MQL Programmer’s Guide

Ulrik Petersen

April 3, 2009

Copyright (C) 2001-2009 Ulrik Petersen

This document is made available under the Creative Communbution-
Sharealike license version 2.5.

See

http://creativecommons.org/licenses/by-sa/2.5/

for what that means.

Please visit the Emdros website for the latest news and dadsl

http://emdros.org

Abstract

This is the MQL Programmer’s Guide. It documents Emdrosigar.2.0.pre269 and upwards. If you just
wish to use Emdros to query your data, then this might not bgda. Instead, you can consult the MQL
Query Guide, which is available from the Emdros website, it any recent distribution of Emdros.

In Chapter 1, we discuss some preliminaries, such as theryisf Emdros, as well as giving an
overview of the formalism used to define the MQL languagdedaBackus-Naur Form (or BNF).

In Chapter 2, we give an overview of the EMdF model, from a’sstandpoint.

In Chapter 3, we describe the bulk of the MQL language.

In Chapter 4, we describe the query-subset of MQL. That is,stiibset of MQL in which you can
express queries that look for objects by object type, featuand structural relationships such as embedding
and sequence.

Contents

1 Preliminaries 10
1.1 Introduction e e e e 10
1.2 Origins of MdF, EMdF,andMQL e 10
1.3 Introductionto Backus-NaurForm e 11

1.3.1 Context-FreeGrammars e e 11
1.3.1.1 Rule e 11
1.3.1.2 Non-terminal. 12
1.3.1.3 Terminal e 12
1.3.1.4 Choice e 12
1.3.1.5 Concatenation 12
1.3.1.6 Start-symbol 12

1.3.2 Context-free grammars: Putting it all together 12

1.3.3 BNF . . . e e 31
1.3.3.1 Introduction 13
1.3.3.2 Example e 14
1.3.3.3 Elementsof “MQLBNF” 41

1.4 Acknowledgements e 15

1.4.1 Westminster Hebrew Instituteo ..., 15

1.4.2 Regularexpressionsupport e 15

2 The EMdF model 16
2.1 Introduction e e e 16
2.2 Monads e e 16

2.2.1 Monads andtextualsequence 16

2.2.2 Granularity e e 16

223 Textflow e 17

2.2.4 Conclusion 17

2.3 Objects e 17
2.3.1 Whatisanobject? 17
2.4 Objecttypes e e e e e 17
2.4.1 Objectsaregroupedintypes e 17
25 Features e e e 18

25.1 Whatisafeature?. 18

2.5.2 Objecttypeshavefeatures an . 18

25.3 Featureshavetypes e 18

26 Example e 19
2.7 Otherconcepts i i e 19

2.7.1 Introduction. e e e e 19

2.7.2 POW_IM . o e e e e e e 02

2.7.3 ANY_ M. . o e e e e e e e e 20

2.7.4 allm ..o e 20

2.7.5 objectids(id_d,id_m) 20

27.6 self ..o 21
2.7.7 part_of ... 21
2.7.8 08PS - . . 21
2.7.9 borders,first,last e 21
2.7.10 consecutive with respecttoasetofmonads 21
2.7.11 enumerations e e 21
2.7.11.1 Definition 12
2.7.11.2 Example e 21
2.7.11.3 Defaultconstant 22
2.7.11.4 Terminology 22
2.7.11.5 Namesareidentifiers 22
2.7.11.6 Eachenumerationisaname-space0wo.w.. 22
2.7.11.7 Enumeration constants mustbe unique 22
2.7.12 MIN_M, Max_M oo e e e e e e e e 22
2.7.13 Arbitrarymonadsets e 23
2.7.14 Databases 23
2.8 ENCryption. e e 23
MQL database manipulation 24
3.1 Preliminaries e 24
3.1.1 Introduction. e e 24
3.1.2 Terminals L e 24
3.1.3 Lexicalconventions 24
3.1.4 NamMe-SPACES v i e e e 25
3.1.5 Top-level constraintson MQL syntax 26
3.2 Returntypes o e 26
3.21 Introduction. e e 26
3.2.2 Output-formats e e 26
3.23 Tables 27
3.2.4 Atomic output-typesintables L. 27
3.25 Otherreturnvalues e 27
3.3 Database manipulation e 28
3.3.1 CREATEDATABASE e 28
3.3 1.1 Syntax 28
3.3.1.2 Example 28
3.3.1.3 Explanation 8 2
3.3.1.4 Returntype e 29
3.3.2 INITIALIZEDATABASE e e e e e 29
3.3.21 Syntax 29
3.3.22 Example 29
3.3.2.3 Explanation 92
3.3.24 Returntype e 29
3.3.3 USEDATABASE e 30
3.3.3.1 Syntax e 30
3.3.32 Example 30
3.3.3.3 Explanation 03
3.3.3.4 Returntype e 30
3.34 DROPDATABASE 31
3341 Syntax e 31
3.3.4.2 Example 31
3.3.4.3 Explanation 13
3.3.4.4 Returntype 31
3.3.5 VACUUMDATABASE e e 13
3351 Syntax 31

3.4

3.5

3.6

3.35.2 Example 31

3.35.3 Explanation 13
3.3.5.4 Returntype 32
3.3.6 DROPINDEXES e e 32
3.3.6.1 Syntax e 32
3.3.6.2 Example 32
3.3.6.3 Explanation 23
3.3.6.4 Returntype e 32
3.3.7 CREATEINDEXES e 33
3.3.7. 1 Syntax 33
3.3.7.2 Example 33
3.3.7.3 Explanation 33
3.3.7.4 Returntype e 33
Transactions 33
3.4.1 BEGINTRANSACTION e e 33
3411 Syntax e 33
3.4.1.2 Example 33
3.4.1.3 Explanation 4 3
3.4.1.4 Returntype 34
3.4.2 COMMITTRANSACTION e 34
3421 Syntax 34
3.4.22 Example 34
3.4.23 Explanation 4 3
3424 Returntype 34
3.4.3 ABORT TRANSACTION e e 35
3431 Syntax 35
3.4.3.2 Example 35
3.4.3.3 Explanation 53
3.43.4 Returntype e 35
Objecttype manipulation oo 35
3.5.1 CREATEOBJECTTYPE it 35
3.5 1.1 Syntax 35
3.5.1.2 Examples e 36
3.5.1.3 Explanation 73
3.5.1.4 Returntype e 38
3.5.2 UPDATEOBJECTTYPE 38
3.5.21 Syntax 38
3.5.22 References 9 3
3.5.23 Example 39
3.5.24 Explanation 93
3.5.25 Returntype 39
3.5.3 DROPOBJECTTYPE e e e 39
3531 Syntax 39
3.5.3.2 Example 40
3.5.3.3 Explanation 04
3.5.3.4 Returntype 40
Enumeration manipulation e 40
3.6.1 CREATE ENUMERATION e 40
3.6.1.1 Syntax 40
3.6.1.2 References 0 4
3.6.1.3 Example 40
3.6.1.4 Explanation 14
3.6.1.5 Returntype 41
3.6.2 UPDATE ENUMERATION e 41

3.7

3.8

3.6.21 Syntax e 41

3.6.2.2 References 14
3.6.23 Example 42
3.6.24 Explanation 24
3.6.25 Returntype 42
3.6.3 DROPENUMERATION e A2
3.6.3. 1 Syntax 42
3.6.3.2 Example 43
3.6.3.3 Explanation 34
3.6.3.4 Returntype 43
Segment manipulation e 43
3.7.1 Introduction. e 43
3.7.2 CREATE SEGMENT s s 34
3.7.21 Syntax 43
3.7.22 Example 43
3.7.2.3 Explanation 34
3.7.24 Returntype e 44
QUENYING . . . e e e 44
3.8.1 SELECT (FOCUS|ALL)OBJECTS i i e e 44
3.8. 1.1 Syntax 44
3.81.2 References 5 4
3.8.1.3 Example 45
3.8.1.4 Explanation 54
3.8.1.5 Monadset 46
3.8.1.6 Returntype 46
3.8.2 SELECTOBJECTS AT e e 46
3.8.21 Syntax 46
3.8.22 Example 46
3.8.2.3 Explanation 6 4
3.8.24 Returntype 46
3.8.3 SELECT OBJECTS HAVING MONADSIN 47
3.8.3.1 Syntax 47
3832 References. 0 4
3.8.3.3 Example 47
3.8.3.4 Explanation 7 4
3.8.3.5 Returntype 48
3.84 GETOBJECTSHAVINGMONADSIN 48
3.84.1 Syntax 48
3.8.4.2 References 8 4
3.84.3 Example 48
3.8.4.4 Explanation 94
3.8.45 Returntype 49
3.85 SELECTOBJECTTYPES e 49
3.85.1 Syntax 49
3.85.2 Example 49
3.8.5.3 Explanation 94
3.85.4 Returntype 49
3.8.6 SELECTFEATURES e 49
3.8.6.1 Syntax 49
3.8.6.2 Example 50
3.8.6.3 Explanation 05
3.8.6.4 Returntype 50
3.8.7 SELECTENUMERATIONS e e 50
3.8.7. 1 Syntax 50

3.9

3.8.7.2 Example
3.8.7.3 Explanation 0
3.8.7.4 Returntype
3.8.8 SELECT ENUMERATION CONSTANTS 51
3.88.1 Syntax
3.8.8.2 Example
3.8.8.3 Explanation 1
3.8.8.4 Returntype e
3.8.9 SELECT OBJECT TYPES USING ENUMERATION 51
3.8.9.1 Syntax
3.8.9.2 Example
3.8.9.3 Explanation 2
3.8.9.4 Returntype e
3.8.10 SELECTMIN_M e 52
3.8.10.1 Syntax
3.8.10.2 Example
3.8.10.3 Explanation 52
3.8.10.4 Returntype e e 2
3.8.11 SELECTMAX_ M e e 52
3.8 111 Syntax
3.8.11.2 Example
3.8.11.3 Explanation 53
3.8.11.4 Returntype e 3
3.8.12 SELECTMONAD SETS e e e 53
3.8.12.1 Syntax
3.8.12.2 Example
3.8.12.3 Explanation 53
3.8.12.4 Returntype e 3
3.8.13 GETMONAD SETS e e e e e 53
3.8.13.1 Syntax
3.8.13.2 Example
3.8.13.3 Explanation 54
3.8.13.4 Returntype e 4
3.8.14 GETMONADS e 54
3.8.14.1 SyntaxX
3.8.14.2 References e 54
3.8.14.3 Example
3.8.14.4 Explanation 54
3.8.145 Returntype e 5
3.8.15 GETFEATURES e e e 55
3.8.15.1 Syntax
3.8.15.2 References 55
3.8.15.3 Example
3.8.15.4 Explanation 55
3.8.15.5 Returntype e e 6
3.8.16 GETSETFROMFEATURE o 56
3.8.16.1 Syntax
3.8.16.2 Example
3.8.16.3 Explanation 56
3.8.16.4 Returntype e e 6
Object manipulation. e e 57
3.9.1 CREATEOBJECTFROMMONADS 57
3.9.1.1 Syntax e
3.9.1.2 References 8

52
52

53
53

53
53

54

54

55

55

56
56

3.9.1.3 Example 58

3.9.1.4 Explanation 85
3.9.1.5 Returntype 58

3.9.2 CREATEOBJECTFROMID DS i 59
3.9.21 Syntax 59
3.9.22 References 95
3.9.23 Example 59
3.9.2.4 Explanation 95
3.9.25 Returntype 59

3.9.3 CREATEOBJECTSWITHOBJECTTYPE 60
3.9.3. 1 Syntax 60
3.93.2 References 0 6
3.9.3.3 Example 60
3.9.34 Explanation 06
3.9.3.5 Returntype 61

3.9.4 UPDATEOBJECTSBYMONADS 61
3.9.41 Syntax e 61
3.942 References 16
3.9.43 Example 62
3.9.4.4 Explanation 26
3.9.45 Returntype 62

3.95 UPDATEOBJECTSBYID_ DS i 62
3.95.1 Syntax 62
3.952 References 2 6
3953 Example 62
3.954 Explanation 26
3.955 Returntype e 63

3.9.6 DELETEOBJECTSBYMONADS 63
3.9.6.1 Syntax 63
3.96.2 References 36
3.9.6.3 Example 63
3.9.6.4 Explanation 36
3.9.6.5 Returntype e 63

3.9.7 DELETEOBJECTSBYID DS i 64
3.9.7. 1 Syntax 64
3972 References...............406
3.9.7.3 Example 64
3.9.7.4 Explanation 46
3.9.75 Returntype e 64

3.10 Monad manipulation e e 64

3.10.1 MONAD SET CALCULATION e e 64
3.10.1.1 Syntax e e e 64

3.10.1.2 References e 64
3.10.1.3 Example e 65

3.10.1.4 Explanation 65
3.10.1.5 Returntype 56

3.10.2 CREATEMONAD SET e e e e e e e e e 66
3.10.2.1 Syntax e e 66

3.10.2.2 References 66
3.10.2.3 Example 66

3.10.2.4 Explanation 66
3.10.2.5 Returntype 6 6

3.10.3 UPDATEMONAD SET e e 66
3.10.3.1 SyntaxX . . . oL e e 66

3.10.3.2 References
3.10.3.3 Examples
3.10.3.4 Explanation
3.10.3.5 Returntype
3.10.4 DROPMONAD SET o i i e e e e e e e
3.10.4.1 SyntaxX e
3.10.4.2 Example e
3.10.4.3 Explanation
3.10.4.4 Returntype e
3.11 Meta-statements L e
3.11.1 QUIT .o
31111 SyntaX e e e e
3.11.1.2 Example e
3.11.1.3 Explanation
3.11.1.4 Returntype e

MQL Query subset
4.1 Introduction L e e
4.2 Informal introduction to MQL by means of some examples.....
421 Introduction. e
4.2.2 topograph e
423 features e
4.2.4 object_block, object_block first oo L
425 POWEE . . . o e
426 opt_gap_block
427 gap block. e
4.2.8 objectreferences e
4.3 Syntaxofmqgl_query e e
431 Introduction. e
4.3.2 SYNtaxX e e
4.3.3 References
4.4 Thesheaf e
441 Introduction. e
4.4.2 Structureofthesheaf
4421 Whatisasheaf?
4422 Whatisastraw?
4.4.2.3 Whatisamatched_object?
4.4.3 MQListopographic
4.4.4 Meaning of matched_object
445 Meaningofstraw
446 Meaningofthesheaf
4.4.7 Flatsheaf e
4.5 Universeandsubstrate
451 Introduction. e
45.2 Universeandsubstrate e
4.6 Consecutivenessandembedding oo oo
4.7 Blocks e
4.7.1 Introduction. e
4.7.2 Objectblocks e
4.7.2.1 Introduction
4.7.22 SYyntax
4723 References
4.7.2.4 Examples e
4.7.25 Explanation

6
6 7
77

~

4.8

47.3 Gaphblocks e 82
4.7.3.1 Introduction 82
4.7.3.2 Syntax 83
4733 Examples e 83
4.7.3.4 Explanation 38

4.7.4 Powerblock 84
4741 Syntax 84
4.7.4.2 Examples e 84
4743 POWET . . . o o e e e 84

475 Retrieval 85
4.7.5.1 Introduction 85
4752 Syntax 85
4.7.5.3 Examples 85
4754 Explanation 6 8

4.7.6 Firstandlast e 86
4.7.6.1 Introduction 86
4.7.6.2 SYyntax e 86
4.7.6.3 Examples 86
4.7.6.4 Explanation 78

4.7.7 Featureconstraints e 87
4.7.7.1 Introduction 87
A7.7.2 SYNtax e 87
4.7.7.3 References 8 8
4.7.7.4 Examples e 88
4.7.7.5 Explanationof Examples 89
4.7.7.6 Explanation 98
4.7.7.7 Type-compatibility. 90
4.7.7.8 Comparison-operators e e 90

4.7.8 Objectreferences e 91
4.7.8.1 Introduction 91
4.7.8.2 Syntax 92
4783 Examples 92
4.7.8.4 Explanationofexamples 92
4.7.8.5 Explanation 39
4.7.8.6 Constraints on objectreferences.« 93

4.7.9 Block e 94
4.7.9.1 Introduction 94
4.7.9.2 SYyntax e 94

Stringsofblocks 94

4.8.1 Introduction. e 94

4.8.2 topograph 94
4.8.2.1 Introduction 94
4.8.22 Syntax 95
4.8.2.3 Examples e 95
4.8.2.4 Explanationofexamples 95
4.8.25 UniverseandSubstrate 95

483 blocks 95
4.8.3.1 Introduction 95
4.8.3.2 Syntax e 96

4.8.4 block _string e 96
4.8.4.1 Introduction 96
4.8.4.2 Syntax 96
48.43 Examples 96
4.8.4.4 Explanation e 69

4845 The™ construct 97

48.4.6 Thebang (“I") e 89
A Copying 99
A.l Introduction L e e 99
A.2 Creative Commons Deed (for all documentation) 99
A.3 GNU General PublicLicense e 103
A4 PCREIicense e e e 108
A.4.1 THEBASICLIBRARY FUNCTIONS 108
A.4.2 THE C++WRAPPERFUNCTIONS 109
A.43 The“BSD’license e e 109
Console sheaf grammar 110
B.1 Introduction e e 110
B.2 Sheafgrammar e 110
B.3 References. e 111

Chapter 1

Preliminaries

1.1 Introduction

Welcome to the MQL Programmer’s Guide. MQL is the query laagpiassociated with the EMdF model.
MQL is a “full access language,” which simply means that M@tslyou create, update, delete, and query
most of the data domains in the EMdF model — databases, sbgject types, features, etc. MQL is your
front-end to the EMdF database engine. This guide helps guulate MQL queries that do what you
need done with your EMdF database.

This guide has four chapters. The first is this chapter orirpirghries. The second is a gentle intro-
duction to the EMdF model, which underlies the MQL languagie third chapter deals with the bulk
of the MQL query language, detailing all the different kinafsqueries for creating, updating, deleting,
and querying an EMdF database. The fourth chapter is a $pbaipter devoted to explaining those MQL
gueries that query for objects in the database. Since thes#eg are so rich, it was deemed necessary to
devote a whole chapter to their treatment.

This chapter will proceed as follows. First, we present artshistory of MdF, EMdF, and MQL.
Second, we give a gentle introduction to Backus-Naur FommBIF, which will be used throughout
chapters 3 and 4. Lastly, we explain the origin of the supfaoréomething calledegular expressions
MQL. This is done so as to comply with the license for the Ifignased.

But first, an explanation of where EMdF and MQL come from.

1.2 Origins of MdF, EMdF, and MQL

EMdF and MQL are not original works. They are merely derixativorks based on someone else’s hard
labors. Most of the ideas underlying the EMdF model and the_LMQ@ery language are to be found in the
PhD thesis of Crist-Jan Doedens, published in 1994 as [DweSdig. This thesis described, among other
things, the MdF database model and the QL query languagenédmight guess, EMdF stems from MdF,
and MQL stems from QL.

The EMdF model takes over the MdF model in its entirety, butsaal few concepts which are useful
when implementing the MdF model in real life. Thus the ‘E’ BMdF’ stands for “Extended”, yielding
the “Extended MdF model”. The EMdF model is the subject ofptba?2.

“MQL” stands for “Mini QL.” Originally, | devised MQL as a sutet of the QL query language devel-
oped in Dr. Doedens’ PhD thesis, hence the “Mini” modifiemc®i then, however, MQL has grown. QL
was not a full access language, but specified only how to careidF database, i.e., how to ask questions
of it. MQL, by contrast, is a full access language, allowirgd anly querying, but also creation, update,
and deletion of the data domains of the EMdF model. The MQLryglamguage is the subject of chapters
3and 4.

Thus EMdF and MQL are derivatives of the MdF database modkitenQL query language developed
by Dr. Crist-Jan Doedens in his 1994 PhD thesis.

10

1.3 Introduction to Backus-Naur Form

1.3.1 Context-Free Grammars

BNF is a way of specifying the “syntactic rules” of a languadgnglish also has “syntactic rules,” and
some of them can be specified using a “Context-Free GrammalE is precisely a way of specifying a
context-free grammar for a formal language. Thus it is beiadfiirst to see what a context-free grammar
is, before looking at the details of BNF.

In English, the basic clause-pattern is “Subject - Verb -e@tij For example, in the clause “| eat
vegetables,” the word “I” is the subject, the word “eat” ig therb, and the word “vegetables” is the object.
A clause which exhibits exactly the same “Subject - Verb -€otij structure is “You drink coke.” Here,
“You” is the subject, “drink” is the verb, and “coke” is the jelot.

Consider the following context-free grammar:

Sentence — NP,,; VP
NPsu,bj — " | “You”

VP — V NPy,

V — “eat” | “drink”

NR,,; — “vegetables” | “coke”

This little context-free grammar is a toy example of a cotifexe grammar. However, despite its
simplicity, it exemplifies all of the concepts involved inndext-free grammars:

e Rule

Non-terminal

Terminal

e Choice
e Concatenation
e Start-symbol.

These will be described in turn below

1.3.1.1 Rule

A “Rule” consists of three parts:
1. The left-hand side
2. The “production arrow” (*=").
3. Theright-hand side

An example of a rule in the above context-free grammar is:
Sentence — NP,;; VP

It specifies that the left-hand side (“Sentence”) camdpdaced withthe right-hand side, which in this case
is two symbols, “NR,;" followed by “VP”. Sometimes, we also say that a left-hangdiesisexpanded to
the right-hand side.

11

1.3.1.2 Non-terminal

There are only two kinds of symbols in a context-free gramrNan-terminals and Terminals. They are a
contrasting pair. In this section, we describe what a nomitgal is, and in the next section, what a terminal
is.

A “Non-terminal” is a symbol in a rule which can be expandeatioer symbols. Thus the symbols
“Sentence”, “NR;", “VP”, “V”, and “NP ;" constitute all of the non-terminals of the above contexief
grammar.

Only non-terminals can stand on the left-hand side of a rAl&on-terminal is defined as a symbol
which can be expanded to or replaced with other symbols, andéithey can stand on the left-hand side
of a rule. But as you will notice in the above context-freengnaar, a non-terminal can also stand on the
right-hand-side of a rule. For example, the non-termindli8/fresent both in the rule for how to expand
the non-terminal “VP”, and in the rule for how to expand itsdlhus, in order to expand “VP” fully, you
must first expand to the right-hand-side “V NP, and then expand both “V” and “NR;”, using the rules
for these two.

1.3.1.3 Terminal

A “Terminal” is a symbol in a rule which cannot be expandedttueo symbols. Hence, it is “terminal” in
the sense that the expansion cannot proceed further freansythibol. In the above context-free grammar,
the terminals are: “I”, “You”, “eat”, “drink”, “vegetablé's and “coke”. These are symbols which cannot
be expanded further.

Terminals can only stand on the right-hand side of a ruléndftwere to stand on the left-hand-side of
the rule, that would mean that they could be expanded to dace@ with other symbols. But that would
make them non-terminals.

1.3.1.4 Choice

In the rule for “V” in the above grammar, we see an example oicd The choice is indicated by the “|”
symbol, which is read as “or”. Thus, this example:

V — “eat’ | “drink’

is read as 'V expands to “eatit “drink™.

1.3.1.5 Concatenation

We have already seen an example of concatenation, namdilyg nule for “Sentence”:

Sentence— NPg,;; VP

Here, the symbols “NR,,;” and “VP” are concatenatedor placed in sequence. Thus “VP” comes
immediately after “NRy;".

“Concatenated” is simply a fanciful name for “being in seqees’, but although it is a basic idea, we
included it for completeness.

1.3.1.6 Start-symbol

The start-symbol is merely the left-hand side non-termafdhe first rule in the grammar. Thus, in the
above grammar, “Sentence” is the start-symbol.

1.3.2 Context-free grammars: Putting it all together

It is time to see how all of this theory works in practice. ThHmwae grammar can produce 8 sentences,
some of which do not make sense:

1. | eat vegetables

12

| eat coke

| drink vegetables

| drink coke

You eat vegetables
You eat coke

You drink vegetables

© N o g bk~ w0 D

You drink coke

Let us pick one of these sentences and see how it was produredte above grammar. We will pick
number 8, “You drink coke”, and trace all the steps. We sttt the start-symbol, “Sentence”:
1. Sentence
This is expanded using the rule for “Sentence”:

2. NPy VP
The “NPs,;;” non-terminalis then expanded to “You” using one of the clesiin the rule for NB,,:

3. “You” VP
The “VP” is then expanded using the rule for “VP":

4. “You" V NP
The “V” non-terminal is then expanded to the terminal “dfink

5. “You” “drink” NP ,;
The “NP,;;” non-terminal is then expanded to the terminal “coke”:

6. “You” “drink” “coke”

Which yields the final sentence, “You drink coke”. This se has no non-terminals, only termi-
nals, and therefore it cannot be expanded further. We ashédi

If you would like to, try to trace the production of one of thiher sentences using pencil and paper, tracing
each step as in the above example. When you have done so amdeegryou should understand all there
is to understand about context-free grammars.

And BNF is simply a way of specifying a context-free gramn&u.let us start looking at the details of
BNF.

1.3.3 BNF
1.3.3.1 Introduction

BNF comes in various variants, and almost everyone defir@sukage of BNF a little differently from
everyone else. In this document, we shall also deviatetglifffom “standard BNF”, but these deviations
will only be very slight.

This treatment of BNF will be made from an example of a confeet grammar in “MQL BNF.” This
example covers every formalism used in “MQL BNF,” and is d-tia example of the syntax of an actual
MQL statement:

13

1.3.3.2 Example

create_enumeration_statement : “CREATE”
(“ENUMERATION" | “ENUM")
enumeration_name “="
“{" ec_declaration_list “}"
enumeration_name : T_IDENTIFIER
[+ The T_IDENTIFIER is a terminal
denoting an identifier. */

wn

ec_declaration_list : ec_declaration { “,” ec_declaratio n }

ec_declaration : [“DEFAULT”]
ec_name [ec_initialization]
ec_name : T_IDENTIFIER

ec_initialization : “=" T_INTEGER

1.3.3.3 Elements of “MQL BNF”"

All of the elements of “MQL BNF” can be listed as follows:

1.

