Working notes—Not for circulation.

Dominique Orban
A Python implementation of SUPERB

March 10, 2008

Abstract. We describe and discuss an implementation of the mixed interior/exterior-point method for non-
linear programming described in []. The implementation is realized in the NLPy Python framework,
nlpy.sf.net, for linear and nonlinear optimization.

Contents

1. Problem structure e e e e e e e 1
2. Interior-point frameworko 4
3. The inner iteration L e e e e e e e 8
4. A Python class for SUPERB o o e e 10

1. Problem structure
1.1. Problem statement

We consider the general nonlinear programming problem

minimize f(x)
x
subject to cg(x) =4"®
Y <ez(z) <9
<z <zY,

(1.1)

where f: R" — R, cg : R — R™ and ¢z : R" — R™ are twice-continuously differentiable functions
and where v® € R™ 4% 4% € R™ and z",zY € R" are fixed vectors. Fixed variables, if any, are
directly eliminated by the code and their values substituted into the expressions where they appear.
We define the index sets

Ct={ieZ| —co<y and = =+oo} (1.2a)
C'={ieZ| —oco=7 and 7] < +oo} (1.2b)
Ch={ieI| —o<n and v’ <+oo} (1.2¢)

and refer to them as the set of lower constraints, the set of upper constraints and the set of range con-
straints respectively. Note that we have not distinguished linear from nonlinear constraints—possibly,

Dominique Orban: GERAD and Ecole Polytechnique, Montréal, Canada. e-mail: : Dominique.0Orban@gerad.ca

http://nlpy.sf.net
mailto:dominique.orban@gerad.ca

2 Dominique Orban

one or more constraints ¢;(z) with ¢ € £ UZ are linear. For the time being, the only reason to dis-
tinguish general constraints from simple bounds is that the two are usually stored in separate data
structures when decoding problems written in modern modeling languages, such as SIF |] or
AwmPL |]. In later refinements, we may wish to treat simple bounds differently, e.g., ensure they
are satisfied throughout.

Similarly, we define the sets

B'={1<i<n| —oo<uzy <z =400} (1.3a)
B'={1<i<n| —co=a; <z <+00} (1.3b)
B*={1<i<n| —oco<uz] <z < +oo} (1.3¢)

and refer to them as the set of lower bounds, the set of upper bounds and the set of two-sided bounds
respectively.

Finally, let C =C*UCY UC® and B = B~ U BY U B*.

After the decoding stage, a practical implementation will usually “see” the above sets and the variables
which they determine. Hence, the indexing in these notes will correspond to simple loops over the
appropriate index sets in the implementation. For instance, in Python, the expression), . ¢;(x) will
correspond to the simple loop

ce = 0.0; for i in E: ce += c[i]

1.2. Penalty function and elastic problem

From the formulation (1.1), we may apply the transformations given in |] to define elastic
variables s and t associated to the general constraints and bounds respectively, and the smoothened
{1-penalty function

" (z,8,t;v) = f(z) + Z v [ei(x) —4F + 28] + Z vis; + Z viti, (1.4)

= ieC icB
and obtain the elastic problem

minimize oF(x, s, t;v)

x,s,t

subject to ¢;i(x) —yF+s5,>0 and s; >0 1€&
ci(r)—v+s >0 and s;>0 1€Ch
7U761($)+81‘ ZO and S; ZO 1€CY (15)
ci(r) =y +s>0, v —c(x)+s,>0 and s;>0 i€ CR

ri—xy+¢ >0 and t; >0 i€ B"
xy —x;+t; >0 and t; >0 i€ BY
x¢7$%+ti20, IE*SCZ#*YZZO and ¢, >0 i € BR.

Note that a single elastic s; corresponds to both sides of a range constraint ¢ € C* and a single ¢;
corresponds to an i € B®. The above elastic problem details the structure of each constraint in relation
to the index set to which it corresponds, and the penalization associated to them. This problem has
2(ng +nz)+|C* +2(|B"| + |BY| + |B%|) + |B"| general constraints, linear and nonlinear. Note that for
generality, we have considered as many penalty parameters v; are there are constraints in (1.5). For
simplicity, an implementation may just set v; = v > 0 for all i.

© 0w N U AW N

o e e e
cs W N RO

© 0w N U AW N

R e e
w N = O

A Python implementation of SUPERB

The Python method to evaluate ¢*(x, s,t;v) is named evalP and relies on the method evalC which
first transforms the constraints. The latter is given in Listing 1.

Listing 1. Constraint Transformation Method

The "upper
If i is in

a #H H HH

c = self
cR = {}
for i in
clil
for i in
clil]

for i in

Reformulate constraints.
" side of a range constraint is pushed at the end of c;

Range, the index of the "upper" side is given by

nConst + Range.index(i)
ef evalC(self, x):

.cons(x)

self .Eq + self.lowerC:
-= self.Lcon[il

self .upperC:

= self.Ucon[i] - c[il]
self.Range:

We may now define evalP as in Listing 2.

Listing 2. Merit Function Evaluation Method

def evalP(self, x, s, t):

p = self
(c, cR)

.obj(x)

= self.evalC(x)

Add contribution from equality constraints

for i in
p *=

self .Eq:
self.nuEq * (c[i]l + 2 x s[i])

Add contribution from inequality and range constraints

for i in
p *=

self.Ineq + self.Range:
self.nuS * s[il

Add contribution from bound constraints

1.3. Derivatives of the penalty function

The first derivatives of (1.4) are given by

V.9 (2,8, t;v)
vzstqsp(xv&t; V) = VS¢P(x757t;V)
vtd)P ('Ia S, ta V)

where
Vo (z,8,t;v) = Vf(x)+ Z v;Vei(z), (1.6)
€€
Vo' (x,8,t;v) = QZVZ'GZ' +Zuiei (1.7)
i€ ieC
and
Vid"(x,s,t;v) = Z vie;, (1.8)

i€B

and where each vector e; is the i-th column of the identity matrix.

It is easy to see that the Hessian matrix of ¢ (z, s,t;v) is given by

Vif(z)+ Yice v;V2e;i () 00
V2 (z,5,t;v) = 0 00]. (1.9)
0 00

o B R N A

I I T T R R i At
W N = O © KOOk W RO ®©

4 Dominique Orban

In §2, we treat the constraints of the elastic problem (1.5) by means of a logarithmic barrier and
explicit its derivatives. The implementation computes the derivatives of the resulting barrier function

directly instead of computing the derivatives of ¢*.

2. Interior-point framework

2.1. A log-barrier merit function

Treating the constraints of (1.5) using a logarithmic barrier are gathering up sums with similar terms,

we obtain the unconstrained problem

minimize ¢°(z,s,t; u,v),
x,s,t

where

¢B(x7s7t;,u,u) = ¢P(w787t; V) - Z;u’t IOg(C’L(x) - ’Y;E + si) - ZMZ IOg(SZ)

ic€ ic€

— Y milog(ei(@) — v +si) — > pilog(sy)
ieCLUCR ieC

— Y pilog(y) = ci(x) + si)

ieCUUCR

— Z i log(xz — .73;' + ti) — Z i log(t,»)

1eBLUBR i€eB
- Z pilog(zy — m; + ;).

i€eBYUBR

(2.10)

(2.11)

Again, we choose to use as many barrier parameters p; as there are constraints to take the scaling
of these constraints into account, keeping in mind that an implementation might very well just pick

i = p for all 4.
The method to evaluate ¢®(z, s,t; 1, V) is given in Listing 3.

Listing 3. Barrier Function Evaluation Method

phi(x, mu) = p(x,s,nu) - mu * Sum log(ci(x) + si)
- mu * Sum log(si)
- mu * Sum log(bi)

def Phi(self, x, s, t):

phi = self.evalP(x, s, t)
(c, cR) = self.evalC(x)
bar = 0.0

for i in (self.Ineq + self.Eq):
bar += math.log(c[i] + s[i]) + math.log(s[i])
for i in self.Range:
bar += math.log(c[i] + s[il) + \
math.log(cR[i] + s[i]) + \
math.log(s[il])

for i in self.lowerB:

bar += math.log(x[i] - self.Lvar[i] + t[i]) + math.log(t[il)
for i in self.upperB:

bar += math.log(self.Uvar[i] - x[i] + t[i]) + math.log(t[il)
for i in self.rangeB:

bar += math.log(x[i] - self.Lvar[i] + t[i]) + \

N U AW N

I I e e T
= O © N0 UAWN RO O

A Python implementation of SUPERB 5

The minimization (2.10) requires to start with a strictly feasible initial guess (z°, s%, %), which is easily
achieved by picking any x° and choosing

