pycairo Documentation
Release 1.8.10

Steve Chaplin

April 05, 2011

1 Overview

2 Reference

2.1 Module Functions and Constants
22 CairoContext.
23 Exceptions
24 MatriX e e e
25 Paths
26 Patterns o
277 Surfaces
28 Text
3 FAQ

3.1 Pycairo FAQ - Frequently Asked Questions

4 Pycairo C API

4.1 To access the PycairoCAPI
42 PycairoObjects
43 PycairoTypes
44 Functions

5 Indices and tables
Python Module Index

Index

CONTENTS

................ 38

61

................ 61

63

................ 63
................ 63
................ 64
................ 64

67

69

71

CHAPTER
ONE

OVERVIEW

Pycairo is a Python binding for the cairo graphics library.

The Pycairo bindings are designed to match the cairo C API as closely as possible, and to
deviate only in cases which are clearly better implemented in a more ‘Pythonic’ way.

Features of the Pycairo bindings:
* Provides an object oriented interface to cairo, using Python 2.2 new style classes.

* Pycairo_Check_Status() is called to check the status of cairo operations, and raise excep-
tions as appropriate.

* Provides a C API that can be used by other Python extensions.

The C cairo functions cairo_reference(), cairo_destroy(), cairo_surface_reference(),
cairo_surface_destroy() (and their equivalents for surfaces and patterns) are not made
public by the pycairo bindings. This is because pycairo handles cairo object construction and
destruction.

To use the pycairo library:

import cairo

See Reference for further details.

For examples of pycairo code see the ‘examples’ directory that comes with the pycairo distri-
bution.

pycairo Documentation, Release 1.8.10

2 Chapter 1. Overview

CHAPTER
TWO

REFERENCE

2.1 Module Functions and Constants

2.1.1 Module Functions

cairo.cairo_version ()
Returns the encoded version
Return type int
Returns the version of the underlying C cairo library, encoded in a single integer.
cairo.cairo_version_string()
Returns the encoded version
Return type str

Returns the version of the underlying C cairo library as a human-readable string of the
form “X.Y.Z”.

2.1.2 Module Constants

calro.version
the pycairo version, as a string

cairo.version_info
the pycairo version, as a tuple

cairo.HAS

cairo.HAS_ATSUI_FONT
cairo.HAS_FT FONT
cairo.HAS GLITZ_ SURFACE
cairo.HAS IMAGE_ SURFACE
cairo.HAS PDF_SURFACE
cairo.HAS_PNG_FUNCTIONS

pycairo Documentation, Release 1.8.10

cairo.HAS_PS_SURFACE

cairo.HAS_ SVG_SURFACE

cairo.HAS USER_FONT

cairo.HAS QUARTZ SURFACE
cairo.HAS _WIN32_ FONT

cairo.HAS_WIN32_SURFACE
cairo.HAS XCB_SURFACE

cairo.HAS_XLIB_SURFACE

1 if the feature is present in the underlying C cairo library, O otherwise

cairo.ANTIALIAS

ANTIALIAS specifies the type of antialiasing to do when rendering text or shapes.

cairo.ANTIALIAS DEFAULT
Use the default antialiasing for the subsystem and target device

cairo.ANTIALIAS_NONE
Use a bilevel alpha mask

cairo.ANTIALIAS_GRAY
Perform single-color antialiasing (using shades of gray for black text on a white back-
ground, for example).

cairo.ANTIALIAS_ SUBPIXEL
Perform antialiasing by taking advantage of the order of subpixel elements on devices
such as LCD panels.

cairo.CONTENT

These constants are used to describe the content that a Surface will contain, whether color
information, alpha information (translucence vs. opacity), or both.

cairo.CONTENT_COLOR
The surface will hold color content only.

cairo.CONTENT_ALPHA
The surface will hold alpha content only.

cairo.CONTENT_COLOR_ALPHA
The surface will hold color and alpha content.

cairo.EXTEND

These constants are used to describe how Pattern color/alpha will be determined for areas
“outside” the pattern’s natural area, (for example, outside the surface bounds or outside the
gradient geometry).

The default extend mode is EXTEND_NONE for SurfacePattern and EXTEND_PAD for
Gradient patterns.

4 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

cairo.EXTEND_ NONE
pixels outside of the source pattern are fully transparent

cairo.EXTEND_REPEAT
the pattern is tiled by repeating

cairo.EXTEND_ REFLECT
the pattern is tiled by reflecting at the edges (Implemented for surface patterns since 1.6)

cairo.EXTEND PAD
pixels outside of the pattern copy the closest pixel from the source (Since 1.2; but only
implemented for surface patterns since 1.6)

New entries may be added in future versions.

cairo.FILL_RULE

These constants are used to select how paths are filled. For both fill rules, whether or not a
point is included in the fill is determined by taking a ray from that point to infinity and looking
at intersections with the path. The ray can be in any direction, as long as it doesn’t pass through
the end point of a segment or have a tricky intersection such as intersecting tangent to the path.
(Note that filling is not actually implemented in this way. This is just a description of the rule
that is applied.)

The default fill rule is FILL _RULE WINDING.

cairo.FILL_RULE WINDING
If the path crosses the ray from left-to-right, counts +1. If the path crosses the ray from
right to left, counts -1. (Left and right are determined from the perspective of looking
along the ray from the starting point.) If the total count is non-zero, the point will be
filled.

cairo.FILL RULE EVEN_ ODD
Counts the total number of intersections, without regard to the orientation of the contour.
If the total number of intersections is odd, the point will be filled.

New entries may be added in future versions.

cairo.FILTER

These constants are used to indicate what filtering should be applied when reading pixel values
from patterns. See SurfacePattern.set_filter () for indicating the desired filter to
be used with a particular pattern.

cairo.FILTER_FAST
A high-performance filter, with quality similar FILTER_NEAREST

cairo.FILTER GOOD
A reasonable-performance filter, with quality similar to FILTER_BILINEAR

cairo.FILTER_ BEST
The highest-quality available, performance may not be suitable for interactive use.

2.1. Module Functions and Constants 5

pycairo Documentation, Release 1.8.10

cairo.FILTER NEAREST
Nearest-neighbor filtering

cairo.FILTER BILINEAR
Linear interpolation in two dimensions

cairo.FILTER GAUSSIAN
This filter value is currently unimplemented, and should not be used in current code.

cairo.FONT_SLANT

These constants specify variants of a FontFace based on their slant.

cairo.FONT_SLANT_ NORMAL
Upright font style

cairo.FONT_SLANT ITALIC
Italic font style

cairo.FONT_SLANT OBLIQUE
Oblique font style

cairo.FONT_WEIGHT

These constants specify variants of a FontFace based on their weight.

cairo.FONT_WEIGHT_ NORMAL
Normal font weight

cairo.FONT_WEIGHT_ BOLD
Bold font weight

cairo.FORMAT

These constants are used to identify the memory format of ImageSurface data.

caliro.FORMAT ARGB32
each pixel is a 32-bit quantity, with alpha in the upper 8 bits, then red, then green, then

blue. The 32-bit quantities are stored native-endian. Pre-multiplied alpha is used. (That
is, 50% transparent red is 0x80800000, not 0x80£f0000.)

cairo.FORMAT_RGB24
each pixel is a 32-bit quantity, with the upper 8 bits unused. Red, Green, and Blue are
stored in the remaining 24 bits in that order.

cairo.FORMAT_AS8
each pixel is a 8-bit quantity holding an alpha value.

cairo.FORMAT Al
each pixel is a 1-bit quantity holding an alpha value. Pixels are packed together into
32-bit quantities. The ordering of the bits matches the endianess of the platform. On a

6 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

big-endian machine, the first pixel is in the uppermost bit, on a little-endian machine the
first pixel is in the least-significant bit.

New entries may be added in future versions.

cairo.HINT_METRICS

These constants specify whether to hint font metrics; hinting font metrics means quantizing
them so that they are integer values in device space. Doing this improves the consistency of
letter and line spacing, however it also means that text will be laid out differently at different
zoom factors.

cairo.HINT METRICS_DEFAULT
Hint metrics in the default manner for the font backend and target device

cairo.HINT METRICS OFF
Do not hint font metrics

cairo.HINT METRICS ON
Hint font metrics

cairo.HINT_STYLE

These constants specify the type of hinting to do on font outlines. Hinting is the process of
fitting outlines to the pixel grid in order to improve the appearance of the result. Since hinting
outlines involves distorting them, it also reduces the faithfulness to the original outline shapes.
Not all of the outline hinting styles are supported by all font backends.

cairo.HINT STYLE DEFAULT
Use the default hint style for font backend and target device

caliro.HINT STYLE NONE
Do not hint outlines

cairo.HINT STYLE SLIGHT
Hint outlines slightly to improve contrast while retaining good fidelity to the original
shapes.

cairo.HINT STYLE MEDIUM
Hint outlines with medium strength giving a compromise between fidelity to the original
shapes and contrast

cairo.HINT STYLE FULL
Hint outlines to maximize contrast

New entries may be added in future versions.

cairo.LINE_CAP

These constants specify how to render the endpoints of the path when stroking.

The default line cap style is LINE_CAP_BUTT

2.1. Module Functions and Constants 7

pycairo Documentation, Release 1.8.10

cairo.LINE_CAP_BUTT
start(stop) the line exactly at the start(end) point

cairo.LINE_CAP_ROUND
use a round ending, the center of the circle is the end point

cairo.LINE_CAP_SQUARE
use squared ending, the center of the square is the end point

cairo.LINE_JOIN

These constants specify how to render the junction of two lines when stroking.
The default line join style is LINE_JOIN_MITER

cairo.LINE JOIN MITER
use a sharp (angled) corner, see Context .set_miter_limit ()

cairo.LINE_JOIN_ROUND
use a rounded join, the center of the circle is the joint point

cairo.LINE_JOIN_BEVEL
use a cut-off join, the join is cut off at half the line width from the joint point

cairo.OPERATOR

These constants are used to set the compositing operator for all cairo drawing operations.
The default operator is OPERATOR_OVER.

The operators marked as unbounded modify their destination even outside of the mask layer
(that is, their effect is not bound by the mask layer). However, their effect can still be limited
by way of clipping.

To keep things simple, the operator descriptions here document the behavior for when both
source and destination are either fully transparent or fully opaque. The actual implementation
works for translucent layers too.

For a more detailed explanation of the effects of each operator, including the mathematical
definitions, see http://cairographics.org/operators.

cairo.OPERATOR_ CLEAR
clear destination layer (bounded)

cairo.OPERATOR_SOURCE
replace destination layer (bounded)

cairo.OPERATOR_OVER
draw source layer on top of destination layer (bounded)

cairo.OPERATOR_IN
draw source where there was destination content (unbounded)

8 Chapter 2. Reference

http://cairographics.org/operators

pycairo Documentation, Release 1.8.10

cairo.OPERATOR_OUT
draw source where there was no destination content (unbounded)

cairo.OPERATOR_ATOP
draw source on top of destination content and only there

cairo.OPERATOR_DEST
ignore the source

cairo.OPERATOR_DEST_ OVER
draw destination on top of source

cairo.OPERATOR DEST IN
leave destination only where there was source content (unbounded)

cairo.OPERATOR_DEST_OUT
leave destination only where there was no source content

cairo.OPERATOR DEST_ATOP
leave destination on top of source content and only there (unbounded)

cairo.OPERATOR_XOR
source and destination are shown where there is only one of them

cairo.OPERATOR_ADD
source and destination layers are accumulated

cairo.OPERATOR_SATURATE
like over, but assuming source and dest are disjoint geometries

cairo.PATH

These constants are used to describe the type of one portion of a path when represented as a
Path.

cairo.PATH MOVE_TO
A move-to operation

cairo.PATH LINE_TO
A line-to operation

cairo.PATH_CURVE_TO
A curve-to operation

cairo.PATH_CLOSE_PATH
A close-path operation

cairo.PS_LEVEL

These constants are used to describe the language level of the PostScript Language Reference
that a generated PostScript file will conform to. Note: the constants are only defined when
cairo has been compiled with PS support enabled.

2.1. Module Functions and Constants 9

pycairo Documentation, Release 1.8.10

cairo.PS_LEVEL 2
The language level 2 of the PostScript specification.

cairo.PS_LEVEL 3
The language level 3 of the PostScript specification.

cairo.SUBPIXEL_ORDER

The subpixel order specifies the order of color elements within each pixel on the display device
when rendering with an antialiasing mode of ANTIALTIAS_SUBPIXEL.

cairo.SUBPIXEL_ORDER_ DEFAULT
Use the default subpixel order for for the target device

cairo.SUBPIXEL ORDER_RGB
Subpixel elements are arranged horizontally with red at the left

cairo.SUBPIXEL_ORDER_BGR
Subpixel elements are arranged horizontally with blue at the left

cairo.SUBPIXEL_ ORDER_VRGB
Subpixel elements are arranged vertically with red at the top

cairo.SUBPIXEL_ORDER_VBGR
Subpixel elements are arranged vertically with blue at the top

2.2 Cairo Context

2.2.1 class Context()

Context is the main object used when drawing with cairo. To draw with cairo, you create a
Context, set the target surface, and drawing options for the Context, create shapes with func-
tions like Context .move_to () and Context.line_to (), and then draw shapes with
Context.stroke () orContext.fill ().

Contexts can be pushed to a stack via Context . save (). They may then safely be changed,
without loosing the current state. Use Context . restore () to restore to the saved state.

class cairo.Context (farget)
Parameters target — target Sur face for the context
Returns a newly allocated Context
Raises MemoryError in case of no memory

Creates a new Context with all graphics state parameters set to default values and with
target as a target surface. The target surface should be constructed with a backend-
specific function such as ImageSurface (or any other cairo backend surface create
variant).

append_path (path)

10 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Parameters path — Path to be appended

Append the path onto the current path. The path may be either the return value
from one of Context .copy_path () or Context.copy_path_flat () or
it may be constructed manually (in C).

arc (xc, yc, radius, anglel, angle2)
Parameters
* xc¢ (float) — X position of the center of the arc

* yc (float) — Y position of the center of the arc

radius (float) — the radius of the arc

anglel (float) — the start angle, in radians
* angle2 (float) — the end angle, in radians

Adds a circular arc of the given radius to the current path. The arc is centered at
(xc, yc), begins at anglel and proceeds in the direction of increasing angles to end
at angle2. If angle? is less than anglel it will be progressively increased by 2*PI
until it is greater than anglel.

