Public Member Functions
SimplicialCholesky< _MatrixType, _UpLo > Class Template Reference

#include <SimplicialCholesky.h>

+ Inheritance diagram for SimplicialCholesky< _MatrixType, _UpLo >:

List of all members.

Public Member Functions

void analyzePattern (const MatrixType &a)
SimplicialCholeskycompute (const MatrixType &matrix)
void factorize (const MatrixType &a)
ComputationInfo info () const
 Reports whether previous computation was successful.
const PermutationMatrix
< Dynamic, Dynamic, Index > & 
permutationP () const
const PermutationMatrix
< Dynamic, Dynamic, Index > & 
permutationPinv () const
SimplicialCholesky
< _MatrixType, _UpLo > & 
setShift (const RealScalar &offset, const RealScalar &scale=1)
const internal::solve_retval
< SimplicialCholeskyBase, Rhs > 
solve (const MatrixBase< Rhs > &b) const
const
internal::sparse_solve_retval
< SimplicialCholeskyBase, Rhs > 
solve (const SparseMatrixBase< Rhs > &b) const

Detailed Description

template<typename _MatrixType, int _UpLo>
class Eigen::SimplicialCholesky< _MatrixType, _UpLo >

See also:
class SimplicialLDLT, class SimplicialLLT

Member Function Documentation

void analyzePattern ( const MatrixType &  a) [inline]

Performs a symbolic decomposition on the sparcity of matrix.

This function is particularly useful when solving for several problems having the same structure.

See also:
factorize()
SimplicialCholesky& compute ( const MatrixType &  matrix) [inline]

Computes the sparse Cholesky decomposition of matrix

Reimplemented from SimplicialCholeskyBase< SimplicialCholesky< _MatrixType, _UpLo > >.

void factorize ( const MatrixType &  a) [inline]

Performs a numeric decomposition of matrix

The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.

See also:
analyzePattern()

Reimplemented from SimplicialCholeskyBase< SimplicialCholesky< _MatrixType, _UpLo > >.

ComputationInfo info ( ) const [inline, inherited]

Reports whether previous computation was successful.

Returns:
Success if computation was succesful, NumericalIssue if the matrix.appears to be negative.
const PermutationMatrix<Dynamic,Dynamic,Index>& permutationP ( ) const [inline, inherited]
Returns:
the permutation P
See also:
permutationPinv()
const PermutationMatrix<Dynamic,Dynamic,Index>& permutationPinv ( ) const [inline, inherited]
Returns:
the inverse P^-1 of the permutation P
See also:
permutationP()
SimplicialCholesky< _MatrixType, _UpLo > & setShift ( const RealScalar &  offset,
const RealScalar &  scale = 1 
) [inline, inherited]

Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization.

During the numerical factorization, the diagonal coefficients are transformed by the following linear model:
d_ii = offset + scale * d_ii

The default is the identity transformation with offset=0, and scale=1.

Returns:
a reference to *this.
const internal::solve_retval<SimplicialCholeskyBase, Rhs> solve ( const MatrixBase< Rhs > &  b) const [inline, inherited]
Returns:
the solution x of $ A x = b $ using the current decomposition of A.
See also:
compute()
const internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs> solve ( const SparseMatrixBase< Rhs > &  b) const [inline, inherited]
Returns:
the solution x of $ A x = b $ using the current decomposition of A.
See also:
compute()

The documentation for this class was generated from the following file: