
rpy2 Documentation
Release 2.1.0

Laurent Gautier

April 15, 2011

CONTENTS

1 Overview 1
1.1 Background . 1
1.2 Installation . 1
1.3 Contents . 3
1.4 Design notes . 3
1.5 Acknowledgements . 4

2 Introduction to rpy2 5
2.1 Getting started . 5
2.2 The r instance . 5
2.3 R vectors . 7
2.4 Calling R functions . 8
2.5 Examples . 8

3 High-level interface 11
3.1 Overview . 11
3.2 r: the instance of R . 11
3.3 R objects . 13
3.4 Vectors . 13
3.5 Environments . 17
3.6 Functions . 18
3.7 Formulae . 18

4 Numpy 21
4.1 High-level interface . 21
4.2 Low-level interface . 23

5 Numpy 25
5.1 High-level interface . 25
5.2 Low-level interface . 26

6 Mapping rpy2 objects to arbitrary python objects 27
6.1 A simple example . 27
6.2 Default functions . 28

7 Low-level interface 29

i

7.1 Overview . 29
7.2 Classes . 32
7.3 Misc. variables . 39

8 rpy_classic 41
8.1 Conversion . 41
8.2 R instance . 41
8.3 Functions . 42
8.4 Partial use of rpy_classic . 42

9 rlike 45
9.1 Overview . 45
9.2 Containers . 45
9.3 Tools for working with sequences . 48
9.4 Indexing . 48

10 Changes in rpy2 51
10.1 Release 2.0.1 . 51
10.2 Release 2.0.0 . 52
10.3 Release 2.0.0rc1 . 52
10.4 Release 2.0.0rc1 . 53
10.5 Release 2.0.0b1 . 53
10.6 Release 2.0.0a3 . 54
10.7 Release 2.0.0a2 . 56
10.8 Release 2.0.0a1 . 56
10.9 Release 1.0a0 . 57

Python Module Index 59

Index 61

ii

CHAPTER

ONE

OVERVIEW

1.1 Background

Python is a popular all-purpose scripting language, while R (an open source implementation of
the S/Splus language) is a scripting language mostly popular for data analysis, statistics, and
graphics. If you are reading this, there are good chances that you are at least familiar with one
of the two.

Having an interface between both languages, and benefit from the respective libraries of one
language while working in the other language, appeared desirable and an early option to achieve
it was the RSPython project, itself part of the Omegahat project.

A bit later, the RPy project appeared and focused on providing simple and robust access to
R from within Python, with the initial Unix-only releases quickly followed by Microsoft and
MacOS compatible versions. This project is referred to as RPy-1.x in the rest of this document.

The present documentation describes RPy2, an evolution of RPy-1.x. Naturally RPy2 is in-
spired by RPy, but also by A. Belopolskys’s contributions that were waiting to be included into
RPy.

This effort can be seen as a redesign and rewrite of the RPy package.

1.2 Installation

1.2.1 Requirements

Python version 2.4 or higher, and R-2.7.0 or higher are required.

Although the development was first done with R-2.7.2 (now with R-2.8.0) and Python-2.5.2, it
has also been tested with:

• Python-2.6.0 (numpy-support not tested)

gcc-4.2.3, then gcc-4.2.4 were used for compiling the C parts.

1

http://www.python.org
http://www.r-project.org
http://www.omegahat.org/RSPython

rpy2 Documentation, Release 2.1.0

1.2.2 Download

In theory we could have available for download:

• Source packages.

• Pre-compiled binary packages for

– Microsoft’s Windows

– Apple’s MacOS X

– Linux distributions

rpy2 has been reported compiling successfully on all 3 platforms, provided that development
items such as Python headers and a C compiler are installed.

Check on the Sourceforge download page what is available.

Note: Choose files from the rpy2 package, not rpy.

1.2.3 Microsoft’s Windows precompiled binaries

If available, the executable can be run; this will install the package in the default Python instal-
lation.

At the time of writing, Microsoft Windows binaries are contributed by Laurent Oget (from
Predictix) since version 2.0.0b1.

1.2.4 Install from source

To install from a source package <rpy_package> do in a shell:

tar -xzf <rpy_package>.tar.gz
cd <rpy_package>
python setup.py install

1.2.5 Test an installation

At any time, an installation can be tested as follows:

import rpy2.tests
import unittest

the verbosity level can be increased if needed
tr = unittest.TextTestRunner(verbosity = 1)
suite = rpy2.tests.suite()
tr.run(suite)

2 Chapter 1. Overview

http://downloads.sourceforge.net/rpy

rpy2 Documentation, Release 2.1.0

Note: At the time of writing, 2 unit tests will fail. Their failure is forced, because terminating
then starting again an embbeded R is causing problems.

Warning: Win32 versions are still lacking some of the functionalities in the UNIX-alike
versions, most notably the callback function for console input and output.

1.3 Contents

The package is made of several sub-packages or modules:

1.3.1 rpy2.rpy_classic

Higher-level interface similar to the one in RPy-1.x. This is provided for compatibility reasons,
as well as to facilitate the migration to RPy2.

1.3.2 rpy2.robjects

Higher-level interface, when ease-of-use matters most.

1.3.3 rpy2.rinterface

Low-level interface to R, when speed and flexibility matter most. Here the programmer gets
close(r) to R’s C-level API.

1.3.4 rpy2.rlike

Data structures and functions to mimic some of R’s features and specificities

1.4 Design notes

When designing ryp2, attention was given to make:

• the use of the module simple from both a Python or R user’s perspective

• minimize the need for knowledge about R, and the need for tricks and workarounds.

• the possibility to customize a lot while remaining at the Python level (without having to
go down to C-level).

1.3. Contents 3

rpy2 Documentation, Release 2.1.0

rpy2.robjects implements an extension to the interface in rpy2.rinterface by ex-
tending the classes for R objects defined there with child classes.

The choice of inheritance was made to facilitate the implementation of mostly inter-
exchangeable classes between rpy2.rinterface and rpy2.robjects. For example,
an rpy2.rinterface.SexpClosure can be given any rpy2.robjects.RObject
as a parameter while any rpy2.robjects.RFunction can be given any
rpy2.rinterface.Sexp. Because of R’s functional basis, a container-like exten-
sion is also present.

The module rpy2.rpy_classic is using delegation, letting us demonstrate how to extend
rpy2.rinterface with an alternative to inheritance.

1.5 Acknowledgements

Acknowledgements go to:

Walter Moreira, and Gregory Warnes For the original RPy and its maintainance through the
years.

Alexander Belopolsky. His code contribution of an alternative RPy is acknowledged. I have
found great inspiration in reading that code.

JRI The Java-R Interface, and its authors, as answers to some of the implementation questions
were found there.

Contributors The help of people, donating time, ideas or software patches is much appre-
ciated. Their names can be found in this documentation (mostly around the section
Changes).

4 Chapter 1. Overview

CHAPTER

TWO

INTRODUCTION TO RPY2

This introduction aims at making a gentle start to rpy2, either when coming from R to
Python/rpy2, from Python to rpy2/R, or from elsewhere to Python/rpy2/R.

2.1 Getting started

It is assumed here that the rpy2 package was properly installed. In python, making a package
or module available is achieved by importing it.

import rpy2.robjects as robjects

2.2 The r instance

The object r in rpy2.robjects represents the running embedded R process.

If familiar with R and the R console, r is a little like a communication channel from Python to
R.

2.2.1 Getting R objects

In Python the [operator is an alias for the ethod __getitem__().

With rpy2.robjects, the method __getitem__() functions like calling a variable from
the R console.

Example in R:

pi

With rpy2:

>>> robjects.r[’pi’]
3.14159265358979

5

rpy2 Documentation, Release 2.1.0

Note: Under the hood, the variable pi is gotten by default from the R base package, unless an
other variable with the name pi was created in the globalEnv. The Section Environments tells
more about that.

2.2.2 Evaluating R code

The r object is also callable, and the string passed to it evaluated as R code.

This can be used to get variables, and provide an alternative to the method presented above.

Example in R:

pi

With rpy2:

>>> robjects.r(’pi’)
3.14159265358979

Warning: The result is an R vector. Reading Section R vectors is recommended as it will
provide explanations for the following behavior:

>>> robjects.r(’pi’) + 2
c(3.14159265358979, 2)
>>> robjects.r(’pi’)[0] + 2
5.1415926535897931

The evaluation is performed in what is known to R users as the Global Environment, that is the
place one starts at when starting the R console. Whenever the R code creates variables, those
variables will be “located” in that Global Environment by default.

Example:

robjects.r(’’’
f <- function(r) { 2 * pi * r }
f(3)
’’’)

The expression above will return the value 18.85, but first also creates an R function f. That
function f is present in the R Global Environement, and can be accessed with the __getitem__
mechanism outlined above:

>>> robjects.globalEnv[’f’]
function (r)
{

2 * pi * r
}

or

6 Chapter 2. Introduction to rpy2

rpy2 Documentation, Release 2.1.0

>>> robjects.r[’f’]
function (r)
{

2 * pi * r
}

2.2.3 Interpolating R objects into R code strings

Against the first impression one may get from the title of this section, simple and handy features
of rpy2 are presented here.

An R object has a string representation that can be used directly into R code to be evaluated.

