
Emdros Programmer’s Reference Guide – Version

3.1.1

Ulrik Petersen

August 15, 2009

Contents

1 Introduction

Welcome to the Emdros Programmer’s Reference Guide. This guide is designed
to help you get up to speed quickly with how to program an application on top
of Emdros. Here are some of the topics covered:

• Emdros architecture and how your application fits in.

• API for the MQL language.

• The DTD of the XML output by the MQL engine.

• Tips for how to architect your application.

• Tips for loading an Emdros database with existing data.

• Tips for creating a query-application.

Plus additional goodies.

1.1 Appliccable version

This guide documents Emdros version 3.0.2.pre13 and above.

1.2 How to use this guide

Click on any item in the menu on the left. This will expand it and go to that
page.

2 Part I: Foundations

In Part I, we lay the foundation for the rest of the programmer’s reference guide.
We will look at the following things:

• Emdros architecture and how your application fits in

1

• Your application and what it minimally needs to include in order to in-
teract with Emdros.

• Libraries and how to use them.

2.1 Emdros architecture

Emdros fits into an architecture as follows:

+---------------+
| Application | Which you must write
+---------------+

|
+---------------+
| MQL | Emdros
+---------------+

|
+---------------+
| EMdF | Emdros
+---------------+

|
+---------------+
| DB | PostgreSQL or MySQL or SQLite2 or SQLite3
+---------------+

At the top, we have your application, which in turn rests on Emdros. Emdros
is made up of two layers, first the MQL layer, which then rests upon the EMdF
layer. The EMdF layer, in turn, interacts with the underlying RDBMS.

This Programmer’s Reference Guide is about making you successful in build-
ing your application.

2.2 Your application

In this section, we describe two things:

1. Four ways to call Emdros, and

2. The details of how to do so.

2.2.1 Ways of calling Emdros

There are a number of ways you can go about writing your application. Here
are four of them:

1. Write your application in C++, interacting directly with the Emdros li-
braries.

2. Write your application in one of the scripting languages which Emdros sup-
ports through SWIG (currently Python, Perl, Ruby, Java, and C#/.Net).

2

3. Interface via the mql(1) program as a command-line program, or via a
system() call or the like.

We will look at each of these in turn.

Via C++

Benefits Interfacing with Emdros via C++ offers the following benefits:

• Greatest performance:

– No need to parse the output of the MQL engine. You can use the
datastructures returned by MQL directly instead of first dumping
them to stdout, then reading them back into memory again. This
saves both space and time.

– No need to start and stop the mql(1) process. Everything is done
in-process.

– Persistence of back-end connection: No need to connect and recon-
nect to the back-end. This saves time.

• Greatest flexibility: You can use the full EMdF API, rather than ”just”
the MQL API.

Drawbacks Drawbacks include:

• Greater complexity, due to:

– Complexity of C++ language,

– Complexity of Emdros APIs.

• Steeper learning-curve (due to greater complexity).

Via SWIG

Overview SWIG is the ”Simplified Wrapper Generator”, and allows a pro-
grammer to wrap his C or C++ application’s interface so that it can be used
from a number of scripting languages.

Emdros implements SWIG interfaces for a number of languages. They in-
clude:

• Ruby

• Java

• C# (or other .Net languages)

• Python

• Perl

3

This means that you can use Emdros from these scripting languages as
though you were writing in C++ with almost no performance overhead. The
libraries are linked in through dynamic library loading.

Granted, Java and C# are not scripting languages, but are mentioned as
such here for simplicity of presentation.

Note: currently, only Python-bindings, C#/.Net-bindings, and Java-
bindings are available on Windows. All are available on Linux. It is unknown
whether any will work on Solaris.

Benefits Benefits include:

• Having the simplicity and rapid prototyping of scripting languages.

• Losing none of the power of direct access to the Emdros class hierarchy.

• Not having to parse the output from MQL, instead directly accessing the
MQLResult object. This reduces performance overhead.

Drawbacks Drawbacks include:

• Slightly slower performance than with pure C++.

Via mql(1) as a command

Overview You can use the mql(1) program for interfacing with Emdros. In
C, this is typically done with the system() library-call. Scripting-languages such
as Ruby, Perl, and Python have their own ways of calling external programs.

Benefits Benefits include:

• Simplicity: The only APIs to learn are:

– The MQL language itself (which you must learn anyway),
– The format of the MQL output,
– The exit-status codes of the mql(1) program.

Drawbacks Drawbacks include:

• Less performance:

– Output must be parsed and the datastructures recreated. This takes
both space and time.

– mql(1) process must be started and stopped for each collection of
MQL statements you wish to have evaluated. This takes time.

– Back-end connection is established and broken together with the
mql(1) process. This takes time.

• Less flexibility: You can only interface with Emdros via the MQL lan-
guage, not the EMdF API.

That having been said, it may be possible to keep the mql(1) process running,
keeping an open pipe between your application and the mql(1) process. If so,
the only performance-problem that remains is the parsing of the output.

4

Via mql(1) as a daemon

Not possible It is currently not possible to run the mql(1) program as a
daemon.

2.2.2 How to call Emdros

Having described the benefits and drawbacks of each method of calling Emdros,
let us describe how to actually do it.

Via mql(1) In this section, we will describe how to interface to Emdros via
the mql(1) program.

Method of interaction

As a command When calling mql(1) as a command, you can either pass the
input on a file or on stdin. The output is given on stdout.

You can capture the output by redirecting it to a file (e.g., append ”>
/tmp/x13wd93pq” to the command line). Alternatively, set up a pipe between
your application and the mql(1) program. See your system manual pages for
how to do this.

See the mql(1) man-page for details of command-line options and command-
line syntax.

Output formats

Two choices You have two choices for output, specified by two command-line
switches:

• XML output, which is best for interaction between programs, and

• Console output, which is slightly more human-readable than XML out-
put.

XML output

Benefits Benefits include:

• Has better support for error-handling: It tells you explicitly when some-
thing when wrong, in what stage of the MQL compiler, the source of the
error (compiler or back-end), and any error message.

• Tells you exactly when a command is being processed and when it is
finished.

• Shows the progress of query-queries.

5

Drawbacks Drawbacks include:

• More verbose, and may take longer to parse.

• More complex in its syntax and more complex to parse.

Later, we will expound the DTD of the XML output.

Console output

Benefits Benefits include:

• Simpler in its syntax. Can be parsed even with AWK.

• Less verbose, which may constitute a performance gain on really slow
hardware.

Drawbacks Drawbacks include:

• Less robust error-handling. Is meant for human reading, not for parsing
by machines.

• Does not tell you when a statement has finished or when it is being pro-
cessed.

• Does not have a progress-indicator for query-queries.

Exit status codes The mql(1) program has the following exit codes:

* 0 : Success
* 1 : Wrong usage
* 2 : Connection to backend server could not be established
* 3 : An exception occurred
* 4 : Could not open file
* 5 : Database error
* 6 : Compiler error

Via C++

Easy procedure As of Emdros version 1.1.11, the easiest way of interfacing
with Emdros is to use the EmdrosEnv API. This sets up all the machinery
described in the next section.

6

Full procedure The following instructions are not necessary to follow.
You can simply use the EmdrosEnv API. If you want to know how to do without
it, the following instructions tell you that.

1. Create an EMdF database object. This must not be an EMdFDB object,
but rather one of the descendants matching the back-end you are running:

• PgEMdFDB for a PostgreSQL back-end,

• MySQLEMdFDB for a MySQL back-end.

• SQLiteEMdFDB for an SQLite 2 back-end.

• SQLite3EMdFDB for an SQLite 3 back-end.

2. Check that the connection is OK with the connectionOk() method. If not,
back up and implement an error-recovery strategy of your choice.

3. Create a EMdFOutput object. This is for specifying:

• The default encoding (e.g., ISO-8859-1),

• The std::ostream descendant on which output should be printed (e.g.,
std::cout), and

• The output kind (XML or Console).

4. Create a MQLExecEnv from the EMdF database and the EMdFOutput
object.

5. Use the executing environment to interact with the MQL layer, and the
EMdF database object to interact with the EMdF layer.

6. When you are done, delete the execution environment and the EMdF
database object.

Next Next, we will see a code-snippet from the mql(1) program which shows
how to use the EmdrosEnv API.

Example The following are some snippets from the mql(1) program. They are
placed under the GPL license as given at the beginning of the file src/mql.cpp
in the Emdros sourcecode package.

#include <emdfdb.h>
#include <emdros_environment.h>
#include <iostream>
#include <sstream>
#include <fstream>
#include <string>

// Not showing exec_file() function

7

int exec_cin(EmdrosEnv *pEE)
{
bool bResult;
std::string strError;
int nResult;
if (!pEE->executeStream(std::cin, bResult, true, true)) {
std::cerr << "FAILURE: Database error executing stdin." << std::endl;
nResult = 5;

} else {
if (!bResult) {
// std::cerr << "FAILURE: Compiler error executing stdin." << std::endl;
nResult = 6;

} else {
// std::cout << "SUCCESS executing stdin." << std::endl;
nResult = 7;

}
}

// Return result
return nResult;

}

int main(int argc, char* argv[])
{
// Set defaults
eOutputKind output_kind = kOKConsole;
std::string initial_db("emdf");
std::string filename;
std::string hostname("localhost");
std::string user("emdf");
eBackendKind backend_kind = kSQLite2; // Could also be kPostgreSQL or kMySQL or kSQLite3

// Get default password
std::string password;

#if USE[PREUNDERSCORE}DEFAULT_PASSWORD
getDefaultPassword(password);

#else
password = "";

#endif

// Parse arguments
if (!parse_arguments(argc, argv, output_kind,

initial_db, filename,
hostname, user, password)) {

print_usage(std::cerr);
return 1;

}

// Make connection
EmdrosEnv *pEE = new EmdrosEnv(output_kind, kCSISO_8859_1,

8

hostname,
user, password,
initial_db,
backend_kind);
// Zero-fill password
zeroFillString(password);

// Check that we connected
if (!pEE->connectionOk()) {
std::cerr << "Connection to backend server could not be established. Aborting."

<< std::endl;
delete pEE;
return 2;

}

int nResult = 3;
try {
if (filename == "") {
nResult = exec_cin(pEE);

} else {
nResult = exec_file(pEE, filename);

}
} catch (EMdFDBException e) {
std::cerr << "ERROR: EMdFDBException (Database error)..." << std::endl;
std::cerr << pEE->getDBError() << std::endl;
std::cerr << pEE->getCompilerError() << std::endl;

} catch (BadMonadsException e) {
std::cerr << "BadMonadsException caught. Program aborted." << std::endl;

} catch (WrongCharacterSetException e) {
std::cerr << "WrongCharacterSetException caught. Program aborted." << std::endl;

} catch (EMdFOutputException e) {
std::cerr << "EMdFOutputException caught. Program aborted." << std::endl;

} catch (...) {
std::cerr << "Unknown exception occurred. Program aborted." << std::endl;

}

// Clean up
delete pEE;
return nResult;

}

Via SWIG

Overview This method was described previously.

9

Examples and HOW-TOs For code examples and HOW-TOs, please
see the sources, especially:

• The READMEs in the SWIG directory and the SWIG/language directo-
ries (SWIG/java, SWIG/ruby, etc.),

• The testing program available for each scripting language in the appropri-
ate SWIG/language directory.

Other than that, we refer to the description of C++ for HOW-TOs. The
method is the same, even if the language is different.

2.3 Libraries

2.3.1 Introduction

In this section, you will find:

• Information on which libraries to use,

• Information on how to configure your Linux environment for Emdros
shared libraries,

• A shared-library HOWTO by Kirk Lowery.

2.3.2 Which libraries to use

Introduction This page is split up into two sections:

• Unix/Linux,

• Windows.

Unix/Linux

Introduction This page gives instructions about which libraries to use on
Unix/Linux, and how to use them. But first, some background.

Background On Unix, there are two kinds of libraries:

• static, and

• shared.

Static libraries normally end in ”.a”, while shared libraries normally end in
”.so”.

A library named ”foo” will generally have a ”lib” prefix, so it will be either:

• libfoo.a (if static), or

• libfoo.so (if shared)

How to link

10

What When linking your application, you will need to pass a number of
switches to the linker. How this is done depends on your compiler and/or
linker.

Generally speaking, the -l switch tells the linker to link in a certain library.
So -lfoo links in the foo library.

Most linkers will choose a shared library over a static one by default, so -lfoo
will link in libfoo.so if it is present.

Where In addition, the linker will need to know where to search for the
libraries. Generally speaking, this is done with the -L switch. So

-L/usr/local/lib/emdros

will tell the linker to look in the /usr/local/lib/emdros directory.

LDFLAGS The conventional way of doing this in Makefiles is to set the
LDFLAGS variable to the string of switches that is necessary.

Order matters The order in which you specify these options usually matters.
Generally speaking, -L switches should come before -l switches, and dependent
libraries should come before libraries on which they are dependent.

Which libraries to use

Always You will always need the following library:

-lemdf

PostgreSQL If using PostgreSQL, you will also need the following library:

-lpq

libpq is a PostgreSQL library.

MySQL If using MySQL, you will also need the following library:

-lmysqlclient

In addition, you will probably need to tell the linker where to find the mysql-
client library. It is probably located in /usr/lib/mysql:

11

-L/usr/lib/mysql -lmysqlclient

In addition, you may find that libmysqlclient depends on libz. So you may
need to do the following:

-L/usr/lib/mysql -lmysqlclient -lz

libmysqlclient is a MySQL library.

SQLite 2 If using SQLite 2, you will also need the following library:

-lsqlite_emdros

This library is found in the same directory as the other Emdros libraries, so
there should be no need for extra -L flags.

SQLite 3 If using SQLite 3, you will also need the following library:

-lsqlite3_emdros

This library is found in the same directory as the other Emdros libraries, so
there should be no need for extra -L flags.

MQL If using MQL, you will need the follwoing libraries:

-lmql -lpcre_emdros

libmql depends on libemdf and libpcre emdros.

Summary: PostgreSQL If using PostgreSQL, you will need a string such
as the following:

-L/usr/local/lib/emdros -lmql -lpcre_emdros -lemdf -lpq

Summary: MySQL If using MySQL, you will need a string such as the
following:

-L/usr/local/lib/emdros -L/usr/lib/mysql -lmql -lpcre_emdros -lemdf -lmysqlclient

12

Summary: SQLite 2 If using SQLite 2, you will need a string such as the
following:

-L/usr/local/lib/emdros -lmql -lpcre_emdros -lemdf -lsqlite_emdros

Summary: SQLite 3 If using SQLite 3, you will need a string such as the
following:

-L/usr/local/lib/emdros -lmql -lpcre_emdros -lemdf -lsqlite3_emdros

Windows

Introduction This page describes which libraries to use on Windows.
Look in the win32.mak makefiles in the sourcecode distribution in order to

get a feel for how to use them. Also consult the Visual Studio documentation
for how to add libraries to your project.

Which libraries to use

Always You will always need the following library:

• libemdf.lib

PostgreSQL If using PostgreSQL, you will also need the following libraries:

• libpq.lib

• libpq.dll

libpq.lib and libpq.dll are PostgreSQL libraries, and are distributed with the
Emdros PostgreSQL binaries.

If your version of PostgreSQL does not match the version from which these li-
braries came in the binary distribution, follow the instructions in INSTALL.Win32
in the source distribution in order to build your own.

libemdf.lib depends on libpq.lib.

MySQL If using MySQL, you will also need the following library:

• mysqlclient.lib

In addition, you may need access to the MySQL header-files.
mysqlclient.lib is a MySQL library.
libemdf.lib depends on mysqlclient.lib.

13

SQLite 2 If using SQLite 2, you will also need the following library:

• sqlite emdros.lib

This is compiled automatically when you specify in the config.mak file that
you want SQLite 2 as a backend.

SQLite 3 If using SQLite 3, you will also need the following library:

• sqlite3 emdros.lib

This is compiled automatically when you specify in the config.mak file that
you want SQLite 3 as a backend.

MQL If using MQL, you will need the following libraries:

• libmql.lib

• libpcre emdros.lib

libmql.lib depends on libemdf.lib and libpcre emdros.lib.

Summary: PostgreSQL If using PostgreSQL, you will need the following
libraries:

• libemdf.lib

• libpq.lib

• libpq.dll

• libmql.lib

• libpcre emdros.lib

Summary: MySQL If using MySQL, you will need the following libraries:

• libemdf.lib

• mysqlclient.lib

• libmql.lib

• libpcre emdros.lib

Summary: SQLite 2 If using SQLite 2, you will need the following libraries:

• libemdf.lib

• libsqlite emdros.lib

• libmql.lib

• libpcre emdros.lib

14

Summary: SQLite 3 If using SQLite 3, you will need the following libraries:

• libemdf.lib

• libsqlite3 emdros.lib

• libmql.lib

• libpcre emdros.lib

2.3.3 How to configure Linux for Emdros use

Introduction This page describes how to set up your linker on Linux so that
it finds the Emdros shared libraries.

ld.so The ld.so(8) linker is the system component responsible for linking in
shared libraries. By default, it looks in a number of standard directories for
shared libraries. There are two ways to configure this:

• Edit the /etc/ld.so.conf file by adding the directories that should be searched,
or

• Set the LD LIBRARY PATH environment variable to point to the direc-
tories that should be searched in addition to the ones in /etc/ldd.conf.

Setting LD LIBRARY PATH In order to set the LD LIBRARY PATH
variable, you can do the following (in the bash shell):

export LD_LIBRARY_PATH="\$LD_LIBRARY_PATH:/usr/local/lib/emdros"

2.3.4 How to build shared libraries

Attribution The following was contributed by Prof. Dr. Kirk E. Lowery,
kloweryatwhi.wtsPARIS.edu. (remove French city).

Shared Library Fundamentals Libraries first came about when complex
programs organized function calls in logical groupings. With the advent of
GUIs and object-oriented programming, functions began to be designed for use
by many programs, and so needed grouping conveniently together into one file
of object modules produced by the compiler.

These libraries are called ”static” libraries and, on Linux systems, usually
carry the ”a” extension, e.g., libemdf.a. A programmer wishing to use the
functions in a particular library uses the syntax of the function call documented
in the header file, e.g., monads.h, called the ”Application Program Interface
(API)”. At link time, the linker makes a copy of the desired functions binary
code, and includes it in the final executable binary of the application program.
Such a program is called ”statically” linked, and is independent of the presence
of the original static library. The program can be used on any compatible system
whether or not the static library is present, since the program carries all needed
code within itself.

15

As operating systems became more complex, and especially with the ap-
pearance of client-server technology, hard disks and RAM became cluttered
with many copies of the same functions. Application program binaries were
increasing in size by whole orders of magnitude. In order to improve effeciency
the concept of ”shared” libraries was created.

The idea of a shared library is simple: code that is used by more than one
application needs to reside only *once* on the hard disk and in memory. And it
does not need to be loaded into memory until called for. It can even be removed
from memory if deemed necessary.

For an application such as Emdros, the necessity for and advantages of shared
libraries are obvious. Emdros is intended to work with databases, standing in
between a client application and the database server itself. Such an environment
is inherently multi-tasking and multi-user. The more basic of emdros’ function
calls (e.g., the creation and manipulation of monads, or mql queries) will be used
thousands of time during the session of one user. We don’t want thousands of
copies of dozens of functions filling up memory, and once the overhead of calling
a function and copying it into memory is paid, we don’t want to have to pay it
over and over again.

Using and Linking with Shared Libraries Let’s use the example of Em-
dros’ own application program that uses the Emdros libraries: mql (or, under
Windows: mql.exe). Here is a code snippet from mql.cpp where an emdros
library function is used:

// Make EMdFOutput
EMdFOutput *pOut = new EMdFOutput(kCSISO_8859_1, &std::cout, output_kind);

A new instance of the object EMdFOutput is created here and given the
name pOut. Accompanying this object are a set of methods (or, functions)
which can be used with this object. We don’t need to know the details of how
EMdFOutput does its magic. All we need to know is found in emdf output.h:

class EMdFOutput {
protected:
eCharsets m_charset;
eOutputKind m_output_kind;
std::ostream *m_pStream;
int m_current_indent;
int m_indent_chars;

public:
EMdFOutput(eCharsets charset, std::ostream *pStream,

eOutputKind output_kind, int indent_chars = 3);
~EMdFOutput();
// Getting
eOutputKind getOutputKind(void) const { return m_output_kind; }
// Output
void increaseIndent();

16

void decreaseIndent();
void out(std::string s);
void outCharData(std::string s);
void newline();
void flush() { *m_pStream << std::flush; };
// XML members
void printXMLDecl();
void printDTDstart(std::string root_element);
void printDTDend();
void startTag(std::string name, bool newline_before = false);
// Must have pairs of (attribute name, attribute value)
void startTag(std::string name, const AttributePairList&

attributes, bool newline_before = false);
// for tags of type <tag/>
void startSingleTag(std::string name, bool newline_before = false);
// for tags of type <tag/>
void startSingleTag(std::string name, const AttributePairList&

attributes, bool newline_before = false);
void endTag(std::string name, bool newline_before = false);

protected:
void emitAttributes(const AttributePairList& attributes);

};

This API tells us all we need in order to create instances of objects of this
class, what information we need to give to it, what kind of information we can
expect from it, and what functions we can use to manipulate it.

In order to compile the mql application program we issue the command:

g++ -g -o .libs/mql mql.o -L/usr/local/src/emdros/EMdF \
-L/usr/local/src/emdros/MQL \
-L/usr/local/src/emdros/pcre \

/usr/local/src/emdros/MQL/.libs/libmql.so -lpcre_emdros \
/usr/local/src/emdros/EMdF/.libs/libemdf.so \

-lpq -Wl,--rpath -Wl,/usr/local/lib/emdros

The compiler is told the name of the object output file (mql.o), where to place
it in the source tree before installation (.libs/mql), and to include debugging
information (-g). The ”-L” option tells g++ where to find libraries to link
to, and the ”-l” option tells it which libraries it is to link against, looking for a
”libpcre emdros.a” in the case of ”-lpcre emdros”. This is correct, since the pcre
library is not compiled as shared, but are linked statically into library functions
that need it. In the case of the other libraries, the ”.so” extention (Shared
Objects) tells the linker that we want to link against these ”dynamically,” not
”statically”. ”pq” stands for the ”postgresql” libraries, which is the database
backend chosen for this installation of emdros. ”–rpath” is the ”runtime path”
that will be used to find the shared libraries as the program is executing.

If you are using the GNU Autobuild tools (autoconf, automake, libtool) –
and if you are not, you should be! – then the following lines in your Makefile.am

17

will generate the above command, assuming you have properly created the top-
level configure.in file:

bin_PROGRAMS = mql
mql_LDADD = -L../EMdF -L../MQL -L../pcre -lmql @EMDFLDADD@
mql_DEPENDENCIES = @EMDFDEPS@ ../pcre/libpcre_emdros.a ../MQL/libmql.la
mql_SOURCES = mql.cpp
INCLUDES = -I../include
CLEANFILES = *~ core .deps/*
AM_CXXFLAGS = @CXXFLAGS@ @DEBUGFLAG@

Note how libmql is to be linked as a shared library so it is listed as ”libmql.la”
whereas libpcre emdros is listed as ”libpcre emdros.a” for static linking.

