
Practical Scienti�c Computing

in Python

Editors:

John D. Hunter

Fernando Pérez

With contributions from:

Perry Green�eld

Andrew Straw

Stéfan van der Walt

Je� Whitaker





Contents

Introduction 5

Part 1. General Discussion 7

Chapter 1. Python for Scienti�c Computing 9
1. Who is using Python? 9
2. Advantages of Python 9
3. Mixed Language Programming 10
4. Getting started 11
5. An Introduction to Arrays 13
6. Exercises 18

Chapter 2. A whirlwind tour of python and the standard library 19
1. Hello Python 19
2. Python is a calculator 20
3. Accessing the standard library 21
4. Strings 23
7. The basic python data structures 26
9. The Zen of Python 28
11. Functions and classes 28
13. Files and �le like objects 30

Chapter 3. A tour of IPython 33
1. Main IPython features 33
2. E�ective interactive work 34
3. Access to the underlying Operating System 39
4. Access to an editor 42
5. Customizing IPython 42
6. Debugging and pro�ling with IPython 43
7. Embedding IPython into your programs 44
8. Integration with Matplotlib 48

Chapter 4. Introduction to plotting with matplotlib / pylab 49
1. A bird's eye view 49
2. A short pylab tutorial 51
3. Set and get introspection 53
4. Customizing the default behavior with the rc �le 56
5. A quick tour of plot types 57
6. Images 57
7. Customizing text and mathematical expressions 58
8. Event handling: Tracking the mouse and keyboard 58

Chapter 5. Interfacing with external libraries 61
1. weave 61
2. ctypes 70
3. swig 70

3



4 CONTENTS

4. f2py 70
5. Others 75
6. Distributing standalone applications 75

Part 2. Workbook

A Problem Collection 77

Chapter 6. Introduction to the workbook 79

Chapter 7. Simple non-numerical Problems 81
1. Sorting quickly with QuickSort 81
2. Dictionaries for counting words 83

Chapter 8. Working with �les, the internet, and numpy arrays 85
1. Loading and saving ASCII data 85
2. Working with CSV �les 86
3. Loading and saving binary data 89

Chapter 9. Elementary numerics 93
1. Wallis' slow road to π 93
2. Trapezoidal rule 95
3. Newton's method 98
4. Bessel functions 99

Chapter 10. Linear algebra 103
1. Glass Moiré Patterns 104

Chapter 11. Signal processing 107
1. Convolution 107
2. FFT Image Denoising 110

Chapter 12. Dynamical systems 115
1. Lotka-Volterra Equations 115

Chapter 13. Statistics 119
1. Descriptive statistics 119
2. Statistical distributions 123

Chapter 14. Plotting on maps 127
1. Setting up the map. 127
2. Plotting geophysical data on the map. 131

Chapter 15. Performance python: interfacing with other languages 133
1. Writing C extensions pyrex 133
2. Working with numpy arrays 135

Bibliography 137



Introduction

This book is currently a work in progress, and ultimately we hope it will evolve into an open,
community-driven document developed in tandem with the underlying tools, by the same scientists
who have written them.

The book is aimed at practicing scientists, students and in general anyone who is looking for
a modern, high-level and open platform for scienti�c computing. The Python language is in the
opinion of the authors the leading candidate today for this role.

The book is broadly divided in two parts: the �rst is a general discussion of the Python tools
used for scienti�c work, with an explanatory approach. It is not a complete Python reference book,
as there are many excellent resources for the base language, both in print and online. But beyond
the basic language and the NumPy book, it should serve as reasonably self-contained description
of the core libraries for common numerical tasks.

The second part is meant as a practical workbook, and the build system used to produce the
document will in the future allow users to create custom versions with only the examples that
they deem practical for any given audience. This workbook approach grew out of a sequence of
workshops taught by the editors at a number of research institutions and universities, and we've
found it to be extremely convenient.

The workbook is structured as a collection of problems, meant to be solved by the reader as
programming exercises. The entire book can be compiled in one of two forms: either with the
examples in `skeleton' form, where they contain incomplete code meant to be �lled in, or with the
full solution code. This should enable instructors to hand out the skeleton workbook at courses
and workshops, with the solutions being available as well for after the teaching is over.

We hope that the community will continue to contribute many more examples, so that ulti-
mately the projects allows for the easy construction of custom workbooks tailored to the needs of
di�erent audiences.

John D. Hunter and Fernando Pérez, editors.
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General Discussion





CHAPTER 1

Python for Scienti�c Computing

With material contributed by Perry Green�eld, Robert Jedrzejewski, Vicki Laidler and John
Hunter

1. Who is using Python?

The use of Python in scienti�c computing is as wide as the �eld itself. A sampling of cur-
rent work is provided here to indicate the breadth of disciplines represented and the scale of the
problems addressed. The NASA Jet Propulsion Laboratory (JPL) uses Python as an interface
language to FORTRAN and C++ libraries which form a suite of tools for plotting and visualiza-
tion of spacecraft trajectory parameters in mission design and navigation. The Space Telescope
Science Institute (STScI) uses Python in many phases of their pipeline: scheduling Hubble data
acquisitions, managing volumes of data, and analyzing astronomical images [7]. The National
Oceanic Atmospheric Administration (NOAA) uses Python for a wide variety of scienti�c comput-
ing tasks including simple scripts to parse and translate data �les, prototyping of computational
algorithms, writing user interfaces, web front ends, and the development of models [26, 6, 28].
At the Fundamental Symmetries Lab at Princeton University, Python is used to e�ciently ana-
lyze large data sets from an experiment that searches for CPT and Lorentz Violation using an
atomic magnetometer [22, 21]. The Pediatric Clinical Electrophysiology unit at The University
of Chicago, which collects approximately 100GB of data per week, uses Python to explore novel
approaches to the localization and detection of epileptic seizures [19]. The Enthought Corporation
is using Python to build customized applications for oil exploration for the petroleum industry. At
the world's largest radio telescopes, e.g., Arecibo and the Green Bank Telescope, Python is used for
data processing, modelling, and scripting high-performance computing jobs in order to search for
and monitor binary and millisecond pulsars in terabyte datasets [32, 31]. At the Computational
Genomics Laboratory at the Australian National University, researchers are using Python to build
a toolkit which enables the speci�cation of novel statistical models of sequence evolution on parallel
hardware [20, 12]. Michel Sanner's group at the Scripps Research Institute uses Python exten-
sively to build a suite of applications for molecular visualization and exploration of drug/molecule
interactions using virtual reality and 3D printing technology [35, 36]. Engineers at Google use
Python in automation, control and tuning of their computational grid, and use SWIG generated
Python of their in-house C++ libraries in virtually all facets of their work [9, 38]. Many other use
cases � ranging from animation at Industrial Light and Magic, to space shuttle mission control, to
grid monitoring and control at Rackspace, to drug discovery, meteorology and air tra�c control �
are detailed in O'Reilly's two volumes of Python Success Stories [1, 2].

2. Advantages of Python

The canonical, "Python is a great �rst language", elicited, "Python is a great last

language!" � Noah Spurrier

This quotation summarizes an important reason scientists migrate to Python as a programming
language. As a �great �rst language� Python has a simple, expressive syntax that is accessible to
the newcomer. �Python as executable pseudocode� re�ects the fact that Python syntax mirrors
the obvious and intuitive pseudo-code syntax used in many journals [39]. As a great �rst lan-
guage, it does not impose a single programming paradigm on scientists, as Java does with object
oriented programming, but rather allows one to code at many levels of sophistication, including

9
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BASIC/FORTRAN/Matlab style procedural programming familiar to many scientists. Here is the
canonical �rst program �hello world� in Python:

# Python
print ’hello world’

world� in Java

// java
class myfirstjavaprog
{

public static void main(String args[])
{

System.out.println("Hello World!");
}

}

In addition to being accessible to new programmers and scientists, Python is powerful enough to manage
the complexity of large applications, supporting functional programming, object orienting programming,
generic programming and metaprogramming. That Python supports these paradigms suggests why it
is also a �great last language�: as one increases their programming sophistication, the language scales
naturally. By contrast, commercial languages like Matlab and IDL, which also support a simple syntax
for simple programs do not scale well to complex programming tasks.

The built-in Python data-types and standard library provide a powerful platform in every distribution
[34, ?]. The standard data types encompass regular and arbitrary length integers, complex numbers,
�oating point numbers, strings, lists, associative arrays, sets and more. In the standard library included
with every Python distribution are modules for regular expressions, data encodings, multimedia formats,
math, networking protocols, binary arrays and �les, and much more. Thus one can open a �le on a remote
web server and work with it as easily as with a local �le

# this 3 line script downloads and prints the yahoo web site
from urllib import urlopen
for line in urlopen(’http://yahoo.com’).readlines():

print line

Complementing these built-in features, Python is also readily extensible, giving it a wealth of libraries
for scienti�c computing that have been in development for many years [13, 14]. NumPy supports large
array manipulations, math, optimized linear algebra, e�cient Fourier transforms and random numbers.
scipy is a collection of Python wrappers of high performance FORTRAN code (eg LAPACK, ODEPACK)
for numerical analysis [3]. IPython is a command shell ala Mathematica, Matlab and IDL for interactive
programming, data exploration and visualization with support for command history, completion, debugging
and more. Matplotlib is a 2D graphics package for making publication quality graphics with a Matlab
compatible syntax that is also embeddable in applications. f2py, SWIG, weave, and pyrex are tools
for rapidly building Python interfaces to high performance compiled code, MayaVi is a user friendly
graphical user interface for 3D visualizations built on top of the state-of-the-art Visualization Toolkit [37].
pympi, pypar, pyro, scipy.cow, and pyxg are tools for cluster building and doing parallel, remote
and distributed computations. This is a sampling of general purpose libraries for scienti�c computing
in Python, and does not begin to address the many high quality, domain speci�c libraries that are also
available.

All of the infrastructure described above is open source software that is freely distributable for academic
and commercial use. In both the educational and scienti�c arenas, this is a critical point. For education,
this platform provides students with tools that they can take with them outside the classroom to their
homes and jobs and careers beyond. By contrast, the use commercial tools such as Matlab and IDL limits
access to major institutions. For scientists, the use of open source tools is consistent with the scienti�c
principle that all of the steps in an analysis or simulation should be open for review, and with the principle
of reproducible research [11].

3. Mixed Language Programming

The programming languages of each generation evolve in part to �x the problems of those that came
before [10]. FORTRAN, the original high level language of scienti�c computing [33], was designed to
allow scientists to express code at a level closer to the language of the problem domain. ALGOL and its
successor Pascal, widely used in education in the 1970s, were designed to alleviate some of the perceived
problems with FORTRAN and to create a language with a simpler and more expressive syntax [5, 25].
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Figure 1. Loading ASCII data and displaying with plot

Object oriented programming languages evolved to allow a closer correspondence between the code and
the physical system it models [16], and C++ provided a relatively high performance object orientated
implementation compatible with the popular C programming language [41, 40]. But implementing object
orientation e�ciently requires programmers stay close to the machine, managing memory and pointers,
and this created a lot of complexity in programs while limiting portability. Interpreted languages such as
Tcl, Perl, Python, and Java evolved to manage some of the low-level and platform speci�c details, making
programs easier to write and maintain, but with a performance penalty [27, 4]. For many scientists,
however, pure object oriented systems like Java are unfamiliar, and languages like Matlab and Python
provide the safety, portability and ease of use of an interpreted language without imposing an object
oriented approach to coding [15, 17].

The result of these several decades is that there are many platforms for scienti�c computing in use
today. The number of man hours invested in numerical methods in FORTRAN, visualization libraries
in C++, bioinformatics toolkits in Perl, object frameworks in Java, domain speci�c toolkits in Matlab,
etc. . . requires an approach that integrates this work. Python is the language that provides maximal
integration with other languages, with tools for transparently and semi-automatically interfacing with
FORTRAN, C, C++, Java, .NET, Matlab, and Mathematica code [18, 9]. In our view, the ability to
work seamlessly with code from many languages is the present and the future of scienti�c computing, and
Python e�ectively integrates these languages into a single environment.

4. Getting started

We'll get started with python by introducing arrays and plotting by working with a simple ASCII
text �le mydata.dat of two columns; the �rst column contains the times that some measurement was
acquired, and the second column are the sampled voltages at that time. The �le looks like

0.0000 0.4911
0.0500 0.5012
0.1000 0.7236
0.1500 1.1756
... and so on

While it would be easy enough to process this �le by writing a python function to do it, there is no need
to, since the matplotlib pylab module has a matlab-compatible load function for loading ASCII array
data (Figure 1). To complete these exercises, you should have ipython and matplotlib installed, and start
ipython in pylab mode with

> ipython -pylab
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Figure 2. Loading binary image data and displaying with imshow

Listing 1.1. Loading an ASCII text �le and plotting the columns

In [1]: X = load(’data/ascii_data.dat’) # X is an array

In [2]: t = X[:,0] # extract the first column

In [3]: v = X[:,1] # extract the second column

In [4]: len(t)

Out[4]: 20

In [5]: len(v)

Out[5]: 20

In [6]: plot(t,v) # plot the data

Out[6]: [<matplotlib.lines.Line2D instance at 0xb65921ac>]

It is also easy to load data from binary �les. In the example below, we have some image data in raw
binary string format. The image is 256x256 pixels, and each pixel is a 2 byte integer. We read this into a
string using python's file function � the 'rb' �ag says to open the �le in read/binary mode. We can
then use the numpy fromstring method to convert this to an array, passing the type of the data (int16)
as an argument. We reshape the array by changing the array shape attribute to 256 by 256, and pass this
o� to the matplotlib pylab command imshow for plotting. matplotlib has a number of colormaps, and the
default one is jet; the data are automatically normalized and colormaps producing the image in Figure 2

Listing 1.2. Loading an binary image data and plotting it in matplotlib

# open a file as "read binary" and read it into a string

In [1]: s = file(’data/images/r1025.ima’, ’rb’).read()

# the string is length 256*256*2 = 131072

In [2]: len(s)

Out[2]: 131072

# the data are 2 byte / 16 bit integers

# fromstring converts them to array

In [3]: im = nx.fromstring(s, nx.Int16)

# reshape the array to 256x256

In [4]: im.shape = 256,256

# and plot it with matplotlib’s imshow function

In [5]: imshow(im)

Out[5]: <matplotlib.image.AxesImage instance at 0xb659230c>
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5. An Introduction to Arrays

5.1. Creating arrays. There are a few di�erent ways to create arrays besides modules that obtain
arrays from data �les such

>>> x = zeros((20,30))

creates a 20x30 array of zeros (default integer type; details on how to specify other types will follow).
Note that the dimensions (�shape� in numpy parlance) are speci�ed by giving the dimensions as a comma-
separated list within parentheses. The parentheses aren't necessary for a single dimension. As an aside,
the parentheses used this way are being used to specify a Python tuple; more will be said about those in
a later tutorial. For now you only need to imitate this usage.

Likewise one can create an array of 1's using the ones() function.
The arange() function can be used to create arrays with sequential values. E.g.,

>>> arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Note that that the array defaults to starting with a 0 value and does not include the value speci�ed (though
the array does have a length that corresponds to the argument)

Other variants:

>>> arange(10.)
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9])
>>> arange(3,10)
array([3, 4, 5, 6, 7, 8, 9])
>>> arange(1., 10., 1.1) # note trickiness
array([1. , 2.1, 3.2, 4.3, 5.4, 6.5, 7.6, 8.7, 9.8])

Finally, one can create arrays from literal arguments:

>>> print array([3,1,7])
[3 1 7]
>>> print array([[2,3],[4,4]])
[[2 3]
[4 4]]

The brackets, like the parentheses in the zeros example above have a special meaning in Python which will
be covered later (Python lists). For now, just mimic the syntax used here.

5.2. Array numeric types. numpy supports all standard numeric types. The default integer
matches what Python uses for integers, usually 32 bit integers or what numpy calls int32. The same
is true for �oats, i.e., generally 64-bit doubles called float64 in numpy. The default complex type is
complex64. Many of the functions accept a type argument. For example

>>> zeros(3, int8) # Signed byte
>>> zeros(3, dtype=uint8) # Unsigned byte
>>> array([2,3], dtype=float32)
>>> arange(4, dtype=complex64)

The possible types are int8, uint8, int16, uint16, int32, uint32, int64, uint64,
float32, float64, complex32, complex64. To �nd out the type of an array use the .dtype()
method. E.g.,

>>> arr.dtype() dtype(’float32’)

To convert an array to a di�erent type use the astype() method, e.g,

>>> a = arr.astype(float64)

5.3. Printing arrays. Interactively, there are two common ways to see the value of an array. Like
many Python objects, just typing the name of the variable itself will print its contents (this only works in
interactive mode). You can also explicitly print it. The following illustrates both approaches:

>>> x = arange(10)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8 9])
>>> print x
[0 1 2 3 4 5 6 7 8 9]

By default the array module limits the amount of an array that is printed out (to spare you the e�ects of
printing out millions of values). For example:
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>>> x = arange(1000000)
print x
[ 0 1 2 ..., 999997 999998 999999]

5.4. Indexing 1-D arrays. As with IDL and Matlab, there are many options for indexing arrays.

>>> x = arange(10)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Simple indexing:

>>> x[2] # 3rd element
2

Indexing is 0-based. The �rst value in the array is x[0]
Indexing from end:

>>> x[-2] # -1 represents the last element, -2 next to last...
8

Slices
To select a subset of an array:

>>> x[2:5]
array([2, 3, 4])

Note that the upper limit of the slice is not included as part of the subset! This is viewed as unexpected
by newcomers and a defect. Most �nd this behavior very useful after getting used to it (the reasons won't
be given here). Also important to understand is that slices are views into the original array in the same
sense that references view the same array. The following demonstrates:

>>> y = x[2:5]
>>> y[0] = 99
>>> y
array([99, 3, 4])
>>> x
array([0, 1, 99, 3, 4, 5, 6, 7, 8, 9])

Changes to a slice will show up in the original. If a copy is needed use x[2:5].copy()
Short hand notation

>>> x[:5] # presumes start from beginning
array([ 0, 1, 99, 3, 4])
>>> x[2:] # presumes goes until end
array([99, 3, 4, 5, 6, 7, 8, 9])
>>> x[:] # selects whole dimension
array([0, 1, 99, 3, 4, 5, 6, 7, 8, 9])

Strides:

>>> x[2:8:3] # Stride every third element
array([99, 5])

Index arrays:

>>> x[[4,2,4,1]]
array([4, 99, 4, 1])

Using results of logical indexing

>>> x > 5
array([0,0,1,0,0,0,1,1,1,1], type=Bool)
>>> x[x>5]
array([99, 6, 7, 8, 9])

5.5. Indexing multidimensional arrays. Before describing this in detail it is very important to
note an item regarding multidimensional indexing that will certainly cause you grief until you become ac-
customed to it: ARRAY INDICES USE THE OPPOSITE CONVENTION AS FORTRAN REGARDING
ORDER OF INDICES FOR MULTIDIMENSIONAL ARRAYS.

>>> im = arange(24)
>>> im.shape = 4,6
>>> im
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array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])

To emphasize the point made in the previous paragraph, the index that represents the most rapidly varying
dimension in memory is the 2nd index, not the �rst.

Partial indexing:

>>> im[1]
array([6, 7, 8, 9, 10, 11])

If only some of the indices for a multidimensional array are speci�ed, then the result is an array with the
shape of the �leftover� dimensions, in this case, 1-dimensional. The 2nd row is selected, and since there is
no index for the column, the whole row is selected.

All of the indexing tools available for 1-D arrays apply to n-dimensional arrays as well (though
combining index arrays with slices is not currently permitted). To understand all the indexing options in
their full detail, read sections 4.6, 4.7 and 6 of the numpy manual.

5.6. Compatibility of dimensions. In operations involving combining (e.g., adding) arrays or
assigning them there are rules regarding the compatibility of the dimensions involved. For example the
following is permitted:

>>> x[:5] = 0

since a single value is considered �broadcastable� over a 5 element array. But this is not permitted:

>>> x[:5] = array([0,1,2,3])

since a 4 element array does not match a 5 element array.
The following explanation can probably be skipped by most on the �rst reading; it is only important to

know that rules for combining arrays of di�erent shapes are quite general. It is hard to precisely specify
the rules without getting a bit confusing, but it doesn't take long to get a good intuitive feeling for what
is and isn't permitted. Here's an attempt anyway: The shapes of the two involved arrays when aligned on
their trailing part must be equal in value or one must have the value one for that dimension. The following
pairs of shapes are compatible:

(5,4):(4,) -> (5,4)
(5,1):(4,) -> (5,4)
(15,3,5):(15,1,5) -> (15,3,5)
(15,3,5):(3,5) -> (15,3,5)
(15,1,5):(3,1) -> (15,3,5)

so that one can add arrays of these shapes or assign one to the other (in which case the one being assigned
must be the smaller shape of the two). For the dimensions that have a 1 value that are matched against
a larger number, the values in that dimension are simply repeated. For dimensions that are missing, the
sub-array is simply repeated for those. The following shapes are not compatible:

(3,4):(4,3)
(1,3):(4,)

Examples:

>>> x = zeros((5,4))
>>> x[:,:] = [2,3,2,3]
>>> x
array([[2, 3, 2, 3],

[2, 3, 2, 3],
[2, 3, 2, 3],
[2, 3, 2, 3],
[2, 3, 2, 3]])

>>> a = arange(3)
>>> b = a[:] # different array, same data (huh?)
>>> b.shape = (3,1)
>>> b
array([[0],

[1],
[2]])

>>> a*b # outer product
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array([[0, 0, 0],
[0, 1, 2],
[0, 2, 4]])

5.7. ufuncs. A ufunc (short for Universal Function) applies the same operation or function to all the
elements of an array independently. When two arrays are added together, the add ufunc is used to perform
the array addition. There are ufuncs for all the common operations and mathematical functions. More
specialized ufuncs can be obtained from add-on libraries. All the operators have corresponding ufuncs that
can be used by name (e.g., add for +). These are all listed in table below. Ufuncs also have a few very
handy methods for binary operators and functions whose use are demonstrated here.

>>> x = arange(9)
>>> x.shape = (3,3)
>>> x
array([0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> add.reduce(x) # sums along the first index
array([9, 12, 15])
>>> add.reduce(x, axis=1) # sums along the 2nd index
array([3, 12, 21])
>>> add.accumulate(x) # cumulative sum along the first index
array([[0, 1, 2],

[3, 5, 7],
[9, 12, 15]])

>>> multiply.outer(arange(3),arange(3))
array([[0, 0, 0],

[0, 1, 2],
[0, 2, 4]])

Standard Ufuncs (with corresponding symbolic operators, when they exist, shown in parentheses)
add (+) log greater (>)
subtract (-) log10 greater_equal (>=)
multiply (*) cos less (<)
divide (/) arcos less_equal (<=)
remainder (%) sin logical_and
absolute, abs arcsin logical_or
�oor tan logical_xor
ceil arctan bitwise_and (&)
fmod cosh bitwise_or (|)
conjugate sinh bitwise_xor (^)
minimum tanh bitwise_not (~)
maximum sqrt rshift (>>)
power (**) equal (==) lshift (<<)
exp not_equal (!=)

Note that there are no corresponding Python operators for logical_and and logical_or. The

Python and and or operators are NOT equivalent to these respective ufuncs!

5.8. Array functions. There are many array utility functions. The following lists the more useful
ones with a one line description. See the numpy manual for details on how they are used. Arguments
shown with argument=value indicate what the default value is if called without a value for that argument.

all(a):: are all elements of array nonzero
allclose(a1, a2, rtol=1.e-5, atol=1.e-8 ):: true if all elements within speci�ed amount (between

two arrays)
alltrue(a, axis=0 ):: are all elements nonzero along speci�ed axis true.

any(a):: are any elements of an array nonzero
argmax(a, axis=-1 ), argmin(a,axis=-1 ):: return array with min/max locations for selected axis
argsort(a, axis=-1 ):: returns indices of results of sort on an array
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choose(selector, population, clipmode=CLIP):: �lls speci�ed array by selecting corresponding val-
ues from a set of arrays using integer selection array (population is a tuple of arrays; see tutorial
2)

clip(a, amin, amax ):: clip values of array a at values amin, amax
dot(a1, a2 ):: dot product of arrays a1 & a2
compress(condition, a ,axis=0 ):: selects elements from array a based on boolean arraycondition
concatenate(arrays, axis=0 ):: concatenate arrays contained in sequence of arrays arrays
cumproduct(a, axis=0 ):: net cumulative product along speci�ed axis
cumsum(a, axis=0 ):: accumulate array along speci�ed axis
diagonal(a, o�set=0, axis1=0, axis2=1 ):: returns diagonal of 2-d matrix with optional o�sets.

fromfile(�le, type, shape=None):: Use binary data in �le to form new array of speci�ed type.
fromstring(datastring, type, shape=None):: Use binary data in datastring to form new array of

speci�ed shape and type
identity(n, type=None):: returns identity matrix of size nxn.
indices(shape, type=None):: generate array with values corresponding to position of selected

index of the array
innerproduct(a1, a2 ):: guess
matrixmultiply(a1, a2 ):: guess
outerproduct(a1, a2 ):: guess
product(a, axis=0 ):: net product of elements along speci�ed axis
ravel(a):: creates a 1-d version of an array
repeat(a, repeats, axis=0 ):: generates new array with repeated copies of input array a
resize(a, shape):: replicate or truncate array to new shape
searchsorted(bin, a):: return indices of mapping values of an array a into a monotonic array

bin
sometrue(a, axis=0 ):: are any elements along speci�ed axis true
sort(a, axis=-1 ):: sort array elements along selected axis
sum(a, axis=0 ):: sum array along speci�ed axis
swapaxes(a, axis1, axis2 ):: switch indices for axis of array (doesn't actually move data, just maps

indices di�erently)
trace(a, o�set=0, axis1=0, axis2=1 ):: compute trace of matrix a with optional o�set.
transpose(a, axes=None):: transpose indices of array (doesn't actually move data, just maps

indices di�erently)

where(a):: �nd �true� locations in array a

5.9. Array methods. Arrays have several methods. They are used as methods are with any object.
For example (using the array from the previous example):

>>> # sum all array elements
>>> x.sum() # the L indicates a Python Long integer
36L

The following lists all the array methods that exist for an array object a (a number are equivalent to array
functions; these have no summary description shown):

a.argmax(axis=-1):
a.argmin(axis=-1):
a.argsort(axis=-1):
a.astype(type):: copy array to speci�ed numeric type
a.byteswap():: perform byteswap on data in place
a.byteswapped():: return byteswapped copy of array
a.conjugate():: complex conjugate
a.copy():: produce copied version of array (instead of view)
a.diagonal():
a.info():: print info about array
a.isaligned():: are data elements guaranteed aligned with memory?
a.isbyteswapped():: are data elements in native processor order?
a.iscontiguous():: are data elements contiguous in memory?
a.is_c_array():: are data elements aligned, not byteswapped, and contiguous?
a.is_fortran_contiguous():: are indicies de�ned to follow Fortran conventions?
a.is_f_array():: are indices de�ned to follow Fortran conventions and data are aligned and not

byteswapped
a.itemsize():: size of data element in bytes
a.max(type=None):: maximum value in array
a.min():: minimum value in array
a.nelements():: total number of elements in array
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a.new():: returns new array of same type and size (data uninitialized)
a.repeat(a,repeats,axis=0)::
a.resize(shape)::
a.size():: same as nelements
a.dtype():: returns type of array
a.tofile(�le):: write binary data to �le
a.tolist():: convert data to Python list format
a.tostring():: copy binary data to Python string
a.transpose(axes=-1 ):: transpose array
a.stddev():: standard deviation
a.sum():: sum of all elements
a.swapaxes(axis1,axis2):
a.togglebyteorder():: change byteorder �ag without changing actual data byteorder
a.trace():
a.view():: returns new array object using view of same data

5.10. Array attributes:
a.shape:: returns shape of array
a.flat:: returns view of array treating it as 1-dimensional. Doesn't work if array is not contiguous
a.real:: return real component of array (exists for all types)
a.imag, a.imaginary:: return imaginary component (exists only for complex types)

6. Exercises

Exercise 7. Load the binary image shown in Figure2. What is the mean pixel value, what are the
standard deviation of pixel values? Sum over the rows and make a bar plot for the summated intensity
across rows. Do the same for columns. Make a histogram of all the data in the image. (Hint � see
nx.mlab.mean, nx.mlab.std, pylab.bar and pylab.hist)

Example 7.1. this is another test

this is a test



CHAPTER 2

A whirlwind tour of python and the standard library

This is a quick-and-dirty introduction to the python language for the impatient scientist. There are
many top notch, comprehensive introductions and tutorials for python. For absolute beginners, there is the
Python Beginner's Guide.1 The o�cial Python Tutorial can be read online2 or downloaded3 in a variety
of formats. There are over 100 python tutorials collected online.4

There are also many excellent books. Targetting newbies is Mark Pilgrim's Dive into Python which
in available in print and for free online5, though for absolute newbies even this may be too hard [30].
For experienced programmers, David Beasley's Python Essential Reference is an excellent introduction to
python, but is a bit dated since it only covers python2.1 [8]. Likwise Alex Martelli's Python in a Nutshell

is highly regarded and a bit more current � a 2nd edition is in the works[23]. And The Python Cookbook

is an extremely useful collection of python idioms, tips and tricks [24].
But the typical scientist I encounter wants to solve a speci�c problem, eg, to make a certain kind of

graph, to numerically integrate an equation, or to �t some data to a parametric model, and doesn't have
the time or interest to read several books or tutorials to get what they want. This guide is for them:
a short overview of the language to help them get to what they want as quickly as possible. We get to
advanced material pretty quickly, so it may be touch sledding if you are a python newbie. Take in what
you can, and if you start getting dizzy, skip ahead to the next section; you can always come back to absorb
more detail later, after you get your real work done.

