Emdros Query Guide

Ulrik Petersen

June 7, 2007

Abstract
This guide will show you how to use the Emdros Corpus Querytesyso
query your data. It assumes that you have already importeddaia into Emdros,
and simply want to start querying. It is aimed at the non+tézdl person, though
familiarity with corpus linguistics is assumed.

Contents

Introduction

The database model
Getting started
Comments

Gentle introduction

51 Blocks e
5.1.1 Objectblocks,
5.1.2 Powerblock
5.1.3 Gaphblocks

5.2 Theoverruling principleof MQL

5.3 Stringsofblocks o

5.4 Embeddingofblocks

Blocks in more detail

6.1 Objectblocks
6.1.1 Feature-restrictions oL
6.1.2 Feature-comparisonform.
6.1.3 Values.
6.1.4 Comparisonoperators
6.1.5 ThelNoperator.
6.1.6 TheHASoperator

6.2 Powerblocks
6.2.1 Limitingwith<and<=.....................
6.2.2 Limiting with BETWEEN XANDY

6.3 Gapblocks
6.3.1 Introduction.
6.3.2 Optionalgapblocks

6.3.3 Automatic insertion of optionalgap blocks 10

S I A N N NG

(o3}

7

A

1

This query guide will show you how to query your data with thedtos Corpus Query
Systemt It is aimed at a non-technical (i.e., non-programmer) redolet assumes

Advanced topics 10
7.1 Introduction
7.2 Objectblocks
7.2.1 Objectreferences ("AS”)
722 MARKS . . . e
7.2.3 FOCUS/RETRIEVE/NORETRIEVE
7.2.4 Innerstringofblocks
7.25 FIRST/LAST/FIRSTANDLAST
7.2.6 Regular expressionoperators
727 NOTEXIST e e e
7.3 Stringsofblocks
7.3.1 ORbetweenstringsofblocks
7.3.2 Restrictions on OR (more on the AS keyword)
7.4 Grouping ([squarebrackets]) oL 17
7.4.1 Introduction.
742 Examples
75 Kleenestar e
7.5.1 Introduction.

7.5.2 Specifying the number of iterations 91

7.5.3 Restrictions

Values 20
Al Atomicvalues e e
A2 LiStS e e

Lexical rules 20

Regular expressions 21
C.1 Characterclasses
C.2 Grouping v v e e e e e
C.3 KleeneStar(*) e
C.4 KleenePlus(+) e
C5 OR(]) « « v o o
C.6 EScapes e e
C.7 Anycharacter

Introduction

familiarity with corpus linguistics.

2 The database model

The EMdF model underlying Emdros has four concepts:

1. Monads

http://www.emdros.org/

2. Objects
3. Object types
4. Features

A monad is simply an integer, no more, no less.
An object is a set of monads, and belongs to an object type.
An object type groups a set of objects with similar charasties. Examples would
include “Word”, “Phrase”, “Clause”, “Page”, “Chapter”, fhe”, “Book”, etc.
The object type of an object determins what features it hdsafure is an attribute.
Examples would include “Word.part_of_speech”, “Wordfaae”, “Word.lemma”, “Phrase.phrase_type”,
“Phrase.function”, “Chapter.chapter_number”, etc.
The set of monads of an object is quite arbitrary, in that é&cheot be contiguous,
but may have one or more gaps. This is useful to model thikgslinbedded relative
clauses and postpositive conjunctions.

A feature “take on” exactly one type. This type is one of thikofeing:
. Integer (e.,g., 1, 3, 100, 133, etc.)
. id_d (this is a unique integer identifying an object, £1g3,1003, etc.)

1
2
3. enumeration (see below)
4. list of any of the above

5

. string of characters (e.g., 'This is my string.’)

An enumeration is a database-dependent set of labels. Thusxact enumerations
available to you depend on what enumerations are availaltair database. Examples
could be, if you have an enumeration called “part_of sp&éictmight contain labels
like “noun”, “verb”, “adjective”, “adverb”, etc. Enumerains are also sometimes used
for phrasal categories like “NP”, “PP”, etc. Again, the eixzategories available to you

are dependent on what is available in your database; thegestexamples.