It is beyond the scope of this HOWTO to get into all the details of the Au-
tobuild tools, but the reader is referred not just to the excellent documentation
that comes along with the software, but also to the highly recommended tutorial
”The AutoBook”

<http://sources.redhat.com/autobook/>

Making Your Own Shared Library Creating a shared library is pretty
straightforward. But I am not going to talk about how to do it manually without
using the Autobuild tools, particularly libtool. Unless your situation is trivially
simple, libtool makes your life so much easier. I am going to use my experience
in modifying the emdros distribution to build shared libraries in addition to the
static ones. To make matters even more simple, I will concentrate on just one
library: libemdf.

There are two files that concern us in the task. First is configure.in in the
top-level emdros directory. The second is EMdF/Makefile.am. I will note the
elements needed for building the libraries only.

In configure.in, we need the following:

dnl Library versioning
dnl We begin with 0:0:0
LIB_CURRENT=0
LIB_REVISION=0
LIB_AGE=0
AC_SUBST(LIB_CURRENT)
AC_SUBST(LIB_REVISION)
AC_SUBST(LIB_AGE)

dnl Invoke libtool
AC_PROG_LIBTOOL

dnl
dnl Set EMDFLDADD and EMDFDEPS

18

dnl
if test "x\$BACKEND" = "xpostgresql"; then
EMDFLDADD="-lemdf -lpq";
EMDFDEPS="../EMdF/libemdf.la";

else
EMDFLDADD="-lemdf -lmysqlclient";
EMDFDEPS="../EMdF/libemdf.la";

fi

Let’s deal with the easy stuff first. In order to use libtool, we need to tell
autoconf that it is going to be used, with the macro AC PROG LIBTOOL. We
don’t need AC PROG RANLIB used for static libraries, because libtool handles
all that. Because we have a choice of database backends, emdros needs to be
told which database it will be used with, and the appropriate emdros libraries
to be linked in. These dependencies get propagated down to the lower level
makefiles, such as the EMdF subdirectory.

Library Versioning Now a more complex but essential subject is library
versioning. Because many libraries form the foundation of many other libraries
and programs, e.g., libc, and because these libraries are in constant development
and change, a protocol was created to allow multiple versions of the same shared
library to exist on the same system, so that application programs (and, indeed,
the kernel) can have the version of libraries against which they were compiled.
So now the question is, when does one need more than one version of a library?
The answer is, when the API changes. If the API does not change, then the
application program doesn’t care particularly if something ”under the hood”
changes.

Library versions track the *interface*, which is a set of three entry points
into the library. These entry points are arranged in a hierarchy:

current interface:revision number:age number

The current interface documents a specific way the library functions are
called. That means if there is any addition to the library functions, or changes
in the way those functions are called, the data type of their parameters, etc.,
then the interface number of the library must change. If any revisions to the
source code of the library is made by fixing bugs, improving performance, even
adding functionality (e.g., more rigorous tests made of input data), *but* the
prototype of the library functions has not changed, then this is a *revision* of the
current interface, and the middle number is incremented. The runtime loader
will always use the highest revision number of the current interface. Finally,
the age number tells us how many previous interfaces are supersets of earlier
interfaces, i.e., how many earlier interfaces can be linked by binaries. The age
must always be less than or equal to the current interface number.

Quoting from AutoBook, here are the rules for incrementing these three
numbers:

19

1. If you have changed any of the sources for this library, the revision number
must be incremented. This is a new revision of the current interface.

2. If the interface has changed, then current must be incremented, and revi-
sion reset to ‘0’. This is the first revision of a new interface.

3. If the new interface is a superset of the previous interface (that is, if the
previous interface has not been broken by the changes in this new release),
then age must be incremented. This release is backwards compatible with
the previous release.

4. If the new interface has removed elements with respect to the previous
interface, then you have broken backward compatibility and age must be
reset to ‘0’. This release has a new, but backwards incompatible interface.

Thus, in our example above, since this is the first interface for the shared
libraries, it receives the number 0. There are no revisions for this new interface,
so revision=0 and age must be 0. Here is a very important principle:

THE SOFTWARE RELEASE VERSION

AND THE SHARED LIBRARY VERSION NUMBERING
SCHEMES

HAVE NOTHING TO DO WITH EACH OTHER!

Even though emdros is at Release 1.1.7 when shared libraries support was
added, the numbering scheme of the libraries is 0:0:0 and is independent of the
release numbers. The library versioning *must* conform to the four rules listed
above. If other parts of emdros are changed, but not the libraries, then the
library verions remain the same.

Finally, the AC SUBST macro exports the values of the library versions for
substitution in lower-level makefiles.

The Final Step The code for the libemdf library itself is found in EMdF/Makefile.am:

pkglib_LTLIBRARIES = libemdf.la
libemdf_la_SOURCES = conn.cpp \

emdf_wstring.cpp \
emdfdb.cpp \
utils.cpp \
inst.cpp \
monads.cpp \
infos.cpp \
table.cpp \
string_func.cpp \
inst_object.cpp \
emdf_output.cpp

libemdf_la_LDFLAGS = -version-info @LIB_CURRENT@:@LIB_REVISION@:@LIB_AGE@

20

First, we tell automake about our library: we want it installed in the ”pack-
age” directory for libraries (/usr/local/lib/emdros in this case), that the follow-
ing list of of libraries are to be made in both static and shared versions, using
the ”la” extension name. The next macro tells automake what source files are
to be used for building libemdf.la. Finally, we tell automake about the version
of the library.

That’s it, believe it or not! Automake and libtool handle all the rest. Simply
invoke the compile. For example:

aclocal && automake --add-missing && autoconf && ./configure && make install

Now do you see why we so strongly recommend the Autobuild tools? Yes,
we thought so! :-)

3 Part II: APIs

Part II contains information on the various APIs necessary for interfacing with
Emdros.

The EMdF API is not described in its fullness, since most of it is not strictly
necessary for interfacing with Emdros. Interested readers may consult the source
code.

3.1 EmdrosEnv

3.1.1 Overview

The EmdrosEnv class is an abstraction of the Emdros API. Use it in your
applications as the main interface to Emdros.

3.1.2 C++ interface

#include <emdros_environment.h>

/** Backend kind
*
* Used to distinguish among backends.
*
*/
enum eBackendKind {
kBackendNone = 0,/**< No backend selected */
kPostgreSQL = 1, /**< PostgreSQL */
kMySQL = 2, /**< MySQL */
kSQLite2 = 3, /**< SQLite 2.X.X */
kSQLite3 = 4 /**< SQLite 3.X.X */
};

21

class EmdrosEnv {
public:
EmdrosEnv(std::ostream* output_stream,

eOutputKind output_kind, eCharsets charset,
std::string hostname,
std::string user, std::string password,
std::string initial_db,
eBackendKind backend_kind = DEFAULT_BACKEND_ENUM);

// The following constructor uses std::cout (Standard Out)
EmdrosEnv(eOutputKind output_kind, eCharsets charset,

std::string hostname,
std::string user, std::string password,
std::string initial_db,
eBackendKind backend_kind = DEFAULT_BACKEND_ENUM);

virtual ~EmdrosEnv();

// Backend-name
static std::string getBackendName(void);

// Executing MQL queries
// See the mqlExecute* functions
// for information on the parameters.
bool executeString(const std::string& input, bool& bResult,

bool bPrintResult, bool bReportError);
bool executeFile(std::string filename, bool& bResult,

bool bPrintResult, bool bReportError);
bool executeStream(std::istream& strin, bool& bResult,

bool bPrintResult, bool bReportError);

// Cleaning up
// clean() calls MQLExecEnv::clean().
// It is good to call if you are through with a query’s results
// and there is a long time till the next executeXXX call.
void clean();

// Database support
// Call the corresponding EMdFDB methods
bool connectionOk(void);
bool vacuum(bool bAnalyze);
bool getMin_m(monad_m& /* out */ min_m);
bool getMax_m(monad_m& /* out */ max_m);
bool getAll_m_1(SetOfMonads& /* out */ all_m_1);

// Returns the string-representation of an enumeration constant in
// enum enum_name with the value value.
// Just calls the corresponding EMdFDB method.
// bDBOK is true on no DB error.

22

virtual std::string getEnumConstNameFromValue(long value,
const std::string& enum_name,
/* out */ bool \&bDBOK);

// Transactions
// Call the corresponding EMdFDB methods
bool beginTransaction(void);
bool commitTransaction(void);
bool abortTransaction(void);

//
// Check for results
//

// Check for sheaf
// Returns true on result is sheaf.
// Returns false on no result or result not sheaf
bool isSheaf(void);

// Check for table
// Returns true on result is table.
// Returns false on no result or result not table.
bool isTable(void);

// NOTE on statements:
// If only one MQL query was executed by the last executeXXX
// invocation, then there will be only one statement to get.
// If more than one MQL query was given to one of these methods,
// only the results from the last statement executed will be available.

// Getting results. Next invocation of executeXXX deletes the object,
// so you cannot execute a query until you are done processing
// the result
MQLResult* getResult(void); // Return nil on no result
Sheaf* getSheaf(void); // Returns nil on no result or result not a sheaf
FlatSheaf* getFlatSheaf(void); // Returns nil on no result or result not a flat sheaf
Table* getTable(void); // Returns nil on no result or result not a table
Statement *getStatement(void); // Returns nil on no statement

// Take over object. You now have responsibility for deleting it,
// and it will not be deleted by the next invocation of executeXXX.
MQLResult* takeOverResult(void); // Return nil on no result
Sheaf* takeOverSheaf(void); // Returns nil on no result or result not a sheaf
FlatSheaf* takeOverFlatSheaf(void); // Returns nil on no result or result not a flat sheaf
Table* takeOverTable(void); // Returns nil on no result or result not a table
Statement *takeOverStatement(void); // Returns nil on no statement

23

// Getting error-messages and info
std::string getDBError(void);
std::string getCompilerError(void);
// Gets the compiler stage that was executed last
int getLastCompilerStage(void);
// clears local DB error message in EMdFDB and local error in MQLError
void clearErrors(void);

// Outputting
// These all output on the stream in local EMdFOutput,
// i.e., the stream you passed to the constructor of EmdrosEnv,
// or stdout if the other constructor was used
void out(std::string str); // out your own string
void out(MQLResult *pResult);
void out(Sheaf *pSheaf);
void out(Table *pTable);

//
// XML outputting
//

// XML declaration.
// Calls EMdFOutput::printXMLDecl on the local EMdFOutput
void printXMLDecl();

// DTDs
void printDTDStart(std::string root_element);
void printDTDEnd();
void printDTDMQLResult(void);
void printDTDTable(void);
void printDTDSheaf(void);

// Accessing members
MQLExecEnv* getMQLEE(void);

};

3.2 EMdFOutput

3.2.1 Overview

The EMdFOutput class is an abstraction of three things:

• A default encoding (e.g., ISO-8859-1),

• A pointer to a std::ostream descendant to use when outputting, and

• An output kind, telling Emdros whether to use console output or XML
output.

24

3.2.2 C++ interface

#include <emdf_output.h>

typedef enum {
kCSASCII,
kCSISO_8859_1,
kCSISO_8859_8,
kCSUTF8

} eCharsets;

typedef enum {
kOKXML,
kOKConsole

} eOutputKind;

class EMdFOutput {
public:
EMdFOutput(eCharsets charset, // Default encoding

std::ostream *pStream, // Output stream
eOutputKind output_kind, // XML or Console?
int indent_chars = 3 // No. of indent-spaces for XML
);

~EMdFOutput();
eOutputKind getOutputKind(void) const { return m_output_kind; }

};

3.3 EMdF database

3.3.1 Overview

The EMdF database classes are structured in the following hierarchy:

• EMdFDB

– PgEMdFDB

– MySQLEMdFDB

– SQLiteEMdFDB (for SQLite 2)

– SQLite3EMdFDB (for SQLite 3)

3.3.2 Boolean return value

For the functions which return a boolean, the return value generally means the
following:

• true: No error.

