libflame revision_anchor
|
Functions | |
void | bli_srandmr (char uplo, char diag, int m, int n, float *a, int a_rs, int a_cs) |
void | bli_drandmr (char uplo, char diag, int m, int n, double *a, int a_rs, int a_cs) |
void | bli_crandmr (char uplo, char diag, int m, int n, scomplex *a, int a_rs, int a_cs) |
void | bli_zrandmr (char uplo, char diag, int m, int n, dcomplex *a, int a_rs, int a_cs) |
void bli_crandmr | ( | char | uplo, |
char | diag, | ||
int | m, | ||
int | n, | ||
scomplex * | a, | ||
int | a_rs, | ||
int | a_cs | ||
) |
References bli_c0(), bli_c1(), bli_cinvscalv(), bli_crands(), bli_crandv(), bli_csetv(), bli_is_nonunit_diag(), bli_is_row_storage(), bli_is_unit_diag(), bli_is_upper(), bli_is_zero_diag(), bli_zero_dim2(), and scomplex::real.
Referenced by FLA_Random_tri_matrix().
{ scomplex* a_begin; scomplex* ajj; scomplex one; scomplex zero; scomplex ord; int lda, inca; int n_iter; int n_elem_max; int n_elem; int j; // Return early if possible. if ( bli_zero_dim2( m, n ) ) return; // Initialize with optimal values for column-major storage. n_iter = n; n_elem_max = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix by // rows instead of by columns to increase spatial locality. if ( bli_is_row_storage( a_rs, a_cs ) ) { bli_swap_ints( n_iter, n_elem_max ); bli_swap_ints( lda, inca ); bli_toggle_uplo( uplo ); } // Initialize some scalars. one = bli_c1(); zero = bli_c0(); ord = bli_c0(); ord.real = ( float ) bli_max( m, n ); if ( bli_is_upper( uplo ) ) { for ( j = 0; j < n_iter; j++ ) { n_elem = bli_min( j, n_elem_max ); a_begin = a + j*lda; // Randomize super-diagonal elements. bli_crandv( n_elem, a_begin, inca ); // Normalize super-diagonal elements by order of the matrix. bli_cinvscalv( BLIS_NO_CONJUGATE, n_elem, &ord, a_begin, inca ); // Initialize diagonal and sub-diagonal elements only if there are // elements left in the column (ie: j < n_elem_max). if ( j < n_elem_max ) { ajj = a_begin + j*inca; // Initialize diagonal element. if ( bli_is_unit_diag( diag ) ) *ajj = one; else if ( bli_is_zero_diag( diag ) ) *ajj = zero; else if ( bli_is_nonunit_diag( diag ) ) { // We want positive diagonal elements between 1 and 2. bli_crands( ajj ); bli_cabsval2( ajj, ajj ); bli_cadd3( ajj, &one, ajj ); } // Initialize sub-diagonal elements to zero. bli_csetv( n_elem_max - j - 1, &zero, ajj + inca, inca ); } } } else // if ( bli_is_lower( uplo ) ) { for ( j = 0; j < n_iter; j++ ) { n_elem = bli_min( j, n_elem_max ); a_begin = a + j*lda; // Initialize super-diagonal to zero. bli_csetv( n_elem, &zero, a_begin, inca ); // Initialize diagonal and sub-diagonal elements only if there are // elements left in the column (ie: j < n_elem_max). if ( j < n_elem_max ) { ajj = a_begin + j*inca; // Initialize diagonal element. if ( bli_is_unit_diag( diag ) ) *ajj = one; else if ( bli_is_zero_diag( diag ) ) *ajj = zero; else if ( bli_is_nonunit_diag( diag ) ) { // We want positive diagonal elements between 1 and 2. bli_crands( ajj ); bli_cabsval2( ajj, ajj ); bli_cadd3( ajj, &one, ajj ); } // Randomize sub-diagonal elements. bli_crandv( n_elem_max - j - 1, ajj + inca, inca ); // Normalize sub-diagonal elements by order of the matrix. bli_cinvscalv( BLIS_NO_CONJUGATE, n_elem_max - j - 1, &ord, ajj + inca, inca ); } } } }
void bli_drandmr | ( | char | uplo, |
char | diag, | ||
int | m, | ||
int | n, | ||
double * | a, | ||
int | a_rs, | ||
int | a_cs | ||
) |
References bli_d0(), bli_d1(), bli_dinvscalv(), bli_drands(), bli_drandv(), bli_dsetv(), bli_is_nonunit_diag(), bli_is_row_storage(), bli_is_unit_diag(), bli_is_upper(), bli_is_zero_diag(), and bli_zero_dim2().
Referenced by FLA_Random_tri_matrix().
