libflame revision_anchor
|
Go to the source code of this file.
Functions | |
FLA_Error | FLA_QR_UT (FLA_Obj A, FLA_Obj T) |
FLA_Error | FLA_QR_UT_internal (FLA_Obj A, FLA_Obj T, fla_qrut_t *cntl) |
FLA_Error | FLA_QR_UT_copy_internal (FLA_Obj A, FLA_Obj T, FLA_Obj U, fla_qrut_t *cntl) |
FLA_Error | FLA_QR_UT_create_T (FLA_Obj A, FLA_Obj *T) |
FLA_Error | FLA_QR_UT_recover_tau (FLA_Obj T, FLA_Obj tau) |
FLA_Error | FLA_QR_UT_solve (FLA_Obj A, FLA_Obj T, FLA_Obj B, FLA_Obj X) |
FLA_Error | FLASH_QR_UT (FLA_Obj A, FLA_Obj TW) |
FLA_Error | FLASH_QR_UT_create_hier_matrices (FLA_Obj A_flat, dim_t depth, dim_t *b_flash, FLA_Obj *A, FLA_Obj *TW) |
FLA_Error | FLASH_QR_UT_solve (FLA_Obj A, FLA_Obj T, FLA_Obj B, FLA_Obj X) |
References FLA_Check_error_level(), FLA_QR_UT_check(), and FLA_QR_UT_internal().
{ FLA_Error r_val; // Check parameters. if ( FLA_Check_error_level() >= FLA_MIN_ERROR_CHECKING ) FLA_QR_UT_check( A, T ); // Invoke FLA_QR_UT_internal() with the standard control tree. //r_val = FLA_QR_UT_internal( A, T, fla_qrut_cntl2 ); r_val = FLA_QR_UT_internal( A, T, fla_qrut_cntl_leaf ); return r_val; }
FLA_Error FLA_QR_UT_copy_internal | ( | FLA_Obj | A, |
FLA_Obj | T, | ||
FLA_Obj | U, | ||
fla_qrut_t * | cntl | ||
) |
References FLA_Check_error_level(), FLA_QR_UT_copy_internal_check(), FLA_QR_UT_copy_task(), and FLASH_Queue_get_enabled().
Referenced by FLA_QR_UT_inc_blk_var2().
{ FLA_Error r_val = FLA_SUCCESS; if ( FLA_Check_error_level() == FLA_FULL_ERROR_CHECKING ) FLA_QR_UT_copy_internal_check( A, T, U, cntl ); if ( FLASH_Queue_get_enabled() ) { // Enqueue task. ENQUEUE_FLASH_QR_UT_copy( *FLASH_OBJ_PTR_AT( A ), *FLASH_OBJ_PTR_AT( T ), *FLASH_OBJ_PTR_AT( U ), NULL ); } else { // Execute task immediately. FLA_QR_UT_copy_task( *FLASH_OBJ_PTR_AT( A ), *FLASH_OBJ_PTR_AT( T ), *FLASH_OBJ_PTR_AT( U ), NULL ); } return r_val; }
References FLA_Obj_create(), FLA_Obj_datatype(), FLA_Obj_min_dim(), FLA_Obj_row_stride(), and FLA_Query_blocksize().
