Monad Sets —
Implementation and Mathematical Foundations

Ulrik Petersen

July 31, 2002

Contents
1 Introduction 1
2 Monad Set Elements 2
3 Monad Sets 2
3.1 Introduction e e 2
3.2 Invariant L e e e 2
4 Operationson monad sets 3
5 Relationshipsbetween M SEs 3
A Proof of the uniqueness of monad sets 4
Al Introduction e e e e e e 4
A2 Proposition: e 4
A3 Proof: . . . e 4
A.3.1 BaSE CaSE. e e e 4
A3.2 Inductionstep. 6
A.3.3 Conclusion 7

1 Introduction

This document describes one efficient way of implementibirary sets of monads. This way is used in
the implementation of Emdros. This document is meant botindatroduction to the Emdros implemen-
tation of monad sets, and as a point of departure if you negdgtement sets of monads yourself.

Itis likely that you will need at least a basic implementatad sets of monads if you are using Emdros.
If you are using C++, you can use the implementation providetle EMdF library. If you are not using
C++, first check to see whether there are any easy ways of ingrigng monad sets using some pre-
existing library for your language, and that this easy wagtmgour requirements. If not, then you may
consider implementing monad sets in the language you ang.uBiyou do, please consider contributing
your code to the Emdros code base so that others may benefit.

We start in section 2 by defining and motivating the “Monad Blement” or “mse.” This is a basic
building block in the way of implementing sets of monads whidescribed in this document.

In section 3 we describe how to build sets of monads from mses.

In section 4 we describe a number of operations which it isralele to have on monad sets. Most of
these are implemented in the Emdros C++ implementationpaa@gn draw inspiration from there.

Then, in section 5 we describe six ways that MSEs can standdlationship to each other. These six
ways turn out to be handy distinctions when implementing atogets.

Finally, in an appendix, we give a formal proof that for anyadatructure which obeys the invariants
set down in sections 2 and 3, there is one and only one repatieenof each distinct set of monads, in
other words, the representation is unique.

2 Monad Set Elements

A monad set element (or Monad_Set_Element or MSE or mse) @&@raopintegers (or monads), called
“first” and “last.” The intended interpretation is that itrdees the range first..last. That is, it denotes a set
of monads which includes every monad in the sequence ofalatumbers starting at first and ending at
last, with the two endpoints included.

The invariant is that firs& last. Thus last is never smaller than first, but may be equal Tthe latter
means that the mse denotes a singleton set (i.e., a set vijtbroemmonad in it).

The first and last attributes of a Monad_Set Element mse eacdessed as mse.first and mse.last.

3 Monad Sets

3.1 Introduction

From monad set elements, we build monad sets. We do this maswuay that the representation of any
given set of monads is unique.

The monad set is seen as a list of monad set elements. Thedistéred. It may be a vector or a linked
list. In the following, we describe the monad set as thoughuhderlying data-structure were a vector. If
many set-theoretic operations are to be performed on théhsetit is probably better to implement it as a
linked list into which we can easily insert elements and taleen out again. For space-efficiency, an array
of monad set elements would probably be better.

There is an invariant on the list/vector/array of monad $&ents. This invariant is responsible for
most of the elegance of the implementation, as well as foruthigueness property. We describe this
invariant next.

3.2 Invariant

There is the following invariant on the Monad_Set_Elensesithred in the vector:
For all Monad_Set_Elements mse in the vector, it is the deate t

1. Either

(a) Its predecessor prev is empty (i.e., is not there), OR
(b) prev.last+1 < mse.first,

2. AND either

(a) Its successor succ is empty (i.e., is not there), OR
(b) mse.last+1 < succ.first

This means:

v mse IN vector: { prev before mse: prev.last+1 < mse.firgt {v succ after mse: mse.last + 1 <
succ.first)

Here the two nested for-all quantifiers take care of 1(a) dayit®/ being vacuously true when prev and
succ are not there.
This mathematical predicate captures these two intuitions

1. All Monad_Set_Elements ameaximal, in the sense that they extend as far as they can without
violating the other intuition, which is that

2. The Monad_Set_Elements aarted in such a way that, for any two Monad_Set_Element’s A and
B, where A is the direct predecessor of B,

A.last < B.first
which can be strengthened, by intuition 1., to:
A.last + 1 < B.first

which means that there is at least one monad in between eacadvi8et_Element.

