data}}
The result of executing the command may be only one line or thousands of lines depending on the command.
1 X {ssh_cm ssh_connection_ref(), {eof, ssh_channel _id()}}
Indicates that no more data will be sent.
0 or 1 X {ssh_cm ssh connection_ref(), {exit_signal, ssh _channel _id(),
string() = ExitSignal, string() = ErrorMsg, string() = LanguageString}}
Not al systems send signals. For details on valid string values see RFC 4254 section 6.10
0 or 1 X {ssh_cm ssh connection_ref(), {exit_status, ssh_channel _id(),
integer() = ExitStatus}}
It isrecommended by thessh connecti on protocol that thismessage shall be sent, but that may not
aways be the case.
1 X {ssh_cm ssh _connection_ref(), {closed, ssh _channel id()}}
Indicates that the ssh channel started for the execution of the command has now been shutdown.

These message should be handled by the client. The ssh channel behavior can be used when writing a client.

exit_status(Connecti onRef, Channelld, Status) -> ok
Types:

Connecti onRef = ssh_connection_ref()

Channel Id = ssh_channel _i d()

Status = integer()

Sends the exit status of acommand to the client.

reply_request (Connecti onRef, WantReply, Status, Cannelld) -> ok
Types:

Connecti onRef = ssh_connection_ref()

want Reply = bool ean()

Status = ssh_request _status()

Ericsson AB. All Rights Reserved.: SSH | 15

ssh_connection

Channel Id = ssh_channel _id()

Sends status replies to requests where the requester has stated that they want a status report ei . Want Reply =
true,if Want Repl y isfasecalling thisfunctionwill bea"noop". Should be called after handling an ssh connection
protocol message containing a\WWant Repl y boolean value. Seethe ssh_channel behavior callback handle_ssh_msg/2

send(Connecti onRef, Channelld, Data) ->
send(Connecti onRef, Channel ld, Data, Tinmeout) ->
send(Connecti onRef, Channelld, Type, Data) ->
send(Connecti onRef, Channelld, Type, Data, TinmeQut) -> ok | {error, tinmeout}
Types:

Connecti onRef = ssh_connection_ref()

Channel I1d = ssh_channel _i d()

Data = binary()

Type = ssh_data_type_code()

Ti mreout = tinmeout ()
Sends channel data.

send_eof (Connecti onRef, Channel ld) -> ok
Types:
Connecti onRef = ssh_connection_ref()
Channel I1d = ssh_channel _i d()

Sends eof on the channel Channel | d.

sessi on_channel (Connecti onRef, Tineout) ->

sessi on_channel (Connecti onRef, Initial WndowSi ze, MaxPacket Si ze, Ti neout) ->
{ok, ssh_channel _id()} | {error, Reason}

Types:
Connecti onRef = ssh_connection_ref()
Initial WndowSi ze = integer()
MaxPacket Si ze = integer()
Ti meout = tineout ()
Reason = term()

Opens a channel for a ssh session. A session is a remote execution of a program. The program may be a shell, an
application, a system command, or some built-in subsystem.

setenv(Connecti onRef, Channelld, Var, Value, TineQut) -> ssh_request_status()
Types:

Connecti onRef = ssh_connection_ref()

Channel Id = ssh_channel _id()

Var = string()

Val ue = string()

Ti meout = timeout ()

Environment variables may be passed to the shell/command to be started later.

16 | Ericsson AB. All Rights Reserved.: SSH

ssh_connection

shel | (Connecti onRef, Channelld) -> ssh_request_status()
Types.

Connecti onRef = ssh_connection_ref ()

Channel Id = ssh_channel _i d()

Will request that the user's default shell (typically defined in /etc/passwd in UNIX systems) be started at the other end.

subsyst em Connecti onRef, Channel ld, Subsystem Tineout) ->
ssh_request _status()

Types:
Connecti onRef = ssh_connection_ref()
Channel I1d = ssh_channel _i d()
Subsystem = string()
Ti meout = timeout ()

Sends a request to execute a predefined subsystem.

Ericsson AB. All Rights Reserved.: SSH | 17

ssh_sftp

ssh_sftp

Erlang module

Thismoduleimplementsan SFTP (SSH FTP) client. SFTPisasecure, encrypted filetransfer service availablefor SSH.

COMMON DATA TYPES

Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

ssh_connection_ref() - opaque to the user returned by ssh:connect/3
timeout () = infinity | integer() - in mlliseconds.

TIMEOUTS

If the request functions for the sftp channel return {error, timeout} it does not mean that the request did not reach
the server and was not performed, it only means that we did not receive an answer from the server within the time
that was expected.