3 Getting started

At the beginning of every query, you must have this incaatati

SELECT ALL OBJECTS
WHERE

This tells Emdros that you wish to issue a linguistic querin this guide, we will
mostly omit this incantation, since it is common to all qestri

NOTE: If you are using Emdros through an interface not predidy the author of
Emdros, your interface designer may have chosen to let yautbis stanza.

2The MQL language caters to much more than just linguistiaigagbut the rest is mainly concerned
with database maintenance and display of data, and so asil®tiie scope of this query guide. See the
MQL User's Guide for more information on these other quepety.

4 Comments

In this guide, we will often show comments in the queries. réhare two kinds of
comments, but we will only show examples of one kind, namiedydne that begins
with two slashes:

/I This is a comment

This kind of comment starts with the two slashes, and extertti¢ end of the line.
Such comments are ignored by Emdros.
The other kind is described in Appendix B on page 20.

5 Gentle introduction
5.1 Blocks

A “block” looks for something in the database. There are fands of blocks:
1. Obiject blocks —look for objects.
2. Power blocks — used to mean “arbitrary space within sumalng the context”.

3. Gap blocks - look for “gaps” in the surrounding context.
5.1.1 Object blocks
A simple object block looks like this:
[word]
This looks for an object of type word.

5.1.2 Power block

A simple power block looks like this:

Itis simply two dots next to each other.

5.1.3 Gap blocks
A simple gap block looks like this:

[9ap]
If you wish the gap to be optional, you can put a question méek the “gap” keyword:
[9ap?]

This is called an “optional gap block”.

5.2 The overruling principle of MQL

The overarching principle of MQL is:

The structure of the query

mirrors
the structure of the objects found

with respect to sequence and embedding.

This means that:

1. If two blocks are next to each other in the query, the objéuty find must be
adjacent in the database:

[Al
[B]

2. Ifablock A is embedded inside another block B in the quikign the object that
block A finds must be embedded inside the object that block dsfin

B

]

[A] /I A object must be embedded in B

5.3 Strings of blocks

You can place blocks next to each other and thus look for agswf blocks. For
example, the query:

[phrase]
[phrase]

looks for two phrases that are adjacent in the database.

5.4 Embedding of blocks

You can embed (strings of) blocks in another block:

[Clause
[Phrase]
[Phrase]
[Phrase]

]

This query would find clauses inside of which there are attlase phrases. The
phrases must be adjacent.

If you use the “power block”, you should always do so withim ttontext of a
surrounding block:

[Clause
[Phrase]

.[i?’hrase]
]

This would find all clauses in which there were at least twoaphs, but the phrases
need not be adjacent.

The reason you should always use a surrounding context wéieg the power
block is that otherwise, all combinations in the databaselwdt appears before the
power block and what appears after it will be retrieved, Whigll probably be more
data than you will want to deal with. The language does natlidis using a power
block at the outermost level, it might just return too muckadar your liking.

6 Blocks in more detail

In this section, we explain blocks in more detail: First @bjglocks, then power blocks,
and finally gap blocks.

6.1 Object blocks

As stated before, object blocks at their simplest look Itis:t
[Phrase]

This query will find all phrases in the database. The wordtrafter the opening
bracket (“[*) is the object type you wish to search for. Theetxcategories of object
type available to you depend on your database.

6.1.1 Feature-restrictions

You can search for feature-restrictions:

[Word surface="see’]

"

This finds all words whose surface-feature is the string™see
You can use arbitrary Boolean expressions with featurgicgens with the opera-
tors AND, OR, NOT, and grouping (i.e., parentheses):

[Phrase phrase_type=NP
AND (function = Subj OR function = Obj)
AND NOT self = 13082

]

This will find all phrases whose type is NP, and whose funcisogither Subj(ect) or
Obj(ect), and whose “self” feature is not 13082.