Simple example:

>>> letters = robjects.r[’letters’]
>>> rcode = ’paste(%s, collapse="-")’ %(letters.r_repr())
>>> robjects.r(rcode)
"a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x-y-z"

2.3 R vectors

In R, data are mostly represented by vectors, even when looking like scalars.

When looking closely at the R object pi used previously, we can observe that this is in fact a
vector of length 1.

>>> len(robjects.r[’pi’])
1

As such, the python method add() will result in a concatenation (function c() in R), as this is
the case for regular python lists.

Accessing the one value in that vector will have to be stated explicitly:

>>> robjects.r[’pi’][0]
3.1415926535897931

There much that can be achieved with vector, having them to behave more like Python lists or
R vectors. A comprehensive description of the behavior of vectors is found in Vectors.

2.3.1 Creating rpy2 vectors

Creating R vectors can be achieved simply:

>>> robjects.StrVector([’abc’, ’def’])
c("abc", "def")
>>> robjects.IntVector([1, 2, 3])
1:3

2.3. R vectors 7

rpy2 Documentation, Release 2.1.0

>>> robjects.FloatVector([1.1, 2.2, 3.3])
c(1.1, 2.2, 3.3)

R matrixes and arrays are just vectors with a dim attribute.

The easiest way to create such objects is to do it through R functions:

>>> v = robjects.FloatVector([1.1, 2.2, 3.3, 4.4, 5.5, 6.6])
>>> m = robjects.r[’matrix’](v, nrow = 2)
>>> print(m)

[,1] [,2] [,3]
[1,] 1.1 3.3 5.5
[2,] 2.2 4.4 6.6

2.4 Calling R functions

Calling R functions will be disappointingly similar to calling Python functions:

>>> rsum = robjects.r[’sum’]
>>> rsum(robjects.IntVector([1,2,3]))
6L

Keywords can be used with the same ease:

>>> rsort = robjects.r[’sort’]
>>> rsort(robjects.IntVector([1,2,3]), decreasing=True)
c(3L, 2L, 1L)

Note: By default, calling R functions will return R objects.

More information on functions is in Section Functions.

2.5 Examples

This section demonstrates some of the features of rpy2 by the example.

2.5.1 Function calls and plotting

import rpy2.robjects as robjects

r = robjects.r

x = robjects.IntVector(range(10))
y = r.rnorm(10)

8 Chapter 2. Introduction to rpy2

rpy2 Documentation, Release 2.1.0

r.X11()

r.layout(r.matrix(robjects.IntVector([1,2,3,2]), nrow=2, ncol=2))
r.plot(r.runif(10), y, xlab="runif", ylab="foo/bar", col="red")

Setting dynamically the number of arguments in a function call can be done the usual way in
python

args = [x, y]
kwargs = {’ylab’:"foo/bar", ’type’:"b", ’col’:"blue", ’log’:"x"}
r.plot(*args, **kwargs)

Note: Since the named parameters are a Python dict, the order of the parameters is lost for
**kwargs arguments.

2.5.2 Linear models

The R code is:

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)

anova(lm.D9 <- lm(weight ~ group))

summary(lm.D90 <- lm(weight ~ group - 1))# omitting intercept

One way to achieve the same with rpy2.robjects is

import rpy2.robjects as robjects

r = robjects.r

ctl = robjects.FloatVector([4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14])
trt = robjects.FloatVector([4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69])
group = r.gl(2, 10, 20, labels = ["Ctl","Trt"])
weight = ctl + trt

robjects.globalEnv["weight"] = weight
robjects.globalEnv["group"] = group
lm_D9 = r.lm("weight ~ group")
print(r.anova(lm_D9))

lm_D90 = r.lm("weight ~ group - 1")
print(r.summary(lm_D90))

Q: Now how extract data from the resulting objects ?

A: The same, never it is. On the R object all depends.

2.5. Examples 9

rpy2 Documentation, Release 2.1.0

When taking the results from the code above, one could go like:

>>> print(lm_D9.rclass)
[1] "lm"

Here the resulting object is a list structure, as either inspecting the data structure or reading the
R man pages for lm would tell us. Checking its element names is then trivial:

>>> print(lm_D9.names)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "contrasts" "xlevels" "call" "terms"
[13] "model"

And so is extracting a particular element:

>>> print(lm_D9.r[’coefficients’])
$coefficients
(Intercept) groupTrt

5.032 -0.371

More about extracting elements from vectors is available at Indexing.

2.5.3 Principal component analysis

The R code is

m <- matrix(rnorm(100), ncol=5)
pca <- princomp(m)
plot(pca, main="Eigen values")
biplot(pca, main="biplot")

The rpy2.robjects code is

import rpy2.robjects as robjects

r = robjects.r

m = r.matrix(r.rnorm(100), ncol=5)
pca = r.princomp(m)
r.plot(pca, main="Eigen values")
r.biplot(pca, main="biplot")

10 Chapter 2. Introduction to rpy2

CHAPTER

THREE

HIGH-LEVEL INTERFACE

Platforms: Unix, Windows

3.1 Overview

This module is intended for casual and general use. Its aim is to abstracts some of the details
and provide an intuitive interface to R.

>>> import rpy2.robjects as robjects

rpy2.robjects is written on the top of rpy2.rinterface, and one not satis-
fied with it could easily build one’s own flavor of a Python-R interface by modifying
it (rpy2.rpy_classic is an other example of a Python interface built on the top of
rpy2.rinterface).

Visible differences with RPy-1.x are:

• no CONVERSION mode in rpy2, the design has made this unnecessary

• easy to modify or rewrite with an all-Python implementation

3.2 r : the instance of R

This class is currently a singleton, with its one representation instanciated when the module is
loaded:

>>> robjects.r
>>> print(robjects.r)

The instance can be seen as the entry point to an embedded R process.

The elements that would be accessible from an equivalent R environment are accessible as
attributes of the instance. Readers familiar with the ctypes module for Python will note the
similarity with it.

R vectors:

11

rpy2 Documentation, Release 2.1.0

>>> pi = robjects.r.pi
>>> letters = robjects.r.letters

R functions:

>>> plot = robjects.r.plot
>>> dir = robjects.r.dir

This approach has limitation as:

• The actual Python attributes for the object masks the R elements

• ‘.’ (dot) is syntactically valid in names for R objects, but not for python objects.

That last limitation can partly be removed by using rpy2.rpy_classic if this feature mat-
ters most to you.

>>> robjects.r.as_null
AttributeError raised
>>> import rpy2.rpy_classic as rpy
>>> rpy.set_default_mode(NO_CONVERSION)
>>> rpy.r.as_null
R function as.null() returned

Note: The section Partial use of rpy_classic outlines how to integrate rpy2.rpy_classic
code.

Behind the scene, the steps for getting an attribute of r are rather straightforward:

1. Check if the attribute is defined as such in the python definition for r

2. Check if the attribute is can be accessed in R, starting from globalEnv

When safety matters most, we recommend using __getitem__() to get a given R object.

>>> as_null = robjects.r[’as.null’]

Storing the object in a python variable will protect it from garbage collection, even if deleted
from the objects visible to an R user.

>>> robjects.globalEnv[’foo’] = 1.2
>>> foo = robjects.r[’foo’]
>>> foo[0]
1.2

Here we remove the symbol foo from the R Global Environment.

>>> robjects.r[’rm’](’foo’)
>>> robjects.r[’foo’]
LookupError: ’foo’ not found

The object itself remains available, and protected from R’s garbage collection until foo is
deleted from Python

12 Chapter 3. High-level interface

rpy2 Documentation, Release 2.1.0

>>> foo[0]
1.2

3.2.1 Strings as R code

Just like it is the case with RPy-1.x, on-the-fly evaluation of R code contained in a string can
be performed by calling the r instance:

>>> robjects.r(’1+2’)
3
>>> sqr = ro.r(’function(x) x^2)

>>> sqr
function (x)
x^2
>>> sqr(2)
4

The astute reader will quickly realize that R objects named by python variables can be plugged
into code through their R representation:

>>> x = robjects.r.rnorm(100)
>>> robjects.r(’hist(%s, xlab="x", main="hist(x)")’ %x.r_repr())

Warning: Doing this with large objects might not be the best use of your computing power.

3.3 R objects

The class rpy2.robjects.RObject represents an arbitray R object, meaning than object
cannot be represented by any of the classes RVector, RFunction, REnvironment.

The class inherits from the class rpy2.rinterface.Sexp.

3.4 Vectors

Beside functions, and environemnts, most of the objects an R user is interacting with are vector-
like. For example, this means that any scalar is in fact a vector of length one.

The class RVector has a constructor:

>>> x = robjects.RVector(3)

The class inherits from the class rpy2.rinterface.VectorSexp.

3.3. R objects 13

rpy2 Documentation, Release 2.1.0

3.4.1 Creating vectors

Creating vectors can be achieved either from R or from Python.

When the vectors are created from R, one should not worry much as they will be exposed as
they should by rpy2.robjects.

When one wants to create a vector from Python, either the class RVector or the convenience
classes IntVector, FloatVector, BoolVector, StrVector can used.

class rpy2.robjects.BoolVector(obj)
Bases: rpy2.robjects.RVector

Vector of boolean (logical) elements

class rpy2.robjects.IntVector(obj)
Bases: rpy2.robjects.RVector

Vector of integer elements

class rpy2.robjects.FloatVector(obj)
Bases: rpy2.robjects.RVector

Vector of float (double) elements

class rpy2.robjects.StrVector(obj)
Bases: rpy2.robjects.RVector

Vector of string elements

3.4.2 Indexing

Indexing can become a thorny issue, since Python indexing starts at zero and R indexing starts
at one.

The python __getitem__() method behaves like a Python user would expect it for a vector
(and indexing starts at zero), while the method subset() behaves like a R user would expect
subsetting to happen that is:

• indexing starts at one

• the parameter to subset on can be a vector of

– integers (negative integers meaning exlusion of the element)

– booleans

– strings

>>> x = robjects.r.seq(1, 10)
>>> x[0]
1
>>> x.subset(0)
integer(0)
>>> x.subset(1)
1L

14 Chapter 3. High-level interface

rpy2 Documentation, Release 2.1.0

Rather than calling subset(), and to still have the conveniently short [operator available, a
syntactic sugar is available in the form of delegating-like attribute r.

>>> x.r[0]
integer(0)
>>> x.r[1]
1L

The two next examples demonstrate some of R‘s features regarding indexing, respectively ele-
ment exclusion and recycling rule:

>>> x.r[-1]
2:10
>>> x.r[True]
1:10

This class is extending the class rinterface.SexpVector, and its documentation can be
referred to for details of what is happenening at the low-level.

3.4.3 Operators

Mathematical operations on two vectors: the following operations are performed element-wise
in R, recycling the shortest vector if, and as much as, necessary.

The delegating attribute mentioned in the Indexing section can also be used with the following
operators:

operator R (.r)
+ Add
- Subtract
* Multiply
/ Divide
** Power
or Or
and And

>>> x = robjects.r.seq(1, 10)
>>> x.r + 1
2:11

Note: In Python, the operator + concatenate sequence object, and this behavior has been
conserved.

Note: The boolean operator not cannot be redefined in Python (at least up to version 2.5),
and its behavior could not be made to mimic R’s behavior

3.4. Vectors 15

rpy2 Documentation, Release 2.1.0

3.4.4 Names

R vectors can have a name given to all or some of the items. The method getnames() retrieve
those names.

3.4.5 RArray

In R, arrays are simply vectors with a dimension attribute. That fact was reflected in the class
hierarchy with robjects.RArray inheriting from robjects.RVector.

3.4.6 RMatrix

A RMatrix is a special case of RArray.

3.4.7 Data frames

Data frames are important data structures in R, as they are used to represent a data to analyze
in a study in a relatively large nunmber of cases.

A data frame can be thought of as a tabular representation of data, with one variable per column,
and one data point per row. Each column is an R vector, which implies one type for all elements
in one given column, and which allows for possibly different types across different columns.

In rpy2.robjects, RDataFrame represents the R class data.frame.

Creating an RDataFrame can be done by:

• Using the constructor for the class

• Create the data.frame through R

The constructor for RDataFrame accepts either a rinterface.SexpVector
(with typeof equal to VECSXP, that is an R list) or an instance of class
rpy2.rlike.container.TaggedList.

>>> robjects.RDataFrame()

Creating the data.frame in R can be achieved in numerous ways, as many R functions do return
a data.frame. In this example, will use the R function data.frame(), that constructs a data.frame
from named arguments

>>> d = {’value’: robjects.IntVector((1,2,3)),
’letter’: robjects.StrVector((’x’, ’y’, ’z’))}

>>> dataf = robjects.r[’data.frame’](**d)
>>> dataf.colnames()
c("letter", "value")

16 Chapter 3. High-level interface

rpy2 Documentation, Release 2.1.0

Note: The order of the columns value and letter cannot be conserved, since we are using a
Python dictionnary. This difference between R and Python can be resolved by using TaggedList
instances (XXX add material about that).

class rpy2.robjects.RDataFrame(tlist)
Bases: rpy2.robjects.RVector

R ‘data.frame’.

colnames()
Column names

Return type SexpVector

ncol()
Number of columns. :rtype: integer

nrow()
Number of rows. :rtype: integer

rownames()
Row names

Return type SexpVector

3.5 Environments

R environments can be described to the Python user as an hybrid of a dictionary and a scope.

The first of all environments is called the Global Environment, that can also be referred to as
the R workspace.

>>> globalEnv = robjects.globalEnv

An R environment in RPy2 can be seen as a kind of Python dictionnary.

Assigning a value to a symbol in an environment has been made as simple as assigning a value
to a key in a Python dictionary:

>>> robjects.r.ls(globalEnv)
>>> globalEnv["a"] = 123
>>> robjects.r.ls(globalEnv)

Care must be taken when assigning objects into an environment such as the Global Environ-
ment, as this can hide other objects with an identical name. The following example should
make one measure that this can mean trouble if no care is taken:

>>> globalEnv["pi"] = 123
>>> robjects.r.pi
123L
>>>
>>> robjects.r.rm("pi")

3.5. Environments 17

rpy2 Documentation, Release 2.1.0

>>> robjects.r.pi
3.1415926535897931

The class inherits from the class rpy2.rinterface.SexpEnvironment.

An environment is also iter-able, returning all the symbols (keys) it contains:

>>> env = robjects.r.baseenv()
>>> len([x for x in env])
<a long list returned>

For further information, read the documentation for the class
rpy2.rinterface.SexpEnvironment.

3.6 Functions

R functions are callable objects, and be called almost like any regular Python function:

>>> plot = robjects.r.plot
>>> rnorm = robjects.r.rnorm
>>> plot(rnorm(100), ylab="random")

This is all looking fine and simple until R parameters with names such as na.rm are encoun-
tered. In those cases, using the special syntax **kwargs is one way to go.

Let’s take an example in R:

sum(0, na.rm = TRUE)

In Python it can then write:

from rpy2 import robjects

myparams = {’na.rm’: True}
robjects.r.sum(0, **myparams)

Things are also not always that simple, as the use of dictionary does ensure that the order in
which the parameters are passed is conserved.

The R functions as defined in rpy2.robjects inherit from the class
rpy2.rinterface.SexpClosure, and further documentation on the behavior of
function can be found in Section Functions.

3.7 Formulae

For tasks such as modelling and plotting, an R formula can be a terse, yet readable, way of
expressing what is wanted.

In R, it generally looks like:

18 Chapter 3. High-level interface

rpy2 Documentation, Release 2.1.0

x <- 1:10
y <- x + rnorm(10, sd=0.2)

fit <- lm(y ~ x)

In the call to lm, the argument is a formula, and it can read like model y using x. A formula is a
R language object, and the terms in the formula are evaluated in the environment it was defined
in. Without further specification, that environment is the environment in which the the formula
is created.

The class robjects.RFormula is representing an R formula.

x = robjects.RVector(array.array(’i’, range(1, 11)))
y = x.r + robjects.r.rnorm(10, sd=0.2)

fmla = robjects.RFormula(’y ~ x’)
env = fmla.getenvironment()
env[’x’] = x
env[’y’] = y

fit = robjects.r.lm(fmla)

One drawback with that approach is that pretty printing of the fit object is note quite as clear as
what one would expect when working in R. However, by evaluating R code on the fly, we can
obtain a fit object that will display nicely:

fit = robjects.r(’lm(%s)’ %fmla.r_repr())

3.7. Formulae 19

rpy2 Documentation, Release 2.1.0

20 Chapter 3. High-level interface

CHAPTER

FOUR

NUMPY

A popular solution for scientific computing with Python is numpy (previous instances were
Numpy and numarray).

rpy2 has features for facilitating the integration with code using numpy in both directions:
from rpy2 to numpy, and from numpy to rpy2.

4.1 High-level interface

4.1.1 From rpy2 to numpy:

Vectors can be converted to numpy arrays using array() or asarray():

import numpy

ltr = robjects.r.letters
ltr_np = numpy.array(ltr)

This behavior is inherited from the low-level interface, and is means that the objects presents
an interface recognized by numpy, and that interface used to know the structure of the object.

4.1.2 From numpy to rpy2:

The conversion of numpy objects to rpy2 objects can be activated by importing the module
numpy2ri:

import rpy2.robjects.numpy2ri

That import alone is sufficient to switch an automatic conversion of numpy objects into rpy2
objects.

Note: Why make this an optional import, while it could have been included in the function
py2ri() (as done in the original patch submitted for that function) ?

21

rpy2 Documentation, Release 2.1.0

Although both are valid and reasonable options, the design decision was taken in order to de-
couple rpy2 from numpy the most, and do not assume that having numpy installed automatically
meant that a programmer wanted to use it.

import rpy2.robjects as ro
import rpy2.rinterface as rinterface
import numpy

def numpy2ri(o):
if isinstance(o, numpy.ndarray):

if not o.dtype.isnative:
raise(ValueError("Cannot pass numpy arrays with non-native byte orders at the moment."))