1. Hello Python

Python is a dynamically typed, object oriented, interpreted language. Interpreted means that your
program interacts with the python interpreter, similar to Matlab, Perl, Tcl and Java, and unlike FOR-
TRAN, C, or C++ which are compiled. So let's �re up the python interpreter and get started. I'm not
going to cover installing python � it's standard on most linux boxes and for windows there is a friendly GUI
installer. To run the python interpreter, on windows, you can click Start->All Programs->Python
2.4->Python (command line) or better yet, install ipython, a python shell on steroids, and use that.
On linux / unix systems, you just need to type python or ipython at the command line. The >>> is
the default python shell prompt, so don't type it in the examples below

>>> print ’hello world’
hello world

As this example shows, hello world in python is pretty easy � one common phrase you hear in the python
community is that �it �ts your brain�. � the basic idea is that coding in python feels natural. Compare
python's version with hello world in C++

// C++
#include <iostream>
int main ()
{
std::cout << "Hello World" << std::endl;
return 0;

}

1http://www.python.org/moin/BeginnersGuide
2http://docs.python.org/tut/tut.html
3http://docs.python.org/download.html
4http://www.awaretek.com/tutorials.html
5http://diveintopython.org/toc/index.html
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2. Python is a calculator

Aside from my daughter's solar powered cash-register calculator, Python is the only calculator I use.
From the python shell, you can type arbitrary arithmetic expressions.

>>> 2+2
4
>>> 2**10
1024
>>> 10/5
2
>>> 2+(24.3 + .9)/.24
107.0
>>> 2/3
0

The last line is a standard newbie gotcha � if both the left and right operands are integers, python returns
an integer. To do �oating point division, make sure at least one of the numbers is a �oat

>>> 2.0/3
0.66666666666666663

The distinction between integer and �oating point division is a common source of frustration among
newbies and is slated for destruction in the mythical Python 3000.6 Since default integer division will be
removed in the future, you can invoke the time machine with the from __future__ directives; these
directives allow python programmers today to use features that will become standard in future releases
but are not included by default because they would break existing code. From future directives should be
among the �rst lines you type in your python code if you are going to use them, otherwise they may not
work. The future division operator will assume �oating point division by default,7and provides another
operator // to do classic integer division.

>>> from __future__ import division
>>> 2/3
0.66666666666666663
>>> 2//3
0

python has four basic numeric types: int, long, �oat and complex, but unlike C++, BASIC, FORTRAN
or Java, you don't have to declare these types. python can infer them

>>> type(1)
<type ’int’>
>>> type(1.0)
<type ’float’>
>>> type(2**200)
<type ’long’>

2200is a huge number!

>>> 2**200
1606938044258990275541962092341162602522202993782792835301376L

but python will blithely compute it and much larger numbers for you as long as you have CPU and memory
to handle them. The integer type, if it over�ows, will automatically convert to a python long (as indicated
by the appended L in the output above) and has no built-in upper bound on size, unlike C/C++ longs.

Python has built in support for complex numbers. Eg, we can verify i2 = −1

>>> x = complex(0,1)
>>> x*x
(-1+0j)

To access the real and imaginary parts of a complex number, use the real and imag attributes

6Python 3000 is a future python release that will clean up several things that Guido considers to be warts.
7You may have noticed that 2/3 was represented as 0.66666666666666663 and not 0.66666666666666666 as might
be expected. This is because computers are binary calculators, and there is no exact binary representation of 2/3,
just as there is no exact binary representation of 0.1

>>> 0.1
0.10000000000000001

Some languages try and hide this from you, but python is explicit.
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>>> x.real
0.0
>>> x.imag
1.0

If you come from other languages like Matlab, the above may be new to you. In matlab, you might do
something like this (>> is the standard matlab shell prompt)

>> x = 0+j
x =

0.0000 + 1.0000i
>> real(x)
ans =

0
>> imag(x)
ans =

1

That is, in Matlab, you use a function to access the real and imaginary parts of the data, but in python
these are attributes of the complex object itself. This is a core feature of python and other object oriented
languages: an object carries its data and methods around with it. One might say: �a complex number
knows it's real and imaginary parts� or �a complex number knows how to take its conjugate�, you don't
need external functions for these operations

>>> x.conjugate
<built-in method conjugate of complex object at 0xb6a62368>
>>> x.conjugate()
-1j

On the �rst line, I just followed along from the example above with real and imag and typed
x.conjugate and python printed the representation <built-in method conjugate of complex
object at 0xb6a62368>. This means that conjugate is a method, a.k.a a function, and in python
we need to use parentheses to call a function. If the method has arguments, like the x in sin(x), you
place them inside the parentheses, and if it has no arguments, like conjugate, you simply provide the
open and closing parentheses. real, imag and conjugate are attributes of the complex object, and
conjugate is a callable attribute, known as a method.

OK, now you are an object oriented programmer. There are several key ideas in object oriented
programming, and this is one of them: an object carries around with it data (simple attributes) and
methods (callable attributes) that provide additional information about the object and perform services.
It's one stop shopping � no need to go to external functions and libraries to deal with it � the object knows
how to deal with itself.

3. Accessing the standard library

Arithmetic is �ne, but before long you may �nd yourself tiring of it and wanting to compute logarithms
and exponents, sines and cosines

>>> log(10)
Traceback (most recent call last):
File "<stdin>", line 1, in ?

NameError: name ’log’ is not defined

These functions are not built into python, but don't despair, they are built into the python standard
library. To access a function from the standard library, or an external library for that matter, you must
import it.

>>> import math
>>> math.log(10)
2.3025850929940459
>>> math.sin(math.pi)
1.2246063538223773e-16

Note that the default log function is a base 2 logarithm (use math.log10 for base 10 logs) and that
�oating point math is inherently imprecise, since analyticallysin(π) = 0.

It's kind of a pain to keep typing math.log and math.sin and math.pi, and python is accomodating.
There are additional forms of import that will let you save more or less typing depending on your desires



22 2. PYTHON INTRO

# Appreviate the module name: m is an alias
>>> import math as m
>>> m.cos(2*m.pi)
1.0
# Import just the names you need
>>> from math import exp, log
>>> log(exp(1))
1.0
# Import everything - use with caution!
>>> from math import *
>>> sin(2*pi*10)
-2.4492127076447545e-15

To help you learn more about what you can �nd in the math library, python has nice introspection
capabilities � introspection is a way of asking an object about itself. For example, to �nd out what is
available in the math library, we can get a directory of everything available with the dir command8

>>> dir(math)
[’__doc__’, ’__file__’, ’__name__’, ’acos’, ’asin’, ’atan’, ’atan2’, ’ceil’, ’cos’, ’cosh’, ’degrees’, ’e’, ’exp’, ’fabs’, ’floor’, ’fmod’, ’frexp’, ’hypot’, ’ldexp’, ’log’, ’log10’, ’modf’, ’pi’, ’pow’, ’radians’, ’sin’, ’sinh’, ’sqrt’, ’tan’, ’tanh’]

This gives us just a listing of the names that are in the math module � they are fairly self descriptive, but
if you want more, you can call help on any of these functions for more information

>>> help(math.sin)
Help on built-in function sin:
sin(...)
sin(x)
Return the sine of x (measured in radians).

and for the whole math library

>>> help(math)
Help on module math:

NAME
math

FILE
/usr/local/lib/python2.3/lib-dynload/math.so

DESCRIPTION
This module is always available. It provides access to the
mathematical functions defined by the C standard.

FUNCTIONS
acos(...)

acos(x)

Return the arc cosine (measured in radians) of x.

asin(...)
asin(x)

Return the arc sine (measured in radians) of x.

And much more which is snipped. Likewise, we can get information on the complex object in the same
way

>>> x = complex(0,1)
>>> dir(x)
[’__abs__’, ’__add__’, ’__class__’, ’__coerce__’, ’__delattr__’, ’__div__’, ’__divmod__’, ’__doc__’, ’__eq__’, ’__float__’, ’__floordiv__’, ’__ge__’, ’__getattribute__’, ’__getnewargs__’, ’__gt__’, ’__hash__’, ’__init__’, ’__int__’, ’__le__’, ’__long__’, ’__lt__’, ’__mod__’, ’__mul__’, ’__ne__’, ’__neg__’, ’__new__’, ’__nonzero__’, ’__pos__’, ’__pow__’, ’__radd__’, ’__rdiv__’, ’__rdivmod__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__rfloordiv__’, ’__rmod__’, ’__rmul__’, ’__rpow__’, ’__rsub__’, ’__rtruediv__’, ’__setattr__’, ’__str__’, ’__sub__’, ’__truediv__’, ’conjugate’, ’imag’, ’real’]

8In addition to the introdpection and help provided in the python interpreter, the o�cial documentation of the
python standard library is very good and up-to-date http://docs.python.org/lib/lib.html .
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Notice that called dir or help on the math module, the math.sin function, and the complex number x.
That's because modules, functions and numbers are all objects, and we use the same object introspection
and help capabilites on them. We can �nd out what type of object they are by calling type on them,
which is another function in python's introspection arsenal

>>> type(math)
<type ’module’>
>>> type(math.sin)
<type ’builtin_function_or_method’>
>>> type(x)
<type ’complex’>

Now, you may be wondering: what were all those god-awful looking double underscore methods, like
__abs__ and __mul__ in the dir listing of the complex object above? These are methods that de�ne
what it means to be a numeric type in python, and the complex object implements these methods so that
complex numbers act like the way should, eg __mul__ implements the rules of complex multiplication.
The nice thing about this is that python speci�es an application programming interface (API) that is the
de�nition of what it means to be a number in python. And this means you can de�ne your own numeric
types, as long as you implement the required special double underscore methods for your custom type.
double underscore methods are very important in python; although the typical newbie never sees them or
thinks about them, they are there under the hood providing all the python magic, and more importantly,
showing the way to let you make magic.

4. Strings

We've encountered a number of types of objects above: int, �oat, long, complex, method/function and
module. We'll continue our tour with an introduction to strings, which are critical components of almost
every program. You can create strings in a number of di�erent ways, with single quotes, double quotes, or
triple quotes � this diversity of methods makes it easy if you need to embed string characters in the string
itself

# single, double and triple quoted strings
>>> s = ’Hi Mom!’
>>> s = "Hi Mom!"
>>> s = """Porky said, "That’s all folks!" """

You can add strings together to concatenate them

# concatenating strings
>>> first = ’John’
>>> last = ’Hunter’
>>> first+last
’JohnHunter’

or call string methods to process them: upcase them or downcase them, or replace one character with
another

# string methods
>>> last.lower()
’hunter’
>>> last.upper()
’HUNTER’
>>> last.replace(’h’, ’p’)
’Hunter’
>>> last.replace(’H’, ’P’)
’Punter’

Note that in all of these examples, the string last is unchanged. All of these methods operate on the
string and return a new string, leaving the original unchanged. In fact, python strings cannot be changed
by any python code at all: they are immutable (unchangeable). The concept of mutable and immutable
objects in python is an important one, and it will come up again, because only immutable objects can be
used as keys in python dictionaries and elements of python sets.

You can access individual characters, or slices of the string (substrings), using indexing. A string in
sequence of characters, and strings implement the sequence protocol in python � we'll see more examples
of python sequences later � and all sequences have the same syntax for accessing their elements. Python
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uses 0 based indexing which means the �rst element is at index 0; you can use negative indices to access
the last elements in the sequence

# string indexing
>>> last = ’Hunter’
>>> last[0]
’H’
>>> last[1]
’u’
>>> last[-1]
’r’

To access substrings, or generically in terms of the sequence protocol, slices, you use a colon to indicate a
range

# string slicing
>>> last[0:2]
’Hu’
>>> last[2:4]
’nt’

As this example shows, python uses �one-past-the-end� indexing when de�ning a range; eg, in the range
indmin:indmax, the element of imax is not included. You can use negative indices when slicing too; eg,
to get everything before the last character

>>> last[0:-1]
’Hunte’

You can also leave out either the min or max indicator; if they are left out, 0 is assumed to be the indmin
and one past the end of the sequence is assumed to be indmax

>>> last[:3]
’Hun’
>>> last[3:]
’ter’

There is a third number that can be placed in a slice, a step, with syntax indmin:indmax:step; eg, a step
of 2 will skip every second letter

>>> last[1:6:2]
’utr’

Although this may be more that you want to know about slicing strings, the time spent here is worthwhile.
As mentioned above, all python sequences obey these rules. In addition to strings, lists and tuples, which
are built-in python sequence data types and are discussed in the next section, the numeric arrays widely
used in scienti�c computing also implement the sequence protocol, and thus have the same slicing rules.

Exercise 5. What would you expect last[:] to return?

One thing that comes up all the time is the need to create strings out of other strings and numbers,
eg to create �lenames from a combination of a base directory, some base �lename, and some numbers.
Scientists like to create lots of data �les like and then write code to loop over these �les and analyze them.
We're going to show how to do that, starting with the newbie way and progressively building up to the
way of python zen master. All of the methods below work, but the zen master way will more e�cient, more
scalable (eg to larger numbers of �les) and cross-platform.9 Here's the newbie way: we also introduce the
for-loop here in the spirit of diving into python � note that python uses whitespace indentation to delimit
the for-loop code block

# The newbie way
for i in (1,2,3,4):

fname = ’data/myexp0’ + str(i) + ’.dat’
print fname

Now as promised, this will print out the 4 �le names above, but it has three �aws: it doesn't scale to 10 or
more �les, it is ine�cient, and it is not cross platform. It doesn't scale because it hard-codes the '0' after
myexp, it is ine�cient because to add several strings requires the creation of temporary strings, and it is
not cross-platform because it hard-codes the directory separator '/'.

9�But it works� is a common defense of bad code; my rejoinder to this is �A computer scientist is someone who �xes
things that aren't broken�.
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# On the path to elightenment
for i in (1,2,3,4):

fname = ’data/myexp%02d.dat’%i
print fname

This example uses string interpolation, the funny % thing. If you are familiar with C programming,
this will be no surprise to you (on linux/unix systems do man sprintf at the unix shell). The percent
character is a string formatting character: %02d means to take an integer (the d part) and print it with
two digits, padding zero on the left (the %02 part). There is more to be said about string interpolation,
but let's �nish the job at hand. This example is better than the newbie way because is scales up to �les
numbered 0-99, and it is more e�cient because it avoids the creation of temporary strings. For the platform
independent part, we go to the python standard library os.path, which provides a host of functions for
platform-independent manipulations of �lenames, extensions and paths. Here we use os.path.join to
combine the directory with the �lename in a platform independent way. On windows, it will use the
windows path separator '\' and on unix it will use '/'.

# the zen master approach
import os
for i in (1,2,3,4):

fname = os.path.join(’data’, ’myexp%02d.dat’%i)
print fname

Exercise 6. Suppose you have data �les named like

data/2005/exp0100.dat
data/2005/exp0101.dat
data/2005/exp0102.dat
...
data/2005/exp1000.dat

Write the python code that iterates over these �les, constructing the �lenames as strings in using
os.path.join to construct the paths in a platform-independent way. Hint : read the help for
os.path.join!

OK, I promised to torture you a bit more with string interpolation � don't worry, I remembered.
The ability to properly format your data when printing it is crucial in scienti�c endeavors: how many
sign�cant digits do you want, do you want to use integer, �oating point representation or exponential
notation? These three choices are provided with %d, %f and %e, with lots of variations on the theme to
indicate precision and more

>>> ’warm for %d minutes at %1.1f C’ % (30, 37.5)
’warm for 30 minutes at 37.5 C’
>>> ’The mass of the sun is %1.4e kg’% (1.98892*10**30)
’The mass of the sun is 1.9889e+30 kg’

There are two string methods, split and join, that arise frequenctly in numerical processing, speci�cally
in the context of processing data �les that have comma, tab, or space separated numbers in them. split
takes a single string, and splits it on the indicated character to a sequence of strings. This is useful to take
a single line of space or comma separated values and split them into individual numbers

# s is a single string and we split it into a list of strings
# for further processing
>>> s = ’1.0 2.0 3.0 4.0 5.0’
>>> s.split(’ ’)
[’1.0’, ’2.0’, ’3.0’, ’4.0’, ’5.0’]

The return value, with square brackets, indicates that python has returned a list of strings. These individual
strings need further processing to convert them into actual �oats, but that is the �rst step. The conversion
to �oats will be discussed in the next session, when we learn about list comprehensions. The converse
method is join, which is often used to create string output to an ASCII �le from a list of numbers. In this
case you want to join a list of numbers into a single line for printing to a �le. The example below will be
clearer after the next section, in which lists are discussed

# vals is a list of floats and we convert it to a single
# space separated string
>>> vals = [1.0, 2.0, 3.0, 4.0, 5.0]
>>> ’ ’.join([str(val) for val in vals])
’1.0 2.0 3.0 4.0 5.0’
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There are two new things in the example above. One, we called the join method directly on a string itself,
and not on a variable name. Eg, in the previous examples, we always used the name of the object when
accessing attributes, eg x.real or s.upper(). In this example, we call the join method on the string
which is a single space. The second new feature is that we use a list comprehension [str(val) for val
in vals] as the argument to join. join requires a sequence of strings, and the list comprehension
converts a list of �oats to a strings. This can be confusing at �rst, so don't dispair if it is. But it
is worth bringing up early because list comprehensions are a very useful feature of python. To help
elucidate, compare vals, which is a list of �oats, with the conversion of vals to a list of strings using list
comprehensions in the next line

# converting a list of floats to a list of strings
>>> vals
[1.0, 2.0, 3.0, 4.0, 5.0]
>>> [str(val) for val in vals]
[’1.0’, ’2.0’, ’3.0’, ’4.0’, ’5.0’]

7. The basic python data structures

Strings, covered in the last section, are sequences of characters. python has two additional built-in
sequence types which can hold arbitrary elements: tuples and lists. tuples are created using parentheses,
and lists are created using square brackets

# a tuple and a list of elements of the same type
# (homogeneous)
>>> t = (1,2,3,4) # tuple
>>> l = [1,2,3,4] # list

Both tuples and lists can also be used to hold elements of di�erent types

# a tuple and list of int, string, float
>>> t = (1,’john’, 3.0)
>>> l = [1,’john’, 3.0]

Tuples and lists have the same indexing and slicing rules as each other, and as string discussed above,
because both implement the python sequence protocol, with the only di�erence being that tuple slices
return tuples (indicated by the parentheses below) and list slices return lists (indicated by the square
brackets)

# indexing and slicing tuples and lists
>>> t[0]
1
>>> l[0]
1
>>> t[:-1]
(1, ’john’)
>>> l[:-1]
[1, ’john’]

So why the di�erence between tuples and lists? A number of explanations have been o�ered on the mailing
lists, but the only one that makes a di�erence to me is that tuples are immutable, like strings, and hence
can be used as keys to python dictionaries and included as elements of sets, and lists are mutable, and
cannot. So a tuple, once created, can never be changed, but a list can. For example, if we try to reassign
the �rst element of the tuple above, we get an error

>>> t[0] = ’why not?’
Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: object doesn’t support item assignment

But the same operation is perfectly accetable for lists

>>> l[0] = ’why not?’
>>> l
[’why not?’, ’john’, 3.0]

lists also have a lot of methods, tuples have none, save the special double underscore methods that are
required for python objects and sequences
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# tuples contain only “hidden” double underscore methods
>>> dir(t)
[’__add__’, ’__class__’, ’__contains__’, ’__delattr__’, ’__doc__’, ’__eq__’, ’__ge__’, ’__getattribute__’, ’__getitem__’, ’__getnewargs__’, ’__getslice__’, ’__gt__’, ’__hash__’, ’__init__’, ’__iter__’, ’__le__’, ’__len__’, ’__lt__’, ’__mul__’, ’__ne__’, ’__new__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__rmul__’, ’__setattr__’, ’__str__’]
# but lists contain other methods, eg append, extend and
# reverse
>>> dir(l)
[’__add__’, ’__class__’, ’__contains__’, ’__delattr__’, ’__delitem__’, ’__delslice__’, ’__doc__’, ’__eq__’, ’__ge__’, ’__getattribute__’, ’__getitem__’, ’__getslice__’, ’__gt__’, ’__hash__’, ’__iadd__’, ’__imul__’, ’__init__’, ’__iter__’, ’__le__’, ’__len__’, ’__lt__’, ’__mul__’, ’__ne__’, ’__new__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__rmul__’, ’__setattr__’, ’__setitem__’, ’__setslice__’, ’__str__’, ’append’, ’count’, ’extend’, ’index’, ’insert’, ’pop’, ’remove’, ’reverse’, ’sort’]

Many of these list methods change, or mutate, the list, eg append adds an element to the list: extend
extends the list with a sequence of elements, sort sorts the list in place, reverse reverses it in place,
pop takes an element o� the list and returns it.

We've seen a couple of examples of creating a list above � let's look at some more using list methods

>>> x = [] # create the empty list
>>> x.append(1) # add the integer one to it
>>> x.extend([’hi’, ’mom’]) # append two strings to it
>>> x
[1, ’hi’, ’mom’]
>>> x.reverse() # reverse the list, in place
>>> x
[’mom’, ’hi’, 1]
>>> len(x)
3

We mentioned list comprehensions in the last section when discussing string methods. List comprehensions
are a way of creating a list using a for loop in a single line of python. Let's create a list of the perfect cubes
from 1 to 10, �rst with a for loop and then with a list comprehension. The list comprehension code will
not only be shorter and more elegant, it can be much faster (the dots are the indentation block indicator
from the python shell and should not be typed)

# a list of perfect cubes using a for-loop
>>> cubes = []
>>> for i in range(1,10):
... cubes.append(i**3)
...
>>> cubes
[1, 8, 27, 64, 125, 216, 343, 512, 729]
# functionally equivalent code using list comprehensions
>>> cubes = [i**3 for i in range(1,10)]
>>> cubes
[1, 8, 27, 64, 125, 216, 343, 512, 729]

The list comprehension code is faster because it all happens at the C level. In the simple for-loop version,
the python expression which appends the cube of i has to be evaluated by the python interpreter for each
element of the loop. In the list comprehension example, the single line is parsed once and executed at the
C level. The di�erence in speed can be considerable, and the list comprehension example is shorter and
more elegant to boot.

The remaining essential built-in data strucuture in python is the dictionary, which is an associative
array that maps arbitrary immutable objects to arbitrary objects. int, long, �oat, string and tuple are all
immutable and can be used as keys; to a dictionary list and dict are mutable and cannot. A dictionary
takes one kind of object as the key, and this key points to another object which is the value. In a contrived
but easy to comprehent examples, one might map names to ages

>>> ages = {} # create an empty dict
>>> ages[’john’] = 36
>>> ages[’fernando’] = 33
>>> ages # view the whole dict
{’john’: 36, ’fernando’: 33}
>>> ages[’john’]
36
>>> ages[’john’] = 37 # reassign john’s age
>>> ages[’john’]
37
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Dictionary lookup is very fast; Tim Peter's once joked that any python program which uses a dictionary is
automatically 10 times faster than any C program, which is of course false, but makes two worthy points
in jest: dictionary lookup is fast, and dictionaries can be used for important optimizations, eg, creating
a cache of frequently used values. As a simple eaxample, suppose you needed to compute the product of
two numbers between 1 and 100 in an inner loop � you could use a dictionary to cache the cube of all odd
of numbers < 100; if you were inteterested in all numbers, you might simply use a list to store the cached
cubes � I am cacheing only the odd numbers to show you how a dictionary can be used to represent a
sparse data structure

>>> cubes = dict([ ( i, i**3 ) for i in range(1,100,2)])
>>> cubes[5]
125

The last example is syntactically a bit challenging, but bears careful study. We are initializing a dictionary
with a list comprehension. The list comprehension is made up of length 2 tuples ( i, i**3 ). When
a dictionary is initialized with a sequence of length 2 tuples, it assumes the �rst element of the tuple i
is the key and the second element i**3is the value. Thus we have a lookup table from odd integers to
to cube. Creating dictionaries from list comprehensions as in this example is something that hard-core
python programmers do almost every day, and you should too.

Exercise 8. Create a lookup table of the product of all pairs of numbers less than 100. The key will
be a tuple of the two numbers (i,j) and the value will be the product. Hint: you can loop over multiple
ranges in a list comprehension, eg [ something for i in range(Ni) for j in range(Nj)]

9. The Zen of Python

Exercise 10. >>> import this

11. Functions and classes

You can de�ne functions just about anywhere in python code. The typical function de�nition takes
zero or more arguments, zero or more keyword arguments, and is followed by a documentation string and
the function de�nition, optionally returing a value. Here is a function to compute the hypoteneuse of a
right triange

def hypot(base, height):
’compute the hypoteneuse of a right triangle’
import math
return math.sqrt(base**2 + height**2)

As in the case of the for-loop, leading white space is signi�cant and is used to delimt the start and end of
the function. In the example below, x = 1 is not in the function, because it is not indented

def growone(l):
’append 1 to a list l’
l.append(1)

x = 1

Note that this function does not return anything, because the append method modi�es the list that was
passed in. You should be careful when designing functions that have side e�ects such as modifying the
structures that are passed in; they should be named and documented in such a way that these side e�ects
are clear.

Python is pretty �exible with functions: you can de�ne functions within function de�nitions (just
be mindful of your indentation), you can attach attributes to functions (like other objects), you can pass
functions as arguments to other functions. A function keyword argument de�nes a default value for a
function that can be overridden. Below is an example which provides a normalize keyword argument. The
default argument is normalize=None; the value None is a standard python idiom which usually means
either do the default thing or do nothing. If normalize is not None, we assume it is a function that can
be called to normalize our data

def psd(x, normalize=None):
’compute the power spectral density of x’
if normalize is not None: x = normalize(x)
# compute the power spectra of x and return it

This function could be called with or without a normalize keyword argument, since if the argument is
not passed, the default of None is used and no normalization is done.
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# no normalize argument; do the default thing
>>> psd(x)
# define a custom normalize function unitstd as pass it
# to psd
>>> def unitstd(x): return x/std(x)
>>> psd(x, normalize=unitstd)

In Section2 we noticed that complex objects have the real and imag data attributes, and the conjugate
method. An object is an instance of a class that de�nes it, and in python you can easily de�ne your own
classes. In that section, we emphasized that one of the important features of a classes/objects is that they
carry around their data and methods in a single bundle. Let's look at the mechnics of de�ning classes,
and creating instances (a.k.a. objects) of these classes. Classes have a special double underscore method
__init__ that is used as the function to initialize the class. For this example, we'll continue with the
normalize theme above, but in this case the normalization requires some data parameters. This example
arises when you want to normalize an image which may range over 0-255 (8 bit image) or from 0-65535
(16 bit image) to the 0-1 interval. For 16 bit images, you would normally divide everything by 65525,
but you might want to con�gure this to a smaller number if your data doesn't use the whole intensity
range to enhance contrast. For simplicitly, let's suppose our normalize class is only interested in the pixel
maximum, and will divide all the data by that value.

from __future__ import division # make sure we do float division
class Normalize:

"""
A class to normalize data by dividing it by a maximum value
"""
def __init__(self, maxval):

’maxval will be mapped to 1’
self.maxval = maxval

def __call__(self, data):
’do the normalization’
# in real life you would also want to clip all values of
# data>maxval so that the returned value will be in the unit
# interval
return data/self.maxval

The triple quoted string following the de�nition of class Normalize is the class documentation stringd, and
it will bre shown to the user when they do help(Normalize). A commonly used convention is to name
classes with UpperCase, but this is not required. self is a special variable that a class can use to refer to its
own data and methods, and must be the �rst argument to all the class methods. The __init__ method
stores the normalization value maxval as a class attribute in self.maxval, and this value can later be
reused by other class methods (as it is in __call__) and it can be altered by the user of the class, as will
illustrate below. The __call__ method is another piece of python double underscore magic, it allows
class instances to be used as functions, eg you can call them just like you can call any function. OK, now
let's see how you could use this.