Op. | Meaning Left-hand-side feature must be Right-hand-side value must bk}

= Equality integer, string, id_d, enumeration, list Same as left-hand-side
<> Inequality integer, string, id_d, enumeration Same as left-hand-side

< Less than integer, string, id_d, enumeration Same as left-hand-side
<= Less than or equal to integer, string, id_d, enumeration Same as left-hand-side

> Greater than integer, string, id_d, enumeration Same as left-hand-side
>= Greater than or equal to integer, string, id_d, enumeration Same as left-hand-side

~ Regular expression string string

I~ Negated regular expr. | string string

IN List-membership integer, id_d, enumeration list
HAS | List-membership list integer, id_d, enumeration

Table 1: Comparison operators

6.1.2 Feature-comparison form

Each feature-comparison is of the form:
feature operator value

For example, in the feature-comparison
phrase_type = NP

“type” is the feature, “=" is the operator, and “NP” is the wal
The feature-comparisons must always appear in this ordhers, for example, you
cannot say:

* NP = phrase_type // This won't work

6.1.3 Values

For details on values, such as integers and strings, pleasiéppendix A on page 20.
Briefly:

e integers and id_ds are written as usual (e.g., 1, 100, 1@5, et

e it is recommended that strings be written surrounded byglsimuotes’, not
"double quotes™*.

e enumeration constants are written as they are declared thettabase. Of course,
this is database-dependent. Examples could be (this nfay fidm your database):
NP, PP, AP, noun, verb.

6.1.4 Comparison operators

The operators available to you are listed in Table 1.

3The “*" in front is meant to signify that the example is errooes, in accordance with the usual conven-
tion in linguistic writing.

4The reason is that double-quote-strings treat many clegaspecially, so you may need to “escape”
certain characters. See Appendix B on page 20 for details.

6.1.5 The IN operator

The IN operator is used like this:

[Word psp IN (noun,adjective,conjunction,article)]

That is, the left-hand-side must be a feature that is eithémtager, an id_d, or an enu-
meration, and the right-hand-side must be a comma-sepdrsttef values in paren-
theses.

6.1.6 The HAS operator

The HAS operator is the inverse: It looks for a single valua list-feature:

[Word semantic_categories HAS royal]

6.2 Power blocks

Power blocks are used to mean “an arbitrary stretch of space”

[Clause
[Phrase]

ti:’hrase]
]

This will find all clauses which have at least two phrases,iasitle such clauses, all
combinations of two phrases. The two phrases need not beeardja

6.2.1 Limiting with <and <=

You can limit the scope of the power-block like this:

[Clause
[Phrase]
. <=5 /| The space may only be up to 5 monads long
[Phrase]

]

This also exists in a “strictly less than” version:

[Clause
[Phrase]
. <5 /I The space may only be up to 4 monads long
[Phrase]

]

Exactly how many linguistic units a monad constitutes inrydatabase is dependent
on how the database was designed. It may be “word”, “morphgipleoneme”, “sen-
tence”, or none of these. Ask the person who designed théakdehow they treated

“monad granularity” if in doubt.

6.2.2 Limiting with BETWEEN X AND Y

The power block can also be used like this:

[Clause
[Phrase]
. BETWEEN 3 AND 5 // The space must be at least 3
// and at most 5 monads long.
[Phrase]

]

This is equivalent to “3 <= X <= 5", where X is the length of thteetch in monads.

6.3 Gap blocks
6.3.1 Introduction

Gap blocks are used to look for “gaps” in the surrounding exnt-or example, some
linguists would hold that the sentence:

e The door, which opened towards the East, was blue.
in fact consists of two clauses, namely:

e Thedoor... was blue.

e which opened towards the East

and that “which opened towards the East” islaling, not a child, of the clause “The
door ... was blue.”

In such a scenario, there would be a “gap” in the clause “Thoe da was blue”,
corresponding to the embedded relative clause.

You can look for such cases with the gap block:

[Clause

[gap
[clause clause_type = relative]
]

]

6.3.2 Optional gap blocks

You can specify that a gap block may be optional, by placingestion mark after the
“gap” keyword:

[Phrase
[word psp=article]
[gap?
[word first and last psp = conjunction]
]

[word psp=noun]

This would look for all phrases in which there is an articlg]dwed optionally by a

gap inside of which the sole word is a conjunction. After tiptianal gap, there must
be a word which is a noun. This occurs, e.g., in classical KGreere postpositive
conjunctions abound. These are usually constituents ajteehlevel, but intervene in
the phrase and/or clause in which they stand. Thus they wpwddrise to a “gap”.

6.3.3 Automatic insertion of optional gap blocks

An optional gap block is inserted between other blocks byulef This is to safeguard
against not finding cases such as the above with the posyeasinjunction. Thus the
following:

[Phrase
[word psp=article]
[word psp=noun]

]

would also find the cases where a postpositive conjunctitenianed between the
article and the noun. Thus the above does not really meathhatticle and the noun
must be adjacent; it really means that they must be adjaggwiing any gaps in
between.

