Public Member Functions
PastixLLT< _MatrixType, _UpLo > Class Template Reference

A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library. More...

#include <PaStiXSupport.h>

Inherits PastixBase< Derived >.

List of all members.

Public Member Functions

void analyzePattern (const MatrixType &matrix)
void compute (const MatrixType &matrix)
Array< RealScalar, IPARM_SIZE, 1 > & dparm ()
double & dparm (int idxparam)
void factorize (const MatrixType &matrix)
ComputationInfo info () const
 Reports whether previous computation was successful.
Array< Index, IPARM_SIZE, 1 > & iparm ()
int & iparm (int idxparam)
template<typename Rhs >
const internal::solve_retval
< PastixBase, Rhs > 
solve (const MatrixBase< Rhs > &b) const
template<typename Rhs >
const
internal::sparse_solve_retval
< PastixBase, Rhs > 
solve (const SparseMatrixBase< Rhs > &b) const

Detailed Description

template<typename _MatrixType, int _UpLo>
class Eigen::PastixLLT< _MatrixType, _UpLo >

A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library.

This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization available in the PaStiX library. The matrix A should be symmetric and positive definite WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX The vectors or matrices X and B can be either dense or sparse

Template Parameters:
MatrixTypethe type of the sparse matrix A, it must be a SparseMatrix<>
UpLoThe part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
See also:
Solving linear problems

Member Function Documentation

void analyzePattern ( const MatrixType &  matrix) [inline]

Compute the LL^T symbolic factorization of matrix using its sparsity pattern The result of this operation can be used with successive matrices having the same pattern as matrix

See also:
factorize()
void compute ( const MatrixType &  matrix) [inline]

Compute the L factor of the LL^T supernodal factorization of matrix

See also:
analyzePattern() factorize()
Array<RealScalar,IPARM_SIZE,1>& dparm ( ) [inline, inherited]

Returns a reference to the double vector DPARM of PaStiX parameters The statistics related to the different phases of factorization and solve are saved here as well

See also:
analyzePattern() factorize()
double& dparm ( int  idxparam) [inline, inherited]

Return a reference to a particular index parameter of the DPARM vector

See also:
dparm()
void factorize ( const MatrixType &  matrix) [inline]

Compute the LL^T supernodal numerical factorization of matrix

See also:
analyzePattern()
ComputationInfo info ( ) const [inline, inherited]

Reports whether previous computation was successful.

Returns:
Success if computation was succesful, NumericalIssue if the PaStiX reports a problem InvalidInput if the input matrix is invalid
See also:
iparm()
Array<Index,IPARM_SIZE,1>& iparm ( ) [inline, inherited]

Returns a reference to the integer vector IPARM of PaStiX parameters to modify the default parameters. The statistics related to the different phases of factorization and solve are saved here as well

See also:
analyzePattern() factorize()
int& iparm ( int  idxparam) [inline, inherited]

Return a reference to a particular index parameter of the IPARM vector

See also:
iparm()
const internal::solve_retval<PastixBase, Rhs> solve ( const MatrixBase< Rhs > &  b) const [inline, inherited]
Returns:
the solution x of $ A x = b $ using the current decomposition of A.
See also:
compute()
const internal::sparse_solve_retval<PastixBase, Rhs> solve ( const SparseMatrixBase< Rhs > &  b) const [inline, inherited]
Returns:
the solution x of $ A x = b $ using the current decomposition of A.
See also:
compute()

The documentation for this class was generated from the following file: