PyNIfTI Manual
Release 0.20090303.1

Michael Hanke

April 05, 2011

CONTENTS

1 What is NIfTI and what do I need PyNIfTI for? 3
LT NITI . . e 3
1.2 Python e e e 3
1.3 PyNIfTI. 4
1.4 Scripts L e 5
1.5 Knownissues o . i ittt e e e 5
1.6 Thingstoknow e 5
2 Installation 7
2.1 Binary packages e 7
2.2 Compile fromsource e e 10
2.3 Troubleshooting 12
3 Examples 13
3.1 Loading and saving NIfTIfiles. 13
3.2 NIfTIfiles fromarraydata 14
33 SelectROIs e 14
3.4 Linear detrending of timeseries (SciPy module is required for this example) . . 15
3.5 Make a quick plot of a voxel’s timeseries (matplotlib module is required) . . . 15
3.6 Show aslice of a 3d volume (Matplotlib module is required) 16
3.7 Compute and display peristimulus signal timecourse of multiple conditions . . 16
4 Module Reference 19
4.1 Module format e e e e 19
42 Module image e e e e e e e e 33
43 Module extensions. Lo e 39
44 Useful Functions e 41
5 PyNIfTI Development Changelog 45
5.1 Releases e 45
Python Module Index 51
Index 53

PyNIfTI Manual, Release 0.20090303.1

The PDF version of the manual is available for download.

CONTENTS 1

PyNIfTI Manual, Release 0.20090303.1

2 CONTENTS

CHAPTER
ONE

WHAT IS NIFTI AND WHAT DO I NEED
PYNIFTI FOR?

1.1 NIfTI

NIfTI is a new Analyze-style data format, proposed by the NIfTI Data Format Working Group
as a “short-term measure to facilitate inter-operation of functional MRI data analysis soft-
ware packages”. Meanwhile a number of toolkits are NIfTI-aware (e.g. FSL, AFNI, SPM,
Freesurfer and a to a certain degree also Brainvoyager). Additionally, dicomnifti allows the
direct conversion from DICOM images into the NIfTI format.

With libnifti there is a reference implementation of a C library to read, write and manipulate
NIfTI images. The library source code is put into the public domain and a corresponding
project is hosted at SourceForge.

In addition to the C library, there is also an 1O library written in Java and Matlab functions to
make use of NIfTI files from within Matlab.

1.2 Python

Unfortunately, it is not that trivial to read NIfTI images with Python. This is particularly sad,
because there is a large number of easy-to-use, high-quality libraries for signal processing
available for Python (e.g. SciPy).

Moreover Python has bindings to almost any important language/program in the fields of maths,
statistics and/or engineering. If you want to use R to calculate some stats in a Python script,
simply use RPy and pass any data to R. If you don’t care about R, but Matlab is your one
and only friend, there are at least two different Python modules to control Matlab from within
Python scripts. Python is the glue between all those helpers and the Python user is able to
combine as many tools as necessary to solve a given problem — the easiest way.

http://nifti.nimh.nih.gov
http://nifti.nimh.nih.gov/dfwg/beyond-nifti-1
http://cbi.nyu.edu/software/dinifti.php
http://niftilib.sf.net/niftilib_overview.html
http://sourceforge.net/projects/niftilib
http://www.r-project.org
http://rpy.sourceforge.net/

PyNIfTI Manual, Release 0.20090303.1

1.3

PyNIfTI

PyNIfTI aims to provide easy access to NIfTI images from within Python. It uses SWIG-
generated wrappers for the NIfTI reference library and provides the NiftiTImage class for
Python-style access to the image data.

While PyNIfTI is not yet complete (i.e. doesn’t support everything the C library can do), it
already provides access to the most important features of the NIfTI-1 data format and libniftiio
capabilities. The following features are currently implemented:

PyNIfTI can read and write any file format supported by libniftiio. This includes NIfTI
(single and pairs) as well as ANALYZE files, both also in gzipped versions.

PyNIfTI provides fast and convenient access to the image data via NumPy arrays. This
should enable users to process image data with most (if not all) numerical routines avail-
able for Python. The NumPy array automatically uses a datatype corresponding to the
NIfTT image data — no unnecessary upcasting is performed.

PyNIfTI provides full read and write access to the NIfT1 header data. Header information
can be exported to a Python dictionary and can also be updated by using information from
a dictionary.

Besides accessing NIfTI data from files, PyNIfTI is able to create NIfTI images from
NumPy arrays. The appropriate NIfTI header information is determined from the array
properties. Additional header information can be optionally specified — making it easy to
clone NIfTT images if necessary, but with minor modifications.