If you want to turn this automatic insertion off, you can mam exclamation mark
(“1) between the blocks:

[Phrase
/I The ! turns off insertion of optional gap block
[word psp=article]!
[word psp=noun]

]

This will ensure that the article and the noun really are @alj, and that no gaps
intervene.

7 Advanced topics

7.1 Introduction

This section explains some “advanced” topics. By “advaheesldo not mean that
they are difficult to grasp; rather, we merely mean that theyat belong to the “ba-
sics” of writing an MQL query. In addition, taking a “spirgbproach to learning” is a
philosophy to which we subscribe.

7.2 Object blocks

7.2.1 Objectreferences (“AS")

You can give an object a name, and refer back to it later in thegyq

[Clause AS container // the AS keyword assigns the name
[Phrase parent = container.self]
]

10

The AS keyword must appear right after the object type nai@a(ise” in this exam-
ple). After the AS keyword, you can write the name you wantite ¢o the object.

Later in the query, you can then refer to a feature on the narhgtt by means of
the “dot-notation”. In the above example, the “parent” éwatof the “Phrase” object
type is compared with the “self” feature of the “Clause” attje

This can be used with any operator, so long ad¢ftehand-sideis a feature (e.g.,
“parent”), and theight-hand-sideis the object reference usage (e.qg., “container.self”).
Thus you cannot say:

* [Clause AS container
[Phrase container.self = parent] // This won't work
/I switch them around to make it work.

]

7.2.2 MARKS

You can specify “marks” on either an object block, a gap bjamkan optional gap
block. The marks look like this: “red”, “yellow”, “cont&t”, “red‘context”, “Flash_Gordon”.
That is, they start with a backquote (*), followed by a sedqueeaf letters, numbers or
the underscore (_), where the first character must be eithettes or an underscore.

This pattern can be repeated, as the marks “red‘contexiiish

[Clause'yellow
[Phrase‘red AS pl]

[Phrase'blue phrase_type = pl.phrase_type]
]

The marks specification must come immediately after theablijge, as shown by
“Clause'yellow” above.

Emdros itself does nothing with the marks; it simply passemito the applica-
tion lying on top of Emdros. Thus you need to consult any mbfara/our particular
Emdros-application for whether it does anything with therksa If not, there is no
point in using them. In particular, Emdros does not assignraraning to the se-
guences of charaters — for example, “red” does not mearBtmatros will show any-
thing in red, and “context” does not mean that Emdros witagnize that such and
such is context. The application lying on top of Emdros maguich things, but that is
outside the scope of this manual.

7.2.3 FOCUS/RETRIEVE/NORETRIEVE
You can specify that an object must be in FOCUS:

[Clause FOCUS]

How this shows up in your results depends on the implememtati the display tool.
Alternatively, you can explicitly say that something must be retrieved:

[Clause NORETRIEVE]

5The “self” feature gives the id_d of the object in question.

11

You can also explicitly say that it must be retrieved (thismsecessary, as all objects
are retrieved by default):

[Clause RETRIEVE]

If you have an object reference declaration on a block, theFfOCUS/RETRIEVE/NORETRIEVE

keyword must come after the object reference declararitioil before any feature-
restrictions:

[Clause
AS C1 /[1. Object reference declaration
FOCUS /I 2. Focus-specification

clause_type = Wayyiqtol // 3. Feature-restriction

7.2.4 Inner string of blocks

You can, as already shown, have an inner string of blockdénan object block:

[Clause
[Phrase]
[Phrase]
[Phrase]

]

This will find all clauses that have at least three phrasaedens
The inner string of blocks must come after any feature-idgins:

[Clause
AS C1 /I 1. Object reference declaration
FOCUS /I 2. Focus-specification
clause_type = Wayyiqtol // 3. Feature-restriction
[Word] /I 4. Inner string of blocks
[Phrase]
[Phrase]

]

7.2.5 FIRST/LAST/FIRST AND LAST

You can specify that an object block must be FIRST, LAST, ®$T AND LAST in
its surrounding context:

/I Example 1:
[Clause

[Phrase FIRST AND LAST] // must be the only phrase in its conte
]

/I Example 2:

[Clause
[Phrase FIRST] // Must be first
[Phrase LAST] // Must be last

12

xt

The FIRST/LAST/FIRST AND LAST specification must come beténany FOCUS/RETRIEVE/NORETRIVE
specification and any feature-restrictions:

[Sentence
[Clause
AS C1 /I 1. Object reference declaration
FOCUS /I 2. Focus-specification
FIRST AND LAST Il 3. FIRST/LAST/FIRST-AND-LAST spec.
clause_type = Wayyiqtol // 4. Feature-restriction
[Word] /I 5. Inner string of blocks
[Phrase]
[Phrase]

]

7.2.6 Regular expression operators

The “~" and “I~" operators work with Perfscompatible regular expressidnsn the
right-hand-side:

/I finds both "see" and "See"

[Word surface ~ '[Ss]ee’]

/I finds everything that is neither "my" nor "your"
[Word surface !~ '(my)|(your)’]

Note that if you use the “backslash” escape-operator witlutde-quote-strings”, you
need to escape it twice:

/I This will find a literal $ followed by a literal dot.
[Word surface ~ "\$\."]

Thus it is often easier to use 'single quote strings’ withulagexpressions:

/I This will find a literal $ followed by a literal dot.
[Word surface ~ "\$\.']

For details, please see Appendix B on page 20.

7.2.7 NOTEXIST
You can specify that an object block must “not exist” with tReOTEXIST” keyword:

[Sentence
NOTEXIST [Word surface = ’'see’]
]

This finds all sentences in which the word “see” does not occur
Note how this is very different from saying:

6perl is a programming language, and Perl5 is version 5 ofiguage.
"For details on regular expressions, please see Appendixpags 21.

13

[Sentence
[Word surface <> ’see’]
]

This would find all sentences which has a word which is not™s&kat would include
sentences which did have the word “see”, but which also hiagratords.

You are allowed to intermix NOTEXIST with other blocks in th@me context. For
example, this is allowed:

[Clause
[Phrase]
NOTEXIST [Word surface="food’]
[Word surface="glue’]

]

What that means is that we want clauses inside of which tiseaephraseright after
which there is a Word with surface="glue”. From the end of the Paragtil the end of
the Clause, there must not exist a Word with surface="food".

So: a) The NOTEXIST block is regarded as not being presenhwlasidering
the surrounding blocks. That is why the “glue” word must lghtiafter the Phrase in
order for this query to match. Essentially, a NOTEXIST bldwas “zero width” with
respect to consecutiveness. b) The NOTEXIST block is lod&edtarting at the end
of the previous block (or the start of the context if the NOTEX block is the first)
and running to the end of the context.

You are allowed to use NOTEXIST more than once in any givernteedn For
example, this is allowed:

[Sentence
NOTEXIST [Word surface = ’see’]
NOTEXIST [Word surface = 'the’]

]

This would find all sentences inside of which neither a worthvgurface="see” nor
a word with surface="the” exists. Because the NOTEXIST klaith surface="see”
is the first in the context, the word “see” must not occur angrehwithin the sen-
tence. Because a NOTEXIST block has “zero width” with respe@consecutiveness,
it means that the domain within which a word with surfacee”tmust not occur is
also anywhere within the sentence.

You cannot use an object reference that has been declagdéTa NOTEXIST,
except if you also use it “inside” the same NOTEXIST. Thus gaanot say:

* [Clause
[Phrase
NOTEXIST[Word as wl surface=food’]
]

/I OOPS! The NOTEXIST intervenes, so we can't “see” wl here..

[Word part_of speech=wl.part_of speech]
]

But you can say:

14

[Clause

NOTEXIST [Phrase

]

7.3 Strings of blocks

[Word as wl part_of speech=noun]

/I This is OK! NOTEXIST does not intervene,
/I but stands above both!
[Word part_of speech <> wl.part_of speech]

7.3.1 OR between strings of blocks

A “string of blocks” is an unbroken sequence of object blog®@wver blocks, and/or
gap blocks. You can put an “OR” keyword in between two sucimgs: The result
will be as though you had issued two separate queries, witrstying of blocks taken
away and the other leftin (and the OR taken out as well), thesrversa for the second
query. This is useful, e.g. to search for different comboret of a given sequence of

phrases with specific functions:

[Clause
[Phrase
[Phrase
[Phrase
[Phrase
or
[Phrase
[Phrase
[Phrase
[Phrase

]