The �rst line use used to create an instance of the class Normalize, and the special method __init__
is implicitly called. The second line implicitly calls the special __call__method

>>> norm = Normalize(65356) # good for 16 bit images
>>> norm(255) # call this function
0.0039017075708427688
# We can reset the maxval attribute, and the call method
# is automagically updated
>>> norm.maxval = 255 # reset the maxval
>>> norm(255) # and call it again
1.0
# We can pass the norm instance to the psd function we defined above, which
# is expecting a function
>>> pdf(X, normalize=norm)

Exercise 12. Pretend that complex were not built-in to the python core, and write your own
complex class MyComplex. Provide real and imag attributes and the conjugate method. De�ne
__abs__, __mul__ and __add__ to implement the absolute value of complex numbers, multiplication
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of complex numbers and addition of complex numbers. See the API de�nition of the python number
protocol; although this is written for C programmers, it contains information about the required function
call signatures for each of the double underscore methods that de�ne the number protocol in python; where
they use o1 on that page, you would use self in python, and where they use o2 you might use other in
python.10 To get you started, I'll show you what the __add__ method should look like

# An example double underscore method required in your MyComplex
# implementation
def __add__(self, other):

’add self to other and return a new MyComplex instance’
r = self.real + other.real
i = self.imag + other.imag
return MyComplex(r,i)

# When you are finished, test your implementation with
>>> x = MyComplex(2,3)
>>> y = MyComplex(0,1)
>>> x.real
2.0
>>> y.imag
1.0
>>> x.conjugate()
(2-3j)
>>> x+y
(2+4j)
>>> x*y
(-3+2j)
>>> abs(x*y)
3.6055512754639891

13. Files and �le like objects

Working with �les is one of the most common and important things we do in scienti�c computing
because that is usually where the data lives. In Section4, we went through the mechanics of automatically
building �le names like

data/myexp01.dat
data/myexp02.dat
data/myexp03.dat
data/myexp04.dat

but we didn't actually do anything with these �les. Here we'll show how to read in the data and do
something with it. Python makes working with �les easy and dare I say fun. The test data set lives in
data/family.csv and is a standard comma separated value �le that contains information about my
family: �rst name, last name, age, height in cm, weight in kg and birthdate. We'll open this �le and parse
it � note that python has a standard module for parsing CSV �les that is much more sophisticated than
what I am doing here. Nevertheless, it serves as an easy to understand example that is close enough to
real life that it is worth doing. Here is what the data �le looks like

First,Last,Age,Weight,Height,Birthday
John,Hunter,36,175,180,1968-03-05
Miriam,Sierig,33,135,177,1971-05-04
Rahel,Hunter,7,55,134,1998-02-25
Ava,Hunter,3,45,121,2001-04-26
Clara,Hunter,0,15,55,2004-10-02

Here is the code to parse that �le

# open the file for reading
fh = file(’../data/family.csv’, ’r’)
# slurp the header, splitting on the comma
headers = fh.readline().split(’,’)

10http://www.python.org/doc/current/api/number.html
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# now loop over the remaining lines in the file and parse them
for line in fh:

# remove any leading or trailing white space
line = line.strip()
# split the line on the comma into separate variables
first, last, age, weight, height, dob = line.split(’,’)
# convert some of these strings to floats
age, weight, height = [float(val) for val in (age, weight, height)]
print first, last, age, weight, height, dob

This example illustrates several interesting things. The syntax for opening a �le is file(filename,
mode) and the mode is a string like ’r’ or ’w’ that determines whether you are opening in read or write
mode. You can also read and write binary �les with ’rb’ and ’wb’. There are more options and you
should do help(file) to learn about them. We then use the �le readline method to read in the �rst
line of the �le. This returns a string (the line of text) and we call the string method split(’,’) to split
that string wherever it sees a comma, and this returns a list of strings which are the headers

>>> headers
[’First’, ’Last’, ’Age’, ’Weight’, ’Height’, ’Birthday\n’]

The new line character ’\n’ at the end of ’Birthday\n’ indicates we forgot to strip the string of
whitespace. To �x that, we should have done

>>> headers = fh.readline().strip().split(’,’)
>>> headers
[’First’, ’Last’, ’Age’, ’Weight’, ’Height’, ’Birthday’]

Notice how this works like a pipeline: fh.readline returns a line of text as a string; we call the string
method strip which returns a string with all white space (spaces, tabs, newlines) removed from the left
and right; we then call the split method on this stripped string to split it into a list of strings.

Next we start to loop over the �le � this is a nice feature of python �le handles, you can iterate over
them as a sequence. We've learned our lesson about trailing newlines, so we �rst strip the line with line
= line.strip(). The rest is string processing, splitting the line on a comma as we did for the headers,
and converting the strings to numbers where approriate by calling float(val) for each of age, weight
and height. Notice how we use list comprehensions and tuple unpacking � the age, weight, height =
[float(val) for val in (age, weight, height)] line, to convert several values at once.

Now that we have all this data, how mught we store it. We could store it in a results list

results = []
for line in fh:

# process the line as above to get the variables
results.append( (first, last, age, weight, height, dob) )

# and later when we want to analyze the data
for first, last, age, weight, height, dob in results:

# do something with the data

Exercise 14. zip magic. Python has a nice funcion zip that lets you do very useful things with
lists of tuples. results above is a list of tuples � each tuple is the first, last, age, weight, height,
dob for a family member. What happens if you do

>>> first, last, age, weight, height, dob = zip(*results)

What is age now?

Exercise 15. Write a class Person and store the attributes first, last, age, weight, height,
dob in that class. Add a class instance to the results list, eg

results.append(Person(first, last, age, weight, height, dob))

Python also has a special syntax for printing to an open writable �le object

# open the file for writing
outfile = file(’mydata.data’, ’w’)
for x,y,z in myresults:

print >> outfile, ’%1.3f %1.3f %1.3f’%(x,y,z)

Another really nice thing about �le objects is that other classes can implement the �le protcol and allow
you to use them as if they were �les. For example, the StringIO module in the standard library allows you
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to read and write to strings as if they were �les. The urllib.urlopen function allows you to open a remove
web page as a �le object. Try this

# loop over the lines in google’s html
from urllib import urlopen
for line in urlopen(’http://www.google.com’).readlines():

print line,



CHAPTER 3

A tour of IPython

One of Python's most useful features is its interactive interpreter. This system allows very fast testing
of ideas without the overhead of creating test �les as is typical in most programming languages. In scienti�c
computing, one of the reasons behind the popularity of systems like Matlab �, IDL �or Mathematica �,
is precisely their interactive nature. Scienti�c computing is an inherently exploratory problem domain,
where one is rarely faced with writing a program against a set of well-de�ned explicit constraints. Being
able to load data, process it with di�erent algorithms or test parameters, visualize it, save results, and do
all of this in a �uid and e�cient way, can make a big productivity di�erence in day to day scienti�c work.
Even for the development of large codes, a good interactive interpreter can be a major asset, though this
is a less commonly held view; later in this document we will discuss this aspect of the problem.

However, the interpreter supplied with the standard Python distribution is somewhat limited for
extended interactive use. The IPython project [29] was born out of a desire to have a better Python
interactive environment, which could combine the advantages of the Python language with some of the
best ideas found in systems like IDL or Mathematica, along with many more enhancements. IPython is a
free software project (released under the BSD license) which tries to:

(1) Provide an interactive shell superior to Python's default. IPython has many features for object
introspection, system shell access, and its own special command system for adding function-
ality when working interactively. It tries to be a very e�cient environment both for Python
code development and for exploration of problems using Python objects (in situations like data
analysis).

(2) Serve as an embeddable, ready to use interpreter for your own programs. IPython can be started
with a single call from inside another program, providing access to the current namespace. This
can be very useful both for debugging purposes and for situations where a blend of batch-
processing and interactive exploration are needed.

(3) O�er a �exible framework which can be used as the base environment for other systems with
Python as the underlying language. Speci�cally scienti�c environments like Mathematica, IDL
and Matlab inspired its design, but similar ideas can be useful in many �elds.

This document is not meant to replace the comprehensive IPython manual, which ships with the IPython
distribution and is also available online at http://ipython.scipy.org/doc/manual. Instead, we will
present here some relevant parts of it for everyday use, and refer readers to the full manual for in-depth
details.

Additionally, this article by Jeremy Jones provides an introductory tutorial about IPython:
http://www.onlamp.com/pub/a/python/2005/01/27/ipython.html.

1. Main IPython features

This section summarizes the most important user-visible features of IPython, which are not a part of
the default Python shell or other interactive Python systems. While you can use IPython as a straight
replacement for the normal Python shell, a quick read of these will allow you to take advantage of many
enhancements which can be very useful in everyday work.

A bird's eye view of IPython's feature set:

• Dynamic object introspection. You can access docstrings, function de�nition prototypes, source
code, source �les and other details of any object accessible to the interpreter with a single
keystroke (`?'). Adding a second ? produces more details when possible.

• Completion in the local namespace, via the TAB key. This works for keywords, methods,
variables and �les in the current directory. TAB-completion, especially for attributes, is a
convenient way to explore the structure of any object you're dealing with. Simply type ob-
ject_name.<TAB> and a list of the object's attributes will be printed.
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• Numbered input/output prompts with command history (persistent across sessions and tied to
each pro�le), full searching in this history and caching of all input and output.

• User-extensible `magic' commands. A set of commands pre�xed with % is available for control-
ling IPython itself and provides directory control, namespace information and many aliases to
common system shell commands.

• Alias facility for de�ning your own system aliases.
• Complete system shell access. Lines starting with ! are passed directly to the system shell, and
using !! captures shell output into python variables for further use.

• The ability to expand python variables when calling the system shell. In a shell command, any
python variable pre�xed with $ is expanded. A double $$ allows passing a literal $ to the shell
(for access to shell and environment variables like $PATH).

• Filesystem navigation, via a magic %cd command, along with a persistent bookmark system
(using %bookmark) for fast access to frequently visited directories.

• A macro system for quickly re-executing multiple lines of previous input with a single name,
implemented via the %macro magic command.

• Session logging and restoring via the %logstart, %logon/off and %logstate magics. You
can then later use these log �les as code in your programs.

• Verbose and colored exception traceback printouts. Easier to parse visually, and in verbose mode
they produce a lot of useful debugging information.

• Auto-parentheses: callable objects can be executed without parentheses: ‘sin 3’ is automati-
cally converted to ‘sin(3)'.

• Auto-quoting: using `,' as the �rst character forces auto-quoting of the rest of the line:
‘,my_function a b’ becomes automatically ‘my_function("a","b")’.

• Flexible con�guration system. It uses a con�guration �le which allows permanent setting of all
command-line options, module loading, code and �le execution. The system allows recursive �le
inclusion, so you can have a base �le with defaults and layers which load other customizations
for particular projects.

• Embeddable. You can call IPython as a python shell inside your own python programs. This
can be used both for debugging code or for providing interactive abilities to your programs with
knowledge about the local namespaces (very useful in debugging and data analysis situations).

• Easy debugger access. You can set IPython to call up the Python debugger (pdb) every time
there is an uncaught exception. This drops you inside the code which triggered the exception
with all the data live and it is possible to navigate the stack to rapidly isolate the source of a
bug. The %run magic command �with the -d option� can run any script under pdb's control,
automatically setting initial breakpoints for you.

• Pro�ler support. You can run single statements (similar to profile.run()) or complete pro-
grams under the pro�ler's control. While this is possible with the standard profile module,
IPython wraps this functionality with magic commands (see ‘%prun’ and ‘%run -p') conve-
nient for rapid interactive work.

2. E�ective interactive work

IPython has been designed to try to make interactive work as �uid and e�cient as possible. All of its
features try to maximize the output-per-keystroke, so that as you work at an interactive console, minimal
typing produces results. It makes extensive use of the readline library, has its own control system (magics),
caches previous inputs and outputs, has a macro system, etc. Becoming familiar with these features, while
not necessary for basic use, will make long-term use of the system much more pleasant and productive.

2.1. Magic functions. The default Python interactive shell only allows valid Python code to be
typed at its input prompt. While this appears like a reasonable approach in principle, in practical use it
turns out to be rather limiting. A good interactive environment should allow you to control the environment
itself, in hopefully the most typing-e�cient way.

Verbosity in code is a good thing, since code is a long-lived entity, and deciphering three-letter
acronyms for variable names, 6 months after a program was written, is typically an exercise in frus-
tration. However at an interactive prompt, where every keystroke counts and things are not meant to
be permanent, compact and e�cient control of your environment is an important feature. The default
Python shell does not o�er this, and the Python language's verbosity, which is an asset for the long-term
readability of code, becomes a bit of a liability in this context.

For this reason, IPython o�ers a system of `magic' commands, which serve to control IPython itself
and perform a number of common tasks. Users of IDL will be familiar with the `dot' commands, like
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.stop, which perform similar functions in that system. In IPython, the magic system covers much more
functionality and is fully user-extensible. This allows users to add all the control they may desire to their
everyday working environment.

The magics system is patterned after the time-honored Unix shells, with whitespace separating argu-
ments, no parentheses required, and dashes for specifying options to commands. Many builtin magics also
are named like the Unix commands they mimic, so that an IPython environment can be used `out of the
box' by any Unix user with ease.

IPython will treat any line whose �rst character is a % as a special call to a magic function. For
example: typing ‘%cd mydir’ (without the quotes) changes you working directory to ‘mydir’, if it
exists. For any magic function, typing its name followed by ? will show you the magic's information and
docstring, just like for other regular Python objects. Simply typing magic at the prompt will print an
overview of the system, and a list of all the existing magics with their docstrings.

If you have 'automagic' enabled, you don't need to type in the % explicitly. Automagic is enabled by
default, and you can con�gure this in your ipythonrc �le, via the command line option -automagic
or even toggle it at runtime with the %automagic function. IPython will scan its internal list of magic
functions and call one if it exists. With automagic on you can then just type `cd mydir' to go to
directory `mydir'. The automagic system has the lowest possible precedence in name searches, so de�ning
an identi�er with the same name as an existing magic function will shadow it for automagic use. You can
still access the shadowed magic function by explicitly using the % character at the beginning of the line.

An example (with automagic on) should clarify all this:

In [1]: cd ipython # %cd is called by automagic
/home/fperez/ipython
In [2]: cd = 1 # now cd is just a variable
In [3]: cd .. # and doesn’t work as a function anymore
------------------------------------------------------------

File "<console>", line 1
cd ..

^
SyntaxError: invalid syntax
In [4]: %cd .. # but %cd always works
/home/fperez
In [5]: del cd # if you remove the cd variable
In [6]: cd ipython # automagic can work again
/home/fperez/ipython

2.2. Object exploration. Python is a language with exceptional introspection capabilities. This
means that, within the language itself, it is possible to extract a remarkable amount of information about
all objects currently in memory. However the default Python shell exposes very little of this power in an
easy to use manner; IPython provides a lot of functionality to remedy this.

The bulk of IPython's introspection system is accessible via only two keys: the question mark ? and
the <TAB> key. Under the hood, these two keys control a fairly complex set of libraries which ultimately
rely on the readline and inspect modules from the Python standard library. But for regular use, you
should never need to remember anything beyond these two. As an example, consider de�ning a variable
named mylist, which starts as an empty list:

In [1]: mylist=[]

now you can �nd out some things about it by using the question mark:

In [2]: mylist?
Type: list
Base Class: <type ’list’>
String Form: []
Namespace: Interactive
Length: 0
Docstring:

list() -> new list
list(sequence) -> new list initialized from sequence’s items

next, by adding a period (the standard Python attribute separator) and hitting TAB, IPython will show
you all the attributes which this object has:

In [3]: mylist.<The TAB key was pressed here>
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Figure 1. IPython can show syntax-highlighted source code for objects whose
source is available.

mylist.append mylist.extend mylist.insert mylist.remove mylist.sort
mylist.count mylist.index mylist.pop mylist.reverse

you can then request further details about any of them:

In [3]: mylist.append?
Type: builtin_function_or_method
Base Class: <type ’builtin_function_or_method’>
String Form: <built-in method append of list object at 0x403b2b6c>
Namespace: Interactive
Docstring:

L.append(object) -- append object to end

The ? system can be doubled. The �rst screenshot in Fig. 1 was generated by typing at the IPython
prompt:

In [1]: import code
In [2]: code??

Using ?? shows the syntax-highlighted source for the code module from the Python standard library.
This is an excellent way to explore modules or objects which you are not familiar with. As long as Python's
inspect system is capable of �nding the source code for an object, IPython will show it to you, with nice
syntax highlights.

This can be done for entire modules, as in the prvious example, for individual functions, or even
methods of object instances. The second screenshot in the same �gure shows source for the timeit
method of a timeit.Timer object.

The magic commands %pdoc, %pdef, %psource and %pfile will respectively print the docstring,
function de�nition line, full source code and the complete �le for any object (when they can be found).

2.3. Input and Ouptut cached prompts. In IPython, all output results are automatically stored
in a global dictionary named Out and variables named _1, _2, etc. alias them. For example, the result
of input line 4 is available either as Out[4] or as _4. Additionally, three variables named _, __ and ___
are always kept updated with the for the last three results. This allows you to recall any previous result
and further use it for new calculations. For example:

In [1]: 2+4
Out[1]: 6
In [2]: _+9
Out[2]: 15
In [3]: _+__
Out[3]: 21
In [4]: print _1
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6
In [5]: print Out[1]
6
In [6]: _2**3
Out[6]: 3375

You can put a ‘;' at the end of a line to supress the printing of output. This is useful when doing
calculations which generate long output you are not interested in seeing. The _* variables and the Out[]
list do get updated with the contents of the output, even if it is not printed. You can thus still access the
generated results this way for further processing.

A similar system exists for caching input. All input is stored in a global list called In , so you can
re-execute lines 22 through 28 plus line 34 by typing ’exec In[22:29]+In[34]’ (using Python slicing
notation).

At any time, your input history remains available. The %hist command can show you all previous
input, without line numbers if desired (option -n) so you can directly copy and paste code either back
in IPython or in a text editor. You can also save all your history by turning on logging via %logstart;
these logs can later be either reloaded as IPython sessions or used as code for your programs.

If you need to execute the same set of lines often, you can assign them to a macro with the %macro
magic function. Macros are simply short names for groups of input lines, which can be re-executed by only
typing that name. Typing macro? at the prompt will show you the function's full documentation. For
example, if your history contains:

44: x=1
45: y=3
46: z=x+y
47: print x
48: a=5
49: print ’x’,x,’y’,y

You can create a macro with lines 44 through 47 (included) and line 49 called my_macro with:

In [51]: %macro my_macro 44:48 49

Now, simply typing my_macro will re-execute all this code in one pass. The number range follows standard
Python list slicing notation, where n:m means the numbers (n, n+ 1, . . . ,m− 1).

You should note that macros execute in the current context, so if any variable changes, the macro will
pick up the new value every time it is executed:

In [1]: x=1
In [2]: y=x*5
In [3]: z=x+3
In [4]: print ’y is:’,y,’and z is:’,z
y is: 5 and z is: 4
# make a macro with lines 2,3,4 (note Python list slice syntax):
In [5]: macro yz 2:5
Macro ‘yz‘ created. To execute, type its name (without quotes).
Macro contents:
y=x*5
z=x+3
print ’y is:’,y,’and z is:’,z
# now, run the macro directly:
In [6]: yz
Out[6]: Executing Macro...
y is: 5 and z is: 4
# we change the value of x
In [7]: x=9
# and now if we rerun the macro, we get the new values:
In [8]: yz
Out[8]: Executing Macro...
y is: 45 and z is: 12

2.4. Running code. The %run magic command allows you to run any python script and load all
of its data directly into the interactive namespace. %run is a sophisticated wrapper around the Python
execfile() builtin function; since the �le is re-read from disk each time, changes you make to it are
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re�ected immediately (in contrast to the behavior of import). I rarely use import for code I am testing,
relying on %run instead.

By default,

%run myfile arg1 arg2 ...

executes myfile in a namespace initially consisting only of __name__==’__main__’ and sys.argv
being �lled with arg1, arg2, etc. This means that using %run is functionally very simlar to executing a
script at the system command line, but you get all the functionality of IPython (better tracebacks, debugger
and pro�ler access, etc.). The -n option prevents __name__ from being set equal to ’__main__’, in case
you want to test the part of a script which only runs when imported.

Additionally, the fact that IPython then updates your interactive namespace with the variables de�ned
in the script is very useful, because you can run your code to do a lot of processing, and then continue
using and exploring interactively the objects created by the program.

For example, if the �le ip_simple.py contains:

import sys

print ’sys.argv is:’,sys.argv

print ’__name__ is:’,__name__

x = 1

you can run it in IPython as follows:

# First, let’s check that x is undefined
In [1]: x
---------------------------------------------------------------------------
exceptions.NameError Traceback (most recent call last)
NameError: name ’x’ is not defined
# Now we run the script (the .py extension is optional):
In [2]: run ip_simple
sys.argv is: [’ip_simple.py’]
__name__ is: __main__
# If we print x, now it has the value from the script
In [3]: x
Out[3]: 1
# Again, but now running with some arguments:
In [4]: run ip_simple -x arg1 "hello world"
sys.argv is: [’ip_simple.py’, ’-x’, ’arg1’, ’hello world’]
__name__ is: __main__

With the -i option, the namespace where your script runs is actually your interactive one. This can be
used for two sligthly di�erent purposes. The simpler case, is just to quickly type up a set of commands
in an editor which you want to execute on your current environment (although the %edit command can
also be used for this). Consider running the �le ip_simple2.py:

"""This simple file prints a variable which is NOT defined here.

It should be run via IPython’s %run with the -i option."""

print ’x is:’,x

in IPython:

# A regular %run will produce an error:
In [1]: run ip_simple2
---------------------------------------------------------
exceptions.NameError Traceback (most recent call last)

2
3 It should be run via IPython’s %run with the -i option."""
4

----> 5 print ’x is:’,x
6

NameError: name ’x’ is not defined
WARNING: Failure executing file: <ip_simple2.py>
x is:
# However, if you do have a variable x defined:
In [2]: x=’hello’
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# you can use the -i option and the code will see x:
In [3]: run -i ip_simple2
x is: hello

A di�erent use of %run -i, is to repeatedly run scripts which may have a potentially expensive ini-
tialization phase. If this initialization does not need to be repeated on each run (for example, you are
debugging some other submodule and can reuse the same expensive object several times), you can avoid it
by protecting the expensive object with a try/except block. This simple script illustrates the technique:

"""Example script with an expensive initialization.

Meant to be used via ipython’s %run -i, though it can run standalone."""

# Imagine that bigobject is actually something whose creation is an expensive

# process, though here we are just going to make it a list of numbers for

# demonstration’s sake. The trick is to trap a test for the existence of this

# name in a try/except block. If the object exists, we don’t recreate it, if

# it doesn’t exist yet (such as the first time the code is run in any given

# session), we make it.

try:
bigobject

print "We found bigobject! No need to initialize it."

except NameError:

print "bigobject not found, performing expensive initialization..."

bigobject = range(1000)

# And now you can move on with working on bigobject:

total = sum(bigobject)

print ’total is:’,total

In IPython, here is how you can use it:

# The first time it runs, it will have to initialize
In [1]: run -i ip_expensive_init.py
bigobject not found, performing expensive initialization...
total is: 499500
# but successive runs don’t require initialization
In [2]: run -i ip_expensive_init.py
We found bigobject! No need to initialize it.
total is: 499500
# you can still run without -i, to achieve a full reload
# if you need it for any reason
In [3]: run ip_expensive_init.py
bigobject not found, performing expensive initialization...
total is: 499500

In the third run, by not using -i, your script runs in an empty namespace and this forces a full initialization
(the NameError exception is triggered).

%run also has special �ags for timing the execution of your scripts (-t) and for executing them under
the control of either Python's pdb debugger (-d) or pro�ler (-p). You can get all of its docstring with the
usual run? mechanism.

Thanks to all of its various control options, %run can be used as the main tool for e�cient interactive
development of code which you write in your editor of choice. My personal operation mode, which has
served me well for several years of scienti�c work in Python, is to have a good editor (XEmacs in my case)
open with all my Python code, and IPython open in a terminal where I run, debug, explore, plot, etc.

3. Access to the underlying Operating System

3.1. Basic usage. IPython allows you to always access the underlying OS very easily. Any lines
starting with ! are passed directly to the system shell:
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In [6]: !ls ip*.py
ip_expensive_init.py ip_simple2.py ip_simple.py

and using !! captures shell output into python variables for further use:

In [7]: !!ls ip*.py
Out[7]: [’ip_expensive_init.py’, ’ip_simple2.py’, ’ip_simple.py’]

There is a di�erence between the two cases: in the �rst, the ls command simply prints its results to the
terminal as text, but no value is returned. In the second, IPython actually captures the output of the
command, splits it as a list (one line per entry), and returns its value. This allows you to then operate on
the results with Python routines.

Additionally, IPython plays a few interesting syntactic tricks for your convenience. Whenever you
make a system call, IPython will expand any call of the type $var into the actual value of the python
variable var, so that you can call shell commands on Python values. Continuing the session above, and
remembering that _ holds the previously returned value, we can call the `wc -l' Unix command (which
does a line count on a �le) on the �les we just obtained:

In [8]: for f in _:
...: if ’simple’ in f:
...: !wc -l $f
...:

3 ip_simple2.py
4 ip_simple.py

While this is completely unorthodox (actually, invalid) Python, it is the kind of functionality which can
make for extremely e�cient uses when working at an interactive command line. Obviously all of this can
be done (and it is done that way by IPython internally) with regular Python code, but that approach
requires a fair amount more typing, the use of %-based string interpolation, and making system calls via
the os.system() function.

If you actually need to pass a $ character to a shell command, you simply use $$ in the IPython
command line:

In [11]: !echo $$SHELL
/bin/tcsh

If you want to capture the output of a system command directly to a named Python variable, you can use
the %sc magic function:

# by default, %sc captures to a plain string:
In [16]: %sc astr=ls ip*.py
In [17]: astr
Out[17]: ’ip_expensive_init.py\nip_simple2.py\nip_simple.py’
# but with the -l option, it splits to a list (like !! does)
In [18]: %sc -l alist=ls ip*.py
In [19]: alist
Out[19]: [’ip_expensive_init.py’, ’ip_simple2.py’, ’ip_simple.py’]

3.2. System aliases. In IPython, you can also de�ne your own system aliases. Even though IPython
gives you access to your system shell via the ! pre�x, it is convenient to have aliases to the system
commands you use most often. This allows you to work seamlessly from inside IPython with the same
commands you are used to in your system shell:

‘%alias alias_name cmd’ de�nes ‘alias_name’ as an alias for ‘cmd’
Then, typing ‘alias_name params’ will execute the system command ‘cmd params’ (from your

underlying operating system). Aliases have lower precedence than magic functions and Python normal
variables, so if ‘foo’ is both a Python variable and an alias, the alias can not be executed until ‘del
foo’ removes the Python variable. If you need to access an alias directly, you can use the builtin function
ipalias as ipalias(’foo’).

You can use the %l speci�er in an alias de�nition to represent the whole line when the alias is called.
For example:

In [2]: alias all echo "Input in brackets: <%l>"
In [3]: all hello world
Input in brackets: <hello world>

You can also de�ne aliases with positional parameters using %s speci�ers (one per parameter):
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In [1]: alias parts echo first %s second %s
In [2]: %parts A B
first A second B
In [3]: %parts A
Incorrect number of arguments: 2 expected.
parts is an alias to: ’echo first %s second %s’

Aliases expand Python variables just like system calls using ! or !! do: all expressions pre�xed with
'$' get expanded. For details of the semantic rules, see PEP-215: http://www.python.org/peps/
pep-0215.html. This is the library used by IPython for variable expansion.

Simply typing alias will print a list of the current aliases, and unalias can be used to remove an
alias. For further details, use alias?.

3.3. Directory management. IPython comes with some pre-de�ned aliases and a complete system
for changing directories, both via a stack (see %pushd, %popd and %ds) and via direct %cd. The latter
keeps a history of visited directories and allows you to go to any previously visited one. You can see this
history with the %dhist magic:

In [1]: cd ~/code/python
/home/fperez/code/python
In [2]: cd ~/teach/
/home/fperez/teach
In [3]: cd ~/research
/home/fperez/research
In [4]: dhist
Directory history (kept in _dh)
0: /home/fperez/teach/course/examples
1: /home/fperez/code/python
2: /home/fperez/teach
3: /home/fperez/research
In [5]: cd -1
/home/fperez/code/python

The %bookmark magic allows you to create named bookmarks in your �lesystem, which cd can be directed
to go to (with the -b �ag), and to which it will try to default automatically if no such named directory
exists. The system is very easy to use and quite natural in practice:

In [8]: bookmark course
In [9]: cd
/home/fperez
In [10]: ls course
ls: course: No such file or directory
In [11]: cd course
(bookmark:course) -> /home/fperez/teach/course
/home/fperez/teach/course

3.4. IPython as a system shell. While IPython is not a system shell, it ships with a special
pro�le called pysh, which you can activate at the command line as ‘ipython -p pysh’. This modi�es
IPython's behavior and adds some additional facilities and a prompt customized for �lesystem navigation.

Note that this does not make IPython a full-�edged system shell. In particular, it has no job control,
so if you type Ctrl-Z (under Unix), you'll suspend pysh itself, not the process you just started.

What the shell pro�le allows you to do is to use the convenient and powerful syntax of Python to do
quick scripting at the command line. Below we describe some of its features.

3.4.1. Aliases. All of your $PATH has been loaded as IPython aliases, so you should be able to type
any normal system command and have it executed. See %alias? and %unalias? for details on the alias
facilities. See also %rehash? and %rehashx? for details on the mechanism used to load $PATH.

3.4.2. Special syntax. Any lines which begin with ‘~’, ‘/’ and ‘.’ will be executed as shell com-
mands instead of as Python code. The special escapes below are also recognized. !cmd is valid in single
or multi-line input, all others are only valid in single-line input:

!cmd: pass `cmd' directly to the shell
!!cmd: execute `cmd' and return output as a list (split on `\n')
$var=cmd: capture output of cmd into var, as a string (shorthand for %sc var=cmd)

http://www.python.org/peps/pep-0215.html
http://www.python.org/peps/pep-0215.html
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$$var=cmd: capture output of cmd into var, as a list (split on `\n', shorthand for %sc -l
var=cmd)

3.4.3. Useful functions and modules. The os, sys and shutil modules from the Python standard library
are automatically loaded. Some additional functions, useful for shell usage, are listed below. You can
request more help about them with `?'.

shell: - execute a command in the underlying system shell
system: - like shell(), but return the exit status of the command
sout: - capture the output of a command as a string
lout: - capture the output of a command as a list (split on `\n')
getoutputerror: - capture (output,error) of a shell commandss

sout/lout are the functional equivalents of $/$$. They are provided to allow you to capture system
output in the middle of true python code, function de�nitions, etc (where $ and $$ are invalid)

4. Access to an editor

You can use %edit to have almost multiline editing. While IPython doesn't support true multiline
editing, this command allows you to call an editor on the spot, and IPython will execute the code you
type in there as if it were typed interactively.

%edit runs your IPython con�gured editor. By default this is read from your environment variable
$EDITOR. If this isn't found, it will default to vi under Linux/Unix and to notepad under Windows.

You can also set the value of this editor via the command-line option ‘-editor’ or in your
ipythonrc �le. This is useful if you wish to use speci�cally for IPython an editor di�erent from your
typical default (and for Windows users who typically don't set environment variables).

This command allows you to conveniently edit multi-line code right in your IPython session.
If called without arguments, %edit opens up an empty editor with a temporary �le and will execute

the contents of this �le when you close it (don't forget to save it!).

5. Customizing IPython

5.1. Basics. IPython has a very �exible con�guration system. It uses a con�guration �le which
allows permanent setting of all command-line options, module loading, code and �le execution. The
system allows recursive �le inclusion, so you can have a base �le with defaults and layers which load other
customizations for particular projects.

IPython reads a con�guration �le which can be speci�ed at the command line (-rcfile) or which by
default is assumed to be called ipythonrc. Such a �le is looked for in the current directory where IPython
is started and then in your IPYTHONDIR, which allows you to have local con�guration �les for speci�c
projects. The default value for this directory is $HOME/.ipython (_ipython under Windows). Under
Unix operating systems $HOME always exists; for Windows, IPython will try to �nd such an environment
variable; if it doesn't exist, it uses HOMEDRIVE\HOMEPATH (these are always de�ned by Windows). This
typically gives something like C:\Documents and Settings\YourUserName, but your local details
may vary. Finally, you can make this directory live anywhere you want by creating an environment
variable called $IPYTHONDIR.

In this directory you will �nd all the �les that con�gure IPython's defaults, and you can put there
your pro�les and extensions. This directory is automatically added by IPython to sys.path, so anything
you place there can be found by import statements.

The syntax of an rc�le is one of key-value pairs separated by whitespace, one per line. Lines beginning
with a # are ignored as comments, but comments can not be put on lines with data (the parser is fairly
primitive). You can study the default rc�le created by IPython at startup for customization details, it is
extremely commented.

5.2. Pro�les. IPython can load any con�guration �le you want if you give its name at startup with
the -rcfile �ag. However, for convenience it provides a shorthand based on a naming convention for
loading such pro�les. This system allows you to easily maintain customized versions of IPython for speci�c
purposes.

With the -profile <name> �ag (you can abbreviate it to -p), IPython will assume that your con�g
�le is called ipythonrc-<name> (it looks in current dir �rst, then in IPYTHONDIR). This is a quick way
to keep and load multiple con�g �les for di�erent tasks, especially if you use the include option of con�g
�les. You can keep a basic IPYTHONDIR/ipythonrc �le and then have other pro�les which include this
one and load extra things for particular tasks. For example:

(1) $HOME/.ipython/ipythonrc: load basic things you always want.



6. DEBUGGING AND PROFILING 43

Figure 2. IPython can provide extremely detailed tracebacks.

(2) $HOME/.ipython/ipythonrc-math: load (1) and basic math-related modules.

Since it is possible to create an endless loop by having circular �le inclusions, IPython will stop if it reaches
15 recursive inclusions.

6. Debugging and pro�ling with IPython

The Python standard library includes powerful facilities for debugging and pro�ling code, but it is
common to �nd even experienced Python programmers who still do not take advantage of them. In part,
this is due to the fact that loading and con�guring them requires reading an extra documentation section,
and keeping a bit of additional information about their use in your head. IPython tries to automate their
use to the point where, with a single command, you can use either of these subsystems in a transparent
manner. Hopefully they will become part of your daily work�ow.

At its most basic, for debugging your programs, you can rely on using %run to execute them, see
the results, play with all variables loaded into the interactive namespace, etc. A typical working session
involves keeping your favorite editor open with the �le you are working on, and repeatedly calling %run
on it as you make changes and save them.

If your program raises an exception, IPython will provide you with a more detailed traceback than the
default Python ones. You can even increase the level of detail further by using %xmode Verbose, which
forces the printing of variable values at all stack frames. This option should be used with care though
(and that's why it is not the default), as printing a ten-million-entry array can lock up your computer for
a very long time. An example of this kind of very informative traceback is shown in Fig. 2.

6.1. Automatic invocation of pdb on exceptions. IPython, if started with the -pdb option (or
if the option is set in your rc �le) can call the Python pdb debugger every time your code triggers an
uncaught exception. This feature can also be toggled at any time with the %pdb magic command. This
can be extremely useful in order to �nd the origin of subtle bugs, because pdb opens up at the point in
your code which triggered the exception, and while your program is at this point `dead', all the data is
still available and you can walk up and down the stack frame and understand the origin of the problem.

Furthermore, you can use these debugging facilities both with the embedded IPython mode and
without IPython at all. For an embedded shell (see sec. 7), simply call the constructor with ‘-pdb’ in
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the argument string and automatically pdb will be called if an uncaught exception is triggered by your
code.

For stand-alone use of the feature in your programs which do not use IPython at all, put the following
lines toward the top of your `main' routine:

import sys,IPython.ultraTB
sys.excepthook = IPython.ultraTB.FormattedTB(mode=‘Verbose’,
color_scheme=‘Linux’, call_pdb=1)

The mode keyword can be either ‘Verbose’ or ‘Plain’, giving either very detailed or normal tracebacks
respectively. The color_scheme keyword can be one of ‘NoColor’, ‘Linux’ (default) or ‘LightBG’.
These are the same options which can be set in IPython with -colors and -xmode.

This will give any of your programs detailed, colored tracebacks with automatic invocation of pdb.

6.2. Running entire programs via pdb. pdb, the Python debugger, is a powerful interactive
debugger which allows you to step through code, set breakpoints, watch variables, etc. IPython makes it
very easy to start any script under the control of pdb, regardless of whether you have wrapped it into a
‘main()’ function or not. For this, simply type ‘%run -d myscript’ at an IPython prompt. See the
%run command's documentation (run?) for more details, including how to control where pdb will stop
execution �rst.

For more information on the use of the pdb debugger, read the included pdb.doc �le (part of the
standard Python distribution). On a stock Linux system it is located at /usr/lib/python2.3/pdb.doc,
but the easiest way to read it is by using the help() function of the pdb module as follows (in an IPython
prompt):

In [1]: import pdb
In [2]: pdb.help()

This will load the pdb.doc document in a �le viewer for you automatically.

6.3. Pro�ling. When dealing with performance issues, the %run command with a -p option allows
you to run complete programs under the control of the Python pro�ler. The %prun command does a
similar job for single Python expressions (like function calls, similar to profile.run()). While this
is possible with the standard profile module, IPython wraps this functionality with magic commands
convenient for rapid interactive work.

7. Embedding IPython into your programs

A few lines of code are enough to load a complete IPython inside your own programs, giving you the
ability to work with your data interactively after automatic processing has been completed.

You can call IPython as a python shell inside your own python programs. This can be used both
for debugging code or for providing interactive abilities to your programs with knowledge about the local
namespaces (very useful in debugging and data analysis situations).

It is possible to start an IPython instance inside your own Python programs. This allows you to
evaluate dynamically the state of your code, operate with your variables, analyze them, etc. Note however
that any changes you make to values while in the shell do not propagate back to the running code, so it
is safe to modify your values because you won't break your code in bizarre ways by doing so.

This feature allows you to easily have a fully functional python environment for doing object intro-
spection anywhere in your code with a simple function call. In some cases a simple print statement is
enough, but if you need to do more detailed analysis of a code fragment this feature can be very valuable.

It can also be useful in scienti�c computing situations where it is common to need to do some automatic,
computationally intensive part and then stop to look at data, plots, etc1. Opening an IPython instance
will give you full access to your data and functions, and you can resume program execution once you are
done with the interactive part (perhaps to stop again later, as many times as needed).

The following code snippet is the bare minimum you need to include in your Python programs for this
to work (detailed examples follow later):

from IPython.Shell import IPShellEmbed
ipshell = IPShellEmbed()
ipshell() # this call anywhere in your program will start IPython

1This functionality was inspired by IDL's combination of the stop keyword and the .continue executive command,
which I have found very useful in the past, and by a posting on comp.lang.python by cmkl <cmkle�ner@gmx.de>
on Dec. 06/01 concerning similar uses of pyrepl.
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You can run embedded instances even in code which is itself being run at the IPython interactive prompt
with '%run <filename>'. Since it's easy to get lost as to where you are (in your top-level IPython or in
your embedded one), it's a good idea in such cases to set the in/out prompts to something di�erent for
the embedded instances. The code examples below illustrate this.

You can also have multiple IPython instances in your program and open them separately, for example
with di�erent options for data presentation. If you close and open the same instance multiple times, its
prompt counters simply continue from each execution to the next.

Please look at the docstrings in the Shell.py module for more details on the use of this system.
The following sample �le illustrating how to use the embedding functionality is provided in the exam-

ples directory as example-embed.py. It should be fairly self-explanatory:

#!/usr/bin/env python

"""An example of how to embed an IPython shell into a running program.

Please see the documentation in the IPython.Shell module for more details.

The accompanying file example-embed-short.py has quick code fragments for

embedding which you can cut and paste in your code once you understand how

things work.

The code in this file is deliberately extra-verbose, meant for learning."""

# The basics to get you going:

# IPython sets the __IPYTHON__ variable so you can know if you have nested

# copies running.

# Try running this code both at the command line and from inside IPython (with

# %run example-embed.py)

try:
__IPYTHON__

except NameError:

nested = 0

args = [’’]

else:
print "Running nested copies of IPython."

print "The prompts for the nested copy have been modified"

nested = 1

# what the embedded instance will see as sys.argv:

args = [’-pi1’,’In <\\#>:’,’-pi2’,’ .\\D.:’,’-po’,’Out<\\#>:’,’-nosep’]

# First import the embeddable shell class

from IPython.Shell import IPShellEmbed

# Now create an instance of the embeddable shell. The first argument is a

# string with options exactly as you would type them if you were starting

# IPython at the system command line. Any parameters you want to define for

# configuration can thus be specified here.

ipshell = IPShellEmbed(args,

banner = ’Dropping into IPython’,

exit_msg = ’Leaving Interpreter, back to program.’)

# Make a second instance, you can have as many as you want.

if nested:
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args[1] = ’In2<\\#>’

else:
args = [’-pi1’,’In2<\\#>:’,’-pi2’,’ .\\D.:’,’-po’,’Out<\\#>:’,’-nosep’]

ipshell2 = IPShellEmbed(args,banner = ’Second IPython instance.’)

print ’\nHello. This is printed from the main controller program.\n’

# You can then call ipshell() anywhere you need it (with an optional

# message):

ipshell(’***Called from top level. ’

’Hit Ctrl-D to exit interpreter and continue program.’)

print ’\nBack in caller program, moving along...\n’

#---------------------------------------------------------------------------

# More details:

# IPShellEmbed instances don’t print the standard system banner and

# messages. The IPython banner (which actually may contain initialization

# messages) is available as <instance>.IP.BANNER in case you want it.

# IPShellEmbed instances print the following information everytime they

# start:

# - A global startup banner.

# - A call-specific header string, which you can use to indicate where in the

# execution flow the shell is starting.

# They also print an exit message every time they exit.

# Both the startup banner and the exit message default to None, and can be set

# either at the instance constructor or at any other time with the

# set_banner() and set_exit_msg() methods.

# The shell instance can be also put in ’dummy’ mode globally or on a per-call

# basis. This gives you fine control for debugging without having to change

# code all over the place.

# The code below illustrates all this.

# This is how the global banner and exit_msg can be reset at any point

ipshell.set_banner(’Entering interpreter - New Banner’)

ipshell.set_exit_msg(’Leaving interpreter - New exit_msg’)

def foo(m):

s = ’spam’

ipshell(’***In foo(). Try @whos, or print s or m:’)

print ’foo says m = ’,m

def bar(n):

s = ’eggs’

ipshell(’***In bar(). Try @whos, or print s or n:’)
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print ’bar says n = ’,n

# Some calls to the above functions which will trigger IPython:

print ’Main program calling foo("eggs")\n’

foo(’eggs’)

# The shell can be put in ’dummy’ mode where calls to it silently return. This

# allows you, for example, to globally turn off debugging for a program with a

# single call.

ipshell.set_dummy_mode(1)

print ’\nTrying to call IPython which is now "dummy":’

ipshell()

print ’Nothing happened...’

# The global ’dummy’ mode can still be overridden for a single call

print ’\nOverriding dummy mode manually:’

ipshell(dummy=0)

# Reactivate the IPython shell

ipshell.set_dummy_mode(0)

print ’You can even have multiple embedded instances:’

ipshell2()

print ’\nMain program calling bar("spam")\n’

bar(’spam’)

print ’Main program finished. Bye!’

#********************** End of file <example-embed.py> ***********************

Once you understand how the system functions, you can use the following code fragments in your
programs which are ready for cut and paste:

"""Quick code snippets for embedding IPython into other programs.

See example-embed.py for full details, this file has the bare minimum code for

cut and paste use once you understand how to use the system."""

#---------------------------------------------------------------------------

# This code loads IPython but modifies a few things if it detects it’s running

# embedded in another IPython session (helps avoid confusion)

try:
__IPYTHON__

except NameError:

argv = [’’]

banner = exit_msg = ’’

else:
# Command-line options for IPython (a list like sys.argv)

argv = [’-pi1’,’In <\\#>:’,’-pi2’,’ .\\D.:’,’-po’,’Out<\\#>:’]

banner = ’*** Nested interpreter ***’

exit_msg = ’*** Back in main IPython ***’

# First import the embeddable shell class

from IPython.Shell import IPShellEmbed
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# Now create the IPython shell instance. Put ipshell() anywhere in your code

# where you want it to open.

ipshell = IPShellEmbed(argv,banner=banner,exit_msg=exit_msg)

#---------------------------------------------------------------------------

# This code will load an embeddable IPython shell always with no changes for

# nested embededings.

from IPython.Shell import IPShellEmbed

ipshell = IPShellEmbed()

# Now ipshell() will open IPython anywhere in the code.

#---------------------------------------------------------------------------

# This code loads an embeddable shell only if NOT running inside

# IPython. Inside IPython, the embeddable shell variable ipshell is just a

# dummy function.

try:
__IPYTHON__

except NameError:

from IPython.Shell import IPShellEmbed

ipshell = IPShellEmbed()

# Now ipshell() will open IPython anywhere in the code

else:
# Define a dummy ipshell() so the same code doesn’t crash inside an

# interactive IPython

def ipshell(): pass

#******************* End of file <example-embed-short.py> ********************

8. Integration with Matplotlib

The matplotlib library (http://matplotlib.sourceforge.net) provides high quality 2D plot-
ting for Python. Matplotlib can produce plots on screen using a variety of GUI toolkits, including Tk,
GTK and WXPython. It also provides a number of commands useful for scienti�c computing, all with a
syntax compatible with that of the popular Matlab program.

IPython accepts the special option -pylab. This con�gures it to support matplotlib, honoring the
settings in the .matplotlibrc �le. IPython will detect the user's choice of matplotlib GUI backend, and
automatically select the proper threading model to prevent blocking. It also sets matplotlib in interactive
mode and modi�es %run slightly, so that any matplotlib-based script can be executed using %run and the
�nal show() command does not block the interactive shell.

The -pylab option must be given �rst in order for IPython to con�gure its threading mode. However,
you can still issue other options afterwards. This allows you to have a matplotlib-based environment
customized with additional modules using the standard IPython pro�le mechanism: �ipython -pylab
-p myprofile� will load the pro�le de�ned in ipythonrc-myprofile after con�guring matplotlib.

http://matplotlib.sourceforge.net


CHAPTER 4

Introduction to plotting with matplotlib / pylab

1. A bird's eye view

matplotlib is a library for making 2D plots of arrays in python.1 Although it has its origins in emulating
the Matlab graphics commands, it does not require matlab, and has a pure, object oriented API. Although
matplotlib is written primarily in python, it makes heavy use of NumPy and other extension code to provide
good performance even for large arrays. matplotlib is designed with the philosophy that you should be
able to create simple plots with just a few commands, or just one! If you want to see a histogram of your
data, you shouldn't need to instantiate objects, call methods, set properties, and so on; it should just work.

The matplotlib code is divided into three parts: the pylab interface is the set of functions provided by
the pylab module which allow the user to create plots with code quite similar to matlab �gure generating
code. The matplotlib frontend or matplotlib API is the set of classes that do the heavy lifting, creating
and managing �gures, text, lines, plots and so on. This is an abstract interface that knowns nothing
about output formats. The backends are device dependent drawing devices, aka renderers, that transform
the frontend representation to hardcopy or a display device. Example backends: PS creates postscript
hardcopy, SVG creates scalar vector graphics hardcopy, Agg creates PNG output using the high quality
antigrain library that ships with matplotlib, GTK embeds matplotlib in a GTK application, GTKAgg uses
the antigrain2 renderer to create a �gure and embed it a GTK application, and so on for WX, Tkinter,
FLTK, . . . .

For years, I used to use matlab exclusively for data analysis and visualization. matlab excels at making
nice looking plots easy. When I began working with EEG data, I found that I needed to write applications
to interact with my data, and developed and EEG analysis application in matlab. As the application grew
in complexity, interacting with databases, http servers, manipulating complex data structures, I began to
strain against the limitations of matlab as a programming language, and decided to start over in python.
python more than makes up for all of matlab's de�ciencies as a programming language, but I was having
di�culty �nding a 2D plotting package � for 3D VTK, which is discussed at length below more than
exceeds all of my needs.

When I went searching for a python plotting package, I had several requirements:

• Plots should look great - publication quality. One important requirement for me is that the text
looks good (antialiased, etc)

• Postscript output for inclusion with LATEX documents and publication quality printing
• Embeddable in a graphical user interface for application development
• The code should be mostly python so itis easy to understand and extend � users become devel-
opers!

• Making plots should be easy � just a few lines of code for simple graphs

Finding no package that suited me just right, I did what any self-respecting python programmer would
do: rolled up my sleeves and dived in. Not having any real experience with computer graphics, I decided
to emulate matlab's plotting capabilities because that is something matlab does very well. This had the
added advantage that many people have a lot of matlab experience, and thus they can quickly get up
to steam plotting in python. From a developer's perspective, having a �xed user interface (the pylab
interface) has been very useful, because the guts of the code base can be redesigned without a�ecting user
code.

Without further ado, let's create our �rst �gure. This example uses the matplotlib object oriented
API. Most users use the pylab interface, which will be discussed next and makes it easier to make plots
because a lot of the tedius work of creating and managing �gures and �gure windows is done for you behind
the hood. But since the real core of the library is the object oriented API, I think it is a good place to

1This short guide is not meant as a complete guide or tutorial. There is a more comprehensive user's guide and
tutorial on the matplotlib web-site at http://matplotlib.sf.net.
2http://antigrain.com
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Figure 1. A simple plot generated by the antigrain (Agg) backend .

start. If you are developing a graphical user interface or making plots on a web server, you probably want
maximal control with no magic going on behind the scenes � this is where the matplotlib API should be
used. If you are just trying to make a �gure for inclusion in a paper or if your working interactively from
the python shell, you'll probably be happy with the pylab interface.

Listing 4.1. Creating a simple �gure with the antigrain backend (generates PNG)
using the object oriented matplotlib library

"""

A pure object oriented example using the agg backend

"""

# import the matplotlib backend you want to use and the Figure class

from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas

from matplotlib.figure import Figure

# the figure is the center of the action, and the canvas is a backend

# dependent container to hold the figure and make backend specific calls

fig = Figure()

canvas = FigureCanvas(fig)

# you can add multiple subplots and axes

ax = fig.add_subplot(111)

# the simplest plot!

ax.plot([1,2,3])

# you can decorate your plot with text and grids

ax.set_title(’hi mom’)

ax.grid(True)

ax.set_xlabel(’time’)

ax.set_ylabel(’volts’)

# and save it to hardcopy

fig.savefig(’../fig/mpl_one_two_three.png’)
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Figure 2. The matplotlib toolbar used to navigate around your �gure

2. A short pylab tutorial

Here is about the simplest code you can use to create a �gure with matplotlib using the pylab interface.
In this section, I'm assuming you are using ipython in the pylab mode � see Section8 for details.

peds-pc311:~> pylab
Python 2.3.3 (#2, Apr 13 2004, 17:41:29)
Type "copyright", "credits" or "license" for more information.

IPython 0.6.12_cvs -- An enhanced Interactive Python.
? -> Introduction to IPython’s features.
%magic -> Information about IPython’s ’magic’ % functions.
help -> Python’s own help system.
object? -> Details about ’object’. ?object also works, ?? prints more.

Welcome to pylab, a matplotlib-based Python environment
help(matplotlib) -> generic matplotlib information
help(pylab) -> matlab-compatible commands from matplotlib
help(plotting) -> plotting commands

In [1]: plot([1,2,3])
Out[1]: [<matplotlib.lines.Line2D instance at 0xb557a86c>]

If your settings are correct, a �gure window should popup and you should be able to interact with
it. That's a lot less typing than our initial example using the object oriented API in which you had to
manually create the Figure, Axes and so on!

Try clicking on the navigation toolbar at the bottom of the �gure � the toolbar is shown in Figure2.
The �rst three buttons from left to right in Figure2 are home, back and forward. These byttons are are
akin to the web browser buttons. They are used to navigate back and forth between previously de�ned
views. They have no meaning unless you have already navigated somewhere else using the pan and zoom
buttons as described below. This is analogous to trying to click Back on your web browser before visiting
a new page �nothing happens. The home button always takes you to the �rst, default view of your data.

The next to button moving right is the pan/zoom button, which looks like a cross with arrows on the
end (a �eur). The pan/zoom button button has two modes: pan and zoom (no surprise there, right?).
Click this toolbar button to activate this mode; you should see �pan/zoom mode� show up in the status
bar. Then put your mouse somewhere over an axes. To activate panning: press the left mouse button and
hold it, dragging it to a new position. If you press x or y while panning, the motion will be contrained
to the x or y axis, respectively . To activate zooming, press the right mouse button, dragging it to a
new position. The x axis will be zoomed in proportionate to the rightward movement and zoomed out
proportionate to the leftward movement. Ditto for the yaxis and up/down motions. The point under your
mouse when you begin the zoom remains stationary, allowing you to zoom to an arbitrary point in the
�gure. You can use the modi�er keys x, y or CONTROL to constrain the zoom to the x axes, the y axes, or
aspect ratio preserve, respectively.

The next button moving right is the zoom to rectangle button which has a magnifying glass over a
piece of paper. The button is striaghtforward and works in the standard way; when you click it, you
should see that it is activated by looking for �Zoom to rect mode� in the status bar, and then you select
the rectangular region you want to zoom in on.

The �nal button is the save button, which will save your �gure in the current view. All of the *Agg
backends know how to save the following image types: PNG, PS, EPS, SVG.

Let's make the same �gure we made using the object oriented API above, ie Figure1, but this time
using the pylab

Listing 4.2. Creating a simple �gure in pylab

from pylab import *



52 4. MATPLOTLIB

plot([1,2,3])

title(’hi mom’)

grid(True)

xlabel(’time’)

ylabel(’volts’)

savefig(’../fig/mpl_one_two_three.png’)

show()

As you can see there is basically a direct translation between the OO interface and the pylab interface.
When plot is called, the pylab interface makes a call to the function gca() (�get current axes�) to get a
reference to the current axes. gca in turn, makes a call to gcf (�get current �gure�) to get a reference to
the current �gure. gcf, �nding that no �gure has been created, creates the default �gure using figure()
and returns it. gca will then return the current axes of that �gure if it exists, or create the default axes
subplot(111) if it does not. The last line show is a GUI independent way of actually creating a �gure
window, and is not required for image backends such as postscript.

Thus a lot happens under the hood when you call plot, but for the most part you don't need to think
about it � it just works. The important thing to understand is that the pylab interface has a state, and
keeps track of the current �gure and axes. All plotting commands target the current axes, and you can
manipulate which ones are current

Listing 4.3. Creating multiple subplots and plotting multiple lines in a single plot command

from pylab import *

def f(t):

s1 = cos(2*pi*t)

e1 = exp(-t)

return multiply(s1,e1)

t1 = arange(0.0, 5.0, 0.1)

t2 = arange(0.0, 5.0, 0.02)

t3 = arange(0.0, 2.0, 0.01)

# create and upper subplot and make it current

subplot(211)

l1, l2 = plot(t1, f(t1), ’bo’, t2, f(t2), ’k--’)

set(l1, markerfacecolor=’g’)

grid(True)

title(’A tale of 2 subplots’)

ylabel(’Damped oscillation’)

# create a lower subplot and make it current

subplot(212)

plot(t3, cos(2*pi*t3), ’r.’)

grid(True)

xlabel(’time (s)’)

ylabel(’Undamped’)

savefig(’../fig/mpl_subplot_demo’)

show()

In addition to creating multiple subplots, this example contains a couple of new things. In the �rst
plot command, the return value is stored as l1, l2 and the set command is used to change a default
line property.

l1, l2 = plot(t1, f(t1), ’bo’, t2, f(t2), ’k--’)
set(l1, markerfacecolor=’g’)

l1 and l2 are matplotlib.lines.Line2D instances and they are created by the plot command and
added to the current axes. This is the typical mode of operation of the axes plot commands: they create
a bunch of primitive objects (lines, polygons, text, images), add them to the axes, and return them. In
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Figure 3. It's easy to create multiple axes and subplots.

this example, the line's markerfacecolor property is set with the set command. In the next section,
we'll look into matplotlibs set and get introspection system and show how to use it to customize your
lines, polygons, text instances and images.

3. Set and get introspection

Everything that goes into a matplotlib �gure, including the Figure itself, are all objects dervied from
a single base class Artist, and the pylab set and get commands provide a uni�ed way to con�gure
them. Let's create a simple plot of random circles, and use that to explore how set and get work. First
the basic plot � we'll store the return value as lines. Note that plot always returns a list of lines; in the
example above there were two lines l1 and l2, and in the example below there is only a single element of
the list lines. No matter: set and get will work on a single instance or a sequence of instances

In [2]: x = rand(20); y = rand(20)

In [3]: lines = plot(x,y,’o’)

In [4]: type(lines) # plot always returns a list

Out[4]: <type ’list’>

In [5]: len(lines) # even if it is length 1

Out[5]: 1

The simple �gure that was created, a scattering of blue circles at random locations, is shown in
Figure4. To see a listing of the properties of the line, and what their current values are, call get(lines)

In [29]: get(lines)

alpha = 1.0

antialiased or aa = True

clip_on = True

color or c = blue

figure = <matplotlib.figure.Figure instance at 0xb40e1cec>

label =

linestyle or ls = None

linewidth or lw = 0.5

marker = o
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Figure 4. The default marker plot, before marker customization

markeredgecolor or mec = black

markeredgewidth or mew = 0.5

markerfacecolor or mfc = blue

markersize or ms = 6.0

transform = <Affine object at 0x8683c6c>

visible = True

xdata = [ 0.16952688 0.59729624 0.16829208 0.51311375 0.7227286

...0.45925692]...

ydata = [ 0.86459035 0.25595992 0.01905832 0.24303582 0.74993261

...0.28751132]...

zorder = 2

and to see the same listing of properties with information on legal values you can set them to, call
set(lines)

In [37]: set(lines)

alpha: float

antialiased or aa: [True | False]

clip_box: a matplotlib.transform.Bbox instance

clip_on: [True | False]

color or c: any matplotlib color - see help(colors)

dashes: sequence of on/off ink in points

data: (array xdata, array ydata)

data_clipping: [True | False]

figure: a matplotlib.figure.Figure instance

label: any string

linestyle or ls: [ ’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’ ]

linewidth or lw: float value in points

lod: [True | False]

marker: [ ’+’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’

...| ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ ]

markeredgecolor or mec: any matplotlib color - see help(colors)

markeredgewidth or mew: float value in points

markerfacecolor or mfc: any matplotlib color - see help(colors)
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Figure 5. The default marker plot, before marker customization

markersize or ms: float

transform: a matplotlib.transform transformation instance

visible: [True | False]

xclip: (xmin, xmax)

xdata: array

yclip: (ymin, ymax)

ydata: array

zorder: any number

OK, we have a lot of options here. Let's change the marker properties, and add a linesytle

In [20]: set(lines, markerfacecolor=’green’, markeredgecolor=’red’,
....: markersize=20, markeredgewidth=3,
....: linestyle=’--’, linewidth=3)

That's a lot of typing, but to great e�ect! The same data set now has quite a di�erent appearance, which
is shown in Figure5. Note in the long listing output of the set(lines) command above the markerfacecolor
settable property is listed as

markerfacecolor or mfc: any matplotlib color - see help(colors)

The markerfacecolor has an alias mfc to save typing, and common colornames have abbreviations too,
so the set command above could just as well be written

In [20]: set(lines, mfc=’g’, mec=’r’, ms=20, mew=3, ls=’--’, lw=3)

Another nice thing about matplotlib properties is that you can pass them in as keyword arguments to
plot and they will have the same e�ect, eg, you can create the identical plot with

In [6]: plot(x, y, ’o’, mfc=’g’, mec=’r’, ms=20, mew=3, ls=’--’, lw=3)
Out[6]: [<matplotlib.lines.Line2D instance at 0xb40db42c>]

As noted above, set and get work on any Artist, so you can con�gure your axes or text instances this
way. Eg, xlabel returns a matplotlib.text.Text instance

In [8]: t = xlabel(’time (s)’)

In [9]: set(t)

alpha: float
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backgroundcolor: any matplotlib color - see help(colors)

bbox: rectangle prop dict plus key ’pad’ which is a pad in points

clip_box: a matplotlib.transform.Bbox instance

clip_on: [True | False]

color: any matplotlib color - see help(colors)

family: [ ’serif’ | ’sans-serif’ | ’cursive’ | ’fantasy’ | ’monospace’ ]

figure: a matplotlib.figure.Figure instance

fontproperties: a matplotlib.font_manager.FontProperties instance

horizontalalignment or ha: [ ’center’ | ’right’ | ’left’ ]

label: any string

lod: [True | False]

multialignment: [’left’ | ’right’ | ’center’ ]

name or fontname: string eg, [’Sans’ | ’Courier’ | ’Helvetica’ ...]

position: (x,y)

rotation: [ angle in degrees ’vertical’ | ’horizontal’

size or fontsize: [ size in points | relative size eg ’smaller’, ’x-large’

... ] style or fontstyle: [ ’normal’ | ’italic’ | ’oblique’]

text: string

transform: a matplotlib.transform transformation instance

variant: [ ’normal’ | ’small-caps’ ]

verticalalignment or va: [ ’center’ | ’top’ | ’bottom’ ]

visible: [True | False]

weight or fontweight: [ ’normal’ | ’bold’ | ’heavy’ | ’light’ | ’ultrabold

...’ | ’ultralight’]

x: float

y: float

zorder: any number

So you have a lot of possibilities to customize your text! The most common things people what to do are
change the font size and color; the results of this command on the xlabel are shown in Figure5.

In [25]: set(t, fontsize=20, color=’darkslategray’)

4. Customizing the default behavior with the rc �le

matplotlib is designed to work in a variety of settings: some people use it in "batch mode" on a web
server to create images they never look at. Others use graphical user interfaces (GUIs) to interact with
their plots. Thus you must customize matplotlib to work like you want it to with the customization �le
.matplotlibrc, in which you can set whether you want to just create images or use a GUI (the backend
setting), and whether you want to work interactively from the shell (the interactive setting). Almost all of
the matplotlib settings and �gure properties can be customized with this �le, which is installed with the
rest of the matplotlib data (fonts, icons, etc) into a directory determined by distutils. Before compiling
matplotlib, it resides in the same dir as setup.py and will be copied into your install path. Typical
locations for this �le are

C:\Python23\share\matplotlib\.matplotlibrc # windows /usr/share/matplotlib/.matplotlibrc # linux

By default, the installer will overwrite the existing �le in the install path, so if you want to preserve
yours, please move it to your HOME dir and set the environment variable if necessary. In the rc �le, you
can set your backend, whether you'll be working interactively and default values for most of the �gure
properties.

In the RC �le, blank lines, or lines starting with a comment symbol, are ignored, as are trailing
comments. Other lines must have the format

key : val # optional comment

where key is some property like backend, lines.linewidth, or figure.figsize and val is the value
of that property. Example entries for these properties are
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Figure 6. A simple image plot of a 2D matrix, using nearest neighbor interpo-
lation and the jet colormap.

# this is a comment and is ignored
backend : GTKAgg # the default backend
lines.linewidth : 0.5 # line width in points
figure.figsize : 8, 6 # figure size in inches

A complete sample rc �le is included with the matplotlib distribution and available online.3

5. A quick tour of plot types

6. Images

Matplotlib has support for plotting images with imshow and �gimage. In imshow, the image data
is scaled to �t into the current axes, and many di�erent interpolation schemes are supported to do the
resampling, and in �gimage, the image data are transferred as a raw pixel dump to the �gure canvas without
resampling. You can add colorbars, set the default colormaps, and change the interpolation schemes quite
easily.

In [15]: x = arange(100.0); x.shape = 10,10

In [16]: im = imshow(x, interpolation=’nearest’)

In [17]: colorbar()
Out[17]: <matplotlib.axes.Axes instance at 0xb455496c>

which creates the image shown in Figure 6. You can interactively update the default colormap and change
the interpolation scheme, which creates the image show in Figure 7.

In [18]: im.set_interpolation(’bilinear’)

In [19]: hot()

There is a lot more you can do with images: you can set the data extent so that you can overlay contours
or other plots, you can plot multiple images to the same axes with di�erent colors and transparency values,
you can load images with PIL or imread and plot them in matplotlib, you can create montages of with
figimage placed around the �gure window at di�erent o�sets, you can plot grayscale, rgb or rgba data,
and so on. Consult the Matplotlib User's Guide and the examples subdirectory in the matplotlib source
distribution for more information. We'll clost o� with a simple example of reading in a PNG and displaying
it

3http://matplotlib.sourceforge.net/.matplotlibrc
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Figure 7. The same image data, rendered with the hot colormap and bilinear
interpolation. matplotlib has 14 colormaps built-in, and you can de�ne your own
with relative ease, and there are 16 interpolation methods.

In [35]: im = imread(’../data/ratner.png’)

In [36]: imshow(im)
Out[36]: <matplotlib.image.AxesImage instance at 0xb3ffba2c>

In [37]: axis(’off’)

7. Customizing text and mathematical expressions

8. Event handling: Tracking the mouse and keyboard
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Figure 8. Displaying image data from your camera in matplotlib





CHAPTER 5

Interfacing with external libraries

1. weave

Below is a listing of examples of weave use. This needs a lot of cleaning, as some of this code is very
old and doesn't actually run with current weave.

#!/usr/bin/env python

"""Simple examples of weave use.

Code meant to be used for learning/testing, not production.

Fernando Perez <fperez@colorado.edu>

March 2002, updated 2003."""

from weave import inline,converters

from Numeric import *

#-----------------------------------------------------------------------------

def simple_print(input):

"""Simple print test.

Since there’s a hard-coded printf %i in here, it will only work for

...numerical

inputs (ints). """

# note in the printf that newlines must be passed as \\n:

code = ’’’

std::cout << "Printing from C++ (using std::cout) : "<<input<<std::endl;

printf("And using C syntax (printf) : %i\\n",input);

’’’

inline(code,[’input’],

verbose=2) # see inline docstring for details

def py_print(input):

"Trivial printer, for timing."

print "Input:",input

def c_print(input):

"Trivial printer, for timing."

code = """printf("Input: %i \\n",input);"""

inline(code,[’input’])

def cpp_print(input):

"Trivial printer, for timing."

code = """std::cout << "Input: " << input << std::endl;"""

inline(code,[’input’])

61
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#-----------------------------------------------------------------------------

# Returning a scalar quantity computed from a Numeric array.

def trace(mat):

"""Return the trace of a matrix.

"""

nrow,ncol = mat.shape

code = \

"""

double tr=0.0;

for(int i=0;i<nrow;++i)

tr += mat(i,i);

return_val = tr;

"""

return inline(code,[’mat’,’nrow’,’ncol’],

type_converters = converters.blitz)

#-----------------------------------------------------------------------------

# WRONG CODE: trace() version which modifies in-place a python scalar

# variable. Note that this doesn’t work, similarly to how in-place changes in

# python only work for mutable objects. Below is an example that does work.

def trace2(mat):

"""Return the trace of a matrix. WRONG CODE.

"""

nrow,ncol = mat.shape

tr = 0.0

code = \

"""

for(int i=0;i<nrow;++i)

tr += mat(i,i);

"""

inline(code,[’mat’,’nrow’,’ncol’,’tr’],

type_converters = converters.blitz)

return tr

#-----------------------------------------------------------------------------

# Operating in-place in an existing Numeric array. Contrary to trying to

...modify

# in-place a scalar, this works correctly.

def in_place_mult(num,mat):

"""In-place multiplication of a matrix by a scalar.

"""

nrow,ncol = mat.shape

code = \

"""

for(int i=0;i<nrow;++i)

for(int j=0;j<ncol;++j)

mat(i,j) *= num;

"""

inline(code,[’num’,’mat’,’nrow’,’ncol’],

type_converters = converters.blitz)

#-----------------------------------------------------------------------------
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# Pure Python version for checking.

def cross_product(a,b):

"""Cross product of two 3-d vectors.

"""

cross = [0]*3

cross[0] = a[1]*b[2]-a[2]*b[1]

cross[1] = a[2]*b[0]-a[0]*b[2]

cross[2] = a[0]*b[1]-a[1]*b[0]

return array(cross)

#-----------------------------------------------------------------------------

# Here we return a list from the C code. This is probably *much* slower than

# the python version, it’s meant as an illustration and not as production

# code.

def cross_productC(a,b):

"""Cross product of two 3-d vectors.

"""

# py::tuple or py::list both work equally well in this case.

code = \

"""

py::tuple cross(3);

cross[0] = a(1)*b(2)-a(2)*b(1);

cross[1] = a(2)*b(0)-a(0)*b(2);

cross[2] = a(0)*b(1)-a(1)*b(0);

return_val = cross;

"""

return array(inline(code,[’a’,’b’],

type_converters = converters.blitz))

#-----------------------------------------------------------------------------

# C version which accesses a pre-allocated NumPy vector. Note: when using

# blitz, index access is done with (,,), not [][][]. In fact, [] indexing

# fails silently. See this and the next version for a comparison.

def cross_productC2(a,b):

"""Cross product of two 3-d vectors.

"""

cross = zeros(3,a.typecode())

code = \

"""

cross(0) = a(1)*b(2)-a(2)*b(1);

cross(1) = a(2)*b(0)-a(0)*b(2);

cross(2) = a(0)*b(1)-a(1)*b(0);

"""

inline(code,[’a’,’b’,’cross’],

type_converters = converters.blitz)

return cross

#-----------------------------------------------------------------------------

# Just like the previous case, but now we don’t use the blitz converters.

# Weave automagically does the type conversions for us.

def cross_productC3(a,b):

"""Cross product of two 3-d vectors.
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"""

cross = zeros(3,a.typecode())

code = \

"""

cross[0] = a[1]*b[2]-a[2]*b[1];

cross[1] = a[2]*b[0]-a[0]*b[2];

cross[2] = a[0]*b[1]-a[1]*b[0];

"""

inline(code,[’a’,’b’,’cross’])

return cross

#-----------------------------------------------------------------------------

def dot_product(a,b):

"""Dot product of two vectors.

Implemented in a funny (ridiculous) way to use support_code.

I want to see if we can call another function from inside our own

code. This would give us a crude way to implement better modularity by

having global constants which include the raw code for whatever C

functions we need to call in various places. These can then be included

via support_code.

The overhead is that the support code gets compiled in *every* dynamically

generated module, but I’m not sure that’s a big deal since the big

compilation overhead seems to come from all the fancy C++ templating and

whatnot.

Later: ask Eric if there’s a cleaner way to do this."""

N = len(a)

support = \

"""

double mult(double x,double y) {

return x*y;

}

"""

code = \

"""

double sum = 0.0;

for (int i=0;i<N;++i) {

sum += mult(a(i),b(i));

}

return_val = sum;

"""

return inline(code,[’a’,’b’,’N’],

type_converters = converters.blitz,

support_code = support,

libraries = [’m’],

)

#-----------------------------------------------------------------------------
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def sumC(x):

"""Return the sum of the elements of a 1-d array.

An example of how weave accesses a Numeric array without blitz. """

num_types = {Float:’double’,

Float32:’float’}

x_type = num_types[x.typecode()]

code = """

double result=0.0;

double element;

for (int i = 0; i < Nx[0]; i++){

// Note the type of the pointer below is computed in python

//element = *(%s *)(x->data+i*x->strides[0]);

// Weave’s magic does the above for us:

element = x[i];

result += element;

std::cout << "Element " << i << " = " << element << "\\n";

}

std::cout << "size x " << Nx[0] << "\\n";

return_val = result;

""" % x_type;

return inline(code,[’x’],verbose=0)

#-----------------------------------------------------------------------------

def Cglobals(arr):

"""How to pass data from function to function via globals.

This allows the kind of ’over the head’ parameter passing via globals

which is ugly but necessary for using things like generic integrators in

Numerical Recipes with aditional parameters. """

support = \

"""

// Declare globals here

/* These blitz guys must be accessed via pointers to avoid a costly copy.

Note that now the type is hardwired in. All python polymorphism is gone. I

should look into whether this can be fixed by properly using blitz templating.

*/

blitz::Array<int, 1> *G_arr_pt;

// The global M will be visible in the "code" segment

int M = 99;

void aprint(int N) {

std::cout << "In aprint()\\n";
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for (int i=0;i<N;++i)

std::cout << "arr[" << i << "]=" << (*G_arr_pt)(i) << " ";

std::cout << std::endl;

}

"""

code = \

"""

// Get the passed array reference so the data becomes global

G_arr_pt = &arr;

std::cout << "global M=" << M << std::endl;

std::cout << "local N=" << N << std::endl;

std::cout << "First, print using the blitz internal printer:\\n";

std::cout << "all arr\\n";

std::cout << arr << std::endl;

std::cout << "all G_arr\\n";

std::cout << *G_arr_pt << std::endl;

std::cout << "now by loop\\n";

for (int i=0;i<N;++i)

std::cout << "arr[" << i << "]=" << arr(i) << " ";

std::cout << std::endl;

std::cout << "Now calling aprint\\n";

aprint(N);

"""

N = len(arr)

return inline(code,[’arr’,’N’],

type_converters = converters.blitz,

support_code = support,

libraries = [’m’],

verbose = 0,

)

#-----------------------------------------------------------------------------

# Two trivial examples using the C math library follow.

def powC(x,n):

"""powC(x,n) -> x**n. Implemented using the C pow() function.

"""

support = \

"""

#include <math.h>

"""

code = \

"""

return_val = pow(x,n);
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"""

return inline(code,[’x’,’n’],

type_converters = converters.blitz,

support_code = support,

libraries = [’m’],

)

# Some callback examples

def foo(x,y):

print "In Python’s foo:"

print ’x’,x

print ’y’,y

return x

def cfoo(x,y):

code = """

printf("Attemtping to call back foo() from C...\\n");

py::tuple foo_args(2);

py::object z; // This will hold the return value of foo()

foo_args[0] = x;

foo_args[1] = y;

z = foo.call(foo_args);

printf("Exiting C code.\\n");

return_val = z;

"""

return inline(code,"foo x y".split() )

x=99

y="Hello"

print "Pure python..."

z=foo(x,y)

print "foo returned:",z

print "\nVia weave..."

z=cfoo(x,y)

print "cfoo returned:",z

# Complex numbers

def complex_test():

a = zeros((4,4),Complex)

a[0,0] = 1+2j

a[1,1] = 2+3.5j

print ’Before\n’,a

code = \

"""

std::complex<double> i(0, 1);

std::cout << a(1,1) << std::endl;

a(2,2) = 3.0+4.5*i;

//a(2,2).imag = 4.5;

"""

inline(code,[’a’],type_converters = converters.blitz)

print ’After\n’,a

complex_test()
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#-----------------------------------------------------------------------------

def sinC(x):

"""sinC(x) -> sin(x). Implemented using the C sin() function.

"""

support = \

"""

#include <math.h>

"""

code = \

"""

return_val = sin(x);

"""

return inline(code,[’x’],

type_converters = converters.blitz,

support_code = support,

libraries = [’m’],

)

def in_place_multNum(num,mat):

mat *= num

from weave import inline

class bunch: pass

def oaccess():

x=bunch()

x.a = 1

code = """ // BROKEN!

// Try to emulate Python’s: print ’x.a’,x.a

std::cout << "x.a " << x.a << std::endl;

"""

inline(code,[’x’])

main2 = oaccess

def ttest():

nrun = 10

size = 6000

mat = ones((size,size),’d’)

num = 5.6

tNum = time_test(nrun,in_place_multNum,*(num,mat))

print ’time Num’,tNum

tC = time_test(nrun,in_place_mult,*(num,mat))

print ’time C’,tC

def main():

print ’Printing comparisons:’

print ’\nPassing an int - what the C was coded for:’

simple_print(42)
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print ’\nNow passing a float. C++ is fine (cout<< takes care of things)

...but C fails:’

simple_print(42.1)

print ’\nAnd a string. Again, C++ is ok and C fails:’

simple_print(’Hello World!’)

A = zeros((3,3),’d’)

A[0,0],A[1,1],A[2,2] = 1,2.5,3.3

print ’\nMatrix A:\n’,A

print ’Trace by two methods. Second fails, see code for details.’

print ’\ntr(A)=’,trace(A)

print ’\ntr(A)=’,trace2(A)

a = 5.6

print ’\nMultiplying A in place by %s:’ % a

in_place_mult(a,A)

print A

# now some simple operations with 3-vectors.

a = array([4.3,1.5,5.6])

b = array([0.8,2.9,3.8])

print ’\nPython and C versions follow. Results should be identical:’

print ’a =’,a

print ’b =’,b

print ’\nsum(a_i) =’,sum(a)

print ’sum(a_i) =’,sumC(a)

print ’\na.b =’,dot(a,b)

print ’a.b =’,dot_product(a,b)

print ’\na x b =’,cross_product(a,b)

print ’a x b =’,cross_productC(a,b)

print ’\nIn-place versions.’

print ’a x b =’,cross_productC2(a,b)

print ’a x b =’,cross_productC3(a,b)

print ’\nSimple functions using the C math library:’

import math

x = 3.5

n = 4

theta = math.pi/4.

print ’\nx**’+str(n)+’=’,x**n

print ’x**’+str(n)+’=’,powC(x,n)

print ’\nsin(’+str(theta)+’)=’,math.sin(theta)

print ’sin(’+str(theta)+’)=’,sinC(theta)

print ’\nGlobal variables and explicitly typed blitz arrays.’

x = array([4,5,6])

print ’x is a Numeric array:\nx=’,x
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print ’Now using weave:’

Cglobals (x)

if __name__ == ’__main__’:

main()

2. ctypes

Some quick notes about ctypes, to be �nished later.

• Classes: _as_parameter_ attribute, one of: [int, str, unicode]. A property can be used to
provide custom access. This allows any class to customize how it isseen if one of its instances is
used as a parameter in a ctypes call.

• Functions: when the underlying ctypes-exposed functions is seen on the Python side, set its
.argtypes attribute.

3. swig

4. f2py

This is a rough set of notes on how to use f2py. It does NOT substitute the o�cial manual, but is
rather meant to be used alongside with it.

For any non-trivial poject involving f2py, one should also keep at hand Pierre Schnizer's excellent 'A
short introduction to F2PY', available from http://fubphpc.tu-graz.ac.at/~pierre/f2py_tutorial.tar.gz

4.1. Usage for the impatient. Start by building a scratch signature �le automatically from your
Fortran sources (in this case all, you can choose only those .f �les you need):

f2py -m MODULENAME -h MODULENAME.pyf *.f

This writes the �le MODULENAME.pyf, making the best guesses it can from the Fortran sources. It
builds an interface for the module to be accessed as 'import adap1d' from python.

You will then edit the .pyf �le to �ne-tune the python interface exhibited by the resulting extension.
This means for example making unnecessary scratch areas or array dimensions hidden, or making certain
parameters be optional and take a default value.

Then, write your setup.py �le using distutils, and list the .pyf �le along with the Fortran sources it is
meant to wrap. f2py will build the module for you automatically, respecting all the interface speci�cations
you made in the .pyf �le.

This approach is ultimately far easier than trying to get all the declarations (especially dependencies)
right through Cf2py directives in the Fortran sources. While that may seem appealing at �rst, experience
seems to show that it's ultimately far more time-consuming and prone to subtle errors. Using this approach,
the �rst f2py pass can do the bulk of the interface writing and only �ne-tuning needs to be done manually.
I would only recommend embedded Cf2py directives for very simple problems (where it works very well).

The only drawback of this approach is that the interface and the original Fortran source lie in di�erent
�les, which need to be kept in sync. This increases a bit the chances of forgetting to update the .pyf �le if
the Fortran interface changes (adding a parameter, for example). However, the bene�t of having explicit,
clear control over f2py's behavior far outweighs this concern.

4.2. Choosing a default compiler. Set the FC_VENDOR environment variable. This will then
prevent f2py from testing all the compilers it knows about.

4.3. Using Cf2py directives. For simpler cases you may choose to go the route of Cf2py directives.
Below are some tips and examples for this approach.

Here's the signature of a simple Fortran routine:

subroutine phipol(j,mm,nodes,wei,nn,x,phi,wrk)

implicit real *8 (a-h, o-z)

real *8 nodes(*),wei(*),x(*),wrk(*),phi(*)

real *8 sum, one, two, half

The above is correctly handled by f2py, but it can't know what is meant to be input/output and what
the relations between the various variables are (such as integers which are array dimensions). If we add
the following f2py directives, the generated python interface is a lot nicer:
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subroutine phipol(j,mm,nodes,wei,nn,x,phi,wrk)

c

c Lines with Cf2py in them are directives for f2py to generate a better

c python interface. These must come _before_ the Fortran variable

c declarations so we can control the dimension of the arrays in Python.

c

c Inputs:

Cf2py integer check(0<=j && j<mm),depend(mm) :: j

Cf2py real *8 dimension(mm),intent(in) :: nodes

Cf2py real *8 dimension(mm),intent(in) :: wei

Cf2py real *8 dimension(nn),intent(in) :: x

c

c Outputs:

Cf2py real *8 dimension(nn),intent(out),depend(nn) :: phi

c

c Hidden args:

c - scratch areas can be auto-generated by python

Cf2py real *8 dimension(2*mm+2),intent(hide,cache),depend(mm) :: wrk

c - array sizes can be auto-determined

Cf2py integer intent(hide),depend(x):: nn=len(x)
Cf2py integer intent(hide),depend(nodes) :: mm = len(nodes)
c

implicit real *8 (a-h, o-z)

real *8 nodes(*),wei(*),x(*),wrk(*),phi(*)

real *8 sum, one, two, half

Some comments on the above:

• The f2py directives should come immediately after the 'subroutine' line and before the Fortran
variable lines. This allows the f2py dimension directives to override the Fortran var(*) directives.

• If the Fortran code uses var(N) instead of var(*), the f2py directives can be placed after the
Fortran declarations. This mode is preferred, as there is less redundancy overall. The result is
much simpler:

subroutine phipol(j,mm,nodes,wei,nn,x,phi,wrk)

c

c Lines with Cf2py in them are directives for f2py to generate a better

c python interface. These must come _before_ the Fortran variable

c declarations so we can control the dimension of the arrays in Python.

c

c Inputs:

Cf2py integer check(0<=j && j<mm),depend(mm) :: j

Cf2py real *8 dimension(mm),intent(in) :: nodes

Cf2py real *8 dimension(mm),intent(in) :: wei

Cf2py real *8 dimension(nn),intent(in) :: x

c

c Outputs:

Cf2py real *8 dimension(nn),intent(out),depend(nn) :: phi

c

c Hidden args:

c - scratch areas can be auto-generated by python

Cf2py real *8 dimension(2*mm+2),intent(hide,cache),depend(mm) :: wrk

c - array sizes can be auto-determined

Cf2py integer intent(hide),depend(x):: nn=len(x)
Cf2py integer intent(hide),depend(nodes) :: mm = len(nodes)
c
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implicit real *8 (a-h, o-z)

real *8 nodes(*),wei(*),x(*),wrk(*),phi(*)

real *8 sum, one, two, half

Since python can automatically manage memory, it is possible to hide the need for manually passed
'work' areas. The C/python wrapper to the underlying fortran routine will allocate the memory for the
needed work areas on the �y. This is done by specifying intent(hide,cache). 'hide' tells f2py to remove the
variable from the argument list and 'cache' tells it to auto-generate it.

In cases where the allocation cost becomes a performance problem, one can remove the 'hide' part
and make it an optional argument. In this case it will only be generated if not given. For this, the line
above should be changed to:

Cf2py real *8 dimension(2*mm+2), intent(cache), optional, depend(mm) :: wrk

Note that this should only be done after proving that the scratch areas are causing a performance problem.
The cache directive causes f2py to keep cached copies of the scratch areas, so no unnecessary mallocs
should be triggered.

Since f2py relies on NumPy arrays, all dimensions can be determined from the arrays themselves and
it is not necessary to pass them explicitly.

With all this, the resulting f2py-generated docstring becomes:

phipol - Function signature:
phi = phipol(j,nodes,wei,x)

Required arguments:
j : input int
nodes : input rank-1 array(’d’) with bounds (mm)
wei : input rank-1 array(’d’) with bounds (mm)
x : input rank-1 array(’d’) with bounds (nn)

Return objects:
phi : rank-1 array(’d’) with bounds (nn)

4.4. Debugging. For debugging, use the �debug-capi option to f2py. This causes the extension
modules to print detailed information while in operation. In distutils, this must be passed as an option in
the f2py_options to the Extension constructor.

4.5. Wrapping C codes with f2py. Below is Pearu Peterson's (the f2py author) response to a
question about using f2py to wrap existing C codes. While SWIG provides similar functionality and weave
is perfect for inlining C, f2py seems to be an incredibly simple and convenient tool for wrapping C libraries.

Pearu's response follows:
For example, consider the following C �le:

/* foo.c */
double foo(double *x, int n) {
int i;
double r = 0;
for (i=0;i<n;++i)
r += x[i];

return r;
}
/* EOF foo.c */

To wrap the C function foo() with f2py, create the following signature �le bar.pyf:

! -*- F90 -*-
python module bar
interface
real*8 function foo(x,n)
intent(c) foo
real*8 dimension(n),intent(in) :: x
integer intent(c,hide),depend(x) :: n = len(x)

end function foo
end interface

end python module bar
! EOF bar.pyf
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(see usersguide for more info about intent(c)) and run

f2py -c bar.pyf foo.c

Finally, in Python:

>>> import bar
>>> bar.foo([1,2,3])
6.0

4.6. Passing o�set arrays to Fortran routines. It is possible to pass o�set arrays (like pointers
to the middle of other arrays) by using NumPy's slice notation.

The print_dvec function below simply prints its argument as "print*,'x',x". We show some examples
of how it behaves with both 1 and 2-d arrays:

In [3]: x
Out[3]: array([ 2.8, 3.4, 4.1])
In [4]: tf.print_dvec(x)
n 3
x 2.8 3.4 4.1

In [5]: tf.print_dvec ?
Type: fortran
String Form: <fortran object at 0x8306fe8>
Namespace: Currently not defined in user session.
Docstring:

print_dvec - Function signature:
print_dvec(x,[n])

Required arguments:
x : input rank-1 array(’d’) with bounds (n)

Optional arguments:
n := len(x) input int

In [6]: tf.print_dvec (x[1])
n 1
x 3.4

In [7]: tf.print_dvec (x[1:])
n 2
x 3.4 4.1

In [8]: A
Out[8]:
array([[ 3.5, 5.6, 8.2],

[ 2.1, 4.5, 1.2],
[ 6.3, 3.4, 3.1]])

In [9]: tf.print_dvec(A)
n 9
x 3.5 5.6 8.2 2.1 4.5 1.2 6.3 3.4 3.1

In [10]: A
Out[10]:
array([[ 3.5, 5.6, 8.2],

[ 2.1, 4.5, 1.2],
[ 6.3, 3.4, 3.1]])

In [11]: tf.print_dvec(A[1:])
n 6
x 2.1 4.5 1.2 6.3 3.4 3.1

In [12]: A[1:]
Out[12]:
array([[ 2.1, 4.5, 1.2],

[ 6.3, 3.4, 3.1]])
In [13]: A[1:,1:]
Out[13]:
array([[ 4.5, 1.2],

[ 3.4, 3.1]])
In [14]: tf.print_dvec(A[1:,1:])
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n 4
x 4.5 1.2 3.4 3.1

4.7. On matrix ordering and in-memory copies. NumPy (which f2py relies on) is C-based, and
therefore its arrays are stored in row-major order. Fortran stores its arrays in column-major order. This
means that copying issues must be dealt with. Below we reproduce some comments from Pearu on this
topic given in the f2py mailing list in June/2002:

To avoid copying, you should create array that has internally Fortran data ordering.
This is achived, for example, by reading/creating your data in Fortran ordering to
NumPy array and then doing numpy.transpose on that. Every f2py generated exten-
sion module provides also function

has_column_major_storage
to check if an array is Fortran contiguous or not. If

has_column_major_storage(arr) returns true then there will be no copying
for the array arr if passed to f2py generated functions (assuming that the types are
proper, of cource).

Also note that copying done by f2py generated interface is carried out in C on
the raw data and therefore it is extremely fast compared to if you would make a copy
in Python, even when using NumPy. Tests with say 1000x1000 matrices show that
there is no noticable performance hit when copying is carried out, in fact, sometimes
making a copy may speed up things a bit � I was quite surprised about that myself.

So, I think, you should worry about copying only if the sizes of matrices are really
large, say, larger than 5000x5000 and e�cient memory usage is relevant. The time
spent for copying is negligible even for large arrays provided that your computer has
plenty of memory (>=256MB).

4.8. Distutils. Below is an example setup.py �le which generates a Python extension module from
Fortran90 sources and a .pyf interface �le generated by f2py and later �ne tuned.

#!/usr/bin/env python

"""Setup script for F2PY-processed, Fortran based extension modules.

A typical call is:

% ./setup.py install --home=~/usr

This will build and install the generated modules in ~/usr/lib/python.

If called with no args, the script defaults to the above call form (it

automatically adds the ’install --home=~/usr’ options)."""

# Global variables for this extension:

name = "mwadap_tools" # name of the generated python extension (.so)

description = "F2PY-wrapped MultiWavelet Tree Toolbox"

author = "Fast Algorithms Group - CU Boulder"

author_email = "fperez@colorado.edu"

# Necessary sources, _including_ the .pyf interface file

sources = """

binary_decomp.f90 binexpandx.f90 bitsequence.f90 constructwv.f90

display_matrix.f90 findkeypos.f90 findlevel.f90 findnodx.f90 gauleg.f90

gauleg2.f90 gauleg3.f90 ihpsort.f90 invert_f2cmatrix.f90 keysequence2d.f90

level_of_nsi.f90 matmult.f90 plegnv.f90 plegvec.f90 r2norm.f90 xykeys.f90

mwadap_tools.pyf""".split()

# Additional libraries required by our extension module (these will be linked

# in with -l):
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libraries = [’m’]

# Set to true (1) to turn on Fortran/C API debugging (very verbose)

debug_capi = 0

#***************************************************************************
# Do not modify the code below unless you know what you are doing.

# Required modules

import sys,os

from os.path import expanduser,expandvars

from scipy_distutils.core import setup,Extension

expand_sh = lambda path: expanduser(expandvars(path))

# Additional directories for libraries (besides the compiler’s defaults)

fc_vendor = os.environ.get(’FC_VENDOR’,’Gnu’).lower()

library_dirs = ["~/usr/lib/"+fc_vendor]

# Modify default arguments (if none are supplied) to install in ~/usr

if len(sys.argv)==1:

default_args = ’install --home=~/usr’

print ’*** Adding default arguments to setup:’,default_args

sys.argv += default_args.split() # it must be a list

# Additional options specific to f2py:

f2py_options = []

if debug_capi:

f2py_options.append(’--debug-capi’)

# Define the extension module(s)

extension = Extension(name = name,

sources = sources,

libraries = libraries,

library_dirs = map(expand_sh,library_dirs),

f2py_options = f2py_options,

)

# Call the actual building/installation routine, in usual distutils form.

setup(name = name,

description = description,

author = author,

author_email = author_email,

ext_modules = [extension],

)

5. Others

boost, pyrex, cxx

6. Distributing standalone applications

py2exe, mcmillan installer
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CHAPTER 6

Introduction to the workbook

This document contains a set of small problems, drawn from many di�erent �elds, meant to illustrate
commonly useful techniques for using Python in scienti�c computing.

All problems are presented in a similar fashion: the task is explained including any necessary math-
ematical background and a `code skeleton' is provided that is meant to serve as a starting point for the
solution of the exercise. In some cases, some example output of the expected solution, �gures or additional
hints may be provided as well.

The accompanying source download for this workbook contains the complete solutions, which are not
part of this document for the sake of brevity.

For several examples, the provided skeleton contains pre-written tests which validate the correctness
of the expected answers. When you have completed the exercise successfully, you should be able to run
it from within IPython and see something like this (illustrated using a trapezoidal rule problem, whose
solution is in the �le trapezoid.py):

In [7]: run trapezoid.py

....

----------------------------------------------------------------------

Ran 4 tests in 0.003s

OK

This message tells you that 4 automatic tests were successfully executed. The idea of including
automatic tests in your code is a common one in modern software development, and Python includes in its
standard library two modules for automatic testing, with slightly di�erent functionality: unittest and
doctest. These tests were written using the unittest system, whose complete documentation can be
found here: http://docs.python.org/lib/module-unittest.html.

Other exercises will illustrate the use of the doctest system, since it provides complementary func-
tionality.
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CHAPTER 7

Simple non-numerical Problems

1. Sorting quickly with QuickSort

Illustrates: lists, recursion.
Quicksort is one of the best known, and probably the simplest, fast algorithm for sorting n items. It

is fast in the sense that it requires on average O(n logn) comparisons instead of O(n2), although a naive
implementation does have quadratic worst-case behavior.

The algorithm uses a simple divide and conquer strategy, and its implementation is naturally recursive.
Its basic steps are:

(1) Pick an element from the list, called the pivot p (any choice works).
(2) Select from the rest of the list those elements smaller and those greater than the pivot, and store

them in separate lists S and G.
(3) Recursively apply the algorithm to S and G. The �nal result can be written as σ(S) + [p] +

σ(G), where σ represents the sorting operation, + indicates list concatenation and [p] is the list
containing the pivot as its single element.

The listing 7.1 contains a skeleton with no implementation but with tests already written (in the form of
unit tests, as described in the introduction).

Listing 7.1. IGNORED

"""Simple quicksort implementation.

From http://en.wikipedia.org/wiki/Quicksort we have this pseudocode (see also

the C implementation for comparison).

Note: what follows is NOT python code, it’s meant to only illustrate the

algorithm for you. Below you’ll need to actually implement it in real Python.

You may be surprised at how close a working Python implementation can be to

this pseudocode.

function quicksort(array)

var list less, greater

if length(array) <= 1

return array

select and remove a pivot value pivot from array

for each x in array

if x <= pivot then append x to less

else append x to greater

return concatenate(quicksort(less), pivot, quicksort(greater))

"""

def qsort(lst):

"""Return a sorted copy of the input list.

Input:

lst : a list of elements which can be compared.
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Examples:

>>> qsort([])

[]

>>> qsort([3,2,5])

[2, 3, 5]

"""

# Hint: remember that all recursive functions need an exit condition

raise NotImplementedError(’Original solution has 2 lines’)

# Select pivot and apply recursively

raise NotImplementedError(’Original solution has 3 lines’)

# Upon return, make sure to properly concatenate the output lists

raise NotImplementedError(’Original solution has 1 line’)

#-----------------------------------------------------------------------------

# Tests

#-----------------------------------------------------------------------------

import random

import nose

import nose, nose.tools as nt

def test_sorted():

seq = range(10)

sseq = qsort(seq)

nt.assert_equal(seq,sseq)

def test_random():

tseq = range(10)

rseq = range(10)

random.shuffle(rseq)

sseq = qsort(rseq)

nt.assert_equal(tseq,sseq)

# If called from the command line, run all the tests

if __name__ == ’__main__’:

# This call form is ipython-friendly

nose.runmodule(argv=[’-s’,’--with-doctest’],

exit=False)

Hints.

• Python has no particular syntactic requirements for implementing recursion,
but it does have a maximum recursion depth. This value can be queried
via the function sys.getrecursionlimit(), and it can be changed with
sys.setrecursionlimit(new_value).

• Like in all recursive problems, don't forget to implement an exit condition!
• If L is a list, the call len(L) provides its length.
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2. Dictionaries for counting words

A common task in text processing is to produce a count of word frequencies. While NumPy has a
builtin histogram function for doing numerical histograms, it won't work out of the box for couting discrete
items, since it is a binning histogram for a range of real values.

But the Python language provides very powerful string manipulation capabilities, as well as a very
�exible and e�ciently implemented builtin data type, the dictionary, that makes this task a very simple
one.

In this problem, you will need to count the frequencies of all the words contained in a compressed text
�le supplied as input.

The listing 7.2 contains a skeleton for this problem, with XXX marking various places that are incom-
plete.

Listing 7.2. IGNORED

#!/usr/bin/env python

"""Word frequencies - count word frequencies in a string."""

def word_freq(text):

"""Return a dictionary of word frequencies for the given text."""

freqs = {}

for word in text.split():

freqs[word] = freqs.get(word, 0) + 1

return freqs

def print_vk(lst):

"""Print a list of value/key pairs nicely formatted in key/value order."""

# Find the longest key: remember, the list has value/key paris, so the key

# is element [1], not [0]

#longest_key = max(map(lambda x: len(x[1]),lst))

longest_key = max([len(word) for count, word in lst])

# Make a format string out of it

fmt = ’%’+str(longest_key)+’s -> %s’

# Do actual printing

for v,k in lst:

print fmt % (k,v)

def freq_summ(freqs,n=10):

"""Print a simple summary of a word frequencies dictionary.

Inputs:

- freqs: a dictionary of word frequencies.

Optional inputs:

- n: the number of """

words,counts = freqs.keys(),freqs.values()

# Sort by count

items = zip(counts,words)

items.sort()

print ’Number of words:’,len(freqs)

print
print ’%d least frequent words:’ % n

print_vk(items[:n])
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print
print ’%d most frequent words:’ % n

print_vk(items[-n:])

if __name__ == ’__main__’:

import gzip

text = gzip.open(’data/HISTORY.gz’).read()

freqs = word_freq(text)

freq_summ(freqs,20)

Hints.

• The print_vk function is already provided for you as a simple way to summarize your results.
• You will need to read the compressed �le HISTORY.gz. Python has facilities to do this without
having to manually uncompress it.

• Consider `words' simply the result of splitting the input text into a list, using any form of
whitespace as a separator. This is obviously a very naïve de�nition of `word', but it shall su�ce
for the purposes of this exercise.

• Python strings have a .split() method that allows for very �exible splitting. You can easily
get more details on it in IPython:

In [2]: a = ’somestring’

In [3]: a.split?

Type: builtin_function_or_method

Base Class: <type ’builtin_function_or_method’>

Namespace: Interactive

Docstring:

S.split([sep [,maxsplit]]) -> list of strings

Return a list of the words in the string S, using sep as the

delimiter string. If maxsplit is given, at most maxsplit

splits are done. If sep is not specified or is None, any

whitespace string is a separator.

The complete set of methods of Python strings can be viewed by hitting the TAB key in IPython
after typing `a.', and each of them can be similarly queried with the `?' operator as above. For more de-
tails on Python strings and their companion sequence types, see http://docs.python.org/library/
stdtypes.html#sequence-types-str-unicode-list-tuple-buffer-xrange.

http://docs.python.org/library/stdtypes.html#sequence-types-str-unicode-list-tuple-buffer-xrange
http://docs.python.org/library/stdtypes.html#sequence-types-str-unicode-list-tuple-buffer-xrange


CHAPTER 8

Working with �les, the internet, and numpy arrays

This section is a general overview to show how easy it is to load and manipulate data on the �le
system and over the web using python's built in data structures and numpy arrays. The goal is to exercise
basic programming skills like building �lename or web addresses to automate certain tasks like loading a
series of data �les or downloading a bunch of related �les o� the web, as well as to illustrate basic numpy
and pylab skills.

1. Loading and saving ASCII data

The simplest �le format is a plain text ASCII �le of numbers. Although there are many better formats
out there for saveing and loading data, this format is extremely common because it has the advantages
of being human readable, and thus will survive the test of time as the en vogue programming languages,
analysis applications and data formats come and go, it is easy to parse, and it is supported by almost all
languages and applications.

In this exercise we will create a data set of two arrays, the �rst one regularly sampled time t from
0..2 seconds with 20 ms time step , and the second one an array v of sinusoidal voltages corrupted by
some noise. Let's assume the sine wave has amplitude 2 V, frequency 10 Hz, and zero mean Gaussian
distrubuted white noise with standard deviation 0.5 V. Your task is to write two scripts.

The �rst script should create the vectors t and v, plot the time series of t versus v, save them
in a two dimensional numpy array X, and then dump the array X to a plain text ASCII �le called
’noisy_sine.dat’. The �le will look like (not identical because of the noise)

0.000000000000000000e+00 1.550947826934816025e-02
2.000000000000000042e-02 2.493944587057004725e+00
4.000000000000000083e-02 9.497694074551737975e-01
5.999999999999999778e-02 -9.185779287524413750e-01
8.000000000000000167e-02 -2.811127590689064704e+00
... and so on

Here is the exercise skeleton of the script to create and plot the data �le

Listing 8.1. IGNORED

from scipy import arange, sin, pi, randn, zeros

import pylab as p

a = 2 # 2 volt amplitude

f = 10 # 10 Hz frequency

sigma = 0.5 # 0.5 volt standard deviation noise

# create the t and v and store them a 2D array X

t = arange(0.0, 2.0, 0.02) # an evenly sampled time array

v = a*sin(2*f*pi*t) + sigma*randn(len(t)) # a noisy sine wave

X = zeros((len(t),2)) # an empty output array

X[:,0] = t # add t to the first column

X[:,1] = v # add s to the 2nd column

p.save(’data/noisy_sine.dat’, X) # save the output file as ASCII

# plot the arrays t vs v and label the x-axis, y-axis and title

# save the output figure as noisy_sine.png

p.plot(t, v, ’b-’)
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Figure 1. A 10 Hz sine wave corrupted by noise

p.xlabel(’time (s)’)

p.ylabel(’volts (V)’)

p.title(’A noisy sine wave’)

p.grid()

p.savefig(’noisy_sine.png’, dpi=150)

p.savefig(’noisy_sine.eps’)

p.show()

and the graph will look something like Figure 1

The second part of this exercise is to write a script which loads data from the data �le into an array
X, extracts the columns into arrays t and v, and computes the RMS (root-mean-square) intensity of the
signal using the load command.

2. Working with CSV �les

The CSV (Comma Separated Value) �le speci�cation is also an ASCII based, human readable format,
but it is more powerful than simple �at ASCII �les including headers, escape sequences and arbitrary
delimiters like TAB, SPACE or COMMA. It is a widely used interchange format for sharing data between
operating systems and programs like Excel, Matlab and statistical analysis packages.

A typical CSV �le will be a mix of di�erent data types: integers, �oating point numbers, dates and
strings. Of course, all of these are strings in the �le, since all text �les are made up of strings, but the data
is typically representing some other numeric or date type. Python has very good support for handling
di�erent data types, so you don't need to try to force your data to look like a multi dimensional array of
�oating point numbers if this is not the natural way to describe your data. numpy provides a generalization
of the array data structure we used above called record arrays, which allow to store data in a conceptual
model similar to a database or spreadsheet: several named �elds (eg 'date', 'weight', 'height', 'age') with
di�erent types (eg datetime.date, float, float, int).

In the example below, we will download some CSV �les from Yahoo Financial web pages and load
them into numpy record arrays for analysis and visualization. Go to http://finance.yahoo.com and
enter a stock symbol in the entry boc labeled �Get Quotes�. I will use ’SPY’ which is an index fund
that tracks the S&P 500. In the left menu bar, there is an entry called �Historical Prices� which will take
you to a page where you can download the price history of your stock. Near the bottom of this page you
should see a �Download To Spreadsheet� link � instead of clicking on it, right click it and choose �Copy
Link Location� and paste this into a python script or ipython session as a string named url. Eg, for SPY
page better
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url = ’http://ichart.finance.yahoo.com/table.csv?’ +\

’s=SPY&d=9&e=20&f=2007&g=d&a=0&b=29&c=1993&ignore=.csv’

I've broken the url into two strings so they will �t on the page. If you spend a little time looking at this
pattern, you can probably �gure out what is going on. The URL is encoding the information about the
stock, the variable s for the stock ticker, d for the latest month, e for the latest day, f for the latest year,
c for the start year, and so on (similarly a, b, and c for the start month, day and year). This is handy to
know, because below we will write some code to automate some downloads for a stock universe.

One of the great things about python is it's �batteries included� standard library, which includes
support for dates, csv �les and internet downloads. The example interactive session below shows how in
just a few lines of code using python's urllib for retrieving information from the internet, and matplotlib's
csv2rec function for loading numpy record arrays, we are ready to get to work analyzing some web based
data. Comments have been added to a copy-and-paste from the interactive session

# import a couple of libraries we’ll be needing

In [23]: import urllib

In [24]: import matplotlib.mlab as mlab

# this is the CSV file we’ll be downloading

In [25]: url = ’http://ichart.finance.yahoo.com/table.csv?’ +\

’s=SPY&d=9&e=20&f=2007&g=d&a=0&b=29&c=1993&ignore=.csv’

# this will grab that web file and save it as ’SPY.csv’ on our local

# filesystem

In [27]: urllib.urlretrieve(url, ’SPY.csv’)

Out[27]: (’SPY.csv’, <httplib.HTTPMessage instance at 0x2118210>)

# here we use the UNIX command head to peak into the file, which is

# a comma separated and contains various types, dates, ints, floats

In [28]: !head SPY.csv

Date,Open,High,Low,Close,Volume,Adj Close

2007-10-19,153.09,156.48,149.66,149.67,295362200,149.67

2007-10-18,153.45,154.19,153.08,153.69,148367500,153.69

2007-10-17,154.98,155.09,152.47,154.25,216687300,154.25

2007-10-16,154.41,154.52,153.47,153.78,166525700,153.78

2007-10-15,156.27,156.36,153.94,155.01,161151900,155.01

2007-10-12,155.46,156.35,155.27,156.33,124546700,156.33

2007-10-11,156.93,157.52,154.54,155.47,233529100,155.47

2007-10-10,156.04,156.44,155.41,156.22,101711100,156.22

2007-10-09,155.60,156.50,155.03,156.48,94054300,156.48

# csv2rec will import the file into a numpy record array, inspecting

# the columns to determine the correct data type

In [29]: r = mlab.csv2rec(’SPY.csv’)

# the dtype attribute shows you the field names and data types.

# O4 is a 4 byte python object (datetime.date), f8 is an 8 byte

# float, i4 is a 4 byte integer and so on. The > and < symbols

# indicate the byte order of multi-byte data types, eg big endian or

# little endian, which is important for cross platform binary data

# storage

In [30]: r.dtype

Out[30]: dtype([(’date’, ’|O4’), (’open’, ’>f8’), (’high’, ’>f8’),

(’low’, ’>f8’), (’close’, ’>f8’), (’volume’, ’>i4’), (’adj_close’,

’>f8’)])
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# Each of the columns is stored as a numpy array, but the types are

# preserved. Eg, the adjusted closing price column adj_close is a

# floating point type, and the date column is a python datetime.date

In [31]: print r.adj_close

[ 149.67 153.69 154.25 ..., 34.68 34.61 34.36]

In [32]: print r.date

[2007-10-19 00:00:00 2007-10-18 00:00:00 2007-10-17 00:00:00 ...,

1993-02-02 00:00:00 1993-02-01 00:00:00 1993-01-29 00:00:00]

For your exercise, you'll elaborate on the code here to do a batch download of a number of stock
tickers in a de�ned stock universe. De�ne a function fetch_stock(ticker) which takes a stock ticker
symbol as an argument and returns a numpy record array. Select the rows of the record array where the
date is greater than 2003-01-01 and plot the returns (p− p0)/p0 where p are the prices and p0 is the initial
price. by date for each stock on the same plot. Create a legend for the plot using the matplotlib legend
command, and print out a sorted list of �nal returns (eg assuming you bought in 2003 and held to the
present) for each stock. Here is the exercise skeleton.:

Listing 8.2. IGNORED

"""

Download historical pricing record arrays for a universe of stocks

from Yahoo Finance using urllib. Load them into numpy record arrays

using matplotlib.mlab.csv2rec, and do some batch processing -- make

date vs price charts for each one, and compute the return since 2003

for each stock. Sort the returns and print out the tickers of the 4

biggest winners

"""

import os, datetime, urllib

import matplotlib.mlab as mlab # contains csv2rec

import numpy as npy

import pylab as p

def fetch_stock(ticker):

"""

download the CSV file for stock with ticker and return a numpy

record array. Save the CSV file as TICKER.csv where TICKER is the

stock’s ticker symbol.

Extra credit for supporting a start date and end date, and

checking to see if the file already exists on the local file

system before re-downloading it

"""

fname = ’%s.csv’%ticker

url = ’http://ichart.finance.yahoo.com/table.csv?’ +\

’s=%s&d=9&e=20&f=2007&g=d&a=0&b=29&c=1993&ignore=.csv’%ticker

# the os.path module contains function for checking whether a file

# exists

if not os.path.exists(fname):

urllib.urlretrieve(url, fname)

r = mlab.csv2rec(fname)

# note that the CSV file is sorted most recent date first, so you

# will probably want to sort the record array so most recent date

# is last

r.sort()

return r
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tickers = ’SPY’, ’QQQQ’, ’INTC’, ’MSFT’, ’YHOO’, ’GOOG’, ’GE’, ’WMT’, ’AAPL’

# we want to compute returns since 2003, so define the start date

startdate = datetime.date(2003,1,1)

# we’ll store a list of each return and ticker for analysis later

data = [] # a list of (return, ticker) for each stock

fig = p.figure()

for ticker in tickers:

print ’fetching’, ticker

r = fetch_stock(ticker)

# select the numpy records where r.date>=startdatre

r = r[r.date>=startdate]

price = r.adj_close # set price equal to the adjusted

...close

returns = (price-price[0])/price[0] # return is the (price-p0)/p0

data.append((returns[-1], ticker)) # store the data

# plot the returns by date for each stock

p.plot(r.date, returns, label=ticker)

p.legend(loc=’upper left’)

# now sort the data by returns and print the results for each stock

data.sort()

for g, ticker in data:

print ’%s: %1.1f%%’%(ticker, 100*g)

p.savefig(’stock_records.png’, dpi=100)

p.savefig(’stock_records.eps’)

p.show()

The graph will look something like Figure 2.

3. Loading and saving binary data

ASCII is bloated and slow for working with large arrays, and so binary data should be used if perfor-
mance is a consideration. To save an array X in binary form, you can use the numpy tostring method

In [16]: import numpy

# create some random numbers

In [17]: x = numpy.random.rand(5,2)

In [19]: print x

[[ 0.56331918 0.519582 ]

[ 0.22685429 0.18371135]

[ 0.19384767 0.27367054]

[ 0.35935445 0.95795884]

[ 0.37646642 0.14431089]]
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Figure 2. Returns for a universe of stocks since 2003

# save it to a data file in binary

In [20]: x.tofile(file(’myx.dat’, ’wb’))

# load it into a new array

In [21]: y = numpy.fromfile(file(’myx.dat’, ’rb’))

# the shape is not preserved, so we will have to reshape it

In [22]: print y

[ 0.56331918 0.519582 0.22685429 0.18371135 0.19384767

0.27367054

0.35935445 0.95795884 0.37646642 0.14431089]

In [23]: y.shape

Out[23]: (10,)

# restore the original shape

In [24]: y.shape = 5, 2

In [25]: print y

[[ 0.56331918 0.519582 ]

[ 0.22685429 0.18371135]

[ 0.19384767 0.27367054]

[ 0.35935445 0.95795884]

[ 0.37646642 0.14431089]]

The advantage of numpy tofile and fromfile over ASCII data is that the data storage is compact
and the read and write are very fast. It is a bit of a pain that that meta ata like array datatype and shape
are not stored. In this format, just the raw binary numeric data is stored, so you will have to keep track
of the data type and shape by other means. This is a good solution if you need to port binary data �les
between di�erent packages, but if you know you will always be working in python, you can use the python
pickle function to preserve all metadata (pickle also works with all standard python data types, but has
the disadvantage that other programs and applications cannot easily read it)

# create a 6,3 array of random integers

In [36]: x = (256*numpy.random.rand(6,3)).astype(numpy.int)
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In [37]: print x

[[173 38 2]

[243 207 155]

[127 62 140]

[ 46 29 98]

[ 0 46 156]

[ 20 177 36]]

# use pickle to save the data to a file myint.dat

In [38]: import cPickle

In [39]: cPickle.dump(x, file(’myint.dat’, ’wb’))

# load the data into a new array

In [40]: y = cPickle.load(file(’myint.dat’, ’rb’))

# the array type and share are preserved

In [41]: print y

[[173 38 2]

[243 207 155]

[127 62 140]

[ 46 29 98]

[ 0 46 156]

[ 20 177 36]]





CHAPTER 9

Elementary numerics

1. Wallis' slow road to π

Illustrates: arbitrary size integers, simple function de�nitions.
Wallis' formula is an in�nite product that converges (slowly) to π:

(1) π =

∞Y
i=1

4i2

4i2 − 1
.

The listing 9.1 contains a skeleton with no implementation but with some plotting commands already
inserted, so that you can visualize the convergence rate of this formula as more terms are kept.

Listing 9.1. IGNORED

#!/usr/bin/env python

"""Simple demonstration of Python’s arbitrary-precision integers."""

# We need exact division between integers as the default, without manual

# conversion to float b/c we’ll be dividing numbers too big to be represented

# in floating point.

from __future__ import division

def pi(n):

"""Compute pi using n terms of Wallis’ product.

Wallis’ formula approximates pi as

pi(n) = 2 \prod_{i=1}^{n}\frac{4i^2}{4i^2-1}."""

num = 1

den = 1

for i in xrange(1,n+1):

tmp = 4*i*i

num *= tmp

den *= tmp-1

return 2.0*(num/den)

def part_range(n1,n2,nchunks):

"""Partition a range specification in nchunks"""

size,rem = divmod(n2-n1,nchunks)

sizes = [size]*nchunks

while rem > 0:

for i in range(nchunks):

sizes[i] += 1

rem -= 1

if rem == 0:

break

# The sizes list has the offsets, now we need the actual start,stop pairs

93
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ranges = []

start=n1

for size in sizes:

ranges.append((start,start+size))

start += size

return ranges

def wpi_nd(range_spec):

"""Compute pi using n terms of Wallis’ product.

Wallis’ formula approximates pi as

pi(n) = 2 \prod_{i=1}^{n}\frac{4i^2}{4i^2-1}."""

n1,n2 = range_spec

num = 1

den = 1

for i in xrange(n1,n2):

tmp = 4*i*i

num *= tmp

den *= tmp-1

return num,den

def par_pi(n,num_engines=1):

"""Compute pi using n terms of Wallis’ product.

Wallis’ formula approximates pi as

pi(n) = 2 \prod_{i=1}^{n}\frac{4i^2}{4i^2-1}.

Parallel version."""

num,den = reduce(lambda x,y:(x[0]*y[0],x[1]*y[1]),

map(wpi_nd,part_range(1,n+1,num_engines)))

return 2.0*(num/den)

# This part only executes when the code is run as a script, not when it is

# imported as a library

if __name__ == ’__main__’:

# Simple convergence demo.

# A few modules we need

import pylab as P

import numpy as N

# Create a list of points ’nrange’ where we’ll compute Wallis’ formula

nrange = N.linspace(10,2000,20).astype(int)

# Make an array of such values

wpi = N.array(map(pi,nrange))

# Compute the difference against the value of pi in numpy (standard

# 16-digit value)
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Figure 1. Convergence rate for Wallis' in�nite product approximation to π.

diff = abs(wpi-N.pi)

# Make a new figure and build a semilog plot of the difference so we can

# see the quality of the convergence

P.figure()

# Line plot with red circles at the data points

P.semilogy(nrange,diff,’-o’,mfc=’red’)

# A bit of labeling and a grid

P.title(r"Convergence of Wallis’ product formula for $\pi$")

P.xlabel(’Number of terms’)

P.ylabel(r’Absolute Error’)

P.grid()

# Display the actual plot

P.show()

After running the script successfully, you should obtain a plot similar to Figure 1.

2. Trapezoidal rule

Illustrates: basic array slicing, functions as �rst class objects.
In this exercise, you are tasked with implementing the simple trapezoid rule formula for numerical

integration. If we want to compute the de�nite integral

(2)

Z b

a

f(x)dx

we can partition the integration interval [a, b] into smaller subintervals, and approximate the area under
the curve for each subinterval by the area of the trapezoid created by linearly interpolating between the
two function values at each end of the subinterval. This is graphically illustrated in Figure 2, where the
blue line represents the function f(x) and the red line represents the successive linear segments.

The area under f(x) (the value of the de�nite integral) can thus be approximated as the sum of the
areas of all these trapezoids. If we denote by xi (i = 0, . . . , n, with x0 = a and xn = b) the abscissas where
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Figure 2. Illustration of the composite trapezoidal rule with a non-uniform grid
(Image credit: Wikipedia).

the function is sampled, then

(3)

Z b

a

f(x)dx ≈ 1

2

nX
i=1

(xi − xi−1) (f(xi) + f(xi+1)) .

The common case of using equally spaced abscissas with spacing h = (b− a)/n reads simply

(4)

Z b

a

f(x)dx ≈ h

2

nX
i=1

(f(xi) + f(xi+1)) .

One frequently receives the function values already precomputed, yi = f(xi), so equation (3) becomes

(5)

Z b

a

f(x)dx ≈ 1

2

nX
i=1

(xi − xi−1) (yi + yi−1) .

Listing 9.2 contains a skeleton for this problem, written in the form of two incomplete functions and
a set of automatic tests (in the form of unit tests, as described in the introduction).

Listing 9.2. IGNORED

#!/usr/bin/env python

"""Simple trapezoid-rule integrator."""

import numpy as np

def trapz(x, y):

"""Simple trapezoid integrator for sequence-based innput.

Inputs:

- x,y: arrays of the same length (and more than one element). If the

...two

inputs have different lengths, a ValueError exception is raised.

Output:

- The result of applying the trapezoid rule to the input, assuming that

y[i] = f(x[i]) for some function f to be integrated.

Minimally modified from matplotlib.mlab."""
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# Sanity checks.

#

# Hint: if the two inputs have mismatched lengths or less than 2

# elements, we raise ValueError with an explanatory message.

raise NotImplementedError(’Original solution has 4 lines’)

# Efficient application of trapezoid rule via numpy

#

# Hint: think of using numpy slicing to compute the moving difference in

# the basic trapezoid formula.

raise NotImplementedError(’Original solution has 1 line’)

def trapzf(f,a,b,npts=100):

"""Simple trapezoid-based integrator.

Inputs:

- f: function to be integrated.

- a,b: limits of integration.

Optional inputs:

- npts(100): the number of equally spaced points to sample f at, between

a and b.

Output:

- The value of the trapezoid-rule approximation to the integral."""

# Hint: you will need to apply the function f to easch element of the

# vector x. What are several ways to do this? Can you profile them to

...see

# what differences in timings result for long vectors x?

# Generate an equally spaced grid to sample the function.

raise NotImplementedError(’Original solution has 1 line’)

# For an equispaced grid, the x spacing can just be read off from the

...first

# two points and factored out of the summation.

raise NotImplementedError(’Original solution has 1 line’)

# Sample the input function at all values of x

#

# Hint: you need to make an array out of the evaluations, and the python

# builtin ’map’ function can come in handy.

raise NotImplementedError(’Original solution has 1 line’)

# Compute the trapezoid rule sum for the final result

raise NotImplementedError(’Original solution has 1 line’)

#-----------------------------------------------------------------------------

# Tests

#-----------------------------------------------------------------------------
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import nose, nose.tools as nt

import numpy.testing as nptest

# A simple function for testing

def square(x): return x**2

def test_err():

"""Test that mismatched inputs raise a ValueError exception."""

nt.assert_raises(ValueError,trapz,range(2),range(3))

def test_call():

"Test a direct call with equally spaced samples. "

x = np.linspace(0,1,100)

y = np.array(map(square,x))

nptest.assert_almost_equal(trapz(x,y),1./3,4)

def test_square():

"Test integrating the square() function."

nptest.assert_almost_equal(trapzf(square,0,1),1./3,4)

def test_square2():

"Another test integrating the square() function."

nptest.assert_almost_equal(trapzf(square,0,3,350),9.0,4)

# If called from the command line, run all the tests

if __name__ == ’__main__’:

# This call form is ipython-friendly

nose.runmodule(argv=[’-s’,’--with-doctest’],

exit=False)

In this exercise, you'll need to write two functions, trapz and trapzf. trapz applies the trapezoid
formula to pre-computed values, implementing equation (5), while trapzf takes a function f as input, as
well as the total number of samples to evaluate, and computes eq. (4).

3. Newton's method

Illustrates: functions as �rst class objects, use of the scipy libraries.
Consider the problem of solving for t in

(6)

Z t

o

f(s)ds = u

where f(s) is a monotonically increasing function of s and u > 0.
This problem can be simply solved if seen as a root �nding question. Let

(7) g(t) =

Z t

o

f(s)ds− u,

then we just need to �nd the root for g(t), which is guaranteed to be unique given the conditions above.
The SciPy library includes an optimization package that contains a Newton-Raphson solver called

scipy.optimize.newton. This solver can optionally take a known derivative for the function whose
roots are being sought, and in this case the derivative can be trivially computed in exact form.

For this exercise, implement the solution for the test function

f(t) = t sin2(t),

using

u =
1

4
.

The listing 9.3 contains a skeleton that includes for comparison the correct numerical value.
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Listing 9.3. IGNORED

#!/usr/bin/env python

"""Root finding using SciPy’s Newton’s method routines.

"""

from math import sin

from scipy.integrate import quad

from scipy.optimize import newton

# test input function

def f(t):

# f(t): t * sin^2(t)

raise NotImplementedError(’Original solution has 1 line’)

def g(t):

"Exact form for g by integrating f(t)"

u = 0.25

return .25*(t**2-t*sin(2*t)+(sin(t))**2)-u

def gn(t):

"g(t) obtained by numerical integration"

u = 0.25

# Hint: use quad, see its return value carefully.

raise NotImplementedError(’Original solution has 1 line’)

# main

tguess = 10.0

print ’"Exact" solution (knowing the analytical form of the integral)’

raise NotImplementedError(’Original solution has 1 line’)

print "t0, g(t0) =",t0,g(t0)

print
print "Solution using the numerical integration technique"

raise NotImplementedError(’Original solution has 1 line’)

print "t1, g(t1) =",t1,g(t1)

print
print "To six digits, the answer in this case is t==1.06601."

4. Bessel functions

Illustrates: Special functions library, array manipulations to check recursion relation.
In this exercise, you will verify a few simple relations involving the Bessel functions of the �rst kind.

The important relations to keep in mind are the asymptotic form of Jn(x) for x >> n:

(8) Jn(x) ≈
p

(
2

πx
) cos(x− (n

π

2
+
π

4
))

and the recursion relation

(9) Jn+1(x) =
2n

x
Jn(x)− Jn−1(x)

Once you get the code to run, you should see two �gures like Figure 3 and Figure 4.



100 9. ELEMENTARY NUMERICS
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Figure 3. A few Bessel functions.
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Figure 4. Numerical error for J5.

Listing 9.4. IGNORED

#!/usr/bin/env python

"""Plot some Bessel functions of integer order, using Scipy and pylab"""

from scipy import special

import numpy as np

import matplotlib.pyplot as plt

def jn_asym(n,x):

"""Asymptotic form of jn(x) for x>>n"""
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# The asymptotic formula is:

# j_n(x) ~ sqrt(2.0/pi/x)*cos(x-(n*pi/2.0+pi/4.0))

raise NotImplementedError(’Original solution has 1 line’)

# build a range of values to plot in

x = np.linspace(0,30,400)

# Start by plotting the well-known j0 and j1

plt.figure()

raise NotImplementedError(’Original solution has 2 lines’)

# Show a higher-order Bessel function

n = 5

plt.plot(x,special.jn(n,x),label=’$J_%s$’ % n)

# and compute its asymptotic form (valid for x>>n, where n is the order). We

# must first find the valid range of x where at least x>n.

# Find where x>n and evaluate the asymptotic relation only there

raise NotImplementedError(’Original solution has 2 lines’)

# Finish off the plot

plt.legend()

plt.title(’Bessel Functions’)

# horizontal line at 0 to show x-axis, but after the legend

plt.axhline(0)

# Extra credit: redo the above, for the asymptotic range 0<x<<n. The

# asymptotic form in this regime is:

#

# J(n,x) = (1/gamma(n+1))(x/2)^n

# Now, let’s verify numerically the recursion relation

# J(n+1,x) = (2n/x)J(n,x)-J(n-1,x)

jn = special.jn # just a shorthand

# Be careful to check only for x!=0, to avoid divisions by zero

# xp contains the positive values of x

raise NotImplementedError(’Original solution has 1 line’)

# construct both sides of the recursion relation, these should be equal

# Define j_np1 to hold j_(n+1) evaluated at the points xp

j_np1 = jn(n+1,xp)

# Define j_np1_rec to express j_(n+1) via a recursion relation, at points xp

j_np1_rec = (2.0*n/xp)*jn(n,xp)-jn(n-1,xp)

# Now make a nice error plot of the difference, in a new figure

plt.figure()

# We now plot the difference between the two formulas above. Note that to

# properly display the errors, we want to use a logarithmic y scale. Search

# the matplotlib docs for the proper calls.

raise NotImplementedError(’Original solution has 1 line’)
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plt.title(’Error in recursion for $J_%s$’ % n)

plt.grid()

# Don’t forget a show() call at the end of the script

plt.show()



CHAPTER 10

Linear algebra

Like matlab, numpy and scipy have support for fast linear algebra built upon the highly optimized
LAPACK, BLAS and ATLAS fortran linear algebra libraries. Unlike Matlab, in which everything is a
matrix or vector, and the '*' operator always means matrix multiple, the default object in numpy is an
array, and the '*' operator on arrays means element-wise multiplication.

Instead, numpy provides a matrix class if you want to do standard matrix-matrix multiplication with
the '*' operator, or the dot function if you want to do matrix multiplies with plain arrays. The basic
linear algebra functionality is found in numpy.linalg

In [1]: import numpy as npy

In [2]: import numpy.linalg as linalg

# X and Y are arrays

In [3]: X = npy.random.rand(3,3)

In [4]: Y = npy.random.rand(3,3)

# * operator is element wise multiplication, not matrix matrix

In [5]: print X*Y

[[ 0.00973215 0.18086148 0.05539387]

[ 0.00817516 0.63354021 0.2017993 ]

[ 0.34287698 0.25788149 0.15508982]]

# the dot function will use optimized LAPACK to do matrix-matix

# multiply

In [6]: print npy.dot(X, Y)

[[ 0.10670678 0.68340331 0.39236388]

[ 0.27840642 1.14561885 0.62192324]

[ 0.48192134 1.32314856 0.51188578]]

# the matrix class will create matrix objects that support matrix

# multiplication with *
In [7]: Xm = npy.matrix(X)

In [8]: Ym = npy.matrix(Y)

In [9]: print Xm*Ym

[[ 0.10670678 0.68340331 0.39236388]

[ 0.27840642 1.14561885 0.62192324]

[ 0.48192134 1.32314856 0.51188578]]

# the linalg module provides functions to compute eigenvalues,

# determinants, etc. See help(linalg) for more info

In [10]: print linalg.eigvals(X)

[ 1.46131600+0.j 0.46329211+0.16501143j 0.46329211-0.16501143j]
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1. Glass Moiré Patterns

When a random dot pattern is scaled, rotated, and superimposed over the original dots, interesting
visual patterns known as Glass Patterns emerge1 In this exercise, we generate random dot �elds using
numpy's uniform distribution function, and apply transformations to the random dot �eld using a scale S
and rotation R matrix X2 = SRX1.

If the scale and rotation factors are small, the transformation is analogous to a single step in the
numerical solution of a 2D ODE, and the plot of both X1 and X2 will reveal the structure of the vecotr
�eld �ow around the �xed point (the invariant under the transformation); see for example the stable focus,
aka spiral, in Figure 1.

The eigenvalues of the tranformation matrix M = SR determine the type of �x point: center, stable
focus, saddle node, etc. . . . For example, if the two eigenvalues are real but di�ering in signs, the �xed point
is a saddle node. If the real parts of both eigenvalues are negative and the eigenvalues are complex, the
�xed point is a stable focus. The complex part of the eigenvalue determines whether there is any rotation
in the matrix transformation, so another way to look at this is to break out the scaling and rotation
components of the transformation M. If there is a rotation component, then the �xed point will be a
center or a focus. If the scaling components are both one, the rotation will be a center, if they are both
less than one (contraction), it will be a stable focus. Likewise, if there is no rotation component, the �xed
point will be a node, and the scaling components will determine the type of node. If both are less than
one, we have a stable node, if one is greater than one and the other less than one, we have a saddle node.

Listing 10.1. IGNORED

"""

Moire patterns from random dot fields

http://en.wikipedia.org/wiki/Moir%C3%A9_pattern

See L. Glass. ’Moire effect from random dots’ Nature 223, 578580 (1969).

"""

import cmath

import numpy as np

import numpy.linalg as linalg

import matplotlib.pyplot as plt

def myeig(M):

"""

compute eigen values and eigenvectors analytically

Solve quadratic:

lamba^2 - tau*lambda +/- Delta = 0

where tau = trace(M) and Delta = Determinant(M)

if M = | a b |

| c d |

the trace is a+d and the determinant is a*d-b*c

Return value is lambda1, lambda2

"""

a,b = M[0,0], M[0,1]

c,d = M[1,0], M[1,1]

1L. Glass. 'Moiré e�ect from random dots' Nature 223, 578580 (1969).
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tau = a+d # the trace

delta = a*d-b*c # the determinant

lambda1 = (tau + cmath.sqrt(tau**2 - 4*delta))/2.

lambda2 = (tau - cmath.sqrt(tau**2 - 4*delta))/2.

return lambda1, lambda2

# 2000 random x,y points in the interval[-0.5 ... 0.5]

X1 = np.random.rand(2,2000)-0.5

#name = ’saddle’

#sx, sy, angle = 1.05, 0.95, 0.

name = ’center’

sx, sy, angle = 1., 1., 2.5

#name= ’stable focus’ # spiral

#sx, sy, angle = 0.95, 0.95, 2.5

theta = angle * cmath.pi/180.

S = np.array([[sx, 0],

[0, sy]])

R = np.array([[np.cos(theta), -np.sin(theta)],

[np.sin(theta), np.cos(theta)],])

M = np.dot(S, R) # rotate then stretch

# compute the eigenvalues using numpy linear algebra

vals, vecs = linalg.eig(M)

print ’numpy eigenvalues’, vals

# compare with the analytic values from myeig

avals = myeig(M)

print ’analytic eigenvalues’, avals

# transform X1 by the matrix

X2 = np.dot(M, X1)

# plot the original x,y as green dots and the transformed x, y as red

# dots

fig = plt.figure()

ax = fig.add_subplot(111)

x1 = X1[0]

y1 = X1[1]

x2 = X2[0]

y2 = X2[1]

ax = fig.add_subplot(111)

line1, line2 = ax.plot(x1, y1, ’go’, x2, y2, ’ro’, markersize=2)

ax.set_title(name)
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Figure 1. Glass pattern showing a stable focus

fig.savefig(’glass_dots1.png’, dpi=100)

fig.savefig(’glass_dots1.eps’, dpi=100)

plt.show()



CHAPTER 11

Signal processing

numpy and scipy provide many of the essential tools for digital signal processing. scipy.signal
provides basic tools for digital �lter design and �ltering (eg Butterworth �lters), a linear systems toolkit,
standard waveforms such as square waves, and saw tooth functions, and some basic wavelet functionality.
scipy.fftpack provides a suite of tools for Fourier domain analysis, including 1D, 2D, and ND discrete
fourier transform and inverse functions, in addition to other tools such as analytic signal representations
via the Hilbert trasformation (numpy.fft also provides basic FFT functions). pylab provides Matlab
compatible functions for computing and plotting standard time series analyses, such as historgrams (hist),
auto and cross correlations (acorr and xcorr), power spectra and coherence spectra (psd, csd, cohere
and specgram).

1. Convolution

The output of a linear system is given by the convolution of its impulse response function with the
input. Mathematically

(10) y(t) =

Z t

0

x(τ)r(t− τ)dτ

This fundamental relationship lies at the heart of linear systems analysis. It is used to model the dynamics
of calcium bu�ers in neuronal synapses, where incoming action potentials are represented as Dirac δ-
functions and the calcium stores are represented with a response function with multiple exponential time
constants. It is used in microscopy, in which the image distortions introduced by the lenses are deconvolved
out using a measured point spread function to provide a better picture of the true image input. It is essential
in structural engineering to determine how materials respond to shocks.

The impulse response function r is the system response to a pulsatile input. For example, in Figure 1
below, the response function is the sum of two exponentials with di�erent time constants and signs. This is
a typical function used to model synaptic current following a neuronal action potential. The �gure shows
three δ inputs at di�erent times and with di�erent amplitudes. The corresponsing impulse response for
each input is shown following it, and is color coded with the impulse input color. If the system response
is linear, by de�nition, the response to a sum of inputs is the sum of the responses to the individual
inputs, and the lower panel shows the sum of the responses, or equivalently, the convolution of the impulse
response function with the input function.

In Figure 1, the summing of the impulse response function over the three inputs is conceptually and
visually easy to understand. Some �nd the concept of a convolution of an impulse response function with
a continuos time function, such as a sinusoid or a noise process, conceptually more di�cult. It shouldn't
be. By the sampling theorem, we can represent any �nite bandwidth continuous time signal as the sum
of Dirac-δ functions where the height of the δ function at each time point is simply the amplitude of the
signal at that time point. The only requirement is that the sampling frequency be at least as high as the
Nyquist frequency, de�ned as the highest spectral frequency in the signal divided by 2. See Figure 2 for a
representation of a delta function sampling of a damped, oscillatory, exponential function.

In the exercise below, we will convolve a sample from the normal distribution (white noise) with a
double exponential impulse response function. Such a function acts as a low pass �lter, so the resultant
output will look considerably smoother than the input. You can use numpy.convolve to perform the
convolution numerically.

We also explore the important relationship that a convolution in the tempoeral (or spatial) domain
becomes a multiplication in the spectral domain, which is mathematically much easier to work with.

Y = R ∗X
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Figure 1. The output of a linear system to a series of impulse inputs is equal to
the sum of the scaled and time shifted impulse response functions.

Figure 2. Representing a continuous time signal sampled as a sum of delta functions.

where Y , X, and R are the Fourier transforms of the respective variable in the temporal convolution
equation above. The Fourier transform of the impulse response function serves as an amplitude weighting
and phase shifting operator for each frequency component. Thus, we can get deeper insight into the e�ects
of impulse response function r by studying the amplitude and phase spectrum of its transform R. In the
example below, however, we simply use the multiplication property to perform the same convolution in
Fourier space to con�rm the numerical result from numpy.convolve.

Listing 11.1. IGNORED

"""

In signal processing, the output of a linear system to an arbitrary

input is given by the convolution of the impule response function (the

system response to a Dirac-delta impulse) and the input signal.
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Mathematically:

y(t) = \int_0^\t x(\tau)r(t-\tau)d\tau

where x(t) is the input signal at time t, y(t) is the output, and r(t)

is the impulse response function.

In this exercise, we will compute investigate the convolution of a

white noise process with a double exponential impulse response

function, and compute the results

* using numpy.convolve

* in Fourier space using the property that a convolution in the

temporal domain is a multiplication in the fourier domain

"""

import numpy as np

import matplotlib.mlab as mlab

import matplotlib.pyplot as plt

# build the time, input, output and response arrays

dt = 0.01

t = np.arange(0.0, 20.0, dt) # the time vector from 0..20

Nt = len(t)

def impulse_response(t):

’double exponential response function’

return (np.exp(-t) - np.exp(-5*t))*dt

x = np.random.randn(Nt) # gaussian white noise

# evaluate the impulse response function, and numerically convolve it

# with the input x

r = impulse_response(t) # evaluate the impulse function

y = np.convolve(x, r, mode=’full’) # convultion of x with r

y = y[:Nt]

# compute y by applying F^-1[F(x) * F(r)]. The fft assumes the signal

# is periodic, so to avoid edge artificats, pad the fft with zeros up

# to the length of r + x do avoid circular convolution artifacts

R = np.fft.fft(r, len(r)+len(x)-1)

X = np.fft.fft(x, len(r)+len(x)-1)

Y = R*X

# now inverse fft and extract just the part up to len(x)

yi = np.fft.ifft(Y)[:len(x)].real

# plot t vs x, t vs y and yi, and t vs r in three subplots

fig = plt.figure()

ax1 = fig.add_subplot(311)
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Figure 3. Convolution of a white noise process with a double exponential func-
tion computed with numpy.fft and numpy.convolve

ax1.plot(t, x)

ax1.set_ylabel(’input x’)

ax2 = fig.add_subplot(312)

ax2.plot(t, y, label=’convolve’)

ax2.set_ylabel(’output y’)

ax3 = fig.add_subplot(313)

ax3.plot(t, r)

ax3.set_ylabel(’input response’)

ax3.set_xlabel(’time (s)’)

ax2.plot(t, yi, label=’fft’)

ax2.legend(loc=’best’)

fig.savefig(’convolution_demo.png’, dpi=150)

fig.savefig(’convolution_demo.eps’)

plt.show()

2. FFT Image Denoising

Illustrates: 2-d image denoising, use of the scipy FFT library, array manipulations, image plotting.
Convolution of an input with with a linear �lter in the termporal or spatial domain is equivalent to

multiplication by the fourier transforms of the input and the �lter in the spectral domain. This provides a
conceptually simple way to think about �ltering: transform your signal into the frequency domain, dampen
the frequencies you are not interested in by multiplying the frequency spectrum by the desired weights, and
then apply the inverse transform to the modi�ed spectrum, back into the original domain. In the example
below, we will simply set the weights of the frequencies we are uninterested in (the high frequency noise)
to zero rather than dampening them with a smoothly varying function. Although this is not usually the
best thing to do, since sharp edges in one domain usually introduce artifacts in another (eg high frequency
�ringing�), it is easy to do and sometimes provides satisfactory results.
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The image in the upper left panel of Figure 4 is a grayscale photo of the moon landing. There is
a banded pattern of high frequency noise polluting the image. In the upper right panel we see the 2D
spatial frequency spectrum. The FFT output in scipy is packed with the lower freqeuencies starting in
the upper left, and proceeding to higher frequencies as one moves to the center of the spectrum (this is
the most e�cient way numerically to �ll the output of the FFT algorithm). Because the input signal is
real, the output spectrum is complex and symmetrical: the transformation values beyond the midpoint of
the frequency spectrum (the Nyquist frequency) correspond to the values for negative frequencies and are
simply the mirror image of the positive frequencies below the Nyquist (this is true for the 1D, 2D and ND
FFTs in numpy).

In this exercise we will compute the 2D spatial frequency spectra of the luminance image, zero out the
high frequency components, and inverse transform back into the spatial domain. We can plot the input
and output images with the pylab.imshow function, but the images must �rst be scaled to be within the
0..1 luminance range. For best results, it helps to amplify the image by some scale factor, and then clip

it to set all values greater than one to one. This serves to enhance contrast among the darker elements of
the image, so it is not completely dominated by the brighter segments

Listing 11.2. IGNORED

#!/usr/bin/env python

"""Simple image denoising example using 2-dimensional FFT."""

import sys

import numpy as np

from matplotlib import pyplot as plt

def plot_spectrum(F, amplify=1000):

"""Normalise, amplify and plot an amplitude spectrum."""

# Note: the problem here is that we have a spectrum whose histogram is

# *very* sharply peaked at small values. To get a meaningful display, a

# simple strategy to improve the display quality consists of simply

# amplifying the values in the array and then clipping.

# Compute the magnitude of the input F (call it mag). Then, rescale mag

...by

# amplify/maximum_of_mag. Numpy arrays can be scaled in-place with ARR *=

# number. For the max of an array, look for its max method.

raise NotImplementedError(’Original solution has 2 lines’)

# Next, clip all values larger than one to one. You can set all elements

# of an array which satisfy a given condition with array indexing syntax:

# ARR[ARR<VALUE] = NEWVALUE, for example.

raise NotImplementedError(’Original solution has 1 line’)

# Display: this one already works, if you did everything right with mag

plt.imshow(mag, plt.cm.Blues)

if __name__ == ’__main__’:

try:
# Read in original image, convert to floating point for further

# manipulation; imread returns a MxNx4 RGBA image. Since the image is

# grayscale, just extract the 1st channel

# Hints:

# - use plt.imread() to load the file

# - convert to a float array with the .astype() method
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# - extract all rows, all columns, 0-th plane to get the first

# channel

# - the resulting array should have 2 dimensions only

raise NotImplementedError(’Original solution has 1 line’)

print "Image shape:",im.shape

except:
print "Could not open image."

sys.exit(-1)

# Compute the 2d FFT of the input image

# Hint: Look for a 2-d FFT in np.fft.

# Note: call this variable ’F’, which is the name we’ll be using below.

raise NotImplementedError(’Original solution has 1 line’)

# In the lines following, we’ll make a copy of the original spectrum and

# truncate coefficients. NO immediate code is to be written right here.

# Define the fraction of coefficients (in each direction) we keep

keep_fraction = 0.1

# Call ff a copy of the original transform. Numpy arrays have a copy

# method for this purpose.

raise NotImplementedError(’Original solution has 1 line’)

# Set r and c to be the number of rows and columns of the array.

# Hint: use the array’s shape attribute.

raise NotImplementedError(’Original solution has 1 line’)

# Set to zero all rows with indices between r*keep_fraction and

# r*(1-keep_fraction):

raise NotImplementedError(’Original solution has 1 line’)

# Similarly with the columns:

raise NotImplementedError(’Original solution has 1 line’)

# Reconstruct the denoised image from the filtered spectrum, keep only the

# real part for display.

# Hint: There’s an inverse 2d fft in the np.fft module as well (don’t

# forget that you only want the real part).

# Call the result im_new,

raise NotImplementedError(’Original solution has 1 line’)

# Show the results

# The code below already works, if you did everything above right.

plt.figure()

plt.subplot(221)

plt.title(’Original image’)

plt.imshow(im, plt.cm.gray)

plt.subplot(222)

plt.title(’Fourier transform’)

plot_spectrum(F)
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Figure 4. High freqeuency noise �ltering of a 2D image in the Fourier domain.
The upper panels show the original image (left) and spectral power (right) and
the lower panels show the same data with the high frequency power set to zero.
Although the input and output images are grayscale, you can provide colormaps
to pylab.imshow to plot them in psudo-color

plt.subplot(224)

plt.title(’Filtered Spectrum’)

plot_spectrum(ff)

plt.subplot(223)

plt.title(’Reconstructed Image’)

plt.imshow(im_new, plt.cm.gray)

# Adjust the spacing between subplots for readability

plt.subplots_adjust(hspace=0.32)

plt.show()





CHAPTER 12

Dynamical systems

TODO

1. Lotka-Volterra Equations

Listing 12.1. IGNORED

import numpy as np

import matplotlib.pyplot as plt

import scipy.integrate as integrate

def dr(r, f):

"""

return the derivative of *r* (the rabbit population) evaulated as a

function of *r* and *f*. The function should work whether *r* and *f*
are scalars, 1D arrays or 2D arrays. The return value should have

the same dimensionality (shape) as the inputs *r* and *f*.

"""

raise NotImplementedError(’Original solution has 1 line’)

def df(r, f):

"""

return the derivative of *f* (the fox population) evaulated as a

function of *r* and *f*. The function should work whether *r* and *f*
are scalars, 1D arrays or 2D arrays. The return value should have

the same dimensionality (shape) as the inputs *r* and *f*.

"""

raise NotImplementedError(’Original solution has 1 line’)

def derivs(state, t):

"""

Return the derivatives of R and F, stored in the *state* vector::

state = [R, F]

The return data should be [dR, dF] which are the derivatives of R

and F at position state and time *t*
"""

raise NotImplementedError(’Original solution has 4 lines’)

# the parameters for rabbit and fox growth and interactions

alpha, delta = 1, .25

beta, gamma = .2, .05

# the initial population of rabbits and foxes

r0 = 20

f0 = 10

115
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# create a time array from 0..100 sampled at 0.1 second steps

raise NotImplementedError(’Original solution has 1 line’)

y0 = [r0, f0] # the initial [rabbits, foxes] state vector

# integrate your ODE using scipy.integrate. Read the help to see what

# is available

# HINT: see scipy.integrate.odeint

raise NotImplementedError(’Original solution has 1 line’)

# the return value from the integration is a Nx2 array. Extract it

# into two 1D arrays caled r and f using numpy slice indexing

raise NotImplementedError(’Original solution has 2 lines’)

# time series plot: plot the population of rabbits and foxes as a

# funciton of time

plt.figure()

plt.plot(t, r, label=’rabbits’)

plt.plot(t, f, label=’foxes’)

plt.xlabel(’time (years)’)

plt.ylabel(’population’)

plt.title(’population trajectories’)

plt.grid()

plt.legend()

plt.savefig(’lotka_volterra.png’, dpi=150)

plt.savefig(’lotka_volterra.eps’)

# phase-plane plot: plot the population of foxes versus rabbits

# make sure you include and xlabel, ylabel and title

raise NotImplementedError(’Original solution has 5 lines’)

# Create 2D arrays for R and F to represent the entire phase plane --

# the point (R[i,j], F[i,j]) is a single (rabbit, fox) combinations.

# pass these arrays to the functions dr and df above to get 2D arrays

# of dR and dF evaluated at every point in the phase plance.

raise NotImplementedError(’Original solution has 6 lines’)

# Now find the nul-clines, for dR and dF respectively. These are the

# points where dR=0 and dF=0 in the (R, F) phase plane. You can use

# matplotlib’s countour routine to find the zero level. See the

# levels keyword to contour. You will need a fine mesh of R and F,

# reevaluate dr and df on the finer grid, and use contour to find the

# level curves

raise NotImplementedError(’Original solution has 7 lines’)

plt.savefig(’lotka_volterra_pplane.png’, dpi=150)

plt.savefig(’lotka_volterra_pplane.eps’)

plt.show()
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Figure 1. Upper panel shows population trajectories for rabbits (blue) and foxes
(green) simulated using the Lotka-Volterra population dynamics equations. Lower
panel shows the phase-plane trajectories, direction �eld and nullclines.





CHAPTER 13

Statistics

R, a statistical package based on S, is viewd by some as the best statistical software on the planet,
and in the open source world it is the clear choice for sophisticated statistical analysis. Like python, R is
an interpreted language written in C with an interactive shell. Unlike python, which is a general purpose
programming language, R is a specialized statistical language. Since python is a excellent glue language,
with facilities for providing a transparent interface to FORTRAN, C, C++ and other languages, it should
come as no surprise that you can harness R's immense statistical power from python, through the rpy
third part extension library.

However, R is not without its warts. As a language, it lacks python's elegance and advanced pro-
gramming constructs and idioms. It is also GPL, which means you cannot distribute code based upon
it unhindered: the code you distribute must be GPL as well (python, and the core scienti�c extension
libraries, carry a more permissive license which support distribution in closed source, proprietary applica-
tion).

Fortunately, the core tools scienti�c libraries for python (primarily numpy and scipy.stats) provide
a wide array of statistical tools, from basic descriptive statistics (mean, variance, skew, kurtosis, correlation,
. . . ) to hypothesis testing (t-tests, χ-Square, analysis of variance, general linear models, . . . ) to analytical
and numerical tools for working with almost every discrete and continuous statistical distribution you can
think of (normal, gamma, poisson, weibull, lognormal, levy stable, . . . ).

1. Descriptive statistics

The �rst step in any statistical analysis should be to describe, charaterize and importantly, visualize
your data. The normal distribution (aka Gaussian or bell curve) lies at the heart of much of formal
statistical analysis, and normal distributions have the tidy property that they are completely characterized
by their mean and variance. As you may have observed in your interactions with family and friends, most
of the world is not normal, and many statistical analyses are �awed by summarizing data with just the
mean and standard deviation (square root of variance) and associated sign�cance tests (eg the T-Test) as
if it were normally distributed data.

In the exercise below, we write a class to provide descriptive statistics of a data set passed into
the constructor, with class methods to pretty print the results and to create a battery of standard plots
which may show structure missing in a casual analysis. Many new programmers, or even experienced
programmers used to a proceedural environment, are uncomfortable with the idea of classes, having hear
their geekier programmer friends talk about them but not really sure what to do with them. There are
many interesting things one can do with classes (aka object oriented programming) but at their hear they
are a way of bundling data with methods that operate on that data. The self variable is special in python
and is how the class refers to its own data and methods. Here is a toy example

In [115]: class MyData:

.....: def __init__(self, x):

.....: self.x = x

.....: def sumsquare(self):

.....: return (self.x**2).sum()

.....:

.....:

In [116]: nse = npy.random.rand(100)

In [117]: mydata.sumsquare()

Out[117]: 29.6851135284
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Listing 13.1. IGNORED

import scipy.stats as stats

from matplotlib.mlab import detrend_linear, load

import numpy

import pylab

class Descriptives:

"""

a helper class for basic descriptive statistics and time series plots

"""

def __init__(self, samples):

self.samples = numpy.asarray(samples)

self.N = len(samples)

self.median = stats.median(samples)

self.min = numpy.amin(samples)

self.max = numpy.amax(samples)

self.mean = stats.mean(samples)

self.std = stats.std(samples)

self.var = self.std**2.

self.skew = stats.skew(samples)

self.kurtosis = stats.kurtosis(samples)

self.range = self.max - self.min

def __repr__(self):

"""

Create a string representation of self; pretty print all the

attributes:

N, median, min, max, mean, std, var, skew, kurtosis, range,

"""

descriptives = (

’N = %d’ % self.N,

’Mean = %1.4f’ % self.mean,

’Median = %1.4f’ % self.median,

’Min = %1.4f’ % self.min,

’Max = %1.4f’ % self.max,

’Range = %1.4f’ % self.range,

’Std = %1.4f’ % self.std,

’Skew = %1.4f’ % self.skew,

’Kurtosis = %1.4f’ % self.kurtosis,

)

return ’\n’.join(descriptives)

def plots(self, figfunc, maxlags=20, Fs=1, detrend=detrend_linear,

fmt=’bo’, bins=100,

):

"""

plots the time series, histogram, autocorrelation and spectrogram

figfunc is a figure generating function, eg pylab.figure
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return an object which stores plot axes and their return

values from the plots. Attributes of the return object are

’plot’, ’hist’, ’acorr’, ’psd’, ’specgram’ and these are the

return values from the corresponding plots. Additionally, the

axes instances are attached as c.ax1...c.ax5 and the figure is

c.fig

keyword args:

Fs : the sampling frequency of the data

maxlags : max number of lags for the autocorr

detrend : a function used to detrend the data for the correlation

...and spectral functions

fmt : the plot format string

bins : the bins argument to hist

"""

data = self.samples

# Here we use a rather strange idiom: we create an empty do

# nothing class C and simply attach attributes to it for

# return value (which we carefully describe in the docstring).

# The alternative is either to return a tuple a,b,c,d or a

# dictionary {’a’:someval, ’b’:someotherval} but both of these

# methods have problems. If you return a tuple, and later

# want to return something new, you have to change all the

# code that calls this function. Dictionaries work fine, but

# I find the client code harder to use d[’a’] vesus d.a. The

# final alternative, which is most suitable for production

# code, is to define a custom class to store (and pretty

# print) your return object

class C: pass
c = C()

N = 5

fig = c.fig = figfunc()

fig.subplots_adjust(hspace=0.3)

ax = c.ax1 = fig.add_subplot(N,1,1)

c.plot = ax.plot(data, fmt)

ax.set_ylabel(’data’)

ax = c.ax2 = fig.add_subplot(N,1,2)

c.hist = ax.hist(data, bins)

ax.set_ylabel(’hist’)

ax = c.ax3 = fig.add_subplot(N,1,3)

c.acorr = ax.acorr(data, detrend=detrend, usevlines=True,

maxlags=maxlags, normed=True)

ax.set_ylabel(’acorr’)

ax = c.ax4 = fig.add_subplot(N,1,4)

c.psd = ax.psd(data, Fs=Fs, detrend=detrend)
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Figure 1.

ax.set_ylabel(’psd’)

ax = c.ax5 = fig.add_subplot(N,1,5)

c.specgtram = ax.specgram(data, Fs=Fs, detrend=detrend)

ax.set_ylabel(’specgram’)

return c

if __name__==’__main__’:

# load the data in filename fname into the list data, which is a

# list of floating point values, one value per line. Note you

# will have to do some extra parsing

data = []

fname = ’data/nm560.dat’ # tree rings in New Mexico 837-1987

fname = ’data/hsales.dat’ # home sales

for line in file(fname):

line = line.strip()

if not line: continue
vals = line.split()

val = vals[0]

data.append(float(val))

desc = Descriptives(data)

print desc

c = desc.plots(pylab.figure, Fs=12, fmt=’-’)

c.ax1.set_title(fname)

c.fig.savefig(’stats_descriptives.png’, dpi=150)

c.fig.savefig(’stats_descriptives.eps’)

pylab.show()
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2. Statistical distributions

We explore a handful of the statistical distributions in scipy.stats module and the connections
between them. The organization of the distribution functions in scipy.stats is quite elegant, with each
distribution providing random variates (rvs), analytical moments (mean, variance, skew, kurtosis), ana-
lytic density (pdf, cdf) and survival functions (sf, isf) (where available) and tools for �tting empirical
distributions to the analytic distributions (fit).

in the exercise below, we will simulate a radioactive particle emitter, and look at the empirical dis-
tribution of waiting times compared with the expected analytical distributions. Our radioative particle
emitter has an equal likelihood of emitting a particle in any equal time interval, and emits particles at a
rate of 20 Hz. We will discretely sample time at a high frequency, and record a 1 of a particle is emitted
and a 0 otherwise, and then look at the distribution of waiting times between emissions. The probability
of a particle emission in one of our sample intervals (assumed to be very small compared to the average
interval between emissions) is proportional to the rate and the sample interval ∆t, ie p(∆t) = α∆t where
α is the emission rate in particles per second.

# a uniform distribution [0..1]

In [62]: uniform = scipy.stats.uniform()

# our sample interval in seconds

In [63]: deltat = 0.001

# the emission rate, 20Hz

In [65]: alpha = 20

# 1000 random numbers

In [66]: rvs = uniform.rvs(1000)

# a look at the 1st 20 random variates

In [67]: rvs[:20]

Out[67]:

array([ 0.71167172, 0.01723161, 0.25849255, 0.00599207, 0.58656146,

0.12765225, 0.17898621, 0.77724693, 0.18042977, 0.91935639,

0.97659579, 0.59045477, 0.94730366, 0.00764026, 0.12153159,

0.82286929, 0.18990484, 0.34608396, 0.63931108, 0.57199175])

# we simulate an emission when the random number is less than

# p(Delta t) = alpha * deltat

In [84]: emit = rvs < (alpha * deltat)

# there were 3 emissions in the first 20 observations

In [85]: emit[:20]

Out[85]:

array([False, True, False, True, False, False, False, False, False,

False, False, False, False, True, False, False, False, False,

False, False], dtype=bool)

The waiting times between the emissions should follow an exponential distribution (see
scipy.stats.expon) with a mean of 1/α. In the exercise below, you will generate a long array of
emissions, compute the waiting times between emissions, between 2 emissions, and between 10 emissions.
These should approach an 1st order gamma (aka exponential) distribution, 2nd order gamma, and 10th
order gamma (see scipy.stats.gamma). Use the probability density functions for these distributions in
scipy.stats to compare your simulated distributions and moments with the analytic versions provided
by scipy.stats. With 10 waiting times, we should be approaching a normal distribution since we are
summing 10 waiting times and under the central limit theorem the sum of independent samples from a
�nite variance process approaches the normal distribution (see scipy.stats.norm). In the �nal part of
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the exercise below, you will be asked to approximate the 10th order gamma distribution with a normal
distribution. The results should look something like those in Figure 2.

Listing 13.2. IGNORED

"""

Illustrate the connections bettwen the uniform, exponential, gamma and

normal distributions by simulating waiting times from a radioactive

source using the random number generator. Verify the numerical

results by plotting the analytical density functions from scipy.stats

"""

import numpy

import scipy.stats

from pylab import figure, show, close

# N samples from a uniform distribution on the unit interval. Create

# a uniform distribution from scipy.stats.uniform and use the "rvs"

# method to generate N uniform random variates

N = 100000

uniform = scipy.stats.uniform() # the frozen uniform distribution

uninse = uniform.rvs(N) # the random variates

# in each time interval, the probability of an emission

rate = 20. # the emission rate in Hz

dx = 0.001 # the sampling interval in seconds

t = numpy.arange(N)*dx # the time vector

# the probability of an emission is proportionate to the rate and the interval

emit_times = t[uninse < rate*dx]

# the difference in the emission times is the wait time

wait_times = numpy.diff(emit_times)

# plot the distribution of waiting times and the expected exponential

# density function lambda exp( lambda wt) where lambda is the rate

# constant and wt is the wait time; compare the result of the analytic

# function with that provided by scipy.stats.exponential.pdf; note

# that the scipy.stats.expon "scale" parameter is inverse rate

# 1/lambda. Plot all three on the same graph and make a legend.

# Decorate your graphs with an xlabel, ylabel and title

fig = figure()

ax = fig.add_subplot(311)

p, bins, patches = ax.hist(wait_times, 100, normed=True)

l1, = ax.plot(bins, rate*numpy.exp(-rate * bins), lw=2, color=’red’)

l2, = ax.plot(bins, scipy.stats.expon.pdf(bins, 0, 1./rate),

lw=2, ls=’--’, color=’green’)

ax.set_ylabel(’PDF’)

ax.set_title(’waiting time densities of a %dHz Poisson emitter’%rate)

ax.text(0.05, 0.9, ’one interval’, transform=ax.transAxes)

ax.legend((patches[0], l1, l2), (’simulated’, ’analytic’, ’scipy.stats.expon’)

...)

# plot the distribution of waiting times for two events; the
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# distribution of waiting times for N events should equal a N-th order

# gamma distribution (the exponential distribution is a 1st order

# gamma distribution. Use scipy.stats.gamma to compare the fits.

# Hint: you can stride your emission times array to get every 2nd

# emission

wait_times2 = numpy.diff(emit_times[::2])

ax = fig.add_subplot(312)

p, bins, patches = ax.hist(wait_times2, 100, normed=True)

l1, = ax.plot(bins, scipy.stats.gamma.pdf(bins, 2, 0, 1./rate),

lw=2, ls=’-’, color=’red’)

ax.set_ylabel(’PDF’)

ax.text(0.05, 0.9, ’two intervals’, transform=ax.transAxes)

ax.legend((patches[0], l1), (’simulated’, ’scipy.stats.gamma’))

# plot the distribution of waiting times for 10 events; again the

# distribution will be a 10th order gamma distribution so plot that

# along with the empirical density. The central limit thm says that

# as we add N independent samples from a distribution, the resultant

# distribution should approach the normal distribution. The mean of

# the normal should be N times the mean of the underlying and the

# variance of the normal should be 10 times the variance of the

# underlying. HINT: Use scipy.stats.expon.stats to get the mean and

# variance of the underlying distribution. Use scipy.stats.norm to

# get the normal distribution. Note that the scale parameter of the

# normal is the standard deviation which is the square root of the

# variance

expon_mean, expon_var = scipy.stats.expon(0, 1./rate).stats()

mu, var = 10*expon_mean, 10*expon_var

sigma = numpy.sqrt(var)

wait_times10 = numpy.diff(emit_times[::10])

ax = fig.add_subplot(313)

p, bins, patches = ax.hist(wait_times10, 100, normed=True)

l1, = ax.plot(bins, scipy.stats.gamma.pdf(bins, 10, 0, 1./rate),

lw=2, ls=’-’, color=’red’)

l2, = ax.plot(bins, scipy.stats.norm.pdf(bins, mu, sigma),

lw=2, ls=’--’, color=’green’)

ax.set_xlabel(’waiting times’)

ax.set_ylabel(’PDF’)

ax.text(0.1, 0.9, ’ten intervals’, transform=ax.transAxes)

ax.legend((patches[0], l1, l2), (’simulated’, ’scipy.stats.gamma’, ’normal

...approx’))

fig.savefig(’stats_distributions.png’, dpi=150)

fig.savefig(’stats_distributions.eps’)

show()
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Figure 2.



CHAPTER 14

Plotting on maps

The matplotlib basemap toolkit is an add-on for matplotlib that provides the capability to draw maps
of the earth in various map projections, and plot data on those maps. This section shows how to use
basemap to create simple maps, draw coastlines and political boundaries, draw lines of constant latitude
and longitude, and plot geophysical data on the maps.

1. Setting up the map.

In order to represent the curved surface of the earth in a two-dimensional map, a map projection
is needed. Since this cannot be done without distortion, there are many map projections, each with it's
own advantages and disadvantages. Basemap provides 19 di�erent map projections. Some are global,
some can only represent a portion of the globe. When a Basemap class instance is created, the desired
map projection must be speci�ed, along with information about the portion of the earth's surface that
the map projection will describe. There are two basic ways of doing this. One is to provide the latitude
and longitude values of each of the four corners of the rectangular map projection region. The other is to
provide the lat/lon value of the center of the map projection region along with the width and height of
the region in map projection coordinates. The �rst script illustrates how to use both of these methods to
create a simple map. It also shows how to draw the continents and political boundaries on the map.

Here is an example script that creates a map by specifying the latitudes and longitudes of the four
corners

Listing 14.1. IGNORED

from mpl_toolkits.basemap import Basemap

import matplotlib.pyplot as plt

# create map by specifying lat/lon values at corners.

resolution = ’l’; projection = ’lcc’

lat_0 = 60; lon_0 = -50

llcrnrlat, llcrnrlon = 8, -92

urcrnrlat, urcrnrlon = 39, 63

m = Basemap(lat_0=lat_0,lon_0=lon_0,\

llcrnrlat=llcrnrlat,llcrnrlon=llcrnrlon,\

urcrnrlat=urcrnrlat,urcrnrlon=urcrnrlon,\

resolution=resolution,projection=projection)

# draw coastlines. Make liness a little thinner than default.

m.drawcoastlines(linewidth=0.5)

# background fill color will show ocean areas.

m.drawmapboundary(fill_color=’aqua’)

# fill continents, lakes within continents.

m.fillcontinents(color=’coral’,lake_color=’aqua’)

# draw states and countries.

m.drawcountries()

m.drawstates()

plt.title(’map region specified using corner lat/lon values’)

plt.show()

After running this script, you should see a plot that looks similar to Figure 1.

Here is an example script that creates a map by specifying the center of the map, plus the width and
height in meters.
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Figure 1. A map created by specifying the latitudes and longitudes of the four corners.

Listing 14.2. IGNORED

from mpl_toolkits.basemap import Basemap

import matplotlib.pyplot as plt

# create map by specifying width and height in km.

resolution = ’l’; projection = ’lcc’

lon_0 = -50; lat_0 = 60

width = 12000000; height = 0.75*width

m = Basemap(lon_0=lon_0,lat_0=lat_0,\

width=width,height=height,\

resolution=resolution,projection=projection)

m.drawcoastlines(linewidth=0.5)

m.drawmapboundary(fill_color=’aqua’)

m.fillcontinents(color=’coral’,lake_color=’aqua’)

m.drawcountries()

m.drawstates()

plt.title(’map region specified using width and height’)

plt.show()

After running this script, you should see a plot that looks nearly identical to Figure 1.

The Basemap class instance can be used to convert latitudes and longitudes to coordinates on the
map. To do this, simply call the instance as if it were a function, passing it the longitude and latitudes
values to convert. The corresponding x and y values in map projection coordinates will be returned. The
following example script shows how to use this to plot the locations of two cities (New York and London).
The Basemap method drawgreatcircle is then used to draw the great circle route between these cities on
the map.

Listing 14.3. IGNORED

from mpl_toolkits.basemap import Basemap

import matplotlib.pyplot as plt

# create map by specifying width and height in km.

resolution = ’l’; projection = ’lcc’

lon_0 = -50; lat_0 = 60

width = 12000000; height = 0.75*width

m = Basemap(lon_0=lon_0,lat_0=lat_0,width=width,height=height,
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resolution=resolution,projection=projection)

# nylat, nylon are lat/lon of New York

nylat = 40.78

nylon = -73.98

# lonlat, lonlon are lat/lon of London.

lonlat = 51.53

lonlon = 0.08

# convert these points to map projection coordinates

# (using __call__ method of Basemap instance)

ny_x, ny_y = m(nylon, nylat)

lon_x, lon_y = m(lonlon, lonlat)

# plot black dots at the two points.

# make sure dots are drawn on top of other plot elements (zorder=10)

m.scatter([ny_x,lon_x],[ny_y,lon_y],25,color=’k’,marker=’o’,zorder=10)

# connect the dots along a great circle.

m.drawgreatcircle(nylon,nylat,lonlon,lonlat,linewidth=2,color=’k’)

# put the names of the cities to the left of each dot, offset

# by a little. Use a bold font.

plt.text(ny_x-100000,ny_y+100000,’New York’,fontsize=12,\

color=’k’,horizontalalignment=’right’,fontweight=’bold’)

plt.text(lon_x-100000,lon_y+100000,’London’,fontsize=12,\

color=’k’,horizontalalignment=’right’,fontweight=’bold’)

m.drawcoastlines(linewidth=0.5)

m.drawmapboundary(fill_color=’aqua’)

m.fillcontinents(color=’coral’,lake_color=’aqua’)

m.drawcountries()

m.drawstates()

plt.title(’NY to London Great Circle’)

plt.show()

This should produce something similar to Figure 2.

Figure 2. Drawing the locations of two cities, and connecting them along a great circle.

Most maps include a graticule grid, a reference network of labelled latitude and longitude lines.
Basemap does this with the drawparallels and drawmeridians instance methods. The longitude and latitude
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lines can be labelled where the intersect the map projection boundary. Following is an example script that
draws a graticule on the map we've been working with.

Listing 14.4. IGNORED

from mpl_toolkits.basemap import Basemap

import matplotlib.pyplot as plt

import numpy as np

# create map by specifying width and height in km.

resolution = ’l’

lon_0 = -50

lat_0 = 60

projection = ’lcc’

width = 12000000

height = 0.75*width

m = Basemap(lon_0=lon_0,lat_0=lat_0,width=width,height=height,

resolution=resolution,projection=projection)

m.drawcoastlines(linewidth=0.5)

m.drawmapboundary(fill_color=’aqua’)

m.fillcontinents(color=’coral’,lake_color=’aqua’)

m.drawcountries()

m.drawstates()

# label meridians where they intersect the left, right and bottom

# of the plot frame.

m.drawmeridians(np.arange(-180,181,20),labels=[1,1,0,1])

# label parallels where they intersect the left, right and top

# of the plot frame.

m.drawparallels(np.arange(-80,81,20),labels=[1,1,1,0])

plt.title(’labelled meridians and parallels’,y=1.075)

plt.show()

Running this script should produce a plot that looks like Figure 3.

Figure 3. Drawing labelled meridians and parallels on the map (a graticule grid).
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2. Plotting geophysical data on the map.

One of the most common uses of Basemap is to visualize earth science data, such as output from
climate models. These data often come on latitude/longitude grids. One common data format for
storing such grids is NetCDF. Basemap includes a NetCDF �le reader (written in pure python by
Roberto De Almeida). You can also access remote datasets over the web using the OPeNDAP proto-
col - just give the NetCDFFile function a URL instead of a local �le name and Roberto's pydap module
(http://pydap.org) will be used. The pydap client is included in Basemap. If the PyNIO module
(http://www.pyngl.ucar.edu/Nio.shtml) is installed, the NetCDFFile function can also be used
to open the formats that PyNIO supports, like GRIB and HDF. Following is an example of how to read
sea-surface temperature data from a NetCDF �le and plot it on a global mollweide projection.

Listing 14.5. IGNORED

from mpl_toolkits.basemap import Basemap, NetCDFFile

import matplotlib.pyplot as plt

import numpy as np

# read in netCDF sea-surface temperature data

# can be a local file, a URL for a remote opendap dataset,

# or (if PyNIO is installed) a GRIB or HDF file.

ncfile = NetCDFFile(’data/sst.nc’)

sst = ncfile.variables[’sst’][:]

lats = ncfile.variables[’lat’][:]

lons = ncfile.variables[’lon’][:]

# create Basemap instance for mollweide projection.

# coastlines not used, so resolution set to None to skip

# continent processing (this speeds things up a bit)

m = Basemap(projection=’moll’,lon_0=0,lat_0=0,resolution=None)

# compute map projection coordinates of grid.

x, y = m(*np.meshgrid(lons, lats))

# plot with pcolor

im = m.pcolormesh(x,y,sst,shading=’flat’,cmap=plt.cm.gist_ncar)

# draw parallels and meridians, but don’t bother labelling them.

m.drawparallels(np.arange(-90.,120.,30.))

m.drawmeridians(np.arange(0.,420.,60.))

# draw line around map projection limb.

# color map region background black (missing values will be this color)

m.drawmapboundary(fill_color=’k’)

# draw horizontal colorbar.

plt.colorbar(orientation=’horizontal’)

plt.show()

The resulting plot should look like Figure 4.

Basemap also is capable of reading ESRI shape�les, a very common GIS format. The script �llstates.py
in the examples directory of the basemap source distribution shows how to read and plot polygons in a
shape�le. There are many other useful examples in that directory that illustrate various ways of using
basemap.
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Figure 4. Sea surface temperature on a global mollweide projection.



CHAPTER 15

Performance python: interfacing with other languages

pyrex is a pure python packages that utilizes a custom language which is a hybid of C and python
to write code that looks like python, but is converted by pyrex into python C extension code. It can be
used to write custom C extension modules in a python like module to remove performance bottlenecks in
code, as well as to wrap and existing C API with a python binding. pyrex generates C code, so you can
use it to automatically generate C extensions that you can ship with your code and users can build your
code without pyrex installed.

1. Writing C extensions pyrex

The canonical pyrex example generates a list of N prime numbers, and illustrates the hybrid nature
of pyrex syntax

# name this file with the pyx extension for pyrex, rather than the py

# extension for python, eg primes.pyx

def primes(int kmax):

# pyrex uses cdef to declare a c type

cdef int n, k, i

cdef int p[1000]

# you can use normal python too, eg a python list

result = []

if kmax > 1000:

kmax = 1000

k = 0

n = 2

while k < kmax:

i = 0

while i < k and n % p[i] <> 0:

i = i + 1

if i == k:

p[k] = n

k = k + 1

result.append(n)

n = n + 1

return result

To build our python extension, we will use the pyrex.distutils extensions. Here is a typical
setup.py

from distutils.core import setup

# we use the Pyrex distutils Extension class rather than the standard

# python one

#from distutils.extension import Extension

from Pyrex.Distutils.extension import Extension

from Pyrex.Distutils import build_ext
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setup(

name = ’Demos’,

ext_modules=[

Extension("primes", ["primes.pyx"]),

],

cmdclass = {’build_ext’: build_ext}

)

and we can build it in place using

python setup.py build_ext --inplace

This creates a primes.c module which is the generated C code that we can ship with our python
code to users who may not have pyrex installed, and a primes.so �le which is the python shared library
extension. We can now �re up ipython, import primes, and call our function with C performance. Here is
an example shell session in which we build and test our new extension code

# our single pyx file from above

pyrex_demos> ls primes*
primes.pyx

# build the module in place

pyrex_demos> python setup.py build_ext --inplace

running build_ext

pyrexc primes.pyx --> primes.c

building ’primes’ extension

creating build

creating build/temp.macosx-10.3-fat-2.5

gcc -arch ppc -arch i386 -isysroot /Developer/SDKs/MacOSX10.4u.sdk -fno-strict

...-aliasing -Wno-long-double -no-cpp-precomp -mno-fused-madd -fno-common

...-dynamic -DNDEBUG -g -O3 -I/Library/Frameworks/Python.framework/

...Versions/2.5/include/python2.5 -c primes.c -o build/temp.macosx-10.3-

...fat-2.5/primes.o

gcc -arch i386 -arch ppc -isysroot /Developer/SDKs/MacOSX10.4u.sdk -g -bundle

...-undefined dynamic_lookup build/temp.macosx-10.3-fat-2.5/primes.o -o

...primes.so

# now we have the original pyx and also the autogenerated C file and

# the extension module

pyrex_demos> ls primes*
primes.cprimes.pyxprimes.so

# let’s test drive this in ipython

pyrex_demos> ipython

IPython 0.8.3.svn.r2876 -- An enhanced Interactive Python.

In [1]: import primes

In [2]: dir(primes)

Out[2]: [’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’primes’]

In [3]: print primes.primes(20)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]
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2. Working with numpy arrays

numpy arrays are the core of high performance computing in python, and one of the most common
data formats for passing large data sets around between pyhton code and other wrappers. There are many
things that arrays do very well and are practically as fast as a native C or FORTRAN implementations,
eg convolutions and FFTs. But there are somethings that can be painfully slow in python when working
with arrays, for example iterative algorithms over an array of values. For these cases, it is nice to be able
to quickly generate some python extension code for working with numpy array data.

numpy provides a �le which exposes its C API for use in pyrex extension code, you can �nd it, and
another �le which numpy uses to expose the requisite bits of the Python C API which it needs, in the
numpy source code directory numpy/doc/pyrex. These �les are c_numpy.pxd and c_python.pxd. In
addition, numpy provides and example �le numpyx.pyxthat shows you how to build a pyx extension �le
for multi-dimensional array sof di�erent data types (eg int, �oat, python object). Here we will be a little
less ambitious for starters, and write a simple toy function that sums a 1D array of �oats.

# import the numpy c API (you need to have c_python.pxd and

# c_numpy.pxd from the numpy source directory in your build directory

cimport c_numpy

# since this is pyrex, we can import normal python modules too

import numpy

# numpy must be initialized -- don’t forget to do this when writing

# numpy extension code. It’s a common gotcha

c_numpy.import_array()

def sum_elements(c_numpy.ndarray arr):

cdef int i

cdef double x, val

x = 0.

val = 0.

for i from 0<=i<arr.dimensions[0]:

val = (<double*>(arr.data + i*arr.strides[0]))[0]

x = x + val

return x

This exercise introduces pyrex to wrap a C library for trailing statistics.
Computation of trailing windowed statistics is common in many quantitative data driven disciplines,

particularly where there is noisy data. Common uses of windowed statistics are the trailing moving average,
standard deviation, minumum and maximum. Two common use cases which pose computational challenges
for python: real time updating of trailing statistics as live data comes in, and posthoc computation of
trailing statistics over a large data array. In the second case, for some statistics we can use convolution
and related techniques for e�cient computation, eg of the trailing 30 sample average

numpy.convolve(x, numpy.ones(30), mode=valid’)[:len(x)]

but for other statistics like the trailing 30 day maximum at each point, e�cient routines like convolution
are of no help.

This exercise introduces pyrex to e�ciently solve the problem of trailing statistics over arrays as well
as for a live, incoming data stream. A pure C library, ringbuf, de�nes a circular C bu�er and attached
methods for e�ciently computing trailing averages, and pyrex is used to provide a pythonic API on top
of this extension code. The rigid segregation between the C library and the python wrappers insures that
the C code can be used in other projects, be it a matlab (TM) extension or some other C library. The
goal of the exercise is to compute the trailing statistics mean, median, stddev, min and max using three
approaches:

• with brute force using numpy arrays, slices and methods
• with python bindings to the ringbuf code ringbuf.Ringbuf.
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• using a pyrex extension to the ringbuf.runstats code
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