max|[0,7F — ¢;(20)] + €&, ief
S? — ma’X[O Cl(xo)] + €CL7 Z € CL (212)
max[0,7; — ci(x)] + €Y, ieC’
max|0, ¢;(2°%) — vF, Y — ¢;(20)] + €}, i e Ch
and
max[O z) — ak] + €t ie B,
t) = < max[0, 2y — 9] + " ieBY, (2.13)
max[O z) —alb ay —af] 4+ R, i e BR,
where €, €, €Y, €°F, P, €2V and €®* are small positive constants. In practice, we might choose these

constants all equal, e.g. to 0.1, or different to push (20, 5% %) away from some constraint boundaries.

The starting point is initialized when the class is instantiated. The initialization chooses x(as specified
in the model. Listing 4 sets so and ty as in (2.12) and (2.13).

Listing 4. Elastic initialization

Constant which determines initial elastics: s = max(0,-c) + ethresh
self.ethresh = 1.1

self.tiny = 1.0e-8

Set initial elastics so (x0, s0) is strictly feasible
Note that a single elastic suffices for a range constraint
self.s = numpy.zeros(self.nConst, ’d’)

(self.c,
for i in
self
for i in
self

self
self

.s[i]

self

.s[i]

.cR) =
.Eq + self.Ineq:

self.evalC(self.x0)

= max(0.0, -self.c[i]) + self.ethresh

.Range:

= max(0.0, - self.cR[il,

- self.c[i],) + self.ethresh

t0)
Single elastic for 2-sided bounds.

Set initial elastics for the bound constraints so (x0,
strictly satisfies the bounds.

self.t = {}

for i in self.lowerB:
self.t[i] = max (0.0,

for i in self.upperB:

self.Lvar[i] - self.x0[i]) + self.ethresh

Given the form (2.11) of the barrier-penalty objective function, it is (tedious and lenghty but) straight-
forward to compute its first and second derivatives. We now expand them. We first define the primal
Lagrange multiplier estimates

yi = pilei(@) =7 +s:)” Loie€g
yi = pilei(z) — v +s:)” Loiect
yi = pa(y —ciz) +s:)7h, e’ (2.14)
Yo = pilei() — v +8i)” Loiect
i’ = iy —cilw) +s)7h iect
for the general constraints,
28 = iz — b+)7, i€ B
20 =iy —xi+)", i€ BY (2.15)
2 = pi(wy — 2k +t)7Y, e BR .
2V = (2 — i+)7, i€ BY,

6 Dominique Orban

for the bound constraints,
u=S"1u, (2.16)

for the elastics s associated to the general constraints and finally
v=T""u, (2.17)

for the elastics t associated to the bounds.

2.2. Derivatives of the merit function

The gradient of (2.11) is the (n + |€] 4 |C] 4 |B]) x 1 vector given by

vw¢B(x7 S, t; 1y V)
Vmst¢B(maSat;M7 V) = VSQSB(anat;H’V)) (218)
Vt¢B(z7 S, t; 12 V)

where

VIQSB(ZL',S;[L, V) = VI¢P(xasvt; V) - nyvcz(x) - Z yfvcl(m)

€€ ieCl
+Y yVe(@) = D i -y Vei(x)
ieCY ieCR
—Z zre; + Z zie; — Z [z — 2] ey,
ieBL ieBY ieBR

which we can rewrite, using (1.6), as

vz(bB(xv S5, V) = vwf(x) - J(‘T)T)‘(:% V) - C(Z)v

where A(z,v) € R"¢T"Z and ((z) € R™ are vectors such that

Yi — Vi, i€ 27, i€ B"
vy ieCh —zY ie BY
Nily,v)=4""", R G2) =19 w nv - opem (2.19)
—Y;, S C 2 TR, € B
it =y, ieCh, 0 otherwise,

and where J(z) is the Jacobian matrix of the constraints ¢;(x) for all i € £ UC* UCY UC®. Similarly,

Vs¢® (@, s;p,v) = v — Z(Z/? —vitui)e; — Z (yi +ui)ei — Z (i +ui)e; — Z (Wi™ +yi” + e,
€€ iect iecY i€CR

and finally

Vid®(,sip,v) =v— Y (ZF+vdei— Y (2 +videi— > (2 + 2 +vier,

ieBL ieBY ieBR

The intent is to approximately minimize a quadratic model of (2.11) under no constraints in a trust
region to find an approximate minimizer of (1.5) with fixed p and v. Once such an approximate
minimizer has been found, ¢ and v are updated and attention turns to the next round of minimization.