{ FLA_Datatype datatype; dim_t b_alg, k; dim_t rs_T, cs_T; // Query the datatype of A. datatype = FLA_Obj_datatype( A ); // Query the blocksize from the library. b_alg = FLA_Query_blocksize( datatype, FLA_DIMENSION_MIN ); // Query the minimum dimension of A. k = FLA_Obj_min_dim( A ); // Figure out whether T should be row-major or column-major. if ( FLA_Obj_row_stride( A ) == 1 ) { rs_T = 1; cs_T = b_alg; } else // if ( FLA_Obj_col_stride( A ) == 1 ) { rs_T = k; cs_T = 1; } // Create a b_alg x k matrix to hold the block Householder transforms that // will be accumulated within the QR factorization algorithm. FLA_Obj_create( datatype, b_alg, k, rs_T, cs_T, T ); return FLA_SUCCESS; }
FLA_Error FLA_QR_UT_internal | ( | FLA_Obj | A, |
FLA_Obj | T, | ||
fla_qrut_t * | cntl | ||
) |
References FLA_Check_error_level(), FLA_QR_UT_blk_var1(), FLA_QR_UT_blk_var2(), FLA_QR_UT_blk_var3(), FLA_QR_UT_internal_check(), FLA_QR_UT_macro_task(), FLA_QR_UT_opt_var1(), FLA_QR_UT_opt_var2(), FLA_QR_UT_unb_var1(), FLA_QR_UT_unb_var2(), and FLASH_Queue_get_enabled().
Referenced by FLA_QR_UT(), FLA_QR_UT_blk_var1(), FLA_QR_UT_blk_var2(), FLA_QR_UT_blk_var3(), FLA_QR_UT_copy_task(), FLA_QR_UT_inc_blk_var1(), FLA_QR_UT_macro_task(), FLA_QR_UT_task(), and FLASH_QR_UT().
{ FLA_Error r_val = FLA_SUCCESS; if ( FLA_Check_error_level() == FLA_FULL_ERROR_CHECKING ) FLA_QR_UT_internal_check( A, T, cntl ); if ( FLA_Cntl_matrix_type( cntl ) == FLA_HIER && FLA_Cntl_variant( cntl ) == FLA_SUBPROBLEM ) { if ( FLASH_Queue_get_enabled( ) ) { // Enqueue ENQUEUE_FLASH_QR_UT_macro( A, *FLASH_OBJ_PTR_AT( T ), cntl ); } else { // Execute r_val = FLA_QR_UT_macro_task( A, *FLASH_OBJ_PTR_AT( T ), cntl ); } } else { if ( FLA_Cntl_variant( cntl ) == FLA_UNBLOCKED_VARIANT1 ) { r_val = FLA_QR_UT_unb_var1( A, T ); } else if ( FLA_Cntl_variant( cntl ) == FLA_UNB_OPT_VARIANT1 ) { r_val = FLA_QR_UT_opt_var1( A, T ); } else if ( FLA_Cntl_variant( cntl ) == FLA_BLOCKED_VARIANT1 ) { r_val = FLA_QR_UT_blk_var1( A, T, cntl ); } else if ( FLA_Cntl_variant( cntl ) == FLA_UNBLOCKED_VARIANT2 ) { r_val = FLA_QR_UT_unb_var2( A, T ); } else if ( FLA_Cntl_variant( cntl ) == FLA_UNB_OPT_VARIANT2 ) { r_val = FLA_QR_UT_opt_var2( A, T ); } else if ( FLA_Cntl_variant( cntl ) == FLA_BLOCKED_VARIANT2 ) { r_val = FLA_QR_UT_blk_var2( A, T, cntl ); } else if ( FLA_Cntl_variant( cntl ) == FLA_BLOCKED_VARIANT3 ) { r_val = FLA_QR_UT_blk_var3( A, T, cntl ); } else { FLA_Check_error_code( FLA_NOT_YET_IMPLEMENTED ); } } return r_val; }
References FLA_Check_error_level(), FLA_Cont_with_1x3_to_1x2(), FLA_Cont_with_3x1_to_2x1(), FLA_Obj_length(), FLA_Obj_width(), FLA_Part_1x2(), FLA_Part_2x1(), FLA_QR_UT_recover_tau_check(), FLA_QR_UT_recover_tau_submatrix(), FLA_Repart_1x2_to_1x3(), and FLA_Repart_2x1_to_3x1().
{ FLA_Obj TL, TR, T0, T1, T2; FLA_Obj tT, t0, tB, t1, t2; dim_t b_alg, b; if ( FLA_Check_error_level() >= FLA_MIN_ERROR_CHECKING ) FLA_QR_UT_recover_tau_check( T, t ); b_alg = FLA_Obj_length( T ); FLA_Part_1x2( T, &TL, &TR, 0, FLA_LEFT ); FLA_Part_2x1( t, &tT, &tB, 0, FLA_TOP ); while ( FLA_Obj_width( TL ) < FLA_Obj_width( T ) ){ b = min( FLA_Obj_width( TR ), b_alg ); FLA_Repart_1x2_to_1x3( TL, /**/ TR, &T0, /**/ &T1, &T2, b, FLA_RIGHT ); FLA_Repart_2x1_to_3x1( tT, &t0, /* ** */ /* ** */ &t1, tB, &t2, b, FLA_BOTTOM ); /*------------------------------------------------------------*/ FLA_QR_UT_recover_tau_submatrix( T1, t1 ); /*------------------------------------------------------------*/ FLA_Cont_with_1x3_to_1x2( &TL, /**/ &TR, T0, T1, /**/ T2, FLA_LEFT ); FLA_Cont_with_3x1_to_2x1( &tT, t0, t1, /* ** */ /* ** */ &tB, t2, FLA_TOP ); } return FLA_SUCCESS; }
References FLA_Apply_Q_UT(), FLA_Apply_Q_UT_create_workspace(), FLA_Check_error_level(), FLA_Copy_external(), FLA_Obj_create_copy_of(), FLA_Obj_free(), FLA_Obj_width(), FLA_ONE, FLA_Part_2x1(), FLA_QR_UT_solve_check(), and FLA_Trsm_external().
{ FLA_Obj W, Y; FLA_Obj AT, AB; FLA_Obj YT, YB; // Check parameters. if ( FLA_Check_error_level() >= FLA_MIN_ERROR_CHECKING ) FLA_QR_UT_solve_check( A, T, B, X ); FLA_Apply_Q_UT_create_workspace( T, B, &W ); FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, B, &Y ); FLA_Apply_Q_UT( FLA_LEFT, FLA_CONJ_TRANSPOSE, FLA_FORWARD, FLA_COLUMNWISE, A, T, W, Y ); FLA_Part_2x1( A, &AT, &AB, FLA_Obj_width( A ), FLA_TOP ); FLA_Part_2x1( Y, &YT, &YB, FLA_Obj_width( A ), FLA_TOP ); FLA_Trsm_external( FLA_LEFT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG, FLA_ONE, AT, YT ); FLA_Copy_external( YT, X ); FLA_Obj_free( &Y ); FLA_Obj_free( &W ); return FLA_SUCCESS; }
References FLA_Abort(), FLA_Check_error_level(), FLA_Print_message(), FLA_QR_UT_check(), FLA_QR_UT_internal(), FLASH_Obj_depth(), FLASH_Obj_scalar_length_tl(), FLASH_Obj_scalar_min_dim(), FLASH_Obj_scalar_width_tl(), FLASH_Queue_begin(), and FLASH_Queue_end().
