00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021 #include <stdlib.h>
00022 #include <math.h>
00023 #include <limits.h>
00024 #include <complex.h>
00025
00026 #include "nfft3.h"
00027 #include "nfft3util.h"
00028
00038 void construct(char * file, int N, int M)
00039 {
00040 int j;
00041 double real;
00042 double w;
00043 double time,min_time,max_time,min_inh,max_inh;
00044 mri_inh_2d1d_plan my_plan;
00045 FILE *fp,*fout,*fi,*finh,*ftime;
00046 int my_N[3],my_n[3];
00047 int flags = PRE_PHI_HUT| PRE_PSI |MALLOC_X| MALLOC_F_HAT|
00048 MALLOC_F| FFTW_INIT| FFT_OUT_OF_PLACE|
00049 FFTW_MEASURE| FFTW_DESTROY_INPUT;
00050
00051 double Ts;
00052 double W,T;
00053 int N3;
00054 int m=2;
00055 double sigma = 1.25;
00056
00057 ftime=fopen("readout_time.dat","r");
00058 finh=fopen("inh.dat","r");
00059
00060 min_time=INT_MAX; max_time=INT_MIN;
00061 for(j=0;j<M;j++)
00062 {
00063 fscanf(ftime,"%le ",&time);
00064 if(time<min_time)
00065 min_time = time;
00066 if(time>max_time)
00067 max_time = time;
00068 }
00069
00070 fclose(ftime);
00071
00072 Ts=(min_time+max_time)/2.0;
00073
00074 min_inh=INT_MAX; max_inh=INT_MIN;
00075 for(j=0;j<N*N;j++)
00076 {
00077 fscanf(finh,"%le ",&w);
00078 if(w<min_inh)
00079 min_inh = w;
00080 if(w>max_inh)
00081 max_inh = w;
00082 }
00083 fclose(finh);
00084
00085
00086 N3=ceil((NFFT_MAX(fabs(min_inh),fabs(max_inh))*(max_time-min_time)/2.0+m/(2*sigma))*4*sigma);
00087 T=((max_time-min_time)/2.0)/(0.5-((double) m)/N3);
00088 W=N3/T;
00089
00090 my_N[0]=N; my_n[0]=ceil(N*sigma);
00091 my_N[1]=N; my_n[1]=ceil(N*sigma);
00092 my_N[2]=N3; my_n[2]=N3;
00093
00094
00095 mri_inh_2d1d_init_guru(&my_plan, my_N, M, my_n, m, sigma, flags,
00096 FFTW_MEASURE| FFTW_DESTROY_INPUT);
00097
00098 ftime=fopen("readout_time.dat","r");
00099 fp=fopen("knots.dat","r");
00100
00101 for(j=0;j<my_plan.M_total;j++)
00102 {
00103 fscanf(fp,"%le %le ",&my_plan.plan.x[2*j+0],&my_plan.plan.x[2*j+1]);
00104 fscanf(ftime,"%le ",&my_plan.t[j]);
00105 my_plan.t[j] = (my_plan.t[j]-Ts)/T;
00106 }
00107 fclose(fp);
00108 fclose(ftime);
00109
00110 finh=fopen("inh.dat","r");
00111 for(j=0;j<N*N;j++)
00112 {
00113 fscanf(finh,"%le ",&my_plan.w[j]);
00114 my_plan.w[j]/=W;
00115 }
00116 fclose(finh);
00117
00118
00119 fi=fopen("input_f.dat","r");
00120 for(j=0;j<N*N;j++)
00121 {
00122 fscanf(fi,"%le ",&real);
00123 my_plan.f_hat[j] = real*cexp(2.0*_Complex_I*PI*Ts*my_plan.w[j]*W);
00124 }
00125
00126 if(my_plan.plan.nfft_flags & PRE_PSI)
00127 nfft_precompute_psi(&my_plan.plan);
00128
00129 mri_inh_2d1d_trafo(&my_plan);
00130
00131 fout=fopen(file,"w");
00132
00133 for(j=0;j<my_plan.M_total;j++)
00134 {
00135 fprintf(fout,"%le %le %le %le\n",my_plan.plan.x[2*j+0],my_plan.plan.x[2*j+1],creal(my_plan.f[j]),cimag(my_plan.f[j]));
00136 }
00137
00138 fclose(fout);
00139
00140 mri_inh_2d1d_finalize(&my_plan);
00141 }
00142
00143 int main(int argc, char **argv)
00144 {
00145 if (argc <= 3) {
00146 printf("usage: ./construct_data_inh_2d1d FILENAME N M\n");
00147 return 1;
00148 }
00149
00150 construct(argv[1],atoi(argv[2]),atoi(argv[3]));
00151
00152 return 1;
00153 }
00154