4 QOperationson monad sets

Here is a list of operations on monad sets which are desitalblave:
1. Set-theoretic union of two monad sets.
Set-theoretic difference between two monad sets.

Set-theoretic intersection of two monad sets. Travegsdiing each monad set element in turn.

L

Whether a monad set element is part_of another. The gaglation is another name for the set
inclusion operatorc.

Addition of MSE (which can be split into the two cases of @idst, last) and add(singleton)).
. Set-theoretic equality (whether two sets of monads ameticial).
. Whether a monad is a member of a set of monads.

. Whether a gap exists in a set of monads starting at a giverado

© ® N o O

. What the next monad after a given monad is in a set of moifasy. That is, either the next in the
monad sequence or the first monad after a gap, or none if welaaing at the last monad of the
set.

Most of these are implemented in the Emdros source code, s@amw get inspiration from there. You
may not need all of these, and 1-3 are available through thé& M@guage, so if performance is not of
concern, you can use the MQL language rather than implengetitese yourself. It stands to reason that
processor-power will be faster in this case than callinghggMQL engine with a query and parsing the
output.

5 Reationships between M SEs

The implementation of monad sets in Emdros takes advantatie dact that any two MSEs can stand
in one and only one of precisely six different relationshipssach other. There are other conceivable
relationships, but these six are what seem to be relevang sibhrelationships are also orthogonal to
each other, meaning that they are mutually exclusive. Theetationships are depicted in figure 1 on the
following page.

You may want to use these distinctions, too, if you implemmahad sets.

MSE- Rel at i onshi ps. eps

The two monad set elements, A and B, can stand in six diffestationships to each other. The relation-
ships are:
1. Alast < B.first

. Afirst < B.first AND A.last >= B.first AND A.last <= B.last
. Afirst >= B.first AND A.last <= B.last

2
3
4. Afirst >= B.first AND A.first <= B.last AND A.last > B.last
5. Alfirst> B.last

6

. Afirst < B.first AND A.last > B.last

Figure 1: Ranges of monads and their interrelationships

A Proof of the uniqueness of monad sets

A.1 Introduction

We will give a detailed proof that two sets of monads are igahtf and only if their representations are
identical. The proof rests on the invariant.
Thus the representation of a given set is a unique reprdsmTiathere is only one.

A.2 Proposition:

Any two Set_of _monad_ms represent the same set of monadf amd only if their monad_ms vectors
are identical.

A.3 Proof:

Take two Set_of _monad_ms’'s A'and B'. Let A be an mse-veapresenting A and let B be an mse-vector
representing B'.
“if”: Assume that the two vectors A and B are identical. Thbeayt trivially represent the same set.
“only if:* Assume that the two vectors represent the same 8t will now prove that the vectors are
identical. The proof works by induction on the subscriptraper i.

A.3.1 Basecase:

i=0.

To prove: AJ0] = BJO0].

Let mseA = A[0] and mseB = BJ0Q].

Since the two sets are identical, certainly mseA.first ==Brfasst, since this is the first monad of the
sets. However, it is also the case that mseA.last == mseéBWaswill now see why.

There are two cases. Either there is only one mse in the vA¢tarthere is more than one.

Suppose there is only one mse in A. Then there is also only meamB, and mseA.last == mseB.last.
To see this, consider the following: A’ is not empty, sincerthis one mse mseA representing A'. Since the
set of natural numbers is well-formed, and since A’ is norpgmA’ has both a lower bound and an upper
bound. The lower bound is mseA.first and the upper bound iAfesst. If there is only one mse mseA
in A, then Al is a single contiguous stretch of monads. Sinteri B’ are identical, B’ also consists of a
single contiguous stretch of monads. By the invariant, tilg way a single contiguous stretch of monads
can be represented is with one mse. Otherwise, there wouddtbde two or more mse’s representing the
contiguous stretch of monads, but there is always at leastrmmad in between each mse. Therefore, the
only way a single contiguous stretch of monads can be repiedés with one mse. Since mseA first ==
mseB.first, and since the two single contiguous stretchesooiads are identical, it follows that mseA.last
== mseB.last. Hence, if there is only one mse mseA in A, theretlvill be only one mseB in B, and mseA
== mseB.