If there is a current point, an initial line segment will be added to the path to
connect the current point to the beginning of the arc. If this initial line is unde-
sired, it can be avoided by calling Context .new_sub_path () before calling
Context.arc ().

Angles are measured in radians. An angle of 0.0 is in the direction of the positive X
axis (in user space). An angle of P1/2.0 radians (90 degrees) is in the direction of the
positive Y axis (in user space). Angles increase in the direction from the positive X
axis toward the positive Y axis. So with the default transformation matrix, angles
increase in a clockwise direction.

To convert from degrees to radians, use degrees » (math.pi / 180).

This function gives the arc in the direction of increasing angles; see
Context.arc_negative () to get the arc in the direction of decreasing an-
gles.

The arc is circular in user space. To achieve an elliptical arc, you can scale the
current transformation matrix by different amounts in the X and Y directions. For
example, to draw an ellipse in the box given by x, y, width, height:

ctx.save ()

ctx.translate(x + width / 2., y + height / 2.)
ctx.scale(width / 2., height / 2.)

ctx.arc(0., 0., 1., 0., 2 * math.pi)
ctx.restore ()

arc_negative (xc, yc, radius, anglel, angle2)
Parameters

* xc¢ (float) — X position of the center of the arc

2.2. Cairo Context 11

pycairo Documentation, Release 1.8.10

* yc (float) — Y position of the center of the arc

radius (float) — the radius of the arc

anglel (float) — the start angle, in radians

angle2 (float) — the end angle, in radians

Adds a circular arc of the given radius to the current path. The arc is centered at (xc,
yc), begins at anglel and proceeds in the direction of decreasing angles to end at
angle2. If angle? is greater than anglel it will be progressively decreased by 2*PI
until it is less than anglel.

See Context.arc () for more details. This function differs only in the direction
of the arc between the two angles.

clip()

Establishes a new clip region by intersecting the current clip region with the current
path as it would be filled by Context . £i111 () and according to the current F/LL
RULE (see Context.set_fill_rule()).

After c1ip (), the current path will be cleared from the Context.

The current clip region affects all drawing operations by effectively masking out
any changes to the surface that are outside the current clip region.

Calling clip () can only make the clip region smaller, never larger. But
the current clip is part of the graphics state, so a temporary restric-
tion of the clip region can be achieved by calling clip() within a
Context.save ()/Context.restore () pair. The only other means of in-
creasing the size of the clip region is Context .reset_clip ().

clip extents()

Returns (x1, yl1, x2, y2)

Return type (float, float, float, float)

ox/: left of the resulting extents
*y[: top of the resulting extents
*x2: right of the resulting extents
*y2: bottom of the resulting extents

Computes a bounding box in user coordinates covering the area inside the current
clip. New in version 1.4.

clip preserve ()

Establishes a new clip region by intersecting the current clip region with the current
path as it would be filled by Context . £i11 () and according to the current F/LL
RULE (see Context.set_fill_rule()).

Unlike Context.clip (), clip_preserve () preserves the path within the
Context.

12

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

The current clip region affects all drawing operations by effectively masking out
any changes to the surface that are outside the current clip region.

Calling clip_preserve () can only make the clip region smaller, never larger.
But the current clip is part of the graphics state, so a temporary restriction
of the clip region can be achieved by calling clip_preserve () within a
Context.save ()/Context.restore () pair. The only other means of in-
creasing the size of the clip region is Context .reset_clip ().

close_path(()
Adds a line segment to the path from the current point to the beginning of the
current sub-path, (the most recent point passed to Context .move_to ()), and
closes this sub-path. After this call the current point will be at the joined endpoint
of the sub-path.

The behavior of close_path() 1is distinct from simply calling
Context.line_to () with the equivalent coordinate in the case of stroking.
When a closed sub-path is stroked, there are no caps on the ends of the sub-path.
Instead, there is a line join connecting the final and initial segments of the sub-path.

If there is no current point before the call to close_path (), this function will
have no effect.

Note: As of cairo version 1.2.4 any call to close_path () will place an explicit
MOVE_TO element into the path immediately after the CLOSE_PATH element,
(which can be seen in Context .copy_path () for example). This can simplify
path processing in some cases as it may not be necessary to save the “last move_to
point” during processing as the MOVE_TO immediately after the CLOSE_PATH
will provide that point.

copy_clip_ rectangle_list ()
Returns the current clip region as a list of rectangles in user coordinates
Return type list of 4-tuples of float

(The status in the list may be %2CAIRO_STATUS_CLIP_NOT_REPRESENTABLE
to indicate that the clip region cannot be represented as a list of user-space rectan-
gles. The status may have other values to indicate other errors. - not implemented
in pycairo) New in version 1.4.

copy_page ()
Emits the current page for backends that support multiple pages, but doesn’t clear
it, so, the contents of the current page will be retained for the next page too. Use
Context.show_page () if you want to get an empty page after the emission.

This is a convenience function that simply calls Surface.copy_page () on
Context’s target.

copy_path ()
Returns Path

Raises MemoryError in case of no memory

2.2. Cairo Context 13

pycairo Documentation, Release 1.8.10

Creates a copy of the current path and returns it to the user as a Path.
copy_path_flat ()
Returns Path
Raises MemoryError in case of no memory
Gets a flattened copy of the current path and returns it to the user as a Path.

This function is like Context .copy_path () except that any curves in the path
will be approximated with piecewise-linear approximations, (accurate to within the
current tolerance value). That is, the result is guaranteed to not have any elements
of type CAIRO_PATH_CURVE_TO which will instead be replaced by a series of
CAIRO_PATH_LINE_TO elements.

curve_to (xl,yl,x2,y2, x3,y3)
Parameters

* x1 (float) — the X coordinate of the first control point

* y1 (float) — the Y coordinate of the first control point

* x2 (float) — the X coordinate of the second control point
* y2 (float) — the Y coordinate of the second control point
* x3 (float) — the X coordinate of the end of the curve

* y3 (float) — the Y coordinate of the end of the curve

Adds a cubic Bézier spline to the path from the current point to position (x3, y3) in
user-space coordinates, using (x/, y/) and (x2, y2) as the control points. After this
call the current point will be (x3, y3).

If there is no current point before the call to curve_to () this function will behave
as if preceded by a call to ctx.move_to (x1, yl).

device_to_user(x,y)
Parameters
* X (float) — X value of coordinate
* y (float) — Y value of coordinate
Returns (x,y)
Return type (float, float)

Transform a coordinate from device space to user space by multiplying the given
point by the inverse of the current transformation matrix (CTM).

device_to_user_distance (dx, dy)
Parameters
* dx (float) — X component of a distance vector

* dy (float) — Y component of a distance vector

14 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Returns (dx, dy)
Return type (float, float)

Transform a distance vector from device space to user space. This function is sim-
ilar to Context .device_to_user () except that the translation components
of the inverse CTM will be ignored when transforming (dx,dy).

£ill ()
A drawing operator that fills the current path according to the current F/LL RULE,
(each sub-path is implicitly closed before being filled). After £i11 (), the current
path will be cleared from the Context. See Context.set_fill_ rule()
and Context.fill_preserve ().

fill extents ()
Returns (x1, y1, x2, y2)
Return type (float, float, float, float)

*x/: left of the resulting extents

*y1: top of the resulting extents

x2: right of the resulting extents

*y2: bottom of the resulting extents
Computes a bounding box in user coordinates covering the area that would be af-
fected, (the “inked” area), by a Context.fi11 () operation given the current

path and fill parameters. If the current path is empty, returns an empty rectangle
(0,0,0,0). Surface dimensions and clipping are not taken into account.

Contrast with Context .path_extents (), which is similar, but returns non-
zero extents for some paths with no inked area, (such as a simple line segment).

Note that f111_extents () must necessarily do more work to compute the pre-
cise inked areas in light of the fill rule, so Context .path_extents () may be
more desirable for sake of performance if the non-inked path extents are desired.

See Context.fill (), Context.set_fill rule() and
Context.fill_preserve().

fill preserve()
A drawing operator that fills the current path according to the current
FILL RULE, (each sub-path is implicitly closed before being filled). Un-
like Context.fi11(), fill_preserve () preserves the path within the
Context.

See Context.set fill rule() and Context.fill ().
font_extents ()
Returns (ascent, descent, height, max_x_advance, max_y_advance)

Return type (float, float, float, float, float)

2.2. Cairo Context 15

pycairo Documentation, Release 1.8.10

Gets the font extents for the currently selected font.

get_antialias()

Returns the current ANTIALIAS mode, as set by
Context.set_antialias().

get_current_point ()

Returns (x,y)
Return type (float, float)

*x: X coordinate of the current point

*y: Y coordinate of the current point
Gets the current point of the current path, which is conceptually the final point
reached by the path so far.

The current point is returned in the user-space coordinate system. If there is no de-
fined current point or if Cont ext is in an error status, x and y will both be set to 0.0.
It is possible to check this in advance with Context .has_current_point ().

Most path construction functions alter the current point. See
the following for details on how they affect the current
point: Context .new_path (), Context .new_sub_path(),
Context.append_path (), Context.close_path(),
Context.move_to (), Context.line_to (), Context.curve_to(),
Context.rel move_to(), Context.rel line to(),
Context.rel curve_to(), Context.arc(),
Context.arc_negative (), Context.rectangle(),
Context.text_path(), Context.glyph_path(),

Context.stroke_to_path ().

Some functions use and alter the current point but do not otherwise change current
path: Context .show_text ().

Some functions unset the current path and as a result, current point:
Context.fill (), Context.stroke().

get_dash ()

Returns (dashes, offset)

Return type (tuple, float)

*dashes: return value for the dash array

*offset: return value for the current dash offset

Gets the current dash array. New in version 1.4.

get_dash_count ()

Returns the length of the dash array, or O if no dash array set.

16

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Return type int

See also Context.set_dash () and Context.get_dash (). New in ver-
sion 1.4.

get_fill rule()

Returns the current FILL RULE, as set by
Context.set_fill rule().

get_font_face ()
Returns the current FontFace for the Context.
get_font_matrix ()
Returns the current Mat rix for the Context.
See Context.set_font_matrix ().
get_font_options ()
Returns the current FontOptions for the Context.

Retrieves font rendering options set via Context.set_font_options().
Note that the returned options do not include any options derived
from the underlying surface; they are literally the options passed to
Context.set_font_options ().

get_group_target ()
Returns the target Surface.

Gets the current destination Surface for the Context. This is either the
original target surface as passed to Context or the target surface for the cur-
rent group as started by the most recent call to Context .push_group () or
Context.push_group_with_content (). New in version 1.2.

get_line_cap ()

Returns the current LINE_CAP style, as set by
Context.set_line_cap ().

get_line_join|()

Returns the current LINE_JOIN style, as set by
Context.set_line_Jjoin ().

get_line_width ()
Returns the current line width
Return type float

This function returns the current line width value exactly as set by
Context.set_line_width (). Note that the value is unchanged even if the
CTM has changed between the calls to Context.set_line_width () and
get_line_width ().

2.2. Cairo Context 17

pycairo Documentation, Release 1.8.10

get_matrix ()
Returns the current transformation Mat rix (CTM)

get_miter_ limit ()

Returns the current miter limit, as set by
Context.set_miter_ limit ().

Return type float
get_operator ()

Returns the current compositing OPERATOR for a Context.
get_scaled_font ()

Returns the current ScaledFont fora Context.

New in version 1.4.

get_source ()

Returns the current source Pattern fora Context.
get_target ()

Returns the target Surface for the Context
get_tolerance ()

Returns the current tolerance value, as set by

Context.set_tolerance ()
Return type float
glyph_extents (glyphs[, num _glyphs])
Parameters

* glyphs (a sequence of (int, float, float)) — glyphs

* num_glyphs (int) — number of glyphs to measure, defaults to using
all

Returns x_bearing, y_bearing, width, height, x_advance, y_advance
Return type 6-tuple of float

Gets the extents for an array of glyphs. The extents describe a user-space rect-
angle that encloses the “inked” portion of the glyphs, (as they would be drawn
by Context.show_glyphs ()). Additionally, the x_advance and y_advance
values indicate the amount by which the current point would be advanced by
Context.show_glyphs().

Note that whitespace glyphs do not contribute to the size of the rectangle (ex-
tents.width and extents.height).

glyph _path(glyphs[, num _glyphs])

Parameters

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

* glyphs (a sequence of (int, float, float)) — glyphs to show

* num_glyphs (int) — number of glyphs to show, defaults to showing
all

Adds closed paths for the glyphs to the current path. The generated path if filled,
achieves an effect similar to that of Context .show_glyphs ().

has_current_point ()

returns: True iff a current point is defined on the current path. See
Context.get_current_ point () for details on the current point.

New in version 1.6.

identity matrix()
Resets the current transformation Mat rix (CTM) by setting it equal to the identity
matrix. That is, the user-space and device-space axes will be aligned and one user-
space unit will transform to one device-space unit.

in_f£ill (x,y)
Parameters
* X (float) — X coordinate of the point to test
* y (float) — Y coordinate of the point to test

Returns True iff the point is inside the area that would be affected by a
Context.fill () operation given the current path and filling pa-
rameters. Surface dimensions and clipping are not taken into account.

See Context.fill (), Context.set fill rule () and
Context.fill_preserve().

in_stroke (x,y)
Parameters
* x (float) — X coordinate of the point to test
* y (float) — Y coordinate of the point to test

Returns True iff the point is inside the area that would be affected by a
Context .stroke () operation given the current path and stroking
parameters. Surface dimensions and clipping are not taken into ac-

count.
See Context.stroke (), Context.set_line_width(),
Context.set_line_join (), Context.set_line_cap/(),

Context.set_dash (), and Context.stroke_preserve ().
line_to(x,y)
Parameters
* X (float) — the X coordinate of the end of the new line

* y (float) — the Y coordinate of the end of the new line

2.2.

Cairo Context 19

pycairo Documentation, Release 1.8.10

Adds a line to the path from the current point to position (x, y) in user-space coor-
dinates. After this call the current point will be (x, y).