Most properties of NIfTI images are accessible via attributes and/or accessor functions
of the Ni ft i ITmage. Inter-dependent properties are automatically updated if necessary
(e.g. modifying the Q-Form matrix also updates the pixdim properties and quaternion
representation).

All properties are accessible via Python-style datatypes: A 4x4 matrix is an array not 16
individual numbers.

PyNIfTI should be resonably fast. Image data will only be loaded into the memory
if necessary. Simply opening a NIfTI file to access some header data is performed with
virtually no delay independent of the size of the image. Unless image resizing or datatype
conversion must be performed the image data can be shared by the NIfTI image and
accessing NumPy arrays, and therefore memory won’t be wasted memory with redundant
copies of the image data.

Additionally PyNIfTI can access uncompressed NIfTI or ANALYZE files by providing
memory-mapped access to them via NumPy’s memmap arrays. In this mode it is possible
to modified existing files of any size without having to load them in memory first.

PyNIfTT allows to embed arbitrary additional information into the NIfTT file header.

Chapter 1. What is NIfTI and what do | need PyNIfTI for?

http://www.swig.org
http://numpy.scipy.org

PyNIfTI Manual, Release 0.20090303.1

1.4 Scripts

Some functions provided by PyNIfTI also might be useful outside the Python environment and
it might be useful to export them via some command line scripts.

Currently there is only one: pynifti_pst (pst: peristimulus timecourse). Using this script
one can compute the signal timecourse for a certain condition for all voxels in a volume at once.
Although it is done by simply averaging the timecourses of the involved events (nothing fancy),
this might nevertheless be useful for exploring a dataset and accompanies similar tools like
FSL’s t splot. The output of pynifti_pst can be loaded into FSLView to simultaneously
look at statistics and signal timecourses. Please see the corresponding example below.

1.5 Known issues

PyNIfTI currently ignores the origin field of ANALYZE files - it is neither read nor writ-
ten. A possible workaround is to convert ANALYZE files into the NIfTI format using FSL’s
fslchfiletype.

1.6 Things to know

When accessing NIfTI image data through NumPy arrays the order of the dimensions is re-
versed. If the x, y, z, dimensions of a NIfTI image are 64, 64, 32, 456 (as for example reported
by nifti_tool), the shape of the NumPy array (e.g. as returned by NiftiImage.data)
will be: 456, 32, 64, 64.

This is done to be able to slice the data array much easier in the most common cases. For
example, if you are interested in a certain volume of a timeseries it is much easier to write
data[2] instead of datal[:, :, :, 2], right?

1.4. Scripts 5

PyNIfTI Manual, Release 0.20090303.1

6 Chapter 1. What is NIfTI and what do | need PyNIfTI for?

CHAPTER
TWO

INSTALLATION

It should be fairly easy to get PyNIfTI running on any system. For the most popular platforms
and operating systems there are binary packages provided in the respective native packaging
format (DEB, RPM or installers). On all other systems PyNIfTI has to be compiled from source
— which should also be pretty straightforward.

2.1 Binary packages

2.1.1 GNU/Linux

PyNIfTT is available in recent versions of the Debian (since lenny) and Ubuntu (since gutsy in
universe) distributions. The name of the binary package is python—-nifti in both cases.

» PyNIfTI versions in Debian
* PyNIfTI versions in Ubuntu

Binary packages for some additional Debian and (K)Ubuntu versions are also available. Please
visit Michael Hanke’s APT repository to read about how you have to setup your system to
retrieve the PyNIfTI package via your package manager and stay in sync with future releases.

If you are using Debian lenny (or later) or Ubuntu gutsy (or later) or you have configured your
system for Michael Hanke’s APT repository all you have to do to install PyNIfTT is this:

apt—get update
apt—-get install python-nifti

This should pull all necessary dependencies. If it doesn’t, it’s a bug that should be reported.
Additionally, there are binary packages for several RPM-based distributions, provided through
the OpenSUSE Build Service. To install one of these packages first download it from the Open-
SUSE software website. Please note, that this site does not only offer OpenSUSE packages, but
also binaries for other distributions, including: CentOS 5, Fedora 9-10, Mandriva 2007-2008,
RedHat Enterprise Linux 5, SUSE Linux Enterprise 10, OpenSUSE 10.2 up to 11.0. Once
downloaded, open a console and invoke (the example command refers to PyYMVPA 0.3.1):

rpm —-i python-nifti-0.20080710.1-4.1.1386.rpm

http://packages.debian.org/python-nifti
http://packages.ubuntu.com/python-nifti
http://apsy.gse.uni-magdeburg.de/main/index.psp?page=hanke/debian\&lang=en\&sec=1
http://apsy.gse.uni-magdeburg.de/main/index.psp?page=hanke/debian\&lang=en\&sec=1
https://build.opensuse.org/
http://software.opensuse.org/search?baseproject=ALL\&p=1\&q=python-nifti
http://software.opensuse.org/search?baseproject=ALL\&p=1\&q=python-nifti