Exports

start _channel (Connecti onRef) ->
start_channel (Connecti onRef, Options) ->
start _channel (Host, Options) ->

start_channel (Host, Port, Options) -> {ok, Pid} | {ok, Pid, ConnectionRef} |
{error, Reason}

Types:
Host = string()
Connecti onRef = ssh_connection_ref()
Port = integer()
Options = [{Option, Val ue}]
Reason = term()

If not provided, setups a ssh connection in this case a connection reference will be returned too. A ssh channel process
is started to handle the communication with the SFTP server, the returned pid for this process should be used as input
to all other API functionsin this module.

Options are:
{tinmeout, timeout()}
Thetimeout is passed to the ssh_channel start function, and defaults to infinity.
All other options are directly passed to ssh:connect/3 or ignored if a connection is already provided.

st op_channel (Channel Pid) -> ok
Types:
Channel Pid = pid()
Stops a sftp channel. If the ssh connection should be closed call ssh:close/1.

18 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

read file(Channel Pid, File) ->
read_file(Channel Pid, File, Timeout) -> {ok, Data} | {error, Reason}
Types:

Channel Pid = pid()

File = string()

Data = binary()

Ti meout = timeout ()

Reason = term()

Reads afile from the server, and returns the datain abinary, likefi l e:read_fil e/ 1.

wite file(ChannelPid, File, lolist) ->
wite_file(ChannelPid, File, lolist, Timeout) -> ok | {error, Reason}
Types:

Channel Pid = pid()

File = string()

lolist = iolist()

Ti meout = timeout ()

Reason = term()

Writes afileto the server, likefil e:wite_fil e/ 2. Thefileiscreated if it's not there.

list_dir(Channel Pid, Path) ->
list_dir(Channel Pid, Path, Timeout) -> {ok, Filenames} | {error, Reason}
Types.

Channel Pid = pid()

Path = string()

Fil enames = [Fil enane]

Fil ename = string()

Ti meout = timeout ()

Reason = term)

Lists the given directory on the server, returning the filenames as alist of strings.

open(Channel Pid, File, Mode) ->
open(Channel Pid, File, Mode, Timeout) -> {ok, Handle} | {error, Reason}
Types:

Channel Pid = pid()

File = string()

Mode = [Modefl ag]

Modeflag = read | wite | creat | trunc | append | binary

Ti meout = tinmeout ()

Handl e = term)

Reason term)

Opens afile on the server, and returns a handle that is used for reading or writing.

Ericsson AB. All Rights Reserved.:

SSH | 19

ssh_sftp

opendi r (Channel Pid, Path) ->
opendi r (Channel Pid, Path, Tinmeout) -> {ok, Handle} | {error, Reason}
Types:

Channel Pid = pid()

Path = string()

Ti mreout = tinmeout ()

Reason = term()

Opens a handle to adirectory on the server, the handle is used for reading directory contents.

cl ose(Channel Pid, Handle) ->
cl ose(Channel Pid, Handl e, Tinmeout) -> ok | {error, Reason}
Types:

Channel Pid = pid()

Handl e = term)

Ti meout = timeout ()

Reason = term()

Closes ahandle to an open file or directory on the server.

read(Channel Pi d, Handle, Len) ->
read(Channel Pid, Handle, Len, Tineout) -> {ok, Data} | eof | {error, Error}
pr ead(Channel Pid, Handl e, Position, Len) ->

pread(Channel Pid, Handl e, Position, Len, Tineout) -> {ok, Data} | eof |
{error, Error}

Types.
Channel Pid = pid()
Handle = term)
Position = integer()
Len = integer()
Ti meout = timeout ()
Data = string() | binary()
Reason = term()

Reads Len bytes from the file referenced by Handl e. Returns{ ok, Dat a},oreof ,or{error, Reason}.If
thefile is opened with bi nar y, Dat a isabinary, otherwiseit isastring.

If thefileisread past eof, only the remaining bytes will be read and returned. If no bytes areread, eof isreturned.
The pr ead function reads from a specified position, combining the posi t i on and r ead functions.

ar ead(Channel Pid, Handl e, Len) -> {async, N} | {error, Error}
apr ead(Channel Pid, Handle, Position, Len) -> {async, N} | {error, Error}
Types:

Channel Pid = pid()

Handle = term)

Position = integer()

Len = integer()

20 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

N=term)

Reason = term()
Reads from an open file, without waiting for the result. If the handle is valid, the function returns { async, N},
where N isaterm guaranteed to be unique between calls of ar ead. The actual datais sent as amessage to the calling

process. This message hastheform {async_reply, N, Result},whereResul t istheresult from the read,
either { ok, Data},oreof,or{error, Error}.