If there is no current point before the call to 1ine_to () this function will behave
as ctx.move_to(x, V).

mask (pattern)
Parameters pattern —aPattern

A drawing operator that paints the current source using the alpha channel of pattern
as a mask. (Opaque areas of pattern are painted with the source, transparent areas
are not painted.)

mask_surface (surface, x=0.0, y=0.0)
Parameters
* surface —a Surface
* x (float) — X coordinate at which to place the origin of surface
* y (float) — Y coordinate at which to place the origin of surface

A drawing operator that paints the current source using the alpha channel of surface
as a mask. (Opaque areas of surface are painted with the source, transparent areas
are not painted.)

move_to (x,y)
Parameters
* X (float) — the X coordinate of the new position
* y (float) — the Y coordinate of the new position
Begin a new sub-path. After this call the current point will be (x, y).

new_path()
Clears the current path. After this call there will be no path and no current point.

new_sub_path ()
Begin a new sub-path. Note that the existing path is not affected. After this call
there will be no current point.

In many cases, this call is not needed since new sub-paths are frequently started
with Context .move_to ().

A call to new_sub_path () is particularly useful when beginning a new sub-
path with one of the Context.arc () calls. This makes things easier as it is
no longer necessary to manually compute the arc’s initial coordinates for a call to
Context .move_to (). New in version 1.6.

paint ()
A drawing operator that paints the current source everywhere within the current clip
region.

paint_with_alpha (alpha)

20 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Parameters alpha (float) — alpha value, between O (transparent) and 1
(opaque)

A drawing operator that paints the current source everywhere within the current
clip region using a mask of constant alpha value alpha. The effect is similar to
Context.paint (), but the drawing is faded out using the alpha value.

path_extents ()
Returns (x1, yl1, x2, y2)

Return type (float, float, float, float)

ox/: left of the resulting extents
*y[: top of the resulting extents
*x2: right of the resulting extents

*y2: bottom of the resulting extents

Computes a bounding box in user-space coordinates covering the points on the cur-
rent path. If the current path is empty, returns an empty rectangle (0, 0, 0, 0). Stroke
parameters, fill rule, surface dimensions and clipping are not taken into account.

Contrast with Context.fill_extents|() and
Context.stroke_extents () which return the extents of only the area
that would be “inked” by the corresponding drawing operations.

The result of path_extents () is defined as equivalent to the limit of
Context.stroke_extents () with cairo.LINE_CAP_ROUND as the line
width approaches 0.0, (but never reaching the empty-rectangle returned by
Context.stroke_extents () for aline width of 0.0).

Specifically, this means that zero-area sub-paths such as Context .move_to ();
Context.line_to () segments, (even degenerate cases where the coordinates
to both calls are identical), will be considered as contributing to the extents.
However, a lone Context .move_to () will not contribute to the results of
Context .path_extents (). New in version 1.6.

pPop_group ()

Returns a newly created SurfacePattern containing the results of
all drawing operations performed to the group.

Terminates the redirection begun by a call to Context .push_group () or
Context.push_group_with_content () and returns a new pattern con-
taining the results of all drawing operations performed to the group.

The pop_group () function calls Context .restore (), (balancing a call to
Context.save () by the Context.push_group () function), so that any
changes to the graphics state will not be visible outside the group. New in version
1.2.

2.2. Cairo Context 21

pycairo Documentation, Release 1.8.10

pop_group_to_source ()

Terminates the redirection begun by a call to Context.push_group () or
Context.push_group_with_content () and installs the resulting pattern
as the source Pattern in the given Context.

The behavior of this function is equivalent to the sequence of operations:

group = caliro_pop_group ()
ctx.set_source (group)

but is more convenient as their is no need for a variable to store the short-lived
pointer to the pattern.

The Context .pop_group () function calls Context .restore (), (balanc-
ing a call to Context.save () by the Context .push_group () function),
so that any changes to the graphics state will not be visible outside the group. New
in version 1.2.

push_group ()

Temporarily redirects drawing to an intermediate surface known as a
group. The redirection lasts until the group is completed by a call to
Context .pop_group () or Context.pop_group_to_source (). These
calls provide the result of any drawing to the group as a pattern, (either as an explicit
object, or set as the source pattern).

This group functionality can be convenient for performing intermediate composit-
ing. One common use of a group is to render objects as opaque within the group,
(so that they occlude each other), and then blend the result with translucence onto
the destination.

Groups can be nested arbitrarily deep by making balanced calls to
Context.push_group ()/Context .pop_group (). Each call pushes/pops
the new target group onto/from a stack.

The push_group () function calls Context .save () so that any changes to
the graphics state will not be visible outside the group, (the pop_group functions
call Context .restore()).

By default the intermediate group will have a CONTENT type of
cairo.CONTENT_COLOR_ALPHA. Other content types can be chosen for

the group by using Context .push_group_with content () instead.

As an example, here is how one might fill and stroke a path with translucence, but
without any portion of the fill being visible under the stroke:

ctx.push_group ()
ctx.set_source(fill_pattern)
ctx.fill_preserve ()
ctx.set_source (stroke_pattern)
ctx.stroke ()
ctx.pop_group_to_source ()
ctx.paint_with_alpha (alpha)

New in version 1.2.

22

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

push_group_with_content (content)

Parameters content — a CONTENT indicating the type of group that will
be created

Temporarily redirects drawing to an intermediate surface known as a
group. The redirection lasts until the group is completed by a call to
Context .pop_group () or Context .pop_group_to_source (). These
calls provide the result of any drawing to the group as a pattern, (either as an explicit
object, or set as the source pattern).

The group will have a content type of content. The ability to control this content
type is the only distinction between this function and Context .push_group ()
which you should see for a more detailed description of group rendering. New in
version 1.2.

rectangle (x, y, width, height)
Parameters
* X (float) — the X coordinate of the top left corner of the rectangle
* y (float) — the Y coordinate to the top left corner of the rectangle
» width (float) — the width of the rectangle
* height (float) — the height of the rectangle

Adds a closed sub-path rectangle of the given size to the current path at position (x,
y) in user-space coordinates.

This function is logically equivalent to:

ctx.move_to(x, V)
ctx.rel_line_to(width, 0)
ctx.rel_line_to (0, height)
ctx.rel_line_to(—-width, 0)
ctx.close_path()

rel_ curve_to (dxl, dyl, dx2, dy2, dx3, dy4)

Parameters
* dx1 (float) — the X offset to the first control point
* dyl (float) — the Y offset to the first control point
* dx2 (float) — the X offset to the second control point
* dy2 (float) — the Y offset to the second control point
* dx3 (float) — the X offset to the end of the curve
* dy3 (float) — the Y offset to the end of the curve

Raises cairo.Error if called with no current point.

Relative-coordinate version of Context .curve_to (). All offsets are relative
to the current point. Adds a cubic Bézier spline to the path from the current point to

2.2. Cairo Context 23

pycairo Documentation, Release 1.8.10

a point offset from the current point by (dx3, dy3), using points offset by (dx1, dyl)
and (dx2, dy2) as the control points. After this call the current point will be offset
by (dx3, dy3).

Given a current point of (x, y), ctx.rel_curve_to (dxl, dyl, dx2,
dy2, dx3, dy3) is logically equivalent to ctx.curve_to (x+dxl,
y+dyl, x+dx2, y+dy2, x+dx3, y+dy3).

rel_line_to (dx, dy)
Parameters
* dx (float) — the X offset to the end of the new line
* dy (float) — the Y offset to the end of the new line
Raises cairo.Error if called with no current point.

Relative-coordinate version of Context.line_to (). Adds a line to the path
from the current point to a point that is offset from the current point by (dx, dy) in
user space. After this call the current point will be offset by (dx, dy).

Given a current point of (X, y), ctx.rel_line_to(dx, dy) is logically
equivalentto ctx.line_to(x + dx, y + dy).

rel_move_to (dx, dy)
Parameters
* dx (float) — the X offset
* dy (float) — the Y offset
Raises cairo.Error if called with no current point.
Begin a new sub-path. After this call the current point will offset by (dx, dy).

Given a current point of (X, y), ctx.rel_move_to (dx, dy) is logically
equivalentto ctx. (x + dx, y + dy).

reset_clip ()
Reset the current clip region to its original, unrestricted state. That is, set the clip
region to an infinitely large shape containing the target surface. Equivalently, if
infinity is too hard to grasp, one can imagine the clip region being reset to the exact
bounds of the target surface.

Note that code meant to be reusable should not call reset_clip () as it will
cause results unexpected by higher-level code which calls c1ip (). Consider using
save () and restore () around c1ip () as a more robust means of temporarily
restricting the clip region.

restore ()
Restores Context to the state saved by a preceding call to save () and removes
that state from the stack of saved states.

rotate (angle)

24 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Parameters angle (float) — angle (in radians) by which the user-space
axes will be rotated

Modifies the current transformation matrix (CTM) by rotating the user-space axes
by angle radians. The rotation of the axes takes places after any existing transfor-
mation of user space. The rotation direction for positive angles is from the positive
X axis toward the positive Y axis.

save ()
Makes a copy of the current state of Context and saves it on an internal stack
of saved states. When restore () is called, Context will be restored to the
saved state. Multiple calls to save () and restore () can be nested; each call to
restore () restores the state from the matching paired save ().

scale (sx, sy)
Parameters
* sX (float) — scale factor for the X dimension
* sy (float) — scale factor for the Y dimension

Modifies the current transformation matrix (CTM) by scaling the X and Y user-
space axes by sx and sy respectively. The scaling of the axes takes place after any
existing transformation of user space.

select_ font face (family[, slant[, weight]])
Parameters
e family (str or unicode) — a font family name

eslant — the FONT SLANT of the font, defaults to
caliro.FONT_SLANT NORMAL.

e weight — the FONT WEIGHT of the font, defaults to
calro.FONT_WEIGHT_ NORMAL.

Note: The select_ font_ face () function call is part of what the cairo design-
ers call the “toy” text APL. It is convenient for short demos and simple programs,
but it is not expected to be adequate for serious text-using applications.

Selects a family and style of font from a simplified description as a family name,
slant and weight. Cairo provides no operation to list available family names on the
system (this is a “toy”, remember), but the standard CSS2 generic family names,

“serif”, “sans-serif”, “cursive”, “fantasy”, “monospace”), are likely to work as
expected.

For “real” font selection, see the font-backend-specific font_face_create func-
tions for the font backend you are using. (For example, if you are using the
freetype-based cairo-ft font backend, see cairo_ft_font_face_create_for_ft_face()
or cairo_ft_font_face_create_for_pattern().) The resulting font face could then be
used with cairo_scaled_font_create() and cairo_set_scaled_font().

Similarly, when using the “real” font support, you can call directly into the under-
lying font system, (such as fontconfig or freetype), for operations such as listing

2.2. Cairo Context 25

pycairo Documentation, Release 1.8.10

available fonts, etc.

It is expected that most applications will need to use a more comprehensive font
handling and text layout library, (for example, pango), in conjunction with cairo.

If text is drawn without a call to select_font_face(), (nor
set_font_ face () nor set_scaled_font ()), the default
family is platform-specific, but is essentially ‘“‘sans-serif”. De-

fault slant is cairo.FONT_SLANT_NORMAL, and default weight is
cairo.FONT_WEIGHT_NORMAL.

This function is equivalent to a call to ToyFontFace followed by
set_font_face().

set _antialias (antialias)

Parameters antialias — the new ANTIALIAS mode

Set the antialiasing mode of the rasterizer used for drawing shapes. This value is
a hint, and a particular backend may or may not support a particular value. At
the current time, no backend supports cairo.ANTIALIAS_SUBPIXEL when
drawing shapes.

Note that this option does not affect text rendering, instead see
FontOptions.set_antialias().

set_dash (dashes [, offset=0])

Parameters

* dashes (sequence of float) — a sequence specifying alternate lengths
of on and off stroke portions.

* offset (inf) — an offset into the dash pattern at which the stroke
should start, defaults to O.

Raises cairo.Error if any value in dashes is negative, or if all values
are 0.

Sets the dash pattern to be used by stroke (). A dash pattern is specified by
dashes - a sequence of positive values. Each value provides the length of alternate
“on” and “off” portions of the stroke. The offset specifies an offset into the pattern
at which the stroke begins.

Each “on” segment will have caps applied as if the segment were a sepa-
rate sub-path. In particular, it is valid to use an “on” length of 0.0 with
cairo.LINE_CAP_ROUND or cairo.LINE_CAP_SQUARE in order to dis-
tributed dots or squares along a path.

Note: The length values are in user-space units as evaluated at the time of stroking.
This is not necessarily the same as the user space at the time of set_dash ().

If the number of dashes is 0 dashing is disabled.

If the number of dashes is 1 a symmetric pattern is assumed with alternating on and
off portions of the size specified by the single value in dashes.

26

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

set_£fill_ rule (fill_rule)

Parameters fill rule — a F/LL RULE to set the within the cairo context.
The fill rule is used to determine which regions are inside or outside
a complex (potentially self-intersecting) path. The current fill rule
affects both £111 () and clip ().

The default fill rule is cairo.FILL RULE_ WINDING.
set_font_face (font_face)

Parameters font_face — a FontFace, or None to restore to the default
FontFace

Replaces the current FontFace object in the Context with font_face.
set_font_matrix (matrix)

Parameters matrix — a Mat rix describing a transform to be applied to
the current font.

Sets the current font matrix to matrix. The font matrix gives a transformation from
the design space of the font (in this space, the em-square is 1 unit by 1 unit) to user
space. Normally, a simple scale is used (see set_font_size ()), but a more
complex font matrix can be used to shear the font or stretch it unequally along the
two axes

set_font_options (options)
Parameters options — FontOptions to use

Sets a set of custom font rendering options for the Context. Rendering options are
derived by merging these options with the options derived from underlying surface;
if the value in options has a default value (like cairo.ANTIALIAS_DEFAULT),
then the value from the surface is used.

set_font_size (size)
Parameters size (float) — the new font size, in user space units

Sets the current font matrix to a scale by a factor of size, replacing any font ma-
trix previously set with set_font_size () or set_font_matrix (). This
results in a font size of size user space units. (More precisely, this matrix will result
in the font’s em-square being a size by size square in user space.)

If text is drawn without a «call to set_font_size(), (nor
set_font_matrix () nor set_scaled_font ()), the default font size
is 10.0.

set_line_cap (line_cap)
Parameters line_cap — a LINE_CAP style
Sets the current line cap style within the Context.

As with the other stroke parameters, the current line cap style is examined by
stroke (), stroke_extents (), and stroke_to_path (), but does not

. Cairo Context 27

pycairo Documentation, Release 1.8.10

have any effect during path construction.

The default line cap style is cairo.LINE_CAP_BUTT.

set_line_join (line_join)

Parameters line_join —a L/INE_JOIN style
Sets the current line join style within the Context.

As with the other stroke parameters, the current line join style is examined by
stroke (), stroke_extents (), and stroke_to_path (), but does not
have any effect during path construction.

The default line join style is cairo.LINE_JOIN_MITER.

set line width (width)

Parameters width (float) — a line width

Sets the current line width within the Context. The line width value specifies the
diameter of a pen that is circular in user space, (though device-space pen may be an
ellipse in general due to scaling/shear/rotation of the CTM).

Note: When the description above refers to user space and CTM it refers to the user
space and CTM in effect at the time of the stroking operation, not the user space
and CTM in effect at the time of the call to set_1ine_width (). The simplest
usage makes both of these spaces identical. That is, if there is no change to the CTM
between a call to set_1line_width () and the stroking operation, then one can
just pass user-space values to set_1ine_width () and ignore this note.

As with the other stroke parameters, the current line width is examined by
stroke (), stroke_extents (), and stroke_to_path (), but does not
have any effect during path construction.

The default line width value is 2.0.

set_matrix (matrix)

Parameters matrix — a transformation Mat rix from user space to de-
vice space.

Modifies the current transformation matrix (CTM) by setting it equal to matrix.

set miter limit (limit)

Parameters limit — miter limit to set
Sets the current miter limit within the Context.

If the current line join style is set to cairo.LINE_JOIN_MITER (see
set_line_join()), the miter limit is used to determine whether the lines
should be joined with a bevel instead of a miter. Cairo divides the length of the
miter by the line width. If the result is greater than the miter limit, the style is
converted to a bevel.

28

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

As with the other stroke parameters, the current line miter limit is examined by
stroke (), stroke_extents (), and stroke_to_path (), but does not
have any effect during path construction.

The default miter limit value is 10.0, which will convert joins with interior angles
less than 11 degrees to bevels instead of miters. For reference, a miter limit of 2.0
makes the miter cutoff at 60 degrees, and a miter limit of 1.414 makes the cutoff at
90 degrees.

A miter limit for a desired angle can be computed as:

miter limit = 1/math.sin(angle/2)

set_operator (op)

Parameters op — the compositing OPERATOR to set for use in all draw-
ing operations.

The default operator is cairo.OPERATOR_OVER.
set_scaled_font (scaled_font)
Parameters scaled_font —a ScaledFont

Replaces the current font face, font matrix, and font options in the Context with
those of the ScaledFont. Except for some translation, the current CTM of the
Context should be the same as that of the ScaledFont, which can be accessed
using ScaledFont .get_ctm (). New in version 1.2.

set__source (source)

Parameters source —aPattern to be used as the source for subsequent
drawing operations.

Sets the source pattern within Context to source. This pattern will then be used
for any subsequent drawing operation until a new source pattern is set.

Note: The pattern’s transformation matrix will be locked to the user space in
effect at the time of set source (). This means that further modifications
of the current transformation matrix will not affect the source pattern. See
Pattern.set_matrix().

The default source pattern is a solid pattern that is opaque black, (that is, it is equiv-
alent to set_source_rgb (0.0, 0.0, 0.0).

set_source_rgb (red, green, blue)
Parameters
* red (float) — red component of color
* green (float) — green component of color
* blue (float) — blue component of color

Sets the source pattern within Context to an opaque color. This opaque color will
then be used for any subsequent drawing operation until a new source pattern is set.

2.2. Cairo Context 29

pycairo Documentation, Release 1.8.10

The color components are floating point numbers in the range O to 1. If the values
passed in are outside that range, they will be clamped.

The default source pattern is opaque black, (that is, it is equivalent to
set_source_rgb (0.0, 0.0, 0.0).

set_source_rgba (red, green, blue[, alphaz].O])

Parameters
* red (float) — red component of color
* green (float) — green component of color
* blue (float) — blue component of color
* alpha (float) — alpha component of color

Sets the source pattern within Context to a translucent color. This color will then
be used for any subsequent drawing operation until a new source pattern is set.

The color and alpha components are floating point numbers in the range O to 1. If
the values passed in are outside that range, they will be clamped.

The default source pattern is opaque black, (that is, it is equivalent to
set_source_rgba(0.0, 0.0, 0.0, 1.0).

set source_ surface (smface[, x:0.0[, y=0.0]])

Parameters
* surface —a Surface to be used to set the source pattern
* x (float) — User-space X coordinate for surface origin
* y (float) — User-space Y coordinate for surface origin

This is a convenience function for creating a pattern from a Sur face and setting
it as the source in Context with set_source ().

The x and y parameters give the user-space coordinate at which the surface origin
should appear. (The surface origin is its upper-left corner before any transformation
has been applied.) The x and y patterns are negated and then set as translation values
in the pattern matrix.

Other than the initial translation pattern matrix, as described above, all other
pattern attributes, (such as its extend mode), are set to the default values as in
SurfacePattern. The resulting pattern can be queried with get__source ()
so that these attributes can be modified if desired, (eg. to create a repeating pattern
with Pattern.set_extend()).

set_tolerance (tolerance)

Parameters tolerance (float) — the tolerance, in device units (typically
pixels)

Sets the tolerance used when converting paths into trapezoids. Curved segments
of the path will be subdivided until the maximum deviation between the original

30

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

path and the polygonal approximation is less than tolerance. The default value is
0.1. A larger value will give better performance, a smaller value, better appearance.
(Reducing the value from the default value of 0.1 is unlikely to improve appear-
ance significantly.) The accuracy of paths within Cairo is limited by the precision
of its internal arithmetic, and the prescribed folerance is restricted to the smallest
representable internal value.

show_glyphs (glyphs[, num _glyphs])
Parameters
* glyphs (a sequence of (int, float, float)) — glyphs to show

* num_glyphs (int) — number of glyphs to show, defaults to showing
all glyphs

A drawing operator that generates the shape from an array of glyphs, rendered ac-
cording to the current font face, font size (font matrix), and font options.

show_page ()
Emits and clears the current page for backends that support multiple pages. Use
copy_page () if you don’t want to clear the page.

This is a convenience function that simply calls ctx.get_target ()
show_page ()

show_text (fext)
Parameters text (str or unicode) — text

A drawing operator that generates the shape from a string of text, rendered accord-
ing to the current font_face, font_size (font_matrix), and font_options.

This function first computes a set of glyphs for the string of text. The first glyph is
placed so that its origin is at the current point. The origin of each subsequent glyph
is offset from that of the previous glyph by the advance values of the previous glyph.

After this call the current point is moved to the origin of where the next glyph would
be placed in this same progression. That is, the current point will be at the origin of
the final glyph offset by its advance values. This allows for easy display of a single
logical string with multiple calls to show_text ().

Note: The show_text () function call is part of what the cairo designers call the
“toy” text API. It is convenient for short demos and simple programs, but it is not
expected to be adequate for serious text-using applications. See show_glyphs ()
for the “real” text display API in cairo.

stroke ()
A drawing operator that strokes the current path according to the current line
width, line join, line cap, and dash settings. After stroke (), the current
path will be cleared from the cairo context. See set_line_width(),
set_line_join (), set_line_cap(), set_dash (), and
stroke_preserve().

2.2. Cairo Context 31

pycairo Documentation, Release 1.8.10

Note: Degenerate segments and sub-paths are treated specially and provide a useful
result. These can result in two different situations:

1. Zero-length “on” segments set in set_dash (). If the cap style is
cairo.LINE_CAP_ROUND or cairo.LINE_CAP_SQUARE then these seg-
ments will be drawn as circular dots or squares respectively. In the case of
cairo.LINE_CAP_SQUARE, the orientation of the squares is determined by the
direction of the underlying path.

2. A sub-path created by move_to () followed by either a close_path () or
one or more calls to 1ine to () to the same coordinate as the move to (). If
the cap style is cairo.LINE_CAP_ROUND then these sub-paths will be drawn as
circular dots. Note that in the case of cairo.LINE_CAP_SQUARE a degenerate
sub-path will not be drawn at all, (since the correct orientation is indeterminate).

In no case will a cap style of cairo.LINE_CAP_BUTT cause anything to be
drawn in the case of either degenerate segments or sub-paths.

stroke extents ()

Returns (x1, yl1, x2, y2)

Return type (float, float, float, float)

ox/: left of the resulting extents
*y1: top of the resulting extents
*x2: right of the resulting extents

*y2: bottom of the resulting extents

Computes a bounding box in user coordinates covering the area that would be af-
fected, (the “inked” area), by a st roke () operation given the current path and
stroke parameters. If the current path is empty, returns an empty rectangle (0, 0, 0,
0). Surface dimensions and clipping are not taken into account.

Note that if the line width is set to exactly zero, then st roke_extents () will
return an empty rectangle. Contrast with path_extents () which can be used
to compute the non-empty bounds as the line width approaches zero.

Note that st roke_extents () must necessarily do more work to compute the
precise inked areas in light of the stroke parameters, so path_extents () may
be more desirable for sake of performance if non-inked path extents are desired.

See stroke (), set_line_width (), set_line_join (),
set_line_cap (), set_dash(),and stroke_preserve ().

stroke_preserve ()

A drawing operator that strokes the current path according to the current line width,
line join, line cap, and dash settings. Unlike st roke (), st roke_preserve ()
preserves the path within the cairo context.

See set_line width (), set_line_join (), set_line_cap(),
set_dash (), and stroke_preserve ().

32

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

text_extents (fext)
Parameters text (string or unicode) — text to get extents for
Returns x_bearing, y_bearing, width, height, x_advance, y_advance
Return type 6-tuple of float

Gets the extents for a string of text. The extents describe a user-space rect-
angle that encloses the “inked” portion of the text, (as it would be drawn by
Context.show_text ()). Additionally, the x_advance and y_advance val-
ues indicate the amount by which the current point would be advanced by
Context.show_text ().

Note that whitespace characters do not directly contribute to the size of the rectan-
gle (extents.width and extents.height). They do contribute indirectly by changing
the position of non-whitespace characters. In particular, trailing whitespace char-
acters are likely to not affect the size of the rectangle, though they will affect the
x_advance and y_advance values.

text_path (rext)
Parameters text (string or unicode) — text

Adds closed paths for text to the current path. The generated path if filled, achieves
an effect similar to that of Context .show_text ().

Text conversion and positioning is done similar to Context .show_text ().

Like Context .show_text (), After this call the current point is moved to the
origin of where the next glyph would be placed in this same progression. That is,
the current point will be at the origin of the final glyph offset by its advance values.
This allows for chaining multiple calls to to Context .text_path () without
having to set current point in between.

Note: The text_path () function call is part of what the cairo designers
call the “toy” text API. It is convenient for short demos and simple programs,
but it is not expected to be adequate for serious text-using applications. See
Context.glyph_path () for the “real” text path API in cairo.

transform (matrix)

Parameters matrix — a transformation Mat r i x to be applied to the user-
space axes

Modifies the current transformation matrix (CTM) by applying matrix as an addi-
tional transformation. The new transformation of user space takes place after any
existing transformation.

translate (ix, 1y)
Parameters
* tx (float) — amount to translate in the X direction

* ty (float) — amount to translate in the Y direction

2.2. Cairo Context 33

pycairo Documentation, Release 1.8.10

Modifies the current transformation matrix (CTM) by translating the user-space
origin by (tx, ty). This offset is interpreted as a user-space coordinate according
to the CTM in place before the new call to t ranslate (). In other words, the
translation of the user-space origin takes place after any existing transformation.

user_to_device (x,y)
Parameters
* X (float) — X value of coordinate
* y (float) — Y value of coordinate
Returns (x,y)
Return type (float, float)

*x: X value of coordinate
*y: Y value of coordinate
Transform a coordinate from user space to device space by multiplying the given
point by the current transformation matrix (CTM).
user_to_device_distance (dx, dy)
Parameters
* dx (float) — X value of a distance vector
* dy (float) — Y value of a distance vector
Returns (dx, dy)
Return type (float, float)

*dx: X value of a distance vector
*dy: Y value of a distance vector
Transform a distance vector from user space to device space. This function is sim-

ilar to Context .user_to_device () except that the translation components
of the CTM will be ignored when transforming (dx,dy).

2.3 Exceptions

When a cairo function or method call fails an exception is raised. I/O errors raise IOError,
memory errors raise MemoryError, and all other errors raise cairo.Error.

2.3.1 cairo.Error()

exception cairo.Error
This exception is raised when a cairo object returns an error status.

34 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

2.4 Matrix

2.4.1 class Matrix()

Matrix is used throughout cairo to convert between different coordinate spaces. A Matrix
holds an affine transformation, such as a scale, rotation, shear, or a combination of these. The
transformation of a point (x,y) is given by:

X_new = XX * x + xy % y + x0
y_new = yx * x + yy » y + y0

The current transformation matrix of a Context, represented as a Matrix, defines the trans-
formation from user-space coordinates to device-space coordinates.

Some standard Python operators can be used with matrices:

To read the values from a Matrix:

XX, yxX, Xy, yy, %0, y0 = matrix

To multiply two matrices:

matrix3 = matrixl.multiply (matrix2)
or equivalently
matrix3 = matrixl * matrix2

To compare two matrices:

matrixl == matrix?2
matrixl != matrix?2

For more information on matrix transformation see http://www.cairographics.org/matrix_transform
class cairo.Matrix (xx = 1.0, yx = 0.0, xy = 0.0, yy = 1.0, x0 = 0.0, y0 = 0.0)
Parameters

* xx (float) — xx component of the affine transformation

* yX (float) — yx component of the affine transformation

* xy (float) — xy component of the affine transformation

* yy (float) — yy component of the affine transformation

* x0 (float) — X translation component of the affine transformation

* y0 (float) — Y translation component of the affine transformation

Create a new Matrix with the affine transformation given by xx, yx, xy, yy, x0, y0. The
transformation is given by:

X_new = XX * X + xy % y + x0
y_new = yx x* x + yy » y + yO0

To create a new identity matrix:

2.4. Matrix 35

http://www.cairographics.org/matrix_transform

pycairo Documentation, Release 1.8.10

matrix = cailiro.Matrix ()

To create a matrix with a transformation which translates by tx and ty in the X and Y
dimensions, respectively:

matrix = cairo.Matrix (x0=tx, y0=ty)
To create a matrix with a transformation that scales by sx and sy in the X and Y dimen-
sions, respectively:

matrix = cairo.Matrix (xx=sy, yy=sy)

classmethod init_ rotate (radians)

Parameters radians (float) — angle of rotation, in radians. The direction
of rotation is defined such that positive angles rotate in the direction
from the positive X axis toward the positive Y axis. With the default
axis orientation of cairo, positive angles rotate in a clockwise direc-
tion.