The possible kind codes are listed at
http://numpy.scipy.org/array_interface.shtml
kinds = {

"t" -> not really supported by numpy
"b": rinterface.LGLSXP,
"i": rinterface.INTSXP,
"u" -> special-cased below
"f": rinterface.REALSXP,
"c": rinterface.CPLXSXP,
"O" -> special-cased below
"S": rinterface.STRSXP,
"U": rinterface.STRSXP,
"V" -> special-cased below
}

Most types map onto R arrays:
if o.dtype.kind in kinds:

"F" means "use column-major order"
vec = rinterface.SexpVector(o.ravel("F"), kinds[o.dtype.kind])
dim = rinterface.SexpVector(o.shape, rinterface.INTSXP)
res = ro.r.array(vec, dim=dim)

R does not support unsigned types:
elif o.dtype.kind == "u":

raise(ValueError("Cannot convert numpy array of unsigned values -- R does not have unsigned integers."))
Array-of-PyObject is treated like a Python list:
elif o.dtype.kind == "O":

res = ro.conversion.py2ri(list(o))
Record arrays map onto R data frames:
elif o.dtype.kind == "V":

if o.dtype.names is None:
raise(ValueError("Nothing can be done for this numpy array type %s at the moment." % (o.dtype,)))

df_args = []
for field_name in o.dtype.names:

df_args.append((field_name,
ro.conversion.py2ri(o[field_name])))

res = ro.baseNameSpaceEnv["data.frame"].rcall(tuple(df_args))
It should be impossible to get here:
else:

22 Chapter 4. Numpy

rpy2 Documentation, Release 2.1.0

raise(ValueError("Unknown numpy array type."))
else:

res = ro.default_py2ri(o)
return res

ro.conversion.py2ri = numpy2ri

4.2 Low-level interface

The rpy2.rinterface.SexpVector objects are made to behave like arrays, as defined
in the Python package numpy.

The functions numpy.array() and numpy.asarray() can be used construct numpy ar-
rays:

>>> import numpy
>>> rx = rinterface.SexpVector([1,2,3,4], rinterface.INTSXP)
>>> nx = numpy.array(rx)
>>> nx_nc = numpy.asarray(rx)

Note: when using asarray(), the data are not copied.

>>> rx[2]
3
>>> nx_nc[2] = 42
>>> rx[2]
42
>>>

4.2. Low-level interface 23

rpy2 Documentation, Release 2.1.0

24 Chapter 4. Numpy

CHAPTER

FIVE

NUMPY

A popular solution for scientific computing with Python is numpy (previous instances were
Numpy and numarray).

rpy2 has features for facilitating the integration with code using numpy in both directions:
from rpy2 to numpy, and from numpy to rpy2.

5.1 High-level interface

5.1.1 From rpy2 to numpy:

Vectors can be converted to numpy arrays using array() or asarray():

import numpy

ltr = robjects.r.letters
ltr_np = numpy.array(ltr)

This behavior is inherited from the low-level interface, and is means that the objects presents
an interface recognized by numpy, and that interface used to know the structure of the object.

5.1.2 From numpy to rpy2:

The conversion of numpy objects to rpy2 objects can be activated by importing the module
numpy2ri:

import rpy2.robjects.numpy2ri

That import alone is sufficient to switch an automatic conversion of numpy objects into rpy2
objects.

Note: Why make this an optional import, while it could have been included in the function
py2ri() (as done in the original patch submitted for that function) ?

25

rpy2 Documentation, Release 2.1.0

Although both are valid and reasonable options, the design decision was taken in order to de-
couple rpy2 from numpy the most, and do not assume that having numpy installed automatically
meant that a programmer wanted to use it.

Note: The module numpy2ri is an example of how custom conversion to and from
rpy2.robjects can be performed.

5.2 Low-level interface

The rpy2.rinterface.SexpVector objects are made to behave like arrays, as defined
in the Python package numpy.

The functions numpy.array() and numpy.asarray() can be used construct numpy ar-
rays:

>>> import numpy
>>> rx = rinterface.SexpVector([1,2,3,4], rinterface.INTSXP)
>>> nx = numpy.array(rx)
>>> nx_nc = numpy.asarray(rx)

Note: when using asarray(), the data are not copied.

>>> rx[2]
3
>>> nx_nc[2] = 42
>>> rx[2]
42
>>>

26 Chapter 5. Numpy

CHAPTER

SIX

MAPPING RPY2 OBJECTS TO
ARBITRARY PYTHON OBJECTS

Switching between a conversion and a no conversion mode, an operation often present when
working with RPy-1.x, is no longer necessary as the R objects can be either passed on to R
functions or used in Python.

However, there is a low-level mapping between R and Python objects performed behind the
(Python-level) scene, done by the rpy2.rinterface, while an higher-level mapping is
done between low-level objects and higher-level objects using the functions:

conversion.ri2py() rpy2.rinterface to Python. By default, this function is just
an alias for the function default_ri2py().

conversion.py2ri() Python to rpy2.rinterface. By default, this function is just
an alias for the function default_py2ri().

conversion.py2ro() Python to rpy2.robjects. By default, that one func-
tion is merely a call to conversion.py2ri() followed by a call to
conversion.ri2py().

Those functions can be re-routed to satisfy all requirements, with the easiest option being to
write a custom function calling itself the default function when the custom conversion should
not apply.

6.1 A simple example

As an example, let’s assume that one want to return atomic values whenever an R numerical
vector is of length one. This is only a matter of writing a new function ri2py that handles this,
as shown below:

import rpy2.robjects as robjects

def my_ri2py(obj):
res = robjects.default_ri2py(obj)
if isinstance(res, robjects.RVector) and (len(res) == 1):

res = res[0]
return res

27

rpy2 Documentation, Release 2.1.0

robjects.conversion.ri2py = my_ri2py

Once this is done, we can verify immediately that this is working with:

>>> pi = robjects.r.pi
>>> type(pi)
<type ’float’>
>>>

The default behavior can be restored with:

>>> robjects.conversion.ri2py = default_ri2py

6.2 Default functions

The docstrings for default_ri2py(), default_py2ri(), and py2ro() are:

rpy2.robjects.default_ri2py(o)
Convert rpy2.rinterface.Sexp to higher-level objects, without copying the R ob-
jects.

Parameters o – object

Return type rpy2.robjects.RObject (and subclasses)

rpy2.robjects.default_py2ri(o)
Convert arbitrary Python object to rpy2.rinterface.Sexp to objects, creating an
R object with the content of the Python object in the process (wichi means data copying).

Parameters o – object

Return type rpy2.rinterface.Sexp (and subclasses)

rpy2.robjects.default_py2ro(o)
Convert any Python object into an robject. :param o: object :rtype:
rpy2.robjects.RObject (and subclasses)

Platforms: Unix, Windows

28 Chapter 6. Mapping rpy2 objects to arbitrary python objects

CHAPTER

SEVEN

LOW-LEVEL INTERFACE

7.1 Overview

The package rinterface is provided as a lower-level interface, for situations where either
the use-cases addressed by robjects are not covered, or for the cases where the layer in
robjects has an excessive cost in terms of performances.

The package can be imported with:

>>> import rpy2.rinterface as rinterface

7.1.1 Initialization

One has to initialize R before much can be done. The function initr() lets one initialize the
embedded R.

This is done with the function initr().

rpy2.rinterface.initr()
Initialize an embedded R.

>>> rinterface.initr()

Initialization should only be performed once. To avoid unpredictable results when using the
embedded R, subsequent calls to initr() will not have any effect.

The functions get_initoptions() and set_initoptions() can be used to modify
the options. Default parameters for the initialization are otherwise in the module variable ini-
toptions.

Note: If calling initr() returns an error stating that

R_HOME is not defined, you should either have the R executable in your path (PATH on unix-
alikes, or Path on Microsoft Windows) or have the environment variable R_HOME defined.

29

rpy2 Documentation, Release 2.1.0

Ending R

Ending the R process is possible, but starting it again with initr() does appear to lead to
an R process that is hardly usable. For that reason, the use of endEmbeddedR() should be
considered carefully.

7.1.2 R space and Python space

When using the RPy2 package, two realms are co-existing: R and Python.

The Sexp_Type objects can be considered as Python enveloppes pointing to data stored and
administered in the R space.

R variables are existing within an embedded R workspace, and can be accessed from Python
through their python object representations.

We distinguish two kind of R objects: named objects and anonymous objects. Named objects
have an associated symbol in the R workspace.

Named objects

For example, the following R code is creating two objects, named x and hyp respectively, in the
global environment. Those two objects could be accessed from Python using their names.

x <- c(1,2,3)

hyp <- function(x, y) sqrt(x^2 + y^2)

Two environments are provided as rpy2.rinterface.SexpEnvironment

globalEnv

The global environment can be seen as the root (or topmost) environment, and is in fact a list,
that is a sequence, of environments.

When an R library (package in R’s terminology) is loaded, is it added to the existing sequence
of environments. Unless specified, it is inserted in second position. The first position always
remains attributed to the global environment (FIXME: there is a bit of circulariry in this defini-
tion - check how to present it a clear(er) way). The library is said to be attached to the current
search path.

baseNamespaceEnv

The base package has a namespace, that can be accessed as an environment.

30 Chapter 7. Low-level interface

rpy2 Documentation, Release 2.1.0

Note: Depending on what is in globalEnv and on the attached packages, base objects can be
masked when starting the search from globalEnv. Use baseNamespaceEnv when you want to
be sure to access a function you know to be in the base namespace.

Anonymous objects

Anonymous R objects do not have an associated symbol, yet are protected from garbage col-
lection.

Such objects can be created when using the constructor for an Sexp* class.

7.1.3 Interacting with the R console

Two functions can be used to set callbacks.

rpy2.rinterface.setWriteConsole(function)
Use the function to handle R console output.

