
Relational Implementation of
EMdF and MQL

Ulrik Petersen

October 8, 2007

1

Copyright (C) 2001-2007 Ulrik Petersen
This document is made available under the Creative Commons Attribution-
Sharealike license version 2.5.

See

http://creativecommons.org/licenses/by-sa/2.5/

for what that means.

Please visit the Emdros website for the latest news and downloads:

http://emdros.org

Abstract

In this report, I document some of my ideas on implementing the EMdF model in an RDBMS.
The emphasis is on showing how the data domains of the EMdF model can be implemented in
tables, using SQL2. It documents Emdros version 1.2.0.pre169.

In chapter 1, I give some preliminaries, including conventions used in this document. In
chapter 2, I show how to implement the meta-data of the EMdF model in an RDBMS. In chapter
3, I show how to implement the objects in the EMdF model. In chapter 4, I show the way in
which all of the commands of the full MQL access language translate into SQL statements.

Contents

1 Preliminaries 6
1.1 Introduction .. 6
1.2 Assumptions on the implementation 6

1.2.1 The three sequences of ids .. 6
1.2.2 All names are stored as lower-case 6

1.3 Conventions used .. 7

2 Meta-data 8
2.1 Introduction .. 8
2.2 schema_version .. 9

2.2.1 SQL template . 9
2.2.2 Explanation . 9
2.2.3 Example . 9

2.3 sequence_0, sequence_1, and sequence_2 9
2.3.1 SQL template . 9
2.3.2 Explanation . 10
2.3.3 Example . 10

2.4 enumerations .10
2.4.1 SQL template . 10
2.4.2 Explanation . 10
2.4.3 Example . 11

2.5 enumeration_constants 11
2.5.1 SQL template . 11
2.5.2 Explanation . 11
2.5.3 Example . 13

2.6 object_types .. 13
2.6.1 SQL template . 13
2.6.2 Explanation . 13
2.6.3 Example . 13

2.7 features . 14
2.7.1 SQL template . 14
2.7.2 Explanation . 14
2.7.3 Example . 15

1

CONTENTS 2

2.8 min_m . 15
2.8.1 SQL template . 15
2.8.2 Explanation . 16
2.8.3 Example . 16

2.9 max_m . 16
2.9.1 SQL template . 16
2.9.2 Explanation . 17
2.9.3 Example . 17

2.10 monad sets . 17
2.10.1 SQL template . 17
2.10.2 Explanation . 17
2.10.3 Example . 17

3 Object_dm data 19
3.1 Introduction .. 19
3.2 OT_objects . 20

3.2.1 SQL template . 20
3.2.2 Explanation . 20
3.2.3 Example . 21

3.3 Monad set encoding .. 21
3.4 OT_mdf_FEATURE_NAME_set .. 22

3.4.1 SQL template . 22
3.4.2 Explanation . 23
3.4.3 Example . 23

4 Implementing the MQL commands 24
4.1 Introduction .. 24
4.2 Database manipulation 24

4.2.1 CREATE DATABASE . 24
4.2.2 USE DATABASE . 26
4.2.3 DROP DATABASE . 27

4.3 Object type manipulation 28
4.3.1 CREATE OBJECT TYPE . 28
4.3.2 UPDATE OBJECT TYPE . 30
4.3.3 DROP OBJECT TYPE . 31

4.4 Enumeration manipulation 32
4.4.1 CREATE ENUMERATION . 32
4.4.2 UPDATE ENUMERATION . 33
4.4.3 DROP ENUMERATION . 35

4.5 Segment manipulation .. . 36
4.5.1 CREATE SEGMENT . 36

4.6 Querying . 37
4.6.1 SELECT OBJECTS . 37

CONTENTS 3

4.6.2 SELECT OBJECTS AT . 38
4.6.3 SELECT OBJECT TYPES . 38
4.6.4 SELECT FEATURES . 39
4.6.5 SELECT ENUMERATIONS . 40
4.6.6 SELECT ENUMERATION CONSTANTS 40
4.6.7 SELECT OBJECT TYPES USING ENUMERATION 41

4.7 Object manipulation 42
4.7.1 CREATE OBJECT FROM MONADS 42
4.7.2 CREATE OBJECT FROM ID_DS . 43
4.7.3 CREATE OBJECT FROM (focus | all |) QUERY44
4.7.4 UPDATE OBJECTS BY MONADS . 45
4.7.5 UPDATE OBJECTS BY ID_DS . 46
4.7.6 UPDATE OBJECTS BY (focus | all |) QUERY47
4.7.7 DELETE OBJECTS BY MONADS . 48
4.7.8 DELETE OBJECTS BY ID_DS . 48
4.7.9 DELETE OBJECTS BY (focus | all |) QUERY49

4.8 Feature manipulation 50
4.8.1 GET FEATURES . 50

A Copying this document 51
A.1 Introduction .. 51
A.2 Creative Commons Deed (for all documentation) 51

List of Tables

2.1 enumeration_constants example 12
2.2 Bit-set flags for object_types table 13
2.3 Bit-set flags for object_types table 13
2.4 object_types example 14
2.5 Feature type ids for standard atomic types 15
2.6 Feature type flags for standard atomic types 15
2.7 Examples of features. Note how the feature_type_id has the value of 1 for strings

(see table 2.5). 16
2.8 Example of min_m . 16
2.9 Example of min_m . 17

3.1 SQL types corresponding to EMdF types 21
3.2 Example of OT_Objects (Phrase_Objects) 21

4

List of Figures

5

Chapter 1

Preliminaries

1.1 Introduction

In this report, it is my aim to succinctly describe most of my ideas on how to implement the
EMdF model in a Relational Database Management System, using a subset of SQL2.

The data is split into two neatly segregated kinds of data:

• meta-data and

• object_dm data.

The meta-data maintains information about object types, enumerations, and sequences of ids.
The object_dm data is made on a per-object type basis. The structure of this report reflects this
segregation: chapter 2 deals with meta-data, whereas chapter 3 deals with object_dm data.

Chapter 4 details how to implement all of the MQL statements using SQL2.
In this chapter, I give some preliminaries.

1.2 Assumptions on the implementation

1.2.1 The three sequences of ids

Three sequences of ids are assumed to exist in each EMdF database: One sequence for assigning
object id_ds, one sequence for assigning type ids (object type ids, enumeration type ids, and
feature type ids), and one for everything else (see section 2.3).

When autogenerating an id from a given sequence, we read the number of the relevant se-
quence from this table, and update the tuple with this value plus one, ready for next time we need
an autogenerated id.

1.2.2 All names are stored as lower-case

The names of all object types, enumerations, and features are stored as all-lower-case. This
makes it easy to search for them later. However, enumerationconstants are case-sensitive, so

6

CHAPTER 1. PRELIMINARIES 7

they are not stored lower-case.

1.3 Conventions used

I employ a number of conventions in this document:

1. Throughout, the shorthand “OT” is used to mean “Object Type.” This is especially impor-
tant in SQL templates.

2. When referring to tables in the text, the tables are in the modern typeface, and are enclosed
in “double quotes.”

3. When referring to table attributes in the text, the attributes are in the typewriter typeface,
and are enclosed in “double quotes”

4. In SQL code, anything enclosed in { curly braces } is meant to be replaced with a value de-
scribed within the curly braces. E.g., “SET is_true = { 0 | 1 }”means that, when executing
the SQL code, the value used to set “is_true” must be either “0” or “1”.

5. Throughout, examples of table data are given. Where ids are involved, the ids are meant to
be consistent throughout this document, so that you should be able to follow the references
to the right tuples.

Chapter 2

Meta-data

2.1 Introduction

This chapter, I detail all of the tables necessary for maintaining the meta-data in the EMdF
database. For each table, I write on three subjects:

1. An SQL template for creating the table,

2. An explanation, including a rationale, and

3. An example, to show the theory in practice.

The following tables are needed for storing meta-data:

• schema_version

• database_metadata

• sequence_0

• sequence_1

• sequence_2

• enumerations

• enumeration_constants

• object_types

• features

• min_m

• max_m

8

CHAPTER 2. META-DATA 9

• monad_sets

• OT_objects

These will be described in turn below.

2.2 schema_version

2.2.1 SQL template

CREATE TABLE schema_version (
dummy_id INTEGER PRIMARY KEY NOT NULL,
schema_version INT NOT NULL

);

2.2.2 Explanation

This table contains, in numerical form, the version of the schema in use. The values are defined
in emdf.h in the sources. This was added in version 1.2.0.pre59. The dummy_id is always 0, and
there is always exactly one row in the table.