Rule

This is just the same as in the context-free grammars abreepethat the “-” production arrow is
replaced by a “:* colon. Also, a rule ends with a “;” semicolon

. Non-terminal

Non-terminals always start with a lower-case letter, éag., declaration.”

. Terminal

Terminals are either strings in “double quotes” or stririgd start with “T_", e.g., “T_IDENTIFIER”.

. Choice

This is the same as in the context-free grammars. The synfiisldsed.

. Concatenation

This is the same as in the context-free grammars. A spacesbattwo symbols is used.

. Start-symbol

This is the same as in the context-free grammars. The leit-bale non-terminal of the first rule is
the start-symbol.

. Comment

A comment is enclosed in /* slashes and stars */. The comnaetaot part of the grammar, but
serve to explain a part of the grammar to the human reader.

. Optional specification

A symbol or sequence of symbols enclosed in [square brddketensidered optional. For exam-
ple, theec_initialization non-terminal is optional in thec_declaration rule. Both
terminals and non-terminals can be optional. Here, thecehisibetween “ENUM” and “ENUMER-
ATION?”, rather than, say, “CREATE ENUMERATION” and the resftthe rule.

14

9. Bracketing

Sometimes, we do not go to the trouble of spelling out a chwitiea rule by itself. Instead, (brack-
ets) are used. For example, in the above grammar, there isieechetween “ENUMERATION”
and “ENUM?”. Only one must be chosen when writing the CREATEUBMERATION statement.
The brackets serve to let you know the scope of the choicgbeéveen exactly which elements the
choice stands.

10. Bracing (repetition)

The { braces } are used to indicate that the enclosed part eaefireated zero or more times. For
example, in the rule foec_declaration_list , the firstec_declaration can be followed
by zero or more occurrences of first a “,” comma and ther@rdeclaration . This effectively
means that thec_declaration_list is a comma-separated liste€¢_declaration s, with

one or moreec_declaration S.

There is no comma after the last_declaration . To see why, notice that the partthat is repeated
starts with a comma and ends with an_declaration . Thus, no matter how many times you
repeat this sequence, tee_declaration will always be last, and the comma will never be last.

That it can be repeatexroor more times simply means that it is optional. In the rulegfordeclaration_list
the firstec_declaration can stand alone.

Notice also that, in the rule farreate_enumeration_statement , there are braces as well.
These braces, however, are enclosed in “double quotes”ranitherefore terminals. Thus they do
not have the meaning of repetition, but are to be written exdtatement when writing a CREATE
ENUMERATION statement. The braces without double quotesrapetition-braces and must not
be written.

1.4 Acknowledgements

1.4.1 Westminster Hebrew Institute

Emdros development is made possible in part by the gengrokthe Westminster Hebrew Institdte
part of Westminster Theological Semin&ryhiladelphia, Pennsylvania. The WHI grants me access to
some seriously powerful hardware, which helps drive Emdev&lopment, in particular the scalability of
Emdros.

1.4.2 Regular expression support

MQL has support for regular expressions in queries. Regxaression support is provided by the PCRE
library package, which is open source software, written biif’Hazel, and copyright by the University
of Cambridge, England. The PCRE library can be downloadsd fr

ftp.csx.cam.ac.uk/pub/software/programming/pcre/

The PCRE included with Emdros is a modified copy.
We'll get back to regular expressions in section 4.7.7.8dlia section A.4. See also the index.

1See sittp://whi.wts.edu/WHI >,
2See ttp://www.wts.edu >,

15

Chapter 2

The EMdF model

2.1 Introduction

This chapter is a gentle introduction to the “EMdF model”.eTBMdF model is a “database model.” As
such, it provides a solid theoretical foundation for the EMidtabase engine and the MQL query language.
However, its importance goes beyond being a theoreticaldation. The EMdF model defines the very
way we talk about text in an EMdF database, and as such, iigesthe “vocabulary” of the language
by which you, the user, communicate with the EMdF databagaenPut another way, the EMdF model
defines the concepts which you use to talk about text when aoriwating with the EMdF database engine.
Thus it is very important that you understand all of the cggénvolved in the EMdF model. However,
these concepts are neither many nor difficult to understainid.chapter is designed to help you understand
them, whatever your background.

This chapter is built around the concepts in the EMdF modelnals, objects, object types, features,
and a few other concepts. These four concepts: monads,t@bgiect types, and features, form the
backbone of the EMdF model. Once you have understood thesegs$t are mere extensions which follow
fairly easily.

And so, with no further ado, let us jump into the first of therfauajor concepts, monads.

2.2 Monads

2.2.1 Monads and textual sequence

Language is linear in nature. We produce language in resd;tiwith sequences of sounds forming se-
guences of words. Text, being language, is also linear iaraatin the EMdF model, this linearity is
captured by the monads.

A monad is simply an integer — no more, no less. The sequenitgegfers (1,2,3,4,...) forms the
backbone to which the flow of the text is tied. Thus, becaus@aau is an integer, and because we can
order the integers in an unambiguous way, we use the seqoénmmads to keep track of the sequence of
textual information.

The sequence of monads begins at 1 and extends upwards tdesgmeumber, depending on the size
of the database.

2.2.2 Granularity

What unit of text does a monad correspond to? For example, @ogonad correspond to a morpheme, a
word, a sentence, or a paragraph?

The answer is that you, the database user, decide the grignofthe EMdF database. You do this
before any text is put into the database. If you want each chtmeorrespond to a morpheme, you simply
decide that this is so. A more common choice is for each momadrrespond to a word. However, there

16

is nothing implicit or explicit in the EMdF model that preusrihe user from deciding that another unit
of text should correspond to a monad. Be aware, howeverpti the choice has been made, and the
database has been populated with text, it is not easy to eghekdecision, and go from, say, a word-level
granularity to a morpheme-granularity.

2.2.3 Textflow

What is the reading-order of an EMdF database? Is it lefigbt, right-to-left, top-to-bottom, or something
else?

The answer is that the EMdF model is agnostic with respe@ading-order. In the EMdF model, what
matters is the textual sequence, as embodied by the monausthid text is displayed on the screen is not
specified in the EMdF model.

The MQL query language provides for both 7-bit (ASCII) antiBencodings of strings, which means
that the database implementor can implement any charseténat can be encoded in an 8-bit encoding,
including Unicode UTF-8.

2.2.4 Conclusion

A monad is an integer. The sequence of integers (1,2,3)4lictates the textual sequence. The granularity
of an EMdF database is decided by the database-implemémterEMdF model is agnostic with respect
to reading-order (right-to-left, left-to-right, etc.).

2.3 Objects
2.3.1 Whatis an object?

An objectis a set of monads. Thus, for example, an object teighsist of the monads {1,2,4}. This object
could, for example, be a phrase-object consisting of threelsv(assuming the monad-granularity is “one
monad, one word”).

The EMdF model does not impose any restrictions on the setosfasls making up an object. For
example, objects can be discontiguous, as in the above égampmddition, objects can have exactly the
same monads as other objects, and objects may share monads.

We need the last two concepts, object types and featuresiebee can understand exactly how an
object can encode, say, a word or a phrase.

2.4 Object types
2.4.1 Objects are grouped in types

In any populated EMdF database, there will be at least onecobjpe. Otherwise, no objects can be
created, and thus the database cannot store textual informa

Objects are grouped in types, such as “word”, “phrase” Us#d, “sentence”, but also “chapter”, “part”,
“page”, etc. Each of these are potential object types tleatiier can create. Once an object type has been
created, objects of that type can also be created.

Any object is of exactly one object type. Object types are twdiges objects their interpretation.
For example, an object of type “phrase” is, by itself, jused & monads, such as {1,2,4}. But seen in
conjunction with its object type, it becomes possible teliptet those monads as a number of words that
make up a phrase.

An object type is also what determines wifedturesan object has. And thus we turn to the last major
concept in the EMdF model, namely features.

17

2.5 Features

2.5.1 Whatis a feature?

A feature is a way of assigning data to an object. For exansplewe have an object of type “word”. Let
us call this object “O”, and let us say that it consists of tingleton monad set {1}. Assume, furthermore,
that the object type “word” has a feature called “surfacet’teThen this feature, taken on the object O,
might be the string “In”. This is denoted as “O.surface_telftve have another object, Qwhich consists

of the singleton monad set {2}, the valug Gurface_text might be “the”. Thus we know that the first text
in this EMdF database starts with the words “In the”.

2.5.2 Object types have features

An object type has a fixed number of features defined by théodagimplementor. For example, it might
be necessary for a particular application to have thesaresbn the object type “word”:

e surface_text

e lexical_form

part_of speech

preceding_punctuation

trailing_punctuation
e ancestor

The “ancestor” feature would be a pointer to another objagibdwing the user to create an immediate
constituency hierarchy.
The object type “phrase” might have the following list of figees:

e phrase_type

e ancestor

2.5.3 Features have types

An object type has a number of features. Each feature, in @sone type. In the current implementation
of the EMdF model, a feature can have one of the following $ype

e integer

e string (which is an 8-bit string)

e ascii (which is a 7-bit ASCII string)

e id_d (which is an object id — we will get to this later)

e enumeration (which we will also get to later in this chapter)
e list of integer

e listofid_d

e list of enumeration constants

18

1 2 3 4 5 6 7 8 9

Word 1 2 3 4 5 6 7 8 9
surface The door, | which opened | towards | the East, | was | blue.
part_of_speech defart. | noun | rel.pron.| verb prep. defart. | noun| verb | adject.

Phrase 1 2

phrase_type

Phrase

phrase_type

Clause_atom 1 2 3
Clause 1 2 1
Sentence 1

Figure 2.1: Exemplifying the four major concepts of the EMdBdel: monad, object, object type, and
feature.

2.6 Example

We have now defined all of the four major concepts in the EMdE@homonad, object, object type, and
feature. It is time to make them more concrete by giving amgpta of a very small EMdF database. Look
atfigure 2.1. At the top of the figure, you see the sequence ofwg 1 to 9. Just below this sequence, you
see the object type “Word” with its object ordinals, 1 to 9this example, the granularity is “one monad,
one word.” ThusWord number 1 corresponds tnonadnumber 1, but they are really separate entities.
Word number Xkonsists otthe set of monads {1}.

This becomes clearer when you notice that Clause numberststeiof the set of monads {3,4,5,6,7}.
Thus there is a fundamental distinction between the numban object (also called object ordinal), and
the set of monads making up that object.

Some of the object types in the figure (Word and Phrase) haverder offeatures The object type
“Word” has the features “surface” and “part_of _speech”e TRhrase” object type has only one feature,
namely “phrase_type”.

Notice that objects can be discontiguous. The Clause abjdtbbject ordinal 1 consists of the monads
{1,2,8,9}. Thus there can be gaps in an object.

Notice also that an object type need not have features. Tjeetalypes Clause _atom, Clause, and
Sentence have no features in the figure.

2.7 Other concepts

2.7.1 Introduction

Having learned the basic concepts of the EMdF model, we nawttuthe additional concepts which we
use to talk about EMdF databases. These concepts are:

1. The special object types pow_m, any_m, and all_m

2. objectids (id_d, id_m)

19

self

part_of

gaps

borders, first, and last
enumerations

min_m and max_m

© © N o 0 &~ W

arbitrary monad sets

10. databases

2.7.2 pow_m

In each EMdF database, we assume an abstract object typenpowhis object type has one object for
every possible set of monads. Thus the pow_m object typeltjaste consisting of the sets {1},{2},{3},
5 {1,2}, {1,34 {14}, ..., {2,3}{2,4}{2,5},. .. {1, 2,3},{1,2,4}, ..., etc. Every possible set of monads
is represented in the pow_m object type.

The pow_m object type is aabstractobject type. That is, no objects of type pow_m actually exist
the EMdF database. However, it is useful to be able to talkuahgarticular pow_m object. In effect, a
pow_m object is simply a set of monads, and sometimes, itigaxdent to be able to talk about a particular
pow_m object. This is especially true with gaps (see below).

The pow_m object type has no features.

2.7.3 any_m

The any_m object type is an abstract object type like pow_achEof its objects consist of a single monad.
So the any_m objects are: {1}, {2}, {3}, ... etc. The any_m ebj type has no features.

2.7.4 all_m

The all_m object type has only one object, and it consistdldha monads in the database. That is, it
consists of the monads from min_m to max_m (see sectionsBB page 52 and 3.8.11 on page 52), the
smallest and the largest monads in use in the database aivanytighe. This one object is called all_m-1.

2.7.5 objectids (id_d, id_m)

Each object in the database (apart from pow_m objects) habjant id_d An objectid_d is a unique ID
assigned to the object when the object is created. The iduskid only for that particular object, and the
id_d is never used again when the object is deleted.

A feature can have the type “id_d", meaning that the valugb®feature are taken from the id_ds in
the database.

Each object in the database (including pow_m, any_m, andadbjects) also has anid_m. The id_m
is simply the set of monads which makes up the object. Thististnictly an ID, since objects of the same
object type may have exactly the same monads. However,dtorfdal reasons, this is called anid_m. See
[Doedens94] or [Standard-MdF] for details.

20

2.7.6 self

Each object type in the database (apart from the pow_m, apngnohall_m object types) has a feature
called “self”. This is used to get the object id_d of the objaqjuestion.

The “self” feature is a read-only feature, which means ttlat gannot update an object’s self feature,
or write to it when creating the object. The value of the “s&ature is assigned automatically when the
object is created.

The type of the “self” feature is “id_d".

2.7.7 part_of

If all of the monads of one object,Qare contained within the set of monads making up anothexcbj
O, we say that @is part_of Q.
For example, an object with the monads {1,2} would be pararafther object with the monads {1,2,4}.
In mathematical terms, {s part_of Q if and only if O; C Os.

2.7.8 gaps

Objects may have gaps. A gap in an object is a maximal strétctonads which are not part of the object,
but which are nevertheless within the boundaries of the eindp of the object. For example, an object
consisting of the monads {1,3,4,7,8,13} has three gaps; 2%}, and {9,10,11,12}.

Note that gaps are always maximal, i.e., extend across thé&wlithe gap in the object. For example,
{6} is not a gap in the above object: instead, {5,6} is.

2.7.9 Dborders, first, last

Each non-empty object, being a set of monads, has a left bardka right border. The left border is the
lowest monad in the set, while the right border is the highastad in the set. These are also called the
first monad and the last monad in the object. If we have an bBjgihe notation for these monads is O.first
and O.last.

For example, if we have an object O consisting of the mona@45}, then O.first =2 and O.last = 5.

2.7.10 consecutive with respect to a set of monads

The basic idea is that two sets of monads are consecutiveyfftillow each other without any gaps in

between. However, this idea is extended so that the “no gapstiveen” is interpreted with respect to a
reference set of monads called Su. For example, if Su = {BR,then the sets {2} and {5} are consecutive

with respect to Su. However, the sets {2} and {6} are not cangi®e with respect to Su, since there is a
“gap” consisting of the monad 5 in between the two sets. Likeythe sets {1} and {5} are not consecutive

with respect to Su, because Su has a monad, 2, which is a “g&pébn the two sets.

2.7.11 enumerations
2.7.11.1 Definition

Each feature, it will be remembered, is of a certain type.s€l@n be integers, strings, and id_ds, but they
can also be enumerations. An enumeration is a set of paiesendach pair consists of a constant-identifier
and an integer value.

2.7.11.2 Example

For example, the enumeration “phrase_type_t” might hage#irs of constants and values as in table 2.1
on the following page.

21

constant | value |

phrase_type_unknown -1
VP

NP

AP

PP

AdvP
ParticleP

OB W N -

Table 2.1: phrase_type_t enumeration

2.7.11.3 Default constant

Each enumeration has exactly one default constant whickeid when the user does not give a value for a
feature with that enumeration type. In this example, “paragpe_unknown” might be the default.

2.7.11.4 Terminology

The constants are calleshumeration constantsvhile the type gathering the enumeration constants into
one whole is called aanumeration

2.7.11.5 Names are identifiers

The names of both enumerations and enumeration constastdeidentifiers See section 3.1.3 on page
24 for information on what an identifier is.

2.7.11.6 Each enumeration is a name-space

Each enumeration forms its own namespace. All name-spades MQL language are orthogonal to each
other. This means that two enumeration constants withirséimee enumeration cannot be called by the
same constant-identifier, but two enumeration constantwandifferent enumerations may be the same.
For more information, see section 3.1.4 on page 25 for mdoerimation.

2.7.11.7 Enumeration constants must be unique

Enumeration constants must be unique within each enuroardtoth in their values and in their names.
For example, you cannot have two labels with the same nanheisadme enumeration. Nor can you have
two labels with the same value in the same enumeration, é#ea labels have different names.
This is different from C or C++ enumerations, where the saatee/can be assigned to different labels.
Thus an enumeration is effectively a one-to-one correspiooel (also called a bijective function) be-
tween a set of label names and a set of values.

2.7.12 min_m, max_m

An EMdF database has a knowledge of which is the smallest chonase (min_m) and which is the
largest monad in use (max_m). Normally, you don't need toryabout these; the database maintains
its knowledge of these monads without your interventionu ¥an, however, query the database for the
minimum and maximum monads (see sections 3.8.10 on pagedb2.&ril on page 52), and when you
guery the database for objects (section 3.8.1 on page 44)sttione within the confines of the minimum
and maximum monads. Thus it is useful to know of their existebut you needn’t worry too much about
them.

The associated statements are SELECT MIN_M (section 3@lfiage 52) and SELECT MAX_M
(section 3.8.11).

22

2.7.13 Arbitrary monad sets

Each database has a central repository of monad sets wigigioaassociated with any objects. That is,
they are not objects, have no object type, and no featuresy dite just plain monad sets.

These monad sets can be used as the basis for searches, Whatisloing a SELECT ALL OBJECTS
query (or SELECT FOCUS OBJECTS), one can specify within Whiditrary monad set the search should
be conducted.

The associated statements are SELECT MONAD SETS (sect®hh23on page 53), GET MONAD
SETS (section 3.8.13 on page 53), CREATE MONAD SET (sectif.2 on page 66), UPDATE MONAD
SET (section 3.10.3 on page 66), and DROP MONAD SET (sectibd.8 on page 67).

2.7.14 Databases

The EMdF model has a concept of “database.” It is an orgabpizatconcept which generally corresponds
to what the back-end database system calls a “databaséninlidlatabase, there is one string of monads
starting at 1 and extending upwards to some very large nuritiginin this stretch of monads, the user is
free to create objects.

You may need to issue the USE DATABASE statement (see seBi®B on page 30) as the first thing
you do before doing anything else, in order to tell Emdroschitdatabase you want to deal with. Ask the
implementor of your Emdros application whether this is wrat should do.

A database can be created with the CREATE DATABASE statelfsestsection 3.3.1 on page 28).

2.8 Encryption

Dr. D. Richard Hipp, the author of SQLite, makes an encryptoabled version available for a fee.
There is skeleton support for SQLite encryption in Emdrosaning one should be able to use Dr. Hipp’s
encryption-enabled version of SQLite with Emdros and getyption-supportin Emdros on SQLite. This
has not been tested, however; only the skeleton is therest8g®//www.hwaci.com>, the website of Dr.
Hipp’s consulting company, for more information about Dippls encryption.

In this manual, when we speak of “encryption” on SQLite, piehe aware that the actual encryption
is not a part of Emdros, and you will achieve the exact samdteeand generate the exact same Emdros
databases whether you use a key or not, unless you obtairceypéan-enabled SQLite from somewhere.

23

Chapter 3

MQL database manipulation

3.1 Preliminaries

3.1.1 Introduction

In this section on preliminaries, we will talk about fourrigs. First, we describe what terminals are used
in the grammar-fragments in this manual. Second, we destriblexical conventions of MQL. Third, we
describe the name-spaces available in MQL. And finally, wsedlee some top-level constraints in MQL
syntax.

3.1.2 Terminals

The following terminals are used in this grammar:

T_IDENTIFIER

T_INTEGER

T_STRING

T_MARKS

“strings” ,e.g.,"“OBJECT".
The fifth kind, e.g.,'OBJECT” represent keywords in MQL. They are parsed as case-insensitings
without the quotes.

3.1.3 Lexical conventions
The lexical conventions for MQL are as follows:

1. There are two kinds of comments:

(a) Enclosed in “/*” (opening) and “*/” (closing). This kindf comment can span multiple lines.
This is the same as C-style comments.

(b) Starting with “//” and ending at the end of the line. Tragle style used in C++.

2. All keywords (such a8CREATE”, “SELECT” , “<=" , etc.) are cas@sensitive insofar as they are
made up of letters. Keywords are enclosetidauble quotes” in the syntax-sections below.

24

| T_IDENTIFIER referent | Case-sensitivity]

Database name insensitive
Object type name insensitive
Enumeration name insensitive
Enumeration constant namesensitive

Table 3.1: Case-sensitivity of T_IDENTIFIERs

3. AT_IDENTIFIER begins with any letter (a-z,A-Z) or an umdeore (_), followed by zero or more
letters (a-z,A-Z), numbers (0-9), or underscores (_). karmgle, “Word”, “_delimiter”, “i18n”, and
“phrase_type_t” are all identifiers. However, “8bf” is not i@entifier because it does not start with
a letter or an underscore. Neither is bf@foo.com an identliiecause it does not consist solely of
letters, underscores, and numbers.

Whether a T_IDENTIFIER is case-sensitive depends on wlsdaitds for (i.e., what its “referent”
is). See table 3.1 for a description.

4. AT_INTEGER is any sequence of one or more digits (0-9).éx@mple, “0”, “42", and “747” are
all integers.

5. AT_STRING is one of two kinds:

(a) A T_STRING can start with a single quote ('), followed bsra or more characters which are
not single quotes, and ending with another single quoté&(ixh a string can contain newlines.

(b) A T_STRING can also start with a double quote ("), follaMey zero or more characters,
escape-sequences (see table 3.2), or newlines, and enittirg double quote ().

6. AT_MARKS is a sequence of one or more identifiers, eachymeéfoy a backping (). For example,
the following are all T_MARKS: “yellow”, “‘red‘context”,“marks‘are‘useful”, “Flash_Gordon‘was‘a‘Hero”.
More precisely, a T_MARKS conforms to the regular exprass{da-zA-Z_][a-zA-Z_0-9]*)+".

7. White-space (spaces, newlines, and tabs) is ignoreghexc& STRINGs.

| Escape sequencgsMeaning |

\n newline (ASCII 10)

\t horizontal tab (ASCII 9)

\v vertical tab (ASCII 11)

\b backspace (ASCII 8)

\a bell (ASCII 7)

\r carriage-return (ASCII 13)

\f form-feed (ASCII 12)

\\ slash (\) (ASCII 92)

\? guestion-mark (?) (ASCII 63)

\ single quote (*) (ASCII 39)

\" double quote (") (ASCII 34)
\ooo Octal number (e.g.,\377 is 255)
XXX Hexadecimal number (e.g., \XFF is 25pb)

Table 3.2: Escape sequences in strings enclosed in douttesqu

3.1.4 Name-spaces

A name-space, in computer-terminology, is a language-ittomih fixed borders within which names
must be uniqueWithin a name-space, two different entitiesnnotbe called by the same name without

25

causing a name-clash. In other words, within a name-spacegs must be unique. However, if two name-
spaces arerthogonalto each other, then a name from one name-spanbe the same as a name from the
other name-spaagithoutcausing a name-clash.

In MQL, the following name-spaces exist. They are all orthrg to each other:

e Each object type forms a name-space with respect to itsresatlihat is, a single object type cannot
have two features with the same name, but different objgadycan have features with the same
name. The two features with the same name need not even ragaihe feature type. This is
because all name-spaces are orthogonal to each other.

e Each enumeration forms a name-space with respect to itdastas That is, a single enumeration
cannot have two enumeration constants with the same narhejffarent enumerations can have
enumeration constants with the same name. Since all naatesjpre orthogonal to each other, the
two enumeration constants with the same name need not hagaithe integer value.

e Each database forms a global name-space with respect tct tyjpe names. That is, object type
names must be globally unique within a database. Howevere sill name-spaces are orthogonal to
each other, you can have features or enumeration constaitk thvave the same name as an object

type.

3.1.5 Top-level constraints on MQL syntax

The MQL engine can receive any number (greater than or equa) bf MQL statements. The only
requirement is that each statement must end with the keyt@@f . This keyword acts as a delimiter
between each statement. The last statement may also beatechiwith*GO”, but need not be. Single
statements on their own need not be terminated V@@” either.

If you connect to the MQL engine in daemon-mode, you must applee meta-level statement “QUIT”
after the “GO” of the last statement.

3.2 Return types

3.2.1 Introduction

MQL is made up of statements, each of which either returnsesioimg or doesn't. If it returns something,
there are two possibilities for what the return-type canlbean be:

1. Atable, or
2. Asheaf
The sheaf is explained in detail in section 4.4 on page 76edtian 3.2.3 below, we will treat the tables.

But first, a word about the two output-formats available gghe third option for getting data back).

3.2.2 Output-formats
The MQL engine gives you three options for using the resudlsdVQL query:

1. You can specify that you want XML output.
2. You can specify that you want output for displaying on asme.
3. You can use the datatype provided if your program is in #meesprocess as the mql library.

If you use the mql(1) program for output, please see the maragee for how to choose the output kind.

26

3.2.3 Tables

The tables will look differently, depending on whether ydwose XML-output or console-output. In the
descriptions below, we will give abstract schemas for thdetg such as the following:

| object_type_name : stringmonad : monad_nj id_d:id_d |

This means that, in each row in the table, the first piece a@fdétbe a string (called object_type_name),
the second piece of data will be a monad_m (called monad}herdst piece of data will be an id_d (called
id_d). And then the row stops. There will always be the sammeber of columns in each row.