Returns a new Matrix set to a transformation that rotates by radians.
invert ()

Returns If Matrix has an inverse, modifies Matrix to be the inverse matrix
and returns None

Raises cairo.Error if the Matrix as no inverse

Changes Matrix to be the inverse of it’s original value. Not all transformation ma-
trices have inverses; if the matrix collapses points together (it is degenerate), then
it has no inverse and this function will fail.

multiply (matrix2)
Parameters matrix2 (cairo.Matrix) — a second matrix
Returns a new Matrix

Multiplies the affine transformations in Matrix and matrix2 together. The effect
of the resulting transformation is to first apply the transformation in Matrix to the
coordinates and then apply the transformation in matrix2 to the coordinates.

It is allowable for result to be identical to either Matrix or matrix2.
rotate (radians)

Parameters radians (float) — angle of rotation, in radians. The direction
of rotation is defined such that positive angles rotate in the direction
from the positive X axis toward the positive Y axis. With the default
axis orientation of cairo, positive angles rotate in a clockwise direc-
tion.

Initialize Matrix to a transformation that rotates by radians.

scale (sx, sy)

36 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Parameters
* sx (float) — scale factor in the X direction
* sy (float) — scale factor in the Y direction

Applies scaling by sx, sy to the transformation in Matrix. The effect of the new
transformation is to first scale the coordinates by sx and sy, then apply the original
transformation to the coordinates.

transform_distance (dx, dy)
Parameters
* dx (float) — X component of a distance vector.
* dy (float) — Y component of a distance vector.
Returns the transformed distance vector (dx,dy)
Return type (float, float)

Transforms the distance vector (dx,dy) by Matrix. This is similar to
transform_point () except that the translation components of the transfor-
mation are ignored. The calculation of the returned vector is as follows:

dx2 = dx1 *« a + dyl * c
dy2 = dxl1 = b + dyl = d

Affine transformations are position invariant, so the same vector always transforms
to the same vector. If (x/,yl) transforms to (x2,y2) then (xI+dxI,yl+dyl) will
transform to (x/+dx2,yl+dy2) for all values of x/ and x2.

transform_point (x, y)
Parameters
* X (float) — X position.
* y (float) — Y position.
Returns the transformed point (x,y)
Return type (float, float)
Transforms the point (x, y) by Matrix.
translate (x, ty)
Parameters
* tx (float) — amount to translate in the X direction
* ty (float) — amount to translate in the Y direction

Applies a transformation by tzx, ty to the transformation in Matrix. The effect of the
new transformation is to first translate the coordinates by #x and ty, then apply the
original transformation to the coordinates.

2.4.

Matrix 37

pycairo Documentation, Release 1.8.10

2.5 Paths

2.5.1 class Path()

class cairo.Path

Path cannot be instantiated directly, it is created by calling Context .copy_path ()
and Context.copy_path_flat ().

str(path) lists the path elements.
See PATH attributes
Path is an iterator.

See examples/warpedtext.py for example usage.

2.6 Patterns

Patterns are the paint with which cairo draws. The primary use of patterns is as the source for
all cairo drawing operations, although they can also be used as masks, that is, as the brush too.

A cairo Pattern is created by using one of the PatternType constructors listed below, or implic-
itly through Context.set_source_<type>() methods.

2.6.1 class Pattern()

Fattern is the abstract base class from which all the other pattern classes derive. It cannot be
instantiated directly.

class cairo.Pattern

get_extend ()
Returns the current extend strategy used for drawing the Pattern.
Return type int

Gets the current extend mode for the Pattern. See EXTEND attributes for details on
the semantics of each extend strategy.

get_matrix ()

Returns a new Mat rix which stores a copy of the Pattern’s transforma-
tion matrix

set_extend (extend)

Parameters extend — an EXTEND describing how the area outside of the
Pattern will be drawn

38

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Sets the mode to be used for drawing outside the area of a Pattern.

The default extend mode is cairo.EXTEND NONE for SurfacePattern and
calro.EXTEND_PAD for Gradient Patterns.

set_matrix (matrix)
Parameters matrix - aMatrix

Sets the Pattern’s transformation matrix to matrix. This matrix is a transformation
from user space to pattern space.

When a Pattern is first created it always has the identity matrix for its transformation
matrix, which means that pattern space is initially identical to user space.

Important: Please note that the direction of this transformation matrix is from user
space to pattern space. This means that if you imagine the flow from a Pattern
to user space (and on to device space), then coordinates in that flow will be trans-
formed by the inverse of the Pattern matrix.

For example, if you want to make a Pattern appear twice as large as it does by
default the correct code to use is:

matrix = cairo.Matrix (xx=0.5,yy=0.5)
pattern.set_matrix (matrix)

Meanwhile, using values of 2.0 rather than 0.5 in the code above would cause the
Fattern to appear at half of its default size.

Also, please note the discussion of the user-space locking semantics of
Context.set_source.

2.6.2 class SolidPattern(Pattern)

class cairo.SolidPattern (red, green, blue, alpha=1.0)
Parameters
* red (float) — red component of the color
* green (float) — green component of the color
* blue (float) — blue component of the color
* alpha (float) — alpha component of the color
Returns a new SolidPattern
Raises MemoryError in case of no memory

Creates a new SolidPattern corresponding to a translucent color. The color components
are floating point numbers in the range O to 1. If the values passed in are outside that
range, they will be clamped.

get_rgba ()

Returns (red, green, blue, alpha) a tuple of float

2.6. Patterns 39

pycairo Documentation, Release 1.8.10

Gets the solid color for a SolidPattern. New in version 1.4.

2.6.3 class SurfacePattern(Pattern)

class cairo.SurfacePattern (surface)
Parameters surface — a cairo Surface
Returns a newly created SurfacePattern for the given surface.
Raises MemoryError in case of no memory.
get_filter ()
Returns the current F/LTER used for resizing the SurfacePattern.
get_surface ()
Returns the Surface of the SurfacePattern.
New in version 1.4.
set_filter (filter)

Parameters filter — a /'/LTER describing the filter to use for resizing the
Pattern

Note that you might want to control filtering even when you
do not have an explicit Pattern object, (for example when using
Context.set_source_surface ()). In these cases, it is convenient to

use Context.get_source () to get access to the pattern that cairo creates
implicitly. For example:

context.set_source_surface (image, x, V)
surfacepattern.set_filter (context.get_source(), cairo.FILTER_NEAREST)

2.6.4 class Gradient(Pattern)
Gradient 1s an abstract base class from which other Pattern classes derive. It cannot be instan-
tiated directly.

class cairo.Gradient

add_color_stop_rgb (offset, red, green, blue)
Parameters
* offset (float) — an offset in the range [0.0 .. 1.0]
* red (float) — red component of color
* green (float) — green component of color

* blue (float) — blue component of color

40 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Adds an opaque color stop to a Gradient pattern. The offset specifies the location
along the gradient’s control vector. For example, a LinearGradient’s control vector
1s from (x0,y0) to (x1,y1) while a RadialGradient’s control vector is from any point
on the start circle to the corresponding point on the end circle.

The color is specified in the same way as in Context .set_source_rgb ().

If two (or more) stops are specified with identical offset values, they will be sorted
according to the order in which the stops are added, (stops added earlier will com-
pare less than stops added later). This can be useful for reliably making sharp color
transitions instead of the typical blend.

add_color_stop_rgba (offset, red, green, blue, alpha)
Parameters
* offset (float) — an offset in the range [0.0 .. 1.0]
* red (float) — red component of color
* green (float) — green component of color
* blue (float) — blue component of color
* alpha (float) — alpha component of color

Adds an opaque color stop to a Gradient pattern. The offset specifies the location
along the gradient’s control vector. For example, a LinearGradient’s control vector
is from (x0,y0) to (x1,y1) while a RadialGradient’s control vector is from any point
on the start circle to the corresponding point on the end circle.

The color is specified in the same way as in Context .set_source_rgb ().

If two (or more) stops are specified with identical offset values, they will be sorted
according to the order in which the stops are added, (stops added earlier will com-
pare less than stops added later). This can be useful for reliably making sharp color
transitions instead of the typical blend.

2.6.5 class LinearGradient(Gradient)

class cairo.LinearGradient (x0, y0, xI, yI)

Parameters
* x0 (float) — x coordinate of the start point
* y0 (float) — y coordinate of the start point
* x1 (float) — x coordinate of the end point
* y1 (float) — y coordinate of the end point
Returns a new LinearGradient

Raises MemoryError in case of no memory

2.6.

Patterns 41

pycairo Documentation, Release 1.8.10

Create a new LinearGradient along the line defined by (x0, y0) and
(x1, yl). Before using the Gradient pattern, a number of color stops
should be defined using Gradient.add_color_stop_rgb () or
Gradient.add_color_stop_rgba ()

Note: The coordinates here are in pattern space. For a new Pattern, pattern space is
identical to user space, but the relationship between the spaces can be changed with
Pattern.set_matrix ()

get_linear points ()
Returns
(x0, y0, x1, y1) - a tuple of float
* x0: return value for the x coordinate of the first point
* yO0: return value for the y coordinate of the first point
 x1: return value for the x coordinate of the second point
* yl: return value for the y coordinate of the second point

Gets the gradient endpoints for a LinearGradient. New in version 1.4.

2.6.6 class RadialGradient(Gradient)

class cairo.RadialGradient (cx0, cy0, radius0, cxl, cyl, radiusl)

Parameters

* ¢x0 (float) — x coordinate for the center of the start circle

¢y0 (float) — y coordinate for the center of the start circle

radius0 (float) — radius of the start circle

cx1 (float) — x coordinate for the center of the end circle

¢yl (float) — y coordinate for the center of the end circle
* radiusl (float) — radius of the end circle

Returns the newly created RadialGradient

Raises MemoryError in case of no memory

Creates a new RadialGradient pattern between the two circles defined by (cx0, cy0,
radiusO) and (cx1, cyl, radiusl). Before using the gradient pattern, a number
of color stops should be defined using Gradient.add_color_stop_rgb () or
Gradient.add_color_stop_rgba ().

Note: The coordinates here are in pattern space. For a new pattern, pattern space is
identical to user space, but the relationship between the spaces can be changed with
Pattern.set_matrix ().

get_radial_ circles()

42

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Returns
(x0, y0, r0, x1, y1, rl) - a tuple of float
* x0: return value for the x coordinate of the center of the first circle
* y0: return value for the y coordinate of the center of the first circle
* 10: return value for the radius of the first circle

e x1: return value for the x coordinate of the center of the second
circle

yl: return value for the y coordinate of the center of the second
circle

e rl: return value for the radius of the second circle

Gets the Gradient endpoint circles for a RadialGradient, each specified as a center
coordinate and a radius. New in version 1.4.

2.7 Surfaces

cairo.Surface is the abstract type representing all different drawing targets that cairo can render
to. The actual drawings are performed using a Context.

A cairo.Surface is created by using backend-specific constructors of the form
cairo.<XXX>Surface().

2.7.1 class Surface()

class cairo.Surface
Surface is the abstract base class from which all the other surface classes derive. It cannot
be instantiated directly.

copy_page ()
Emits the current page for backends that support multiple pages, but doesn’t clear
it, so that the contents of the current page will be retained for the next page. Use
show_page () if you want to get an empty page after the emission.

Context.copy_page () is a convenience function for this. New in version 1.6.
create_similar (content, width, height)
Parameters
* content — the CONTENT for the new surface
» width (int) — width of the new surface, (in device-space units)
* height — height of the new surface (in device-space units)

Returns a newly allocated Surface.

2.7. Surfaces 43

pycairo Documentation, Release 1.8.10

Create a Surface that is as compatible as possible with the existing surface. For ex-
ample the new surface will have the same fallback resolution and FontOptions.
Generally, the new surface will also use the same backend, unless that is not possi-
ble for some reason.

Initially the surface contents are all O (transparent if contents have transparency,
black otherwise.)

finish ()
This method finishes the Surface and drops all references to external resources.
For example, for the Xlib backend it means that cairo will no longer access the
drawable, which can be freed. After calling finish() the only valid operations on a
Surface are flushing and finishing it. Further drawing to the surface will not affect
the surface but will instead trigger a cairo.Error exception.

flush ()
Do any pending drawing for the Surface and also restore any temporary modifi-
cation’s cairo has made to the Surface’s state. This method must be called before
switching from drawing on the Surface with cairo to drawing on it directly with
native APIs. If the Surface doesn’t support direct access, then this function does
nothing.

get_content ()

Returns The CONTENT type of Surface, which indicates whether the
Surface contains color and/or alpha information.

New in version 1.2.
get_device_offset ()
Returns
(x_offset, y_offset) a tuple of float
e x_offset: the offset in the X direction, in device units
* y_offset: the offset in the Y direction, in device units

This method returns the previous device offset set by set_device_offset ().
New in version 1.2.

get_fallback_resolution()
Returns
(x_pixels_per_inch, y_pixels_per_inch) a tuple of float
* x_pixels_per_inch: horizontal pixels per inch
* y_pixels_per_inch: vertical pixels per inch

This method returns the previous fallback resolution set by
set fallback resolution (), or default fallback resolution if never
set. New in version 1.8.

get_font_options ()

44

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Returns a FontOptions

Retrieves the default font rendering options for the Surface. This allows display
surfaces to report the correct subpixel order for rendering on them, print sur-
faces to disable hinting of metrics and so forth. The result can then be used with
ScaledFont.

mark_dirty ()
Tells cairo that drawing has been done to Surface using means other than cairo, and
that cairo should reread any cached areas. Note that you must call f1ush () before
doing such drawing.

mark_dirty_ rectangle (x,y, width, height)
Parameters
* x (int) — X coordinate of dirty rectangle
* y (int) = Y coordinate of dirty rectangle
» width (int) — width of dirty rectangle
* height (int) — height of dirty rectangle

Like mark_dirty (), but drawing has been done only to the specified rectangle,
so that cairo can retain cached contents for other parts of the surface.

Any cached clip set on the Surface will be reset by this function, to make sure that
future cairo calls have the clip set that they expect.

set_device_offset (x_offset, y_offset)
Parameters
* x_offset (float) — the offset in the X direction, in device units
* y_offset (float) — the offset in the Y direction, in device units

Sets an offset that is added to the device coordinates determined by the CTM when
drawing to Surface. One use case for this function is when we want to create a
Surface that redirects drawing for a portion of an onscreen surface to an offscreen
surface in a way that is completely invisible to the user of the cairo API. Setting
a transformation via Context .translate () isn’t sufficient to do this, since
functions like Context .device_ to_user () will expose the hidden offset.

Note that the offset affects drawing to the surface as well as using the surface in a
source pattern.

set_fallback_resolution (x_pixels_per_inch, y_pixels_per_inch)
Parameters
* x_pixels_per_inch (float) — horizontal setting for pixels per inch
* y_pixels_per_inch (float) — vertical setting for pixels per inch

Set the horizontal and vertical resolution for image fallbacks.

2.7.

Surfaces 45

pycairo Documentation, Release 1.8.10

When certain operations aren’t supported natively by a backend, cairo will fallback
by rendering operations to an image and then overlaying that image onto the output.
For backends that are natively vector-oriented, this function can be used to set the
resolution used for these image fallbacks, (larger values will result in more detailed
images, but also larger file sizes).

Some examples of natively vector-oriented backends are the ps, pdf, and svg back-
ends.

For backends that are natively raster-oriented, image fallbacks are still possible, but
they are always performed at the native device resolution. So this function has no
effect on those backends.

Note: The fallback resolution only takes effect at the time of completing a page
(with Context .show_page () or Context.copy_page ()) so there is cur-
rently no way to have more than one fallback resolution in effect on a single page.

The default fallback resoultion is 300 pixels per inch in both dimensions. New in
version 1.2.

show_page ()

Emits and clears the current page for backends that support multiple pages. Use
copy_page () if you don’t want to clear the page.

There is a convenience function for this that takes a Context . show_page ().
New in version 1.6.

write_to_png (fobj)

Parameters fobj (filename (str or unicode), file or file-like object) — the
file to write to

Raises MemoryError if memory could not be allocated for the operation
IOError if an 1/O error occurs while attempting to write the file

Writes the contents of Surface to fobj as a PNG image.

2.7.2 class ImageSurface(Surface)

A cairo.ImageSurface provides the ability to render to memory buffers either allocated by cairo
or by the calling code. The supported image formats are those defined in FORMAT attributes.

class cairo.ImageSurface (format, width, height)

Parameters
» format — FORMAT of pixels in the surface to create
* width — width of the surface, in pixels
* height — height of the surface, in pixels

Returns a new ImageSurface

Raises MemoryError in case of no memory

46

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Creates an ImageSurface of the specified format and dimensions. Initially the surface
contents are all 0. (Specifically, within each pixel, each color or alpha channel belonging
to format will be 0. The contents of bits within a pixel, but not belonging to the given
format are undefined).

classmethod create_for_data (data, format, width, height[, stride])
Parameters
* data — a writable Python buffer object
* format — the FORMAT of pixels in the buffer
» width — the width of the image to be stored in the buffer
* height — the height of the image to be stored in the buffer

» stride — the number of bytes between the start of rows
in the buffer as allocated. If not given the value from
format_ stride for width (format, width) is used.

Returns a new ImageSurface
Raises MemoryError in case of no memory.
cairo.Error in case of invalid stride value.

Creates an ImageSurface for the provided pixel data. The initial contents of buffer
will be used as the initial image contents; you must explicitly clear the buffer, using,
for example, cairo_rectangle() and cairo_fill() if you want it cleared.

Note that the stride may be larger than width*bytes_per_pixel to provide proper
alignment for each pixel and row. This alignment is required to allow high-
performance rendering within cairo. The correct way to obtain a legal stride value
isto call format stride for width () with the desired format and maxi-
mum image width value, and use the resulting stride value to allocate the data and
to create the ImageSurface. See format_stride_for_width () for example
code.

classmethod create_from_png (fobj)
Parameters fobj — a filename, file, or file-like object of the PNG to load.

Returns a new ImageSurface initialized the contents to the given PNG
file.

static format_stride_for_width (format, width)
Parameters
 format — a cairo FORMAT value
* width — the desired width of an ImageSurface to be created.

Returns the appropriate stride to use given the desired format and width,
or -1 if either the format is invalid or the width too large.

Return type int

2.7. Surfaces 47

pycairo Documentation, Release 1.8.10

This method provides a stride value that will respect all alignment requirements of
the accelerated image-rendering code within cairo. Typical usage will be of the

form:
stride = cairo.ImageSurface.format_stride_for_width (format, width)
surface = cairo.ImageSurface.create_for_data (data, format, width, heigtl

New in version 1.6.
get_data ()

Returns a Python buffer object for the data of the ImageSurface, for direct
inspection or modification.

New in version 1.2.
get_format ()
Returns the FORMAT of the ImageSurface.
New in version 1.2.
get_height ()
Returns the height of the ImageSurface in pixels.
get_stride ()

Returns the stride of the ImageSurface in bytes. The stride is the dis-
tance in bytes from the beginning of one row of the image data to the
beginning of the next row.

get_width()

Returns the width of the ImageSurface in pixels.

2.7.3 class PDFSurface(Ssurface)

The PDFSurface is used to render cairo graphics to Adobe PDF files and is a multi-page vector
surface backend.

class cairo.PDFSurface (fobj, width_in_points, height_in_points)

Parameters

» fobj (None, str, unicode, file or file-like object) — a filename or
writable file object. None may be used to specify no output. This
will generate a PDF Surface that may be queried and used as a source,
without generating a temporary file.

» width_in_points (float) — width of the surface, in points (1 point ==
1/72.0 inch)

* height_in_points (floar) — height of the surface, in points (1 point ==
1/72.0 inch)

48 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Returns a new PDFSurface of the specified size in points to be written to
fobj.

Raises MemoryError in case of no memory
New in version 1.2.
set_size ()
Parameters

» width_in_points (floar) — new surface width, in points (1 point ==
1/72.0 inch)

* height_in_points (float) — new surface height, in points (1 point ==
1/72.0 inch)

Changes the size of a PDFSurface for the current (and subsequent) pages.

This function should only be called before any drawing operations have been per-
formed on the current page. The simplest way to do this is to call this function
immediately after creating the surface or immediately after completing a page with

either Context .show_page () or Context .copy_page (). New in version
1.2.

2.7.4 class PSSurface(Surface)

The PSSurface is used to render cairo graphics to Adobe PostScript files and is a multi-page
vector surface backend.

class cairo.PSSurface (fobj, width_in_points, height_in_points)
Parameters

 fobj (None, str, unicode, file or file-like object) — a filename or
writable file object. None may be used to specify no output. This
will generate a PSSurface that may be queried and used as a source,
without generating a temporary file.

» width_in_points (floar) — width of the surface, in points (1 point ==
1/72.0 inch)

* height_in_points (float) — height of the surface, in points (1 point ==
1/72.0 inch)

Returns a new PDFSurface of the specified size in points to be written to
fobj.

Raises MemoryError in case of no memory

Note that the size of individual pages of the PostScript output can vary. See
set_size ().

dsc_begin_page_setup ()
This method indicates that subsequent calls to dsc_comment () should direct
comments to the PageSetup section of the PostScript output.

2.7. Surfaces 49

pycairo Documentation, Release 1.8.10

This method call is only needed for the first page of a surface. It should be called
after any call to dsc_begin_setup () and before any drawing is performed to
the surface.

See dsc_comment () for more details. New in version 1.2.

dsc_begin_setup ()

This function indicates that subsequent calls to dsc_comment () should direct
comments to the Setup section of the PostScript output.

This function should be called at most once per surface, and must be called before
any call to dsc_begin_page_setup () and before any drawing is performed
to the surface.

See dsc__comment () for more details. New in version 1.2.

dsc_comment (comment)

Parameters comment (sfr) — a comment string to be emitted into the
PostScript output

Emit a comment into the PostScript output for the given surface.

The comment is expected to conform to the PostScript Language Document Struc-
turing Conventions (DSC). Please see that manual for details on the available com-
ments and their meanings. In particular, the %%IncludeFeature comment allows a
device-independent means of controlling printer device features. So the PostScript
Printer Description Files Specification will also be a useful reference.

The comment string must begin with a percent character (%) and the total length of
the string (including any initial percent characters) must not exceed 255 characters.
Violating either of these conditions will place PSSurface into an error state. But
beyond these two conditions, this function will not enforce conformance of the
comment with any particular specification.

The comment string should not have a trailing newline.

The DSC specifies different sections in which particular comments can appear. This
function provides for comments to be emitted within three sections: the header,
the Setup section, and the PageSetup section. Comments appearing in the first
two sections apply to the entire document while comments in the BeginPageSetup
section apply only to a single page.

For comments to appear in the header section, this function should be called after
the surface is created, but before a call to dsc_begin_setup ().

For comments to appear in the Setup section, this function should
be called after a call to dsc_begin_setup () but before a call to
dsc_begin_page_setup ().

For comments to appear in the PageSetup section, this function should be called
after a call to dsc_begin_page_setup ().

Note that it is only necessary to call dsc_begin_page_setup () for the
first page of any surface. After a call to Context.show page () or

50

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Context.copy_page () comments are unambiguously directed to the Page-
Setup section of the current page. But it doesn’t hurt to call this function at the
beginning of every page as that consistency may make the calling code simpler.

As a final note, cairo automatically generates several comments on its own. As
such, applications must not manually generate any of the following comments:

Header section: %!PS-Adobe-3.0, %Creator, %CreationDate, %Pages, %Bound-
ingBox, %DocumentData, %Languagelevel, %EndComments.

Setup section: %BeginSetup, %EndSetup

PageSetup section: %BeginPageSetup, %PageBoundingBox, %EndPageSetup.
Other sections: %BeginProlog, %EndProlog, %Page, %Trailer, % EOF

Here is an example sequence showing how this function might be used:

surface = PSSurface (filename,

surface.dsc_comment (surface,
surface.dsc_comment (surface,

surface.dsc_begin_setup (surface)

surface.dsc_comment (surface,

"

n

n

Copyright:

width, height)

Title: My excellent document")

IncludeFeature:

surface.dsc_begin_page_setup (surface)

surface.dsc_comment (surface,
surface.dsc_comment (surface,
surface.dsc_comment (surface,
surface.dsc_comment (surface,
draw to first page here
ctx.show_page (cr)

surface.dsc_comment (surface,

New in version 1.2.

get_eps ()

IncludeFeature:
IncludeFeature:
IncludeFeature:
IncludeFeature:

IncludeFeature:

Copyright (C) 2006 Cairo Lox

*MediaColor White")

*PageSize A3")
+*InputSlot LargeCapacit
*MediaType Glossy")
*MediaColor Blue")

PageSize A5S");

Returns True iff the PSSurface will output Encapsulated PostScript.

New in version 1.6.
static ps_level_to_string (level)

Parameters level —a PS LEVEL

Returns the string associated to given level.

Return type str

Raises cairo.Error if level isn’t valid.

Get the string representation of the given level. See ps_get_levels () fora
way to get the list of valid level ids. New in version 1.6.

2.7. Surfaces

51

pycairo Documentation, Release 1.8.10

restrict_to_ level (level)

Parameters level —a PS_LEVEL

Restricts the generated PostSript file to level. See ps_get_levels () for a list
of available level values that can be used here.

This function should only be called before any drawing operations have been per-
formed on the given surface. The simplest way to do this is to call this function
immediately after creating the surface. New in version 1.6.

set_eps (eps)

Parameters eps (bool) — True to output EPS format PostScript
If eps is True, the PostScript surface will output Encapsulated PostScript.

This function should only be called before any drawing operations have been per-
formed on the current page. The simplest way to do this is to call this function im-
mediately after creating the surface. An Encapsulated PostScript file should never
contain more than one page. New in version 1.6.

set_size (width_in_points, height_in_points)

Parameters

* width_in_points (float) — new surface width, in points (1 point ==
1/72.0 inch)

* height_in_points (floar) — new surface height, in points (1 point ==
1/72.0 inch)

Changes the size of a PostScript surface for the current (and subsequent) pages.

This function should only be called before any drawing operations have been per-
formed on the current page. The simplest way to do this is to call this function
immediately after creating the surface or immediately after completing a page with
either Context .show_page () or Context .copy_page (). New in version
1.2.

2.7.5 class SVGSurface(Surface)

The SVGSurface is used to render cairo graphics to SVG files and is a multi-page vector surface

backend

class cairo.SVGSurface (fobj, width_in_points, height_in_points)

Parameters

» fobj (None, str, unicode, file or file-like object) — a filename or
writable file object. None may be used to specify no output. This
will generate a SVGSurface that may be queried and used as a source,
without generating a temporary file.

» width_in_points (float) — width of the surface, in points (1 point ==
1/72.0 inch)

52

Chapter 2. Reference

pycairo Documentation, Release 1.8.10

* height_in_points (float) — height of the surface, in points (1 point ==
1/72.0 inch)

Returns a new SVGSurface of the specified size in points to be written to fobj.
Raises MemoryError in case of no memory

get_versions ()
Not implemented in pycairo (yet)

restrict_to_version()
Not implemented in pycairo (yet)

version_to_string()
Not implemented in pycairo (yet)

2.7.6 class Win32Surface(Surface)

The Microsoft Windows surface is used to render cairo graphics to Microsoft Windows win-
dows, bitmaps, and printing device contexts.

class cairo.Win32Surface (hdc)
Parameters hdc (int) — the DC to create a surface for
Returns the newly created surface

Creates a cairo surface that targets the given DC. The DC will be queried for its initial
clip extents, and this will be used as the size of the cairo surface. The resulting surface
will always be of format cairo.FORMAT_RGB24, see FORMAT attributes.

2.7.7 class Win32PrintingSurface(Ssurface)

The Win32PrintingSurface is a multi-page vector surface type.
class cairo.Win32PrintingSurface (hdc)
Parameters hdc (int) — the DC to create a surface for
Returns the newly created surface

Creates a cairo surface that targets the given DC. The DC will be queried for its initial
clip extents, and this will be used as the size of the cairo surface. The DC should be a
printing DC; antialiasing will be ignored, and GDI will be used as much as possible to
draw to the surface.

The returned surface will be wrapped using the paginated surface to provide correct com-
plex rendering behaviour; show_page () and associated methods must be used for cor-
rect output.

2.7. Surfaces 53

pycairo Documentation, Release 1.8.10

2.7.8 class XCBSurface(surface)
The XCB surface is used to render cairo graphics to X Window System windows and pixmaps
using the XCB library.