25

• false: An error occurred. Use the error interface to get to know what
the error was. The values of any reference parameters which should have
returned something are undefined.

The only exceptions to this rule are the transaction interface methods and
the ConnectionOk() method.

3.3.3 Special ’emdf’ database name

All of the backends recognize the special database name ’emdf’ (without the
quotes). This is a valid database name, but will not associate the connection
with any database.

Hence, you can use ’emdf’ as a default database name used until you is-
sue a ’USE DATABASE’ MQL statement or call the EMdFDB::useDatabase()
method.

On PostgreSQL, the user is actually connected to the ’template1’ database.
On MySQL, the user is connected with no default associated database.
On SQLite (2 and 3), the user is not connected to any database.

3.3.4 C++ interface

emdfdb.h

#include <emdfdb.h>

class EMdFDBException {};
class EMdFDBDBError : public EMdFDBException {};

class EMdFDB {
public:
//
// Construction and destruction
EMdFDB();
virtual ~EMdFDB();

// Get backend-name
static std::string getBackendName(void);

//
// Database manipulation
virtual bool useDatabase(const std::string& db_name);

// min_m and max_m
bool getMin_m(monad_m& /* out */ min_m);
bool getMax_m(monad_m& /* out */ max_m);
bool getAll_m_1(SetOfMonads& /* out */ all_m_1);

// Indices
bool createIndicesOnDatabase(const std::string& database_name);

26

bool dropIndicesOnDatabase(const std::string& database_name);
bool createIndicesOnObjectType(const std::string& object_type_name);
bool dropIndicesOnObjectType(const std::string& object_type_name);
bool createIndicesOnObjectType(const std::string& database_name,

const std::string& object_type_name);
bool dropIndicesOnObjectType(const std::string& database_name,

const std::string& object_type_name);

// DB maintenance
virtual bool vacuum(bool bAnalyze);

// Transactions
virtual bool beginTransaction(void);
virtual bool commitTransaction(void);
virtual bool abortTransaction(void);

//
// Error messages
virtual std::string errorMessage(void);
virtual bool connectionOk(void);
void clearLocalError(void);
std::string getLocalError(void);

};

PgEMdFDB

#include <pgemdfdb.h>

class PgEMdFDB : public EMdFDB {
public:
PgEMdFDB(std::string host, // Hostname to connect to

// (e.g., "localhost"),
std::string user, // PostgreSQL user (e.g., "emdf")
std::string passwd, // PostgreSQL password (e.g., "changeme"),
std::string database_name // Initial database to connect to

// (e.g., "emdf").
);

virtual ~PgEMdFDB();
};

MySQLEMdFDB

27

#include <mysqlemdfdb.h>

class MySQLEMdFDB : public EMdFDB {
public:
MySQLEMdFDB(std::string host, // Hostname to connect to

// (e.g., "localhost"),
std::string user, // MySQL user (e.g., "emdf")
std::string passwd, // MySQL password (e.g., "changeme"),
std::string database_name // Initial database to connect to

// (e.g., "emdf").
);

virtual ~MySQLEMdFDB();
};

SQLiteEMdFDB

#include <sqliteemdfdb.h>

class SQLiteEMdFDB : public EMdFDB {
public:
SQLiteEMdFDB(std::string database_name, // Initial database to connect to

// (e.g., "emdf").
std::string database_key, // "Key" to use with encrypted SQLite dbs.

// Is ignored if there is no encryption available.
// (can be purchased separately from the Emdros author)

);
virtual ~SQLiteEMdFDB();

};

SQLite3EMdFDB

#include <sqlite3emdfdb.h>

class SQLite3EMdFDB : public EMdFDB {
public:
SQLite3EMdFDB(std::string database_name, // Initial database to connect to

// (e.g., "emdf").
std::string database_key, // "Key" to use with encrypted SQLite dbs.

// Is ignored if there is no encryption available.
// (can be purchased separately from the Emdros author)

28

);
virtual ~SQLite3EMdFDB();

};

3.3.5 Transactions

Overview Transactions are implemented for PostgreSQL and SQLite (2 and
3) only. The MySQL interface returns false on all three member functions.

The beginTransaction member function is special in that its return value,
though boolean, does not mean ”success/error”. Instead, the return value means
the following:

• true: The transaction was started,

• false: The transaction was not started.

The other two functions, commitTransaction and abortTransaction, follow
the normal pattern of returning true on success, false on error.

Nested transactions are not supported. If a transaction is currently in
progress, beginTransaction will return false.

C++ interface

#include <emdfdb.h>

class EMdFDB {
public:
// Transactions
virtual bool beginTransaction(void);
virtual bool commitTransaction(void);
virtual bool abortTransaction(void);

};

C++ example The following shows how to use transactions. pDB is a pointer
to the database object.

bool bDoCommit; // Should we commit later?
bDoCommit = pDB->beginTransaction(); // Possibly begin transaction

// Process...

if (/* something went wrong */) {

29

// Recover...
if (bDoCommit) {
if (!pDB->abortTransaction()) {
// Abort failed

}
}
// Exit from function

}

// More processing...

// We’re done!

if (bDoCommit) {
if (!pDB->commitTransaction()) {
// Commit failed.

}
}

3.4 MQL execution environment

3.4.1 Overview

The MQL execution environment is a container for everything the MQL engine
needs to know about its environment in order to function.

It is recommended that you create an MQLExecEnv only indirectly, through
an EmdrosEnv.

3.4.2 C++ interface

#include <mql_execution_environment.h>

#define COMPILER_STAGE_NONE (0)
#define COMPILER_STAGE_PARSE (1)
#define COMPILER_STAGE_WEED (2)
#define COMPILER_STAGE_SYMBOL (3)
#define COMPILER_STAGE_TYPE (4)
#define COMPILER_STAGE_MONADS (5)
#define COMPILER_STAGE_EXEC (6)

class MQLExecEnv {
public:
Statement *pStatement; // Only valid after a successful parse.

// Deleted and set to nil by clean().
EMdFDB* pDB;
EMdFOutput *pOut;

30

MQLError *pError; // Initialized by constructor, deleted by destructor
MQLExecEnv(EMdFDB* pMyDB, EMdFOutput *pMyOut);
~MQLExecEnv();
int nCompilerStage; // Shows you which compiler stage went wrong
void clean(void); // Must be called before each query is executed,

// but is called automatically by the
// mqlExecuteXXX functions and so, by proxy, the
// EmdrosEnv::executeXXX methods

};

3.5 MQL Error

3.5.1 Overview

The MQL Error class encapsulates a string which contains the latest error mes-
sage from the MQL compiler. Any database error must be gotten from the
EMdFDB interface.

3.5.2 C++ interface

#include <mql_error.h>

class MQLError {
public:
MQLError();
~MQLError();
void clearError(void);
std::string getError(void);

};

3.6 MQL language

3.6.1 Overview

The MQL language interface consists of three functions, each of which differs
from the others only in the kind of input it takes:

• mqlExecuteFile takes a the name of a file

• mqlExecuteStream takes a descendant of std::istream

• mqlExecuteString takes a std::string

31

3.6.2 Arguments

The following are the other arguments, common to them all:

• pEE is the execution environment.

• bResult& is a boolean reference returning true on success and false on
error.

• bPrintResult is a boolean indicating whether the results should be dumped
using the EMdFOutput object in the execution environment (true) or not
(false). Set this to false if you plan to use the pStatement of the execution
environment for getting the results.

• bReportError is a boolean indicating whether any error message should
be reported using the EMdFOutput object in the execution environment.
This only has an effect if the output kind is kOKConsole, since any error
message is always given in the XML output.

3.6.3 C++ interface

#include <mql_execute.h>

extern bool mqlExecuteFile(MQLExecEnv *pEE,
std::string filename,
bool& bResult,
bool bPrintResult,
bool bReportError);

extern bool mqlExecuteStream(MQLExecEnv *pEE,
std::istream& strin,
bool& bResult,
bool bPrintResult,
bool bReportError);

extern bool mqlExecuteString(MQLExecEnv *pEE,
const std::string& input,
bool& bResult,
bool bPrintResult,
bool bReportError);

3.7 Monads

3.7.1 Overview

The monads interface is useful in all kinds of ways, since monads are so funda-
mental to Emdros.

32

3.7.2 C++ interface

#include <monads.h>

class BadMonadsException {};

class MonadSetElement {
public:

MonadSetElement(monad_m first, monad_m last);
MonadSetElement(monad_m monad);
monad_m first(void) const; // Gets the member variable
monad_m last(void) const; // Gets the member variable
void printConsole(EMdFOutput *pOut) const;
void printXML(EMdFOutput *pOut) const;

// Returns true on this and b having the same first_m and
// this and b having the same last_m.
bool equals(const MonadSetElement& b) const;

// Returns true on this object being
// "lexicographically" before other object.
// That is, true if and only if
// this->first_m < other.first_m
// or (this->first_m == other.first_m
// and
// this->last_m < other.last_m)
bool isBefore(const MonadSetElement& other) const;

};

class SOMConstIterator {
public:

SOMConstIterator();
~SOMConstIterator();
bool hasNext() const; // Is the iterator == end iterator? Doesn’t alter iterator
const MonadSetElement& next(); // Gets current and advances iterator afterwards
const MonadSetElement& current(); // Gets current without altering iterator

};

class SetOfMonads {
public:
monad_m first() const; // First in set
monad_m last() const; // Last in set
SOMConstIterator const_iterator() const;
std::ostream& putme(std::ostream& s) const;
void printConsole(EMdFOutput *pOut) const;
void printXML(EMdFOutput *pOut) const;

33

SetOfMonads() {};
/** Constructor from compact string.
*
* Constructs a set from a compact string. This would previously
* have been gotten from SetOfMonads::toCompactString().
*
* @param compactString The compact string to create from.
*/
SetOfMonads(const std::string& compactString) : m_first(MAX_MONAD), m_last(0) {

fromCompactString(compactString); };
/** Constructor for singleton set.
*
* Constructs a set with (initially) only one monad, \p m.
*
* @param m The monad to add to the empty set.
*/
SetOfMonads(monad_m m) { add(m); };
/** Constructor for single range set.
*
* Constructs a set with (initially) a single range, from \p first
* to \p last.
*
* @param first The first monad of the range to add to an empty set.
* @param last The last monad of the range to add to an empty set.
*/
SetOfMonads(monad_m first, monad_m last) : m_first(first), m_last(last) {

monad_ms.push_back(MonadSetElement(first,last)); };
~SetOfMonads();
SetOfMonads& operator=(const SetOfMonads& som); // Not SWIG-wrapped
std::string toString(void) const; // Get string-representation
bool part_of(const SetOfMonads& other) const;
void unionWith(const SetOfMonads& other);
void difference(const SetOfMonads& other);
static SetOfMonads intersect(const SetOfMonads& Aset, const SetOfMonads& Bset);
void addMSE(MonadSetElement mse);
void add(monad_m monad);
void add(monad_m first, monad_m last);
bool equals(SetOfMonads& other) const; // A proxy for operator==
bool operator==(SetOfMonads& other) const; // Not SWIG-wrapped
bool isMemberOf(monad_m m) const;
bool isEmpty(void) const;
void getMonad_mVector(std::vector<monad_m>& monad_vec) const; // Not SWIG-wrapped
void getMonad_mList(std::list<monad_m>& monad_list) const; // Not SWIG-wrapped
void getGapVector(std::vector<monad_m>& gap_vec) const; // Not SWIG-wrapped
void removeMSE(const MonadSetElement& mse);
bool gapExists(monad_m Sm, monad_m& m) const; // Gap exists in
// set, starting at Sm, finishing at m

void offset(monad_m m); // Add m to all mse’s in set
void clear(); // Make empty
std::string toCompactString(void) const;

