Expression of a quaternion from a memory buffer. More...
#include <Quaternion.h>
Public Types | |
typedef AngleAxis< Scalar > | AngleAxisType |
typedef Matrix< Scalar, 3, 3 > | Matrix3 |
typedef Matrix< Scalar, Dim, Dim > | RotationMatrixType |
typedef _Scalar | Scalar |
typedef Matrix< Scalar, 3, 1 > | Vector3 |
Public Member Functions | |
Vector3 | _transformVector (Vector3 v) const |
internal::cast_return_type < Map< Quaternion< _Scalar > , _Options >, Quaternion < NewScalarType > >::type | cast () const |
Coefficients & | coeffs () |
const Coefficients & | coeffs () const |
Quaternion< Scalar > | conjugate () const |
Scalar | dot (const QuaternionBase< OtherDerived > &other) const |
Quaternion< Scalar > | inverse () const |
bool | isApprox (const QuaternionBase< OtherDerived > &other, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
Map (Scalar *coeffs) | |
RotationMatrixType | matrix () const |
Scalar | norm () const |
void | normalize () |
Quaternion< Scalar > | normalized () const |
Transform< Scalar, Dim, Isometry > | operator* (const Translation< Scalar, Dim > &t) const |
RotationMatrixType | operator* (const UniformScaling< Scalar > &s) const |
internal::rotation_base_generic_product_selector < Map< Quaternion< _Scalar > , _Options >, OtherDerived, OtherDerived::IsVectorAtCompileTime > ::ReturnType | operator* (const EigenBase< OtherDerived > &e) const |
Transform< Scalar, Dim, Mode > | operator* (const Transform< Scalar, Dim, Mode, Options > &t) const |
Map< Quaternion< _Scalar > , _Options > & | setFromTwoVectors (const MatrixBase< Derived1 > &a, const MatrixBase< Derived2 > &b) |
QuaternionBase & | setIdentity () |
Quaternion< Scalar > | slerp (Scalar t, const QuaternionBase< OtherDerived > &other) const |
Scalar | squaredNorm () const |
Matrix3 | toRotationMatrix () const |
const VectorBlock< const Coefficients, 3 > | vec () const |
VectorBlock< Coefficients, 3 > | vec () |
Scalar | w () const |
Scalar & | w () |
Scalar | x () const |
Scalar & | x () |
Scalar | y () const |
Scalar & | y () |
Scalar | z () const |
Scalar & | z () |
Static Public Member Functions | |
static Quaternion< Scalar > | Identity () |
Friends | |
RotationMatrixType | operator* (const EigenBase< OtherDerived > &l, const Map< Quaternion< _Scalar >, _Options > &r) |
Transform< Scalar, Dim, Affine > | operator* (const DiagonalMatrix< Scalar, Dim > &l, const Map< Quaternion< _Scalar >, _Options > &r) |
Expression of a quaternion from a memory buffer.
_Scalar | the type of the Quaternion coefficients |
_Options | see class Map |
This is a specialization of class Map for Quaternion. This class allows to view a 4 scalar memory buffer as an Eigen's Quaternion object.
typedef AngleAxis<Scalar> AngleAxisType [inherited] |
the equivalent angle-axis type
typedef Matrix<Scalar,Dim,Dim> RotationMatrixType [inherited] |
corresponding linear transformation matrix type
typedef _Scalar Scalar |
the scalar type of the coefficients
Reimplemented from QuaternionBase< Map< Quaternion< _Scalar >, _Options > >.
Constructs a Mapped Quaternion object from the pointer coeffs
The pointer coeffs must reference the four coeffecients of Quaternion in the following order:
If the template parameter _Options is set to Aligned, then the pointer coeffs must be aligned.
Vector3 _transformVector | ( | Vector3 | v | ) | const [inline, inherited] |
return the result vector of v through the rotation
Rotation of a vector by a quaternion.
internal::cast_return_type<Map< Quaternion< _Scalar >, _Options > ,Quaternion<NewScalarType> >::type cast | ( | ) | const [inline, inherited] |
*this
with scalar type casted to NewScalarType Note that if NewScalarType is equal to the current scalar type of *this
then this function smartly returns a const reference to *this
.
