The Extended MdF Model

Ulrik Petersen

September 22, 2003

Contents
1 Introduction 2
2 Sequences 2
3 Monads 2
3.1 Introduction L e e 2
3.2 MAX_MONAD e
3.3 MaX_ M . . e e e e e e e e e
34 MIN_M e e
4 Objects 3
4.1 Introduction e 3
4.2 Object_ ms. e e
4.3 Object. dms e
4.4 objectids e e
4.4.1 Objects are notuniqueintheirmonads. 4
442 objectid_d
443 objectid m
4.4.4 linear ordering of objectspertypes. 4
4.4.5 objectordinal,objectid o 5
45 0.monads() e
4.6 Ofirst(),O.dast) e 5
5 Object types 5
6 Features 5
7 Enumerations 5
8 Codomains of features 6

3 MONADS

9 Inst(T,U) 6

10 Conclusion 6

1 Introduction

In this article, | present the Extended MdF model, or the “EMdodel”. It was originally
proposed in [2]. The EMdF model builds on the MdF model as pseg by Crist-Jan Doedens
in his 1994 PhD thesis [1]. For a summary of the MdF model, 8¢e [

The EMdF model arose out of my efforts in implementing the Muabdel. | realized that the
MdF model in itself is too abstract to be directly implemdai¢a Thus | came up with a number
of concepts and distinctions which make it easier to talkudlam implementation. The EMdF
model contains these concepts. Thus the EMdF model dokesdétond adding some useful
concepts to the MdF model. It limits the MdF model in only orspect, namely in restricting
the codomains of features. This was necessary in order tblbé@mimplement the MdF model
in practice.

2 Sequences

In an EMdF implementation, a big part of keeping the inteeth integrity depends on IDs.
For example, objects have ids (“object id_ds”), object sypave ids (“object type_ids”), etc.

In the EMdF model, these IDs are drawn from two sequencesteféns. One sequence is for
generating object id_ds, and the other sequence is forkadk &inds of IDs. Thus, in an EMdF

database, these two sequences are present:

e SEQUENCE_OBJECT ID_DS
e SEQUENCE_OTHER_IDS

These two sequences provide two separate “namespace®rferaging IDs.

3 Monads

3.1 Introduction

The EMdF model has a concept of “largest possible monad_ % i$ called “MAX_MONAD”.
This is distinct from the monad “max_m,” which is the largeginad present in any object in a
particular database.

3.2 MAX_MONAD 4 OBJECTS

3.2 MAX_MONAD

In order to be implementable, the EMdF model introduces thecept of “largest possible
monad_m”. This is an integer called “MAX_MONAD”. In any gineémplementation, this
integer can be chosen arbitrarily large, only limited by twtee underlying implementation-
primitives allow.

3.3 max_m

Each database has a monad called max_m. It is the largesdnmtize database in the sense
that it is the last monad of the object(s) in the databaseektahd(s) farthest upwards into the
monad sequence. Thus max_m is a particular monad in a dartdatabase which is the largest
monad in use.

3.4 min_m

By anaology, each database has a monad called min_m. It ssrthest monad in the database
in that it is the first monad of the object(s) in the databas¢ ¢xtend(s) farthest downwards in
the monad sequence. Thus min_m is a particular monad in eydartdatabase which is the

smallest monad in use.

4 Objects

4.1 Introduction

The EMdF model makes a distinction between “objects in tharabt”, called “object_ms”,
and “objects in an implementation”, called “object_dms’heTfirst two sections deal with this
distinction.

In the EMdF model, objects are no longer unique in their menathis has a number of
ramifications for object ids. The third section deals witis iBsue.

In the last two sections, some notation is introduced foessing the monad information in
an object.

4.2 Object_ms

In order to be able to distinguish between “objects in thérabs and “objects in an implemen-
tation”, | have renamed the old notion of objects to “objact. Thus an object_m is exactly the
same as what Doedens calls an “object”.

4.3 Object_dms

An object_dm is an object_m that has been concretely inatedtin a concrete EMdF database.

4.4 objectids 4 OBJECTS

The special object types all_m, pow_m, and any_m, do not lhayeobject_dms in the
database, since these object types are not meant for storamgMdF database.

4.4 objectids

4.4.1 Objects are not unique in their monads

The MdF model stipulates that,

“No two objects of the same type may consist of the same sebobwls. The reason
for this restriction is that it allows us a simple and cleatrecion for what different
objects are.” ([1, page 59])

In the EMdF model, this restriction has been done away witistelad, each object is given a
unique ID, its “object id_d.” Doing away with this restrioti also has ramifications for object
id_ms, and for the linear ordering of objects per type. Olpedinals and object id_os are not
changed, however.