34

void fromCompactString(const std::string& inStr);
/** Check whether set is a singleton or single range.
*
* Returns true if there is only one MonadSetElement in the set.
* This can be either a singleton or a single range.
*
* @return true if there is only one MonadSetElement, false if not.
*/
bool hasOnlyOneMSE(void) const;

};

3.7.3 Examples

A SetOfMonads can be used like this:

// Declare and fill som with monads
SetOfMonads som;
som.add(1); // Now is { 1 }
som.add(3,6); // Now is { 1, 3-6 }
som.add(10,13) ; // Now is { 1, 3-6, 10-13 }

// Get string representation
std::string stringRepresentation = som.toString();

// Declare and fill som2 with monads
SetOfMonads som2;
som2.add(2,7); // Now is { 2-7 }

// Declare and fill som3 with monads
SetOfMonads som3;
som3.add(2,4); // Now is { 2-4 }

// Add the monads of som2 to som
som.unionWith(som2) // som is now { 1-7, 10-13 }

// Get set intersection of som and som3
SetOfMonads som4;
som4 = SetOfMonads::intersect(som, som3); // som4 is now { 2-4 }

// Subtract the monads of som2 from som
som.difference(som2); // som is now { 10-13 }

The SOMConstIterator can be used like this:

35

SetOfMonads som; // Assumed to be initialized from somewhere
SOMConstIterator sci = som.const_iterator();
while (sci.hasNext()) {
MonadSetElement mse = sci.current();

// Process mse ...

// Are there any left?
if (sci.hasNext()) {

// Do something if the just-processed mse is not the last
}

sci.next();
}

// Or like this:
SetOfMonads som; // Assumed to be initialized from somewhere
SOMConstIterator sci = som.const_iterator();
while (sci.hasNext()) {
MonadSetElement mse = sci.next();

// Process mse ...

// Note how there is no si.next() again, since next()
// first gets current element and then advances iterator.

}

3.8 Statement

3.8.1 Overview

The Statement class is the base class for all MQL statements. It contains the
MQLResult object associated with each execution of a statement.

When executing more than one statement at a time in a single call to Em-
drosEnv::executeXXX or mqlExecuteXXX, only the results from the last state-
ment executed are available afterwards. Executing more than one query is
mostly used when parsing the output from the mql(1) program.

3.8.2 Example

You can get to the results of an MQL statement via the following path:

pEE->getStatement()->getResult(); // pEE is the EmdrosEnv environment

36

3.8.3 C++ interface

#include <mql_types.h>

// Base class for all statements
class Statement {
public:
MQLResult* getResult();

};

3.9 Table

3.9.1 Overview

The table is the kind of output returned from all MQL statements which return
something, except for ”SELECT (ALL|FOCUS) OBJECTS”, which returns a
sheaf.

A table is a list of TableRows. A TableRow, in turn, is a list of strings.
The columns are numbered beginning with 1, not 0.
Java-style iterators are provided for accessing the rows and their contents.

3.9.2 C++ interface

#include <table.h>

typedef enum {
kTCString,
kTCInteger,
kTCID_D,
kTCMonad_m,
kTCBool,
kTCEnum

} TableColumnType;

class TableRowIterator {
public:
TableRowIterator(TableRow *pMotherTableRow);
TableRowIterator();
~TableRowIterator();
bool hasNext() const; // Is the iterator == end iterator? Doesn’t alter iterator
std::string next(); // Gets current and advances iterator afterwards
std::string previous(); // Regresses iterator and then gets current
std::string current(); // Gets current without altering iterator
std::string getColumn(int column); // Gets column in current without touching iterator. First column is 1.

37

};

class TableRow : public std::list<std::string> {
public:
TableRow();
~TableRow();
TableRowIterator iterator(); // Gets iterator pointing to beginning
std::string getColumn(int column); // Gets column. First column is 1.
unsigned int size() const; // Gets number of columns

};

class TableIterator {
public:
TableIterator();
TableIterator(Table *pMotherTable);
TableIterator(const TableIterator& other);
~TableIterator();
bool hasNext() const; // Is the iterator == end iterator? Doesn’t alter iterator
TableRow& next(); // Gets current and advances iterator afterwards
TableRow& previous(); // Regresses iterator and then gets current
TableRow& current(); // Gets current without altering iterator
std::string next(int column); // Gets column in current and then advances iterator
std::string getColumn(int column); // Gets column in current without altering iterator. First column is 1.

};

class Table {
public:
Table();
~Table();
// Reading from a table
TableIterator iterator();

// Find row with string str at column column_index. First column is 1.
TableIterator find(const std::string& str, int column_index,

bool bCompareCaseInsensitively = true);

// Find row with str1 and str2 at their respective columns. First column is 1.
TableIterator find(const std::string& str1, int column_index1,

const std::string& str2, int column_index2,
bool bCompareCaseInsensitively = true);

void erase(TableIterator& d);
void clear();

// First column is 1.
std::string getColumn(TableIterator& i, int column_index);
long size() const; // Get number of rows

// Adding to a table
void append(const std::string& str);

38

void newline();
void appendHeader(std::string header_name,

TableColumnType tc_type,
std::string enum_type = "");

// First column is 1.
void updateRow(TableIterator& i, const std::string new_value, int column_index);

// Should be called before append.
void startNewRow();

// Printing a table
void printConsole(EMdFOutput *pOut) const;
void printXML(EMdFOutput *pOut) const;
static void printDTD(EMdFOutput *pOut);

};

3.9.3 Examples

Iterators (reading from a table) Here is an example of how to use the
iterators.

Table *pTable; // Assumed to be initialized from somewhere

// Get first string of first row
TableIterator ti = pTable->iterator();
std::string firstRowCol = pTable->getColumn(ti, 1); // Note how column 1 is the first.

// out table
ti = pTable->iterator();
while (ti.hasNext()) {
// Get iterator for current row
TableRowIterator tri = ti.current().iterator();

// out row
while (tri.hasNext()) {
// out string plus horizontal tab, and advance iterator
printf("%s\t", tri.next());

}

// out newline
printf("\n");

// Advance iterator
ti.next();

39

}

// Find something in table
int column_to_search = 2;
TableIterator ti2 = pTable->find("StringToFind", column_to_search);
if (ti2.hasNext()) {
printf("String found!\n");
TableRow& tr = ti.current();
printf("Column 1 = ’%s’\n", tr.getColumn(1));

} else {
printf("String not found.\n");

}

Adding to a table Here’s an example of how to add to a table:

// Create header (not really necessary if you know what you’ve
// placed into the table; mostly for aesthetics when printing
// and for communicating with other parts of the program)
pTable->appendHeader("first_monad", kTCMonad_m);
pTable->appendHeader("last_monad", kTCMonad_m);

// Start a new row (call this method before starting a new row)
pTable->startNewRow();

// Add row 1
pTable->append(1); // Monad 1 in first_monad
pTable->append(4); // Monad 4 in last_monad

// Add row 2
pTable->startNewRow();
pTable->append(10); // Monad 10 in first_monad
pTable->append(13); // Monad 13 in last_monad

3.10 Sheaf

3.10.1 Overview

The sheaf is the datastructure returned by the ”SELECT (ALL|FOCUS) OB-
JECTS” query. See the MQL User’s Guide Chapter 4 for a description of the
sheaf.

Briefly, a sheaf is a list of straws. A straw is a list of matched objects.
A matched object may have an inner sheaf, which makes the datastructure
recursive.

40

A matched object corresponds to an object block(first) or (opt)gap block
in a topographic MQL query. A straw corresponds to a block string. A sheaf
corresponds to a blocks.

A matched object may be one of two kinds:

• kMOKID D : Match of object block(first)

• kMOKID M : Match of (opt)gap block

Use the getKind() method to find out which it is, if you don’t already know
from the query.

A matched object contains the following information:

• An eMOKind enumeration (either kMOKID D or KMOKID M)

• An id d (valid if the eMOKind enumeration is kMOKID D)

• An object type (valid if the eMOKind enumeration is kMOKID D)

• A set of monads (always valid)

• A focus boolean (always valid)

• A ”marks” string (always valid, but may be empty)

• An inner sheaf (always valid)

• A vector of EMdFValue values, non-empty if the object block had a GET
clause.

Java-style iterators are provided.

3.10.2 C++ interface

#include <mql_sheaf.h>

typedef enum {
kMOKNIL_mo, // Used only while building sheaf, never in finished sheaf
kMOKEMPTY_mo, // Used only while building sheaf, never in finished sheaf
kMOKID_D, // Match of object_block(_first)
kMOKID_M // Match of (opt_)gap_block

} eMOKind;

class MatchedObject {
public:
MatchedObject(const MatchedObject& other);
~MatchedObject();
const SetOfMonads& getMonads(void) const;
id_d_t getID_D(void) const;
const Sheaf* getSheaf(void) const;
bool sheafIsEmpty(void) const;

41

eMOKind getKind(void) const;
/** Return true if this is an ID_M.
*
* @return \p true if this is an ID_M matched object,
* \p false if it is an ID_D matched object.
*/
bool isID_M(void) const;
/** Return true if this is an ID_D.
*
* @return \p true if this is an ID_D matched object,
* \p false if it is an ID_M matched object.
*/
bool isID_D(void) const;
/** Return true if the block from which this came had the FOCUS keyword.
*
* @return \p true if this matched object is in FOCUS,
* \p false otherwise.
*/
bool getFocus(void) const;
/* Return the mark string (given in the query with a backping
* ("‘"), right after the object type in an object_block, or
* right after "[gap?" or "[gap".
*
* Can be called for all types of MatchedObjects, but will return "" (the
* empty string) if either there is no mark, or it is an EMPTY_MO.
*
* @return the mark string, including the backping.
*/

std::string getMarkString() const;
MatchedObject& operator=(const MatchedObject& other); // Not SWIG-wrapped
short int getObjectTypeIndex(void) const;

// A convenience function for getEMdFValue.
//
// Returns a string representation of the given EMdFValue.
// Integers and ID_Ds are returned as their base-10 representation.
// Strings are returned as-is.
// Enums are returned as their string name, not their integer value.
// Lists of integers are returned as a comma-separated list of
// the base-10 representation of the integers involved, surrounded by
// parentheses.
// Lists of id_ds are returned like lists of integers.
//
// Always returns a string, so long as the index parameter is in range.
//
// Throws an EmdrosException if index out of range.
std::string getFeatureAsString(int index) const;

// A convenience function for getEMdFValue.
//

42

// Returns the "long" value of the given EMdFValue, if possible.
//
// Only features that are integers, id_ds, or enums return a value.
// All others will throw an EmdrosException.
//
// Integers and id_ds are returned as is.
// Enums are returned by their integer value, not their string name.
//
// Throws an EmdrosException if index out of range.
long getFeatureAsLong(int index) const;

// Get enum label from an index into the EMdFValue vector
std::string getEnumLabel(int index) const;

// Returns 0 on index out of range.
// Is the fastest
const EMdFValue *getEMdFValue(int index) const;

// Returns 0 on index out of range.
// Is slow.
const EMdFValue *getEMdFValue(const std::string& feature_name) const;

// Get the index of a feature name to be used for
// getEMdFValue(short int index).
// Returns -1 on not found
int getEMdFValueIndex(const std::string& feature_name) const;

// Get list of feature-names in the order in which they appear in
// the value vector. Thus this list can be used as a basis for
// getting the indexes of the EMdFValues to be used with
// MatchedObject::getEMdFValue().
StringList getFeatureList(void) const;