Parameters function – function

rpy2.rinterface.setReadConsole(function)
Use the function to handle R console input.

Parameters function – function

Output from the console

The function setWriteConsole() let one specify what do with output from the R console
with a callback function.

The callback function should accept one argument of type string (that is the string output to the
console)

An example should make it obvious:

buf = []
def f(x):

function that append its argument to the list ’buf’
buf.append(x)

output from the R console will now be appended to the list ’buf’
rinterface.setWriteConsole(f)

date = rinterface.baseNamespaceEnv[’date’]
rprint = rinterface.baseNamespaceEnv[’print’]
rprint(date())

the output is in our list (as defined in the function f above)
print(buf)

7.1. Overview 31

rpy2 Documentation, Release 2.1.0

restore default function
rinterface.setWriteConsole(rinterface.consolePrint)

Input to the console

User input to the console can be can be customized the very same way.

The callback function should accept one argument of type string (that is the prompt string), and
return a string (what was returned by the user).

7.2 Classes

7.2.1 Sexp

The class Sexp is the base class for all R objects.

class rpy2.rinterface.Sexp

__sexp__
Opaque C pointer to the underlying R object

named
R does not count references for its object. This method returns the NAMED value
(an integer). See the R-extensions manual for further details.

typeof
Internal R type for the underlying R object

>>> letters.typeof
16

do_slot(name)
R objects can be given attributes. In R, the function attr lets one access an object’s
attribute; it is called do_slot() in the C interface to R.

Parameters name – string

Return type instance of Sexp

>>> matrix = rinterface.globalEnv.get("matrix")
>>> letters = rinterface.globalEnv.get("letters")
>>> ncol = rinterface.SexpVector([2,], rinterface.INTSXP)
>>> m = matrix(letters, ncol = ncol)
>>> [x for x in m.do_slot("dim")]
[13, 2]
>>>

do_slot_assign(name, value)
Assign value to the slot with the given name

32 Chapter 7. Low-level interface

rpy2 Documentation, Release 2.1.0

Parameters

• name – string

• value – instance of Sexp

rsame(sexp_obj)
Tell whether the underlying R object for sexp_obj is the same or not.

Return type boolean

7.2.2 SexpVector

Overview

In R all scalars are in fact vectors. Anything like a one-value variable is a vector of length 1.

To use again the constant pi:

>>> pi = rinterface.globalEnv.get("pi")
>>> len(pi)
1
>>> pi
<rinterface.SexpVector - Python:0x2b20325d2660 / R:0x16d5248>
>>> pi[0]
3.1415926535897931
>>>

The letters of the (western) alphabet are:

>>> letters = rinterface.globalEnv.get("letters")
>>> len(letters)
26
>>> LETTERS = rinterface.globalEnv.get("LETTERS")

R types

R vectors all have a type, sometimes referred to in R as a mode. This information is encoded as
an integer by R, but it can sometimes be better for human reader to be able to provide a string.

rpy2.rinterface.str_typeint(typeint)
Return a string corresponding to a integer-encoded R type.

Parameters typeint – integer (as returned by Sexp.typeof)

Return type string

Indexing

The indexing is working like it would on regular Python tuples or lists. The indexing starts at 0
(zero), which differs from R, where indexing start at 1 (one).

7.2. Classes 33

rpy2 Documentation, Release 2.1.0

Note: The __getitem__ operator [is returning a Python scalar. Casting an SexpVector into a
list is only a matter of either iterating through it, or simply calling the constructor list().

Common attributes

Names

In R, vectors can be named, that is each value in the vector can be given a name (that is be
associated a string). The names are added to the other as an attribute (conveniently called
names), and can be accessed as such:

>>> options = rinterface.globalEnv.get("options")()
>>> option_names = options.do_slot("names")
>>> [x for x in options_names]

Note: Elements in a name vector do not have to be unique. A Python counterpart is provided
as rpy2.rlike.container.TaggedList.

Dim and dimnames

In the case of an array, the names across the respective dimensions of the object are accessible
through the slot named dimnames.

Constructors

class rpy2.rinterface.SexpVector(obj, sexptype, copy)
Bases: rinterface.Sexp

R object that is a vector. R vectors start their indexing at one, while Python lists or
arrays start indexing at zero. In the hope to avoid confusion, the indexing in Python (e.g.,
__getitem__() / __setitem__()) starts at zero.

Convenience classes are provided to create vectors of a given type:

class rpy2.rinterface.StrSexpVector(v)
Bases: rinterface.SexpVector

Vector of strings.

class rpy2.rinterface.IntSexpVector(v)
Bases: rinterface.SexpVector

Vector of integers.

34 Chapter 7. Low-level interface

rpy2 Documentation, Release 2.1.0

class rpy2.rinterface.FloatSexpVector(v)
Bases: rinterface.SexpVector

Vector of floats.

class rpy2.rinterface.BoolSexpVector(v)
Bases: rinterface.SexpVector

Vector of booleans (logical in R terminology).

7.2.3 SexpEnvironment

__getitem__() / __setitem__()

The [operator will only look for a symbol in the environment without looking further in the
path of enclosing environments.

The following will return an exception LookupError:

>>> rinterface.globalEnv["pi"]

The constant pi is defined in R’s base package, and therefore cannot be found in the Global
Environment.

The assignment of a value to a symbol in an environment is as simple as assigning a value to a
key in a Python dictionary:

>>> x = rinterface.Sexp_Vector([123,], rinterface.INTSXP)
>>> rinterface.globalEnv["x"] = x

Note: Not all R environment are hash tables, and this may influence performances when doing
repeated lookups

Note: a copy of the R object is made in the R space.

__iter__()

The object is made iter-able.

For example, we take the base name space (that is the environment that contains R’s base
objects:

>>> base = rinterface.baseNameSpace
>>> basetypes = [x.typeof for x in base]

Warning: In the current implementation the content of the environment is evaluated only
once, when the iterator is created. Adding or removing elements to the environment will not
update the iterator (this is a problem, that will be solved in the near future).

7.2. Classes 35

rpy2 Documentation, Release 2.1.0

get()

Whenever a search for a symbol is performed, the whole search path is considered: the envi-
ronments in the list are inspected in sequence and the value for the first symbol found matching
is returned.

Let’s start with an example:

>>> rinterface.globalEnv.get("pi")[0]
3.1415926535897931

The constant pi is defined in the package base, that is always in the search path (and in the last
position, as it is attached first). The call to get() will look for pi first in globalEnv, then in
the next environment in the search path and repeat this until an object is found or the sequence
of environments to explore is exhausted.

We know that pi is in the base namespace and we could have gotten here directly from there:

>>> ri.baseNameSpaceEnv.get("pi")[0]
3.1415926535897931
>>> ri.baseNameSpaceEnv["pi"][0]
3.1415926535897931
>>> ri.globalEnv["pi"][0]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
LookupError: ’pi’ not found

R can look specifically for functions, which is happening when a parsed function call is evalu-
ated. The following example of an R interactive session should demonstrate it:

> mydate <- "hohoho"
> mydate()
Error: could not find function "mydate"
>
> date <- "hohoho"
> date()
[1] "Sat Aug 9 15:27:40 2008"

The base function date is still found, although a non-function object is present earlier on the
search path.

The same behavior can be obtained from rpy2 with the optional parameter wantFun (specify
that get() should return an R function).

>>> ri.globalEnv["date"] = ri.StrSexpVector(["hohoho",])
>>> ri.globalEnv.get("date")[0]
’hohoho’
>>> ri.globalEnv.get("date", wantFun=True)
<rinterface.SexpClosure - Python:0x7f142aa96198 / R:0x16e9500>
>>> date = ri.globalEnv.get("date", wantFun=True)
>>> date()[0]
’Sat Aug 9 15:48:42 2008’

36 Chapter 7. Low-level interface

rpy2 Documentation, Release 2.1.0

R packages as environments

In a Python programmer’s perspective, it would be nice to map loaded R packages as modules
and provide access to R objects in packages the same way than Python object in modules are
accessed.

This is unfortunately not possible in a robust way: the dot character . can be used for symbol
names in R (like pretty much any character), and this can make an exact correspondance be-
tween R and Python names rather difficult. rpy uses transformation functions that translates
‘.’ to ‘_’ and back, but this can lead to complications since ‘_’ can also be used for R symbols.

There is a way to provide explict access to object in R packages, since loaded packages can be
considered as environments.

For example, we can reimplement in Python the R function returning the search path (search).

def rsearch():
""" Return a list of package environments corresponding to the
R search path. """
spath = [ri.globalEnv,]
item = ri.globalEnv.enclos()
while not item.rsame(ri.emptyEnv):

spath.append(item)
item = item.enclos()

spath.append(ri.baseNameSpaceEnv)
return spath

As an other example, one can implement simply a function that returns from which environment
an object called by get() comes from.

def wherefrom(name, startenv=ri.globalEnv):
""" when calling ’get’, where the R object is coming from. """
env = startenv
obj = None
retry = True
while retry:

try:
obj = env[name]
retry = False

except LookupError, knf:
env = env.enclos()
if env.rsame(ri.emptyEnv):

retry = False
else:

retry = True
return env

>>> wherefrom(’plot’).do_slot(’name’)[0]
’package:graphics’
>>> wherefrom(’help’).do_slot(’name’)[0]
’package:utils’

7.2. Classes 37

rpy2 Documentation, Release 2.1.0

Note: There is a gotcha: the base package does not have a name.

>>> wherefrom(’get’).do_slot(’name’)[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
LookupError: The object has no such attribute.

7.2.4 Functions

A function with a context

In R terminology, a closure is a function (with its enclosing environment). That enclosing
environment can be thought of as a context to the function.

>>> sum = rinterface.globalEnv.get("sum")
>>> x = rinterface.SexpVector([1,2,3], rinterface.INTSXP)
>>> s = sum(x)
>>> s[0]
6

Named arguments

Named arguments to an R function can be specified just the way they would be with any other
regular Python function.

>>> rnorm = rinterface.globalEnv.get("rnorm")
>>> rnorm(rinterface.SexpVector([1,], rinterface.INTSXP),

mean = rinterface.SexpVector([2,], rinterface.INTSXP))[0]
0.32796768001636134

There are however frequent names for R parameters causing problems: all the names with a
dot. using such parameters for an R function will either require to:

• use the special syntax **kwargs on a dictionary with the named parameters

• use the method rcall().

Order for named parameters

One point where function calls in R can differ from the ones in Python is that all parameters
in R are passed in the order they are in the call (no matter whether the parameter is named
or not), while in Python only parameters without a name are passed in order. Using the class
ArgsDict in the module rpy2.rlike.container, together with the method rcall(),
permits calling a function the same way it would in R. For example:

import rpy2.rlike.container as rpc
args = rpc.ArgsDict()

38 Chapter 7. Low-level interface

rpy2 Documentation, Release 2.1.0

args[’x’] = rinterface.IntSexpVector([1,2,3], rinterface.INTSXP)
args[None] = rinterface.IntSexpVector([4,5], rinterface.INTSXP)
args[’y’] = rinterface.IntSexpVector([6,], rinterface.INTSXP)
rlist = rinterface.baseNameSpaceEnv[’list’]
rl = rlist.rcall(args.items())

>>> [x for x in rl.do_slot("names")]
[’x’, ’’, ’y’]

closureEnv

In the example below, we inspect the environment for the function plot, that is the namespace
for the package graphics.

>>> plot = rinterface.globalEnv.get("plot")
>>> ls = rinterface.globalEnv.get("ls")
>>> envplot_list = ls(plot.closureEnv())
>>> [x for x in envplot_ls]
>>>

7.2.5 SexpS4

Object-Oriented programming in R exists in several flavours, and one of those is called S4. It
has its own type at R’s C-API level, and because of that specificity we defined a class. Beside
that, the class does not provide much specific features (see the pydoc for the class below).

An instance’s attributes can be accessed through the parent class Sexp method do_slot().

class rpy2.rinterface.SexpS4(obj)
Bases: rinterface.Sexp

R object that is an ‘S4 object’.Attributes can be accessed using the method ‘do_slot’.

7.3 Misc. variables

R_HOME R HOME

R_LEN_T_MAX largest usable integer for indexing R vectors

TRUE/FALSE R’s TRUE and FALSE

7.3.1 Missing values

NA_INTEGER Missing value for integers

NA_LOGICAL Missing value for booleans

NA_REAL Missing value for numerical values (float / double)

7.3. Misc. variables 39

rpy2 Documentation, Release 2.1.0

7.3.2 R types

Vector types

CPLXSXP Complex

INTSXP Integer.

LGLSXP Boolean (logical in the R terminology)

REALSXP Numerical value (float / double)

STRSXP String

VECSXP List

LANGSXP Language object.

EXPRSXP Unevaluated expression.

Other types

CLOSXP Function with an enclosure. Represented by
rpy2.rinterface.SexpClosure.

ENVSXP Environment. Represented by rpy2.rinterface.SexpEnvironment.

S4SXP Instance of class S4. Represented by rpy2.rinterface.SexpS4.

Types one should not meet

PROMSXP Promise.

40 Chapter 7. Low-level interface

CHAPTER

EIGHT

RPY_CLASSIC

Platforms: Unix, Windows

This module provides an API similar to the one in RPy-1.x (rpy).

To match examples and documentation for rpy, we load the module as:

>>> import rpy2.rpy_classic as rpy

8.1 Conversion

Although the proposed high-level interface in rpy2.robjects does not need explicit con-
version settings, the conversion system existing in rpy is provided, and the default mode can be
set with set_default_mode():

>>> rpy.set_default_mode(rpy.NO_CONVERSION)
>>> rpy.set_default_mode(rpy.BASIC_CONVERSION)

8.2 R instance

The r instance of class R behaves like before:

>>> rpy.r.help

‘dots’ in the R name are translated to underscores:

>>> rpy.r.wilcox_test

>>> rpy.r.wilcox_test([1,2,3], [4,5,6])

>>> x = rpy.r.seq(1, 3, by=0.5)
>>> rpy.r.plot(x)

An example:

41

rpy2 Documentation, Release 2.1.0

degrees = 4
grid = rpy.r.seq(0, 10, length=100)
values = [rpy.r.dchisq(x, degrees) for x in grid]
rpy.r.par(ann=0)
rpy.r.plot(grid, values, type=’l’)

rpy.r.library(’splines’)

type(rpy.r.seq)

8.3 Functions

As in RPy-1.x, all R objects are callable:

>>> callable(rpy.r.seq)
True
>>> callable(rpy.r.pi)
True
>>>

If an object is not a R function, a RuntimeError is thrown by R whenever called:

>>> rpy.r.pi()

The function are called like regular Python functions:

>>> rpy.r.seq(1, 3)
>>> rpy.r.seq(1, 3, by=0.5)
>>> rpy.r[’options’](show_coef_Pvalues=0)
>>>

>>> m = rpy.r.matrix(r.rnorm(100), 20, 5)
>>> pca = rpy.r.princomp(m)
>>> rpy.r.plot(pca, main = "PCA")
>>>

8.4 Partial use of rpy_classic

The use of rpy_classic does not need to be exclusive of the other interface(s) proposed in rpy2.

Chaining code designed for either of the interfaces is rather easy and, among other possible
use-cases, should make the inclusion of legacy rpy code into newly written rpy2 code a simple
take.

The link between rpy_classic and the rest of rpy2 is the property
RObj.sexp, that give the representation of the underlying R object in the low-level
rpy2.rinterface definition. This representation can then be used in function calls with

42 Chapter 8. rpy_classic

rpy2 Documentation, Release 2.1.0

rpy2.rinterface and rpy2.robjects. With rpy2.robjects, a conversion using
rpy2.robjects.default_ri2py() can be considered.

Note: Obviously, that property sexp is not part of the original Robj in rpy.

An example:

import rpy2.robjects as ro
import rpy2.rpy_classic as rpy
rpy.set_default_mode(rpy.NO_CONVERSION)

def legacy_paste(v):
legacy rpy code
res = rpy.r.paste(v, collapse = ’-’)
return res

rletters = ro.r[’letters’]

the legaxy code is called using an rpy2.robjects object
alphabet_rpy = legacy_paste(rletters)

convert the resulting rpy2.rpy_classic object to
an rpy2.robjects object
alphabet = ro.default_ri2py(alphabet_rpy.sexp)

8.4. Partial use of rpy_classic 43

rpy2 Documentation, Release 2.1.0

44 Chapter 8. rpy_classic

CHAPTER

NINE

RLIKE

Platforms: Unix, Windows

9.1 Overview

The package proposes R features for a pure Python context, that is without an embedded R
running.

9.2 Containers

The module contains data collection-type data structures. ArgsDict and TaggedList are
structures with which containeed items/elements can be tagged.

The module can be imported as follows:

>>> import rpy2.rlike.container as rlc

9.2.1 ArgsDict

The ArgsDict proposes an implementation of what is sometimes referred to in Python as an
ordered dictionnary, with a particularity: a key None means that, although an item has a rank
and can be retrieved from that rank, it has no “name”.

In the hope of simplifying its usage, the API for an ordered dictionnary in PEP 372 was imple-
mented. An example of usage is:

>>> x = ((’a’, 123), (’b’, 456), (’c’, 789))
>>> nl = rlc.ArgsDict(x)

>>> nl[’a’]
123
>>> nl.index(’a’)
0

45

http://www.python.org/dev/peps/pep-0372

rpy2 Documentation, Release 2.1.0

Not all elements have to be named, and specifying a key value equal to None indicates a value
for which no name is associated.

>>> nl[None] = ’no name’

9.2.2 TaggedList

A TaggedList is a Python list in which each item has an associated tag. This is similar
to named vectors in R.

>>> tl = rlc.TaggedList([1,2,3])
>>> tl
[1, 2, 3]
>>> tl.tags()
(None, None, None)
>>> tl.settag(0, ’a’)
>>> tl.tags()
(’a’, None, None)

>>> tl = rlc.TaggedList([1,2,3], tags=(’a’, ’b’, ’c’))
>>> tl
[1, 2, 3]
>>> tl.tags()
(’a’, ’b’, ’c’)
>>> tl.settag(2, ’a’)
>>> tl.tags()
(’a’, ’b’, ’a’)
>>> it = tl.iterontag(’a’)
>>> [x for x in it]
[1, 3]

>>> [(t, sum([i for i in tl.iterontag(t)])) for t in set(tl.itertags())]
[(’a’, 4), (’b’, 2)]

The Python docstring for the class is:

class rpy2.rlike.container.TaggedList(l, tags=None)
A list for which each item has a ‘tag’.