Note that the XCB surface automatically takes advantage of the X render extension if it is
available.

class cairo.XCBSurface
Parameters
* connection — an XCB connection
* drawable — a X drawable
* visualtype — a X visualtype
* width — The surface width
* height — The surface height

Creates a cairo surface that targets the given drawable (pixmap or window).

Note: This methods works using xpyb.

set_size (width, height)

Parameters
¢ width — The width of the surface
* height — The height of the surface
Informs cairo of the new size of the X Drawable underlying the surface. For a surface
created for a Window (rather than a Pixmap), this function must be called each time the

size of the window changes. (For a subwindow, you are normally resizing the window
yourself, but for a toplevel window, it is necessary to listen for ConfigureNotify events.)

A Pixmap can never change size, so it is never necessary to call this function on a surface
created for a Pixmap.

2.7.9 class XlibSurface(Surface)

The XLib surface is used to render cairo graphics to X Window System windows and pixmaps
using the XLib library.

Note that the XLib surface automatically takes advantage of X render extension if it is available.

class cairo.XlibSurface

54 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

Note: XlibSurface cannot be instantiated directly because Python interaction with Xlib
would require open source Python bindings to Xlib which provided a C API. How-
ever, an X/ibSurface instance can be returned from a function call when using pygtk
http://www.pygtk.org/.

get_depth ()
Returns the number of bits used to represent each pixel value.
New in version 1.2.
get_height ()
Returns the height of the X Drawable underlying the surface in pixels.
New in version 1.2.
get_width(()
Returns the width of the X Drawable underlying the surface in pixels.

New in version 1.2.

2.8 Text

Cairo has two sets of text rendering capabilities:

* The functions with text in their name form cairo’s toy text API. The toy API takes UTF-8
encoded text and is limited in its functionality to rendering simple left-to-right text with
no advanced features. That means for example that most complex scripts like Hebrew,
Arabic, and Indic scripts are out of question. No kerning or correct positioning of diacrit-
ical marks either. The font selection is pretty limited too and doesn’t handle the case that
the selected font does not cover the characters in the text. This set of functions are re-
ally that, a toy text API, for testing and demonstration purposes. Any serious application
should avoid them.

* The functions with glyphs in their name form cairo’s low-level text API. The low-level
API relies on the user to convert text to a set of glyph indexes and positions. This
is a very hard problem and is best handled by external libraries, like the pangocairo
that is part of the Pango text layout and rendering library. Pango is available from
http://www.pango.org/.

2.8.1 class FontFace()

A cairo.FontFace specifies all aspects of a font other than the size or font matrix (a font matrix
is used to distort a font by sheering it or scaling it unequally in the two directions). A FontFace
can be set on a Context by using Context.set_font_face () the size and font matrix
are set with Context.set _font size () and Context.set font matrix().

There are various types of FontFace, depending on the font backend they use.

2.8. Text 55

http://www.pygtk.org/
http://www.pango.org/

pycairo Documentation, Release 1.8.10

class cairo.FontFace

Note: This class cannot be instantiated directly, it 1is returned by
Context.get_font_face ().

2.8.2 class FreeTypeFontFace(FontFace)

FreeType Fonts - Font support for FreeType.

The FreeType font backend is primarily used to render text on GNU/Linux systems, but can be
used on other platforms too.

Note: FreeType Fonts are not implemented in pycairo because there is no open
source Python bindings to FreeType (and fontconfig) that provides a C API. This a
possible project idea for anyone interested in adding FreeType support to pycairo.

2.8.3 class ToyFontFace(FontFace)
The cairo.ToyFontFace class can be used instead of Context.select_font_face () to
create a toy font independently of a context.
class cairo.ToyFontFace (family[, slant[, weight]])
Parameters
o family (str or unicode) — a font family name

eslant — the FONT SLANT of the font, defaults to
calro.FONT_ SLANT NORMAL.

* weight — the FONT _WEIGHT of the font, defaults to
caliro.FONT_WEIGHT_ NORMAL.

Returns a new ToyFontFace

Creates a ToyFontFace from a triplet of family, slant, and weight. These font faces are
used in implementation of the the “toy” font API.

(1324

If family is the zero-length string “”, the platform-specific default family is assumed. The
default family then can be queried using get_family ().

The Context.select_font_face () method uses this to create font faces. See
that function for limitations of toy font faces. New in version 1.8.4.

get_family ()
Returns the family name of a toy font

Return type str

56 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

New in version 1.8.4.
get_slant ()
Returns the FONT _SLANT value
New in version 1.8.4.
get_weight ()
Returns the FONT WEIGHT value

New in version 1.8.4.

2.8.4 class UserFontFace(FontFace)

The user-font feature allows the cairo user to provide drawings for glyphs in a font. This is
most useful in implementing fonts in non-standard formats, like SVG fonts and Flash fonts, but
can also be used by games and other application to draw “funky” fonts.

Note: UserFontFace support has not (yet) been added to pycairo. If you need this
feature in pycairo register your interest by sending a message to the cairo mailing
list, or by opening a pycairo bug report.

2.8.5 class ScaledFont()

A ScaledFont is a font scaled to a particular size and device resolution. A ScaledFont is most
useful for low-level font usage where a library or application wants to cache a reference to a
scaled font to speed up the computation of metrics.

There are various types of scaled fonts, depending on the font backend they use.
class cairo.ScaledFont (font_face, font_matrix, ctm, options)
Parameters
e font_face — a FontFace instance

 font_matrix — font space to user space transformation Matrix
for the font. In the simplest case of a N point font, this ma-
trix is just a scale by N, but it can also be used to shear
the font or stretch it unequally along the two axes. See
Context.set_font_matrix().

¢ c¢tm — user to device transformation Mat r 1 x with which the font will
be used.

* options —a FontOpt ions instance to use when getting metrics for
the font and rendering with it.

Creates a ScaledFont object from a FontFace and matrices that describe the size of the
font and the environment in which it will be used.

2.8. Text 57

pycairo Documentation, Release 1.8.10

extents ()

Returns (ascent, descent, height, max_x_advance, max_y_advance), a tu-
ple of float values.

Gets the metrics for a ScaledFont.

get_ctm()
Not implemented in pycairo (yet)

get_font_face ()
Returns the FontFace that this ScaledFont was created for.
New in version 1.2.

get_font_matrix ()
Not implemented in pycairo (yet)

get_font_options ()
Not implemented in pycairo (yet)

get_scale_matrix ()
Returns the scale Matrix

The scale matrix is product of the font matrix and the ctm associated with the scaled
font, and hence is the matrix mapping from font space to device space. New in
version 1.8.

glyph_extents ()
Not implemented in pycairo (yet)

text_extents (rext)
Parameters text (str or unicode) — text
Returns (x_bearing, y_bearing, width, height, x_advance, y_advance)
Return type 6-tuple of float

Gets the extents for a string of text. The extents describe a user-space rectangle
that encloses the “inked” portion of the text drawn at the origin (0,0) (as it would
be drawn by Context .show_text () if the cairo graphics state were set to the
same font_face, font_matrix, ctm, and font_options as ScaledFont). Additionally,
the x_advance and y_advance values indicate the amount by which the current point
would be advanced by Context .show_text ().

Note that whitespace characters do not directly contribute to the size of the rectangle
(width and height). They do contribute indirectly by changing the position of non-
whitespace characters. In particular, trailing whitespace characters are likely to not
affect the size of the rectangle, though they will affect the x_advance and y_advance
values. New in version 1.2.

text_to_glyphs ()
Not implemented in pycairo (yet)

58 Chapter 2. Reference

pycairo Documentation, Release 1.8.10

2.8.6 class FontOptions()

An opaque structure holding all options that are used when rendering fonts.

Individual features of a FontOptions can be set or accessed using functions
named FontOptions.set_<feature_name> and FontOptions.get_<feature_name>, like
FontOptions.set_antialias () and FontOptions.get_antialias ().

New features may be added to a FontOptions in the future. For this reason,
FontOptions.copy (), FontOptions.equal (), FontOptions.merge (), and
FontOptions.hash () should be used to copy, check for equality, merge, or compute a
hash value of FontOptions objects.

class cairo.FontOptions
Returns a newly allocated FontOptions.
Allocates a new FontOptions object with all options initialized to default values.
get_antialias()
Returns the ANTIALIAS mode for the FontOptions object
get_hint_metrics ()
Returns the HINT METRICS mode for the FontOptions object
get_hint_style()
Returns the HINT STYLE for the FontOptions object
get_subpixel_order ()
Returns the SUBPIXEL_ORDER for the FontOptions object
set_antialias (antialias)
Parameters antialias — the ANTTALIAS mode
This specifies the type of antialiasing to do when rendering text.
set_hint_metrics (hint_metrics)
Parameters hint_metrics — the HINT METRICS mode
This controls whether metrics are quantized to integer values in device units.
set_hint_style (hint_style)
Parameters hint_style — the HINT STYLE

This controls whether to fit font outlines to the pixel grid, and if so, whether to
optimize for fidelity or contrast.

set_subpixel_order (subpixel_order)

Parameters subpixel_order — the SUBPIXEL_ORDER

2.8. Text 59

pycairo Documentation, Release 1.8.10

The subpixel order specifies the order of color elements within each
pixel on the display device when rendering with an antialiasing mode of
caliro.ANTIALIAS_SUBPIXEL.

60 Chapter 2. Reference

CHAPTER
THREE

FAQ

3.1 Pycairo FAQ - Frequently Asked Questions

Q: Can I subclass pycairo classes?

A: Cairo, the C library, is not an object oriented library, so a Python binding can never be a
truly object oriented interface to cairo. One way to write the Python bindings for cairo would
be as a single long list of module functions - this would be the most accurate representation
of the underlying C library. Pycairo (and most other cairo language bindings?) instead chose
to implement the bindings using Context, Surface, Pattern, etc classes. An advantage is that
the classes organise cairo into groups of similar functions. A disadvantage is that creates an
illusion that cairo is object oriented library, and people are then tempted to create subclasses
to override cairo methods. When in fact there are no methods to override, just cairo functions
which can’t be overridden.

The cairo documentation Appendix A “Creating a language binding for cairo” section “Mem-
ory Management” describes why deriving from a Surface creates problems and is best avoided.

cairo.Context can be subclassed. All other pycairo subclasses cannot be subclassed.
Q: How do I use pycairo with numpy?

A: See test/isurface_create_for_data2.py

Q: How do I use pycairo with pygame?

A: See test/pygame-testl.py test/pygame-test2.py

61

pycairo Documentation, Release 1.8.10

62 Chapter 3. FAQ

CHAPTER
FOUR

PYCAIRO C API

This manual documents the API used by C and C++ programmers who want to write extension
modules that use pycairo.

4.1 To access the Pycairo C API

Edit the client module file to add the following lines:

/* All function, type and macro definitions needed to use the Pycairo/C API
* are included in your code by the following line
*/

#include "Pycairo.h"

/* define a variable for the C API */
static Pycairo_CAPI_t xPycairo_CAPI;

/* import pycairo — add to the init<module> function #*/
Pycairo_IMPORT;

4.2 Pycairo Objects

Objects:

PycairoContext
PycairoFontFace
PycairoToyFontFace
PycairoFontOptions
PycairoMatrix
PycairoPath
PycairoPattern
PycairoSolidPattern
PycairoSurfacePattern
PycairoGradient
PycairoLinearGradient
PycairoRadialGradient

63

pycairo Documentation, Release 1.8.10

PycairoScaledFont
PycairoSurface
PycairoImageSurface
PycairoPDFSurface
PycairoPSSurface
PycairoSVGSurface
PycairoWin32Surface
PycairoXCBSurface
PycairoXlibSurface

4.3 Pycairo Types

Types:

PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject

*Context_Type;
*FontFace_Type;
+*ToyFontFace_Type;
*FontOptions_Type;
*Matrix_Type;
x*Path_Type;
*Pattern_Type;
x*SolidPattern_Type;
x*SurfacePattern_Type;
x*Gradient_Type;
+*LinearGradient_Type;
*RadialGradient_Type;
x*ScaledFont_Type;
x*Surface_Type;
x*ImageSurface_Type;
*PDFSurface_Type;
x*PSSurface_Type;
*SVGSurface_Type;
*Win32Surface_Type;
*XCBSurface_Type;
*X1libSurface_Type;

4.4 Functions

cairo_t * PycairoContext_GET (obj)

get the C cairo_t * object out of the PycairoContext *obj

PyObject * PycairoContext_FromContext (cairo_t *ctx, PyTypeObject *type,
PyObject *base)

PyObject * PycairoFontFace_FromFontFace (cairo_font_face_t *font_face)

PyObject * PycairoFontOptions_FromFontOptions (cairo_font_options_t *font_options)

64 Chapter 4. Pycairo C API

pycairo Documentation, Release 1.8.10

PyObject * PycairoMatrix_FromMatrix (const cairo_matrix_t *matrix)
PyObject * PycairoPath_FromPath (cairo_path_t *path)

PyObject * PycairoPattern_ FromPattern (cairo_pattern_t *pattern, PyOb-
ject *base)

PyObject * PycairoScaledFont_FromScaledFont (cairo_scaled_font_t *scaled_font)

PyObject * PycairoSurface_ FromSurface (cairo_surface_t *surface, PyOb-
ject *base)

int PycairoCheck_Status (cairo_status_t status)

4.4. Functions 65

pycairo Documentation, Release 1.8.10

66 Chapter 4. Pycairo C API

CHAPTER
FIVE

INDICES AND TABLES

67

pycairo Documentation, Release 1.8.10

68 Chapter 5. Indices and tables

PYTHON MODULE INDEX

69

pycairo Documentation, Release 1.8.10

70

Python Module Index

A

add_color_stop_rgb() (cairo.Gradient
method), 40

add_color_stop_rgba() (cairo.Gradient
method), 41

ANTIALIAS_DEFAULT (in module cairo), 4
ANTIALIAS_GRAY (in module cairo), 4
ANTIALIAS_NONE (in module cairo), 4
ANTIALIAS_SUBPIXEL (in module cairo),
4

append_path() (cairo.Context method), 10
arc() (cairo.Context method), 11
arc_negative() (cairo.Context method), 11