As mentioned, the OR construct works between strings ofkslodt doesn’t matter
what kind of block is involved (object block, power block,gap block), so you could

also say:

[Clause

[Phrase function

function
function
function
function

function
function
function
function

= Subj]

= Pred]

= Obijc] /I Here the object comes before
= Adjunct] // the adjunct

= Subj]

= Pred]

= Adjunct] // Here the adjunct comes before
= Obijc] /I the object

Subj]

[Phrase function = Objc]

OR // The OR Works between on the one hand Subj..Objc
/I and on the other hand, Objc..Adjunct

[Phrase function = Objc]

[Phrase function = Adjunct]

]

Or even:

[Clause

15

[gap [Clause clause type = Appositional]]
OR

[Phrase function
[Phrase function

Objc]
Adjunct]

]

You can also have more than one OR between more than twostfrigocks:

/I Finds all triples of object, adjunct, and complement

/I where either the object or the complement is first.

/I To find all six combinations (i.e., also adjunct first),

/I simply add two more ORs with the right orders of phrases.

[Clause
[Phrase function
[Phrase function
[Phrase functino
OR

Objc]
Adjunct]
Complement]

[Phrase function = Objc]
[Phrase functino = Complement]
[Phrase function = Adjunct]

OR

[Phrase functino
[Phrase function
[Phrase function
OR

[Phrase functino
[Phrase function
[Phrase function

Complement]
Objc]
Adjunct]

Complement]
Adjunct]
Objc]

]

7.3.2 Restrictions on OR (more on the AS keyword)

There is one restriction pertaining to OR: When you have aregice between two
objects (using the AS keyword, see Section 7.2.1 on pageti@), both the object
block on which you use the AS keyword, and the object block bicivyou use the
reference, must be within the SAME string of blocks. The esaannot cross an OR.
Thus you cannot say:

* [Clause
[Phrase AS p1l]
OR
[Phrase function = pl.function] // OOPS! lllegal because it
/I crosses the OR construct!

]

Nor can you say:

* [Clause
[Phrase
[Phrase AS p2]

16

]
OR

[Phrase function = p2.function] // OOPS! lllegal because it
/I crosses the OR construct!

]

When we said that both the declaration (with the “AS” keywaadd the usage must
be within the same string of blocks, we did not mean that treetio be at the same
level, like this:

[Clause
[Phrase AS p1]
[Phrase function <> pl.function] // This is OK, since it does
OR Il cross the OR.

| [gap]

These two, the declaration and the usage, are at the sanhe Baxat is OK to have
one of them be more deeply nested than the other:

[Clause
[Phrase
[Phrase AS p1] // This is more deeply nested than the usage
]

[Phrase function <> pl.function] // This is OK, since it does
OR /I cross the OR.

[9ap]
]

7.4 Grouping ([square brackets])
7.4.1 Introduction

“[Square brackets]” are used to group one or more stringdawids, as if there were
“parentheses” around them.

7.4.2 Examples
The following topograph illustrates the use of square begcfor grouping:

[Clause
[Phrase function = Predicate]
[
[Phrase function
[Phrase function
OR
[Phrase function
[Phrase function

Obijc]
Adjunct]

Indirect_object]
Complement]

17

not

not

This query finds all clauses in which there is a Phrase whasetifin is Predicate.
Right after this phrase must come, either an Object folloWgdn Adjunct, or an
Indirect object followed by a Complement.

Another example:

[Clause

[

[Phrase function
OR

[Phrase function
[Phrase function

Subject]

Complement]
Adjunct]

]

[Phrase function = Predicate]

]

This query finds all clauses in which there is, first either aj&ct, or a Complement
followed by an Adjunct. Then, after either of these, thene lsa arbitary space within
the Clause (indicated by the “..” power block), and then alleae must appear.

7.5 Kleene star
7.5.1 Introduction

You can have a Kleene star construction on any object bloggroup] in a query:

[Phrase
/I Note the + at the end
[Word psp IN (article,noun,conjunction,adjective)] *

]

This query will find all phrases, inside of which there areozer more adjacent words
whose parts of speech are either article, noun, conjunadioadjective. This would
find many noun phrases.

