NFFT Logo 3.1.3 API Reference

fastsumS2_matlab
[Fast summation of radial functions on the sphere]


Defines

#define SYMBOL_ABEL_POISSON(k, h)   (pow(h,k))
#define SYMBOL_SINGULARITY(k, h)   ((2.0/(2*k+1))*pow(h,k))
#define KT_ABEL_POISSON   (0)
 Abel-Poisson kernel.
#define KT_SINGULARITY   (1)
 Singularity kernel.
#define KT_LOC_SUPP   (2)
 Locally supported kernel.
#define KT_GAUSSIAN   (3)
 Gaussian kernel.

Enumerations

enum  pvalue { NO = 0, YES = 1, BOTH = 2 }
 Enumeration type for yes/no/both-type parameters.

Functions

static double innerProduct (const double phi1, const double theta1, const double phi2, const double theta2)
 Computes the $\mathbb{R}^3$ standard inner product between two vectors on the unit sphere $\mathbb{S}^2$ given in spherical coordinates.
static double poissonKernel (const double x, const double h)
 Evaluates the Poisson kernel $Q_h: [-1,1] \rightarrow \mathbb{R}$ at a node $x \in [-1,1]$.
static double singularityKernel (const double x, const double h)
 Evaluates the singularity kernel $S_h: [-1,1] \rightarrow \mathbb{R}$ at a node $x \in [-1,1]$.
static double locallySupportedKernel (const double x, const double h, const double lambda)
 Evaluates the locally supported kernel $L_{h,\lambda}: [-1,1] \rightarrow \mathbb{R}$ at a node $x \in [-1,1]$.
static double gaussianKernel (const double x, const double sigma)
 Evaluates the spherical Gaussian kernel $G_\sigma: [-1,1] \rightarrow \mathbb{R}$ at a node $x \in [-1,1]$.
int main (int argc, char **argv)
 The main program.

Function Documentation

static double innerProduct ( const double  phi1,
const double  theta1,
const double  phi2,
const double  theta2 
) [inline, static]

Computes the $\mathbb{R}^3$ standard inner product between two vectors on the unit sphere $\mathbb{S}^2$ given in spherical coordinates.

  • phi1 The angle $\varphi_1 \in [-\pi,\pi)$ of the first vector
  • theta1 The angle $\vartheta_1 \in [0,\pi]$ of the first vector
  • phi2 The angle $\varphi_2 \in [-\pi,\pi)$ of the second vector
  • theta2 The angle $\vartheta_2 \in [0,\pi]$ of the second vector
Returns:
The inner product $\cos \vartheta_1 \cos \vartheta_2 + \sin \vartheta_1 \sin(\vartheta_2 \cos(\varphi_1 - \varphi_2)$
Author:
Jens Keiner

Definition at line 74 of file fastsumS2.c.

Referenced by main().

static double poissonKernel ( const double  x,
const double  h 
) [inline, static]

Evaluates the Poisson kernel $Q_h: [-1,1] \rightarrow \mathbb{R}$ at a node $x \in [-1,1]$.

  • x The node $x \in [-1,1]$
  • h The parameter $h \in (0,1)$
Returns:
The value of the Poisson kernel $Q_h(x)$ at the node $x$
Author:
Jens Keiner

Definition at line 93 of file fastsumS2.c.

Referenced by main().

static double singularityKernel ( const double  x,
const double  h 
) [inline, static]

Evaluates the singularity kernel $S_h: [-1,1] \rightarrow \mathbb{R}$ at a node $x \in [-1,1]$.

  • x The node $x \in [-1,1]$
  • h The parameter $h \in (0,1)$
Returns:
The value of the Poisson kernel $S_h(x)$ at the node $x$
Author:
Jens Keiner

Definition at line 109 of file fastsumS2.c.

Referenced by main().

static double locallySupportedKernel ( const double  x,
const double  h,
const double  lambda 
) [inline, static]

Evaluates the locally supported kernel $L_{h,\lambda}: [-1,1] \rightarrow \mathbb{R}$ at a node $x \in [-1,1]$.

  • x The node $x \in [-1,1]$
  • h The parameter $h \in (0,1)$
  • lambda The parameter $\lambda \in \mathbb{N}_0$
Returns:
The value of the locally supported kernel $L_{h,\lambda}(x)$ at the node $x$
Author:
Jens Keiner

Definition at line 127 of file fastsumS2.c.

Referenced by main().

static double gaussianKernel ( const double  x,
const double  sigma 
) [inline, static]

Evaluates the spherical Gaussian kernel $G_\sigma: [-1,1] \rightarrow \mathbb{R}$ at a node $x \in [-1,1]$.

  • x The node $x \in [-1,1]$
  • sigma The parameter $\sigma \in \mathbb{R}_+$
Returns:
The value of the pherical Gaussian kernel $G_\sigma(x)$ at the node $x$
Author:
Jens Keiner

Definition at line 145 of file fastsumS2.c.

Referenced by main().

int main ( int  argc,
char **  argv 
)


Generated on 23 Dec 2009 by Doxygen 1.5.6