{ double* a_begin; double* ajj; double one; double zero; double ord; int lda, inca; int n_iter; int n_elem_max; int n_elem; int j; // Return early if possible. if ( bli_zero_dim2( m, n ) ) return; // Initialize with optimal values for column-major storage. n_iter = n; n_elem_max = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix by // rows instead of by columns to increase spatial locality. if ( bli_is_row_storage( a_rs, a_cs ) ) { bli_swap_ints( n_iter, n_elem_max ); bli_swap_ints( lda, inca ); bli_toggle_uplo( uplo ); } // Initialize some scalars. one = bli_d1(); zero = bli_d0(); ord = ( double ) bli_max( m, n ); if ( bli_is_upper( uplo ) ) { for ( j = 0; j < n_iter; j++ ) { n_elem = bli_min( j, n_elem_max ); a_begin = a + j*lda; // Randomize super-diagonal elements. bli_drandv( n_elem, a_begin, inca ); // Normalize super-diagonal elements by order of the matrix. bli_dinvscalv( BLIS_NO_CONJUGATE, n_elem, &ord, a_begin, inca ); // Initialize diagonal and sub-diagonal elements only if there are // elements left in the column (ie: j < n_elem_max). if ( j < n_elem_max ) { ajj = a_begin + j*inca; // Initialize diagonal element. if ( bli_is_unit_diag( diag ) ) *ajj = one; else if ( bli_is_zero_diag( diag ) ) *ajj = zero; else if ( bli_is_nonunit_diag( diag ) ) { // We want positive diagonal elements between 1 and 2. bli_drands( ajj ); bli_dabsval2( ajj, ajj ); bli_dadd3( ajj, &one, ajj ); } // Initialize sub-diagonal elements to zero. bli_dsetv( n_elem_max - j - 1, &zero, ajj + inca, inca ); } } } else // if ( bli_is_lower( uplo ) ) { for ( j = 0; j < n_iter; j++ ) { n_elem = bli_min( j, n_elem_max ); a_begin = a + j*lda; // Initialize super-diagonal to zero. bli_dsetv( n_elem, &zero, a_begin, inca ); // Initialize diagonal and sub-diagonal elements only if there are // elements left in the column (ie: j < n_elem_max). if ( j < n_elem_max ) { ajj = a_begin + j*inca; // Initialize diagonal element. if ( bli_is_unit_diag( diag ) ) *ajj = one; else if ( bli_is_zero_diag( diag ) ) *ajj = zero; else if ( bli_is_nonunit_diag( diag ) ) { // We want positive diagonal elements between 1 and 2. bli_drands( ajj ); bli_dabsval2( ajj, ajj ); bli_dadd3( ajj, &one, ajj ); } // Randomize sub-diagonal elements. bli_drandv( n_elem_max - j - 1, ajj + inca, inca ); // Normalize sub-diagonal elements by order of the matrix. bli_dinvscalv( BLIS_NO_CONJUGATE, n_elem_max - j - 1, &ord, ajj + inca, inca ); } } } }
void bli_srandmr | ( | char | uplo, |
char | diag, | ||
int | m, | ||
int | n, | ||
float * | a, | ||
int | a_rs, | ||
int | a_cs | ||
) |
References bli_is_nonunit_diag(), bli_is_row_storage(), bli_is_unit_diag(), bli_is_upper(), bli_is_zero_diag(), bli_s0(), bli_s1(), bli_sinvscalv(), bli_srands(), bli_srandv(), bli_ssetv(), and bli_zero_dim2().
Referenced by FLA_Random_tri_matrix().
{ float* a_begin; float* ajj; float one; float zero; float ord; int lda, inca; int n_iter; int n_elem_max; int n_elem; int j; // Return early if possible. if ( bli_zero_dim2( m, n ) ) return; // Initialize with optimal values for column-major storage. n_iter = n; n_elem_max = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix by // rows instead of by columns to increase spatial locality. if ( bli_is_row_storage( a_rs, a_cs ) ) { bli_swap_ints( n_iter, n_elem_max ); bli_swap_ints( lda, inca ); bli_toggle_uplo( uplo ); } // Initialize some scalars. one = bli_s1(); zero = bli_s0(); ord = ( float ) bli_max( m, n ); if ( bli_is_upper( uplo ) ) { for ( j = 0; j < n_iter; j++ ) { n_elem = bli_min( j, n_elem_max ); a_begin = a + j*lda; // Randomize super-diagonal elements. bli_srandv( n_elem, a_begin, inca ); // Normalize super-diagonal elements by order of the matrix. bli_sinvscalv( BLIS_NO_CONJUGATE, n_elem, &ord, a_begin, inca ); // Initialize diagonal and sub-diagonal elements only if there are // elements left in the column (ie: j < n_elem_max). if ( j < n_elem_max ) { ajj = a_begin + j*inca; // Initialize diagonal element. if ( bli_is_unit_diag( diag ) ) *ajj = one; else if ( bli_is_zero_diag( diag ) ) *ajj = zero; else