PyNIfTI Manual, Release 0.20090303.1

The OpenSUSE website also offers 1-click-installations for distributions supporting it.

A more convenient way to install PyNIfTI and automatically receive software updates is to
included one of the ‘RPM-package repositories‘_ in the system’s package management con-
figuration. For e.g. OpenSUSE 11.0, simply use Yast to add another repository, using the
following URL.:

http://download.opensuse.org/repositories/home:/hankem/openSUSE_11.0/

For other distributions use the respective package managers (e.g. Yum) to setup the repository
URL. The repositories include all core dependencies of PyNIfTI, if they are not available from
other repositories of the respective distribution. There are two different repository groups,
one for Suse and Mandriva-related packages and another one for Fedora, Redhat and CentOS-
related packages.

2.1.2 Windows

A binary installer for a recent Python version is available from the nifticlibs Sourceforge project
site.

There are a few Python distributions for Windows. In theory all of them should work equally
well. However, I only tested the standard Python distribution from www.python.org (with
version 2.5.2).

First you need to download and install Python. Use the Python installer for this job. Yo do not
need to install the Python test suite and utility scripts. From now on we will assume that Python
was installed in C:\Python25 and that this directory has been added to the PATH environment
variable.

In addition you’ll need NumPy. Download a matching NumPy windows installer for your
Python version (in this case 2.5) from the SciPy download page and install it.

PyNIfTI does not come with the required z/ib library, so you also need to download and install
it. A binary installer is available from the GnuWin32 project. Install it in some arbitrary folder
(just the binaries nothing else), find the z/ib1.dll file in the bin subdirectory and move it in the
Windows system32 directory.

Now, you can use the PyNIfTI windows installer to install PyNIfTI on your system. As always:
click Next as long as necessary and finally Finish. If done, verify that everything went fine by
opening a command promt and start Python by typing python and hit enter. Now you should
see the Python prompt. Import the nifti module, which should cause no error messages:

>>> import nifti
>>>

2.1.3 MacOS X

The easiest installation method for OSX is via MacPorts. MacPorts is a package management
system for MacOS, which is in some respects very similiar to RPM or APT which are used in
most GNU/Linux distributions. However, rather than installing binary packages, it compiles
software from source on the target machine.

8 Chapter 2. Installation

http://software.opensuse.org/search?baseproject=ALL\&p=1\&q=python-nifti
http://download.opensuse.org/repositories/home:/hankem/openSUSE_11.0/
http://download.opensuse.org/repositories/home:/hankem/
http://download.opensuse.org/repositories/home://hankem://rh5/
http://download.opensuse.org/repositories/home://hankem://rh5/
http://sourceforge.net/
http://numpy.scipy.org
http://scipy.org/Download
http://gnuwin32.sourceforge.net/
http://www.macports.org

PyNIfTI Manual, Release 0.20090303.1

The MacPort of PyNIfTI is kindly maintained by James Kyle <jameskyle @ucla.edu>.

In the context of PyNIfTI MacPorts is much easier to handle than the previously available
installer for Macs. Although the initial overhead to setup MacPorts on a machine is higher
than simply installing PyNIfTI using the former installer, MacPorts saves the user a significant
amount of time (in the long run). This is due to the fact that this framework will not only take
care of updating a PyNIfTI installation automatically whenever a new release is available. It
will also provide many of the optional dependencies of PyNIfTI (e.g. NumPy, nifticlibs) in the
same environment and therefore abolishes the need to manually check dozens of websites for
updates and deal with an unbelievable number of different installation methods.

MacPorts provides a universal binary package installer that is downloadable at
http://www.macports.org/install.php

After downloading, simply mount the dmg image and double click MacPorts.pkg.