The other case is when there is more than one mse in A. Asswerefdie that there is more than one
mse in A. Then, since we have proved uniqueness when therdyisone mse in A, there must also be
more than one mse in B. In particular, A[0+1] = A[1] and B[0O+1B[1] will exist.

Let mseA = A[0+1] and mseB’ = B[0+1].

Now, since the invariant holds, it is the case that

mseA.last + 1 < mseAfirst.

Itis also the case that
mseB.last + 1 < mseB' first.

Assume for the sake of contradiction that mseA fashseB.last. Assume Without Loss of Generality
that mseA.last > mseB.last. Then there must be at least onadm in the set A’ represented by A that is
not in the set B’ represented by B. (Note: This is not a rengrfriom the presentation of the proof above:
Itis the same A and B’!) Next, we will see why.

There is at least one monad m = mseB.last+1 which is not in Bvhigh is in A. To see this, note that,
first, m cannot be in B’, since

mseB.last+1 = m < mseB’ first.
Second, note that, since
mseA.last > mseB.last,
m is in A, since the preceding inequality is equivalent to
mseA.last >= mseB.last+1

but

mseB.last+1 = m >= mseB.first

and

mseB.first = mseA.first

Thus mis in A, since it is between mseA.last and mseA.firshc& we have now proved that there
is a monad m in A" which is not in B’, we have a contradictiontwiiur assumption that the two sets are
identical.

Thus, there is a contradiction. Our assumption that msefd4amseB.last must therefore be false.
Therefore, mseA.last = mseB.last. Thus the base case holds.

A.3.2 Induction step
Assume that mseA = A[i] and mseB’ = B[i] are identical. Sgiezally, the following holds:

mseA' first = mseB’.firstA mseA'.last = mseB’.last

We wish to prove that mseA = A[i+1] and mseB = BJ[i+1] are ideati
First, we prove that mseA.first = mseB.first. Second, we pthaemseA.last = mseB.last.
To see that mseA .first = mseB.first, assume for the sake ofamtintion that

mseA . first£ mseB.last.
Assume Without Loss of Generality that
mseA.first < mseB.first.
Then there must be at least one monad
m = mseA first

which is in the set A represented by A, but which is not in tle¢ B’ represented by B. To see this,
note first that m is in A'. Second, note that m cannot be in B’ byue of being in mseB. Note also that m
cannot be in B’ by virtue of being in mseB’, because of the ag#ion that

mseB’.last = mseA'.last.

Since mis clearly notin B, mis in the set A’ represented by bot in the set B’ represented by B.
Since the two sets of monad_m’s are assumed to be the samaywra bontradiction. Thus our assumption
is false that mseA.firs¢ mseB.first, and thus it is true that

mseA.first = mseB.first.
Second, we prove that

mseA.last = mseB.last.
Assume, for the sake of contradiction, that

mseA.last~ mseB.last.
Assume, Without Loss of Generality, that

mseA.last > mseB.last.

Then there is at least one monad, m = mseB.last + 1, which ieisdt A represented by A but which
is not in the set B’ represented by B.

To see this, note that if i+1 points to the last element in Bntbertainly there is a contradiction, since
then the last monad in the set represented by A is not in theepe¢sented by B, since the vectors are
sorted and mseA.last > mseB.last.

Assume, therefore, that mseB” = B[i+2] exists. Then, by thariant,

mseB.last + 1 = m < mseB”.first.

Note that this means that m is not in the set represented bin& # “falls between two chairs” or,

rather, two Monad_set_elements.
Note also that m is in the set A represented by A, since

mseA.last > mseB.last

which is equivalent to

mseA.last> m = mseB.last + 1 > mseB.first = mseA first.

Thus, mis in the set A represented by A, but not in the set Bresented by B, so the two sets are not
identical, which we assumed. Therefore, there is a corttiadi, and it is therefore false that mseA.l&st
mseB.last. Therefore, it is true that mseA.last = mseB.last

We have thus proved the induction step.

A.3.3 Conclusion

We have thus proved that, if the sets represented by two ngeictdwo Set_of _monad_ms’s are identical,
then the vectors will be identical.
We have thus proved the proposition.