A table of values may be empty, meaning it has no rows. In i cthere will still be a table heading
with type-specifications.

Some MQL statements do not return a value. In this case, thiirbe no result, not even an empty
table.

3.2.4 Atomic output-types in tables

The following types can get into a table and will be annouringtle header of the table:
1. string
2. integer

3. boolean (true or false)

4

.id_d

3.2.5 Other return values

A number of other values are also returned from each query:
1. A boolean indicating whether there were any compileostr
2. Aboolean indicating whether there were any databaseserr

3. An integer showing which stage of the compilation/intetation we had come to when we exited
the function (see table 3.3). In XML, this is a string as shaowthe table, of the attribute “stage”
attribute of the “error_stage” element.

4. A string carrying any error messages.

| Stage | Value | XML string |
None 0 none
Parsing 1 parse
Weeding 2 weed
Symbol-checking| 3 symbol
Type-checking 4 type
Monads-checking 5 monads
Execution 6 exec

Table 3.3: Compiler stages.See include/mql_executionrgmment.h for ready-made #define macros.

27

3.3 Database manipulation

3.3.1 CREATE DATABASE
3.3.1.1 Syntax

create_database_statement : “CREATE” “DATABASE”
database_name opt WITH_KEY opt WITH_ENCODING

database_name : T_IDENTIFIER
| T_STRING

opt WITH_KEY : / = Empty: No key is used. * |
| “WITH” “KEY” T_STRING

opt_ USING_ENCODING : /* Empty: Default encoding is used. */
| “USING” “ENCODING” T_STRING

3.3.1.2 Example

CREATE DATABASE book_test

GO

CREATE DATABASE book_test_utf8
USING ENCODING 'utf-8

GO

CREATE DATABASE book_test latinl
USING ENCODING 'is0-8859-1"

GO

3.3.1.3 Explanation

The CREATE DATABASE statement creates and initializes albase. No text data is put into the database,
and no object types are created, but the structures negésstire EMdF engine to function are set in place.
The user need not worry about these structures. Interesezd are referred to [Relational-EMdF].

You must CREATE a database before you can USE it (see secBaB) 3Alternatively, if you have a
database that is already created but not initialized, youus the INITIALIZE DATABASE statememt
(see Section 3.3.2 on the next page).

If a transaction was in progress (see BEGIN TRANSACTIONestant, section 3.4.1 on page 33), the
transaction is automatically committed before the CREATAIBBASE statement is executed. Thus the
user need not, cannot, and should not commit it or abort it.

The database name can be either a T_IDENTIFIER or a T_STRRSGMySQL and PostgreSQL, it
must be a T_IDENTIFIER. For SQLite, it can be a T_STRING givthe filename (optionally including
the full path) of the file in which the database is to be crealiedo path is given, the file is created in the
current working directory.

The optional “WITH KEY” syntax can be used on SQLite to senégpto SQLite’s sqlite_open_encrypted
API when opening the database. Note that this will not alitymdrform any encryption at all unless you
obtain an encryption-enabled SQLite from somewhere, Brg.Hipp himself, the author of SQLite. See
Section 2.8 on page 23 for more information.

The optional “WITH ENCODING” syntax can be used to specifg ttefault encoding to be used for
the database when creating it in the backend database.n@yrtkee following values are supported:

o "utf-8"
e "is0-8859-1"

28

If the WITH ENCODING clause is not supplied, then the defauwltoding is used. The default encoding
for each database is given in the following list:

PostgreSQL: iso-8859-1
MySQL: is0-8859-1
SQLite 2: is0-8859-1
SQLite 3: utf-8

For SQLite 3, the only encoding available is "utf-8". To sfieany other encoding would be an error.

Note that the encoding specified only has a bearing on howattadese backend interprets the data, not
on how Emdros interprets the data. In fact, Emdros mostlikéll not interpret the data at all, but rather
will pass whatever is stored in the database on to the apiplicasing Emdros, which must the interpret
the data according to domain-specific knowledge of whiclodimg has been used.

3.3.1.4 Returntype

There is no return value.

3.3.2 INITIALIZE DATABASE
3.3.2.1 Syntax

initialize_database_statement : “INITIALIZE” “DATABASE "
database_name opt WITH_KEY

database_name : T_IDENTIFIER
| T_STRING

opt WITH_KEY : / * Empty: No key is used. */
| “WITH” “KEY” T_STRING

3.3.2.2 Example

INITIALIZE DATABASE book_test
GO

3.3.2.3 Explanation

The INITIALIZE DATABASE statement initializes a databaséhwout creating it first. Thatis, the database
must exist before issuing this statement. It simple creat¢se meta-data necessary for having an Emdros
database. This is useful on MySQL and PostgreSQL if you doanve privileges to create databases,
but you do have privileges to create tables in an alreadyighed database. On SQLite, it is also useful,
if you want to add Emdros information to an already-exist8{@Lite database. Other than not creating
the database, this statement accomplishes the same thirthe £&REATE DATABASE statement (see
Section 3.3.1 on the preceding page).

For the optional “WITH KEY” syntax, please see the CREATE BSASE statement.

There is no “WITH ENCODING” syntax for the INITIALIZE DATABASE statement. This is because
the encoding is only used when CREATEIng the database. Hewiine internal metadata of the database is
set to the default given under the explanation for CREATE PBASE (see Section 3.3.1 on the previous

page).

3.3.2.4 Return type

There is no return value.

29

3.3.3 USE DATABASE
3.3.3.1 Syntax

use_database_statement : “USE” [“DATABASE”]
database_name opt WITH_KEY

database_name : T_IDENTIFIER
| T_STRING

opt WITH_KEY : / = Empty: No key is used. */
| “WITH” “KEY” T_STRING

3.3.3.2 Example

USE book_test
GO

This is equivalent to

USE DATABASE book_test

GO
On SQLite:
USE DATABASE "c:\\EmdrosDBs\\mydb.db" / * On SQLite you can do this. */
GO
With a key:
/* On SQLite you can get encryption ek |F w00+ you have an
encryption-enabled SQLite. */

USE DATABASE "c:\\Emdros\\MySecretDB.db"

[+ The format and length of the key depends on your SQLite
encryption implementation. This is just an example. */

WITH KEY "\x45\x98\xbfix12\xfa\xc6"

GO

3.3.3.3 Explanation

Before you can start using a database you have CREATEd (sters8.3.1 on page 28) or INITIALIZEd
(see section 3.3.2 on the previous page), you must conniectding the USE DATABASE statement. The
keyword “DATABASE” is optional and can be left out.

If a transaction was in progress (see BEGIN TRANSACTIONest&nt, section 3.4.1 on page 33), the
transaction is automatically committed before the USE DBASE statement is executed. Thus the user
need not, cannot, and should not commit it or abort it.

The database name can be either a T_IDENTIFIER or a T_STRARIGMYSQL and PostgreSQL, it
must be a T_IDENTIFIER. For SQLite, it can be a T_STRING givthe filename (optionally including
the full path) of the file holding the database to be used. Ipaih is given, the file must be in the current
working directory.

3.3.3.4 Return type

There is no return value.

30

3.3.4 DROP DATABASE
3.3.4.1 Syntax

drop_database_statement : “DROP” “DATABASE”
database name

database_name : T_IDENTIFIER
| T_STRING

3.3.4.2 Example

DROP DATABASE book_test
GO

3.3.4.3 Explanation

A previously CREATEd database (see section 3.3.1) can beledaly removed from the system using
this statement. All data in the database is irretrievabdy, lImcluding all objects, all object types, and all
enumerations.

If a transaction was in progress (see BEGIN TRANSACTIONestant, section 3.4.1 on page 33), the
transaction is automatically committed before the DROP BBASE statement is executed. Thus the user
need not, cannot, and should not commit it or abort it.

The database name can be either a T_IDENTIFIER or a T_STRARIGMYSQL and PostgreSQL, it
must be a T_IDENTIFIER. For SQLite, it can be a T_STRING givthe filename (optionally including
the full path) of the file holding the database to be droppdcholpath is given, the file must be in the
current working directory.

3.3.4.4 Return type

There is no return value.

3.3.5 VACUUM DATABASE
3.3.5.1 Syntax

vacuum_database_statement : “VACUUM” [“DATABASE"]
[“ANALYZE"]

3.3.5.2 Example

1. VACUUM DATABASE
GO

2. VACUUM DATABASE ANALYZE
GO

3.3.5.3 Explanation

On PostgreSQL, this statement vacuums the database ugirfyARUUM” SQL statement. If the op-
tional keyword “ANALYZE” is given, the statement issues aAOUUM ANALYZE” statement. See the
PostgreSQL documentation for what this does.

On MySQL, this statement issues OPTIMIZE TABLE queries fiboaject types. If the ANALYZE
keyword is given, ANALYZE TABLE queries are issued as well.

31

On SQLite, this statement first deletes all redundant sexpigrio (compacting the sequence tables),
then issues a VACUUM statement to SQLite.

The significance of this statement to Emdros developmehtis when populating a database, things
will speed up dramatically if the database is VACUUM’ed aftgery 1000 objects created, or so.

3.3.5.4 Return type

There is no return value.

3.3.6 DROP INDEXES
3.3.6.1 Syntax

drop_indexes_statement : “DROP” “INDEXES”
“ON” “OBJECT” (“TYPE” | “TYPES")
“[” object_type_to_drop_indexes_on “]"

object_type_to_drop_indexes_on : object_type name | “AL L”

object_type_name : T_IDENTIFIER

3.3.6.2 Example

1. DROP INDEXES
ON OBJECT TYPES
[ALL]

GO

2. DROP INDEXES
ON OBJECT TYPE

[Word]
GO

3.3.6.3 Explanation

Emdros creates indexes on the tables associated with dbjexst when they are created. These indexes
speed up retrieval, but slow down insertion. Thereforeoif gre going to insert a large amount of objects,
it is best to drop indexes on the object types you are goingadiiy (possible all object types), then create
the indexes again after you have inserted all objects.

This statement drop indexes that have previously beenecréidtas no effect if the indexes have been
dropped already. If “ALL" is specified as the object type,ritadl object types in the current database will
have their indexes dropped (if not dropped already).

The manage_indices program that comes with the Emdrogbdistm can be used to achieve the same
effect.

Note that the choice between “TYPE” and “TYPES” is just sgtitasugar. It doesn’t matter which
you use.

If a feature has been declared WITH INDEX, this index is degbpHowever, the feature will have its
index recreated upon a CREATE INDEXES statement affectiagdbject type.

3.3.6.4 Return type

There is no return value.

32

3.3.7 CREATE INDEXES
3.3.7.1 Syntax

create_indexes_statement : “CREATE” “INDEXES”
“ON” “OBJECT” (“TYPE" | “TYPES")
“[" object_type_to_create_indexes_on ‘7"

object_type_to_create_indexes_on : object_type_name | “ ALL”

object_type_name : T_IDENTIFIER

3.3.7.2 Example

1. CREATE INDEXES
ON OBJECT TYPES
[ALL]

GO

2. CREATE INDEXES
ON OBJECT TYPE

[Word]
GO

3.3.7.3 Explanation

Emdros creates indexes on the tables associated with dpjexst when they are created. These indexes
speed up retrieval, but slow down insertion. Thereforeoif gre going to insert a large amount of objects,
it is best to drop indexes on the object types you are goingawiiy (possible all object types), then create
the indexes again after you have inserted all objects.

This statement creates indexes that have previously bexaped. It has no effect if the indexes are
there already. If “ALL” is specified as the object type, thdrolject types in the current database will have
their indexes created (if not there already).

The manage_indices program that comes with the Emdrogbdistm can be used to achieve the same
effect.

Note that the choice between “TYPE” and “TYPES” is just sgtitasugar. It doesn’t matter which
you use.

3.3.7.4 Return type

There is no return value.

3.4 Transactions

3.4.1 BEGIN TRANSACTION
3.4.1.1 Syntax

begin_transaction_statement : “BEGIN” “TRANSACTION”
3.4.1.2 Example

BEGIN TRANSACTION
GO

33

3.4.1.3 Explanation

On PostgreSQL, this statement begins a transaction if nedion is in progress already. The return value
is a boolean saying whether the transaction was starteg) @runot (false). If this value is false, the user
should not subsequently issue a COMMIT TRANSACTION or ABORRANSACTION statement. If
this value is true, the user should issue eithera COMMIT TIBARTION or an ABORT TRANSACTION
later.

On MySQL, this has no effect, and always returns false.

On SQLite, the behavior is the same as on PostgreSQL.

The transaction, if started, is automatically committed €REATE DATABASE, USE DATABASE,
DROP DATABASE or QUIT statement is issued before a COMMIT TRBACTION or ABORT TRANS-
ACTION statement has been issued.

Also, the transaction is automatically committed if the wection to the database is lost, e.g., if the
mql(1) program reaches the end of the MQL stream (e.g., an MQipt) and thus has to close down.
Transactions are not maintained across invocations of tiigljrprogram. The transaction is also commit-
ted if the EMdFDB, CMQL_execution_environment, or CEmding object is destroyed.

3.4.1.4 Return type

A table with the following schema:

| transaction_started : boolean

This table is empty if and only if there was a compiler errag,,iif the syntax was not obeyed. The
statement cannot fail with a database error. If no transactias started, false is returned. If a transaction
was started, true is returned.

3.4.2 COMMIT TRANSACTION
3.4.2.1 Syntax
commit_transaction_statement : “COMMIT” “TRANSACTION”
3.4.2.2 Example
COMMIT TRANSACTION
GO
3.4.2.3 Explanation

Commits the current transaction, if one is in progress. Hesffect if a transaction was not in progress. In
such cases, false is returned.

If the commit failed, false is returned. If the commit sucdee, true is returned.

NOTE that this is slightly different from other statementsieth flag a DB error if unsuccessful. Here,
no DB error is flagged, but false is returned in the table.

3.4.2.4 Returntype

A table with the following schema:

| transaction_committed : boolegn

This table is empty if and only if there was a compiler errag,,iif the syntax was not obeyed. The
statement cannot fail with a database error. If no transactias started when the COMMIT TRANS-
ACTION statement was invocated, false is returned. If agaation was started, and it was committed
successfully, true is returned. If a transaction was sialiat it was not committed successfully, false is
returned.

34

3.4.3 ABORT TRANSACTION
3.4.3.1 Syntax
abort_transaction_statement : “ABORT” “TRANSACTION”
3.4.3.2 Example
ABORT TRANSACTION
GO
3.4.3.3 Explanation

Aborts the current transaction, if one is in progress. Hasffext if a transaction was not in progress. In
such cases, false is returned.

If the abort failed, false is returned. If the abort succekdie is returned.

NOTE that this is slightly different from other statementsieh flag a DB error if unsuccessful. Here,
no DB error is flagged, but false is returned in the table.

3.4.3.4 Returntype

A table with the following schema:

| transaction_aborted : boolean

This table is empty if and only if there was a compiler errer,, if the syntax was not obeyed. The state-
ment cannot fail with a database error. If no transaction stated when the ABORT TRANSACTION
statement was invocated, false is returned. If a transaetas started, and it was aborted successfully, true
is returned. If a transaction was started, but it was nottald@successfully, false is returned.

3.5 Object type manipulation

3.5.1 CREATE OBJECT TYPE
3.5.1.1 Syntax

create_object_type_statement : “CREATE”
[“OBJECT”] “TYPE”
opt_range_type
opt_monad_uniqueness_type
“I" object_type_name
[feature_declaration_list]

qr

opt_range_type:

[+ empty: Same as WITH MULTIPLE RANGE OBJECTS/
| “WITH” “SINGLE” “MONAD” “OBJECTS”

| “WITH” “SINGLE” “RANGE” “OBJECTS”

| “WITH” “MULTIPLE” “RANGE” “OBJECTS”
opt_monad_unigueness_type :

[+ empty: same as WITHOUT UNIQUE MONADS/

| “HAVING” “UNIQUE"” “FIRST” “MONADS”

| “HAVING” “UNIQUE” “FIRST” “AND” “LAST” “MONADS”
| “WITHOUT” “UNIQUE” “MONADS”

35

object_type_name : T_IDENTIFIER

feature_declaration_list : feature_ declaration
{ feature_declaration }

feature_declaration : feature_name *“” feature_type
[default_specification] “"
| feature_name *" list_feature_type *;”

feature_type :
“INTEGER” [with_index_specification]

| “ID_D” [with_index_specification]
| “STRING” [from_set_specification] [with_index_specif
| “ASCII” [from_set_specification] [with_index_specifi

| T_IDENTIFIER / =* For enumerations. */

list_feature_type :
“LIST" “OF” “INTEGER”
| “LIST" “OF" *“ID_D”
| “LIST” “OF" T_IDENTIFIER / * For enumerations

with_index_specification :

| “WITH” “INDEX”

| “WITHOUT” “INDEX”
from_set_specification: “FROM” “SET”

default_specification : “DEFAULT” expression

expression : signed_integer / * integer and id_d */
| T_STRING
| T_IDENTIFIER / * enumeration constant */

signed_integer : T_INTEGER
| “" T_INTEGER
| “NIL"

3.5.1.2 Examples

CREATE OBJECT WITH

WITH SINGLE MONAD OBJECTS

[Word
surface: STRING FROM SET WITHOUT INDEX;
lemma : STRING FROM SET WITH INDEX;
psp : part_of speech_t;
parents : LIST OF id_d;

]

GO

CREATE OBJECT TYPE

[Clause
parent : id_d;
clause_type : clause type t default NC;

36

ication]
cation]

functions : LIST OF clause_function_t; // An enumeration
descendants : LIST OF ID_D;

]
GO

The latter creates an object type called “Clause” with faatdires: parent (Immediate Constituent of),
whose type is id_d, and clause_type, which has the enuroergtpe clause_type_t and the default value
NC (which must be an enumeration constant in the clause_tygeumeration). In addition, the two
features “functions” and “descendants” are created, bbtvhach are lists. “functions” is a list of enumer-
ation constants drawn from the enumeration clause_fumctjovhereas the “descendants” feature is a list
of id_ds, which should then point to the descendants in & tr

3.5.1.3 Explanation

This statementreates an object typie the meta-data repository of the current database. lisstait with

the keywords “CREATE OBJECT TYPE”, followed by an optionkdwese which states whether the objects
will be single-range or multiple-range (see below). Aftettcomes a specification of the object type name
and its features enclosed in square brackets. féarire_declaration_list is optional, so it is
possible for an object type to have no features.

Each feature_declaration consists of a feature namewetidy a colon, followed by a feature type,
followed by an optional specification of the default value.

An INTEGER, ID_D, STRING, or ASCII feature can be declaredI™ INDEX”. This will put an
index on the feature’s column. The default is not to add aesxnd his index will be dropped if a DROP
INDEXES statement is issued for the object type (see Seétid® on page 32), but it will be recreated if
a CREATE INDEXES statement is issued for the object type Sastion 3.3.7 on page 33). If a feature is
an enumeration, it is usually not a good idea to create arxiadé¢he feature. This is because enumeration
constants are usually few in number, and it is generally ngi@d idea to index columns that draw their
values from a small pool of values, since this can lead todpeereases (O(NlogN) instead of O(N)).
Therefore, the MQL language does not allow creating indexesnumeration features. You can add them
yourself, of course, if you like, with the backend’s corresgding SQL interface.

A STRING or ASCII feature can be declared “FROM SET”. The défss for it not to be from a set.
This doesnot mean that the value of the featurea set, but rather that the values are drawn FROM a
set. Whenever an object is created or updated, and a featassigned which is declared “FROM SET”,
the string value is first looked up in a special table that nspsgs to unique integers. Then this unique
integer is used in lieu of the string in the feature columnh# string does not exist in the separate table, it
is added, with a unique integer to go with it, and that intageised. If the string is there, then the integer
already associated with the string is used. This gives aespagngs (on MySQL and PostgreSQL), and
often also a speed advantage, especially if used on alydeatures of a Word object type, and the words
number many millions. SQLite may not see any speed or spagggseadvantage.

The specification of the default valéefault_specification) consists of the keyword “DE-
FAULT”, followed by an expression. An expression is eithesigned_integer , a string, or an iden-
tifier. The identifier must be an enumeration constant befanp the enumeration which is also the type
of the feature. Thaigned_integer is either a signed integer (positive or negative), or thenay
“NIL", meaning the id_d that points to no object.

The feature “self” is implicitly created. It is an error ifig declared. The “self” feature is a computed
feature which holds the unique object id_d of the object. 8se 2.7.6 on page 21.

The difference between “ASCII” and “STRING” is that the upeomises only to store 7-bit data in an
ASCII string, whereas a STRING string may contain 8-bit data

In previous versions, you could specify a string length inep¢heses after the STRING or ASCII
keyword. As of version 1.2.0, all strings can have arbitiangth, with no maximuni. The old syntax is

1strictly, this is not true, since all object types (excepivpm, any_m, and all_m) have at least one feature, namelyrtaealled
“self”. Please see section 2.7.6 on page 21 for more infoomat

2ASCII strings are stored exactly the same way as 8-bit STRINBis distinction is mostly obsolete.

3This is true for PostgreSQL (it is a TEXT). For MySQL, the nraxim is 4294967295 (2732 - 1) characters (it is a LONGTEXT).
On SQLite, itis a TEXT, but it is unknown how much this can hold

37

still available, but is ignored.

If a feature is declared as a LIST GBmethingthat something has to be either INTEGER, ID_D, or
an enumeration constant. Lists of strings are not suppofisd, you cannot declare a default value for a
list — the default value is always the empty list.

An object type can be declared “WITH SINGLE MONAD OBJECTSWITH SINGLE RANGE
OBJECTS” or “WITH MULTIPLE RANGE OBJECTS". The difference that:

e Anobjecttype which has been declared “WITH SINGLE MONAD ®&JT'S” can only hold objects
which consist of a single monad (i.e., the first monad is timeesas the last monad).

e An object type which has been declared “WITH SINGLE RANGE @BIS” can only hold objects
which consist of asingle monad rangs.e., there are no gaps in the monad set, but it consists of a
single contiguous stretch of monads (possibly only 1 mooag).

¢ An object type which has been declared “WITH MULTIPLE RANGBIECTS” (the default) can
hold objects which have arbitrary monad sets.

A single-monad object must consist of only 1 monad, e.g., {2}, {3}. A single-range object can consist
of a single monad (e.g.,{1},{2}, {3}, etc.), or it can consisf a single interval (e.g., { 6-7 }, { 9-13},
{100-1211}, etc.). However, as soon as an object type neeldsltbobjects which can consist of more than
one range (e.g., { 6-7, 9-13 }), then it must be declared WITHIMIPLE RANGE OBJECTS. If neither
is specified, then WITH MULTIPLE RANGE OBJECTS is assumed.

Thereis a speed advantage of using WITH SINGLE MONAD OBJEGVES WITH SINGLE RANGE
OBJECTS, and again a speed advantage of using WITH SINGLEGRA®BJECTS over WITH MUL-
TIPLE RANGE OBJECTS. The latter is the slowest, but is algorttost flexible in terms of monad sets.

In addition, and orthogonally to the range type, an objepetgan be declared “HAVING UNIQUE
FIRST MONADS”, “HAVING UNIQUE FIRST AND LAST MONADS”, or “WITHOUT UNIQUE MON-
ADS". The difference is:

¢ An object type which has been declared “HAVING UNIQUE FIRSTOMADS” can only hold
objects which are unique in their first monad within the obfgpe. That is, within this object type,
no two objects may start at the same monad.

e An object type which has been declared “HAVING UNIQUE FIRSNB LAST MONADS” can
only hold objects which are unique in their first monad andhieirt last monad (as a pair: You
are allowed to have two objects with the same starting mooadiffierent ending monads, or vice
versa). Thatis, no two objects within this object type sththe same monad while also ending at the
same monad. Note that for object types declared WITH SINGLENAD OBJECTS, a “HAVING
UNIQUE FIRST AND LAST MONADS" restriction is upgraded to a AING UNIQUE FIRST
MONADS?” restriction, since they are equivalent for this gartype.

e An object type which has been declared “WITHOUT UNIQUE MONSBD(or which omits any of
the “monad uniqueness constraints”) has no restrictiorth®@monads, other than those implied by
the range type.

3.5.1.4 Returntype

There is no return value.

3.5.2 UPDATE OBJECT TYPE
3.5.2.1 Syntax

update_object_type_statement : “UPDATE”
[“OBJECT"] “TYPE”
“[" object_type_name
feature_update_list

38

l(]ll
object_type_name : T_IDENTIFIER
feature_update_list : feature_update { feature_update }

feature_update : [“ADD”] feature_declaration
| “REMOVE” feature_name "

feature_name : T_IDENTIFIER

3.5.2.2 References

All the foreign non-terminals are defined in section 3.5.1.

3.5.2.3 Example

UPDATE OBJECT TYPE

[Word
ADD no_of_morphemes : integer;
REMOVE surface_without_accents;

]
GO

This example ADDs the feature no_of _morphemes (being agén), and REMOVEs the feature sur-
face_without_accents.

3.5.2.4 Explanation

This statementipdates an object typdt can either add a feature or remove an already-existiatyfe.
When adding a new feature, the ADD keyword is optional. Othan that, it has exactly the same notation
as for feature declarations under the CREATE OBJECT TY Ptersiant.

Removing a feature requires the REMOVE keyword, the feataree, and a semicolon.

Both additions and removals must be terminated with semitgaven if thefeature_update is
the onlyfeature_update in the list offeature_update s.

Note that the statement does not allow évangingthe type of an already existing feature, only for
adding or removing features.

3.5.2.5 Returntype

There is no return value.