2.2.3 Example

The table looks like this:
dummy_id schema_version

0 5

2.3 sequence_0, sequence_1, and sequence_2

2.3.1 SQL template

CREATE TABLE sequence_0 (
sequence_id INTEGER PRIMARY KEY NOT NULL,
sequence_value INT NOT NULL

);
CREATE TABLE sequence_1 (

sequence_id INTEGER PRIMARY KEY NOT NULL,
sequence_value INT NOT NULL

);
CREATE TABLE sequence_2 (

sequence_id INTEGER PRIMARY KEY NOT NULL,
sequence_value INT NOT NULL

);

CHAPTER 2. META-DATA 10

2.3.2 Explanation

These tables are for maintaining information on the three sequences of ids that must exist in an
EMdF database. See section 1.2.1 for background information.

The “sequence_id” attribute is meant to take on one of the following two values:

Value C/C++ preprocessor #DEFINE Meaning

0 SEQUENCE_OBJECT_ID_DSThe sequence is for object id_ds
1 SEQUENCE_TYPE_IDS The sequence for object type ids, enumeration type ids, and feature
2 SEQUENCE_OTHER_IDS The sequence is for all other ids

The “sequence_value” attribute then lists the value of the next id to be taken for that
sequence.

All three must be initialized to 1. However, when drawing from SEQUENCE_TYPE_IDs,
the actual value will be shift-lefted SEQUENCE_TYPE_IDS_FREE_LOWER_BITS. This is
currently 16, meaning that the seuqence can in reality only go as far as 2^15 (32768) before
wrapping around into negative numbers.

NOTE: This may be implemented differently for each backend.

2.3.3 Example

The tables should look like this right after initializationof the database:

sequence_id sequence_value

0 1

sequence_id sequence_value

1 1

sequence_id sequence_value

2 1

2.4 enumerations

2.4.1 SQL template

CREATE TABLE enumerations (
enum_id INTEGER PRIMARY KEY NOT NULL,
enum_name VARCHAR(255) NOT NULL

);

2.4.2 Explanation

This table is the master table for the data domain of enumerations. It lists, for each enumeration in
the database, its enum_id and its human-readable name. Another table, “enumeration_constants,”
then lists all of the constants for each enumeration type.

CHAPTER 2. META-DATA 11

The “enum_id” attribute is taken from the “sequence_1” table, i.e., fromthe SEQUENCE_TYPE_IDS
sequence.

The “enum_name” attribute is what the user entered when creating the enumeration.

2.4.3 Example

As an example, the following enumerations might be defined:

enum_id enum_name

65536 phrase_type_t
131072 part_of_speech_t
983040 clause_type_t

...
...

2.5 enumeration_constants

2.5.1 SQL template

CREATE TABLE enumeration_constants (
enum_id INT NOT NULL,
enum_value_name VARCHAR(255) NOT NULL,
value INT NOT NULL,
is_default CHAR(1) NOT NULL,
PRIMARY KEY (enum_id, enum_value_name)

);

2.5.2 Explanation

This table lists, for each enumeration specified in the table“enumerations,” data pertaining to all
of the constants in the enumeration:

• The enum_id (see below).

• The human-readable name of the constant (“enum_value_name”),

• The value itself (“value”), and

• A boolean specifying whether this is the default or not (“is_default”). The only valid
values for this attribute are ’Y’ and ’N’.

The enum_ids are drawn from SEQUENCE_TYPE_IDS, but of course shift-lefted as explained
in Section 2.3 which starts on page 9.

CHAPTER 2. META-DATA 12

enum_id enum_value_name value default_value

65536 ptNotAppliccable -1 ’Y’
65536 VP 1 ’N’
65536 NP 2 ’N’
65536 NPpers 3 ’N’

...
...

...
...

131072 pspNotAppliccable -1 ’Y’
131072 psp_article 0 ’N’
131072 psp_verb 1 ’N’
131072 psp_noun 2 ’N’
131072 psp_proper_noun 3 ’N’
131072 psp_adverb 4 ’N’

...
...

...
...

196608 prsNotAppliccable -1 ’Y’
196608 prs_singular 1 ’N’
196608 prs_dual 2 ’N’
196608 prs_plural 3 ’N’

...
...

...
...

262144 gndNotAppliccable -1 ’Y’
262144 gnd_masculine 1 ’N’
262144 gnd_feminine 2 ’N’

...
...

...
...

983040 ct_Way0 1 ’N’
983040 ct_Xqtl 2 ’N’

...
...

...
...

Table 2.1: enumeration_constants example

CHAPTER 2. META-DATA 13

#define value meaning

OT_RANGE_MASK 0x00000007 Bit-mask for these values
OT_WITH_MULTIPLE_RANGE_OBJECTS 0x00000000 Object type has multiple-range objects
OT_WITH_SINGLE_RANGE_OBJECTS 0x00000001 Object type has single-range objects
OT_WITH_SINGLE_MONAD_OBJECTS 0x00000002 Object type has single-monad objects

Table 2.2: Bit-set flags for object_types table

#define value meaning

OT_MONAD_UNIQUENESS_MASK 0x00000078 Bit-mask for these values
OT_WITHOUT_UNIQUE_MONADS 0x00000000 Monads may not be unique
OT_HAVING_UNIQUE_FIRST_MONADS 0x00000008 All first monads are unique
OT_HAVING_UNIQUE_FIRST_AND_LAST_MONADS 0x00000010 All first and last monads are unique

Table 2.3: Bit-set flags for object_types table

2.5.3 Example

For the two enumerations defined in the previous section, thevalues in table 2.1 might be defined.

2.6 object_types

2.6.1 SQL template

CREATE TABLE object_types (
object_type_id INTEGER PRIMARY KEY NOT NULL,
object_type_name VARCHAR(255) NOT NULL,
object_type_flags INT NOT NULL

);

2.6.2 Explanation

This table is the master table for object types. It stores, for each object type, its id, its human-
readable name, and an “INT”-encoded set of integers of flags.The id is autogenerated, upon cre-
ation of the object type, from the “sequence_1” table, i.e.,using the “SEQUENCES_TYPE_IDS”
sequence. The flags are taken from Tables 2.2 and 2.3. Note that the flags in Table 2.2 are not
bitfield flags, but form a three-bit integer. The same is true for the flags in Table 2.3.

2.6.3 Example

Table 2.4 shows some sample object types.

CHAPTER 2. META-DATA 14

type_id type_name object_type_flags

327680 Word 0x00000001
851968 Phrase 0x0
1048576 Clause 0x0

...
...

...

Table 2.4: object_types example

2.7 features

2.7.1 SQL template

CREATE TABLE features (
object_type_id INT NOT NULL,
feature_name VARCHAR(255) NOT NULL,
feature_type_id INT NOT NULL,
default_value VARCHAR(1000) NOT NULL,
computed CHAR(1) NOT NULL DEFAULT ’N’,
PRIMARY KEY (object_type_id, feature_name)

);

2.7.2 Explanation

This table is analogous to the “enumeration_constants” table. It lists, for each feature:

1. The object type id denoting the object type with which thisfeature is associated (“object_type_id”),

2. The feature name in human-readable form (“feature_name”),

3. A feature type id (“feature_type_id”). More on this in a moment,

4. A string representing the default value (“default_value”), and

5. A one-CHAR boolean indicating whether the feature is computed (’Y’) or stored (’N’)
(“computed”).

The attribute “object_type_id” references the “object_type_id” attribute of the “ob-
ject_types” table.

The attribute “feature_type_id” can take on values from the following two sources:

1. For standard atomic types, the value will be composite: A bitwise OR of one of the values
described in table 2.5 and possibly one of the values described in table 2.6. Note that of the
standard atomic types, only INTEGER and ID_D can have the FEATURE_TYPE_LIST_OF
bit set.

CHAPTER 2. META-DATA 15

2. For enumerations, the value will be any value from the “enum_id” attribute of the “enu-
merations” table, and with the FEATURE_TYPE_ENUM #define from table 2.5 bitwise-
OR’ed in. Thus

Only FEATURE_TYPE_STRING and FEATURE_TYPE_ASCII can havethe FEATURE_TYPE_AS_SET
bit set. If set, there is an additional table, OT_mdf_FEATURE_NAME_set (described in Sec-
tion 3.4 on page 22), which holds the strings as well as an id_d. Then this id_d is used in
OT_objects in lieu of the string. This is more compact, and may give a speed increase.