Coefficients& coeffs | ( | ) | [inline] |
Reimplemented from QuaternionBase< Map< Quaternion< _Scalar >, _Options > >.
const Coefficients& coeffs | ( | ) | const [inline] |
Reimplemented from QuaternionBase< Map< Quaternion< _Scalar >, _Options > >.
Quaternion<Scalar> conjugate | ( | ) | const [inherited] |
*this
which is equal to the multiplicative inverse if the quaternion is normalized. The conjugate of a quaternion represents the opposite rotation.Scalar dot | ( | const QuaternionBase< OtherDerived > & | other | ) | const [inline, inherited] |
*this
and other Geometrically speaking, the dot product of two unit quaternions corresponds to the cosine of half the angle between the two rotations. static Quaternion<Scalar> Identity | ( | ) | [inline, static, inherited] |
Quaternion<Scalar> inverse | ( | ) | const [inherited] |
*this
Note that in most cases, i.e., if you simply want the opposite rotation, and/or the quaternion is normalized, then it is enough to use the conjugate.Reimplemented from RotationBase< Map< Quaternion< _Scalar >, _Options >, 3 >.
bool isApprox | ( | const QuaternionBase< OtherDerived > & | other, |
RealScalar | prec = NumTraits<Scalar>::dummy_precision() |
||
) | const [inline, inherited] |
true
if *this
is approximately equal to other, within the precision determined by prec.RotationMatrixType matrix | ( | ) | const [inline, inherited] |
void normalize | ( | void | ) | [inline, inherited] |
Normalizes the quaternion *this
Quaternion<Scalar> normalized | ( | ) | const [inline, inherited] |
*this
Transform<Scalar,Dim,Isometry> operator* | ( | const Translation< Scalar, Dim > & | t | ) | const [inline, inherited] |
*this
with a translation t RotationMatrixType operator* | ( | const UniformScaling< Scalar > & | s | ) | const [inline, inherited] |
*this
with a uniform scaling s internal::rotation_base_generic_product_selector<Map< Quaternion< _Scalar >, _Options > ,OtherDerived,OtherDerived::IsVectorAtCompileTime>::ReturnType operator* | ( | const EigenBase< OtherDerived > & | e | ) | const [inline, inherited] |
*this
with a generic expression e e can be:Transform<Scalar,Dim,Mode> operator* | ( | const Transform< Scalar, Dim, Mode, Options > & | t | ) | const [inline, inherited] |
*this
with a transformation t Map< Quaternion< _Scalar >, _Options > & setFromTwoVectors | ( | const MatrixBase< Derived1 > & | a, |
const MatrixBase< Derived2 > & | b | ||
) | [inherited] |
Sets *this
to be a quaternion representing a rotation between the two arbitrary vectors a and b. In other words, the built rotation represent a rotation sending the line of direction a to the line of direction b, both lines passing through the origin.
*this
.Note that the two input vectors do not have to be normalized, and do not need to have the same norm.
QuaternionBase& setIdentity | ( | ) | [inline, inherited] |
Quaternion<Scalar> slerp | ( | Scalar | t, |
const QuaternionBase< OtherDerived > & | other | ||
) | const [inherited] |
*this
t in [0;1] see http://en.wikipedia.org/wiki/Slerp*this
and other at the parameter t Scalar squaredNorm | ( | ) | const [inline, inherited] |
Matrix3 toRotationMatrix | ( | void | ) | const [inherited] |
Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to be normalized, otherwise the result is undefined.
Reimplemented from RotationBase< Map< Quaternion< _Scalar >, _Options >, 3 >.
const VectorBlock<const Coefficients,3> vec | ( | ) | const [inline, inherited] |
VectorBlock<Coefficients,3> vec | ( | ) | [inline, inherited] |
RotationMatrixType operator* | ( | const EigenBase< OtherDerived > & | l, |
const Map< Quaternion< _Scalar >, _Options > & | r | ||
) | [friend, inherited] |
Transform<Scalar,Dim,Affine> operator* | ( | const DiagonalMatrix< Scalar, Dim > & | l, |
const Map< Quaternion< _Scalar >, _Options > & | r | ||
) | [friend, inherited] |