00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021 #include <stdlib.h>
00022 #include <math.h>
00023 #include <limits.h>
00024 #include <complex.h>
00025
00026 #include "nfft3.h"
00027 #include "nfft3util.h"
00028
00038 void construct(char * file, int N, int M)
00039 {
00040 int j;
00041 double real;
00042 double w;
00043 double time,min_time,max_time,min_inh,max_inh;
00044 mri_inh_3d_plan my_plan;
00045 FILE *fp,*fout,*fi,*finh,*ftime;
00046 int my_N[3],my_n[3];
00047 int flags = PRE_PHI_HUT| PRE_PSI |MALLOC_X| MALLOC_F_HAT|
00048 MALLOC_F| FFTW_INIT| FFT_OUT_OF_PLACE|
00049 FFTW_MEASURE| FFTW_DESTROY_INPUT;
00050
00051 double Ts;
00052 double W;
00053 int N3;
00054 int m=2;
00055 double sigma = 1.25;
00056
00057 ftime=fopen("readout_time.dat","r");
00058 finh=fopen("inh.dat","r");
00059
00060 min_time=INT_MAX; max_time=INT_MIN;
00061 for(j=0;j<M;j++)
00062 {
00063 fscanf(ftime,"%le ",&time);
00064 if(time<min_time)
00065 min_time = time;
00066 if(time>max_time)
00067 max_time = time;
00068 }
00069
00070 fclose(ftime);
00071
00072 Ts=(min_time+max_time)/2.0;
00073
00074 min_inh=INT_MAX; max_inh=INT_MIN;
00075 for(j=0;j<N*N;j++)
00076 {
00077 fscanf(finh,"%le ",&w);
00078 if(w<min_inh)
00079 min_inh = w;
00080 if(w>max_inh)
00081 max_inh = w;
00082 }
00083 fclose(finh);
00084
00085 N3=ceil((NFFT_MAX(fabs(min_inh),fabs(max_inh))*(max_time-min_time)/2.0+m/(2*sigma))*4*sigma);
00086
00087 W= NFFT_MAX(fabs(min_inh),fabs(max_inh))/(0.5-((double)m)/N3);
00088
00089 my_N[0]=N; my_n[0]=ceil(N*sigma);
00090 my_N[1]=N; my_n[1]=ceil(N*sigma);
00091 my_N[2]=N3; my_n[2]=ceil(N3*sigma);
00092
00093
00094 mri_inh_3d_init_guru(&my_plan, my_N, M, my_n, m, sigma, flags,
00095 FFTW_MEASURE| FFTW_DESTROY_INPUT);
00096
00097 ftime=fopen("readout_time.dat","r");
00098 fp=fopen("knots.dat","r");
00099
00100 for(j=0;j<my_plan.M_total;j++)
00101 {
00102 fscanf(fp,"%le %le",&my_plan.plan.x[3*j+0],&my_plan.plan.x[3*j+1]);
00103 fscanf(ftime,"%le ",&my_plan.plan.x[3*j+2]);
00104 my_plan.plan.x[3*j+2] = (my_plan.plan.x[3*j+2]-Ts)*W/N3;
00105 }
00106 fclose(fp);
00107 fclose(ftime);
00108
00109 finh=fopen("inh.dat","r");
00110 for(j=0;j<N*N;j++)
00111 {
00112 fscanf(finh,"%le ",&my_plan.w[j]);
00113 my_plan.w[j]/=W;
00114 }
00115 fclose(finh);
00116
00117
00118 fi=fopen("input_f.dat","r");
00119 for(j=0;j<N*N;j++)
00120 {
00121 fscanf(fi,"%le ",&real);
00122 my_plan.f_hat[j] = real*cexp(2.0*_Complex_I*PI*Ts*my_plan.w[j]*W);
00123 }
00124
00125 if(my_plan.plan.nfft_flags & PRE_PSI)
00126 nfft_precompute_psi(&my_plan.plan);
00127
00128 mri_inh_3d_trafo(&my_plan);
00129
00130 fout=fopen(file,"w");
00131
00132 for(j=0;j<my_plan.M_total;j++)
00133 {
00134 fprintf(fout,"%le %le %le %le\n",my_plan.plan.x[3*j+0],my_plan.plan.x[3*j+1],creal(my_plan.f[j]),cimag(my_plan.f[j]));
00135 }
00136
00137 fclose(fout);
00138
00139 mri_inh_3d_finalize(&my_plan);
00140 }
00141
00142 int main(int argc, char **argv)
00143 {
00144 if (argc <= 3) {
00145 printf("usage: ./construct_data_inh_3d FILENAME N M\n");
00146 return 1;
00147 }
00148
00149 construct(argv[1],atoi(argv[2]),atoi(argv[3]));
00150
00151 return 1;
00152 }
00153