{ FLA_Error r_val; dim_t b_alg, b_flash; // Check parameters. if ( FLA_Check_error_level() >= FLA_MIN_ERROR_CHECKING ) FLA_QR_UT_check( A, TW ); // *** The current hierarchical QR_UT algorithm assumes that the matrix // has a hierarchical depth of 1. We check for that here, because we // anticipate that we'll use a more general algorithm in the future, and // we don't want to forget to remove the constraint. *** if ( FLASH_Obj_depth( A ) != 1 ) { FLA_Print_message( "FLASH_QR_UT() currently only supports matrices of depth 1", __FILE__, __LINE__ ); FLA_Abort(); } // Inspect the length of TTL to get the blocksize used by the QR // factorization, which will be our inner blocksize for Apply_Q_UT. b_alg = FLASH_Obj_scalar_length_tl( TW ); b_flash = FLASH_Obj_scalar_width_tl( TW ); // The traditional (non-incremental) QR_UT algorithm-by-blocks requires // that the algorithmic blocksize be equal to the storage blocksize. if ( b_alg != b_flash ) { FLA_Print_message( "FLASH_QR_UT() requires that b_alg == b_store", __FILE__, __LINE__ ); FLA_Abort(); } // The traditional (non-incremental) QR_UT algorithm-by-blocks requires // that min_dim(A) % b_flash == 0. if ( FLASH_Obj_scalar_min_dim( A ) % b_flash != 0 ) { FLA_Print_message( "FLASH_QR_UT() requires that min_dim( A ) %% b_store == 0", __FILE__, __LINE__ ); FLA_Abort(); } // Begin a parallel region. FLASH_Queue_begin(); // Invoke FLA_QR_UT_internal() with hierarchical control tree. r_val = FLA_QR_UT_internal( A, TW, flash_qrut_cntl ); // End the parallel region. FLASH_Queue_end(); return r_val; }
FLA_Error FLASH_QR_UT_create_hier_matrices | ( | FLA_Obj | A_flat, |
dim_t | depth, | ||
dim_t * | b_flash, | ||
FLA_Obj * | A, | ||
FLA_Obj * | TW | ||
) |
References FLA_Abort(), FLA_Obj_datatype(), FLA_Obj_min_dim(), FLA_Print_message(), FLASH_Obj_create_ext(), and FLASH_Obj_create_hier_copy_of_flat().
{ FLA_Datatype datatype; dim_t m, n; dim_t min_m_n; // *** The current QR_UT algorithm implemented assumes that // the matrix has a hierarchical depth of 1. We check for that here // because we anticipate that we'll use a more general algorithm in the // future, and we don't want to forget to remove the constraint. *** if ( depth != 1 ) { FLA_Print_message( "FLASH_QR_UT() currently only supports matrices of depth 1", __FILE__, __LINE__ ); FLA_Abort(); } // Create hierarchical copy of matrix A_flat. FLASH_Obj_create_hier_copy_of_flat( A_flat, depth, b_flash, A ); // Query the datatype of matrix A_flat. datatype = FLA_Obj_datatype( A_flat ); // Query the minimum dimension of A_flat. min_m_n = FLA_Obj_min_dim( A_flat ); // Set the m and n dimensions of TW to be min_m_n. m = min_m_n; n = min_m_n; // Create hierarchical matrices T and W. FLASH_Obj_create_ext( datatype, m, n, depth, b_flash, b_flash, TW ); return FLA_SUCCESS; }
References FLA_Check_error_level(), FLA_Obj_width(), FLA_ONE, FLA_Part_2x1(), FLA_QR_UT_solve_check(), FLASH_Apply_Q_UT(), FLASH_Apply_Q_UT_create_workspace(), FLASH_Copy(), FLASH_Obj_create_copy_of(), FLASH_Obj_free(), and FLASH_Trsm().
{ FLA_Obj W, Y; FLA_Obj AT, AB; FLA_Obj YT, YB; // Check parameters. if ( FLA_Check_error_level() >= FLA_MIN_ERROR_CHECKING ) FLA_QR_UT_solve_check( A, TW, B, X ); FLASH_Apply_Q_UT_create_workspace( TW, B, &W ); FLASH_Obj_create_copy_of( FLA_NO_TRANSPOSE, B, &Y ); FLASH_Apply_Q_UT( FLA_LEFT, FLA_CONJ_TRANSPOSE, FLA_FORWARD, FLA_COLUMNWISE, A, TW, W, Y ); FLA_Part_2x1( A, &AT, &AB, FLA_Obj_width( A ), FLA_TOP ); FLA_Part_2x1( Y, &YT, &YB, FLA_Obj_width( A ), FLA_TOP ); FLASH_Trsm( FLA_LEFT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG, FLA_ONE, AT, YT ); FLASH_Copy( YT, X ); FLASH_Obj_free( &Y ); FLASH_Obj_free( &W ); return FLA_SUCCESS; }