Only the standard atomic types (not enumerations) may have the FEATURE_TYPE_WITH_INDEX
bit set. If set, the EMdF layer will put an index on the feature. The index may be dropped again
with the DROP INDEXES MQL statement, or with the external manage_indices(1) program.
However, this bit will not be cleared by such operations. It stays there and tells the EMdF layer
to add the index to the feature if a CREATE INDEXES MQL statement is issued for the object
type, or if manage_indices(1) is invoked to create indexes on the object type.

value C/C++ preprocessor #DEFINE SQL-type in object tables

0 FEATURE_TYPE_INTEGER INT
1 FEATURE_TYPE_STRING TEXT
2 FEATURE_TYPE_ASCII TEXT
3 FEATURE_TYPE_ID_D INT
4 FEATURE_TYPE_ENUM INT
8 FEATURE_TYPE_LIST_OF_INTEGER TEXT
11 FEATURE_TYPE_LIST_OF_ID_D TEXT
12 FEATURE_TYPE_LIST_OF_ENUM TEXT

Table 2.5: Feature type ids for standard atomic types

2.7.3 Example

Examples of features are given in table 2.7.

2.8 min_m

2.8.1 SQL template

CREATE TABLE min_m (

value C/C++ preprocessor #define Meaning

(0x00000100L) FEATURE_TYPE_WITH_INDEX If set, the feature is indexed
(0x00000200L) FEATURE_TYPE_FROM_SET If set, the feature’s value is drawn from a set

Table 2.6: Feature type flags for standard atomic types

CHAPTER 2. META-DATA 16

object_type_id feature_name feature_type_id default_value computed

327680 psp 131072 pspNotAppliccable ’N’
327680 person 196608 prsNotAppliccable ’N’
327680 gender 262144 gndNotAppliccable ’N’
327680 surface 1 “” ’N’
327680 lexeme 1 “” ’N’

...
...

... ’N’
851968 phrase_type 65536 pt_NotAppliccable ’N’

...
...

... ’N’
1048576 clause_type 983040 ctWay0 ’N’

Table 2.7: Examples of features. Note how the feature_type_id has the value of 1 for strings (see
table 2.5).

dummy_id INTEGER PRIMARY KEY NOT NULL,
min_m INT NOT NULL

);

2.8.2 Explanation

This table stores the smallest monad in the database. dummy_id is always 0.

2.8.3 Example

An example is given in table 2.8.

dummy_id min_m

0 1

Table 2.8: Example of min_m

2.9 max_m

2.9.1 SQL template

CREATE TABLE max_m (
dummy_id INTEGER PRIMARY KEY NOT NULL,
max_m INT NOT NULL

);

CHAPTER 2. META-DATA 17

2.9.2 Explanation

This table stores the largest monad in the database. dummy_id is always 0.

2.9.3 Example

An example is given in table 2.9.

dummy_id max_m

0 138019

Table 2.9: Example of min_m

2.10 monad sets

2.10.1 SQL template

CREATE TABLE monad_sets (
monad_set_id INTEGER PRIMARY KEY NOT NULL,
monad_set_name VARCHAR(255) NOT NULL

);
CREATE TABLE monad_sets_monads (

monad_set_id INT NOT NULL,
mse_first INT NOT NULL,
mse_last INT NOT NULL,
PRIMARY KEY (monad_set_id, mse_first)

);

2.10.2 Explanation

The “monad_sets” table is for storing monad set IDs (built from the “sequence_2” table, i.e.,
from the SEQUENCE_OTHER_IDS sequence) and monad set names.The “monad_sets_monad”
table is for storing the actual monad sets, mse by mse.

2.10.3 Example

As an example, consider the following tables:

monad_set_id monad_set_name

131072 Pentateuch
196608 My_book_collection

CHAPTER 2. META-DATA 18

monad_set_id mse_first mse_last

131072 1 113226
196608 1 52547
196608 176800 212900
196608 394700 430154

The “Pentateuch” monad-set consists of the monads { 1-113226 }, whereas the “My_book_collection”
monad-set consists of the monads { 1-52547, 176800-212900,394700-430154 }.

Chapter 3

Object_dm data

3.1 Introduction

In this chapter, I describe the tables needed for each objecttype.
There are three basic schemas for object types. The first is valid when the object type has been

declared WITH MULTIPLE RANGE OBJECTS, or hasn’t been given any RANGE declaration.
The second is valid when the object type has been declared WITH SINGLE RANGE OBJECTS.
The third is valid when the object type has been delcared WITHSINGLE MONAD OBJECTS.

In all three cases, the only table involved is:

• OT_objects

An object type that has been declared WITH SINGLE RANGE OBJECTS can only hold objects
that consist of a single monad span, i.e., a single monad set element, from A to B. An object
type that has been declaed WITH SINGLE MONAD OBJECTS can onlyhold objects that are
singleton sets (i.e., have only 1 monad in their monad set). An object that has been declared
WITH MULTIPLE RANGE OBJECTS can hold arbitrary monad sets.

The “range types” just described have a bearing onwhich fields are present. There is an
additional distinction, namely “WITHOUT UNIQUE MONADS”, “HAVING UNIQUE FIRST
MONADS”, and “HAVING UNIQUE FIRST AND LAST MONADS” . This distinction has a
bearing on what the primary key is:

1. If “WITHOUT UNIQUE MONADS” is specified (or none of these three is specified),
then the primary key will be the object_id_d. This means thatthere is no restriction on the
uniqueness of the first (and last) monads.

2. If “HAVING UNIQUE FIRST MONADS” is specified, then the primary key is first_monad.
This means that the user promises never to create any two objects with this object type
which have the same first monad. Objects need not be unique in their first monads across
object types: It is only within an object type that this needsto hold.

3. If “HAVING UNIQUE FIRST AND LAST MONADS” is specified, thenthe primary key
is (first_monad, last_monad). This means that the user promises never to create any two

19

CHAPTER 3. OBJECT_DM DATA 20

objects with this object type which have the same first and thesame last monads, regardless
of whether the two objects have the same monad set or not.

If a STRING or ASCII feature is declared “FROM SET”, then a special table is created for that
feature:

• OT_mdf_FEATURE_NAME_set

This is described in Section 3.4 on page 22.

3.2 OT_objects

3.2.1 SQL template

CREATE TABLE OT_objects(
object_id_d INTEGER PRIMARY KEY NOT NULL,
-- first_monad is always there
first_monad INT NOT NULL,
-- last_monad is not there for WITH SINGLE MONAD OBJECTS
last_monad INT NOT NULL,
-- monads is not there except for WITH MULTIPLE RANGE
monads TEXT NOT NULL, OBJECTS
[... list of stored features ...]

);

3.2.2 Explanation

This table is the master table for storing objects of type OT.For each object, the following are
given:

1. The object id_d (“object_id_d”),

2. The first monad, for easy reference (“first_monad”),

3. The last monad, for easy reference (“last_monad”), and

4. The monad-set, encoded in a special way (see below).

5. Values for all of the stored features of the object.

The “object_id_d” attribute is either auto-generated fromthe “sequence_0” table, i.e., using the
SEQUENCE_OBJECT_ID_DS sequence, or it is explicitly given. The “object_id_d” attribute is
also the source for the special, read-only feature “self” that is on each object_dm type.

The reason why the first and last monads are here will become apparent when we discuss
how to implement MQL queries.

CHAPTER 3. OBJECT_DM DATA 21

EMdF type SQL type Comment

INTEGER INTEGER 32-bit integer
ID_D INTEGER 32-bit integer
ASCII SQL_TEXT_TYPE
STRING SQL_TEXT_TYPE
Enumeration constants INTEGER 32-bit integer
List of INTEGER SQL_TEXT_TYPE
List of ID_D SQL_TEXT_TYPE
List of Enumeration constantsSQL_TEXT_TYPE

Table 3.1: SQL types corresponding to EMdF types

The last_monad column is not present if the object type has been declared WITH SINGLE
MONAD OBJECTS. The monads column is only present when the object type has been declared
WITH SINGLE RANGE OBJECTS or WITH MULTIPLE RANGE OBJECTS.

The types of the stored features are given in Table 3.1.
Note that ASCII, STRING, and lists are stored as the SQL_TEXT_TYPE, which varies be-

tween the backends. It is basically a long string. For lists,the value is a space-surrounded,
space-delimited list of integers. For example, the list (1,2,3) would be represented as:

’ 1 2 3 ’

This makes for searching with LIKE ’% 1 %’ and the like.