In this implementation, we propose to use the exact second derivatives of (2.11). As considerable
numerical experience has shown, a model far superior to the primal model is given by using the
primal-dual Hessian matrix, obtained by treating y, z, u and v as additional, independent, variables.

A Python implementation of SUPERB

For brevity, we denote w = (x, s,t,y, z,u,v). Upon defining suitable primal-dual estimates g, Z, @ and
¥ to be used in place of the primal estimates (2.14)—(2.17), we have

Hx:z: Hxs Hmt
HPD(w;Nay) = Hgg Hss Hst 5
H;Ft qu Hyy

S

where
Hyw = Voo Lz, Ay, v)) + J(2)TO(z,§,5)] (z) + ETE(x, 2,t)E
with
~E
y—i7 1€ €&
ci(x) —YE + s
g?
0, ~ _) G\T) =7 Si
1(1'7:1/’5) yf) o
) 1€ C
v Glx) + s
~RL ~RU
i - +— Yi , 1€CR,
ci(@) =y +s v —ci@)+s
and
L7 1 € B
XT; — %‘g +t;
s
i\ ~7t = 717 i€ BY
f(mz) J);j—l‘i-i-ti
SRL SRU
% % i € BY,

+ ;

and where V,,L(z,A) is the Hessian of the Lagrangian of (1.1) and E is the matrix composed of
the rows of the n x n identity matrix corresponding to indices in B* U BY U B®. This last matrix
ETZ(z,2,t)E is diagonal, the i-th element on the diagonal being &;(z, Z,t) if i € B~ U BY U B® and 0
otherwise.

Similarly,
H,s = J(:L’)Té(l" ga S)a

where é(x, y, 8) differs from ©(z,y, s) in the sign of the multipliers corresponding to upper bounds;

~E
y—’LE7 1€ &
ci(w) — i tsi
I ieCt
. () _ AL o
91(1',23, 3) = Cl(m) _3%} o cv
_ 1€
vy = i) + 80
i Ik o
-) 1 9
ci(x) =y +si 7 —ci(r)+ s

and
H, = ETE(x,3,t),

H,,=US'+ O(z,7,s),
Hst = 0;

Htt = VT?l + E($a27t)7

8 Dominique Orban

where = is to 5 as © is to ©:

2L

— i€ B
1'171’14*151
2 _2;} BY
(2, 2,t) = ¢ —— i€
61(7 7) x;}_xz_i_tlv
SRL ZRU
d g i€ B

-)
T —xy+t xY —x+

To summarize, the primal-dual Hessian matrix is given by (dropping most arguments)

VeeLl(z,\) +JT0J + ETZEE JT6 ETE

H™ (w; p,v) = 6J Us—'4+6o 0 : (2.20)
ZE 0 VI-'+ =

Note that the Hessian of the Lagrangian appearing in the (1,1) block is evaluated at « and the shifted
multipliers A(y,v) (2.19).

3. The inner iteration
3.1. Trust-region subproblems

For fixed positive values of p and v, the inner iteration consists in solving

minidmize Vast®®(z, 8,65 p,v)Td + %dTHPD(w;u, v)d

. (3.21)
subject to ||d|| < A,

using a traditional trust-region method. To this end, we must be able to compute matrix-vector prod-
ucts H"P (w; u, v)d for some vector d, which requires us to be able to compute matrix-vector products
with V.. L(z,\), J(x) and J(x)T, since all other matrices appearing in the blocks of (2.20) are diagonal.

3.2. Preconditioning the trust-region iteration

Using GLTR, we also need to solve, at each iteration, symmetric positive semi-definite preconditioning
systems of the form

P+JTeJ+= JTe = d, Y
6J US—'+6 0 do | = | r. |,
E 0 VTil + E dt Tt

for appropriate right-hand sides r given by GLTR in the reverse communication phase, where P =
Vo L(2, A(y,v)). This may be done using, for instance, inertia-revealing factorizations such as MA27 or
MA57 for the Harwell Subroutine Library |]. However, the matrix J(x)?©.J(z) might be dense,
hampering a direct factorization.