The apr ead function reads from a specified position, combining the posi t i on and ar ead functions.

write(Channel Pid, Handle, Data) ->
write(Channel Pid, Handle, Data, Tineout) -> ok | {error, Error}
pwite(Channel Pid, Handle, Position, Data) -> ok
pwite(Channel Pid, Handl e, Position, Data, Timeout) -> ok | {error, Error}
Types:

Channel Pid = pid()

Handle = term)

Position = integer()

Data = iolist()

Ti meout = timeout ()

Reason = term)

Write dat a to the file referenced by Handl e. The file should be opened withwr i t e or append flag. Returns ok
if successful and{error, Reason} otherwise.

Typical error reasons are:
ebadf

Thefileis not opened for writing.
enospc

There isano space left on the device.

aw i te(Channel Pid, Handle, Data) -> ok | {error, Reason}
apwite(Channel Pid, Handle, Position, Data) -> ok | {error, Reason}
Types:
Channel Pid = pid()
Handle = term)
Position = integer()
Len = integer()
Data = binary()
Ti meout = tinmeout ()
Reason = term()
Writes to an open file, without waiting for the result. If the handleisvalid, the function returns{ async, N}, where
N isaterm guaranteed to be unique between callsof awr i t e. Theresult of thewr i t e operation is sent as a message

to the calling process. This message has the form { async_reply, N, Result}, where Resul t isthe result
from the write, either ok, or{error, Error}.

Theapwr i t e writes on a specified position, combining theposi ti on andawr i t e operations.

Ericsson AB. All Rights Reserved.: SSH | 21

ssh_sftp

posi ti on(Channel Pid, Handl e, Location) ->

posi ti on(Channel Pid, Handle, Location, Tinmeout) -> {ok, NewPosition | {error,
Error}

Types:
Channel Pid = pid()
Handl e = term)

Location = Ofset | {bof, Ofset} | {cur, Ofset} | {eof, Ofset} | bof |
cur | eof

Ofset = int()

Ti meout = timeout ()
NewPosi tion = integer()
Reason = term()

Sets the file position of the file referenced by Handl e. Returns { ok, NewPosi ti on (as an absolute offset) if
successful, otherwise{ error, Reason}.Locat i on isone of thefollowing:

O fset

Thesameas{bof, O fset}.
{bof, O fset}

Absolute offset.
{cur, Ofset}

Offset from the current position.
{eof, O fset}

Offset from the end of file.
bof | cur | eof

The same as above with Of f set O.

read_fil e_i nfo(Channel Pid, Nane) ->
read_fil e_i nfo(Channel Pid, Nanme, Tineout) -> {ok, Filelnfo} | {error, Reason}
Types:

Channel Pid = pid()

Name = string()

Handl e = term)

Ti meout = timeout ()

Filelnfo = record()

Reason = term()

Returnsafi | e_i nf o record from the file specified by Nane or Handl e, likefil e:read _fil e_info/ 2.

read_I| i nk_i nfo(Channel Pid, Nane) -> {ok, Filelnfo} | {error, Reason}
read_I| i nk_i nf o(Channel Pid, Name, Timeout) -> {ok, Filelnfo} | {error, Reason}
Types:

Channel Pid = pid()

Name = string()

Handle = term)

22 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

Ti meout = timeout ()
Filelnfo = record()
Reason = term)

Returns a file_info record from the symbolic link specified by Name or Handl e, like
file:read |ink_info/2.

wite file_info(Channel Pid, Nane, Info) ->
wite file_info(Channel Pid, Nanme, Info, Tineout) -> ok | {error, Reason}
Types:

Channel Pid = pid()

Name = string()

Info = record()

Ti meout = timeout ()

Reason = term()

Writesfileinformation fromaf i | e_i nf o record to thefile specified by Nane, likefil e:wite_fil e_i nfo.

read_I| i nk(Channel Pi d, Nane) ->
read_I| i nk(Channel Pid, Nanme, Tinmeout) -> {ok, Target} | {error, Reason}
Types:

Channel Pid = pid()

Name = string()

Tar get string()

Reason term)

Read the link target from the symbolic link specified by name, likefi |l e: read_l i nk/ 1.

meke_synl i nk(Channel Pi d, Nane, Target) ->
make_sym i nk(Channel Pi d, Nane, Target, Tineout) -> ok | {error, Reason}
Types:

Channel Pid = pid()

Name = string()

Tar get string()

Reason term)

Creates asymboalic link pointing to Tar get with the name Nane, likefi | e: make_symni i nk/ 2.

renane(Channel Pi d, A dNane, NewNane) ->
renanme(Channel Pi d, O dName, NewNane, Tineout) -> ok | {error, Reason}
Types:

Channel Pid = pid()

A dNanme = string()
NewNanme = string()
Ti meout = timeout ()

Reason = term()

Renames afile named O dNane, and givesit the name NewNane, likefi | e: renane/ 2

Ericsson AB. All Rights Reserved.: SSH | 23

ssh_sftp

del et e(Channel Pid, Nane) ->
del et e(Channel Pid, Nanme, Tineout) -> ok | {error, Reason}
Types:

Channel Pid = pid()

Name = string()

Ti mreout = tinmeout ()

Reason = term()

Deletes the file specified by Nane, likefi |l e: del ete/ 1

make dir (Channel Pi d, Nane) ->
make_di r (Channel Pi d, Nane, Tinmeout) -> ok | {error, Reason}
Types:

Channel Pid = pid()

Name = string()

Ti meout = timeout ()

Reason = term()

Creates a directory specified by Nare. Nane should be a full path to a new directory. The directory can only be
created in an existing directory.

del _dir(Channel Pid, Nane) ->
del _dir(Channel Pid, Nane, Tineout) -> ok | {error, Reason}
Types.

Channel Pid = pid()

Name = string()

Ti meout = timeout ()

Reason = term()

Deletes a directory specified by Nane. The directory should be empty.

24 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftpd

ssh_sftpd

Erlang module

Specifies achannel process to handle a sftp subsystem.

COMMON DATA TYPES

subsyst em spec() = {subsyst em nane(), {channel _cal I back(),
channel _init_args()}}

subsystem nane() = "sftp"

channel _cal |l back() = aton{) - Name of the erlang module implementing the subsystem using the
ssh_channel behavior see ssh_channel(3)

channel init_args() = list() - The one given as argunent to function

subsyst em spec/ 1.

Exports

subsystem spec(Opti ons) -> subsystem spec()
Types:

Options = [{Option, Value}]
Should be used together with ssh:daemon/[1,2,3]
Options are:
{cwd, String}

Setstheinitial current working directory for the server.
{file_handl er, CallbackMdul e}

Determines which module to call for communicating with the file server. Default valueisssh_sftpd file
that uses the file and filelib API:s to access the standard OTP file server. This option may be used to plug in the
use of other file servers.

{max_files, Integer}

The default value is 0, which means that there is no upper limit. If supplied, the number of filenames returned to
the sftp client per READDI R request, is limited to at most the given value.

{root, String}

Setsthe sftp root directory. The user will then not be ableto see any filesabovethisroot. If for instancetheroot is
setto/ t mp the user will seethisdirectory as/ and if the user doescd/ et ¢ theuser will endupin/t np/ et c.

Ericsson AB. All Rights Reserved.: SSH | 25

	SSH
	Reference Manual
	ssh
	close/1
	connect/3
	connect/4
	connection_info/2
	daemon/1
	daemon/2
	daemon/3
	shell/1
	shell/2
	shell/3
	start/0
	start/1
	stop/0
	stop_daemon/1
	stop_daemon/2
	stop_listener/1
	stop_listener/2

	ssh_channel
	call/2
	call/3
	cast/2
	enter_loop/1
	init/1
	reply/2
	start/4
	start_link/4
	CallbackModule:code_change/3
	CallbackModule:init/1
	CallbackModule:handle_call/3
	CallbackModule:handle_cast/2
	CallbackModule:handle_msg/2
	CallbackModule:handle_ssh_msg/2
	CallbackModule:terminate/2

	ssh_connection
	adjust_window/3
	close/2
	exec/4
	exit_status/3
	reply_request/4
	send/3
	send/4
	send/4
	send/5
	send_eof/2
	session_channel/2
	session_channel/4
	setenv/5
	shell/2
	subsystem/4

	ssh_sftp
	start_channel/1
	start_channel/2
	start_channel/2
	start_channel/3
	stop_channel/1
	read_file/2
	read_file/3
	write_file/3
	write_file/4
	list_dir/2
	list_dir/3
	open/3
	open/4
	opendir/2
	opendir/3
	close/2
	close/3
	read/3
	read/4
	pread/4
	pread/5
	aread/3
	apread/4
	write/3
	write/4
	pwrite/4
	pwrite/5
	awrite/3
	apwrite/4
	position/3
	position/4
	read_file_info/2
	read_file_info/3
	read_link_info/2
	read_link_info/3
	write_file_info/3
	write_file_info/4
	read_link/2
	read_link/3
	make_symlink/3
	make_symlink/4
	rename/3
	rename/4
	delete/2
	delete/3
	make_dir/2
	make_dir/3
	del_dir/2
	del_dir/3

	ssh_sftpd
	subsystem_spec/1