4.4.2 objectid_d

An object id_d is an integer which functions as a unique dbgantifier. Only object_dms have
object id_ds. Objects of the special object types, all_my po, and any_m, do not have an
object id_d.

Notation: For the object_dn®, O.id denotes its object id_d.

4.4.3 objectid_m

The Objectid_m’s are not redefined in the EMdF model. Howeaviernecessary to realize that,
since objects are no longer unique in their monads, the tidjem need not be an id for any other
object types than the special object types all_m, any_mpamd m. Thus object id_m’s should
only be used for these types. For application-specific alygaes, the concept of object id_m
has been supplanted by the concept of object id_d.

4.4.4 linear ordering of objects per types

The concept of linear ordering of objects per type has hacteetifined slightly in the EMdF
model. The reason is that the objects_dm’s are no longewuanig their monads. Thus the
concept of linear ordering per type is now defined as follows.

Take an object typ& and two objects of typ&’, O, andO:

1. If O; andO, do not have the same monads, then linear ordering is decgedtlae MdF
model.

2. If O; andO, have the same monads, then<y O, iff Oy.id < Os.id.

4.5 O.monads() 7 ENUMERATIONS

4.4.5 object ordinal, objectid_o

The concepts of object ordinal and of object id_o from the Naddel are not changed in the
EMdF model. They are still based on the linear ordering oéotgj per type.

4.5 0O.monads()

In the EMdF model, each object (both object_dms and objes} have a functionmonads
which returns the set of monad_ms making up the object.

Notation: The function is denoted®.monads()” for the objeab.

4.6 O.first(), O.last()

In the EMdF model, each object (both object_dms and objes} hawve two functiondjrst and
last, which return the left border and the right border respetyiv

Notation: These functions are denote@first()” and “O.last()” for the objecO.

5 Object types

The only addition that the EMdF model makes to the MdF modghur@ding object types is that
each object type is identified in the database by a uniqugentéhe ‘Object type_id". This id
is drawn from the sequence “SEQUENCE_OTHER_IDS”, see@e&ion page 2.

6 Features

The only addition that the EMdF model makes to the MdF modgmeing features is that each
feature is identified in the database by a unique integef,fédsure_id". This id is drawn from
the sequence “SEQUENCE_OTHER _IDS”, see section 2 on page 2.

7 Enumerations

The EMdF model explicitly includes the type “enumeratiomthe set of codomains that a feature
can take on. An enumeration is a named set of pairs (identifédue), where the identifier
“stands for” the value. Thus, for example, one could havddhewing enumeration:

psp_t = { psp_NotAppliccable = -1, verb = 1, noun, proper_noun,
adverb, preposition, conjunction, personal _pronoun,
denonstrative_pronoun, interrogative_pronoun,
interjection, negative_particle, interrogative,
adj ective }

REFERENCES

This enumeration would be called “psp_t", and its constawaufh” would have the value “2”,
while its constant “conjunction” would have the value “6”.

Each enumeration has aerfum_id’. This is a unique integer drawn from the sequence
“SEQUENCE_OTHER_IDS", see section 2 on page 2.

Each enumeration always has one enumeration constant vghiot default. This default is
used when the user creates an object without specifyingahe of a feature whose codomain
is an enumeration. In the absence of a user-specified vaiegfault constant is used.

8 Codomains of features

In order to be implementable in practice, the EMdF model peggictions on what the codomains
of features can be. In particular, only the following foue atlowed:

1. integers
2. strings
3. objectid_ds

4. enumerations

9 Inst(T,U)

In the EMdF model, a big part of the implementation of the MQlery language relies on a
special function, inst(T,U). This function returns, for izen object type T, the object id_ds of
all the objects which are part_of the arbitrary set of momasiU.

10 Conclusion

| have presented the Extended MdF, or EMdF, model. The EMdéfefrttas added to the MdF
model a number of concepts that are useful in implementiagtdF model. The EMdF model
mostly adds to the MdF model, and in only one case does iicete MdF model, namely in
what the codomains of features can be. The EMdF model isrdos® implementation than the
MdF model by itself. This is its main benefit.

References

[1] Doedens, Crist-Jan [Christianus Franciscus Joanmeg]Databases. One Database Model
and Several Retrieval Languages. Language and Computers, Number 14. Amsterdam and
Atlanta, GA: Editions Rodopi Amsterdam, 1994. ISBN: 90-31&9-1.

REFERENCES REFERENCES

[2] Petersen, UlrikThe Extended MdF Model. Unpublished B.Sc. thesis from the University
of Aarhus, Denmark. November 30, 1999. Electronic copieslavle upon request from
the author aul ri kp@user s. sour cef or ge. net .

[3] Petersen, UlrikThe Sandard MdF model. Unpublished article. 2002. Electronic copies
available from http://emdros.org/docs.html