Parameters

• l – list

• tag – optional sequence of tags

append(obj, tag=None)
Append an object to the list :param obj: object :param tag: object

extend(iterable)
Extend the list with an iterable object.

Parameters iterable – iterable object

46 Chapter 9. rlike

rpy2 Documentation, Release 2.1.0

insert(index, obj, tag=None)
Insert an object in the list

Parameters

• index – integer

• obj – object

• tag – object

items()
Return a tuple of all pairs (tag, item).

Return type tuple of 2-element tuples (tag, item)

iterontag(tag)
iterate on items marked with one given tag.

Parameters tag – object

itertags()
iterate on tags.

Return type iterator

pop(index=None)
Pop the item at a given index out of the list

Parameters index – integer

remove(value)
Remove a given value from the list.

Parameters value – object

reverse()
Reverse the order of the elements in the list.

settag(i, t)
Set tag ‘t’ for item ‘i’.

Parameters

• i – integer (index)

• t – object (tag)

sort(reverse=False)
Sort in place

tags()
Return a tuple of all tags

Return type tuple

9.2. Containers 47

rpy2 Documentation, Release 2.1.0

9.3 Tools for working with sequences

Tools for working with objects implementing the the sequence protocol can be found here.

rpy2.rlike.functional.tapply(seq, tag, fun)
Apply the function fun to the items in seq, grouped by the tags defined in tag.

Parameters

• seq – sequence

• tag – any sequence of tags

• fun – function

Return type list

>>> import rpy2.rlike.functional as rlf
>>> rlf.tapply((1,2,3), (’a’, ’b’, ’a’), sum)
[(’a’, 4), (’b’, 2)]

TaggedList objects can be used with their tags (although more flexibility can be achieved
using their method iterontags()):

>>> import rpy2.rlike.container as rlc
>>> tl = rlc.TaggedList([1, 2, 3], tags = (’a’, ’b’, ’a’))
>>> rlf.tapply(tl, tl.tags(), sum)
[(’a’, 4), (’b’, 2)]

9.4 Indexing

Much of the R-style indexing can be achieved with Python’s list comprehension:

>>> l = (’a’, ’b’, ’c’)
>>> l_i = (0, 2)
>>> [l[i] for i in l_i]
[’a’, ’c’]

In R, negative indexes mean that values should be excluded. Again, list comprehension can be
used (although this is not the most efficient way):

>>> l = (’a’, ’b’, ’c’)
>>> l_i = (-1, -2)
>>> [x for i, x in enumerate(l) if -i not in l_i]
[’a’]

rpy2.rlike.indexing.order(seq, cmp = default_cmp, reverse = False)
Give the order in which to take the items in the sequence seq and have them sorted. The
optional function cmp should return +1, -1, or 0.

Parameters

• seq – sequence

48 Chapter 9. rlike

rpy2 Documentation, Release 2.1.0

• cmp – function

• reverse – boolean

Return type list of integers

>>> import rpy2.rlike.indexing as rli
>>> x = (’a’, ’c’, ’b’)
>>> o = rli.order(x)
>>> o
[0, 2, 1]
>>> [x[i] for i in o]
[’a’, ’b’, ’c’]

9.4. Indexing 49

rpy2 Documentation, Release 2.1.0

50 Chapter 9. rlike

CHAPTER

TEN

CHANGES IN RPY2

10.1 Release 2.0.1

10.1.1 New features

rpy2.robjects:

• Property names for the RVector methods getnames() and setnames() (this was
likely forgotten for Release 2.0.0).

• Property rclass for RObjectMixin

10.1.2 Changes

rpy2.robjects:

• rclass() becomes getrclass()

10.1.3 Bugs fixed

• Having the environment variable R_HOME specified resulted in an error when importing
rpy2.rinterface # root of the problem spotted by Peter

• Setup.py has no longer a (possibly outdated) static hardcoded version number for rpy2

• Testing no longer stops with an error in the absence of the third-party module numpy

• rpy2.rlike.container.TaggedList.pop() is now returning the element
matching the given index

51

rpy2 Documentation, Release 2.1.0

10.2 Release 2.0.0

10.2.1 New features

• New module rpy2.robjects.conversion.

• New module rpy2.robjects.numpy2ri to convert numpy objects into rpy2 ob-
jects. # adapted from a patch contributed by Nathaniel Smith

10.2.2 Changes

• RObject.__repr__() moved to RObject.r_repr()

10.2.3 Bugs fixed

• Informative message returned as RuntimeError when failing to find R’s HOME

• Use the registry to find the R’s HOME on win32 # snatched from Peter’s earlier contri-
bution to rpy-1.x

10.3 Release 2.0.0rc1

rpy2.rpy_classic:

• rpy_classic.RObj.getSexp() moved to a property
rpy_classic.Robj.sexp.

rpy2.robjects:

• RObject.__repr__() moved to RObject.r_repr()

• ri2py(), ro2py(), and py2ri()moved to the new module conversion. Adding
the prefix conversion. to calls to those functions will be enough to update existing code

10.3.1 Bugs fixed

• Informative message returned as RuntimeError when failing to find R’s HOME

• Use the registry to find the R’s HOME on win32 # snatched from Peter’s earlier contri-
bution to rpy-1.x

52 Chapter 10. Changes in rpy2

rpy2 Documentation, Release 2.1.0

10.4 Release 2.0.0rc1

10.4.1 New features

• added __version__ to rpy2/__init__.py

rpy2.robjects:

• added classes StrVector, IntVector, FloatVector, BoolVector

rpy2.rinterface:

• added missing class BoolSexpVector.

10.4.2 Changes

rpy2.robjects:

• does not alias rinterface.StrSexpVector, rinterface.IntSexpVector,
rinterface.FloatSexpVector anymore

• Constructor for rpy2.robjects.RDataFrame checks that R lists are data.frames
(not all lists are data.frame)

• Formerly new attribute _dotter for R is now gone. The documentaion now points to
rpy2.rpy_classic for this sort of things.

10.4.3 Bugs fixed

• conditional typedef in rinterface.c to compile under win32 # reported and initial proposed
fix from Paul Harrington

• __pow__ was missing from the delegator object for robjects.RVector (while the docu-
mentation was claiming it was there) # bug report by Robert Nuske

• Earlier change from Sexp.typeof() to getter Sexp.typeof was not reflected in
rpy2.rpy_classic # bug report by Robert Denham

10.5 Release 2.0.0b1

10.5.1 New features

rpy2.robjects:

• added setenvironment() for RFormula, and defined environment as a property

• defined names as a property for RVector

rpy2.rinterface:

10.4. Release 2.0.0rc1 53

rpy2 Documentation, Release 2.1.0

• added functions get_initoptions() and set_initoptions().

• new attribute _dotter for R singleton. Setting it to True will translate ‘_’ into ‘.’ if the
attribute is not found

10.5.2 Changes

rpy2.robjects:

• constructor for RDataFrame now now accepts either
rlike.container.TaggedList or rinterface.SexpVector

rpy2.rinterface:

• sexpTypeEmbeddedR() is now called str_typeint().

• initOptions is now called initoptions. Changes of options can only be done
through set_initoptions().

10.5.3 Bugs fixed

• crash of Sexp.enclos() when R not yet initialized (bug report #2078176)

• potential crash of Sexp.frame() when R not yet initialized

• proper reference counting when handling, and deleting, Sexp.__sexp__ generated
CObjects

• setup.py: get properly the include directories (no matter where they are) #bug report and
fix adapted from Robert Nuske

• setup.py: link to external lapack or blas library when relevant

• added a MANIFEST.in ensuring that headers get included in the source distribution
#missing headers reported by Nicholas Lewin-Koh

• rinterface.str_typeint() was causing segfault when called with 99

• fixed subsetting for LANGSXP objects

10.6 Release 2.0.0a3

10.6.1 New features

rpy2.rinterface:

• setReadConsole(): specify Python callback for console input

• R string vectors can now be built from Python unicode objects

• getter __sexp__ to return an opaque C pointer to the underlying R object

54 Chapter 10. Changes in rpy2

rpy2 Documentation, Release 2.1.0

• method rsame() to test if the underlying R objects for two Sexp are the same.

• added emptyEnv (R’s C-level R_EmptyEnv)

• added method Sexp.do_slot_assign()

rpy2.robjects:

• R string vectors can now be built from Python unicode objects

rpy2.rlike:

• module functional with the functions tapply(), listify(), iterify().

• module indexing with the function order()

• method TaggedList.sort() now implemented

10.6.2 Changes

rpy2.rinterface:

• initEmbeddedR() is only initializing if R is not started (no effect otherwise, and no
exception thrown anymore)

• the method Sexp.typeof() was replaced by a Python getter typeof.

• the method Sexp.named() was replaced by a Python getter named.

• R objects of type LANGSXP are now one kind of vector (... but this may change again)

• R objects of type EXPRSXP are now handled as vectors (... but this may change again)

• initEmbeddedR() renamed to initr()

• endEmbeddedR() renamed to endr()

rpy2.robjects:

• R remains a singleton, but does not throw an exception when multiple instances are re-
quested

10.6.3 Bugs fixed

• unable to compile on Python2.4 (definition of aliases to Python2.5-specific were not
where they should be).

• overflow issues on Python 2.4/64 bits when indexing R vector with very large integers.

• handling of negative indexes for SexpVector‘s __getitem__() and
__setitem__() was missing

• trying to create an instance of SexpVector before initializing R raises a RuntimeEx-
ception (used to segfault)

• experimental method enclos() was not properly exported

10.6. Release 2.0.0a3 55

rpy2 Documentation, Release 2.1.0

• setup.py was exiting prematurely when R was compiled against an existing BLAS library

• complex vectors should now be handled properly by
rpy2.rinterface.robjects.

• methods rownames() and colnames() for RDataFrame were incorrect.

10.7 Release 2.0.0a2

10.7.1 New features

rpy2.rlike:

• package for R-like features in Python

• module rpy2.rlike.container

• class ArgsDict in rpy2.rlike.container

• class TaggedList in rpy2.rlike.container

rpy2.rinterface:

• method named(), corresponding to R’s C-level NAMED

• experimental methods frame() and enclos() for SexpEnvironment corresponding
to R’s C-level FRAME and ENCLOS

• method rcall() for ClosureSexp

• new experimental class SexpLang for R language objects.

10.7.2 Bugs fixed

• R stack checking is disabled (no longer crashes when multithreading)

• fixed missing R_PreserveObject for vectors (causing R part of the object to sometimes
vanish during garbage collection)

• prevents calling an R function when R has been ended (raise RuntimeException).

10.8 Release 2.0.0a1

10.8.1 New features

rpy2.robjects:

• method getnames() for RVector

• experimental methods __setitem__() and setnames() for RVector

56 Chapter 10. Changes in rpy2

rpy2 Documentation, Release 2.1.0

• method ‘getnames’ for RArray

• new class RFormula

• new helper class RVectorDelegator (see below)

• indexing RVector the “R way” with subset is now possible through a delegating attribute
(e.g., myvec.r[True] rather than myvec.subset(True)). #suggested by Michael Sorich

• new class RDataFrame. The constructor __init__() is still experimental (need for
an ordered dictionnary, that will be in before the beta

• filled documentation about mapping between objects

10.8.2 Changes

• many fixes and additions to the documentation

• improved GTK console in the demos

• changed the major version number to 2 in order to avoid confusion with rpy 1.x # Sug-
gested by Peter and Gregory Warnes

• moved test.py to demos/example01.py

rpy2.robjects:

• changed method name getNames to getnames where available (all lower-case names for
methods seems to be the accepted norm in Python).

10.8.3 Bugs fixed

rpy2.robjects:

• fixed string representation of R object on Microsoft Windows (using fifo, not available
on win32)

• __getattr__() for RS4 is now using ri2py()

rpy2.rinterface:

• fixed context of evaluation for R functions (now R_GlobalEnv)

10.9 Release 1.0a0

• first public release

10.9. Release 1.0a0 57

rpy2 Documentation, Release 2.1.0

58 Chapter 10. Changes in rpy2

PYTHON MODULE INDEX

r
rpy2.rinterface (Unix, Windows), 28
rpy2.rlike (Unix, Windows), 45
rpy2.rlike.container, 45
rpy2.rlike.functional, 47
rpy2.rlike.indexing, 48
rpy2.robjects (Unix, Windows), 11
rpy2.rpy_classic (Unix, Windows), 41

59

rpy2 Documentation, Release 2.1.0

60 Python Module Index

INDEX

Symbols
__sexp__ (rpy2.rinterface.Sexp attribute), 32

A
append() (rpy2.rlike.container.TaggedList

method), 46
ArgsDict, 45

B
baseNamespaceEnv

rinterface, 30
BoolSexpVector (class in rpy2.rinterface), 35
BoolVector (class in rpy2.robjects), 14

C
closure, 38
closureEnv, 39
colnames() (rpy2.robjects.RDataFrame

method), 17
conversion, 41

D
default_py2ri() (in module rpy2.robjects), 28
default_py2ro() (in module rpy2.robjects), 28
default_ri2py() (in module rpy2.robjects), 28
dim, 34
dimnames, 34
do_slot() (rpy2.rinterface.Sexp method), 32
do_slot_assign() (rpy2.rinterface.Sexp

method), 32

E
environment variable

PATH, 29
Path, 29
R_HOME, 29

ENVSXP, 39

extend() (rpy2.rlike.container.TaggedList
method), 46

F
FALSE, 39
FloatSexpVector (class in rpy2.rinterface), 34
FloatVector (class in rpy2.robjects), 14
formula, 18
function

rinterface, 38
robjects, 18
rpy_classic, 42

G
globalEnv, 30

robjects, 16

I
indexing

rinterface, 33
RVector, 14

initialization, 29
initialize R_HOME, 29
initr() (in module rpy2.rinterface), 29
insert() (rpy2.rlike.container.TaggedList

method), 46
install

source, 2
win32, 2

IntSexpVector (class in rpy2.rinterface), 34
INTSXP, 39
IntVector (class in rpy2.robjects), 14
items() (rpy2.rlike.container.TaggedList

method), 47
iterontag() (rpy2.rlike.container.TaggedList

method), 47
itertags() (rpy2.rlike.container.TaggedList

method), 47

61

rpy2 Documentation, Release 2.1.0

L
LGLSXP, 39

M
missing values, 39

N
named (rpy2.rinterface.Sexp attribute), 32
names

rinterface, 34
robjects, 15

ncol() (rpy2.robjects.RDataFrame method),
17

nrow() (rpy2.robjects.RDataFrame method),
17

O
order() (in module rpy2.rlike.indexing), 48

P
PATH, 29
Path, 29
pop() (rpy2.rlike.container.TaggedList

method), 47
Python Enhancement Proposals

PEP 372, 45

R
R_HOME, 29, 39
R_LEN_T_MAX, 39
rcall

order of parameters, 38
RDataFrame (class in rpy2.robjects), 17
REALSXP, 39
remove() (rpy2.rlike.container.TaggedList

method), 47
REnvironment

robjects, 16
reverse() (rpy2.rlike.container.TaggedList

method), 47
RFormula

robjects, 18
RFunction

robjects, 18
rinterface

baseNamespaceEnv, 30
function, 38
indexing, 33

SexpClosure, 38
SexpEnvironment, 35
SexpVector, 33

RObject
robjects, 13

robjects
function, 18
globalEnv, 16
REnvironment, 16
RFormula, 18
RFunction, 18
RObject, 13
RVector, 13

rownames() (rpy2.robjects.RDataFrame
method), 17

rpy2.rinterface (module), 28
rpy2.rlike (module), 45
rpy2.rlike.container (module), 45
rpy2.rlike.functional (module), 47
rpy2.rlike.indexing (module), 48
rpy2.robjects (module), 11
rpy2.rpy_classic (module), 41
rpy_classic

conversion, 41
function, 42

rsame() (rpy2.rinterface.Sexp method), 33
RVector

indexing, 14
robjects, 13

S
setReadConsole() (in module rpy2.rinterface),

31
settag() (rpy2.rlike.container.TaggedList

method), 47
setWriteConsole() (in module

rpy2.rinterface), 31
Sexp (class in rpy2.rinterface), 32
SexpClosure, 38
SexpEnvironment, 35

baseNamespaceEnv, 30
globalEnv, 30

SexpS4 (class in rpy2.rinterface), 39
SexpVector, 33
SexpVector (class in rpy2.rinterface), 34
sort() (rpy2.rlike.container.TaggedList

method), 47
str_typeint() (in module rpy2.rinterface), 33

62 Index

rpy2 Documentation, Release 2.1.0

StrSexpVector (class in rpy2.rinterface), 34
STRSXP, 39
StrVector (class in rpy2.robjects), 14

T
TaggedList, 46
TaggedList (class in rpy2.rlike.container), 46
tags() (rpy2.rlike.container.TaggedList

method), 47
tapply() (in module rpy2.rlike.functional), 48
test

whole installation, 2
TRUE, 39
type

ENVSXP, 39
INTSXP, 39
LGLSXP, 39
REALSXP, 39
STRSXP, 39

typeof (rpy2.rinterface.Sexp attribute), 32

Index 63

	Overview
	Background
	Installation
	Contents
	Design notes
	Acknowledgements

	Introduction to rpy2
	Getting started
	The r instance
	R vectors
	Calling R functions
	Examples

	High-level interface
	Overview
	r: the instance of R
	R objects
	Vectors
	Environments
	Functions
	Formulae

	Numpy
	High-level interface
	Low-level interface

	Numpy
	High-level interface
	Low-level interface

	Mapping rpy2 objects to arbitrary python objects
	A simple example
	Default functions

	Low-level interface
	Overview
	Classes
	Misc. variables

	rpy_classic
	Conversion
	R instance
	Functions
	Partial use of rpy_classic

	rlike
	Overview
	Containers
	Tools for working with sequences
	Indexing

	Changes in rpy2
	Release 2.0.1
	Release 2.0.0
	Release 2.0.0rc1
	Release 2.0.0rc1
	Release 2.0.0b1
	Release 2.0.0a3
	Release 2.0.0a2
	Release 2.0.0a1
	Release 1.0a0

	Python Module Index
	Index