3.5.3 DROP OBJECT TYPE
3.5.3.1 Syntax

drop_object_type_statement : “DROP”
[“OBJECT"] “TYPE”
“I object_type_name ‘"

object_type_name : T_IDENTIFIER

39

3.5.3.2 Example

DROP OBJECT TYPE
[Sploinks]
GO

This example drops the object type “Sploinks” from the datah

3.5.3.3 Explanation

This statement drops an object type entirely from the da@ba&his deletes not only the object type, but
also all the objects of that object type, as well as the oljgut’s features. Enumerations which are used
as a feature type are not dropped, however.

3.5.3.4 Return type

There is no return value.

3.6 Enumeration manipulation

3.6.1 CREATE ENUMERATION
3.6.1.1 Syntax

create_enumeration_statement : “CREATE”
(“ENUM” | “ENUMERATION")
enumeration_name “="
“I" ec_declaration_list “}”

enumeration_name : T_IDENTIFIER
ec_declaration_list : ec_declaration {* ec_declaratio n }

ec_declaration : [“DEFAULT"]
ec_name
[ec_initialization]
ec_name : T_IDENTIFIER

ec_initialization : “=" signed_integer

3.6.1.2 References
For a description ofigned_integer , please see section 3.5.1 on page 35. Note, however, that NIL
should not be used with enumerations.

3.6.1.3 Example

CREATE ENUMERATION

phrase type t = { VP = 1, NP, AP,
PP, default NotApplicable = -1 }

GO

40

This particular statement creates an enumeration calleth§e_type_t” with the following constants and
values:

| Name | Value | Default |
NotApplicable| -1 Yes
VP 1 No
NP 2 No
AP 3 No
PP 4 No

3.6.1.4 Explanation

This statement creates a new enumeration and populateh iemimeration constants.

If there is no declaration that has the “default” keyworaythhe first one in the list becomes the default.

If the first declaration does not have an initializationyvisdue becomes 1. This is different from C and
C++enums, which get 0 as the first value by default.

If a declaration does not have an initialization, its valbesomes that of the previous declaration, plus
1. This mimics C and C+enums.

Label names must be unique within the enumeration. Thabis,cannot have two constants with the
same name in the same enumeration.

Values must also be unique within the enumeration. Thaioig,cannot have two different labels with
the same value in the same enumeration. This is different €6C++enums, where two labels may have
the same value.

3.6.1.5 Returntype

There is no return value.

3.6.2 UPDATE ENUMERATION
3.6.2.1 Syntax

update_enumeration_statement : “UPDATE”"
(“ENUM” | “ENUMERATION")
enumeration_name “="
“ ec_update_list V"

enumeration_name : T_IDENTIFIER
ec_update_list : ec_update {* ec_update }

ec_update : [“ADD”] [“DEFAULT"]
ec_name ec_linitialization
| “UPDATE" [“DEFAULT”"] ec_name ec_initialization
| “REMOVE” ec_name

ec_name : T_IDENTIFIER

ec_initialization : “=" signed_integer

3.6.2.2 References

For a description ofigned_integer , please see section 3.5.1 on page 35. Note, however, that NIL
should not be used with enumerations.

41

3.6.2.3 Example

UPDATE ENUMERATION
phrase_type t = {
ADD default Unknown = -99,
REMOVE NotApplicable,
UPDATE PP = 5,
AdvP = 4

}
GO

This alters the table made in the example in section 3.6.& likeé this:

| Name | Value | Default |
Unknown | -99 Yes
VP 1 No
NP 2 No
AP 3 No
AdvP 4 No
PP 5 No

3.6.2.4 Explanation

This statement updates the enumeration constants of atglexisting enumeration. The user can specify
whether to add, remove, or update an enumeration constant.

Itis an error (and none of the updates will be executed) iLiker REMOVES the default enumeration
constant without specifying a new default.

Note that you are forced to specify values for all of the cantt updated or added.

It is an error (and none of the updates will be executed) ifupdate would lave the enumeration
in a state where two labels would have the same value. Thisdause an enumeration is effectively a
one-to-one correspondence between a set of labels and fvattes.

It is the user’s responsibility that the update leaves thalmese in a consistent state. For example,
Emdros will not complain if you remove a constant with a giwerlue without specifying a different
constant with the same value, even if there are featuresifigathis enumeration and have this value. This
would mean that those feature-values could not be searohngesirice there would be no label to look for.
Neither would it be possible to get the feature values witTGEATURES, since there would be no label
to return.

3.6.2.5 Return type

There is no return value.

3.6.3 DROP ENUMERATION
3.6.3.1 Syntax

drop_enumeration_statement : “DROP”
(“ENUM” | “ENUMERATION")
enumeration_name

enumeration_name : T_IDENTIFIER

42

3.6.3.2 Example

DROP ENUMERATION phrase_type_t
GO

3.6.3.3 Explanation

This statement removes an enumeration altogether fromatabdse, including all its enumeration con-
stants.
Itis an error (and impossible) to drop an enumeration wtsdh uise by some object type.

3.6.3.4 Return type

There is no return value.

3.7 Segment manipulation

3.7.1 Introduction

Segments were present in Emdros up to and including versioh2l After that, support for segments was
removed.

A segment used to be an arbitrary, contiguous stretch of dondiich was given a name. Objects
could not be created which crossed the boundaries of a seéghoencould restrict your search to within a
single segment with SELECT ALL OBJECTS.

However, segments were found to be ugly baggage, cumbersodneot useful. Therefore, they were
removed.

The CREATE SEGMENT statement is retained for backward cdifiity.

3.7.2 CREATE SEGMENT
3.7.2.1 Syntax

create_segment_statement : “CREATE”" “SEGMENT”
segment_name
“RANGE” ‘=" segment_range
segment_name : T_IDENTIFIER

segment_range : T_INTEGER “-” T_INTEGER
3.7.2.2 Example

CREATE SEGMENT Old_Testament
RANGE = 1 - 500000
GO

This example used to create a segment named “Old_Testastartihig at monad 1 and ending at monad

500000.
Now it does nothing.

3.7.2.3 Explanation

This statement currently does nothing. It will fail with atadlase error.

43

3.7.2.4 Return type

There is no return value.

3.8 Querying

3.8.1 SELECT (FOCUSIALL) OBJECTS
3.8.1.1 Syntax

select_objects_statement : select_clause
in_clause
returning_clause
where_clause

/ «

* select-clause

*/

select_clause : “SELECT” focus_specification [“OBJECTS”

focus_specification : “FOCUS” | “ALL”
/ «
* in-clause
*/
in_clause : “IN” in_specification
| / = empty = al_m-1 */

in_specification : monad_set
| “ALL” /' » = all_m-1 */
| monad_set
| T_IDENTIFIER / * Named arbitrary monad set */

monad_set : “{" monad_set_element_list “}”

monad_set_element_list : monad_set_element
{“” monad_set_element }

monad_set_element : T_INTEGER

| T_INTEGER T _INTEGER
| T_INTEGER “* | * From T_INTEGER to “practical infinity”
(i.,e., MAX_MONAD). =/
/ «
* returning-clause
*/
returning_clause : / * Empty: Return full sheaf */

| “RETURNING” “FULL" “SHEAF"

| “RETURNING” “FLAT” “SHEAF"

| “RETURNING” “FLAT” “SHEAF” “ON”
object_type_name_list

object_type_name_list :

object_type_name { “,” object_type name }

44

/%

* where-clause

*/

where_clause : “WHERE" mql_query

3.8.1.2 References

For themql_query non-terminal, please see section 4.3 on page 73.

3.8.1.3 Example

SELECT ALL OBJECTS
IN { 1-4, 5, 7-9 }
RETURNING FULL SHEAF
WHERE

[Word lexeme = ">RY/’]
GO

3.8.1.4 Explanation

This statement is a front-end to the MQL Query-subset (saptein 4 starting on page 69).
The parameters to an MQL query are:

1. Auniverse U,
2. A substrate Su, and
3. Atopograph.

The universe U is a contiguous stretch of monads. The sesnmdsiricted only to include objects which
are wholly contained within this universe (i.e., which aegtpof the universe).

The substrate is used to further restrict the search. Fog théhe additional requirement that all objects
found must be wholly contained within (i.e., part_of) thésuate as well. The substrate must be part_of
the universe. Mathematically speaking, the substratesis¢hintersection of whatever was in the IN clause
and all_m-1 (i.e., the set of all monads in the database).

The topograph is what is specifiedrasg||_query in the above grammar.

The IN-specification tells the query-engine what the sabstBu should be. There are three choices:

1. Specify an explicit monad set like “{ 1-3000, 7000-10000 }
2. Specify a named arbitrary monad set (see section 2.7.pagm?23).

3. Leave it blank. This means that the substrate is calaikdeall_m-1 (i.e., all of the monads in the
database; see [Standard-MdF] or [Doedens94] or page 2&iRthgrammer’s Guide.)

The universe U is then calculated as all the monads betwesdirshand last monads of the substrate.

The difference between the RETURNING FULL SHEAF and the RENIUING FLAT SHEAF clause
is that the latter applies the “flatten” operator to the she=fbre returning it, whereas the former does
not. If the returning_clause clause is empty, it means theesthing as RETURNING FULL SHEAF.
If the RETURNING FLAT SHEAF has an ON appendix with a list ofjett type names, then the two-
argument flatten operator is applied using this list of otjgge names. See section 4.4.7 on page 78 for
an explanation of flat sheaves and the “flatten” operator.

“4For part_of, see section 2.7.7 on page 21.

45

3.8.1.5 Monad set

The explicit monad set in the IN clause, if given, must cansfsa comma-separated list of monad-set-
elements enclosed in curly braces. A monad-set-elemetithisra single integer (referring to a single
monad) or a range consisting of two integers (referring targe of monads). The monad-set-elements
need not occur in any specific order, and are allowed to guefilhe result is calculated by adding all the
monads together into one big set. The ranges of monads rmaygevier, be monotonic, i.e., the second
integer must be greater than or equal to the first.

3.8.1.6 Returntype

A sheaf, either full or flat: All retrieved objects are inckd] but those objects that had foeus modifier

in the query are flagged as such. Please see 4.4 on page 76eqgulanation of the sheaf. Appendix B on
page 110 gives the grammar for the console-sheaf. Pleasesten 4.4.7 on page 78 for an explanation
of the flat sheaf.

3.8.2 SELECT OBJECTS AT
3.8.2.1 Syntax

select_objects_at_statement : “SELECT” ["OBJECTS”]
“AT” single_monad_specification
“I" object_type_name “€

single_monad_specification : “MONAD” “=" T_INTEGER
object_type_to_find : object_type _name

object_type_name : T_IDENTIFIER
3.8.2.2 Example

SELECT OBJECTS
AT MONAD = 3406
[Clause]

GO

This example selects all those objects of type Clause whérha monad 3406.

3.8.2.3 Explanation

This statement returns a table containing the object idf d8 the objects of the given type which start at
the monad specified, i.e., whose first monad is the given monad

The result is a table with one column, namely “id_d”". Each represents one object, where the id_d
is its object id_d.

3.8.2.4 Return type

A table with the following schema:

id_d: id_d
On failure, this table is empty. Note, however, that thedatain also be empty because there were no
objects of the given type having the given monad as theirrfimtad. This is not an error.

46

3.8.3 SELECT OBJECTS HAVING MONADS IN
3.8.3.1 Syntax

select_objects_having_monads_in_statement :
“SELECT” “OBJECTS”
“HAVING” “MONADS” “IN”
monad_set
“I" object_type_to_find “€

object_type_to find : object_type name | “ALL”

object_type_name : T_IDENTIFIER

3.8.3.2 References

For themonad_set non-terminal, see section 3.8.1 on page 44.

3.8.3.3 Example

SELECT OBJECTS

HAVING MONADS IN { 23-45, 68, 70, 87-93 }
[Clause]

GO

SELECT OBJECTS

HAVING MONADS IN { 1, 5-7, 103-109 }
[ALL]

GO

SELECT OBJECTS

HAVING MONADS IN { 23 }
[Word]

GO

3.8.3.4 Explanation

This statement returns the object types and object id_dseobbjects that have at least one monad in the
monad set specified. If “ALL" is specified as the object tygesrt this is done for all object types in the
database. If a specific object type is specified, then thaobbjpe is used.

The returned table has one row for each object. Each objeepresented only once. The monad in
each row is guaranteed to be from the set of monads specifidds guaranteed to be from the object in
the row.

This statement is useful in much the same way that the SELEBIEQTS AT statement is useful.
It can be used, e.g., for getting id_ds of objects that mustifiglayed as part of the results of a query,
but which are not in the query results. This statement camtadsused like the SELECT OBJECTS AT
statement by simply making the monad set a singleton setamithone monad. Note, however, that this
statement does something a different from SELECT OBJECT.SMiereas SELECT OBJECTS AT will
only retrieve an object if that objestarts onthe given monad, this present statement will retrieve theab
if only the objecthas at least one monddom the monad set given. This statement also has the adyanta
that one can ask for all object types. This enables one tesaagects which one knows might be there,
but of which one does not know the object types. It also hasathentage of being much faster than a
series of SELECT OBJECTS AT statements if one is looking fijects in more than one monad.

47

This statement was typically used in a series of SELECT OBXEEBAVING MONADS IN, GET
MONADS, and GET FEATURES statements, in order to obtainrdthimation necessary for display of
data. This sequence has been wrapped neatly into the GET@OERIBHAVING MONADS IN statement,
which is now the preferred method of doing this sequence.

Note to programmers: If you want to get objects not from ajeobtypes but from only a subset of
all object types, the easiest thing is to issue the requitedber of copies of the statement with GO in
between, varying only the object type. That way, if you aiiegishe mql program as a proxy for the MQL
engine, you don’tincur the overhead of starting and stagpgie mql program.

3.8.3.5 Returntype

| object_type_name : strinpmonad : monad_nj id_d:id_d|

On failure, this table is empty. Note, however, that thedatan also be empty if the command were
successful, if there were no objects that had at least onadiorthe monad set specified.

3.8.4 GET OBJECTS HAVING MONADS IN
3.8.4.1 Syntax

get_objects_having_monads_in_statement :
“GET” “OBJECTS”
“HAVING” “MONADS” “IN”
gohmi_monad_set
“[" object_type_name

[gohmi_feature_retrieval]

o

gohmi_monad_set : “ALL" / * alm-1 =/

| monad_set

gohmi_feature_retrieval : “GET” feature_list
| “GET” “ALL”

feature_list : feature_name { “,” feature_name } *

object_type_name : T_IDENTIFIER

3.8.4.2 References

For themonad_set non-terminal, see section 3.8.1 on page 44.

3.8.4.3 Example

GET OBJECTS

HAVING MONADS IN { 23-45, 68, 70, 87-93 }
[Clause]

GO

GET OBJECTS

HAVING MONADS IN { 1, 5-7, 103-109 }
[Phrase GET phrase_type, function]

GO

48

GET OBJECTS

HAVING MONADS IN { 23 }
[Word GET ALL]

GO

3.8.4.4 Explanation

This statement returns the objects of the given object thpehave at least one monad in the monad set
specified. A flat sheaf is returned with one straw containihtha objects to be retrieved.

This statement is useful in much the same way that the SELEBIEQTS AT statement is useful. It
can be used, e.g., for getting id_ds of objects that must si@alied as part of the results of a query, but
which are not in the query results.

This is the preferred method for getting objects from theimegrather than a sequence of SELECT
OBJECTS HAVING MONADS IN, GET MONADS, and GET FEATURES. It much faster than the
combination of the three.
3.8.4.5 Returntype

A flat sheaf is returned which contains the objects in questiBee Section 4.4.7 on page 78 for more
information.

3.8.5 SELECT OBJECT TYPES

3.8.5.1 Syntax

select_object_types_statement : “SELECT”
[“OBJECT”] “TYPES”

3.8.5.2 Example
SELECT OBJECT TYPES
GO

3.8.5.3 Explanation

This statement returns a list of the names of all the objgugyavailable in the database.

3.8.5.4 Return type

A table with the following schema:

| object_type_name: strinfy

On failure, this table is empty.

3.8.6 SELECT FEATURES
3.8.6.1 Syntax

select_features_statement : “SELECT” “FEATURES”
“FROM” [[“OBJECT"] “TYPE”]
“I" object_type_name ‘1"

object_type_name : T_IDENTIFIER

49

| Type name | Meaning
integer integer
id_d id_d
list of integer list of integer
list of id_d list of id_d
list of something else list of enumeration constants from the enumeration given
string 8-bit string of arbitrary length
ascii 7-bit (ASCII) string of arbitrary length
everything else enumeration by the name given

Table 3.4: Possible type names in SELECT FEATURES

3.8.6.2 Example

SELECT FEATURES
FROM OBJECT TYPE
[Phrase]

GO

3.8.6.3 Explanation

This statement returns a table with the features belongitiget given object type.

The type_name string in the result gives the type of the feattihas the values as in table 3.4.

The default_value string in the result is a string represtéon of the default value. It must be interpreted
according to the feature type.

The computed boolean in the result shows whether the festagmmputed or not. Currently, the only
computed feature is “self”.

For lists, what is shown in the “default value” field is alwéyy meaning “the empty list”.

3.8.6.4 Return type

A table with the following schema:

| feature_name: string type_name: strind default_value: strind computed: boolear

On failure, this table is empty. On success, the table cammempty, since every object type has the
feature “self”.

3.8.7 SELECT ENUMERATIONS

3.8.7.1 Syntax

select_enumerations_statement : “SELECT”
“ENUMERATIONS”

3.8.7.2 Example

SELECT ENUMERATIONS
GO

3.8.7.3 Explanation

This statement returns a table with the names of all the eratioas available in the database.

50

3.8.7.4 Return type

A table with the following schema:

| enumeration_name: string

On failure, this table is empty. Note, however, that it casvdle empty because there are no enumera-
tions in the database yet.

3.8.8 SELECT ENUMERATION CONSTANTS
3.8.8.1 Syntax

select_enumeration_constants_statement : “SELECT”
(“ENUM” | “ENUMERATION") “CONSTANTS”
“FROM” [“ENUM” | “ENUMERATION")]
enumeration_name

enumeration_name : T_IDENTIFIER

3.8.8.2 Example

SELECT ENUMERATION CONSTANTS
FROM ENUMERATION phrase_types
GO

3.8.8.3 Explanation

This statement returns a table with the enumeration cotsstaa given enumeration.

Note that the syntax is made so that the query need not be beseeas in the example just given.
There is quite a lot of syntactic sugan this statement.
3.8.8.4 Return type

A table with the following schema:

| enum_constant_name: strifgvalue : integer| is_default : boolear]

On failure, this table is empty.

3.8.9 SELECT OBJECT TYPES USING ENUMERATION
3.8.9.1 Syntax

select_object_types_which_use_enum_statement : “SELEC T
[“OBJECT"] “TYPES”
“USING”

("ENUM” | “ENUMERATION") enumeration_name
enumeration_name : T_IDENTIFIER

5Syntactic sugar” is a term used by computer-scientistanfoeties in the grammar of a language which help the userrimeso
way, usually so that they do not have to type as much as wohéhetse be required. Here, it simply means that some of thedels
are optional, or have shorthand forms.

51

3.8.9.2 Example

SELECT OBJECT TYPES
USING ENUMERATION phrase_types_t
GO

3.8.9.3 Explanation

This statement returns a table with the names of the objpestwhich use a given enumeration. The rows
of the table are not ordered. An object type uses an enuroseritat least one of its features is of the
enumeration type.

3.8.9.4 Return type

A table with the following schema:

| object_type_name: strinfy

On failure, this table is empty. Note, however, that it caspdde empty because there are no object
types using the enumeration.

3.8.10 SELECT MIN_M
3.8.10.1 Syntax
select_min_m_statement : “SELECT” “MIN_M”
3.8.10.2 Example
SELECT MIN_M
GO
3.8.10.3 Explanation
Returns the minimum monad in use in the database. The tablmeel has only one data row, namely the
minimum monad. See section 2.7.12 on page 22 for more infisma
3.8.10.4 Returntype

A table with the following schema:

| min_m : monad_m|

On failure, this table is empty.

3.8.11 SELECT MAX_M
3.8.11.1 Syntax

select_max_m_statement : “SELECT” “MAX_M"
3.8.11.2 Example

SELECT MAX_M
GO

52

3.8.11.3 Explanation

Returns the maximum monad in use in the database. The tdabteed has only one data row, namely the
maximum monad. See section 2.7.12 on page 22 for more infamma

3.8.11.4 Returntype

A table with the following schema:

| max_m : monad_nj

On failure, this table is empty.

3.8.12 SELECT MONAD SETS
3.8.12.1 Syntax

select_monad_sets_statement : “SELECT” “MONAD” “SETS”
3.8.12.2 Example

SELECT MONAD SETS GO

3.8.12.3 Explanation

This statement returns a table listing the names of the meatidstored in the database. These are the
monad sets referred to in section 2.7.13 on page 23.
The monad set names come in no particular order.

3.8.12.4 Returntype

| monad_set_name : string

3.8.13 GET MONAD SETS
3.8.13.1 Syntax
get_monad_sets_statement : “GET” “"MONAD” (“SET” | “SETS”)
monad_sets_specification

monad_sets_specification : “ALL”"
| monad_set_list

monad_set_list : monad_set_name { “,” monad_set_name }

monad_set_name : T_IDENTIFIER

3.8.13.2 Example

GET MONAD SET My_research_collection

GO

GET MONAD SETS Historical_books, Former_prophets
GO

GET MONAD SETS ALL

GO

53

3.8.13.3 Explanation

This statement returns a table listing the monads of eacheofrtonad sets named in the query. These
monad sets are the arbitrary monad sets described in s@€ctidi8 on page 23.

It doesn’t matter whether you say “SET” or “SETS". This is glyrsyntactic sugatr.

If “ALL" is given as the monad_sets_specification, then atlmad sets are listed, in no particular order.

In the output, each monad set is represented in the same widgseasbed in section 3.8.14.4. Each
monad set is guaranteed to appear in the table in one consgiretch, that is, monad sets are not inter-
leaved. Moreover, the monad set elements of each monadssetésl on mse_first, in ascending order.

3.8.13.4 Return type

| monad_set_name : stringmse_first : monad_m mse_last : monad_m

3.8.14 GET MONADS
3.8.14.1 Syntax

get_monads_statement : “GET” “MONADS”
“FROM” (“OBJECT” | “OBJECTS")
“WITH” id_ds_specification
“[object_type_name “]”

object_type_name : T_IDENTIFIER

3.8.14.2 References

For a description oifd_ds_specification , please see section 3.9.2 on page 59.

3.8.14.3 Example

GET MONADS

FROM OBJECTS

WITH ID_DS = 10342, 10344, 10383
[Clause]

GO

3.8.14.4 Explanation

This statement returns, for each object in the list of id adgpresentation of its set of monads. The set is
represented by maximal stretches of monads. For exampale abject consists of the monads { 1, 2, 4, 5,
6,9,11,12} anditsid_d is 10342, then the following will inethe results of the above example:

object_id_d: id_d| mse_first: monad_nm mse_last: monad_m
10342 1 2
10342 4 6
10342 9 9
10342 11 12

The “mse” in “mse_first” and “mse_last” stands for “Monad &#¢ment.” A monad set element
consists of a starting monad and an ending monad (alwaysegitsan or equal to the starting monad).
It represents all of the monads between the two bordersjdimad) the borders. An mse’s last monad is
always greater than or equal to its first monad.

The mses in the list are always maximal. That is, there is aofjapleast one monad in between each
of the MSEs.

54

In mathematical terms, suppose we have an MSE A. Then fottekfMSEs B for the same object, it
is the case that either A.last + 1 < B.first or B.last < A.first- 1

The MSEs will come in no particular order.

See [Monad Sets] for more information on monad sets and tlyeBnadros treats them.

It does not matter whether you write “OBJECT” or “OBJECTShelchoice is merely syntactic sugar.

There is no limit on how many id_ds can be specified. The algoriwill not balk at even many
thousand id_ds, but it will, of course, take more time to getmonads of more objects.

This statement was typically used in a series of SELECT OBXEBAVING MONADS IN, GET
MONADS, and GET FEATURES statements, in order to obtainrdtiimation necessary for display of
data. This sequence has been wrapped neatly into the GET@OERIBHAVING MONADS IN statement,
which is now the preferred method of doing this sequence.

3.8.14.5 Returntype

A table with the following schema:

| object_id_d: id_d] mse_first: monad_n mse_last: monad_rh

3.8.15 GET FEATURES
3.8.15.1 Syntax

get_features_statement : “GET”
(“FEATURE” | “FEATURES")
feature_list
“FROM” ("OBJECT” | “OBJECTS")
“WITH” id_ds_specification
“I" object_type_name “€

| *

* feature_list
*/
feature_list : feature_name { “” feature_name }

feature_name : T_IDENTIFIER

object_type_name : T_IDENTIFIER
3.8.15.2 References

For a description oid_ds_specification , please see section 3.9.2 on page 59.

3.8.15.3 Example

GET FEATURES surface, psp

FROM OBJECTS WITH ID_DS = 12513,12514
[Word]

GO

3.8.15.4 Explanation

This statement returns a table containing feature-valtiesrtain objects in the database.

Note how this is different from the “SELECT FEATURES"” comntarThe “SELECT FEATURES”
command queries avbject typdor a list of itsfeatures The “GET FEATURES” command queriebjects
for thevaluesof some of their features.

55

This statement was typically used in a series of SELECT OBXEEBAVING MONADS IN, GET
MONADS, and GET FEATURES statements, in order to obtainrdthimation necessary for display of
data. This sequence has been wrapped neatly into the GET@OERIBHAVING MONADS IN statement,
which is now the preferred method of doing this sequence.

3.8.15.5 Return type

The return type is a table with a schema containing one stoingach feature in the list of features. The
order of the columns is that in the list of features. The fidumn in the table contains the object id_d
involved in the row. Thus fon features, the number of columns will bet 1.

The return type of each feature is the same as the type oféiierée The exact representation depends
on whether the output is console output or XML output. For XMke the DTD. For console output, see
the examples below. Enumeration constants are shown asitineegation constant label, not the integer
value.

