SyFi  0.3
demo Namespace Reference

Classes

class  DirichletBoundary

Variables

tuple mesh = UnitSquare(32, 32)
tuple V = FunctionSpace(mesh, "CG", 1)
tuple u0 = Constant(0.0)
tuple bc = DirichletBC(V, u0, DirichletBoundary())
tuple v = TestFunction(V)
tuple u = TrialFunction(V)
tuple f = Expression("500.0 * exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")
tuple ff = Function(V)
tuple a = dot(grad(v), grad(u))
 L = v*ff*dx
tuple ok = (u.vector().norm("l2") - 142.420764968)

Detailed Description

This demo program solves Poisson's equation

    - div grad u(x, y) = f(x, y)

on the unit square with source f given by

    f(x, y) = 500*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)

and boundary conditions given by

    u(x, y) = 0 for x = 0 or x = 1

Variable Documentation

tuple demo::a = dot(grad(v), grad(u))
tuple demo::bc = DirichletBC(V, u0, DirichletBoundary())

Definition at line 55 of file demo.py.

tuple demo::f = Expression("500.0 * exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")
tuple demo::ff = Function(V)

Definition at line 61 of file demo.py.

demo::L = v*ff*dx

Definition at line 64 of file demo.py.

tuple demo::mesh = UnitSquare(32, 32)

Definition at line 45 of file demo.py.

tuple demo::ok = (u.vector().norm("l2") - 142.420764968)

Definition at line 70 of file demo.py.

tuple demo::u0 = Constant(0.0)

Definition at line 54 of file demo.py.

tuple demo::V = FunctionSpace(mesh, "CG", 1)
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Defines