You can also have a Kleene star on a group of blocks:

[Clause
[
[Word psp IN (article, noun, preposition)]
[Word psp IN (noun, adjective)]
] *
]

This would find all clauses inside of which there are zero oreriterations of the
pattern “a Word whose part of speech is either article, noupreposition”, followed
by a “Word whose part of speech is either noun or adjective.”

NOTE: Because there are [square brackets] around the twadswand because the
Kleene star applies to the group, it is tip@up that is repeated.

The Kleene star means “find me zero or more like this”.

18

7.5.2 Specifying the number of iterations
You can also specify a set of integers that gives the numbimes required:

/I Example 1:
[Phrase
[Word] *={0,1} // This makes the word optional (0 or 1 times)

]

/I Example 2:

/I This finds all clauses in which the first phrase is a subjec

/I followed by exactly 3 non-subject, non-adjunct prases,

/I followed by an adjunct phrase.

[Clause
[Phrase FIRST function = Subject]
/I There must be exactly three phrases between the subject..
[Phrase NOT function IN (Subject,Adjunct)] * {3}

/I ... and the adjunct
[Phrase function = Adjunct]

]

/I Example 3:
[Clause
/I Finds such phrases 1,2,3,5,6,7, or 9 and above times
[Phrase
function = Subj OR function = Obj
] *{1-3,5-7,9-}

/I But still only within the surrounding clause

]

7.5.3 Restrictions

The following restrictions apply:

e You cannot have an object reference declaration (using i&eayword) on an
object block on which you also have a Kleene Star. For exantipie is NOT
allowed:

* [Phrase as pl] =* // OOPS! Not allowed to have both AS and Kleene Star!

[Phrase function=pl.functino]

e You cannot use an object reference that has been declared arsobject block
or group with a Kleene Star, if the usage is outside the objeck or group with
the Kleene Star. (If it is used inside, you can use it therenbtioutside). Thus
this is NOT allowed:

* [Phrase
[Word as wl]
1+ // OOPS! Kleene Star on Phrase...
[Word surface=wl.surface] // so we can't “see” the referenc

19

e here!

e Whereas thiss allowed:

[Phrase
[Word as wl]

[Word lexeme=wl.lexeme]
1+ /I This = is OK; we don't “cross” it when we use the reference!

A Values

A.1 Atomic values

There are four kinds of atomic values:
1. integer: e.g. 0, 1, 42, 976, 1000, etc.
2. id_d: Like integers, but can also be NIL (no value).
3. enumeration: Whatever is defined in your database.
4

. string: Enclosed in "double quotes" or 'single quotes’.

A.2 Lists

You can build lists out of integers, id_ds, and enumeratatrels, but you cannot cur-
rently build lists of out strings.
Lists are enclosed in (parentheses), and are comma-segaFar example:

1. List of integer: (0,1000,23,76)
2. Listofid_d: (NIL, 13200)
3. List of enum label: (NP,AP,PP)

A list can also have a single value inside, e.g., (NP).

B Lexical rules

1. Whitespace is ignored except to separate tokens, andrigst

2. Everything except enumeration-labels and strings is-tidsensitive. Enumera-
tion labels and strings ARE case-sensitive.

3. Reserved words (such as “object”, “create”, “type”, etsay not be used except
as reserved words. That is, you cannot, say, have a featlled type” or an
enumeration constant called “object”.

4. Strings can be of two kinds: Either surrounded by "doubletgs”, or surrounded
by 'single quotes’. Both may contain newlines. Backslasihegle "double-
guote-strings" behave as escape-characters accordirgpte Z. Backslashes
inside of 'single-quote-strings’ behave as backslashed,ia fact you cannot
escape anything inside of a 'single-quote-string’.

20

| Escape| Meaning

\n line feed (ASCII 0x0a)

\t horizontal tab (ASCII 0x09)
\v vertical tab (ASCII 0x0b)

\b backspace (ASCII 0x08)

\a alert/bell (ASCII 0x07)

\f form feed (ASCII 0xOc)

\r carriage-return (ASCII 0x0d)

\\ \
\? ?
\! i)

\H n

\XYZ | The character with octal-based number XYZ (e.g., \040 nmep82)
\xXY | The character with hexadecimal-based number XY (e.g. \x@énimg 32)

Table 2: Backslash-escapes in "double-quote-strings"

5. Comments are ignored when parsing MQL. There are two kinds

/I This kind starts with two slashes.
/I It extends to the end of the line.
/I Thus if you want multiple lines commented out,

/I you have to start each new line with the double slash.
[+ This is the other kind of comment.
It may extend over multiple lines. It begins with
slash-star and ends with star-slash.
*/

6. Anidentifier starts with an underscore or the letters A-Z or the lettezs Hit
is longer than 1 character, it continues with underscoettgrk from A-Z, letters
from a-z, or digits in the range 0-9. Thus it conforms to thgutar expression
'_A-Za-z][_A-Za-z0-9]*.