// Get number of values in list of EMdFValue’s.
unsigned int getNoOfEMdFValues(void) const;

// Get name of object type for this MatchedObject (may be pow_m).
std::string getObjectTypeName() const;

void printConsole(EMdFOutput *pOut) const;
void printXML(EMdFOutput* pOut) const;

// See Sheaf::getSOM() for an explanation
void getSOM(SetOfMonads& som, bool bUseOnlyFocusObjects) const;

};

class StrawConstIterator {
public:

43

StrawConstIterator(const Straw *pMotherStraw);
StrawConstIterator();
StrawConstIterator(const StrawConstIterator& other);
~StrawConstIterator();
bool hasNext() const; // Is the iterator == end iterator? Doesn’t alter iterator
const MatchedObject* next(); // Gets current and advances iterator afterwards
const MatchedObject* previous(); // Regresses iterator and then gets current
const MatchedObject* current(); // Gets current without altering iterator

};

class Straw {
private:
friend class StrawConstIterator;
monad_m m_last;
MOList m_list;

public:
~Straw();
Straw(const Straw& other);
StrawConstIterator const_iterator() const;
Straw& operator=(const Straw& other); // Not SWIG-wrapped
monad_m getLast(void) const { return m_last; };
void printConsole(EMdFOutput *pOut) const;
void printXML(EMdFOutput* pOut) const;

// See Sheaf::getSOM() for an explanation
void getSOM(SetOfMonads& som, bool bUseOnlyFocusObjects) const;

};

class SheafIterator {
public:
SheafIterator(ListOfStraws *pMotherList);
SheafIterator();
SheafIterator(const SheafIterator& other);
~SheafIterator();
bool hasNext() const; // Is the iterator == end iterator? Doesn’t alter iterator
Straw* next(); // Gets current and advances iterator afterwards
Straw* previous(); // Regresses iterator and then gets current
Straw* current(); // Gets current without altering iterator

};

class SheafConstIterator {
public:
SheafConstIterator(const ListOfStraws *pMotherList);
SheafConstIterator();
SheafConstIterator(const SheafConstIterator& other);
~SheafConstIterator();
bool hasNext() const; // Is the iterator == end iterator? Doesn’t alter iterator
const Straw* next(); // Gets current and advances iterator afterwards

44

const Straw* previous(); // Regresses iterator and then gets current
const Straw* current(); // Gets current without altering iterator

};

class ListOfStraws {
public:
~ListOfStraws();
ListOfStraws(const ListOfStraws& other);
SheafIterator iterator();
SheafConstIterator const_iterator() const;
bool isEmpty() const;
void printConsole(EMdFOutput *pOut) const;
void printXML(EMdFOutput* pOut) const;

};

class Sheaf {
public:
Sheaf(const Sheaf& other);
~Sheaf();
bool isFail(void) const;
SheafIterator iterator();
SheafConstIterator const_iterator() const;
const ListOfStraws* get_plist(void) const { return m_plist; };
Sheaf& operator=(const Sheaf& other); // Not SWIG-wrapped
void printConsole(EMdFOutput *pOut) const;
void printXML(EMdFOutput* pOut) const;
// out sheaf’s contribution to DTD
static void printDTD(EMdFOutput* pOut);

// Gets big-union of sets of monads in sheaf’s matched_objects.
// This is done recursively through all straws and inner sheafs.
//
// If bUseOnlyFocusObjects is true, only matched_objects with their
// focus boolean set to true will be included. Otherwise, all matched_objects
// are considered.

// The method makes no distinction between matched_objects arising from
// (opt-)gap-blocks and object blocks.
//
// You should probably start with an empty set of monads unless you
// want to include monads that are not in the sheaf.
virtual void getSOM(SetOfMonads& som, bool bUseOnlyFocusObjects) const;

// Here is a version which starts with an empty set and returns the result
// rather than passing it as a parameter.
virtual SetOfMonads getSOM(bool bUseOnlyFocusObjects) const;

};

45

//
//
// Flat sheaf
//
//

class FlatStraw {
public:
FlatStraw(id_d_t object_type_id, const std::string& object_type_name);
~FlatStraw();
FlatStrawConstIterator const_iterator(void) const;
void addMO(const MatchedObject *pMO);
void printConsole(EMdFOutput *pOut) const;
void printXML(EMdFOutput* pOut) const;

};

class FlatStrawConstIterator {
public:
FlatStrawConstIterator();
FlatStrawConstIterator(const FlatStrawConstIterator& other);
~FlatStrawConstIterator() {};
bool hasNext() const; // Is the iterator == end iterator? Doesn’t alter iterator
MatchedObject *next(); // Gets current and advances iterator afterwards
MatchedObject *current(); // Gets current without altering iterator

};

class FlatSheafConstIterator {
public:
FlatSheafConstIterator();
FlatSheafConstIterator(const FlatSheafConstIterator& other);
~FlatSheafConstIterator();
bool hasNext() const; // Is the iterator == end iterator? Doesn’t alter iterator
FlatStraw* next(); // Gets current and advances iterator afterwards
FlatStraw* current(); // Gets current without altering iterator

};

class FlatSheaf {
public:
FlatSheaf(); // For "all" object types
// For only a select few -- isn’t SWIG-wrapped
FlatSheaf(const std::list<std::pair<id_d_t, std::string> >& object_types);
~FlatSheaf();
bool isFail(void) const { return m_bIsFail; };
void printConsole(EMdFOutput *pOut) const;
void printXML(EMdFOutput* pOut) const;
static void printDTD(EMdFOutput *pOut);

46

FlatSheafConstIterator const_iterator(void) const;
};

// For all object types in the sheaf.
// Is not SWIG-wrapped. Use the interface in
// MQLResult instead.
extern FlatSheaf *mql_flatten_sheaf(const Sheaf *pSheaf);

// Only for certain object types
// Is not SWIG-wrapped. Use the interface in
// MQLResult instead.
extern FlatSheaf *mql_flatten_sheaf(StringList *pObjectTypeNames, EMdFDB *pDB,

const Sheaf *pSheaf);

// Only for certain object types
// Is not SWIG-wrapped. Use the interface in
// MQLResult instead.
extern FlatSheaf *mql_flatten_sheaf(StringList *pObjectTypeNames, EmdrosEnv *pEnv,

const Sheaf *pSheaf);

3.10.3 Example

The iterators are used like this:

Sheaf *pSheaf; // Assumed to be initialized from somewhere
SheafConstIterator sci = pSheaf->const_iterator();
while (sci.hasNext()) {
const Straw *pStraw = sci.current();

// Process pStraw ...

sci.next();
}

// Or like this:
SheafIterator si = pSheaf->iterator();
while (si.hasNext()) {
Straw *pStraw = si.next();

// Process pStraw ...

// Note how there is no si.next() again, since next()

47

// first gets current element and then advances iterator.

// NOTE: This is also possible with the const iterators.

}

3.11 EMdFValue

3.11.1 Overview

EMdFValue is returned from MatchedObject::getEMdFValue(). It holds an
EMdF value, i.e., one of the following:

• Integer

• ID D

• String

• Enum

• List of Integer (IntegerList).

• List of ID D

3.11.2 Enums

The enum constants returned are integers, both for kEVEnum and kEVListOfIn-
teger (which is also used for lists of enum constants). You must use ¡page anchor
ID=””¿EmdrosEnv::getEnumConstNameFromValue() in order to retrieve the
string-form of the enum.

3.11.3 C++ interface

#include <emdf_value.h>

typedef enum {
kEVInt,
kEVEnum,
kEVID_D,
kEVString,
kEVListOfInteger, // Also used for enums
kEVListOfID_D

} eEVkind;

class EMdFValue {
public:
// Copy-constructor
EMdFValue(const EMdFValue& other);

48

// kind must be kEVInt, kEVEnum or kEVID_D
EMdFValue(eEVkind kind, long i);

// kind becomes kEVString
EMdFValue(const std::string& str);

// Kind must be kEVListOfInteger or kEVListOfID_D
EMdFValue(eEVkind kind, IntegerList *pIntegerList);

~EMdFValue();

// Get kind
eEVkind getKind(void) const;

// Get if it is a string
const std::string getString(void) const;

// Get if it is an ID_D
id_d_t getID_D(void) const;

// Get if it is an integer
long getInt(void) const;

// Get if it is an enum
long getEnum(void) const;

// Get if it is kEVListOfInteger or kEVListOfID_D
IntegerList *getIntegerList(void) const;

// Get a string representation
void toString(std::string& result) const;

// Change string-value. Must be kEVString
void changeString(const std::string&newString);

// Assignment operator
EMdFValue& operator=(const EMdFValue& other); // Not SWIG-wrapped

};

3.12 MQLResult

3.12.1 Overview

The MQLResult class encapsulates the results of an MQL query. It is either a
sheaf or a table. If it is a sheaf, the table-part will be empty. If it is a table,
getSheaf() will return nil. If it is a sheaf, getSheaf will return a pointer to the

49

sheaf.

3.12.2 C++ interface

#include <mql_result.h>

class MQLResult : public Table {
public:
~MQLResult();
Sheaf *getSheaf(void);
Table *getTable(void);
FlatSheaf *getFlatSheaf(void);

bool isSheaf() const;
bool isFlatSheaf() const;
bool isTable() const;

// out prints either XML or Console output, based on pOut
void out(EMdFOutput *pOut) const;

// printDTD prints the MQLResult’s contributions to the DTD
static void printDTD(EMdFOutput* pOut);

// For all object types in the sheaf
bool flatten();

// Only for the object types in pObjectTypeNames.
bool flatten(StringList *pObjectTypeNames, EMdFDB *pDB);

};

3.13 StringList

3.13.1 Overview

A StringList is for communicating a list of strings between Emdros and the
program using Emdros.

The list is ordered, and can be iterated with the normal Emdros-iterators.
SPECIAL SWIG JAVA NOTE: Use of the StringListConstIterator is

deprecated under Java. Instead, please use the getAsVector() method, which
will return a Java Vector of Java String objects.

#include <string_list.h>

class StringListConstIterator {
public:
StringListConstIterator();

50

StringListConstIterator(const StringList *pMotherStringList); // Not SWIG-wrapped.
StringListConstIterator(const StringListConstIterator& other);
~StringListConstIterator();
bool hasNext() const; // Is the iterator == end iterator? Doesn’t alter iterator
std::string next(); // Gets current and advances iterator afterwards
std::string previous(); // Regresses iterator and then gets current
std::string current(); // Gets current without altering iterator

};

class StringList {
public:
// Create empty string list, to be populated later
// with addStringListNodes.
StringList();

// Copy constructor
StringList(const StringList& other);

// Assignment operator
const StringList& operator=(const StringList& other); // Not SWIG-wrapped!

~StringList();

StringListConstIterator const_iterator() const;

// Add at beginning of list, pushing everything down one member
void addStringFront(const std::string& str);

// Add at end of list
void addStringBack(const std::string& str);

std::vector<std::string> getAsVector(void) const;

bool isEmpty(void) const;
};

3.14 IntegerList

3.14.1 Overview

An IntegerList is for communicating a list of integers (C++ ”long”s, actually)
between Emdros and the program using Emdros. Internally, monad ms, id d ts,
and enumeration constant values are all longs. Thus an IntegerList can hold
any of those kinds of values.

The list is ordered, and can be iterated with the normal Emdros-iterators.
The interface of IntegerList is very, very similar to StringList. They are even

defined using the same template in the same header-file.
SPECIAL SWIG JAVA NOTE: The use of IntegerListConstIterator is

51

deprecated on SWIG Java. Please use the IntegerList::getAsVector to obtain
an IntVector instead.

#include <string_list.h>

class IntegerListConstIterator {
public:
IntegerListConstIterator();
IntegerListConstIterator(const IntegerList *pMotherIntegerList); // Not SWIG-wrapped.
IntegerListConstIterator(const IntegerListConstIterator& other);
~IntegerListConstIterator();
bool hasNext() const; // Is the iterator == end iterator? Doesn’t alter iterator
long next(); // Gets current and advances iterator afterwards
long previous(); // Regresses iterator and then gets current
long current(); // Gets current without altering iterator

};

class IntegerList {
public:
// Create empty string list, to be populated later
// with addIntegerFront and/or addIntegerBack.
IntegerList();

// Copy constructor
IntegerList(const IntegerList& other);

// Assignment operator
const IntegerList& operator=(const IntegerList& other); // Not SWIG-wrapped!

~IntegerList();

IntegerListConstIterator const_iterator() const;

std::vector<long> getAsVector(void) const;

// Add at beginning of list, pushing everything down one member
void addIntegerFront(long l);

// Add at end of list
void addIntegerBack(long l);

bool isEmpty(void) const;
};

52

3.15 XML output

3.15.1 Overview

This section describes the XML DTD.

3.15.2 DTD

<!-- Top-level element is "mql_results" -->
<!DOCTYPE mql_results
[

<!-- "mql_results" is zero or more "mql_result"’s
<!ELEMENT mql_results (mql_result)* >
<!ATTLIST mql_results >

<!-- "mql_result" consists of:
* An optional "mql_progress",
* A "status"
* An optional "error"
* An optional "warning"
* Either a "table", a "sheaf", or nothing

An "mql_result" is emitted for each statement in the
input stream.

-->
<!ELEMENT mql_result ((mql_progress)?, status, (error)?,

(warning)?, (table|sheaf)?) >
<!ATTLIST mql_result >

<!-- "mql_progress" is just a series of dots emitted at intervals
while processing a "SELECT (FOCUS|ALL) OBJECTS" query.

-->
<!ELEMENT mql_progress (#PCDATA)* >

<!-- The empty "status" element shows, via its "success" attribute
whether the statement succeeded or not (i.e., whether an error
occurred.

-->
<!ELEMENT status EMPTY >
<!ATTLIST status

success (true|false) #REQUIRED >

<!-- The "error" element is only emitted if an error occurred. -->
<!ELEMENT error (error_source, error_stage,

53

error_message_db, error_message_compiler) >
<!ATTLIST error >

<!-- The "error_source" element, being part of the "error" element,
is only emitted if an error occurred. It shows the source of
the error: whether it was the MQL compiler or the database
back-end.

-->
<!ELEMENT error_source EMPTY >
<!ATTLIST error_source

source (compiler|db) #REQUIRED >

<!-- The "error_stage" element, being part of the "error" element,
is only emitted if an error occurred. It shows in which stage
of the compiler the error occurred.

-->
<!ELEMENT error_stage EMPTY >
<!ATTLIST error_stage

stage (none|parse|weed|symbol|type|monads|exec) #REQUIRED >

<!-- The "error_message_db" element, being part of the "error" element,
is only emitted if an error occurred. It contains any error-message
from the back-end.

-->
<!ELEMENT error_message_db (#PCDATA)* >
<!ATTLIST error_message_db >

<!-- The "error_message_compiler" element, being part of the "error"
element, is only emitted if an error occurred. It contains any
error-message from the compiler.

-->
<!ELEMENT error_message_compiler (#PCDATA)* >
<!ATTLIST error_message_compiler >

<!-- The "warning" element shows the text of any warning from the
compiler.

-->
<!ELEMENT warning (#PCDATA)* >
<!ATTLIST warning >

<!-- *************
*** Table ***

-->

54

<!-- A "table" is a "theader" followed by zero or more "trow"’s. -->
<!ELEMENT table (theader, trow*) >
<!ATTLIST table >

<!-- A "theader" is zero or more "theadercolumn"’s -->
<!ELEMENT theader (theadercolumn)* >
<!ATTLIST theader >

<!-- A "theadercolumn" is a "tcaption" followed by a "ttype" -->
<!ELEMENT theadercolumn (tcaption, ttype) >
<!ATTLIST theadercolumn >

<!-- A "tcaption" gives the name of a column-header. -->
<!ELEMENT tcaption (#PCDATA)* >
<!ATTLIST tcaption >

<!-- A "ttype" gives the type of a column. If the type is "enum",
the "enum_type" attribute gives the name of the enum.

-->
<!ELEMENT ttype EMPTY >
<!ATTLIST ttype

type (bool|string|integer|id_d|enum) #REQUIRED
enum_type CDATA #IMPLIED >

<!-- A "trow" is zero or more "tcolumn"’s. The number of columns in
a "trow" is always the same throughout the table, and is also
the same as the number of "theadercolumn"’s in the "theader".

-->
<!ELEMENT trow (tcolumn)* >
<!ATTLIST trow >

<!-- A "tcolumn" contains the value of a column in a row. -->
<!ELEMENT tcolumn (#PCDATA)* >
<!ATTLIST tcolumn >

<!-- *************
*** Sheaf ***

-->

<!-- A "sheaf" is zero or more "straw"’s. -->
<!ELEMENT sheaf (straw)* >
<!ATTLIST sheaf >

55

<!-- A "straw" is zero or more "matched_object"’s. -->
<!ELEMENT straw (matched_object)* >
<!ATTLIST straw >

<!-- A "matched_object" is a "monad_set" followed by an optional
"sheaf". The optional sheaf constitutes a match of the inner
blocks from the block which gave rise to the matched_object.

The "focus" boolean tells whether the block in question had the
"focus" modifier.

The "object_type_name" attribute is the object type name of the
object that matched the object_block(_first) which gave rise to
this matched_object.

The "id_d" is the object id_d of the object that matched the
object_block(_first) which gave rise to this matched_object.

-->
<!ELEMENT matched_object (monad_set, (sheaf)?) >
<!ATTLIST matched_object

object_type_name CDATA #REQUIRED
focus (false | true) #REQUIRED
marks (CDATA) #IMPLIED
id_d CDATA "nil"

>

<!-- A "monad_set" is one or more "mse"’s." -->
<!ELEMENT monad_set (mse)+ >
<!ATTLIST monad_set >

<!-- An "mse" a "monad set element". It is a pair of attributes,
"first" and "last", each of which gives the first and the last
monad (a 10-base integer) of the monad set element. See the
document "Monad Sets -- Implementation and Mathematical
Foundations" for an explanation.

-->
<!ELEMENT mse EMPTY>
<!ATTLIST mse

first CDATA #REQUIRED
last CDATA #REQUIRED

>
]>

56

4 Part III: Tips

In part III, we describe:

• Tips for how to architect your application.

• Tips for loading an Emdros database with existing data.

• Tips for creating a query-application, including:.

– Tips for how to create an in-memory EMdF database.

• Tips for creating a display-application.

4.1 Your application

4.1.1 Ways you can benefit

Emdros is for storing and retrieving analyzed or annotated text. As such, you
are likely to benefit from Emdros in at least one of the following ways:

• Ways you can build an Emdros database:

– You have an existing text database which you want to import into
Emdros.

– You want to build a database ”on the fly” using analyses or annota-
tions you are making.

• Ways you can use an Emdros database:

– You can display the database contents as they are, based on selection
criteria which you make up.

– You can search the database and display the results.

How you build your application will depend on which of these four goals you
have (one or more of them).

4.1.2 Use MQL

The easiest way of writing any application on top of Emdros is probably to
take advantage of the MQL language, rather than dealing with the EMdF layer
directly. MQL is quite powerful, and allows you to do most things you would
want to do with Emdros. Thus however you architect your application, plan on
using the MQL User’s Guide extensively.

4.1.3 In the following

In the following, we describe:

1. Loading a database

2. Building a query-application

3. Building a display-application

57

4.2 Loading a database

In order to populate a database, go through the following steps:

1. Create a schema file which contains MQL statements which create all
the enumerations and object types and features necessary. Use the CRE-
ATE ENUMERATION and CREATE OBJECT TYPE statements for
this. See the MQL User’s Guide for how to use these statements. The
schema file should contain a CREATE DATABASE statement and a USE
DATABASE statement at the top of the file.

2. Run this schema file through the mql(1) program.

3. Populate the database. This can be done in two ways:

(a) Write and run a program which takes any existing data and uses the
MQL query language to create new objects. In particular, use the
CREATE OBJECT FROM MONADS statement, or the CREATE
OBJECTS WITH OBJECT TYPE statement.

(b) Create the database on-the-fly using some analysis program you have
created.

4.2.1 Speeding up population

There are a number of things you can do in order to speed up the population
process:

• Generally applicable things, and

• PostgreSQL-specific things.

General

Use CREATE OBJECTS WITH OBJECT TYPE In general, it is faster
to use CREATE OBJECTS WITH OBJECT TYPE rather than CREATE OB-
JECT FROM MONADS. On my machine, it is between 7 and 10 times faster,
depending on the backend.

One drawback of CREATE OBJECTS WITH OBJECT TYPE is that you
can’t get the object id d back immediately. You would have to query the
database (e.g., using SELECT OBJECTS HAVING MONADS IN) to find out
the object id ds of the newly created objects.

If your application requires complex interaction between objects, e.g., setting
features based on other objects’ id ds, it may be easier (but certainly not faster)
to use CREATE OBJECT FROM MONADS.

Drop indexes In order to speed up queries, one thing you can do is to issue
a

$ manage_indices --drop databasename

58

command on the command-line before starting the program which popu-
lates the database. Then, once all creation has taken place, you can issue the
command:

$ manage_indices --create databasename

in order to recreate the indices. See the manage indices(1) manual page for
more information.

You can also use the MQL statements DROP INDEXES and CREATE IN-
DEXES. See the MQL User’s Guide for more information.

PostgreSQL You can also issue a VACUUM command on the database after
each part of the database has been loaded, or even while loading the database.
The latter can be done in one of two ways:

1. Either with the MQL ”VACUUM DATABASE” statement, or

2. With the EMdFDB::Vacuum method if you have the EMdF library linked
in.

See the PostgreSQL documentation for details on the VACUUM command.
See also the vacuumdb(1) manual page.

Also, you may want to set the option ”fsync = false” in the postgresql.conf
file (located in /var/lib/pgsql/data on RedHat). See the PostgreSQL documen-
tation for more information. The performance gain, however, may be minimal
with PostgreSQL version 7.1 and higher.

4.3 A query-application

If your application has the goal of displaying the results of a SELECT (ALL|FOCUS)
OBJECTS query, i.e., if it has the goal of displaying the results of the kind of
MQL query which your users will likely be interested in, then the following
strategy could be used:

1. Parse the sheaf. Create an internal representation, and extract what you
need from that. This will include the monads and object id ds of the
objects in question.

2. Make a big-union of the sets of monads of all the objects you are inter-
ested in. You can use the MONAD SET CALCULATION query to build
this union. Alternatively, if you have the emdf library linked into your
application, you can use the SetOfMonads to calculate the union.

3. Issue a GET OBJECTS HAVING MONADS IN query for each of the
object types you need to see (e.g., morpheme) with the monad set which
is the union of all monads you are interested in. This will get you all the
object id ds of the objects you are interested in.

How you go from here depends on how you want to solve the display
problem. One strategy could be:

59

4. Build an in-memory EMdF database with this information.

5. Display the in-memory EMdF database on-screen in a scrolling view, or
dump results to a file or stdout.

Next, we describe the design of such an in-memory EMdF database.

4.3.1 An in-memory EMdF database

Benefits Building an in-memory EMdF database has the advantage of being
close to the EMdF model, and thus to the data you get back. Also, we have
found the EMdF model to be quite powerful when manipulating and displaying
data in-memory.