3.2.3 Example

In table 3.2, I have listed four objects of type Phrase.

object_id_d first_monad last_monad phrase_type

201 4 7 5
202 8 8 1
203 9 10 2
203 12 15 2

...
...

...
...

Table 3.2: Example of OT_Objects (Phrase_Objects)

3.3 Monad set encoding

The monad set encoding (in column OT_objects.monads) stores an arbitrary monad set effi-
ciently, as a text-string. The format is as follows:

CHAPTER 3. OBJECT_DM DATA 22

1. Each number is stored in a base-64 encoding that is described below.

2. The monad set is seen as a series of numbers. The current number is stored as the difference
between the actual number and the preview number (where the previous number is defined
as 0 for the first number).

3. The separator between monad set elements is the character’y’. Thus the monad set element
chain is a ’y’-separated list of monad set elements.

4. Singleton monad set elements are just stored as that single number.

5. Non-singleton monad set elements are stored as two numbers with the character ’z’ in
between.

The base-64 encoding will be explained below. For now, let megive an example to illustrate the
principles above.

The monad-set { 1-3, 5, 7-10 } would, if we were using base-10 to store the numbers, be
stored as “1z2y2y2z3”. Let us break this down. There are three monad-set elements: “1z2”, “2”,
and “2z3”. The first translates to “1-3” because 1+2 = 3 (taking the previous “1” and adding “2”
makes “3”). The second translates to “5” because the previous was 3, and when we add 2, we
get 5. The third monad set element translates to “7-10” because “5+2=7” and “7+3=10” (again
taking the previous number and adding the current number).

The base-64 encoding is very straightforward: The 32-bit number is broken down into 5 6-bit
chunks and one 2-bit chunk (the 2 most significant bits). Starting from the chunk that has the
most significant non-null bit, each chunk is written as the 6-bit value plus 48 (i.e., ASCII ’0’).
Thus the above set would be written as exactly “1z2y2y2z3”.

3.4 OT_mdf_FEATURE_NAME_set

3.4.1 SQL template

-- This is optimized for finding string
-- string values from id_ds (for
-- querying.)
CREATE TABLE OT_mdf_FEATURE_NAME_set (

id_d INTEGER PRIMARY KEY NOT NULL,
string_value TEXT NOT NULL

);
-- This is so we can also quickly
-- find id_ds from string values
-- (for inserting/updating)
CREATE INDEX OT_mdf_FEATURE_NAME_set_i
ON OT_mdf_FEATURE_NAME_set
(string_value)
;

CHAPTER 3. OBJECT_DM DATA 23

3.4.2 Explanation

If a STRING or ASCII feature of an object type is declared “FROM SET”, this table will be
created. Any strings which are assigned to this feature of anobject when it is created or updated
will be drawn from this table. Instead of storing the string in the feature, the id_d is stored
instead. This gives a space savings, and often also a time savings, especially on MySQL and
PostgreSQL. SQLite may see no difference, or even worse performance.

When an object is created or updated, and the object type to which it belongs has a STRING
or ASCII feature which is declared “FROM SET”, then this table is consulted to see if the
string exists in it already. If it does not, then it is added, and an id_d is assigned from the
SEQUENCE_OTHER_ID_DS sequence. Then that id_d is used in the in lieu of the string in the
object’s feature. If the string does exist in this table, theid_d from that row is used.

Note that features of type ID_D, INTEGER, and ENUM cannot be declared “FROM SET”.
This is because it makes no sense: There is no space savings, and certainly no time savings, since
in all these cases, the integer can be stored directly.

3.4.3 Example

CREATE OBJECT TYPE [Word surface : STRING FROM SET;]

word_mdf_surface_set:
id_d string_value

21 A
22 horse
23 is
24 a
25 horse.

word_objects (“A horse is a horse is a horse.”):
object_id_d first_monad mdf_surface

1 1 21
2 2 22
3 3 23
4 4 24
5 5 22
6 6 23
7 7 24
8 8 25

Chapter 4

Implementing the MQL commands

4.1 Introduction

In this chapter, I treat all of the commands of the new MQL and show in some detail how they
can be implemented using fragments of SQL. I follow the structure of chapter 2 of “Towards a
new MQL.”

4.2 Database manipulation

4.2.1 CREATE DATABASE

4.2.1.1 Weeder

Nothing to do.

4.2.1.2 Symbol-checker

Nothing to do.

4.2.1.3 Type-checker

Nothing to do.

4.2.1.4 Monads-checker

Nothing to do.

4.2.1.5 Interpreter

The following needs to be done when creating a database:

1. Create the physical database in the server.

24

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 25

2. Create and initialize the “schema_version” table.

3. Create and initialize the “sequence_0”, “sequence_1”, and “sequence_2” tables.

4. Create the “enumerations” table.

5. Create the “enumeration_constants” table.

6. Create the “object_types” table.

7. Create the “features” table.

8. Create the “monad_sets” table.

9. Create the “monad_sets_monads” table.

4.2.1.6 SQL fragments

The SQL to do the above is as follows (in one transaction):

CREATE DATABASE { database_name }
CREATE TABLE schema_version (

dummy_id INTEGER PRIMARY KEY NOT NULL,
schema_version INT NOT NULL

);
INSERT INTO schema_version (dummy_id, schema_version)
VALUES (0, { schema-version });
CREATE TABLE sequence_0 (

sequence_id INTEGER PRIMARY KEY NOT NULL,
sequence_value INT NOT NULL

);
CREATE TABLE sequence_1 (

sequence_id INTEGER PRIMARY KEY NOT NULL,
sequence_value INT NOT NULL

);
CREATE TABLE sequence_2 (

sequence_id INTEGER PRIMARY KEY NOT NULL,
sequence_value INT NOT NULL

);
INSERT INTO sequence_0 (sequence_id, sequence_value)
VALUES ({ SEQUENCES_OBJECT_ID_DS } , 1)
INSERT INTO sequence_1 (sequence_id, sequence_value)
VALUES ({ SEQUENCES_TYPE_IDS } , 1)
INSERT INTO sequence_2 (sequence_id, sequence_value)
VALUES ({ SEQUENCES_OTHER_IDS } , 1)

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 26

CREATE TABLE enumerations (
enum_id INTEGER PRIMARY KEY NOT NULL,
enum_name VARCHAR(255) NOT NULL

)
CREATE TABLE enumeration_constants (

enum_id INT NOT NULL,
enum_value_name VARCHAR(255) NOT NULL,
value INT NOT NULL,
is_default CHAR(1) NOT NULL,
PRIMARY KEY (enum_id, enum_value_name)

)
CREATE TABLE object_types (

object_type_id INTEGER PRIMARY KEY NOT NULL,
object_type_name VARCHAR(255) NOT NULL

)
CREATE TABLE features (

object_type_id INT NOT NULL,
feature_name VARCHAR(255) NOT NULL,
feature_type_id INT NOT NULL,
computed CHAR(1) NOT NULL DEFAULT ’N’,
PRIMARY KEY (object_type_id, feature_name)

)
CREATE TABLE monad_sets (

monad_set_id INTEGER PRIMARY KEY NOT NULL,
monad_set_name VARCHAR(255) NOT NULL

);
CREATE TABLE monad_sets_monads (

monad_set_id INT NOT NULL,
mse_first INT NOT NULL,
mse_last INT NOT NULL,
PRIMARY KEY (monad_set_id, mse_first)

);

4.2.2 USE DATABASE

4.2.2.1 Weeder

Nothing to do.

4.2.2.2 Symbol-checker

The symbol checker should check that the database exists.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 27

4.2.2.3 Type-checker

Nothing to do.

4.2.2.4 Monads-checker

Nothing to do.

4.2.2.5 Interpreter

How to do this will vary from database server to database server. I don’t think it can always be
done in SQL. On the contrary, PostgreSQL seems to couple connections tightly with databases,
so it should rather be on a connection-level

4.2.3 DROP DATABASE

4.2.3.1 Weeder

Nothing to do.

4.2.3.2 Symbol-checker

The symbol checker should check that the database exists.

4.2.3.3 Type-checker

Nothing to do.

4.2.3.4 Monads-checker

Nothing to do.

4.2.3.5 Interpreter

• Drop the database. This is usually an easy DROP DATABASE statement.

4.2.3.6 SQL fragments

DROP DATABASE { database_name }

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 28

4.3 Object type manipulation

4.3.1 CREATE OBJECT TYPE

4.3.1.1 Weeder

• Check that the feature “self” is not declared.

4.3.1.2 Symbol-checker

• Check that the object type does not already exist.

• Check that the enumerations exist for the features whose types are enumerations.

• Check that, within these enumerations, any default specification which is an enumeration
constant, does exist in that enumeration.

4.3.1.3 Type-checker

• Assign type-ID to each feature, based on the type-name. If itis one of the standard types,
then assign its corresponding ID (see table 2.5). If it is an enumeration type, then assign
the enum_id of the enumeration.

• Check that the type of each feature matches the type of any default specification. In doing
so, provide, in the AST, a string representing the default value for any feature that does not
have a default specification. It is an error to specify an integer if the type is an enumeration.
It must be an enumeration constant. The reason is that we musthave data integrity, and
this is an easy way of ensuring that for enumerations.

4.3.1.4 Monads-checker

Nothing to do.

4.3.1.5 Interpreter

• Create the object type in table “object_types”

• Create all the tables associated with the object type (OT_objects, etc.)

• Create all the features

4.3.1.6 SQL fragments

4.3.1.6.1 Checking for (non-)existence of object type

SELECT object_type_id
FROM object_types
WHERE object_type_name = ’{ object_type_name }’

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 29

4.3.1.6.2 Checking for (non-)existence of enumeration

SELECT enum_id
FROM enumerations
WHERE enum_name = ’{ enumeration-name }’

4.3.1.6.3 Checking for (non-)existence of enumeration constant

SELECT enum_value_name
FROM enumeration_constants EC, enumerations E
WHERE EC.enum_value_name = ’{ enumeration-constant-name }’

AND EC.enum_id = E.enum_id
AND E.enum_name = ’{ enumeration-name }’

4.3.1.6.4 Creating the object type

INSERT INTO object_types (object_type_id, object_type_name)
VALUES ({ auto-generated id }, { object_type_name })

4.3.1.6.5 Creating the tables associated with the object type

CREATE TABLE OT_objects(
object_id_d INTEGER PRIMARY KEY NOT NULL,
first_monad INT NOT NULL,
last_monad INT NOT NULL,
monads TEXT NOT NULL,
[... list of stored features ...]

)

4.3.1.6.6 Creating all the features For each feature:

INSERT INTO features (
object_type_id,
feature_name,
feature_type_id,
default_value,
computed

)
VALUES (

{ object_type_id : from the creation of the object type },
{ feature_name : feature_name },
{ feature_type_id : taken from AST },

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 30

{ default_value : string from AST },
{ computed : ’Y’/’N’ based on the presence or

absence of the T_KEY_COMPUTED keyword}
)

4.3.2 UPDATE OBJECT TYPE

4.3.2.1 Weeder

• Check that the feature “self” is neither added nor removed.

4.3.2.2 Symbol-checker

• Check that the object type already exists. In doing so, storethe object type_id somewhere
in the AST.

• Check that all the features that are to be removed do exist.

• Check that all the features that are to be added do not exist.

• Check that the enumerations exist for the new features whosetypes are enumerations.

• Check that, within these enumerations, any default specification which is an enumeration
constant, does exist in that enumeration.

4.3.2.3 Type-checker

• Assign type-ID to each feature that is to be added, based on the type-name. If it is one of
the standard types, then assign its corresponding ID (see table 2.5). If it is an enumeration
type, then assign the enum_id of the enumeration.

• Check that the type of each feature matches the type of any default specification. In doing
so, provide, in the AST, a string representing the default value, both for those feature
additions that do and those that don’t have a default specification. It is an error to specify
an integer if the type is an enumeration. It must be an enumeration constant. The reason is
that we must have data integrity, and this is an easy way of ensuring that for enumerations.

4.3.2.4 Monads-checker

Nothing to do.

4.3.2.5 Interpreter

• Add the features that are to be added.

• Remove the features that are to be removed.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 31

4.3.2.6 SQL fragments

4.3.2.6.1 Checking for (non-)existence of a feature

SELECT feature_type_id, default_value, computed
FROM features
WHERE object_type_id = { object type_id }

AND feature_name = ’{ feature-name }’

4.3.2.6.2 Adding a feature to the OT_objects table

ALTER TABLE OT_objects ADD { encoded feature-name }
{ SQL-type } NOT NULL

4.3.2.6.3 Removing a feature from the OT_objects table

ALTER TABLE OT_objects DROP { encoded feature-name }

4.3.2.6.4 Removing a feature from the features table

DELETE FROM features
WHERE object_type_id = { object type_id }

AND feature_name = ’{ feature-name }’

4.3.3 DROP OBJECT TYPE

4.3.3.1 Weeder

Nothing to do.

4.3.3.2 Symbol-checker

• Check that the object type exists. In doing so, it should store the object type id in the AST.

4.3.3.3 Type-checker

Nothing to do.

4.3.3.4 Monads-checker

Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 32

4.3.3.5 Interpreter

• Drop all the tables associated with the object type.

• Delete all features associated with the object type.

• Delete the object type from the “object_types” table.

4.3.3.6 SQL fragments

DROP TABLE OT_objects
DELETE FROM features
WHERE object_type_id = { object type_id from AST }
DELETE FROM object_types
WHERE object_type_id = { object type_id from AST }

4.4 Enumeration manipulation

4.4.1 CREATE ENUMERATION

4.4.1.1 Weeder

• Check that at most one “ec_declaration” has the “DEFAULT” keyword, and set a
boolean for each member of the list of declarations saying whether it is the default or not.
If none has the “DEFAULT” keyword, then set the boolean of thefirst item in the list to
“true.”

4.4.1.2 Symbol-checker

• Check that no other enumeration by the same name exists already.

• Check that no enumeration constant already exists by the name given in any of the ec-
declarations.

• Assign a value in the AST to each ec-declaration, either based on its position in the se-
quence, or based on its initialization.

4.4.1.3 Type-checker

Nothing to do.

4.4.1.4 Monads-checker

Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 33

4.4.1.5 Interpreter

• Create the enumeration using an autogenerated ID.

• Add all the enumeration constants to the table.

4.4.1.6 SQL fragments

4.4.1.6.1 Creating the enumeration

INSERT INTO enumerations (enum_id, enum_name)
VALUES ({ auto-generated id }, { name } }

4.4.1.6.2 Add an enumeration constant

INSERT INTO enumeration_constants (
enum_id,
enum_value_name,
value,
is_default

)
VALUES (

{ enum_id : The auto-generated id used to create the enum },
{ enum_value_name : ec-name },
{ value : ec-value},
{ is_default : ’Y’/’N’ }

)

4.4.2 UPDATE ENUMERATION

4.4.2.1 Weeder

• Check that at most one enumeration-constant update has the “DEFAULT” keyword, and
set a boolean for each member of the list of updates saying whether it is the default or not.
If none has the “DEFAULT” keyword, then none of these booleans should be true. Either
set a boolean in the top-level AST node of the MQL statement, or provide a function which
lets one know, whether one of the additions or updates has the“DEFAULT” keyword.

4.4.2.2 Symbol-checker

• Check that the enumeration exists already.

• Check that for all additions, the enumeration constants added do not exist already.

• Check that, for all updates, the enumeration constants updated already exist.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 34

• Check that all constants being removed do exist.

• Check whether the current default is being removed. If it is,then another default should
be specified, either as an update or as an addition (use the boolean or function mentioned
under “weeder” above).

4.4.2.3 Type-checker

Nothing to do.

4.4.2.4 Monads-checker

Nothing to do.

4.4.2.5 Interpreter

• Remove all the constants being removed.

• Add all the constants being added.

• Update all the constants being updated.

• If there was a new specification of the “DEFAULT” constant:

– Remove the “is_default” status from the current default.

– Update the new default constant so that it “is_default”.

4.4.2.6 SQL fragments

4.4.2.6.1 Checking which is the default enumeration constant

SELECT enum_value_name
FROM enumeration_constants
WHERE enum_id = { enumeration-id }

AND is_default = ’Y’

4.4.2.6.2 Checking for the (non)-existence of an enumeration See section 4.3.1.

4.4.2.6.3 Checking for the (non)-existence of an enumeration constant See section 4.3.1.

4.4.2.6.4 Removing a constant

DELETE
FROM enumeration_constants
WHERE enum_id = { enumeration-id }

AND enum_value_name = { name of constant to delete }

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 35

4.4.2.6.5 Adding a constant See section 4.4.1.

4.4.2.6.6 Updating a constant

UPDATE enumeration_constants
SET value = { new value }
WHERE enum_id = { enumeration-id }

AND enum_value_name = { name of constant to update }

4.4.2.6.7 Removing the “is_default” status from the current default

UPDATE enumeration_constants
SET is_default = ’N’
WHERE enum_id = { enumeration-id }

4.4.2.6.8 Set the new default

UPDATE enumeration_constants
SET is_default = ’Y’
WHERE enum_id = { enumeration-id }

AND enum_value_name = { name of new default }

4.4.3 DROP ENUMERATION

4.4.3.1 Weeder

Nothing to do.

4.4.3.2 Symbol-checker

• Check that the enumeration does exist. In doing so, store the“enum_id” of the enumeration
in the AST.

4.4.3.3 Type-checker

Nothing to do.

4.4.3.4 Monads-checker

Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 36

4.4.3.5 Interpreter

• Remove all the enumeration constants associated with the enumeration from table “enu-
meration_constants”.

• Remove the enumeration itself from table “enumerations”

4.4.3.6 SQL fragments

4.4.3.6.1 Checking that the enumeration exists See section 4.3.1.

4.4.3.6.2 Removing all enumeration constants associated with the enumeration

DELETE
FROM enumeration_constants
WHERE enum_id = { enumeration-id }

4.4.3.6.3 Removing the enumeration itself

DELETE
FROM enumerations
WHERE enum_id = { enumeration-id }

4.5 Segment manipulation

4.5.1 CREATE SEGMENT

4.5.1.1 Weeder

• Check that the range is monotonic, i.e., that the second integer is greater than or equal to
the first integer.

• Check that the range consists of positive numbers.

4.5.1.2 Symbol-checker

Nothing to do.

4.5.1.3 Type-checker

Nothing to do.

4.5.1.4 Monads-checker

Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 37

4.5.1.5 Interpreter

• Currently, nothing. In the future: Add as a single-range monad set.

4.5.1.6 SQL fragments

None.

4.6 Querying

4.6.1 SELECT OBJECTS

4.6.1.1 Weeder

• Check everything as described in the “MQL query-subset” document.

• Check that the monad set in the AST consists of only positive,monotonic ranges.

4.6.1.2 Symbol-checker

• Check everything as described in the “MQL query-subset” document.

4.6.1.3 Type-checker

• Check everything as described in the “MQL query-subset” document.

4.6.1.4 Monads-checker

• Build the monad set of the “IN” clause, if it is there. Store the monad set in the AST. If it
isn’t there, store “1..MAX_MONAD.”

4.6.1.5 Interpreter

This should follow the retrieval functions given in the “MQLQuery subset” document. Below I
list some of the SQL fragments which are needed for implementing these functions.

4.6.1.6 SQL fragments

4.6.1.6.1 Getting inst(T,U)

SELECT object_id_d
FROM OT_objects
WHERE { U.first() } <= first_monad

AND last_monad <= { U.last() }

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 38

4.6.1.6.2 Retrieve features from an object

SELECT { feature-names }
FROM OT_objects
WHERE object_id_d = { object id_d }

4.6.2 SELECT OBJECTS AT

4.6.2.1 Weeder

• Check that the integer is positive.

4.6.2.2 Symbol-checker

• Check that the object type exists.

4.6.2.3 Type-checker

Nothing to do.

4.6.2.4 Monads-checker

Nothing to do.

4.6.2.5 Interpreter

Just asks the SQL database.

4.6.3 SELECT OBJECT TYPES

4.6.3.1 Weeder

Nothing to do.

4.6.3.2 Symbol-checker

Nothing to do.

4.6.3.3 Type-checker

Nothing to do.

4.6.3.4 Monads-checker

Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 39

4.6.3.5 Interpreter

Just asks the SQL database.

4.6.3.6 SQL fragments

4.6.3.6.1 Asking for the object types available

SELECT object_type_name
FROM object_types

4.6.4 SELECT FEATURES

4.6.4.1 Weeder

Nothing to do.

4.6.4.2 Symbol-checker

• Check that the object type actually exists. In doing so, store its object type_id in the AST.

4.6.4.3 Type-checker

Nothing to do.

4.6.4.4 Monads-checker

Nothing to do.

4.6.4.5 Interpreter

• Ask the database server for the answer.

• Translate feature type_ids to strings. Only for enumeration constants does this involve
querying the database.

• Translate the “computed” ‘Y’/‘N’ boolean to a real boolean.

4.6.4.6 SQL fragments

4.6.4.6.1 Asking for the features of an object type

SELECT feature_name, feature_type_id, default_value, computed
FROM features
WHERE object_type_id = { object type_id }

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 40

4.6.4.6.2 Translating feature type_ids to strings

SELECT enum_name
FROM enumerations
WHERE enum_id = { feature type_id }

4.6.5 SELECT ENUMERATIONS

4.6.5.1 Weeder

Nothing to do.

4.6.5.2 Symbol-checker

Nothing to do.

4.6.5.3 Type-checker

Nothing to do.

4.6.5.4 Monads-checker

Nothing to do.

4.6.5.5 Interpreter

• Just ask the database server.

4.6.5.6 SQL fragments

4.6.5.6.1 Asking for the enumerations available

SELECT enum_name
FROM enumerations

4.6.6 SELECT ENUMERATION CONSTANTS

4.6.6.1 Weeder

Nothing to do.

4.6.6.2 Symbol-checker

• Check that the enumeration actually exists. In doing so, store the enum_id in the AST.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 41

4.6.6.3 Type-checker

Nothing to do.

4.6.6.4 Monads-checker

Nothing to do.

4.6.6.5 Interpreter

• Ask the database server for the answer.

• Convert the value to an integer and the “is_default” ‘Y’/‘N’ boolean to a real boolean.

4.6.6.6 SQL fragments

4.6.6.6.1 Asking for the enumeration constants of an enumeration

SELECT enum_value_name, value, is_default
FROM enumeration_constants
WHERE enum_id = { enumeration id from AST }

4.6.7 SELECT OBJECT TYPES USING ENUMERATION

4.6.7.1 Weeder

Nothing to do.

4.6.7.2 Symbol-checker

• Check that the enumeration exists. In doing so, store its enum_id in the AST.

4.6.7.3 Type-checker

Nothing to do.

4.6.7.4 Monads-checker

Nothing to do.

4.6.7.5 Interpreter

• Ask the database server for the answer

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 42

4.6.7.6 SQL fragments

SELECT object_type_name
FROM object_types
WHERE object_type_id IN

(SELECT object_type_id
FROM features
WHERE feature_type_id = { enumeration id }

)

4.7 Object manipulation

4.7.1 CREATE OBJECT FROM MONADS

4.7.1.1 Weeder

• Check that “object_type_name” is neither all_m, nor any_m, nor pow_m.

• Check that the feature “self” is not assigned a value.

• Check that all the ranges of monads are positive and monotonic.

4.7.1.2 Symbol-checker

• If the user specified an id_d, check that this id_d is not in usealready.

• Check that the object type exists. In doing so, store its object type_id in the AST.

• Check that no feture is assigned which the object type does not have.

• Make sure that all features are given a value. If a feature is not given a value, then use the
default value.

4.7.1.3 Type-checker

• Assign a type to each feature-assignment.

• Check for type-compatibility.

4.7.1.4 Monads-checker

• Build the set of monads from the monads in the AST.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 43

4.7.1.5 Interpreter

• If the user did not specify an id_d, autogenerate one.

• Insert the object and monads in “OT_objects”

4.7.1.6 SQL fragments

4.7.1.6.1 Getting the default value of all features for an object id_d.

SELECT feature_name, default_value
FROM features
WHERE object_type_id = { object type_id }

4.7.1.6.2 Inserting the object in “OT_objects.”

INSERT INTO OT_objects (
object_type_id,
first_monad,
last_monad,
... /* features */

)
VALUES (

{ object_type_id },
{ first monad },
{ last monad },
... /* features */

)

4.7.2 CREATE OBJECT FROM ID_DS

4.7.2.1 Weeder

• Check that “object_type_name” is neither all_m, nor any_m, nor pow_m.

• Check that the feature “self” is not assigned a value.

• Check that none of the id_ds in the list are NIL.

4.7.2.2 Symbol-checker

• If the user specified an id_d, check that this id_d is not in usealready.

• Check that the object type exists. In doing so, store its object type_id in the AST.

• Check that no feture is assigned which the object type does not have.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 44

• Make sure that all features are given a value. If a feature is not given a value, then use the
default value.

4.7.2.3 Type-checker

• Assign a type to each feature-assignment.

• Check for type-compatibility.

4.7.2.4 Monads-checker

• Get the set of monads from the id_ds.

4.7.2.5 Interpreter

• If the user did not specify an id_d, autogenerate one.

• Insert the object and monads in “OT_objects”

4.7.2.6 SQL fragments

4.7.3 CREATE OBJECT FROM (focus | all |) QUERY

4.7.3.1 Weeder

• Check everything that must be checked for a SELECT OBJECTS query.

• Check that the feature “self” is not assigned a value.

• Check that “object_type_name” is neither all_m, pow_m, or any_m.

4.7.3.2 Symbol-checker

• Check everything that must be checked for a SELECT OBJECTS query.

• If the user specified an id_d, check that this id_d is not in usealready.

• Check that the object type exists. In doing so, store its object type_id in the AST.

• Check that no feture is assigned which the object type does not have.

• Make sure that all features are given a value. If a feature is not given a value, then use the
default value.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 45

4.7.3.3 Type-checker

• Check everything that must be checked for a SELECT OBJECTS query.

• Assign a type to each feature-assignment.

• Check for type-compatibility.

4.7.3.4 Monads-checker

• Check everything that must be checked for the SELECT OBJECTSquery.

• Run the query.

• Get the set of monads from the query.

4.7.3.5 Interpreter

• If the user did not specify an id_d, autogenerate one.

• Insert the object and monads in “OT_objects”

4.7.3.6 SQL fragments

4.7.4 UPDATE OBJECTS BY MONADS

4.7.4.1 Weeder

• Check that the object type is neither all_m, nor any_m, nor pow_m.

• Check that self is not assigned to.

• Check that all the ranges of monads are positive and monotonic.

4.7.4.2 Symbol-checker

• Check that the object type actually exists. In doing so, store its object type_id in the AST.

• Check that the object type has all the features that are assigned a new value.

• Check that the features which are assigned are not computed features.

4.7.4.3 Type-checker

• Check that there is type-compatibility between the features and their values.

4.7.4.4 Monads-checker

• Build the set of monads from the monads in the AST.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 46

4.7.4.5 Interpreter

• Get the objects which are part_of the set of monads. This is a two-step process:

– Find all the objects which are wholly contained within the borders of the set of mon-
ads.

– Load each object one by one and check whether it should be included because it is
part_of the set of monads.

• Update the objects

4.7.4.6 SQL fragments

4.7.4.6.1 Updating an object

UPDATE OT_objects
SET { (feature = value), (feature = value), ... }
WHERE object_id_d = { object id_d }

4.7.5 UPDATE OBJECTS BY ID_DS

4.7.5.1 Weeder

• Check that the object type is neither all_m, nor any_m, nor pow_m.

• Check that self is not assigned to.

• Check that none of the id_ds in the list are NIL.

4.7.5.2 Symbol-checker

• Check that the object type actually exists. In doing so, store its object type_id in the AST.

• Check that the object type has all the features that are assigned a new value.

• Check that the features which are assigned are not computed features.

• Check that the objects with the id_ds exist.

4.7.5.3 Type-checker

• Check that there is type-compatibility between the features and their values.

• Check that the objects with the id_ds are of the specified type.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 47

4.7.5.4 Monads-checker

Nothing to do.

4.7.5.5 Interpreter

• Update the objects

4.7.5.6 SQL fragments

4.7.6 UPDATE OBJECTS BY (focus | all |) QUERY

4.7.6.1 Weeder

• Check that the object type is neither all_m, nor any_m, nor pow_m.

• Check that self is not assigned to.

• Check everything that must be checked for a SELECT OBJECTS query.

4.7.6.2 Symbol-checker

• Check everything that must be checked for a SELECT OBJECTS query.

• Check that the object type actually exists. In doing so, store its object type_id in the AST.

• Check that the object type has all the features that are assigned a new value.

• Check that the features which are assigned are not computed features.

4.7.6.3 Type-checker

• Check everything that must be checked for a SELECT OBJECTS query.

• Check that there is type-compatibility between the features and their values.

4.7.6.4 Monads-checker

• Check everything that must be checked for the query.

4.7.6.5 Interpreter

• Run the query.

• Get the set of objects:

– If it is an ALL query, filter the returned set of objects by the given object type.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 48

– If it is a FOCUS query, first filter by focus, then filter by object type.

• Update the objects

4.7.7 DELETE OBJECTS BY MONADS

4.7.7.1 Weeder

• Check that all the ranges of monads are positive and monotonic.

4.7.7.2 Symbol-checker

• Check that the object type exists.

4.7.7.3 Type-checker

Nothing to do.

4.7.7.4 Monads-checker

• Build the set of monads from the monads in the AST.

4.7.7.5 Interpreter

• Get the object id_ds of the objects which are part_of the set of monads. See the section on
UPDATE OBJECTS BY MONADS for how to do this.

• Delete the objects and monads from OT_objects

4.7.7.6 SQL fragments

4.7.7.6.1 Deleting an object from OT_objects

DELETE
FROM OT_objects
WHERE object_id_d = { object id_d }

4.7.8 DELETE OBJECTS BY ID_DS

4.7.8.1 Weeder

• Check that none of the id_ds in the list are NIL.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 49

4.7.8.2 Symbol-checker

• Check that the object type exists.

• Check that all the id_ds refer to objects that exist and are ofthe given type.

4.7.8.3 Type-checker

Nothing to do

4.7.8.4 Monads-checker

Nothing to do.

4.7.8.5 Interpreter

• Delete the objects from OT_objects

4.7.9 DELETE OBJECTS BY (focus | all |) QUERY

4.7.9.1 Weeder

• Check everything that must be checked for a SELECT OBJECTS query.

4.7.9.2 Symbol-checker

• Check everything that must be checked for a SELECT OBJECTS query.

• Check that the object type exists.

4.7.9.3 Type-checker

• Check everything that must be checked for a SELECT OBJECTS query.

4.7.9.4 Monads-checker

• Check everything that must be checked for a SELECT OBJECTS query.

4.7.9.5 Interpreter

• Run the query.

• Get the object id_ds from the query:

– If it is an ALL query, filter the returned set of objects by the given object type.

– If it is a FOCUS query, first filter by focus, then filter by object type.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 50

• Delete the objects from OT_objects

4.8 Feature manipulation

4.8.1 GET FEATURES

4.8.1.1 Weeder

Nothing to do.

4.8.1.2 Symbol-checker

• Check that the object type exists. In doing so, store its object type_id in the AST.

• Check that the objects with the given id_ds exists.

• Check that the objects all belong to the same type, namely theone given.

• Check that the features exist for the given object type.

4.8.1.3 Type-checker

Nothing to do

4.8.1.4 Monads-checker

Nothing to do.

4.8.1.5 Interpreter

• Ask the database for the answer.

Appendix A

Copying this document

A.1 Introduction

All Emdros documentation is provided under the Creative Commons Attribution-Sharealike li-
cense version 2.5. This license is included below, and can also be seen at:

http://creativecommons.org/licenses/by-sa/2.5/

A.2 Creative Commons Deed (for all documentation)

Attribution-ShareAlike 2.5

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT
PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE

AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO

WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS
LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS

CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THEWORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USEOF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW
IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT
AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE
OF SUCH TERMS AND CONDITIONS.

1. Definitions

51

APPENDIX A. COPYING THIS DOCUMENT 52

(a) "Collective Work" means a work, such as a periodical issue, anthology or encyclo-
pedia, in which the Work in its entirety in unmodified form, along with a number of
other contributions, constituting separate and independent works in themselves, are
assembled into a collective whole. A work that constitutes aCollective Work will not
be considered a Derivative Work (as defined below) for the purposes of this License.

(b) "Derivative Work" means a work based upon the Work or upon the Work and other
pre-existing works, such as a translation, musical arrangement, dramatization, fic-
tionalization, motion picture version, sound recording, art reproduction, abridgment,
condensation, or any other form in which the Work may be recast, transformed, or
adapted, except that a work that constitutes a Collective Work will not be consid-
ered a Derivative Work for the purpose of this License. For the avoidance of doubt,
where the Work is a musical composition or sound recording, the synchronization of
the Work in timed-relation with a moving image ("synching")will be considered a
Derivative Work for the purpose of this License.