C

cairo (module), 1
cairo.Error, 34
cairo_version() (in module cairo), 3
cairo_version_string() (in module cairo), 3
clip() (cairo.Context method), 12
clip_extents() (cairo.Context method), 12
clip_preserve() (cairo.Context method), 12
close_path() (cairo.Context method), 13
CONTENT_ALPHA (in module cairo), 4
CONTENT_COLOR (in module cairo), 4
CONTENT_COLOR_ALPHA (in module
cairo), 4
Context (class in cairo), 10
copy_clip_rectangle_list()
method), 13
copy_page() (cairo.Context method), 13
copy_page() (cairo.Surface method), 43
copy_path() (cairo.Context method), 13
copy_path_flat() (cairo.Context method), 14
create_for_data() (cairo.ImageSurface class
method), 47
create_from_png() (cairo.ImageSurface class
method), 47

(cairo.Context

INDEX

create_similar() (cairo.Surface method), 43
curve_to() (cairo.Context method), 14

D

device_to_user() (cairo.Context method), 14
device_to_user_distance() (cairo.Context

method), 14

dsc_begin_page_setup() (cairo.PSSurface
method), 49

dsc_begin_setup() (cairo.PSSurface method),
50

dsc_comment() (cairo.PSSurface method), 50

E

EXTEND_NONE (in module cairo), 4
EXTEND_PAD (in module cairo), 5
EXTEND_REFLECT (in module cairo), 5
EXTEND_REPEAT (in module cairo), 5
extents() (cairo.ScaledFont method), 57

F

fill() (cairo.Context method), 15
fill_extents() (cairo.Context method), 15
fill_preserve() (cairo.Context method), 15
FILL_RULE_EVEN_ODD (in module cairo),
5
FILL_RULE_WINDING (in module cairo), 5
FILTER_BEST (in module cairo), 5
FILTER_BILINEAR (in module cairo), 6
FILTER_FAST (in module cairo), 5
FILTER_GAUSSIAN (in module cairo), 6
FILTER_GOOD (in module cairo), 5
FILTER_NEAREST (in module cairo), 5
finish() (cairo.Surface method), 44
flush() (cairo.Surface method), 44
font_extents() (cairo.Context method), 15
FONT_SLANT_ITALIC (in module cairo), 6
FONT_SLANT_NORMAL (in module cairo),
6

71

pycairo Documentation, Release 1.8.10

FONT_SLANT_OBLIQUE
cairo), 6
FONT_WEIGHT_BOLD (in module cairo), 6
FONT_WEIGHT_NORMAL (in module
cairo), 6
FontFace (class in cairo), 55
FontOptions (class in cairo), 59
FORMAT_AT1 (in module cairo), 6
FORMAT_AS8 (in module cairo), 6
FORMAT_ARGB32 (in module cairo), 6
FORMAT_RGB24 (in module cairo), 6
format_stride_for_width()
(cairo.ImageSurface static method),
47

(in module

G

get_antialias() (cairo.Context method), 16
get_antialias() (cairo.FontOptions method), 59
get_content() (cairo.Surface method), 44
get_ctm() (cairo.ScaledFont method), 58
get_current_point() (cairo.Context method),
16
get_dash() (cairo.Context method), 16
get_dash_count() (cairo.Context method), 16
get_data() (cairo.ImageSurface method), 48
get_depth() (cairo.XlibSurface method), 55
get_device_offset() (cairo.Surface method),
44
get_eps() (cairo.PSSurface method), 51
get_extend() (cairo.Pattern method), 38
get_fallback_resolution() (cairo.Surface
method), 44
get_family() (cairo.ToyFontFace method), 56
get_fill_rule() (cairo.Context method), 17
get_filter() (cairo.SurfacePattern method), 40
get_font_face() (cairo.Context method), 17
get_font_face() (cairo.ScaledFont method), 58
get_font_matrix() (cairo.Context method), 17
get_font_matrix() (cairo.ScaledFont method),
58
get_font_options() (cairo.Context method), 17
get_font_options() (cairo.ScaledFont
method), 58
get_font_options() (cairo.Surface method), 44
get_format() (cairo.ImageSurface method), 48
get_group_target() (cairo.Context method), 17
get_height() (cairo.ImageSurface method), 48
get_height() (cairo.XlibSurface method), 55

get_hint_metrics()
method), 59

get_hint_style() (cairo.FontOptions method),
59

get_line_cap() (cairo.Context method), 17

get_line_join() (cairo.Context method), 17

get_line_width() (cairo.Context method), 17

get_linear_points() (cairo.LinearGradient
method), 42

get_matrix() (cairo.Context method), 17

get_matrix() (cairo.Pattern method), 38

get_miter_limit() (cairo.Context method), 18

get_operator() (cairo.Context method), 18

get_radial_circles() (cairo.RadialGradient
method), 42

get_rgba() (cairo.SolidPattern method), 39

get_scale_matrix() (cairo.ScaledFont
method), 58

get_scaled_font() (cairo.Context method), 18

get_slant() (cairo.ToyFontFace method), 57

get_source() (cairo.Context method), 18

get_stride() (cairo.ImageSurface method), 48

get_subpixel_order() (cairo.FontOptions
method), 59

get_surface() (cairo.SurfacePattern method),
40

get_target() (cairo.Context method), 18

get_tolerance() (cairo.Context method), 18

get_versions() (cairo.SVGSurface method),
53

get_weight() (cairo.ToyFontFace method), 57

get_width() (cairo.ImageSurface method), 48

get_width() (cairo.XlibSurface method), 55

glyph_extents() (cairo.Context method), 18

glyph_extents() (cairo.ScaledFont method),
58

glyph_path() (cairo.Context method), 18

Gradient (class in cairo), 40

H

HAS_ATSUI_FONT (in module cairo), 3

has_current_point() (cairo.Context method),
19

HAS_FT_FONT (in module cairo), 3

HAS_GLITZ_SURFACE (in module cairo), 3

HAS_IMAGE_SURFACE (in module cairo),
3

HAS_PDF_SURFACE (in module cairo), 3

(cairo.FontOptions

72

Index

pycairo Documentation, Release 1.8.10

HAS_PNG_FUNCTIONS (in module cairo),
3

HAS_PS_SURFACE (in module cairo), 3

HAS_QUARTZ_SURFACE (in module
cairo), 3

HAS_SVG_SURFACE (in module cairo), 3

HAS_USER_FONT (in module cairo), 3

HAS_WIN32_FONT (in module cairo), 3

HAS_WIN32_SURFACE (in module cairo), 3

HAS_XCB_SURFACE (in module cairo), 3

HAS_XLIB_SURFACE (in module cairo), 3

HINT _METRICS_DEFAULT (in module
cairo), 7

HINT_METRICS_OFF (in module cairo), 7

HINT_METRICS_ON (in module cairo), 7

HINT_STYLE_DEFAULT (in module cairo),
7

HINT_STYLE_FULL (in module cairo), 7

HINT_STYLE_MEDIUM (in module cairo),
7

HINT_STYLE_NONE (in module cairo), 7

HINT_STYLE_SLIGHT (in module cairo), 7

identity_matrix() (cairo.Context method), 19
ImageSurface (class in cairo), 46

in_fill() (cairo.Context method), 19
in_stroke() (cairo.Context method), 19
init_rotate() (cairo.Matrix class method), 36
invert() (cairo.Matrix method), 36

L

LINE_CAP_BUTT (in module cairo), 7
LINE_CAP_ROUND (in module cairo), 8
LINE_CAP_SQUARE (in module cairo), 8
LINE_JOIN_BEVEL (in module cairo), 8
LINE_JOIN_MITER (in module cairo), 8
LINE_JOIN_ROUND (in module cairo), 8
line_to() (cairo.Context method), 19
LinearGradient (class in cairo), 41

M

mark_dirty() (cairo.Surface method), 45

mark_dirty_rectangle() (cairo.Surface
method), 45

mask() (cairo.Context method), 20

mask_surface() (cairo.Context method), 20

Matrix (class in cairo), 35

move_to() (cairo.Context method), 20

multiply() (cairo.Matrix method), 36

N

new_path() (cairo.Context method), 20
new_sub_path() (cairo.Context method), 20

O

OPERATOR_ADD (in module cairo), 9
OPERATOR_ATOP (in module cairo), 9
OPERATOR_CLEAR (in module cairo), 8
OPERATOR_DEST (in module cairo), 9
OPERATOR_DEST_ATOP (in module cairo),
9
OPERATOR_DEST_IN (in module cairo), 9
OPERATOR_DEST_OUT (in module cairo),
9
OPERATOR_DEST_OVER
cairo), 9
OPERATOR_IN (in module cairo), 8
OPERATOR_OUT (in module cairo), 8
OPERATOR_OVER (in module cairo), 8
OPERATOR_SATURATE (in module cairo),
9
OPERATOR_SOURCE (in module cairo), 8
OPERATOR_XOR (in module cairo), 9

P

paint() (cairo.Context method), 20

paint_with_alpha() (cairo.Context method),
20

Path (class in cairo), 38

PATH_CLOSE_PATH (in module cairo), 9

PATH_CURVE_TO (in module cairo), 9

path_extents() (cairo.Context method), 21

PATH_LINE_TO (in module cairo), 9

PATH_MOVE_TO (in module cairo), 9

Pattern (class in cairo), 38

PDFSurface (class in cairo), 48

pop_group() (cairo.Context method), 21

pop_group_to_source() (cairo.Context
method), 21

PS_LEVEL_2 (in module cairo), 9

PS_LEVEL_3 (in module cairo), 10

ps_level_to_string() (cairo.PSSurface static
method), 51

PSSurface (class in cairo), 49

push_group() (cairo.Context method), 22

push_group_with_content() (cairo.Context
method), 22

(in module

Index

73

pycairo Documentation, Release 1.8.10

PycairoCheck_Status (C function), 65
PycairoContext_FromContext (C function),
64
PycairoContext_GET (C function), 64
PycairoFontFace_FromFontFace (C function),
64
PycairoFontOptions_FromFontOptions
function), 64
PycairoMatrix_FromMatrix (C function), 64
PycairoPath_FromPath (C function), 65
PycairoPattern_FromPattern (C function), 65
PycairoScaledFont_FromScaledFont (C func-
tion), 65
PycairoSurface_FromSurface (C function), 65

R

RadialGradient (class in cairo), 42
rectangle() (cairo.Context method), 23
rel_curve_to() (cairo.Context method), 23
rel_line_to() (cairo.Context method), 24
rel_move_to() (cairo.Context method), 24
reset_clip() (cairo.Context method), 24
restore() (cairo.Context method), 24
restrict_to_level() (cairo.PSSurface method),
51
restrict_to_version()
method), 53
rotate() (cairo.Context method), 24
rotate() (cairo.Matrix method), 36

S

save() (cairo.Context method), 25

scale() (cairo.Context method), 25

scale() (cairo.Matrix method), 36

ScaledFont (class in cairo), 57

select_font_face() (cairo.Context method), 25

set_antialias() (cairo.Context method), 26

set_antialias() (cairo.FontOptions method), 59

set_dash() (cairo.Context method), 26

set_device_offset() (cairo.Surface method), 45

set_eps() (cairo.PSSurface method), 52

set_extend() (cairo.Pattern method), 38

set_fallback_resolution() (cairo.Surface
method), 45

set_fill_rule() (cairo.Context method), 26

set_filter() (cairo.SurfacePattern method), 40

set_font_face() (cairo.Context method), 27

set_font_matrix() (cairo.Context method), 27

(C

(cairo.SVGSurface

set_font_options() (cairo.Context method), 27
set_font_size() (cairo.Context method), 27
set_hint_metrics() (cairo.FontOptions

method), 59
set_hint_style() (cairo.FontOptions method),
59

set_line_cap() (cairo.Context method), 27
set_line_join() (cairo.Context method), 28
set_line_width() (cairo.Context method), 28
set_matrix() (cairo.Context method), 28
set_matrix() (cairo.Pattern method), 39
set_miter_limit() (cairo.Context method), 28
set_operator() (cairo.Context method), 29
set_scaled_font() (cairo.Context method), 29
set_size() (cairo.PDFSurface method), 49
set_size() (cairo.PSSurface method), 52
set_size() (cairo.XCBSurface method), 54
set_source() (cairo.Context method), 29
set_source_rgb() (cairo.Context method), 29
set_source_rgba() (cairo.Context method), 30
set_source_surface() (cairo.Context method),
30
set_subpixel_order()
method), 59
set_tolerance() (cairo.Context method), 30
show_glyphs() (cairo.Context method), 31
show_page() (cairo.Context method), 31
show_page() (cairo.Surface method), 46
show_text() (cairo.Context method), 31
SolidPattern (class in cairo), 39
stroke() (cairo.Context method), 31
stroke_extents() (cairo.Context method), 32
stroke_preserve() (cairo.Context method), 32

(cairo.FontOptions

SUBPIXEL_ORDER_BGR (in module
cairo), 10

SUBPIXEL_ORDER_DEFAULT (in module
cairo), 10

SUBPIXEL_ORDER_RGB (in module
cairo), 10

SUBPIXEL_ORDER_VBGR (in module
cairo), 10

SUBPIXEL_ORDER_VRGB (in module
cairo), 10

Surface (class in cairo), 43
SurfacePattern (class in cairo), 40
SVGSurface (class in cairo), 52

74

Index

pycairo Documentation, Release 1.8.10

T

text_extents() (cairo.Context method), 32

text_extents() (cairo.ScaledFont method), 58

text_path() (cairo.Context method), 33

text_to_glyphs() (cairo.ScaledFont method),
58

ToyFontFace (class in cairo), 56

transform() (cairo.Context method), 33

transform_distance() (cairo.Matrix method),
37

transform_point() (cairo.Matrix method), 37

translate() (cairo.Context method), 33

translate() (cairo.Matrix method), 37

U

user_to_device() (cairo.Context method), 34
user_to_device_distance() (cairo.Context
method), 34

Vv

version (in module cairo), 3

version_info (in module cairo), 3

version_to_string() (cairo.SVGSurface
method), 53

W

Win32PrintingSurface (class in cairo), 53
Win32Surface (class in cairo), 53
write_to_png() (cairo.Surface method), 46

X

XCBSurface (class in cairo), 54
XlibSurface (class in cairo), 54

Index

75

	Overview
	Reference
	Module Functions and Constants
	Cairo Context
	Exceptions
	Matrix
	Paths
	Patterns
	Surfaces
	Text

	FAQ
	Pycairo FAQ - Frequently Asked Questions

	Pycairo C API
	To access the Pycairo C API
	Pycairo Objects
	Pycairo Types
	Functions

	Indices and tables
	Python Module Index
	Index