For list features, the value is a space-surrounded, spalaeited list of values. Integers and ID_Ds are
given as integers; enumeration constant values as thestanxamames (e.g., “first_person”).

| object_id_d: id_d| surface: string| psp: enum(psp_t) number_in_corpus : integdrparent: id_d| parents: list_of id_

The table contains the objects in no particular order.

3.8.16 GET SET FROM FEATURE
3.8.16.1 Syntax

get_set from_feature_statement : “GET” “SET”
“FROM” “FEATURE”
feature_name
“I" object_type_name “€

feature_name : T_IDENTIFIER

object_type_name : T_IDENTIFIER

3.8.16.2 Example

GET SET

FROM FEATURE lexeme
[Word]

GO

3.8.16.3 Explanation

This statement returns a table containing the set of egi§éature-values for a feature declared FROM
SET. See the CREATE OBJECT TYPE and UPDATE OBJECT TYPE stam¢snon page 35 and 38
respectively for the syntax of the FROM SET declaration.

Note how this is different from GET FEATURES: The “GET FEATHR” command queriesbjects
for thevaluesof some of their features. The GET SET FROM FEATURE queries#tof existing values
for a given feature, regardless of which objects have thakees for this feature.

3.8.16.4 Return type

The return type is a table with a schema containing one stongach value in the set.

value: string

The order of the strings in the table is undefined.

56

3.9 Object manipulation

3.9.1 CREATE OBJECT FROM MONADS
3.9.1.1 Syntax

create_object_from_monads_statement : “CREATE” “OBJECT ”
“FROM” monad_specification
[with_id_d_specification]
object_creation_specification

| *

* monad-specification

*

mo/nad_specification : “"MONADS” “=" monad_set
e

* with-id_d-specification

*

Wit/h_id_d_specification :“WITH” “ID_D”

“=" id_d_const

id_d _const : T_INTEGER

| “NIL"
/ «
* Object-creation-specification
*/

object_creation_specification : “[”
object_type_name
[list_of feature_assignments]

H]H
object_type_name : T_IDENTIFIER

list_of feature_assignments : feature_assignment
{ feature_assignment }

feature_assignment : feature_name “:=" expression *}”

[T}

| feature_name “=" list_expression *;"

feature_name : T_IDENTIFIER

expression : signed_integer / * integer and id_d */
| T_STRING
| T_IDENTIFIER / * enumeration constant * |

list_expression : “(* [list_values] “)”

list values : list_value { “” list_value }

list_ value : signed_integer
| T_IDENTIFIER / * enumeration constant * |

57

3.9.1.2 References

For a description ofnonad_set , please see section 3.8.1 on page 44. For a descriptggradd_integer ,
please see section 3.5.1 on page 35. Note, however, thatiélildbe used only with features whose type
isid_d.

3.9.1.3 Example

CREATE OBJECT FROM MONADS = { 1-2, 4-7 }
[Clause

clause_type := NC;

parent := 10033;

descendants := (104546, 104547, 104549);

]
GO

CREATE OBJECTS FROM MONADS = { 35-37 }
WITH ID_D = 104546
[Phrase

phrase_type := NP;

parents = (104212, 104215, 104219);

]
GO

3.9.1.4 Explanation

This statement creates a new object from a specified set chdson
In creating an object, four items of information are necassa

1. Thenewid_d,

2. The object type,

3. The set of monads,

4. Any features that need non-default values.

This statement creates an object of tymbject_type_name " using the monads and features, and
optional id_d, given. All features not specified will be gimdefault values.

If you specify an id_d with the “WITH ID_D” specification, theystem first checks whether that object
id_dis already in use. Ifitis, the creation fails. If it istpthat id_d is used. If you do not specify anid_d,
a unique id_d is auto-generated.

Note that when using WITH ID_D, it is not recommended to ruvesal concurrent processes against
the same database which issue CREATE OBJECT or CREATE OBSEGiements. Doing so may cause
the auto-generated object id_d sequence to become intddidiever, several concurrent processes may
safely issue CREATE OBJECT(S) statements if none of thenWi3éd ID_D.

Note that objects of the special object types all_m, any nd,@w_m cannot be created.

3.9.1.5 Returntype
A table with the following schema:
| object_id_d: id_d|

On success, there is always only one row in the table, narhelyoiwv containing the object id_d of the
newly created object.
On failure, the table is empty.

58

3.9.2 CREATE OBJECT FROM ID_DS
3.9.2.1 Syntax

create_object_from_id_ds_statement : “CREATE” “OBJECT”
“FROM" id_ds_specification
[with_id_d_specification]
object_creation_specification

| *

* id_ds-specification
*/
id_ds_specification : (“ID_D” | “ID_DS")

“=" id_d_list
id dlist:idd {*“ idd}
i,d_d : id_d_const

id_d _const : T_INTEGER
| “NIL”

3.9.2.2 References

For the non-terminalgith_id_d_specification andobject_creation_specification ,
please see section 3.9.1 on page 57.

3.9.2.3 Example

CREATE OBJECT FROM ID_DS = 10028, 10029
[Clause

clause_type := NC;

parent := 10033;

]
GO

3.9.2.4 Explanation

This statement creates a new object with the monads coudtairike objects specified by their id_ds.

The id_ds specified are used only to calculate the set of nsotwalde used. This is calculated as the
union of the set of monads of the objects with the id_ds sgetifThese id_ds can point to objects of any
type, and it need not be the same type for all id_ds.

Note that there is a syntactic sugar-choice of whether td1€ayDS” or “ID_D".

Note that objects of the special object types all_m, any nd mow_m cannot be created.

See the “CREATE OBJECT FROM MONADS” (section 3.9.1 on paggféi7further explanation and
warnings. Especially about concurrent use of WITH ID_D.

3.9.2.5 Return type
The return type is the same as for CREATE OBJECT FROM MONA[@St{en 3.9.1).

59

3.9.3 CREATE OBJECTS WITH OBJECT TYPE
3.9.3.1 Syntax

create_objects_statement : “CREATE” “OBJECTS”
“WITH” “OBJECT” “TYPE”
“I" object_type name “7”
object_creation_list

object_creation_list : object_creation { object_creatio n }

object_creation : “CREATE” “OBJECT”
“FROM” monad_specification
[with_id_d_specification]
H[H
[list_of feature assignments]

q

3.9.3.2 References

For the non-terminalmonad_specification ,with_id_d_specification ,andlist_of feature_assignments
please see section 3.9.1 on page 57.

3.9.3.3 Example

CREATE OBJECTS
WITH OBJECT TYPE [Phrase]
CREATE OBJECT
FROM MONADS = { 1-2 }
[
phrase_type := NP;
function = Subj;
]
CREATE OBJECT
FROM MONADS = { 3-7 }
[
/I Use default values for phrase_type and function
/I (probably VP/Pred in this fictive example)
]
CREATE OBJECT
FROM MONADS = { 4-7 }
WITH ID_D = 1000000 // Assign specific ID_D
[
phrase_type := NP;
function := Obijc;
]
GO

3.9.3.4 Explanation

This statement is for batch importing of objects. It is usefiaen populating databases, either from scratch
or by adding large numbers of objects to an existing datal¥dsie statement is much faster than individual

60

CREATE OBJECT statements.

The object type is specified only once, at the top. Note th&tatures can be assigned where the object
type is specified: That comes later in the query, when eadatblgj created.

Each object to be created must be given a monad set. The men#allews the syntax specified in
section 3.8.1 on page 44.

Optionally, an id_d can be specified. If an id_d is specifieds the user’s responsibility to ensure
that the id_d assigned does not clash with another id_d idakebbase. This is mainly useful when dump-
ing/restoring databases.

If no id_d is specified, a unique id_d is generated. This i& @hly guaranteed to be unique if no other
objects are created with specific id_ds.

Note that when using WITH ID_D, it is not recommended to ruvesal concurrent processes against
the same database which issue CREATE OBJECT or CREATE OB3EGIements. Doing so may cause
the auto-generated object id_d sequence to become intddidiever, several concurrent processes may
safely issue CREATE OBJECT(S) statements if none of thenwi3ed ID_D.

The feature-value assignments follow the same rules asR&ATE OBJECT FROM MONADS (see
section 3.9.1 on page 57). If an object has a feature whicbtiassigned a value, the default value is used.
The default value of a given feature can be specified whertiogethe object type, or when updating the
object type (see section 3.5.1 on page 35 and section 3.5a3gm38).

Atable is returned showing the number of objects createdessfully. This number is valid even if the
process failed half way through. In other words, if the pesogid not run to completion due to a DB error,
the value in the return type will show how many objects, if amgre created successfully. This means that
there is no way of knowing which object got which object idaddifference from the regular CREATE
OBJECT statement.

3.9.3.5 Returntype

A table with the following schema:

| object_count: intege}

On both success and failure, the table contains one row sigdiveé number of objects created success-
fully.

3.9.4 UPDATE OBJECTS BY MONADS
3.9.4.1 Syntax

update_objects_by monads_statement : “UPDATE”
(“OBJECT” | “OBJECTS")
“BY” monad_specification
object_update_specification

| *

* Object-update-specification

*/

object_update_specification : “[* object_type_name
list_of feature_assignments

q

object_type_name : T_IDENTIFIER

3.9.4.2 References

For the non-terminalsnonad_specification and list_of_feature_assignments , please
see section 3.9.1 on page 57.

61

3.9.4.3 Example

UPDATE OBJECTS BY MONADS = { 1-2, 4-7, 8-20 }
[Clause
clause_type := VC;

]
GO

3.9.4.4 Explanation

This statement finds all the objects of typlgect_type name which are part_of the monads specified
(i.e., they must be wholly contained within the monads djest), and updates their features according to

the list of feature assignments.

Note that there is a syntactic sugar-choice of whether t6@BJECTS” or “OBJECT”. This is because
the user may know that only one object is to be found withinrttemads, in which case having to write

“OBJECTS” would be intellectually irritating.

Note that objects of the special object types all_m, any nd mow_m cannot be updated.

The feature “self” cannot be updated.

3.9.45 Returntype
A table with the following schema:
| object_id_d: id_d|

On success, the table contains one row for each updated.objec
On failure, the table is empty.

3.9.5 UPDATE OBJECTS BY ID_DS
3.9.5.1 Syntax

update_objects_by id_ds_statement : “UPDATE"
(“OBJECT” | “OBJECTS")
“BY” id_ds_specification
object_update_specification

3.9.5.2 References

For a description ofd_ds_specification , See section 3.9.2 on page 59.

object_update_specification , See section 3.9.4 on page 61.

3.9.5.3 Example

UPDATE OBJECTS BY ID_DS = 10028, 10029
[Phrase
parent := 10034;

]
GO

3.9.5.4 Explanation
This statement updates all the objects of the given typetivittgiven id_ds.

For a description of

The id_ds should point to objects which are really of the gitygpe. Otherwise, an error is issued.

Note that there is a syntactic sugar-choice between “OB3@mnd “OBJECT.”

Note that objects of the special object types all_m, any nd mow_m cannot be updated.

62

The feature “self” cannot be updated.

3.9.5.5 Returntype
The return type is the same as for UPDATE OBJECTS BY MONAD$t{sa 3.9.4 on page 61).

3.9.6 DELETE OBJECTS BY MONADS
3.9.6.1 Syntax

delete_objects_by monads_statement : “DELETE”
(“OBJECT” | “OBJECTS")
“BY” monad_specification
object_deletion_specification

/ «

* Object-deletion-specification

*/

object_deletion_specification : “[”
object_type_name_to_delete

e

object_type_name_to_delete : object _type name
| “ALL”

object_type_name : T_IDENTIFIER
3.9.6.2 References

For a description ofnonad_specification , see section 3.9.1 on page 57.

3.9.6.3 Example

DELETE OBJECTS BY MONADS = { 1-20 }
[Clause]
GO

If “ object_name_to_delete "is "“ALL", then all objects of all types which are at these naafs are
deleted:

DELETE OBJECTS BY MONADS = { 28901-52650 }
[ALL]
GO

3.9.6.4 Explanation

This command deletes all the objects of tygigect_type_name which are part_of the set of monads
specified.

3.9.6.5 Returntype

A table with the following schema:
| object_id_d: id_d|

On success, the table contains one row for each deletedtobjec
On failure, the table is empty.

63

3.9.7 DELETE OBJECTS BY ID_DS
3.9.7.1 Syntax

delete_objects_by id_ds_statement : “DELETE”
(“OBJECT” | “OBJECTS")
“BY” id_ds_specification
object_deletion_specification

3.9.7.2 References
For a description oid_ds_specification , please see section 3.9.2 on page 59. For a description of
object_deletion_specification , please see section 3.9.6 on page 63.
3.9.7.3 Example
DELETE OBJECTS BY ID_DS 10028, 10029
[Phrase]
GO
3.9.7.4 Explanation
This statement deletes objects by theirid_ds. Note thatgaonot write “ALL”" for object_deletion_specification
The id_ds given should point to objects of the type given.
3.9.7.5 Returntype
The return type is the same as for DELETE OBJECTS BY MONAD&t(se 3.9.6).

3.10 Monad manipulation

3.10.1 MONAD SET CALCULATION
3.10.1.1 Syntax

monad_set_calculation_statement : “MONAD” “SET”
“CALCULATION"
monad_set_chain

monad_set_chain : monad_set
{ monad_set_operator monad_set }

monad_set_operator : “UNION”

| “DIFFERENCE”
| “INTERSECT”

3.10.1.2 References

For a description ofnonad_set , please see section 3.8.1 on page 44.

64

3.10.1.3 Example

/I Produces { 1-10 }
MONAD SET CALCULATION
{ 1-5, 7-8 }

UNION

{ 5-10 }

GO

/I Produces { 2-5, 22-24 }
MONAD SET CALCULATION
{ 1-10, 20-30, 50-60 }
INTERSECT

{ 2-5, 22-24 }

GO

/I Produces { 1-4, 8-10 }
MONAD SET CALCULATION
{ 1-10 }

DIFFERENCE

{57}

GO

/I Produces { 2-3, 5-6, 10-12 }
MONAD SET CALCULATION

{ 1-3, 59}

INTERSECT

{ 26 }

UNION

{ 10-12 }

GO

3.10.1.4 Explanation

This statement is for performing set-operations on sets a@fiads. The three standard set operations
“union,” “intersect,” and “difference” are provided.

The return value is a representation of the resulting setmfads along the same lines as for the GET
MONADS statement (see section 3.8.14).

The MSEs (see section 3.8.14) are listed in ascending order.

You can specify as many sets of monads as you want. The ampesatre done in succession from the
first to the last set of monads. For example, in the last exampbve, the intersection is done first, and the
union is done on the result of the intersection.

You can also specify only one set of monads, with no set operahis is useful for creating a sorted,
normalized set of monads from a number of different MSEs.

Note that this statement does not manipulate the storettasbimonad sets described in section 2.7.13
on page 23.

3.10.1.5 Returntype

A table with the following schema:

| mse_first : monad_m mse_last : monad_rh

65

3.10.2 CREATE MONAD SET
3.10.2.1 Syntax

create_monad_set_statement : “CREATE” “MONAD” “SET”"
monad_set_name
“WITH” “MONADS” “=" monad_set

monad_set_name : T_IDENTIFIER

3.10.2.2 References

For themonad_set non-terminal, please see section 3.8.1 on page 44.

3.10.2.3 Example

CREATE MONAD SET

My_research_collection

WITH MONADS = { 1-10394, 14524-29342, 309240-311925 }
GO

3.10.2.4 Explanation
This statement creates an arbitrary monad set in the databhese monad sets are the ones described in
section 2.7.13 on page 23.

3.10.2.5 Returntype

There is no return value.

3.10.3 UPDATE MONAD SET
3.10.3.1 Syntax

update_monad_set_statement : “UPDATE” “MONAD” “SET”
monad_set_name
(“UNION” | “INTERSECT” | “DIFFERENCE”" | “REPLACE")
(monad_set | monad_set _name)

monad_set_name : T_IDENTIFIER

3.10.3.2 References

For the monad_set non-terminal, please see section 3.§agm44.

3.10.3.3 Examples

/I Adds the specified monad set to “Historical_books”
UPDATE MONAD SET

Historical_books

UNION

{ 310320-329457 }

GO

/I Remove the specified monad set from “Historical_books”

66

UPDATE MONAD SET

Historical_books

DIFFERENCE

{ 310320-329457 }

GO

/I Intersects the monad set “My_research_collection”
/I with the monad set “My_experimental_collection”
UPDATE MONAD SET

My_research_collection

INTERSECT

My_experimental_collection

GO

/I Replaces the monad set “Lamentations” with

/I the specified monad set

UPDATE MONAD SET

Lamentations

REPLACE

{ 380300-383840 }

GO

3.10.3.4 Explanation

This statement is used to update an already-existing arpinonad set (see section 2.7.13 on page 23).
Four operations are provided: set union, set intersectietndifference, and replacement. In all cases, the
operation is done using two monad sets. The first set is theeda®t that is updated. The second set is
either a set described in terms of monads, or the name of enartbitrary monad set.

The replacement operator effectively deletes the old eptacing it with the new. Note, however, that
this does not imply that the new is deleted — if you update @meed monad set, replacing it with another
named monad set, that other monad set is not deleted, buiysiogied into the old monad set.

The other three operators are standard set-theoretictopera

3.10.3.5 Returntype

There is no return value.

3.10.4 DROP MONAD SET
3.10.4.1 Syntax
drop_monad_set_statement : “DROP” “MONAD” “SET”
monad_set_name

monad_set_name : T_IDENTIFIER
3.10.4.2 Example
DROP MONAD SET Historical_books
GO
3.10.4.3 Explanation

This statement drops an arbitrary monad set (i.e., del8téim the database. These are the arbitrary
monad sets described in section 2.7.13 on page 23.

67

3.10.4.4 Returntype

There is no return value.

3.11 Meta-statements

3.11.1 QUIT
3.11.1.1 Syntax
quit_statement : “QUIT”

3.11.1.2 Example
QUIT

3.11.1.3 Explanation

This causes the rest of the MQL stream not to be interpretedsd causes the mql(1) program to quit after

having executed this statement.

The QUIT statement can be used, e.g., if running the mgl@dgmam as a daemon through xinetd(8) or

inetd(8), to end the connection.

The QUIT statement is special in that it does not need a “GQWked after it. You may supply the
“GO” keyword if you wish, but it is not required.

If a transaction was in progress (see BEGIN TRANSACTIONestant, section 3.4.1 on page 33), the
transaction is automatically committed before the QUITesteent is executed.

3.11.1.4 Returntype

There is no return value.

68

Chapter 4

MQL Query subset

4.1 Introduction

This chapter is an introduction to the query-subset of MQLdfmgrammers. That is, it introduces the
important subset of MQL in which you can express queriesfthdtobjects and gaps in interesting envi-
ronments, with specified interrelations, and with specifeadure-values.

An easier-to-read MQL Query Guide is available from the Emsdvebsite, or with the Emdros source-
code in the doc/ directory (see [MQLQueryGuide]).

First, we give an informal introduction to MQL by means of soexamples (4.2). Then we give
a complete overview of the syntax of the MQL query-subse®)(4Then we explain the sheaf, which
is the data-structure that an MQL query-query returns (4en we explain what a Universe and a
Substrate are, since they are important in understandiwgahguery works (4.5). After that, we explain
two important properties of mgl queries, namely conseeutss and embedding (4.6). After that, we give
detailed explanations of the blocks of the MQL query-subshbich are the “building blocks” out of which
a query is made (4.7). Finally, we explain how strings of kkare written, and what they mean (4.8).

4.2 Informal introduction to MQL by means of some examples

4.2.1 Introduction

This section informally introduces the query-part of MQLWgy of a number of examples. The example
database which we will use is the same as in Doedens’ bookelygrart of Melville’s “Moby Dick”:

“CALL me Ishmael. Some years ago - never mind how long préciskaving little or no
money in my purse, and nothing particular to interest me anesh thought | would sail about
a little and see the watery part of the world. It is a way | hafdriving off the spleen, and
regulating the circulation. Whenever | find myself growimgngabout the mouth; whenever
it is damp, drizzly November in my soul; whenever | find myselfoluntarily pausing before
coffin warehouses, and bringing up the rear of every funemaét; and especially whenever
my hypos get such an upper hand of me, that it requires a sinongl principle to prevent me
from deliberately stepping into the street, and methodidalocking people’s hats off - then,
| account it high time to get to sea as soon as | can. [...]

“[...] By reason of these things, then, the whaling voyage walcome; the great flood-gates
of the wonder-world swung open, and in the wild conceits shatyed me to my purpose, two
and two there floated into my inmost soul, endless processibthe whale, and, mid most of
them all, one grand hoofed phantom, like a snow hill in thé air

Suppose that we have in this EMdF database the domain-depieriject types “paragraph”, “sentence”,
and “word”, which correspond to paragraphs, sentenceswands of the text. And suppose that we add
to the object type “sentence” the feature “mood,” which dsats values from the enumeration type {

69

imperative, declarative }. And suppose that we add to thedlyjpe “word” the features “surface” (which
gives the surface text of the word) and “part_of_speech’i¢tvives the part of speech of the word). The
codomain of the feature “part_of_speech” on the object tywed” draws its values from the enumeration
type { adjective, adverb, conjunction, determiner, nowmneral, particle, preposition, pronoun, verb }.
This hypothetical database will give the background fornedshe examples in our informal introduction
to MQL.

In the following, when we refer to an “MQL query”, we will medhe query-subset of MQL. That is,
we abstract away from the database-manipulation-part of. QI concentrate on the query-queries. In
addition, we will abstract away from the required “SELECTOEUS|ALL) OBJECTS” syntax that must
precede an MQL query-query.

4.2.2 topograph
An MQL query is called a topograph. Consider the followingdgraph:

[sentence]

This topograph retrieves a list of all sentence objectsértabase.

4.2.3 features

A query can specify which features an object must have far iid retrieved. For example, consider the
following topograph:

[word
surface = "Ishmael" or part_of speech = verb;

]

This topograph retrieves a list of all words which eitherénthe surface “Ishmael”, or whose part of speech
is “verb.”

4.2.4 object_block, object_block_first

There are several types of blocks. They are meant to cometiing sf blocks, where each block in the
string must match some part of the database in order for tlodengtring to match. Two such blocks are
theobject_block and theobject_block_first

Object blocks are the heart and soul of MQL queries. They sed to match objects and objects nested
in other objects. An object block (be it atject_block or anobject_block_first) consists of
the following parts:

1. The opening square brackdt,.’
2. An identifier indicating the object type of the objects ahive wish to match (e.g., “phrase”).

3. An optional T_MARKS (e.g., “yellow” or “red‘context”) This will be put into the result set (i.e.,
sheaf) unchanged, and can be used to pass information adkéapplication from the user. The
meaning of the T_MARKS is wholly application-dependenticel Emdros does nothing special
with it — it just passes the T_MARKS on into the sheaf. See pg#gjéor the formal definition of
T_MARKS.

4. An optional “object reference declaration.” A referetméhis object can be declared with thas”
keyword, like fword as w ...”. Subsequent blocks can then refer to features of this bhjgc
“w.featurenamé(see section 4.7.8 on page 91).

70

5. An optional keyword which can be either afidretrieve , “retrieve or “focus ”. The
default, when it is not specified, is€trieve ”. The keyword ‘horetrieve " says as much as “I
do not wish to retrieve this object, even if matched”. It isfusfor specifying the context of what we
really wish to retrieve. The keyworddcus " specifies that this object is to be retrieved (it implies
“retrieve "), and also that, when sifting the sheaf for focus objedts dbject must go into the
result (see section 4.7.5 on page 85).

6. An optional keyword, first " or “last ", which says as much as “this object must be first/last in
the universe against which we are matching (see sectiod dn/page 86).

7. An optional Boolean expression giving what features rtedabld true for this object for it to be
retrieved (see section 4.7.7 on page 87). This boolean ssipremust be prefixed by one of the
words ‘feature " or “features ”. It makes no difference which is used — it is merely syntacti
sugar.

8. An optional inneblocks which matches objects inside the object (see section 4.8.3)
9. The closing square brackel,.

Note that only the first object block in a string of blocks cawéithe first " keyword, and only the last
object_block in a string ofblock s can have thelast " keyword.
Consider the followingopograph

[sentence'yellow
mood = imperative;
[word noretrieve first
surface = "CALL";
]

[word‘red]

]

This topograph retrieves the set of sentences which are imperative, andevfiist word is “CALL".
Within each sentence in that set, we retrieve the second,eortchot the first. The only sentence in our
example database which qualifies is the first sentence.

4.2.5 power

The power construct is used to indicate that we allow somenlte in between two blocks. A power
construct must always stand between two other blocks, andhees never be first or last in a query. It
comes in three varieties:

e A “plain vanilla” power construct, syntactically denotegtwo dots, “. ", and

e A power construct with a single, upper limit. The limit spiéggs$ the maximum monads that can
intervene between the two surrounding blocks. Itis denateglg.,”. < 5 ",or“.. <= 5 ",

e A power construct with a compound min/max limit. The limiegfies the minimum and maximum
monads that can intervene. It is denoted as, e.g., BETWEEN 1 AND 5.

Consider the following topograph:

[sentence
[word
part_of _speech = preposition]
. < 4
[word
part_of speech

noun)

71

[word last
surface = "world"]

]

This topograph retrieves a list of sentences which have d that has part of speech preposition, followed
by a word which has part of speech noun, and which is within Aads of the preposition, followed by the
last word of the sentence, which must be “world”. Within teahtence, retrieve all the three words. The
only sentence which qualifies is the second.

4.2.6 opt_gap_block

An opt_gap_block is used to match an optional gap in the text. It consists of:
1. The opening square brackdt,.’
2. The keyword gap?”.