(c) "Licensor" means the individual or entity that offers the Work under theterms of
this License.

(d) "Original Author" means the individual or entity who created the Work.

(e) "Work" means the copyrightable work of authorship offered under the terms of this
License.

(f) "You" means an individual or entity exercising rights under this License who has
not previously violated the terms of this License with respect to the Work, or who has
received express permission from the Licensor to exercise rights under this License
despite a previous violation.

(g) "License Elements" means the following high-level license attributes as selected by
Licensor and indicated in the title of this License: Attribution, ShareAlike.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights
arising from fair use, first sale or other limitations on the exclusive rights of the copyright
owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants
You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable
copyright) license to exercise the rights in the Work as stated below:

(a) to reproduce the Work, to incorporate the Work into one ormore Collective Works,
and to reproduce the Work as incorporated in the Collective Works;

(b) to create and reproduce Derivative Works;

(c) to distribute copies or phonorecords of, display publicly, perform publicly, and per-
form publicly by means of a digital audio transmission the Work including as incor-
porated in Collective Works;

APPENDIX A. COPYING THIS DOCUMENT 53

(d) to distribute copies or phonorecords of, display publicly, perform publicly, and per-
form publicly by means of a digital audio transmission Derivative Works.

(e) For the avoidance of doubt, where the work is a musical composition:

i. Performance Royalties Under Blanket Licenses.Licensor waives the exclu-
sive right to collect, whether individually or via a performance rights society
(e.g. ASCAP, BMI, SESAC), royalties for the public performance or public dig-
ital performance (e.g. webcast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive
right to collect, whether individually or via a music rightssociety or designated
agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from
the Work ("cover version") and distribute, subject to the compulsory license cre-
ated by 17 USC Section 115 of the US Copyright Act (or the equivalent in other
jurisdictions).

(f) Webcasting Rights and Statutory Royalties.For the avoidance of doubt, where the
Work is a sound recording, Licensor waives the exclusive right to collect, whether
individually or via a performance-rights society (e.g. SoundExchange), royalties for
the public digital performance (e.g. webcast) of the Work, subject to the compulsory
license created by 17 USC Section 114 of the US Copyright Act (or the equivalent in
other jurisdictions).

The above rights may be exercised in all media and formats whether now known or here-
after devised. The above rights include the right to make such modifications as are techni-
cally necessary to exercise the rights in other media and formats. All rights not expressly
granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and
limited by the following restrictions:

(a) You may distribute, publicly display, publicly perform, or publicly digitally perform
the Work only under the terms of this License, and You must include a copy of, or
the Uniform Resource Identifier for, this License with everycopy or phonorecord
of the Work You distribute, publicly display, publicly perform, or publicly digitally
perform. You may not offer or impose any terms on the Work thatalter or restrict
the terms of this License or the recipients’ exercise of the rights granted hereunder.
You may not sublicense the Work. You must keep intact all notices that refer to this
License and to the disclaimer of warranties. You may not distribute, publicly dis-
play, publicly perform, or publicly digitally perform the Work with any technological
measures that control access or use of the Work in a manner inconsistent with the
terms of this License Agreement. The above applies to the Work as incorporated in a
Collective Work, but this does not require the Collective Work apart from the Work
itself to be made subject to the terms of this License. If You create a Collective Work,
upon notice from any Licensor You must, to the extent practicable, remove from the

APPENDIX A. COPYING THIS DOCUMENT 54

Collective Work any credit as required by clause 4(c), as requested. If You create a
Derivative Work, upon notice from any Licensor You must, to the extent practicable,
remove from the Derivative Work any credit as required by clause 4(c), as requested.

(b) You may distribute, publicly display, publicly perform, or publicly digitally perform
a Derivative Work only under the terms of this License, a later version of this License
with the same License Elements as this License, or a CreativeCommons iCommons
license that contains the same License Elements as this License (e.g. Attribution-
ShareAlike 2.5 Japan). You must include a copy of, or the Uniform Resource Iden-
tifier for, this License or other license specified in the previous sentence with every
copy or phonorecord of each Derivative Work You distribute,publicly display, pub-
licly perform, or publicly digitally perform. You may not offer or impose any terms
on the Derivative Works that alter or restrict the terms of this License or the recipi-
ents’ exercise of the rights granted hereunder, and You mustkeep intact all notices
that refer to this License and to the disclaimer of warranties. You may not distribute,
publicly display, publicly perform, or publicly digitallyperform the Derivative Work
with any technological measures that control access or use of the Work in a man-
ner inconsistent with the terms of this License Agreement. The above applies to the
Derivative Work as incorporated in a Collective Work, but this does not require the
Collective Work apart from the Derivative Work itself to be made subject to the terms
of this License.

(c) If you distribute, publicly display, publicly perform,or publicly digitally perform the
Work or any Derivative Works or Collective Works, You must keep intact all copy-
right notices for the Work and provide, reasonable to the medium or means You are
utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if sup-
plied, and/or (ii) if the Original Author and/or Licensor designate another party or
parties (e.g. a sponsor institute, publishing entity, journal) for attribution in Licen-
sor’s copyright notice, terms of service or by other reasonable means, the name of
such party or parties; the title of the Work if supplied; to the extent reasonably practi-
cable, the Uniform Resource Identifier, if any, that Licensor specifies to be associated
with the Work, unless such URI does not refer to the copyrightnotice or licensing
information for the Work; and in the case of a Derivative Work, a credit identifying
the use of the Work in the Derivative Work (e.g., "French translation of the Work by
Original Author," or "Screenplay based on original Work by Original Author"). Such
credit may be implemented in any reasonable manner; provided, however, that in the
case of a Derivative Work or Collective Work, at a minimum such credit will appear
where any other comparable authorship credit appears and ina manner at least as
prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES
OF ANY KIND CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATU-

APPENDIX A. COPYING THIS DOCUMENT 55

TORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,NONIN-
FRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVER-
ABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGESARIS-
ING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

(a) This License and the rights granted hereunder will terminate automatically upon any
breach by You of the terms of this License. Individuals or entities who have received
Derivative Works or Collective Works from You under this License, however, will
not have their licenses terminated provided such individuals or entities remain in
full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

(b) Subject to the above terms and conditions, the license granted here is perpetual (for
the duration of the applicable copyright in the Work). Notwithstanding the above,
Licensor reserves the right to release the Work under different license terms or to
stop distributing the Work at any time; provided, however that any such election will
not serve to withdraw this License (or any other license thathas been, or is required
to be, granted under the terms of this License), and this License will continue in full
force and effect unless terminated as stated above.

8. Miscellaneous

(a) Each time You distribute or publicly digitally perform the Work or a Collective Work,
the Licensor offers to the recipient a license to the Work on the same terms and
conditions as the license granted to You under this License.

(b) Each time You distribute or publicly digitally perform aDerivative Work, Licensor
offers to the recipient a license to the original Work on the same terms and conditions
as the license granted to You under this License.

(c) If any provision of this License is invalid or unenforceable under applicable law, it
shall not affect the validity or enforceability of the remainder of the terms of this
License, and without further action by the parties to this agreement, such provision
shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

APPENDIX A. COPYING THIS DOCUMENT 56

(d) No term or provision of this License shall be deemed waived and no breach consented
to unless such waiver or consent shall be in writing and signed by the party to be
charged with such waiver or consent.

(e) This License constitutes the entire agreement between the parties with respect to the
Work licensed here. There are no understandings, agreements or representations with
respect to the Work not specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This License may not
be modified without the mutual written agreement of the Licensor and You.

Creative Commons is not a party to this License, and makes no
warranty whatsoever in connection with the Work. Creative Com-
mons will not be liable to You or any party on any legal theory for
any damages whatsoever, including without limitation any general,
special, incidental or consequential damages arising in connection
to this license. Notwithstanding the foregoing two (2) sentences,
if Creative Commons has expressly identified itself as the Licensor
hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that
the Work is licensed under the CCPL, neither party will use the
trademark "Creative Commons" or any related trademark or logo
of Creative Commons without the prior written consent of Creative
Commons. Any permitted use will be in compliance with Cre-
ative Commons’ then-current trademark usage guidelines, as may
be published on its website or otherwise made available uponre-
quest from time to time.

Creative Commons may be contacted at http://creativecommons.org/.

