
SCALASCA v1.3 Quick Reference

General
• SCALASCA is an open-source toolset for scalable performance analysis of large-scale parallel applications.

• Use the scalasca command with appropriate action flags to instrument application object files and executables,
analyze execution measurements, and interactively examine measurement/analysis experiment archives.

• For short usage explanations, use SCALASCA commands without arguments, or add ‘-v’ for verbose commentary.

Instrumentation
• Prepend scalasca -instrument (or skin) and any instrumentation flags to your compile/link commands.

• By default, MPI and OpenMP operations are automatically instrumented, and many compilers are also able to
instrument all routines found in source files (unless explicitly disabled with -comp=none).

• To enable manual instrumentation (described on page 3) using the EPIK user instrumentation API, add -user,
and/or using POMP directives, add -pomp.

• If PDToolkit is available, use -pdt and associated configuration options when additional instrumentation is desired.

• Examples:
Original command:
mpicc -c foo.c
mpicxx -o foo foo.cpp
mpif90 -openmp -o bar bar.f90

SCALASCA instrumentation command:
scalasca -instrument mpicc -c foo.c
scalasca -inst -pomp mpicxx -o foo foo.cpp
skin mpif90 -openmp -o bar bar.f90

• Often it is preferable to prefix Makefile compile/link commands with $(PREP) and set PREP="scalasca -inst"
for instrumented builds (leaving PREP unset for uninstrumented builds).

Measurement & Analysis
• Prepend scalasca -analyze (or scan) to the usual execution command line to perform a measurement with

SCALASCA runtime summarization and associated automatic trace analysis (if applicable).

• Each measurement is stored in a new experiment archive which is never overwritten by a subsequent measurement.

• By default, only a runtime summary (profile) is collected (equivalent to specifying -s).

• To enable trace collection & analysis, add the flag -t.

• To analyze MPI and hybrid OpenMP/MPI applications, use the usual MPI launcher command and arguments.

• Examples:
Original command:
mpiexec -np 4 foo args
OMP NUM THREADS=3 bar
mpiexec -np 4 foobar

SCALASCA measurement & analysis command:
scalasca -analyze mpiexec -np 4 foo args
OMP NUM THREADS=3 scan -t bar
scan -s mpiexec -np 4 foobar

Experiment archive:
epik foo 4 sum
epik bar Ox3 trace
epik foobar 4x3 sum

Measurement configuration

SCALASCA measurement is controlled by a number of variables which can be specified in a EPIK.CONF file in the working
directory or through corresponding environment variables (which override values found in any configuration file): the
measurement configuration is stored in the experiment archive as epik.conf. The most important variables are:

Variable Purpose Default
EPK TITLE Experiment archive title, specified by scalasca -analyze -e epik title

or automatically given a reasonable name if not specified.
a

EPK FILTER Name of file containing a list of names of functions (one per line) which should
be ignored during the measurement (when supported).

—

EPK METRICS Colon-separated list of counter metrics or predefined groups to be measured
with events (ignored if not configured with PAPI).

—

EPK VERBOSE Controls generation of additional (debugging) output by measurement system. false
ESD PATHS Maximum number of measured call-paths. 4 096
ESD FRAMES Maximum stack frame depth of measured call-paths. 32
ESD BUFFER SIZE Size of per-process definitions buffers in bytes. 100 000
ELG BUFFER SIZE Size of per-thread event trace buffers in bytes. 10 000 000

Project URL: http://www.scalasca.org 1 Contact/support: scalasca@fz-juelich.de

SCALASCA v1.3 Quick Reference

Analysis Report Examination
• To interactively examine the contents of a SCALASCA experiment, after final processing of runtime summary and

trace analyses, use scalasca -examine (or square) with the experiment archive directory name as argument.

• To get a textual score output (using the cube3 score utility) instead of the graphical user interface, add the -s flag.

• If multiple analysis reports are available, a trace analysis report is shown in preference to a runtime summary report:
other reports can be specified directly or selected from the File/Open menu.

• Results are displayed using three coupled tree browsers showing

– Metrics (i.e., performance properties/problems)
– Call-tree or flat region profile
– System location (alternative: graphical display of physical/virtual topologies, 1D/2D/3D Cartesian only)

• Analyses are presented in trees, where collapsed nodes represent inclusive values (consisting of the value of the
node itself and all of its child nodes), which can be selectively expanded to reveal exclusive values (i.e., the node
‘self’ value) and child nodes.

• When a node is selected from any tree, its severity value (and percentage) are shown in the panel below it, and that
value distributed across the tree(s) to the right of it.

• Selective expansion of critical nodes, guided by the colour scale, can be used to hone in on performance problems.

• Each tree browser provides additional information via a context menu (on the right mouse button), such as the
description of the selected metric or source code for the selected region (where available).

• Metric severity values can be displayed in various modes:

Mode Description
Absolute Absolute value in the corresponding unit of measurement.
Root percent Percentage relative to the inclusive value of the root node of the corresponding hierarchy.
Selection percent Percentage relative to the value of selected node in corresponding tree browser to the left.
Peer percent Percentage relative to the maximum of all peer values (all values of the current leaf level).
Peer distribution Percentage relative to the maximum and non-zero minimum of all peer values.
External percent Similar to “Root percent,” but reference values are taken from another experiment.

Project URL: http://www.scalasca.org 2 Contact/support: scalasca@fz-juelich.de

SCALASCA v1.3 Quick Reference

Manual source-code instrumentation
• Region or phase annotations manually inserted in source files can augment or substitute automatic instrumentation,

and can improve the structure of analysis reports to make them more readily comprehensible.

• These annotations can be used to mark any sequence or block of statements, such as functions, phases, loop nests,
etc., and can be nested, provided that every enter has a matching exit.

• If automatic compiler instrumentation is not used (or not available), it is typically desirable to manually instrument
at least the main function/program and perhaps its major phases (e.g., initialization, core/body, finalization).

EPIK user instrumentation API
C/C++:
#include "epik user.h"
...
void foo() {

... // local declarations

... // more declarations
EPIK FUNC START();
... // executable statements
if (...) {
EPIK FUNC END();
return;
} else {
EPIK USER REG(r name,"region");
EPIK USER START(r name);
...
EPIK USER END(r name);
}
... // executable statements
EPIK FUNC END();
return;

}

Fortran:
#include "epik user.inc"
...
subroutine bar()

EPIK FUNC REG("bar")
... ! local declarations
EPIK FUNC START()
... ! executable statements
if (...) then
EPIK FUNC END()
return

else
EPIK USER REG(r name,"region")
EPIK USER START(r name)
...
EPIK USER END(r name)

endif
... ! executable statements
EPIK FUNC END()
return

end subroutine bar

C++:
#include "epik user.h"
...
{

EPIK TRACER("name");
...

}

• EPIK FUNC START and EPIK FUNC END are provided explicitly to mark the entry and exit(s) of functions/subroutines.

• Function names are automatically provided by C/C++, however, in annotated Fortran functions/subroutines an
appropriate name should be registered with EPIK FUNC REG("func name") in its prologue.

• Region identifiers (e.g., r name) should be registered with EPIK USER REG in each annotated prologue before use
with EPIK USER START and EPIK USER END in the associated body.

• Every exit/break/continue/return/etc. out of each annotated region must have corresponding END() annotation(s).

• Source files annotated in this way need to be compiled with the -user flag given to the SCALASCA instrumenter,
otherwise the annotations are ignored. Fortran source files need to be preprocessed (e.g., by CPP).

POMP user instrumentation API

POMP annotations provide a mechanism for preprocessors (such as OPARI) to conditionally insert user instrumentation.
C/C++:
#pragma pomp inst init // once only, in main
...
#pragma pomp inst begin(name)

...
[#pragma pomp inst altend(name)]
...

#pragma pomp inst end(name)

Fortran:
!POMP$ INST INIT ! once only, in main program
...
!POMP$ INST BEGIN(name)

...
[!POMP$ INST ALTEND(name)]
...

!POMP$ INST END(name)

• Every intermediate exit/break/return/etc. from each annotated region must have an altend or ALTEND annotation.

• Source files annotated in this way need to be processed with the -pomp flag given to the SCALASCA instrumenter,
otherwise the annotations are ignored.

Project URL: http://www.scalasca.org 3 Contact/support: scalasca@fz-juelich.de

SCALASCA v1.3 Quick Reference

EPIK experiment archives
SCALASCA measurement and analysis artifacts are stored in unique experiment archive directories, with the epik prefix,
which can be handled with standard Unix tools.

• Experiment archives are not overwritten or otherwise corrupted by subsequent measurements.

• An existing measurement archive will block new measurements that would have the same experiment archive name.

• The SCALASCA measurement & analysis nexus automatically generates a default experiment title from the target
executable, compute node mode (if appropriate), number of MPI processes (or O if omitted), number of OpenMP
threads (if OMP NUM THREADS is set), summarization or tracing mode, and optional metric specification, e.g.,

% OMP NUM THREADS=4 scan -t -m BGP TORUS mpiexec -mode SMP -np 512 /path/foobar args
→ epik foobar smp512x4 trace BGP TORUS

• An archive directory name can be explicitly specified with scan -e epik title (or EPK TITLE=title).

Typical experiment archive contents

File Description
epik.conf Measurement configuration when the experiment was collected.
epik.filt Measurement filter specified when the experiment was collected.
epik.log Output of the instrumented program and measurement system.
epik.path Callpath-tree recorded by the measurement system.
epitome.cube † Intermediate analysis report of the runtime summarization system.
expert.log Output of the serial trace analyzer.
expert.cube Analysis report of the serial trace analyzer. (Includes measured hardware counter metrics.)
scout.log Output of the parallel trace analyzer.
scout.cube † Intermediate analysis report of the parallel trace analyzer.
summary.cube Post-processed analysis report of the runtime summarization. (Includes hardware counter metrics.)
trace.cube Post-processed analysis report of the parallel trace analyzer. (Does not include HWC metrics.)
ELG/ † Directory containing EPILOG event traces for each process.
epik.elg † Merged EPILOG event trace for serial analysis.
epik.esd † Unified definitions for a set of EPILOG event traces.
epik.map † Definition mappings for a set of EPILOG event traces.

† Intermediate analysis reports, the ELG subdirectory and associated EPILOG files can be deleted after final analysis reports
have been generated. Note: These files can be extremely large, especially when hardware counter metrics are measured!

CUBE3 algebra and utilities
Uniform behavioural encoding, processing and interactive examination of parallel application execution analysis reports.

• CUBE3 includes most of the same functionality and commands of its predecessors, and CUBE3 tools should be able
to read files in CUBE2 format (though output is only in CUBE3 format).

• A new cube3 cut utility can be used to prune uninteresting call-trees and/or re-root with a specified call-tree node.

• Integrated holistic analysis reports (as formerly produced by cube merge) are currently not supported.

Determining trace buffer requirements

Based on an analysis report, the required trace buffer size can be estimated using

COM

USR COM USR

USR MPI USR

cube3 score [-r] [-f filter file] experiment archive/summary.cube

• To get detailed information per region (i.e., function or subroutine), use -r

• To take a proposed filter file into account, use -f filter file

• The reported value max tbc specifies the maximum estimated trace buffer content per process, which can be used
to set ELG BUFFER SIZE appropriately to avoid intermediate flushes in subsequent tracing experiments.

Project URL: http://www.scalasca.org 4 Contact/support: scalasca@fz-juelich.de

SCALASCA v1.3 Quick Reference

Tips for effective use of the SCALASCA toolset
1. Determine one or more repeatable execution configurations (input data, number of processes/threads) and time their

overall execution to have a baseline for reference. (If possible, also identify maximum memory requirements.)

• Ensure that the execution terminates cleanly, e.g., with MPI_Finalize.

• Excessively long execution durations can make measurement and analysis inconvenient, therefore the test
configuration shouldn’t be longer than sufficient to be representative.

2. Modify the application build procedure (Makefile) to prepend the SCALASCA instrumenter to compile and link
commands, and produce an instrumented executable.

• MPI library calls and OpenMP parallel regions will be instrumented by default, along with user functions if
supported by the compiler.

• Serial libraries and source modules using neither MPI nor OpenMP are generally not worth instrumenting
with SCALASCA, and indeed may result in undesirable measurement overheads.

3. Prefix the usual launch/run command with the SCALASCA analyzer to run the instrumented executable under control
of the SCALASCA measurement collection and analysis nexus to produce an experiment archive directory.

• By default the experiment archive is produced in the current working directory, and its name will start with
‘epik_’ followed by some configuration descriptors.

• If a similarly configured experiment has already been run and its archive directory blocks new measurement
experiments, rename (or remove) the old archive.

• A call-path profile summary report containing Time and Visits metrics (and when appropriate also MPI file
I/O and message statistics and hardware counters) for each process/thread is produced by default.

• If the (default) measurement configuration is inadequate for a complete measurement to be collected, EPIK
warnings will indicate that one or more configuration variables should be adjusted (e.g., ESD_BUFFER_SIZE).

• Compare the runtime to the (uninstrumented) reference to estimate implicit instrumentation dilation overhead.

4. Use the SCALASCA examiner to explore the analysis report in the experiment archive.

• If there are ‘Unknown’ callpaths reported, this indicates that the measurement configuration should be adjusted
to allocate additional capacity for storing callpath measurements (ESD_PATHS).

• Uninstrumented or filtered routines will not appear in the analysis report, and their associated metric severities
will be attributed to the last measured routine from which they are called (as if they were ‘inlined’).

• OpenMP teams will only have measurements for ESD_MAX_THREADS threads (default: OMP_NUM_THREADS).

• Additional structure can be included in the analysis report by using the EPIK user instrumentation API to
specify (nested) regions or phases as annotations in the source code.

5. If dilation is significant, adjust measurement configuration using a filter file, adjust OpenMP instrumentation, or
selectively instrument source modules (or routines).

• OpenMP synchronization constructs that have prohibitively large measurement costs should not be instru-
mented, and instrumentation of these constructs can be disabled. [See OPEN ISSUES/OPARI.]

• Investigate use of a filter file specifying instrumented routines (one per line, using shell wildcards) to be
ignored during measurement collection.

• Routines with very high visit counts and relatively low total times (which are not MPI functions and OpenMP
parallel regions) are appropriate candidates for filtering, and can be identified from the flat profile view in the
GUI or using ‘cube3_score -r’.

• Highly-recursive functions are typically also worth removing: recursion is often indicated by a large maximum
frame depth and the culprits are obvious by examining epik.path in the experiment archive.

• A prospective filter file can be specified to cube3_score with ’-f’ for evaluation prior to being used to re-do
measurement and re-check dilation.

• Some routines might still present excessive overhead even when filtered, and these should not be instrumented.
The build procedure may need to be adjusted not to prefix the SCALASCA instrumenter when compiling the
associated source modules. When SCALASCA is configured with PDToolkit, it can be used to selectively
instrument entire source modules or individual routines (see PDToolkit documentation for details).

Project URL: http://www.scalasca.org 5 Contact/support: scalasca@fz-juelich.de

SCALASCA v1.3 Quick Reference

6. Use the cube3_score utility on the summary analysis report to determine an appropriate size for trace buffers.

• The maximum trace buffer content (max_tbc) estimated for all events of any type can be used to specify trace
buffer sizes via the ELG_BUFFER_SIZE configuration variable.

• This value (in bytes) specifies the amount of memory to be allocated by each thread and the size of trace file
potentially written by each thread. The trace file sizes on disk may be somewhat less when compression is
used when writing, and many times larger if intermediate flushes are necessary during measurement.

• ELG_BUFFER_SIZE should be set after consideration of the memory available when measuring the instru-
mented application execution and the system’s I/O and filesystem performance and capacity. (These vary
enormously from system to system and can quickly be overwhelmed by large traces!)

• Additional user routines can be included in a filter file to reduce trace buffer requirements.

7. Repeat measurement specifying the ‘-t’ flag to the SCALASCA analyzer (along with other configuration settings if
necessary) to collect and automatically analyze execution traces.

• Traces are generally written directly into the experiment archive to avoid copying at completion. If a temporary
location is specified with EPK_LDIR ensure that it contains sufficient capacity.

• If there are EPIK messages reporting trace flushing to disk prior to closing the experiment, these intermediate
flushes are often highly disruptive. These also show up as TRACING Overhead during measurement outside
of measurement initialization and finalization (e.g., during MPI_init and MPI_Finalize). Enlarging trace
buffer sizes and/or adjusting instrumentation or the measurement filter and/or configuring a shorter execution
(perhaps with fewer iterations or timesteps) may be appropriate.

• Parallel trace analysis requires several times as much memory as the size of the respective (uncompressed
process) traces, and it is currently not possible to analyze incomplete traces. When memory is restricted, trace
sizes should be reduced accordingly.

• If clock synchronization inconsistencies are reported during trace analysis, specify SCAN_ANALYZE_OPTS=-s
to incorporate a logical clock correction step during analysis.

• Traces from hybrid OpenMP/MPI application executions are analyzed in parallel by default. If an OpenMP-
aware trace analyzer is not available, metrics are only calculated for the master thread of OpenMP teams. If
the traces are sufficiently small, they may be merged and analyzed with the EXPERT analyzer to generate a
report including additional OpenMP metrics.

• After the analysis report has been examined and verified to be complete, it is generally unnecessary to keep
the often extremely large trace files used to generate it (unless further analysis or convertion is planned): these
are in the ELG subdirectory of a trace experiment archive, which can be deleted.

8. In addition to interactive exploration of analysis reports with the SCALASCA examiner, they can be processed with
a variety of CUBE algebra tools and utilities.

9. If you encounter difficulties using SCALASCA to instrument applications, configuring measurement collection and
analysis, or interpreting analysis reports, contact scalasca@fz-juelich.de for assistance.

KOJAK

An open source kit for objective judgement and knowledge-based detection of performance bottlenecks.

• KOJAK is no longer released separately, but the version included with this distribution includes the same function-
ality and commands of its predecessors using the EPIK measurement system and CUBE3 report format and viewer.

• EPILOG event trace files can be generated by EPIK, though this is inactive by default: set configuration/environment
variable EPK TRACING=1 to activate tracing (and optionally EPK SUMMARY=0 to deactivate runtime summarization).

• Trace files and other experiment artifacts are stored in EPIK experiment archive directories, and the commands
elg merge, expert and kanal also accept experiment archive directories as arguments.

• EXPERT trace analysis reports have different OpenMP metrics and do not include MPI message and I/O statistics.

• Run the expert command with no arguments for usage information for generating pattern statistics and traces.

• Merged KOJAK traces (e.g., epik a/epik.elg) can be converted from EPILOG format to OTF, VTF3 and PARAVER
formats, for use with external analysis and visualization tools.

SCALASCA v1.3 fully integrates KOJAK, CUBE3, OPARI, etc.

Project URL: http://www.scalasca.org 6 Contact/support: scalasca@fz-juelich.de