if ( bli_is_nonunit_diag( diag ) ) { // We want positive diagonal elements between 1 and 2. bli_srands( ajj ); bli_sabsval2( ajj, ajj ); bli_sadd3( ajj, &one, ajj ); } // Initialize sub-diagonal elements to zero. bli_ssetv( n_elem_max - j - 1, &zero, ajj + inca, inca ); } } } else // if ( bli_is_lower( uplo ) ) { for ( j = 0; j < n_iter; j++ ) { n_elem = bli_min( j, n_elem_max ); a_begin = a + j*lda; // Initialize super-diagonal to zero. bli_ssetv( n_elem, &zero, a_begin, inca ); // Initialize diagonal and sub-diagonal elements only if there are // elements left in the column (ie: j < n_elem_max). if ( j < n_elem_max ) { ajj = a_begin + j*inca; // Initialize diagonal element. if ( bli_is_unit_diag( diag ) ) *ajj = one; else if ( bli_is_zero_diag( diag ) ) *ajj = zero; else if ( bli_is_nonunit_diag( diag ) ) { // We want positive diagonal elements between 1 and 2. bli_srands( ajj ); bli_sabsval2( ajj, ajj ); bli_sadd3( ajj, &one, ajj ); } // Randomize sub-diagonal elements. bli_srandv( n_elem_max - j - 1, ajj + inca, inca ); // Normalize sub-diagonal elements by order of the matrix. bli_sinvscalv( BLIS_NO_CONJUGATE, n_elem_max - j - 1, &ord, ajj + inca, inca ); } } } }
void bli_zrandmr | ( | char | uplo, |
char | diag, | ||
int | m, | ||
int | n, | ||
dcomplex * | a, | ||
int | a_rs, | ||
int | a_cs | ||
) |
References bli_is_nonunit_diag(), bli_is_row_storage(), bli_is_unit_diag(), bli_is_upper(), bli_is_zero_diag(), bli_z0(), bli_z1(), bli_zero_dim2(), bli_zinvscalv(), bli_zrands(), bli_zrandv(), bli_zsetv(), and dcomplex::real.
Referenced by FLA_Random_tri_matrix().
{ dcomplex* a_begin; dcomplex* ajj; dcomplex one; dcomplex zero; dcomplex ord; int lda, inca; int n_iter; int n_elem_max; int n_elem; int j; // Return early if possible. if ( bli_zero_dim2( m, n ) ) return; // Initialize with optimal values for column-major storage. n_iter = n; n_elem_max = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix by // rows instead of by columns to increase spatial locality. if ( bli_is_row_storage( a_rs, a_cs ) ) { bli_swap_ints( n_iter, n_elem_max ); bli_swap_ints( lda, inca ); bli_toggle_uplo( uplo ); } // Initialize some scalars. one = bli_z1(); zero = bli_z0(); ord = bli_z0(); ord.real = ( double ) bli_max( m, n ); if ( bli_is_upper( uplo ) ) { for ( j = 0; j < n_iter; j++ ) { n_elem = bli_min( j, n_elem_max ); a_begin = a + j*lda; // Randomize super-diagonal elements. bli_zrandv( n_elem, a_begin, inca ); // Normalize super-diagonal elements by order of the matrix. bli_zinvscalv( BLIS_NO_CONJUGATE, n_elem, &ord, a_begin, inca ); // Initialize diagonal and sub-diagonal elements only if there are // elements left in the column (ie: j < n_elem_max). if ( j < n_elem_max ) { ajj = a_begin + j*inca; // Initialize diagonal element. if ( bli_is_unit_diag( diag ) ) *ajj = one; else if ( bli_is_zero_diag( diag ) ) *ajj = zero; else if ( bli_is_nonunit_diag( diag ) ) { // We want positive diagonal elements between 1 and 2. bli_zrands( ajj ); bli_zabsval2( ajj, ajj ); bli_zadd3( ajj, &one, ajj ); } // Initialize sub-diagonal elements to zero. bli_zsetv( n_elem_max - j - 1, &zero, ajj + inca, inca ); } } } else // if ( bli_is_lower( uplo ) ) { for ( j = 0; j < n_iter; j++ ) { n_elem = bli_min( j, n_elem_max ); a_begin = a + j*lda; // Initialize super-diagonal to zero. bli_zsetv( n_elem, &zero, a_begin, inca ); // Initialize diagonal and sub-diagonal elements only if there are // elements left in the column (ie: j < n_elem_max). if ( j < n_elem_max ) { ajj = a_begin + j*inca; // Initialize diagonal element. if ( bli_is_unit_diag( diag ) ) *ajj = one; else if ( bli_is_zero_diag( diag ) ) *ajj = zero; else if ( bli_is_nonunit_diag( diag ) ) { // We want positive diagonal elements between 1 and 2. bli_zrands( ajj ); bli_zabsval2( ajj, ajj ); bli_zadd3( ajj, &one, ajj ); } // Randomize sub-diagonal elements. bli_zrandv( n_elem_max - j - 1, ajj + inca, inca ); // Normalize sub-diagonal elements by order of the matrix. bli_zinvscalv( BLIS_NO_CONJUGATE, n_elem_max - j - 1, &ord, ajj + inca, inca ); } } } }