Necessary operations Here are some operations you will likely need:

• Database operations

– Get object(s) of a given object type at a given monad.

– Get object by id d

– Insert object into database

– Delete object from database

• Object operations

– Create object

– Delete object

– Get feature value

– Set feature value

An example application With these operations, you will be able to con-
struct most other operations you may need. For example, if your application
domain uses an immediate constituent model, one way of modeling this is to
have, in each object type, a feature called ”parent”, which is an id d point-
ing to the parent object. Then a number of desirable operations can easily be
implemented in terms of the above operations:

• Get immediate constituents of object

• Get parent of object

• Get siblings (through judicious use of the two above operations)

• is c commanding (a boolean)

etc. etc.

60

An implementation strategy One strategy for implementing an in-memory
EMdF database (using C++ terminology as an example) would be the following:

• Have a class which encapsulates the database.

• Have a class which encapsulates object types. Each object type should
encapsulate the features it has, as well as their types. Associate each
object type with an object type id and store these in the database class.

• Have a class called, e.g., CMonad d (for ”database monad”). This rep-
resents a monad m, and has, for each object type, a list of the object
id ds of the objects which have this monad. In the database class, use
either an array or an associative map (e.g., std::map) which associates
each monad m with its CMonad d.

• Have a class which encapsulates objects, their monads, and their fea-
ture values. You can choose either to make the class generic, capable of
handling all object types, or to subclass it for each object type in your
application domain.

• For each object type, use some sort of associative map (e.g., std::map)
which maps id ds to pointers to object objects, and put these in the
database class. You may wish to put all of the objects in one big map,
regardless of object type.

This should serve most needs.

Please contribute If you do implement a generic in-memory EMdF database,
please consider contributing it to the Emdros project. Contact Ulrik Petersen
<ulrikp[at]users.sourceforge.net> with any contributions.

4.4 A display-application

When displaying text from an Emdros database, you need to take the following
steps:

1. Find out the object id ds of the objects which you wish to display. This
can either be done with a ”SELECT (ALL|FOCUS) OBJECTS” query,
or, if you know the monads in which to look, with a ”SELECT OBJECTS
HAVING MONADS IN” query.

2. Once you have the id ds you want, proceed from step 2 in the instructions
for a query-application.

5 Part IV: Harvest library

Part IV is about the ”harvest” library that has been part of Emdros since version
3.0.2.

61

5.1 Introduction

5.1.1 Purpose

The purpose of the harvest library is to assist in retrieving and displaying objects
from an Emdros database.

For the moment, there are two components to the Emdros ”harvest” library:

1. A ”RenderObjects” class, which supports reading of objects into memory,
producing a document from the objects read. The document can be XML-
based, but need not be.

2. A ”RenderXML” module, which supports SAX-parser-based parsing of
XML and rendering into something else, probably HTML.

The idea is to use the ”RenderObjects” module for retrieving the objects
from an Emdros database. These objects are then rendered into a document by
the ”RenderObjects” module, according to a pre-defined model, and driven by a
user-supplied ”stylesheet” telling the ”RenderObjects” engine what to do. The
output of this process is a document, i.e., a string containing a representation of
the objects read. This document may or may not be XML, but if it is, then the
”RenderXML” module may be used to transform the document to something
else.

The idea of the ”RenderXML” module is to take the XML produced by
”RenderObjects” and produce something else – probably HTML, but it could
be any other format. The output is, again, a document in the form of a string.
Again, a ”stylesheet” is used to tell the ”RenderXML” what to do.

5.1.2 JSON stylesheets

As mentioned, both of the above modules use user-supplied ”stylesheets” in
order to know what to do. These ”stylesheets” are based on the JSON data
interchange language.

For more information about JSON, please visit:
http://www.json.org
JSON is a very simple language, and should be easy to learn. An implemen-

tation of JSON is provided in the libmql library, so no external dependencies
are needed for this.

5.2 Emdros’s JSON implementation

5.2.1 JSON

JSON is a simple data interchange language. It is easy for humands to read and
write. It is also easy for machines to parse and generate.

JSON builds on three kinds of data structures:

• Objects: An object in JSON is an unordered set of key/value pairs.

• Arrays: An array in JSON is an ordered list of values.

• Values: A value in JSON is one of the following kinds:

– null: A JSON value which is used to mean ”no value”.

62

– true: A JSON value which is used to mean ”the Boolean value
’true’”.

– false: A JSON value which is used to mean ”the Boolean value
’false’”.

– string: A JSON value which denotes a string. It is enclosed in
”double quotes”, and may contain ”escape characters”. For a full list
of escape characters, please see below.

– number: A JSON value which denotes a number. In real JSON,
these numbers can be both integers and floating-point numbers. In
the implementation present in Emdros, they can only be the integers
from 0 upwards. Thus, neither negative integers nor floating-point
numbers can be represented in the JSON implementation in Emdros.

– object: A JSON object. Note that this entails that JSON objects
may contain JSON objects, just as JSON arrays may contain JSON
objects.

– array: A JSON array. Note that this entails that JSON arrays
may contain JSON arrays, just as JSON objects may contain JSON
arrays.

5.2.2 Escape codes

In JSON, strings are surrounded by ”double quotes”. Inside the double quotes,
one may place ”escape characters”, which map to other characters. The ones
present in Emdros’s JSON are:

• \”: maps to ”

• \\: maps to \

• \b: maps to ”bell” (control character 0x07)

• \f: maps to ”form feed” (control character 0x0c)

• \n: maps to ”newline” (control character 0x0a)

• \r: maps to ”carriage return” (control character 0x0d)

• \t: maps to ”horizontal tab” (control character 0x09)

• \x[A-Fa-f0-9][A-Fa-f0-9]: Maps to the 8-bit number expressed by the
hexadecimal number after the \x. Note that this is a departure from ”real”
JSON, in that \u is not supported, but 8-bit characters are.

5.2.3 More information

For more information about JSON, please visit:
http://www.json.org

63

5.3 RenderObjects

5.3.1 Input to RenderObjects

The ”RenderObjects” class constructor takes as input:

• An EmdrosEnv object

• A database name

• A JSONValue called ”pFetchInfo” which must be a JSON object which
contains the stylesheets to use.

• A string containing the name of the stylesheet to use from the pFetchInfo
JSON object.

The ”process” method of the RenderObjects class takes as input a starting
monad and an ending monad. The stretch of monads specified here is used to
retrieve the objects, so all objects to be retrieved must be found within the
confines of this stretch of monads.

5.3.2 Output

The output from RenderObjects is a document in the form a string. The doc-
ument can be retrieved with the ”getDocument()” method of a RenderObjects
object.

5.3.3 Stylesheet

The ”pFetchInfo” JSONValue object passed to the constructor must contain
at least one ”fetch stylesheet”. Moreover, the name of the stylesheet passed in
the last parameter to the constructor must be present in the pFetchInfo JSON
object as a key. The value of this key must, in turn, be a JSON object. This
JSON object must, in turn, contain two keys, ”object types” and ”priority list”.
The ”object types” key must point to a JSON object, and the ”priority list”
must point to a list of JSON strings.

For examle, the following would be the beginnings of a ”fetch stylesheet”,
with one stylesheet called ”base”:

¡pre class=”code”¿ ”base : ”object types” : , ”priority list” : [] ¡/pre¿
The ”priority list” must contain a list of JSON strings, each which is the

name of an object type. If an object type name occurs in the ”priority list”, it
must occur in the ”object types” JSON object.

The purpose of the ”priority list” is to indicate the order in which the object
types must be processed.

The ”object types” JSON object must contain key/value pairs as follows:

• Keys: object type names

• Values: A JSON object with the following keys: ”start”, ”end”, and ”get”.
All of these are optional, but if anything is to happen with the objects
from the object type, then at least one of ”start” and ”end” must be
present. They are explained below.

64

Thus, a simple but complete ”fetch stylesheet” may look like this:
¡pre class=”code”¿ ”base : ”object types” : ”document” : ”start” :

”¡document¿”, ”end” : ”¡/document¿” , ”token” : ”get” : [”surface”], ”start”
: ”¡token¿ feature 0 ¡/token¿” , , ”priority list” : [”document”, ”token”] ¡/pre¿

5.3.4 Processing model

The processing model works best with objects which are ”SINGLE RANGE
OBJECTS” or ”SINGLE MONAD OBJECTS”, and not ”MULTIPLE RANGE
OBJECTS”. The reason is that the processing model only allows for output to
be generated at the starting monad and ending monad of each object.

The algorithm is as follows:

1. Start the process by calling RenderObjects::startDocument(). The de-
fault implementation of startDocument() just adds the XML declaration
to the document. The user is free to subclass the RenderObjects class and
reimplement startDocument, thus starting in a different way.

2. Based on the starting and ending monads given in the parameters to the
RenderObejcts::process() call, all objects from the object types present in
the ”object types” JSON object of the given ”fetch style sheet” are read
into memory. This is done with a GET OBJECTS HAVING MONADS
IN { first monad - last monad } MQL statement.

3. The objects read into memory are then processed as follows:

For all monads m between the first monad and the last monad:

(a) Get a list of objects which start at the monad m. Sort it according
to the ”priority list”. For each object in this sorted list, call the
”template” specified in the ”start” value in the ”object types” JSON
object for this object type.

(b) Get a list of objects which end at monad m. Sort it in revers order of
the ”priority list”. For each object in this reverse-sorted list, call the
”template” specified in the ”end” value in the ”object types” JSON
object for this object type.

5.3.5 Object type information

For each object type in the ”object types” JSON object, the following three
keys may be present:

• get: If present, this must map to a JSON list of JSON strings. The strings
must be features present on the given object type.

• start: If present, this must map to a JSON string which gives the ”tem-
plate” to be used when starting objects of this object type.

• end: If present, this must map to a JSON string which gives the ”tem-
plate” to be used when ending objects of this object type.

65

5.3.6 Templates

As stated, the ”start” and ”end” keys must map to JSON strings which contain
”templates”. In the next Section, we describe these templates.

5.3.7 RenderObjects templates

Introduction The template language for RenderObjects can be described as
follows. It is a list of the following kinds of string:

• {{ id d }}: Emits the id d of the object under consideration.

• {{ firstmonad }}: Emits the first monad of the object under considera-
tion. This is done in base-10, so that if an object has a set of objects with
first monad ”3”, then ”3” is emitted (without the quotes).

• {{ dbname }}: Emits the database name under consideration

• {{ feature integer }}: Emits the value of the object’s feature given by
the integer’s 0-based index into the list of features in the ”get” part of
the stylesheet for this object type. Thus if the ”get” part says ’”get” : [
”surface”, ”suffix”]’, and the ”start” part says: ’”start” : ”{{ feature 1
}}”’, then the value of the object’s ”suffix” feature is emitted.

• {{ if featureequal integer ”string-in-quotes” }}if-true-template{{
endif }}: Checks whether the string representation of the feature given
by the 0-based index integer into the ”get” list of features is equal to the
”string-in-quotes”. If it is, then the template if-true-template is executed.
Otherwise, nothing is emitted.

This has a different variant:

• {{ if featureequal integer ”string-in-quotes” }}if-true-template{{
else }}if-false-template{{ endif }}: Checks whether the string repre-
sentation of the feature given by the 0-based index integer into the ”get”
list of features is equal to the ”string-in-quotes”. If it is, then the template
if-true-template is executed. Otherwise, the if-false-template is executed.

• All other strings: Are emitted verbatim, except that they are escaped
for the XML entities ’&’, ’<’, ’which map as follows:

– & –> &

– < –> <

– > –> >

– ” –> "

5.4 RenderXML

5.4.1 RenderXML templates

5.4.2 RenderXML stylesheet inheritance

66