3. An optional T_MARKS (e.g., “yellow” or “red‘context”) This will be put into the result set (i.e.,
sheaf) unchanged, and can be used to pass information adkéapplication from the user. The
meaning of the T_MARKS is wholly application-dependenticei Emdros does nothing special
with it — it just passes the T_MARKS on into the sheaf. See pg#gjéor the formal definition of
T_MARKS.

4. An optional ‘horetrieve " “retrieve " or “focus .” The default is ‘horetrieve ". (See
section 4.7.5 on page 85)

5. An optionalblocks (see section 4.8.3 on page 95).
6. The closing square brackel, !

Theopt_gap_block matches gaps in theubstrateagainst which we are matching. Thus if we look at
the example in figure 2.1 on page 19, we can construct theafisigptopograph:

[clause
[clause_atom
[word
surface = "door,"

]
]

[gap? noretrieve]
[clause_atom noretrieve]

]

This retrieves all clauses which happen to have inside thelause atom which contains the word “door,”,
followed by a gap, followed by a clause_atom. The gap anddbersl clause_atom are not retrieved. This
would retrieve clause-1. The gap need not be there.

The default is for the result of ampt_gap_block not to be retrieved. Thus one needs to explicitly
write “retrieve " if one wishes to retrieve the gap.

4.2.7 gap_block

A gap_block is used to match a gap in the text. It consists of:
1. The opening square brackdt,."
2. The keyword gap”.

72

3. An optional T_MARKS (e.g., “yellow” or “red‘context”) This will be put into the result set (i.e.,
sheaf) unchanged, and can be used to pass information adkéapplication from the user. The
meaning of the T_MARKS is wholly application-dependenticel Emdros does nothing special
with it — it just passes the T_MARKS on into the sheaf. See pg#gjéor the formal definition of
T_MARKS.

4. An optional ‘horetrieve " “retrieve " or “focus .” The default is ‘horetrieve . (See
section 4.7.5 on page 85).

5. An optionalblocks . (See section 4.8.3 on page 95).
6. The closing square brackel,.

Thegap_block is analogous to thept_gap_block in all respects except that thareustbe a gap in
order for the query to match.

4.2.8 object references

An object reference is a name given to a previously retrielgdct with the ‘as identifier’ declaration.
An object reference can then be used in subsequent comparigth features of other objects. This is
done by selecting the desired feature from the object reerdy using dot-notation, as in the example
below:

[word as w
part_of speech = article;
]
[word‘myhit
(part_of_speech = noun
or part_of _speech = adjective)
and case = w.case
and number = w.number
and gender = w.gender;

]

Assuming that thevord object type has features part_of _speech, case, numbegeadeér, this topograph
retrieves all pairs of words which satisfy the following citions:

e The first word has part of speech “article”,
e The second word has part of speech “noun” or “adjective”, and
e Both words have the same case, humber, and gender.

This concludes our gentle, informal introduction to MQL.

4.3 Syntax of mgl_query

4.3.1 Introduction

Themqgl_query non-terminal is the entry-point for the MQL query-subsdtisiused in the WHERE
clause of the SELECT (FOCUSJALL) OBJECTS statement (se@i8.1 on page 44). In this section, we
give the full grammar of the MQL query-subset. It is impotttrat you take some time to read through
the grammar. Subsequent sections will build on the birg&syéew given in this section.

73

4.3.2 Syntax
mql_query : topograph

topograph : blocks
blocks : block_string

block_string : block_string2
| block_string2 “OR” block_string

block_string2 : block_stringl
| block_stringl block_string2
| block_stringl “I" block_string2

block_stringl : block_string0
| block_string0 *“ *” [monad_set]

block_string0 : block
| “[* block_string “1”

block : opt_gap_block
| gap_block
| power_block
| object_block
| “NOTEXIST” | “NOTEXISTS”) object_block

opt_gap_block : “[" “GAP?”
[marks_declaration]
[gap_retrieval]
[blocks]

u]n
marks_declaration : T_MARKS

gap_retrieval : “NORETRIEVE”
| “RETRIEVE”
| “FOCUS”

gap_block : “T” “GAP”
[marks_declaration]
[gap_retrieval]
[blocks]

object_block : ‘" object_type_name
[marks_declaration]
[object_reference_declaration |
[retrieval]
[firstlast]
[feature_constraints |
[feature_retrieval |
[blocks]

74

object_reference_declaration : “AS” object_reference
object_reference : T_IDENTIFIER

retrieval : “NORETRIEVE”
| “RETRIEVE”
| “FOCUS”

firstlast : “FIRST”
| “LAST”
| “FIRST” “AND” “LAST”

feature_constraints : ffeatures

ffeatures : fterm
| ffeatures “OR” fterm

fterm : ffactor
| ffactor “AND” fterm

ffactor : “NOT” ffactor
| “C’ ffeatures ‘7
| feature_comparison

feature_comparison :
feature_name comparison_operator value
| feature_name “IN” enum_const_set
| feature_name “IN” “(* list_of_integer “)”
| feature_name “IN" object reference usage

comparison_operator : “="

| "<
| >
| “<>” [= not equal =/
| “<=" [= less than or equal */
| “=<" [= less than or equal */
| “>=" [=« greater than or equal */
| “=>" [=« greater than or equal */
| “~" [= regular expression */
| “I~" [= inverted regular expression
| “HAS” / = Ilhs: list; rhs: atomic value.
signifies list membership.
list_of integer : T_INTEGER { “,” T_INTEGER } *

value : enum_const
| signed_integer
| T_STRING
| object_reference_usage

enum_const : T_IDENTIFIER

object_reference_usage : object_reference

75

feature_name
enum_const_set : “(* enum_const_list “)"

enum_const_list : enum_const { “,” enum_const_list }

power :

“on

[restrictor]

restrictor : “<” limit
| “<=" limit
| “BETWEEN" limit “AND” limit

limit : T_INTEGER / * non-negative integer, may be O. */

feature_retrieval : “GET” feature_list
| / = empty: Don't retrieve any features */

4.3.3 References

For thesigned_integer non-terminal, please see section 3.5.1 on page 35.fdadure_name
see 3.5.2 on page 38. Ffwature_list , see section 3.8.15 on page 55. Fwnad_set , see sec-
tion 3.8.1 on page 44.

4.4 The sheaf

4.4.1 Introduction

The sheafis the data structure that is returned from an M@rygquery. The structure of the sheaf closely
reflects the structure of the query on which it is based. Tédsien is meant as reading for implementors
of Emdros-systems, not for end-users.

The sheaf has a specific structure, which we will look at néfter that, we will take a look at the
meaning of the structures of the sheaf.
4.4.2 Structure of the sheaf
A sheaf consists of the following element types:

1. Sheaf

2. Straw

3. Matched_object

4.4.2.1 Whatis a sheaf?

A sheafis a list of straws.

4.4.2.2 Whatis a straw?

A strawis a list of matched_objects.

76

4.4.2.3 What is a matched_object?

A matched_objeds one of the following:
1. (objectid_d, focus boolean, marks, sheaf, object tygtegfsmonads, list of feature-values)
2. (objectid_m, focus boolean, marks, sheaf)

That is, a matched_object is an object id (either id_d or i coupled with a boolean indicating whether
the block that gave rise to the matched_object had the “FO@uiflifier, coupled with a “marks” string,
coupled with a sheaf. If the matched_object is of the firsdkihen additionally, the object type and the
object’s set of monads are also available, and there is aifgpempty) list of feature-values.

4.4.3 MQL is topographic

There is a correspondence between the way an MQL query isted and the structure of the resulting
sheaf. In fact, the two are isomorphic to some extent. Dogd@en[Doedens94], called this property
“topographicity.” Thus @locks gives rise to a sheaf,ldock_str gives rise to a straw, anddock
gives rise to a matched_object. Insidelack , there is an optional inndrocks , which again gives rise
to an inner sheaf. Hence a matched_object contains a shieaforigin of this sheaf is the optional inner
blocks intheblock which gave rise to the matched_object.

Note that this description applies to “full sheaves.” Fla¢aves are a different matter. See section 4.4.7
on the following page for a description of flat sheaves.

4.4.4 Meaning of matched_object

A matched_object s the result of one of the following mathe
1. Anobject_block against an object in the database.
2. Anopt_gap_block against a gap.
3. Agap_block againsta gap.

A matched_object’s first component is either an id_d or amidlf the matched_object is the result of a
match against an object_block or an object_block_first) the id will be an id_d. If the matched_object
is the result of a match againsgap_block or anopt_gap_block ,theidisanid_m.

The second component is a boolean indicating whether theC® keyword was present on the
block.

The third component is a sheaf.

As we will see later, a sheaf is the result of matching agaaridbcks . It so happens that there
is an optionablocks inside each of the four kinds of block (in the list above). Bieaf inside the
matched_objectis the result of a match againstttisks |, if present. If theblocks is not present, then
the sheaf is simply an empty sheaf.

For example, the following topograph:

[word FOCUS]

will contain one matched_object for each word-object witthie substrate of the topograph. The sheaf of
each of these matched_objects will be empty, and the FOCde&owill be “true” because we specified
the FOCUS keyword.

4.4.5 Meaning of straw

A straw is the result of one complete match tlack_str . Thatis, a straw is a “string” of matched_objects
corresponding to the blocks in tidock_str which we should retrieve (which we can specify with the
(“FOCUS’|"RETRIEVE"|"’NORETRIEVE”) keyword triad).

For example, consider the following topograph:

77

[word
surface = "the";
]

[word
part_of speech = noun;

]

This will return a sheaf with as many straws as there are pamgjacent words where the first is the word
“the” and the second is a noun. Each straw will contain twoaimedl_objects, one for each word.

4.4.6 Meaning of the sheaf

A sheafis the result of gathering all the matchings bfacks non-terminal. There are four places in the
MQL grammar where &locks non-terminal shows up:

1. Inthetopograph ,

2. Intheobject_block

3. Intheopt_gap_block ,and
4. In thegap_block

The first is the top-level non-terminal of the MQL query-qugrammar. Thus the result of an MQL
guery-query is a sheaf.

Each of the last three is some kind of block. Inside each cfghthere is an optionalocks . The
result of matching thiblocks is a sheaf.

But a sheaf is a list of straws. What does that mean?

It means that a sheaf contains as many matches of the strirgeaks (technically, block_string2)
making up theblocks as are available within the substrate and universe thatrgedeghe matching of
theblocks .

A straw constitutes one matching of thieck_str ing2. A sheaf, on the other hand, constitutes all
the matchings.

4.4.7 Flatsheaf

Most of the above description has applied to “full sheavé¢&e’now describe flat sheaves.

A “flat sheaf,” like a “full sheaf,” consists of the datatypgsbeaf,” “straw,” and “matched_object.” The
difference is that a “matched_object” in a flat sheaf canrmvehan embedded sheaf. This makes a flat
sheaf a non-recursive datastructure.

A flat sheaf arises from a full sheaf by means of the “flattergrayor.

If “FullSheaf” is a full sheaf, then “flatten(FullSheaf)"ttens a flat sheaf that corresponds to the full
sheaf.

A flat sheaf contains the same matched_objects as its otiiggnfall sheaf. However, they are struc-
tured such that each straw in the flat sheaf contains onlyhradtabjects of one object type. Each object
type that is represented in the full sheaf results in onevdtrahe flat sheaf.

Thus a straw in a flat sheaf does not correspond to the matdfiagblock_string. Instead, it is
a list of all the matched_objects of one particular objegtetyn the originating full sheaf. All of the
matched_objects in the full sheaf are represented in thslsf, regardless of whether they represent the
same object in the database.

The “flatten” operator is only applied to the output of an MQuegy if the “RETURNING FLAT
SHEAF” clause is given (see section 3.8.1 on page 44). Thgranemer of an Emdros application can
also apply it programmatically.

There is a variant of the flatten operator which also takestafiobject type names, in addition to the
full sheaf. Then only those object types which are in thedistput into the flat sheaf. If L is a list of object
type names, and FullSheaf is a full sheaf, then flatten(Rel§ L) returns a flat sheaf with straws for only

78

those object types which are in L. If L is empty, then this ieipreted as meaning that all object types in
FullSheaf must go into the flat sheaf. In the this light, thegk-argument flatten operator may be seen as
being a special case of the two-argument flatten operatthr lwbeing empty. That is, flatten(FullSheaf) is
the same as flatten(FullSheaf, []).

45 Universe and substrate

45.1 Introduction

Two concepts which we shall need when explaining the blathkd®L are “Universe” and “Substrate.” In
this section, we define and explain them.

45.2 Universe and substrate

A Universe is a contiguous set of monads. It always startsgracular monad: and ends at another
monadb, wherea < b. In more everyday language, a Universe is a stretch of mothedstarts at one
monad and ends at another monad later in the database. Ting emshad may be the same as the starting
monad.

A Substrate, on the other hand, is an arbitrary set of monlaasay have gaps (see section 2.7.8 on
page 21). That is, while a Substrate always begins at a semntanadz and always ends at another monad
b, wherea < b, it need not contain all of the monads in between.

A Universe always has an accompanying Substrate, and arSigxslways has an accompanying Uni-
verse. Their starting- and ending-monads are the same.ig hlihe first monad of the Universe is always
the same as the first monad of the accompanying Substrateth&rast monad of the Universe is always
the same as the last monad of the Substrate. So a Universelsaae with all the gaps (if any) filled in.

See section 3.8.1.4 on page 45 for an explanation of how tiied Bubstrate and universe are calculated
for the query.

With that definition out of the way, let us proceed to desaghiexemplifying, and explaininiglocks

4.6 Consecutiveness and embedding

Two important notions in the MQL query-subset are embeddimg) consecutiveness. If two blocks (be
they object blocks or gap blocks) are consecutive in a gitangans that they will only match two objects
or gaps which are consecutive with respect to the substrdtewise, a string of blocks (i.e., blocks)
which is embedded inside of a block of some sort will only rhatithin the confines of the monads of the
surrounding block.

For example, the following topograph:

[Word psp=atrticle]
[Word psp=noun]

will match two adjacent (or consecutive) words where the frsn article and the second is a noun. The
consecutiveness is calculated with respect to the curabstate (see section 2.7.10 on page 21).
Likewise, the following topograph:

[Clause
[Phrase phrase_type = NP]
[Phrase phrase_type = VP]

]

will match only if the two (adjacent) phrases are fowvithin the confines othe monads of the surrounding
Clause. In fact the monads of the surrounding clause servheasubstrate when matching the inner
blocks .

79

4.7 Blocks

4.7.1 Introduction

Blocks are the heart and soul of MQL query-queries. Theyi§patich objects and which gaps in those
objects should be matched and/or retrieved. With objeatkspyou specify which objects should be
matched. With gap blocks, you specify whether a gap shoulddie=d for.

In this section, we treat the four kinds of blocks in MQL in sodetail. First, we describe and explain
the two kinds of object block (Object blocks, 4.7.2). Thentreat the two kinds of gap blocks (Gap blocks,
4.7.3). Then we describe how to specify whether to retridvi@ek’s contents (Retrieval, 4.7.5). After that
we describe how to specify that an object block should besefitst or last in its enclosinblocks (First
and last, 4.7.6). Then we describe and explain how to speoifigtraints on features (Feature constraints,
4.7.7). Then we describe object references, which are a fwafarring to other objects in a query (Object
references, 4.7.8). After that we wrap up the syntactic teominals dealing with blocks by describing the
block (Block, 4.7.9) Finally, we have some closing remarks (Glgsiemarks??).

4.7.2 Object blocks
4.7.2.1 Introduction

Object blocks specify which objects should be matched. &foee, they are quite importantin MQL. With
object blocks, itis also possible to specify whether or natehed objects should be retrieved. You can also
specify constraints on the features of the objects whichulshise matched; You can specify whether you
want objects matched against a certain object block to keofitast in the string of blocks we are looking
for at the moment; And finally, you can label objects matchred guery with object reference labels, so
that those objects can be referred to later in the queryfiiueher down in the MQL query, and thus further
on in the string of monads). In this subsection, we deal withdbject blocks themselves, deferring the
treatment of feature-constraints, first/last-speciftoej and object references to later subsections.

First, we describe the syntax of object blocks, then we gireesexamples, and finally we give some
explanatory information.

4.7.2.2 Syntax

object_block : “[" object _type_name
[marks_declaration]
[object_reference_declaration]
[retrieval]
[firstlast]
[feature_constraints]
[feature_retrieval |
[blocks]

l(]ll
object_type_name : T_IDENTIFIER

marks_declaration : T_MARKS
retrieval : “NORETRIEVE”"

| “RETRIEVE”

| “FOCUS”

firstlast : “FIRST”

| “LAST”
| “FIRST” “AND” “LAST”

80

last : “LAST”

feature_retrieval : “GET” feature_list
| / = empty: Don't retrieve any features */

4.7.2.3 References

Forobject_reference_declaration ,see section 4.7.8 on page 91. Feature_constraints ,
see section 4.7.7 on page 87. Btocks |, see section 4.8.3 on page 95. Feature_list , please see
section 3.8.15 on page 55.

4.7.2.4 Examples
1. [Clause]

2. [Phrase noretrieve first
phrase_type = NP
]

3. [Clause first and last]

4. [Word as w focus last
psp = noun and number = pl
GET surface, lexeme

]

(631

. [Clause‘context
[Phrase‘red first
phrase_type = NP and phrase_function = Subj
]
[Phrase‘green
phrase_type = VP

[Word

psp = V
]
[Phrase'blue

phrase_type
]

NP and phrase_function = Obj

]
]

6. [Sentence
NOTEXIST [Word surface = "saw"]

]

4.7.2.5 Explanation

Firstly, it will be noticed that the first item after the opegibracket must always be an object type name.
This is in keeping with all other parts of MQL where objectéypames are used.

Secondly, it will be noticed that all of the other syntactanrterminals in the definition of the object
blocks are optional.

The marks declaration comes after the object type name. Uéwyguriter can use it to pass information
back into the application that sits on top of Emdros. Emdmesdhothing special with the T_MARKS,

81

other than passing it on into the sheaf, that is, into the heatcobject that arises because of the ob-
ject_block. In particular, there is no semantics assodiafith the marks_declaration. See page 25 for the
formal definition of T_MARKS.

The object reference declaration comes after the markaudeidn, and will be dealt with below (4.7.8
on page 91).

The specification of the retrieval comes after the objearefce declaration and will be dealt with in
another section (4.7.5 on page 85).

The specification of first/last-constraints comes aftestheification of retrieval, and will also be dealt
with in another section (4.7.6 on page 86).

Itis possible to specify constraints on the features ofabjeThis is done in thieature_constraints
non-terminal, which comes after the first/last-constmifithese constraints will be dealt with in a section
below (4.7.7 on page 87).

A list of features can be given in tiieature_retrieval clause. Their values for a given object
are placed on the list of features in the matched_objecErsiieaf.

Theinnemblocks syntactic non-terminal allows the writer of MQL queries gassibility of matching
objects nested inside objects. Example 5 above shows sexaraples of this. Example 5 finds those
clauses which have inside them first a phrase which is a Sulijechen followed by a Phrase which is
a VP, the first word inside of which is a verb, followed by an &@hjNP. Thus we have an object block
(“Clause”) with an inneblocks (“NP followed by VP”), where inside the VP we have anothbrcks
(V followed by NP).

The inner blocks, if present, must match if the object bloxka match. When entering the inner
blocks , the Substrate for thdilocks becomes the monads of the enclosing object. Let us call that
object O. The Universe for the inndocks becomes the set of monads between and including the
borders of the enclosing object (see section 2.7.9 on pape.2] the stretch of monads between (and
including) O.first and O.last. This is the same as the sutesteacept with any gaps filled in.

If you want any objects or gaps inside the object block to bxéeneed, then the retrieval of the enclosing
object block must be either retrieve or focus. Since theudefatrieval for object blocks is to retrieve them,
this condition is satisfied if you write nothing for the retral.

An object, if it is to match against a given object block, msipart_of the Substrate that accompanies
the enclosingblocks . This basically means that all of the monads in the objecttrals® be in the
substrate. See section 2.7.7 on page 21 for details of thegfaelation.

In addition, the object, if it is to match against a given abjglock, must satisfy the feature constraints,
if any. See section 4.7.7 on page 87 for detalils.

You can optionally place the keyword “NOTEXIST” before thgect block. This will result in match-
ing those cases where the object block does not occur, ahdesillt in a failed match where the object
block does occur. This is most useful if you have some conitext a surrounding context (e.g., a sentence
which does not contain such and such a word, see example @yab¥ou are allowed to have blocks
before and after a NOTEXIST block. Let us say that there isoakbbefore the NOTEXIST block. Then
the Substrate within which the NOTEXIST block will be matdhethe Substrate of the context, minus the
monads from the beginning of the Substrate to the end of theldObject matching the previous block.
The Universe of the NOTEXIST block will be defined analoggusi the Universe of the context.

The NOTEXIST block will have “zero width” with respect to cescutiveness: If it matches anything,
the entire block_string fails. If it does not match, it is hedgh the NOTEXIST block had not been there,
and any block after the NOTEXIST block will be attempted rhait starting at the previous block’s last
monad plus 1.

The NOTEXIST keyword acts as an “upwards export barrier’lgjeot reference declarations. That is,
you cannot “see” an object reference declaration outsideeoNOTEXIST, only inside of it.

4.7.3 Gap blocks
4.7.3.1 Introduction

Gap blocks are used to match gaps in the substrate we aratyimatching against. There are two kinds
of blocks: plain gap blocks and optional gap blocks.

82

We start by defining the syntax related to gap blocks. We tivenspme examples of gap blocks. And
finally, we provide some explanation.

4.7.3.2 Syntax

gap_block : “[" “GAP”
[marks_declaration]
[gap_retrieval]
[blocks]

qr

opt_gap_block : “T” “GAP?”
[marks_declaration]
[gap_retrieval]
[blocks]

u]n
marks_declaration : T_MARKS

gap_retrieval : “NORETRIEVE"
| “RETRIEVE”
| “FOCUS”

4.7.3.3 Examples
1. [gap]

2. [gap?]
3. [gap noretrieve]
4. [gap¢yellow focus]

5. [gap‘context'red retrieve
[Word retrieve
psp = particle
]
]

6. [gap‘yellow
]

4.7.3.4 Explanation

There are two differences between the two types of gap blodke is that thgap_block mustmatch a
gap in the substrate for the whole query to match, whilegtegap block may(but need not) match a
gap in the substrate. The other is that the default retrfhvah opt_gap_blockis NORETRIEVE, whereas
the default retrieval of a gap_block is RETRIEVE. Otherwtbey are identical in semantics.

The retrieval will be dealt with more fully in the next sectio

The innemblocks , if present, must match if the gap block is to match. Whemtyyo match the inner
blocks , both the Universe and the Substrate are set to the monaks gép. So if the gap matches the
monad-stretciw..b], then both the Universe and the Substrate for the ibfeeks will be this stretch of
monads.

83

The last point is important in example 5. Here the Word whighase looking for inside the gap will
be looked for within the monads which made up the gap.

If you want any objects or gaps to be retrieved inside the gapn(example 5 above, where we want
to retrieve the Word), then the retrieval of the gap block hingseither “retrieve” or “focus”.

You can optionally specify a T_MARKS after thgap or gap? keyword. If you do, the Matche-
dObjects that arise because of this (opt_)gap_block willta@io the same T_MARKS as you specified
here. The query-writer can use it to pass information batktime application that sits on top of Emdros.
Emdros does nothing special with the T_MARKS, other tharsipgsit on into the sheaf, that is, into the
matched_object that arises because of the (opt_)gap_.Hloglarticular, there is no semantics associated
with the marks_declaration. See page 25 for the formal diefimof T_MARKS.

4.7.4 Power block
4.7.4.1 Syntax

power : “.” [restrictor]

restrictor : “<” limit
| “<=" limit
| “BETWEEN" limit “AND” limit

limit : T_INTEGER / * non-negative integer, may be O. */

4.7.4.2 Examples
1. [Word]

2. [Word psp=article]
[Word psp=noun]
. <=5
[Word psp=verb]

3. [Phrase phrase_type = NP]

[Phrase phrase_type = AdvP]
. BETWEEN 1 AND 5
[Phrase phrase_type = VP]

4. [Chapter
topic = "Noun classes in Bantu"

]
[Chapter

topic = "Causatives in Setswana"

]

[Chapter
topic = "Verb-forms in Sesotho”

]

4.7.4.3 power

The power block means “before the start of the next blockgthmuist come a stretch of monads of arbitrary

length, which can also be no monads (0 length)”. In its bamimf it is simply two dots, .

84

The stretch of monads is calculated from the monad afteratenrhonad of the previous block. If the
previous block ended at monad 7, then the power block stautsting monads from monad 8.

One can optionally place iestrictor after the two dots, thus making the power block look like
this,e.g.,*. <5 " “.. <=5 "or"“.. BETWEEN 1 AND 5.

The first two kinds of restrictor mean “although the strettimonads is of arbitrary length, the length
must be less than (or equal to) the number of monads givereinetrictor”. Thus. < 5 " means
“from 0 to 4 monads after the end of the previous block”, and “<= 5 ” means “from 0 to 5 monads
after the end of the previous block”. That is, if the previdleck ended at monad 7, then* < 5
means “the next block must start within the monads 8 to 127llevh. <= 5 " means “the next block
must start within the monads 8 to 13”.

Similarly, the third kind, *. BETWEEN M n ANDmax” means “there must be at leagtn monads

in between, and at mosax monads. This is construed as= m n AND <=max”.

475 Retrieval
4.75.1 Introduction

Retrieval is used in four places in the MQL grammar. Once &arheof the two object blocks and once
for each of the two gap blocks. In this section we describetihee kinds of retrieval, specify the default
behavior, and provide a bit of explanation.