A Python implementation of SUPERB

3.3. Updating the dual variables

A step towards new candidate primal-dual multipliers may be obtained by considering the Newton

step on the primal-dual system

Vaest®®(x, 8, u,v) =0,

(ci(z) =7 +s)y; —pi =0, €&
(ci(x) = +s)yy —pi =0, i€Ch
(i —ci(@) + sy —pi=0, i€C”

(ci(z) =i +si)y;" —pi =0, i€C”

(i —eci@) +si)y;” —pi =0, 1€C”

Su—pu=0,
Tv—pu=0,
(x; —xp +t)zp —pu; =0, ie€B"
(xf —@i+t)z) —pi =0, €8

(LIL‘Z' — l‘; +ti)ZRL —pu; =0, 7€ B*

i

(] —a; +)z —p; =0. e B”

An approximate step (d;,ds,d;) is obtained from the trust-region subproblem (3.21). The Newton

equations from (3.22g)—(3.22h) then give

dy = pS™' —u—8S7Ud,,
dy =pT ' —v—-T"1Vd,.

Similary, the steps in the multipliers y are obtained from (3.22b)—(3.22f)

WE = e Y (A + Ve d)

dyt = m —yi —0; ([ds]i + VCi(I)Tda:)

dy; = m —y; —0; ([ds]i - Vci(x)Tdm)
W= s T e (e Ve
e M e U (g Ge(@)d,).

Vi —cil@) + i v —cil@) + s

and the steps in the multipliers z are obtained from (3.22i)—(3.221)

L_ M L_ ¢ - i
dzy = T — Tyt wok ([dt]z " [dz]z)
dzy = ﬁ =z =& ([de]i — [dals)
i i
= e T e, (@)
. RU
dzRY — K ZRU A ([dt}i - [dr]Z) :

i U i U
l‘i—l‘i-l-ti xi—xi—i—ti

(3.23a)
(3.23b)

(3.24a)
(3.24Db)

(3.24¢)
(3.24d)

(3.24¢)

(3.25a)

(3.25b)
(3.25¢)

(3.25d)

10 Dominique Orban: A Python implementation of SUPERB

Multipliers are then updated according to

yt=y+ady (3.26a)

ut =u+ adu (3.26Db)

vt =0+ adv (3.26¢)

2t =2+ adz, (3.26d)
where « € (0, 1] is chosen to ensure nonnegativity of the new candidates, i.e.,
. .Y L TUg . T . TR

_ 3.27

= T {dgtglo dy;’ dralgo du;’ d%glo dv;’ dr21<n0 dz; } ’ ()

where 7 ~ 1. We denote (yiy, 21, Uiy, Vi) the resulting primal-dual multipliers.

To safeguard the values of the primal-dual multipliers at a new trial point (z*,s™,¢T) while at the
same time allowing superlinear asymptotic convergence, the candidate multipliers (y;,,, 2, uiy,, vip)
are projected into the interval

yL yU
Z1 Zy
T | T | |
Ty, Ty
where
gy = k" minle, yX,, (yX)*], X =E, L, U, RL, RU
1

7S = max[kVe, yX,, kpu " te, kY (yX)T], X = E, L, U, RL, RU

4. A Python class for SUPERB

4.1. Instantiation

4.2. Methods

References

FGKO02. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical
Programming. Duxbury Press / Brooks/Cole Publishing Company, second edition, 2002.

GOTO03a. N. I. M. Gould, D. Orban, and Ph. L. Toint. An interior-point ¢;-penalty method for nonlinear
optimization. Technical Report RAL-TR~2003-022, Rutherford Appleton Laboratory, Chilton, Ox-
fordshire, England, 2003.

GOTO03b. N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr and SifDec, a Constrained and Unconstrained
Testing Environment, revisited. Transactions of the ACM on Mathematical Software, 29(4):373-394,
December 2003.

HSL00. Harwell Subroutine Library. A collection of Fortran codes for large-scale scientific computation.
AERE Harwell Laboratory, http://www.numerical.rl.ac.uk/hsl, 2000.

	Problem structure
	Interior-point framework
	The inner iteration
	A Python class for Superb

