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Exercises

(0.1) Fractal Dimensions. (Math, Complexity) (With
Myers. [72])

There are many strange sets that emerge in sci-
ence. In statistical mechanics, such sets often arise
at continuous phase transitions, where self–similar
spatial structures arise (chapter 13. In chaotic dy-
namical systems, the attractor (the set of points
occupied at long times after the transients have dis-
appeared) is often a fractal (called a strange attrac-
tor. These sets often are tenuous and jagged, with
holes on all length scales: see figures 13.2, 13.3, and
13.14.

We often try to characterize these strange sets by
a dimension. The dimensions of two extremely dif-
ferent sets can be the same: the path exhibited by
a random walk (embedded in three or more dimen-
sions) is arguably a two–dimensional set (note 6 on
page 15), but does not locally look like a surface!
However, if two sets have different spatial dimen-
sions (measured in the same way) they surely are
qualitatively different.

There is more than one way to define a dimen-
sion. Roughly speaking, strange sets are often
spatially inhomogeneous, and what dimension you
measure depends upon how you weight different re-
gions of the set. In this exercise, we will calcu-
late the information dimension (closely connected
to the non-equilibrium entropy!), and the capacity
dimension (originally called the Hausdorff dimen-
sion, also sometimes called the fractal dimension).

To generate our strange set – along with some more
ordinary sets – we will use the logistic map1

f(x) = 4µx(1 − x) (1)

that we also study in exercises 5.11, 4.3, and 13.8.
The attractor for the logistic map is a periodic orbit
(dimension zero) at µ = 0.8, and a chaotic, cusped
density filling two intervals (dimension one)2 at
µ = 0.9. At the onset of chaos at µ = µ∞ ≈
0.892486418 (exercise 13.8) the dimension becomes

intermediate between zero and one: the attractor
is strange, self–similar set.

Both the information dimension and the capacity
dimension are defined in terms of the occupation
Pn of cells of size ε in the limit as ε → 0.

(a) Write a routine which, given µ and a set of bin
sizes ε,

• Iterates f hundreds or thousands of times (to
get on the attractor)

• Iterates f many more times, collecting points
on the attractor. (For µ ≤ µ∞, you could just
integrate 2n times for n fairly large.)

• For each ε, use a histogram to calculate the
probability Pn that the points fall in the nth

bin
• Return the set of vectors Pn[ε].

You may wish to test your routine by using it for
µ = 1 (where the distribution should look like
ρ(x) = 1

π

√
x(1−x)

, exercise 4.3(b)) and µ = 0.8

(where the distribution should look like two δ-
functions, each with half of the points).

The Capacity Dimension. The definition of the
capacity dimension is motivated by the idea that it
takes at least

Ncover = V/εD (2)

bins of size εD to cover a D-dimensional set of
volume V .3 By taking logs of both sides we find
log Ncover ≈ log V + D log ε. The capacity dimen-
sion is defined as the limit

Dcapacity = lim
ε→0

log Ncover

log ε
(3)

but the convergence is slow (the error goes roughly
as log V/ log ε). Faster convergence is given by cal-
culating the slope of log N versus log ε:

Dcapacity = lim
ε→0

d log Ncover

d log ε
(4)

= lim
ε→0

log Ni+1 − log Ni

log εi+1 − log εi

.

1We also study this map in exercises 4.3, 5.11, and 13.8.
2See exercise 4.3. The chaotic region for the logistic map isn’t a strange attrac-

tor because it’s confined to one dimension: period doubling cascades for dynamical
systems in higher spatial dimensions likely will have fractal, strange attractors in the
chaotic region.

3Imagine covering the surface of a sphere in 3D with tiny cubes: the number of
cubes will go as the surface area [2D-volume] divided by ε

2.
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(b) Use your routine from part (a), write a routine
to calculate N [ε] by counting non-empty bins. Plot
Dcapacity from the fast convergence equation 5.55
versus the midpoint 1/2(log εi+1 + log εi). Does it
appear to extrapolate to D = 1 for µ = 0.9?4 Does
it appear to extrapolate to D = 0 for µ = 0.8? Plot
these two curves together with the curve for µ∞.
Does the last one appear to converge to D1 ≈ 0.538,
the capacity dimension for the Feigenbaum attrac-
tor gleaned from the literature? How small a de-
viation from µ∞ does it take to see the numerical
crossover to integer dimensions?

Entropy and the Information Dimension.

The entropy of a statistical mechanical system is
given by equation 5.23, S = −kBTr(ρ log ρ). In
the chaotic regime this works fine. Our probabili-
ties Pn ≈ ρ(xn)ε, so converting the entropy integral
into a sum

∫

f(x) dx ≈
∑

n
f(xn)ε gives

S = −kB

∫

ρ(x) log(ρ(x)) dx (5)

≈ −
∑

n

Pn log(Pn/ε) = −
∑

n

Pn log Pn + log ε

(setting the conversion factor kB = 1 for conve-
nience).

You might imagine that the entropy for a fixed
point would be zero, and the entropy for a period-
n cycle would be kB log n. But this is incorrect:
when there is a fixed point or a periodic limit cy-
cle, the attractor is on a set of dimension zero (a
bunch of points) rather than dimension one. The
entropy must go to minus infinity – since we have
precise information about where the trajectory sits
at long times. To estimate the “zero–dimensional”
entropy kB log n on the computer, we would take
the same bins as above but sum over bins Pn in-

stead of integrating over x:

Sd=0 = −
∑

n

Pn log(Pn) = Sd=1 − log(ε). (6)

More generally, the ‘natural’ measure of the en-
tropy for a set with D dimensions might be defined
as

SD = −
∑

n

Pn log(Pn) + D log(ε). (7)

Instead of using this formula to define the entropy,
mathematicians use it to define the information di-
mension

Dinf = lim
ε→0

(

∑

Pn log Pn

)

/ log(ε). (8)

The information dimension agrees with the ordi-
nary dimension for sets that locally look like R

D.
It’s different from the capacity dimension because
the information dimension weights each part (bin)
of the attractor by the time spent in it. Again, we
can speed up the convergence by noting that equa-
tion 5.58 says that

∑

n
Pn log Pn is a linear function

of log ε with slope D and intercept SD. Measuring
the slope directly, we find

Dinf = lim
ε→0

d
∑

n
Pn(ε) log Pn(ε)

d log ε
. (9)

(c) As in part (b), write a routine that plots Dinf

from equation 5.60 as a function of the midpoint
log ε, as we increase the number of bins. Plot the
curves for µ = 0.9, µ = 0.8, and µ∞. Does the
information dimension agree with the ordinary one
for the first two? Does the last one appear to con-
verge to D1 ≈ 0.517098, the information dimension
for the Feigenbaum attractor from the literature?

Most ‘real world’ fractals have a whole spectrum
of different characteristic spatial dimensions: they
are multifractal.)

4In the chaotic regions, keep the number of bins small compared to the number of
iterates in your sample, or you start finding empty bins between points and eventually
get a dimension of zero.
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