4.7.5.2 Syntax

retrieval : “NORETRIEVE”
| “RETRIEVE”
| “FOCUS”

gap_retrieval : “NORETRIEVE"
| “RETRIEVE”
| “FOCUS”

4.7.5.3 Examples

1. [Word focus
psp = verb
]

2. [gap? retrieve]
3. [Phrase noretrieve]
4. [gap focus]

5. [Phrase retrieve

[Word focus
psp = article

]

[gap retrieve
[Word focus

psp=conjunction

]

]

[Word focus
psp = noun

85

]
]

4.7.5.4 Explanation

Retrieval has to do with two domains pertaining to object$ gaps:
1. Whether to retrieve the objects or gaps, and
2. Whether those objects or gaps should biaus

Whether to retrieve is straightforward to understand. Ifdea’t retrieve, then the object or gap doesn't
get into the sheaf. The sheaf is the data-structure retuopeatt MQL query. The object or gap (if the gap
is not optional) must still match for the overall match to mecessful, but the object or gap won't get into
the sheaf if we don't retrieve.

When an object is in focus, that means your application hasogportunity to filter this object out
specifically from among all the objects retrieved. Exactiwhhis feature is used (or not used) will depend
on your application. When is this useful?

Recall that, for objects in an inndlocks to be retrieved (in an object block or a gap block), the
enclosing object or gap must also be retrieved. Thus youteigth up with objects in the sheaf which you
don't really care about. The focus-modifier is a way of sigmaspecial interest in certain objects or gaps.
Thus you can specify exactly which objects should be of spéuierest to the application. In example 5
above! the outer Phrase must be retrieved, because we wish toveettie inner objects and gaps. The
inner gap must also be retrieved because we wish to rettievieber Word. The three Words are what we
are really interested in, however, so we mark their rettiagdfocus”.

If we specify “focus” as the retrieval, then that impliestfieve”. Thus we can’t not retrieve an object
which is in “focus”. This makes sense. If you have registeaegpecial interest in an object, that means
you want to retrieve it as well.

The default for object blocks of both kinds, when no retriésapecified, is to assume “retrieve”. The
default for gap blocks of both kinds, on the other hand, igétraeve”.

4.7.6 Firstand last

4.7.6.1 Introduction

The object blocks have the option of specifying whether wteyuld be first and/or last in their enclosing
blocks

4.7.6.2 Syntax

firstlast : “FIRST”
| “LAST”
| “FIRST” “AND” “LAST”

4.7.6.3 Examples

1. [Clause first and last]

2. [Phrase first]

3. [Clause
[Phrase first]
[Word last

1This construction actually does occur in at least one lagguaamely ancient Greek. It is due to post-positive pasind
conjunctions such as “de”, “gar”, “men”, and the like.

86

psp = verb
]
]

4.7.6.4 Explanation

In example 1, the clause must be both first and last in its aadimgblocks . In the second example, the
phrase must merely be the first. In the third example, thedehraust be first in the clause, followed by a
word, which must be a verb, and which must be last. This cae&l&ed, e.g., in verb-final languages.

What does it mean to be “first” and “last” in the encloshligcks ?

Again we must appeal to the notion of Universe and SubstEatehblocks carries with it a Universe
and a Substrate. Let us say that an object block must be firdtled us say that we are trying to match
an object O against this object block. Let us call the subestrthe enclosing blocks “Su”. Then, for the
object O to be first in the blocks means that O.first = Su.firkatTs, the first monad of the object must be
the same as the first monad of the Substrate.

Conversely, for an object O to be last in a blocks, means tHasO= Su.last. That is, the last monad
of the object must be the same as the last monad of the Suhstrat

4.7.7 Feature constraints
4.7.7.1 Introduction

Object blocks can optionally have feature constraints. fBa¢ure constraints are boolean (i.e., logical)
expressions whose basic boolean building-blocks are ‘dimod”, and “not”. The things that are related
logically are comparisons of features and values, i.e.atufe followed by a comparison-symbol (e.g.,
“="), followed by a value. Parentheses are allowed to makeigings explicit.

In the following, we first define the syntax of feature constia We then make refer to other parts
of this manual for details of certain non-terminals. We tigére some examples, followed by explana-
tions of those examples. We then give some explanation aritetion on feature-constraints. We then
describe the constraints on type-compatibility betweenféature and the value. Finally we elaborate on
comparison-operators.

4.7.7.2 Syntax

feature_constraints : ffeatures

ffeatures : fterm
| ffeatures “OR” fterm

fterm : ffactor
| ffactor “AND” fterm

ffactor : “NOT” ffactor
| “C" ffeatures ‘)’
| feature_comparison

feature_comparison :
feature_name comparison_operator value
| feature_name “IN” enum_const_set
| feature_name “IN” “(* list_of _integer *)”
| feature_name “IN” object_reference_usage
comparison_operator : “="
| <
| >

87

| “<>” [= not equal =/
| “<=" [=« less than or equal */
| “>=" [=« greater than or equal */
| “~" [= regular expression */
| “I~" [= inverted regular expression */
| “HAS” / = Ihs: list; rhs: atomic value.
signifies list membership. */
list_of integer : T_INTEGER { “,” T_INTEGER } *

value : enum_const
| signed_integer
| T_STRING
| object reference_usage

enum_const : T_IDENTIFIER

object_reference_usage : object_reference
feature_name
enum_const_set : “(* enum_const_list “)"

1
“wn

enum_const_list : enum_const { “,” enum_const_list }
4.7.7.3 References
For signed_integer , see section 3.5.1 on page 35. For object references, seexhsection. For
feature_name ,see 3.5.2 on page 38.
4.7.7.4 Examples

1. [Word psp = noun]

2. [Word gender = neut or gender = fem]

3. [Word psp = adjective and not case = nominative]

4. [Phrase (phrase_type = NP

and phrase_determination = indetermined)

or phrase_type = AP
]

5. [Word as w
psp = article
]
[Word
psp = noun

and case = w.case
and gender = w.gender
and number = w.number

]
6. [Word

88

surface > "Aa" and surface ~ "[A-D]orkin"

]
7. [Word psp IN (verb, participle, infinitive)]

8. [Word psp = verb OR psp = participle OR psp = infinitive]

4.7.7.5 Explanation of Examples

Example 1 above is the simple case where a feature (“psp”giisgbtested for equality with a value
(“noun”). Example 2 is more of the same, except the gendereither be neuter or feminine, and the
feature constraint would match in both cases. Example 3 fimmise words which are adjectivasdwhose
case imotnominative. Example 4 finds either adjectival phrases orWish are indetermined.

Example 5 is an example of usage of object references. Thé\od is given the “label” (or “object
reference”) “w”. Then the second Word’s feature-constsaiafer to the values of the features of the first
Word, in this case making sure that case, number, and gereldreasame.

Example 6 is an example of two different comparison-opesatgreater-than” and “regular expression-
match”.

Example 7 shows the comparison IN. It takes a comma-sepldist®f enumeration constant names
in parentheses as its right-hand-side. The effect is theesasnan OR-separated list of “=" feature-
comparisons. So 7. and 8. are equilalent.

4.7.7.6 Explanation

While the syntax may look daunting to the uninitiated, thstegn is quite straightforward. At the bottom,
we have feature comparisons. These consist of a featuleytal by a comparison-operator (such as “="),
followed by a value. These feature-comparisons can bedolnyethe three standard boolean operators
“and”, “or”, and “not”".

The precedence of the operators follows standard prackcg;not” has highest precedence, followed
by “and”, followed by “or”. Parentheses are allowed to makeupings explicit. That is, “and” “binds”
more closely than “or” so that the interpretation of this regsion:

f 1=val 1“and”f 2=val 2“or"f 3=val 3
is the following:
(f 1=val 1"and’f 2 =val _2)“or"f 3=val_3
Note that if you use “not” on a feature comparison, and if yauehanother feature comparison before
it, then you must explicitly state whether the relationshgiween the two is “and” or “or”. Thus the
following is illegal:
f 1=val_1"not"f 2=val 2
The following, however, would be legal:
f 1=val_1"and”“not"f 2 =val 2
The “in” comparison-operator can only be used with a comezasated list of enumeration constant

names on the right-hand-side. The effect is the same as @fdle enumeration constants had been
compared “=" to the feature, with “OR” between them.

89

4.7.7.7 Type-compatibility

The feature and the value with which we compare both haypa The type is, one of “integer”, “7-bit
(ASCII) string”, “8-bit string”, “enumeration constant®jd_d”. Thus a type tells us how to interpret a
value.

The types of the two values being compared mustdmpatible Table 4.1 summarizes the type-
compatibility-constraints.

| If value's type is... | Then feature’s type must be... |
enumeration constant The same enumeration as the value
(enumeration constant-list) The same enumeration as all the values
signed_integer integer orid_d
7-bit or 8-bit string 7-bit or 8-bit string
object reference usage The same type as the feature in the object
reference usage, or a list of the same type

Table 4.1: Type-compatibility-constraints

The 8-bit strings need not be of the same encoding.

4.7.7.8 Comparison-operators

Table 4.2 summarizes the comparison-operators.

| op. | meaning

= Equality

Less-than

> Greater-than

<> | Inequality (different from)

<= | Less-than-or-equal-to

>= | Greater-than-or-equal-to

Regular expression-match
I Negated regular-expression-match
IN Member of a list of enum constants

HAS | List on left-hand-side, atomic value on right-hand-sidgn8ies list membership

Table 4.2: Comparison-operators

4.7.7.8.1 Inequality The inequality-operator “<>" is logically equivalent todh... =...". The negated

regular-expression-match “I"” is logically equivalent‘tmt ... = ...".

4.7.7.8.2 Equality Equality is defined as follows: If the type isid_d, then bothstbe the sameid_d. If
the type is integer, then both must be the same number. lffieeis string, then both must be byte-for-byte
identical, and of the same length. If the type is enumeratien both must have the same numerical value.
That is, the enumeration constants must be the same, sir®iameration is a one-to-one correspondence
between a set of labels and a set of values. If the type is,dHistwo lists must be identical, i.e., consist
of the same sequence of values.

90

4.7.7.8.3 Less-than/greater-than The four less-than/greater-than-operators use 8-biaswalues for
the comparison of strings. That is, it is the numerical valtithe bytes in the strings that determine the
comparison. In particular, the locale is not taken into dderstion. For comparison of id_ds, the id_ds
are treated as ordinary numbers, with nil being lower thamgtiing else. For comparison of integers, the
usual rules apply. For comparison of enumeration constérnssthe values of the enumeration constants
that are compared, as integers.

4.7.7.8.4 Regular expressionsThere are two regular expression-comparison-operatgraft “I™).
They operate on 8-bit strings. That is, both the feature-gid the value against which the match is made
must be 8-bit strings. The negated match matches everythaigloes not match the regular expression
provided as the value.

The value that they are matched against must be a string.

The regular expressions are the same as in Perl 5. See si&eti@on page 15 for details of where
regular expression-support comes from. 8#p://www.perl.com/ for details of Perl regular ex-
pressions.

Before version 1.2.0.pre46, regular expressions wereaadhmeaning that they always started match-
ing at the start of the string. As of 1.2.0.pre46, regularegpions are not anchored, meaning that they can
start their match anywhere in the string.

4.7.7.8.,5 IN The IN comparison operator must have:

1. either an enumeration feature on the left hand side andhanesseparated list of enumeration con-
stants in parentheses on the right-hand-side (or an olgimice usage resolving to a list-of-enum-
constants of the same type),

2. or an INTEGER feature on the left hand side, and a list adgats on the right-hand-side (or an
object reference usage resolving to this),

3. or an ID_D feature on the left hand side, and a list of intega the right-hand-side (or an object
reference usage resolving to a list of ID_Ds).

For the first case, all of the enumeration constants mushbedio the enumeration of the feature. The
meaning is “feature must be in this list”, and is equivalenatstring of “=" comparisons with “OR” in
between, and with parentheses around the string of OR-aelacomparisons.

For the second and third cases, the meaning is the same,digichjp integers and id_ds respectively.

4.7.7.8.6 HAS The HAS comparison operator must have:

1. Either a list-of-enumeration constant on the left hade sind an enumeration constant belonging to
the same enumeration on the left hand side (or an objeceraferusage resolving to this),

2. or alist-of-INTEGER feature on the left hand side, and mméc integer value the right-hand-side
(or an object reference usage resolving to this),

3. or a list-of-ID_D feature on the left hand side, and an &tah d value on the right-hand-side (or
an object reference usage resolving to this).

This signifies list-membership of the right-hand-side ia list on the left-hand-side.

4.7.8 Object references
4.7.8.1 Introduction

Object references are a way of referring to objects in a qoetgide of the object block which they
matched. This provides the possibility of matching objentisthe basis of the features of other objects
earlier in the query.

91

In this subsection, we first give the syntax of object refeesn their declaration and their usage. We
then provide some examples, followed by an explanationagfdtexamples. We then give some explanation
of object references. Finally, we document some consg#iratt exist on object references.

4.7.8.2 Syntax

object_reference_declaration : “AS” object_reference
object_reference : T_IDENTIFIER

object_reference_usage : object_reference
feature_name
feature_name : T_IDENTIFIER

4.7.8.3 Examples

1. [Clause
[Phrase as p
phrase = NP
]
[Phrase
phrase = AP

and case = p.case
and number = p.number
and gender = p.gender
]
]

2. [Clause as C
[Phrase
phrase_type = NP
parent = C.self
]
]

3. [Sentence as S]

[Sentence
head = S.self

]

4.7.8.4 Explanation of examples

Example 1 finds, within a clause, first an NP, followed by ariteaty stretch of text, followed by an AP. The
AP’s case, number, and gender-features must be the same B&¥ case, number, and gender-features
respectively.

Example 2 finds a clause, and within the clause an NP whichiieatatonstituent of the clause. That
is, its parent feature is an id_d which points to its parerthantree. This id_d must be the same as the
clause’s “self” feature. See section 2.7.6 on page 21 foerirdormation about the “self” feature.

Example 3 finds a sentence and calls it S. Then follows arrarpistretch of text. Then follows another
sentence whose head feature is an id_d which points to thedintence. That is, the second sentence is

92

dependent upon the first sentence.

4.7.8.5 Explanation

Theobject_reference_declaration non-terminal is invoked from the object blocks, right after
the object type name. That is, thbject_reference_declaration must be the first item after the
object type name, if itis to be there at all, as in all of therapées above. The object reference declaration
says that the object that matched this object block must bedoahatever thebject_reference is
(e.g., “p", “C", and “S” in the examples above). Then objetiidks later in the query can refer to this
object’s features on the right-hand-side of feature coispas. See section 4.7.7 on page 87 for details of
feature-comparisons.

Theobject_reference_usage non-terminal shows up on the right-hand-side of featurefarm
isons, as in the examples above. It consists of an objeaterefe followed by a dot followed by a feature
name.

4.7.8.6 Constraints on object references
The following are the constraints on object references:

e Object references must be declared before they can be ushdt is[they must appear in an
object_reference_declaration earlier in the query (i.e., further towards the top).

e The feature name on an object reference usage must be aefelthe object type of the object that
had the corresponding object reference declaration.

e The feature type of the object reference usage must be the aarthe feature type of the feature
with which it is compared (not just compatible with).

e An object reference must only be declared once in a queryt i§hao two object references must
have the same name.

e A“Kleene Star” construct (see Section 4.8.4.5 on page 98)ascan “export barrier” upwards in the
tree for object reference declarations. Thus any objeeteete usages which are separated from the
object reference declaration by a Kleene Star cannot b@*s€er example, this is not allowed:

[Clause
[Phrase
[Word as wi1]
]* /I Kleene Star acts as an export barrier!
[Word surface=wl.surface] // So we can't see the declaratio n here...

]

e You also cannot have an object reference declaration on jgetdidock that itself bears the Kleene
Star. Thus this is not allowed:

[Clause
[Phrase as pl] =+ /I This is NOT allowed!
[Phrase function=p1.function]

]

e It is not allowed to have an object reference declaratioh ihased “above” an OR. That is, all
object reference declarations and usages should be withisame block_string2 (see Section 4.8.4
on page 96 and Sectid??). “OR” acts as an “export barrier” on object reference dextlans, not
allowing them to be “seen” beyond the “OR”. Thus thisi allowed:

93

[Phrase as pl]
OR
[Phrase function=p1.function] // Oops! Can't see declarat ion from here!
Whereas thisis allowed:
[Phrase as pl

[Phrase function=pl.function] // This is OK

OR

[Phrase function<>pl.function] // This is also OK
]
The reason the second is allowed but the first is not is thatliteé object reference
declaration which is under embargo above (not below) an OR, whereas fleetaleference
usage is free to see an object referenckeclaration that has been declared above an OR.

4.7.9 Block
4.7.9.1 Introduction

The non-terminablock is a choice between three kinds of blodpt_gap_block s,gap_block s,
andobject_block s. Itis used in the grammar of MQL queries in the definitiomlafck_string S,
thatis, in when defining strings of blocks. See secti®nn page??for more information olock_string S.

4.7.9.2 Syntax

block : opt_gap_block
| gap_block
| power
| object_block
| (“NOTEXIST” | “NOTEXISTS") object_block

4.8 Strings of blocks

4.8.1 Introduction

Having now described all the syntax and semantics of ind&fitlocks, we now go on to giving the bigger
picture of MQL queries. This section describes strings otks, as well as the higher-level non-terminals
in the MQL query-query subset.

We first describe théopograph , the top-level entry-point into the MQL query-query gramima
(4.8.2). We then describe th#ocks non-terminal, which shows up inside each of the three kirfds o
blocks as an innéblocks (4.8.3). We then describe thdock_str non-terminal, which provides for
strings of blocks optionally connected by power blocks (the” blocks which have been exemplified
previously, and which mean “an arbitrary stretch of spa¢e?).

4.8.2 topograph
4.8.2.1 Introduction

Thetopograph non-terminal is the entry-point for the MQL query-query set3 It simply consists of a
blocks non-terminal. The topograph passes on a Universe and ar&tahtst theblocks non-terminal,
and these will be described below.

2Even thoughmgl_query s really the proper entry-point for an MQL query-query, wayrconsider the topograph to be the
top-level syntactic non-terminal in the MQL query-subSéte topograph has historical primacy, since it was definstifiiDoedens’
QL (see [Doedens94]). Thagl_query non-terminal simply acts as a proxy, passing control todpedraph immediately.

94

4.8.2.2 Syntax
topograph : blocks

4.8.2.3 Examples
1. [Word]

2. [Word psp=article]
[Word psp=noun]

3. [Clause
[Phrase phrase_type = NP]

[Phrase phrase_type = VP]
]

4. [Book
titte = "Moby Dick"

[Chapter chapter_no = 3
[Paragraph
[Word surface = "Ishmael"]
]
[Paragraph

[Word surface = "whaling"]
]
]
]

4.8.2.4 Explanation of examples

Example 1 simply finds all words within the topograph’s Umgeeand Substrate.

Example 2 finds all pairs of adjacent words in which the firstahis an article and the second word is
a noun, within the topograph’s Universe and Substrate.

Example 3 finds all clauses within which there are pairs of éirsNP, followed by an arbitrary stretch
of monads, then a VP. Within the topograph’s Universe ands8ate, of course.

Example 4 finds a book whose title is “Moby Dick”, and withirethook it finds chapter 3, and within
this chapter it finds a Paragraph within which there is a wdndse surface is “Ishmael”. Then, still within
the chapter, after an arbitrary stretch of monads, it findaradtaph within which there is a word whose
surface is “whaling”.

4.8.2.5 Universe and Substrate

In order to understand how the Universe and Substrate acalatdd, it is necessary to refer back to the
definition of the SELECT OBJECTS query. Please consultee®i8.1.4 on page 45 for details.

4.8.3 blocks
4.8.3.1 Introduction

Theblocks non-terminal is central in the MQL query-query subset. thgh up in five places:

e Inthetopograph

95

¢ Inside theobject_block as the inneblocks

e Inside thegap_block and theopt _gap_block asthe inneblocks .

4.8.3.2 Syntax

blocks : block_string

4.8.4 Dblock_string
4.8.4.1 Introduction

A “block_string” is basically either a “block_string2” ot is a block_string2 followed by the keyword
“OR” followed by another block_string. Or, put another wayylock_string is a string (possibly 1 long) or
block_string2’s, separated by “OR”".

4.8.4.2 Syntax

block_string : block_string2
| block_string2 “OR” block_string

block_string2 : block_stringl
| block_stringl block_string2
| block_stringl “I" block_string2

block_stringl : block_string0
| block_string0 *“ *” [monad_set]

block_string0 : block
| “[* block_string “1"

4.8.4.3 Examples

1. [Clause
[Phrase function
[Phrase function
OR
[Phrase function
[Phrase function

Predicate] // This...
Objc] /I ... is a block_string2

Predicate] // And this...
Complement] // is another block_string2

]

2. [Sentence
[gap [Clause function = relative] // This is a block_string2

OR

[Clause AS cl function = Subject] // And this...

. /I ... is also ...
[Clause daughter = c1l.self] /I ... a block_string2

]

4.8.4.4 Explanation

Block_strings are recursive in that the lowest level (Blastking0) can be either a Block, or a full Block-
String in [square brackets].

96

Notice that Kleene Star (*) binds more tightly than concatem. Thus if you wish to use Kleene Star
with more than one block, you must wrap those blocks in a [sgbeacket group].

Notice also that OR binds less tightly than concatenatidmusTOR works between strings of blocks.

The first example finds all clauses in which it is either theedhsit there exist two phrases inside the
clause where the first is a predicate and right next to it istgead, or the first is a predicate and right next
to it is a complement (or both might be true, in which case f@et two straws inside the inner sheaf of
the clause).

The second example finds all clauses in which it is the cadelikee either is a gap with a relative
clause inside it, or there are two clauses (possibly segdirathere the first clause is a subject in the
second. (This assumes a data model where mother clauses thelnde the monads of their daughter
clauses).

See Section 4.7.8 on page 91 for some restrictions on olgfeinces regarding OR.

4.8.4.5 The “*" construct

The “*” construct is a so-called “Kleene Star”. It allows sefaing for object blocks or groups that are
repeated. It has two forms: One with and one without a trgiiet of integers (with the same syntax as a
set of monads). For example:

SELECT ALL OBJECTS

WHERE

[Sentence
[Phrase FIRST phrase_type = NP]
[Phrase phrase_type IN (VP, NP, AP)] *
[Phrase function = adjunct] * {1-3}

]

GO

This finds sentences whose first phrase is an NP, followedigranily many phrases which can either be
VPs, NPs, or APs (or any combination of those), followed byveen 1 and 3 phrases whose function is
adjunct.

A less contrived example:

SELECT ALL OBJECTS
WHERE
[Sentence

[Word psp=verb]

[Word psp=article or psp=noun

or psp=adjective or psp=conjunction] *{1-5}

]
GO

This finds sentences where there exists a word whose paretbjs verb, followed by 1 to 5 words whose
parts of speech may be article, noun, adjective, or conjpm¢or any combination of those). Presumably
this would (in English) be a VP with (parts of) the object Nieathe verb.

The Kleene-Star without a trailing set of integers meansmf to MAX_MONADS". Note, however,
that there is no performance penalty involved in such a lange The algorithm stops looking when getting
getting one more fails.

If 0 is in the set of integers, then this means that the objeedmot be there. This means that the
following:

SELECT ALL OBJECTS
WHERE
[Sentence

[Word psp=verb]

97

[Word psp=article] *{0-1}
[Word psp=noun]

]

GO

would find sentences where there exists a verb followed by Danticles followed by a noun. Thus the
case of "verb immediately followed by noun" would also berfdby this query. Thus the "*{0-1}" is
equivalent to "?" in regular expressions.
The set of integers has the same syntax as monad sets. Theetefobtain a “no upper bound” star-
construct, use {<lower-bound>-}, e.g., {10-} to mean “frdifl times to (practically) infinitely many times.”
The following restrictions apply:

e You cannot have a Kleene Star on an object block which alsthedéOTEXISTkeyword in front.

e You cannot have a Kleene Star on an object block which hasretrieve " keyword.

4.8.4.6 The bang (V"

You can optionally place a bang!(*) between any of thélock s in ablock_string2 . The bang
indicates that there must be no gaps between the two blotksah implicit rule of MQL that there is a
hiddenopt_gap_block between each pair dflock s in ablock_string which are not mediated
by a bang.

The reason for having thept_gap_block is the following: It protects you from what you do not
know. In some languages, there can be gaps in clauses bexfgast-positive conjunctions “sticking out”
at a higher level. One would not wish to have to specify alltthme that one wanted to look for gaps, for
one would invariably forget it sometimes, thus not gettitigtee results available. Thus MQL inserts an
opt_gap_block between each pair of blocks that are not mediated by a bang.bahg is a way of
specifying that one does not wish the hidagr_gap_block to be inserted.

Theopt_gap_block thatis inserted is not retrieved.

98

Appendix A
Copying

A.1 Introduction

Emdros is covered by two different licenses, both of whidbvalyou freely to copy, use, and modify
the sourcecode. The parts which were written by Ulrik Peteegre covered by the GNU GPL. The pcre
library, which provides regular expressions-capabditis covered by a different license. Some parts were
contributed by Kirk E. Lowery or Chris Wilson; they are Cojgyrt Ulrik Petersen and are also under the
GNU GPL.

SQLite is in the Public Domain. Seravw.sqlite.org for details.

All Emdros documentation (including this document) is aagtunder the Creative Commons Attribution-
Sharealike license version 2.5. This license is includéovbe

A.2 Creative Commons Deed (for all documentation)
Attribution-ShareAlike 2.5

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT RBVIDE LEGAL
SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ADRNEY-CLIENT
RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATIOMDN AN "AS-IS"
BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THENFORMATION
PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF TBICREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS RIRTECTED BY COPY-
RIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER HAN AS AU-
THORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCHPAND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTSOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCHERMS AND CON-
DITIONS.

1. Definitions

(a) "Collective Work" means a work, such as a periodical issue, anthology or espsdia, in
which the Work in its entirety in unmodified form, along witmamber of other contributions,
constituting separate and independent works in themselresassembled into a collective
whole. A work that constitutes a Collective Work will not bersidered a Derivative Work (as
defined below) for the purposes of this License.