7. Database naméspbject type names, feature names, enumeration names, enu-
meration labels, and monad set names must be identifiers.

C Regular expressions

This is a crash course in regular expressions. Regular gsipres (or RegExes) are a
way of specifying a set of strings, which in Emdros can be usezbmpare a string-
feature against many values at once. For example, if youtwiskarch for both “See”
and “see” at once, you can use the regular expression cosopari

surface ~ '[Ss]ee’
The effect is as if you had said:

surface = 'See’ OR surface = ’'see’

8Except on SQLite, where a database name may be non-idestifierthat case, however, it must be
expressed as a "string" or a 'string’.

21

C.1 Character classes

You can specify character-classes with the [square brsicketharacter-class is a set
of characters that are looked for at once. A simple exampldavoe:

[AaBbCc]

This would look for the letters A, B, C, a, b, and c all at ondgust one of them was
present, the whole character class would match.
The above could also be rewritten as:

[A-Ca-c]

This is because, inside a character class, the dash (alsmlkasminus) means “from
the previous character to the next character, both inatisivhus if you wish to search
for the characters A-Z, you can say [A-Z]. If you wish to sdafor a minus, and
include the minus in the character class, you can put it tet$te character class:

[A-Z-]

This would search for the letters A-Z, but would also seaostitie minus.
If you wish to negate the character class, you can put thé {id) at the begin-
ning of the class:

["A-Z]
This would search for all characteescept the letters A-Z (thus it would also search
for the letters a-z, since regular expressions are casgtisen
C.2 Grouping
You can group sequences of characters or character claghgsanentheses:
(se[ea)])

The utility of grouping will be apparent shortly.

C.3 Kleene Star (*)
You can specify that something must occur zero or more times:
[A-Za-z0-9] =

This would search for the characters A-Z, a-z, and 0-9, aad tilay occur O or more
times after each other. Thus both *”, “a”, “aA, “aAZ”, and “el’ would match.

The Kleene Star applies only to the previous characterachear class, or group.
Thus if you wish a whole string of characters to be repeated,just use grouping:

(elar) =

This would match *”, “elar”, “elarelar”, “elarelarelar” te.
If you say:

elar =

then “ela”, “elar”, “elarr”, “elarrr”, etc. will be matched

22

C.4 Kleene Plus (+)

The Kleene Plus (specified with “+") is similar to the KleertariSexcept that it matches
one or more times, not zero or more times:

utterance ~ 'My precious+’

would match any of “My precious”, “My preciouss”, “My preaisss”, etc.
Again, the Kleene Plus applies only to the previous characteracter class, or
group. If you wish to repeat a whole string, then it must beugesd with parentheses.

C5 OR(])

You can specify that either of two characters, charactasels, or groups should match,
with the “or” construct (which in the regular expressiona i§"):

(sea)|(lake)

This would match either “sea” or “lake”.

As with the Kleene Star, the | applies only to the surrountigcharacters, char-
acter classes, or groups. Thus if you do wish to match eithevastrings, you must
put parentheses around both strings, as in the “sea or lalagfigle above. If you say:

seallake

then the two strings “selake” or “seaake” will be matched.

C.6 Escapes

If you wish to match one of the characters that have a spe@ahing, e.g., “[", 1",
et 4 ete., then you must put a backslash (“\) in frat: “\[?, “\]”, “*”, etc.

Of course, a backslash also has special meaning, so if ydutwisiatch a back-
slash, you must escape it, too: “\\".

C.7 Any character

If you wish to match “any character”, there is a shorthandliercharacter class that
matches “all characters”: It is simply a dot (also known asqah:

"We the people. =

This would match any string which started with the lettere"ie people” and which
then continued with zero or more characters of any kind.
Note that if you wish to match a period, you need to escapedhegh “\.”.

23