99

(b) "Derivative Work" means a work based upon the Work or upon the Work and other pre-
existing works, such as a translation, musical arrangentratnatization, fictionalization,
motion picture version, sound recording, art reproductabridgment, condensation, or any
other form in which the Work may be recast, transformed, apéed, except that a work that
constitutes a Collective Work will not be considered a Detiive Work for the purpose of this
License. For the avoidance of doubt, where the Work is a mus@mposition or sound record-
ing, the synchronization of the Work in timed-relation withmoving image ("synching"”) will
be considered a Derivative Work for the purpose of this Lseen

(c) "Licensor" means the individual or entity that offers the Work undertdrens of this License.
(d) "Original Author" means the individual or entity who created the Work.
(e) "Work" means the copyrightable work of authorship offered undetehms of this License.

() "You" means an individual or entity exercising rights under thisshse who has not previ-
ously violated the terms of this License with respect to tr@k)Vor who has received express
permission from the Licensor to exercise rights under titghse despite a previous violation.

(9) "License Elements" means the following high-level license attributes as setéby Licensor
and indicated in the title of this License: Attribution, $dalike.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or riestany rights arising
from fair use, first sale or other limitations on the exclesights of the copyright owner under
copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Liceh&veby grants You
a worldwide, royalty-free, non-exclusive, perpetual (floe duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

(a) to reproduce the Work, to incorporate the Work into onenore Collective Works, and to
reproduce the Work as incorporated in the Collective Works;

(b) to create and reproduce Derivative Works;

(c) to distribute copies or phonorecords of, display putaljwerform publicly, and perform publicly
by means of a digital audio transmission the Work includisgirecorporated in Collective
Works;

(d) todistribute copies or phonorecords of, display pujliwerform publicly, and perform publicly
by means of a digital audio transmission Derivative Works.

(e) For the avoidance of doubt, where the work is a musicalpasition:

i. Performance Royalties Under Blanket Licenses.Licensor waives the exclusive right
to collect, whether individually or via a performance rigisociety (e.g. ASCAP, BMI,
SESAC), royalties for the public performance or public tiperformance (e.g. webcast)
of the Work.

ii. Mechanical Rights and Statutory Royalties.Licensor waives the exclusive right to col-
lect, whether individually or via a music rights society @asthnated agent (e.g. Harry
Fox Agency), royalties for any phonorecord You create from Work (“cover version™)
and distribute, subject to the compulsory license creayeld/dJSC Section 115 of the US
Copyright Act (or the equivalent in other jurisdictions).

(f) Webcasting Rights and Statutory Royalties.For the avoidance of doubt, where the Work is
a sound recording, Licensor waives the exclusive right tiecth whether individually or via a
performance-rights society (e.g. SoundExchange), negdior the public digital performance
(e.g. webcast) of the Work, subject to the compulsory lieesreated by 17 USC Section 114
of the US Copyright Act (or the equivalent in other juriséicts).

The above rights may be exercised in all media and formatsheh@ow known or hereafter de-
vised. The above rights include the right to make such matli€ios as are technically necessary
to exercise the rights in other media and formats. All rigiis expressly granted by Licensor are
hereby reserved.

100

4. Restrictions. The license granted in Section 3 above is expressly madedubjand limited by the
following restrictions:

(a) You may distribute, publicly display, publicly perfoyr publicly digitally perform the Work

(b)

(©

only under the terms of this License, and You must includegy o, or the Uniform Resource
Identifier for, this License with every copy or phonorecofthe Work You distribute, publicly
display, publicly perform, or publicly digitally perfornY¥ou may not offer or impose any terms
on the Work that alter or restrict the terms of this Licenstherrecipients’ exercise of the rights
granted hereunder. You may not sublicense the Work. You keegt intact all notices that refer
to this License and to the disclaimer of warranties. You matydistribute, publicly display,
publicly perform, or publicly digitally perform the Work i any technological measures that
control access or use of the Work in a manner inconsisteitit thi¢ terms of this License
Agreement. The above applies to the Work as incorporatediollactive Work, but this does
not require the Collective Work apart from the Work itselfit® made subject to the terms of
this License. If You create a Collective Work, upon noticenfrany Licensor You must, to the
extent practicable, remove from the Collective Work anydiras required by clause 4(c), as
requested. If You create a Derivative Work, upon notice fieomg Licensor You must, to the
extent practicable, remove from the Derivative Work anyditras required by clause 4(c), as
requested.

You may distribute, publicly display, publicly performr publicly digitally perform a Deriva-
tive Work only under the terms of this License, a later varsib this License with the same
License Elements as this License, or a Creative Commonsn@ors license that contains the
same License Elements as this License (e.g. Attributicer&Klike 2.5 Japan). You must in-
clude a copy of, or the Uniform Resource Identifier for, thisdnse or other license specified in
the previous sentence with every copy or phonorecord of Bacivative Work You distribute,
publicly display, publicly perform, or publicly digitallperform. You may not offer or impose
any terms on the Derivative Works that alter or restrict #rents of this License or the recip-
ients’ exercise of the rights granted hereunder, and You keep intact all notices that refer
to this License and to the disclaimer of warranties. You matydistribute, publicly display,
publicly perform, or publicly digitally perform the Deritise Work with any technological
measures that control access or use of the Work in a manrarsistent with the terms of this
License Agreement. The above applies to the Derivative Visrincorporated in a Collective
Work, but this does not require the Collective Work apartrfrihe Derivative Work itself to be
made subject to the terms of this License.

If you distribute, publicly display, publicly perfornoy publicly digitally perform the Work or
any Derivative Works or Collective Works, You must keep @ttall copyright notices for the
Work and provide, reasonable to the medium or means You diang: (i) the name of the
Original Author (or pseudonym, if applicable) if supplieahd/or (ii) if the Original Author
and/or Licensor designate another party or parties (e.gpoas®r institute, publishing entity,
journal) for attribution in Licensor’s copyright noticesris of service or by other reasonable
means, the name of such party or parties; the title of the \Watkoplied; to the extent reason-
ably practicable, the Uniform Resource Identifier, if ahgttLicensor specifies to be associated
with the Work, unless such URI does not refer to the copynighice or licensing information
for the Work; and in the case of a Derivative Work, a crediniifging the use of the Work in
the Derivative Work (e.g., "French translation of the Woyk@riginal Author,” or "Screenplay
based on original Work by Original Author"). Such credit mayimplemented in any reason-
able manner; provided, however, that in the case of a Daré/gltork or Collective Work, at a
minimum such credit will appear where any other comparaltleaship credit appears and in
a manner at least as prominent as such other comparableshithoredit.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENER OFFERS
THE WORK AS-1S AND MAKES NO REPRESENTATIONS OR WARRANTIES OR\Y KIND

101

CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY ORTHERWISE, IN-
CLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FIT-
NESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSEE OF LA-
TENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALM THE EX-
CLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APEY TO YOU.

6. Limitation on Liability.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WLL LICEN-
SOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIEENTAL,
CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT ® THIS LI-
CENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISEDF THE
POSSIBILITY OF SUCH DAMAGES.

7. Termination

(a) This License and the rights granted hereunder will teatei automatically upon any breach by
You of the terms of this License. Individuals or entities wiave received Derivative Works or
Collective Works from You under this License, however, wit have their licenses terminated
provided such individuals or entities remain in full congpice with those licenses. Sections 1,
2,5, 6,7, and 8 will survive any termination of this License.

(b) Subjectto the above terms and conditions, the liceregtgd here is perpetual (for the duration
of the applicable copyrightin the Work). Notwithstandihg tabove, Licensor reserves the right
to release the Work under different license terms or to stsfpilduting the Work at any time;
provided, however that any such election will not serve tthdriaw this License (or any other
license that has been, or is required to be, granted undeetims of this License), and this
License will continue in full force and effect unless teraied as stated above.

8. Miscellaneous

(a) Each time You distribute or publicly digitally perforrhe Work or a Collective Work, the
Licensor offers to the recipient a license to the Work on #me terms and conditions as the
license granted to You under this License.

(b) Each time You distribute or publicly digitally perfornerivative Work, Licensor offers to the
recipient a license to the original Work on the same termscanditions as the license granted
to You under this License.

(c) If any provision of this License is invalid or unenfortéaunder applicable law, it shall not
affect the validity or enforceability of the remainder oétterms of this License, and without
further action by the parties to this agreement, such pimvishall be reformed to the minimum
extent necessary to make such provision valid and enfolkeeab

(d) Noterm or provision of this License shall be deemed waied no breach consented to unless
such waiver or consent shall be in writing and signed by théyga be charged with such
waiver or consent.

(e) This License constitutes the entire agreement betweepdrties with respect to the Work
licensed here. There are no understandings, agreemermpresentations with respect to the
Work not specified here. Licensor shall not be bound by anytiaddl provisions that may
appear in any communication from You. This License may nahbdified without the mutual
written agreement of the Licensor and You.

Creative Commons is not a party to this License, and makesananty
whatsoever in connection with the Work. Creative Commoriknet be
liable to You or any party on any legal theory for any damagleataoever,

102

including without limitation any general, special, inadal or consequen-
tial damages arising in connection to this license. Notstdahding the
foregoing two (2) sentences, if Creative Commons has eglyrédenti-
fied itself as the Licensor hereunder, it shall have all sgirtd obligations
of Licensor.

Except for the limited purpose of indicating to the publiattkhe Work
Is licensed under the CCPL, neither party will use the traairiCreative
Commons" or any related trademark or logo of Creative Congmotnout
the prior written consent of Creative Commons. Any perrditise will
be in compliance with Creative Commons’ then-current tnaald usage
guidelines, as may be published on its website or otherwaeravailable
upon request from time to time.

Creative Commons may be contacted at http://creativecamrogy/

A.3 GNU General Public License
General Public License (GPL)

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copie s
of this license document, but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General P
License is intended to guarantee your freedom to share and ch
software--to make sure the software is free for all its users
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose author

ublic
ange free
This

s commit to

using it. (Some other Free Software Foundation software is c overed by
the GNU Library General Public License instead.) You can app ly it to
your programs, too.

When we speak of free software, we are referring to freedom, n ot
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and c harge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces o fit
in new free programs; and that you know you can do these things .

To protect your rights, we need to make restrictions that for bid
anyone to deny you these rights or to ask you to surrender the r ights.

These restrictions translate to certain responsibilities
distribute copies of the software, or if you modify it.

for you if you

For example, if you distribute copies of such a program, whet her
gratis or for a fee, you must give the recipients all the right s that
you have. You must make sure that they, too, receive or can get the

103

source code. And you must show them these terms so they know th eir

rights.

We protect your rights with two steps: (1) copyright the soft ware, and
(2) offer you this license which gives you legal permission t 0 copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make ¢ ertain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and pas sed on, we
want its recipients to know that what they have is not the orig inal, so
that any problems introduced by others will not reflect on th e original
authors’ reputations.

Finally, any free program is threatened constantly by softw are
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effec t making the
program proprietary. To prevent this, we have made it clear t hat any
patent must be licensed for everyone's free use or not licens ed at all.

The precise terms and conditions for copying, distribution and

modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIAICON

0. This License applies to any program or other work which con tains
a notice placed by the copyright holder saying it may be distr ibuted
under the terms of this General Public License. The "Program ", below,
refers to any such program or work, and a "work based on the Pro gram”
means either the Program or any derivative work under copyri ght law:
that is to say, a work containing the Program or a portion of it ,
either verbatim or with modifications and/or translated in to another
language. (Hereinafter, translation is included without | imitation in
the term "modification”.) Each licensee is addressed as "yo u".
Activities other than copying, distribution and modificat ion are not
covered by this License; they are outside its scope. The act o f
running the Program is not restricted, and the output from th e Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Prog ram).

Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program
source code as you receive it, in any medium, provided that yo u
conspicuously and appropriately publish on each copy an app ropriate
copyright notice and disclaimer of warranty; keep intact al | the
notices that refer to this License and to the absence of any wa rranty;
and give any other recipients of the Program a copy of this Lic ense
along with the Program.
You may charge a fee for the physical act of transferring a cop y, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any port ion

of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Sec tion 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notic es

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, tha t in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all thir d

parties under the terms of this License.

S

104

c) If the modified program normally reads commands interact
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display
announcement including an appropriate copyright notice an
notice that there is no warranty (or else, saying that you pro
a warranty) and that users may redistribute the program unde
these conditions, and telling the user how to view a copy of th
License. (Exception: if the Program itself is interactive b
does not normally print such an announcement, your work base
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. |If

identifiable sections of that work are not derived from the P

and can be reasonably considered independent and separate w

themselves, then this License, and its terms, do not apply to

sections when you distribute them as separate works. But whe

distribute the same sections as part of a whole which is a work

on the Program, the distribution of the whole must be on the te

this License, whose permissions for other licensees extend

entire whole, and thus to each and every part regardless of wh

Thus, it is not the intent of this section to claim rights or co

your rights to work written entirely by you; rather, the inte

exercise the right to control the distribution of derivativ

collective works based on the Program.

In addition, mere aggregation of another work not based on th

with the Program (or with a work based on the Program) on a volu

a storage or distribution medium does not bring the other wor

the scope of this License.

3. You may copy and distribute the Program (or a work based on i

under Section 2) in object code or executable form under the t

Sections 1 and 2 above provided that you also do one of the foll
a) Accompany it with the complete corresponding machine-re
source code, which must be distributed under the terms of Sec

1 and 2 above on a medium customarily used for software interc

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a compl
machine-readable copy of the corresponding source code, to

distributed under the terms of Sections 1 and 2 above on a medi

customarily used for software interchange; or,
c) Accompany it with the information you received as to the of
to distribute corresponding source code. (This alternativ
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with s
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work
making modifications to it. For an executable work, complet
code means all the source code for all modules it contains, pl
associated interface definition files, plus the scripts us
control compilation and installation of the executable. Ho
special exception, the source code distributed need not inc
anything that is normally distributed (in either source or b
form) with the major components (compiler, kernel, and so on
operating system on which the executable runs, unless that c
itself accompanies the executable.

105

ively
an

vide

ut
d on

rogram,
orks in
those
n you
based
rms of
to the
0 wrote it.
ntest
nt is to
e or

e Program
me of
k under

t,
erms of
owing:
adable
tions

hange; or,

ete
be
um

fer
e is

uch

for
e source
us any
ed to
wever, as a
lude
inary
) of the
omponent

If distribution of executable or object code is made by offer
access to copy from a designated place, then offering equiva
access to copy the source code from the same place counts as
distribution of the source code, even though third parties a
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Pr
except as expressly provided under this License. Any attemp
otherwise to copy, modify, sublicense or distribute the Pro
void, and will automatically terminate your rights under th
However, parties who have received copies, or rights, from y
this License will not have their licenses terminated so long
parties remain in full compliance.

5. You are not required to accept this License, since you have
signed it. However, nothing else grants you permission to mo
distribute the Program or its derivative works. These actio
prohibited by law if you do not accept this License. Therefor
modifying or distributing the Program (or any work based on t
Program), you indicate your acceptance of this License to do
all its terms and conditions for copying, distributing or mo
the Program or works based on it.

6. Each time you redistribute the Program (or any work based o
Program), the recipient automatically receives a license f
original licensor to copy, distribute or modify the Program
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights gran
You are not responsible for enforcing compliance by third pa
this License.

7. If, as a consequence of a court judgment or allegation of pa
infringement or for any other reason (not limited to patent i
conditions are imposed on you (whether by court order, agree
otherwise) that contradict the conditions of this License,
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligation
License and any other pertinent obligations, then as a conse
may not distribute the Program at all. For example, if a paten
license would not permit royalty-free redistribution of th
all those who receive copies directly or indirectly through
the only way you could satisfy both it and this License would b
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceab

any particular circumstance, the balance of the section is i
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe
patents or other property right claims or to contest validit

such claims; this section has the sole purpose of protecting
integrity of the free software distribution system, which i
implemented by public license practices. Many people have m
generous contributions to the wide range of software distri
through that system in reliance on consistent application o
system; it is up to the author/donor to decide if he or she is wi
to distribute software through any other system and a licens
impose that choice.

This section is intended to make thoroughly clear what is bel

106

ing
lent

re not

ogram
t
gram is
is License.
ou under
as such

not
dify or
ns are
e, by
he
so, and

difying

n the
rom the
subject to

ted herein.
rties to

tent
ssues),
ment or

they do not

s under this
guence you
t
e Program by
you, then
e to

le under
ntended to

any
y of any
the
S
ade
buted
f that
lling
ee cannot

ieved to

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricte
certain countries either by patents or by copyrighted inter
original copyright holder who places the Program under this
may add an explicit geographical distribution limitation e
those countries, so that distribution is permitted only in o
countries not thus excluded. In such case, this License inco
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or n
of the General Public License from time to time. Such new vers
be similar in spirit to the present version, but may differ in
address new problems or concerns.

Each version is given a distinguishing version number. If th
specifies a version number of this License which applies to i
later version", you have the option of following the terms an
either of that version or of any later version published by th
Software Foundation. If the Program does not specify a versi
this License, you may choose any version ever published by th
Foundation.

10. If you wish to incorporate parts of the Program into other
programs whose distribution conditions are different, wri
to ask for permission. For software which is copyrighted by t
Software Foundation, write to the Free Software Foundation
make exceptions for this. Our decision will be guided by the t
of preserving the free status of all derivatives of our free s
of promoting the sharing and reuse of software generally.

NO WARRANTY

d in
faces, the
License

xcluding
r among
rporates

ew versions
ions will
detail to

e Program
t and "any
d conditions
e Free
on number of
e Free Software

free
te to the author
he Free
; we sometimes
wo goals
oftware and

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE € \WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAVKCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/ORERTPARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,HEHR EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THETIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOUULBSHIHE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESEAVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREEDINQVRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MOBIFORA
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TOJY&DR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEMI DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BWT NLIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSHAISED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATHE ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN AD\OSETHE

POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greate st

possible use to the public, the best way to achieve this is to m
free software which everyone can redistribute and change un

To do so, attach the following notices to the program.
to attach them to the start of each source file to most effecti
convey the exclusion of warranty; and each file should have a
the "copyright" line and a pointer to where the full notice is

107

It is sa

ake it
der these terms.
fest
vely
t least
found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/o r modify
it under the terms of the GNU General Public License as publis hed by
the Free Software Foundation; either version 2 of the Licens e, or

(at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See th
GNU General Public License for more details.

You should have received a copy of the GNU General Public Lice nse

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 021 11-1307 USA
Also add information on how to contact you by electronic and p aper mail.
If the program is interactive, make it output a short notice | ike this

when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show t he appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ‘show w' and ‘show c’; they cou Id even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the prog ram, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating y our program into
proprietary programs. If your program is a subroutine libra ry, you may
consider it more useful to permit linking proprietary appli cations with the
library. If this is what you want to do, use the GNU Library Gen eral

Public License instead of this License.

A.4 PCRE license

PCRE is a library of functions to support regular expressi@whose syntax and semantics are as close as
possible to those of the Perl 5 language.

Release 6 of PCRE is distributed under the terms of the "B&®Bhte, as specified below. The doc-
umentation for PCRE, supplied in the "doc" directory, idrilisited under the same terms as the software
itself.

The basic library functions are written in C and are freeditagn Also included in the distribution is a
set of C++ wrapper functions.

A.4.1 THE BASIC LIBRARY FUNCTIONS
Written by: Philip Hazel
Email local part: ph10

108

Email domain: cam.ac.uk

University of Cambridge Computing Service,
Cambridge, England. Phone: +44 1223 334714.
Copyright (c) 1997-2006 University of Cambridge
All rights reserved.

A.4.2 THE C++ WRAPPER FUNCTIONS
Contributed by: Google Inc.
Copyright (c) 2006, Google Inc. All rights reserved.

A.4.3 The “BSD” license

Redistribution and use in source and binary forms, with gheut modification, are permitted provided
that the following conditions are met:

e Redistributions of source code must retain the above cgbiyrniotice, this list of conditions and the
following disclaimer.

e Redistributions in binary form must reproduce the aboveydghpt notice, this list of conditions and
the following disclaimer in the documentation and/or otimaterials provided with the distribution.

e Neither the name of the University of Cambridge nor the nafit&amgle Inc. nor the names of their
contributors may be used to endorse or promote productgadfiom this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTCULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OFSUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INRERPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, SRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF & DAMAGE.

109

Appendix B

Console sheaf grammar

B.1 Introduction

The sheaf’s contents were explained in section 4.4 on pagkibis appendix, we give the grammar for
the sheaf as it is output with console output (as opposed tb Bivput).

B.2 Sheaf grammar

[+ Sheaf =/
sheaf : failed_sheaf | successful_sheaf

failed_sheaf : “/[" [/ * A failed sheaf means
that the query failed
in some way. */

successful_sheaf : “//" straws / * A successful sheaf
means that the query
did not fail. It may
however, be empty,
in which case the
list_of straws will
not be there, and the
sheaf will look like
this: /I < >".

*/

straws : “<” list_of straws “>"

list_of straws : { straw }

[+ Straw =*/
straw : “<” list_of matched_objects “>"

list_of matched_objects : { matched_object }

/ » Matched object */
matched_object : mo_id_d | mo_id_m

110

[/ Matched object with id_d */
mo_id_d : “[" object_type_name
id_d_of_object
monad_set
is_focus
[marks]
inner_sheaf

H]H
object_type_name : T_IDENTIFIER
id_d_of _object : T_INTEGER

is_focus : “true” | “false” / * Was the block against
which this matched_object
was matched a “focus”
block or not? l.e., was
they keyword “focus”
present in the block?

* |

marks : T_MARKS
inner_sheaf : sheaf
[+ Matched object with id_m (see [Standard-MdF]) */
mo_id_d : “[" “pow_m"

monad_set

is_focus

[marks]

inner_sheaf

T

B.3 References

For themonad_set non-terminal, please see section 3.8.1 on page 44.

111

Bibliography

[Doedens94] Doedens, Crist-Jan. 19%dxt Databases, One Database Model and Several Retrieval La
guages:Language and Computers, Volume 14. Editions Rodopi Amakie, Atlanta, GA.
ISBN 90-5183-729-1.

[Standard-MdF] Petersen, Ulrik. 200Zhe Standard MdF ModeUnpublished article. Obtainable from
URL: http://emdros.org/

[Relational-EMdF] Petersen, Ulrik. 200°Relational Implementation of EMdF and MQUnpublished
working-paper. Obtainable from URbttp://emdros.org/

[MQLQueryGuide] Petersen, Ulrik. 2007: MQL Query Guide Obtainable from URL:
http://emdros.org/

[Monad Sets] Petersen, Ulrik. 200Ronad Sets — Implementation and Mathematical Foundations
published article. Obtainable from URhttp://emdros.org/

112

Index

all_m, 19,20, 37, 44, 45, 58, 59, 62 flat sheaf, 45, 4678

any_m, 1920, 37, 58, 59, 62 flatten operator, 45,8

ASCII, 18, 50 full access language, 10

Backus-Naur Form, 1@,1, 13 gaps21,54,72,73,77,79, 80, 82-84, 86, 98

borders?21, 54, 82 o
Hazel, Philip, 15

case-sensitivity, 25

computed feature, 37, 50 id_d, 18,20, 50

console identifier, 25
output, 26, 27, 46, 110 case-sensitivity ofseecase-sensitivity
sheaf, 46, 110 id_m, 20

integer, 18, 50

Doedens, Crist-Jan, 10, 69, 94, 112
max_m, 2022, 52

EMdF, 10 MdF, 1_0.
acronym, 10 origins, 10
database, 10, 16—20 min_m, 20,22, 52
example, 19 monad
database enginegeEmdros, 10, 16 example, 19
model, 10, 1616, 17-19 MQL, 10
origins, 10 acronym, 10
Emdros origins, 10
license, 103 mql(1) program, 26, 68
origins, 10 Namespace25

enumeration, 181, 31, 37, 50, 90, 91

constant, 22, 26, 37, 38, 41-43, 51, 57, 75, ng,:lmespace, 22

90, 91 object, 31
comparison, 91 example, 19
equality, 90 id, 18,20
querying, 42, 51, 90 id d,20
retrieving, 42 id m,20
creation, 40 object type, 31
database consistency, 42 example, 19
default constan®2, 41, 42 output
deletion, 42 console, 26, 27, 46, 110
dropping, 42 XML, 26, 27,110
manipulation, 40
namespace, 22, 26 part_of, 20, 21, 45, 62, 63, 82
object types using, 43, 51 PCRE
querying, 50 library, 15, 108
update, 41 license, 108
Perl 5,91
feature pow_m, 19, 2020, 21, 37, 58, 59, 62
computedseecomputed feature
example, 19 QL, 10

113

QUIT, 26, 34,68

regular expression81
match, 89
support, 10, 15
syntax, 75, 88, 90

self,21, 37, 50, 62, 63
creation of, 37
example using, 92
type of, 21
sheaf, 26, 46, 7176, 77, 86, 110
flat, seeflat sheaf
string, 18, 50
Su,seesubstrate
substrate, 45, 72, 77, 789, 82, 83, 87, 94, 95

T_IDENTIFIER, 14, 24, 2525, 28-33, 36, 39-43,
46-49, 51, 54-57, 61, 63, 75, 80, 88, 92,
111
T_INTEGER, 14, 2425, 36, 43, 44,57, 59, 75, 76,
84,111
T_MARKS, 24,25, 70, 72-74, 80, 81, 83, 84
T_STRING, 24, 2525, 28-31, 36, 57, 75, 88
types, 18
7-bit string, 18
8-bit string, 18
ascii, 18
compatibility,90
enumeration, 18
id_d, 18
integer, 18
string, 18

U, seeuniverse
universe, 45, 71, 789, 82, 83, 87, 94, 95

XML
output, 26, 27,110

114