By default, MacPorts installs to /opt/local. After the installation is completed, you must ensure
that your paths are set up correctly in order to access the programs and utilities installed by
MacPorts. For exhaustive details on editing shell paths please see:

http://www.debian.org/doc/manuals/reference/ch-install.en.html#s-bashconf
A typical .bash_profile set up for MacPorts might look like:

> export PATH=/opt/local/bin:/opt/local/sbin:$PATH
> export DYLD_LIBRARY_PATH=/opt/local/lib:$DYLD_LIBRARY_PATH

Be sure to source your .bash_profile or close Terminal.app and reopen it for these changes to
take effect.

Once MacPorts is installed and your environment is properly configured, PyNIfTI is installed
using a single command:

> $ sudo port install py25-pynifti

If this is your first time using MacPorts Python 2.5 will be automatically installed for you.
However, an additional step is needed:

$ sudo port install python_select
$ sudo python_select python25

MacPorts has the ability of installing several Python versions at a time, the python_select util-
ity ensures that the default Python (located at /opt/local/bin/python) points to your preferred
version.

Upon success, open a terminal window and start Python by typing python and hit return. Now
try to import the PyNIfTI module by doing:

>>> import nifti
>>>

If no error messages appear, you have succesfully installed PyNIfTI.

2.1. Binary packages 9

http://numpy.scipy.org
http://www.macports.org/install.php
http://www.debian.org/doc/manuals/reference/ch-install.en.html#s-bashconf

PyNIfTI Manual, Release 0.20090303.1

2.2 Compile from source

If no binary packages are provided for your platfom, you can build PyNIfTI from source. It
needs a few things to build and run properly:

* Python 2.4 or greater
* NumPy
* SWIG 1.3.29 (or later)

NIfTI C libraries
Proper developer packages are prefered, but for convenience reasons a minimal
copy is included in the PyNIfTI source package.

2.2.1 Get the sources

Since June 2007 PyNIfTI is part of the niftilibs family. The source code of PyNIfTI releases
can be obtained from the corresponding Sourceforge project site. Alternatively, one can also
download a tarball of the latest development snapshot (i.e. the current state of the master branch
of the PyNIfTI source code repository).

If you want to have access to both, the full PyNIfTI history and the latest development code,
you can use the PyNIfTI Git repository on the Alioth server, a service kindly provided by the
Debian project. To view the repository, please point your web browser to gitweb:

. http://git.debian.org/?p=pkg-exppsy/pynifti.git

The gitweb browser also allows to download arbitrary development snapshots of PyNIfTI. For
a full clone (aka checkout) of the PyNIfTI repository simply do:

git clone http://git.debian.org/git/pkg-exppsy/pynifti.git

2.2.2 Compiling: General instructions

Make sure that the compiled nifticlibs and the corresponding headers are available to your com-
piler. If they are located in a custom directory, you might have to specify ——include-dirs
and ——1ibrary-dirs options to the build command below. In case, you want to build and
use the nifticlibs copy that is shipped with PyNIfT1I, this is automatically done for you.

Once you have downloaded the sources, extract the tarball and enter the root directory of the
extracted sources. If you do not have the nifticlibs installed, run:

make

in the root of the extracted source tarball. If you have system-wide installed nifticlibs available
on your system, instead simply do:

python setup.py build

10 Chapter 2. Installation

http://www.python.org
http://numpy.scipy.org
http://www.swig.org
http://niftilib.sourceforge.net
http://niftilib.sourceforge.net
http://sourceforge.net/
http://git.debian.org/?p=pkg-exppsy/pynifti.git;a=snapshot;h=refs/heads/master;sf=tgz
http://git.or.cz
http://alioth.debian.org
http://www.debian.org
http://git.debian.org/?p=pkg-exppsy/pynifti.git

PyNIfTI Manual, Release 0.20090303.1

That should build the SWIG wrappers. If this has been done successfully, all you need to do is
install the modules by invoking:

sudo python setup.py install

If sudo is not configured (or even installed) you might have to use su instead.

Now fire up Python and try importing the module to see if everything is fine. It should look
similar to this:

Python 2.4.4 (#2, Oct 20 2006, 00:23:25)

[GCC 4.1.2 20061015 (prerelease) (Debian 4.1.1-16.1)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import nifti

>>>

2.2.3 Building on Windows Systems

On Windows the whole situation is a little more tricky, as the system doesn’t come with a
compiler by default. Nevertheless, it is easily possible to build PyNIfTI from source. One could
use the Microsoft compiler that comes with Visual Studio to do it, but as this is commercial
software and not everybody has access to it, I will outline a way that exclusively involves free
and open source software.

First one needs to install the Python and NumPy, if not done yet. Please refer to the installation
intructions for the Windows binary package below.

Next we need to obtain and install the MinGW compiler collection. Download the Automated
MinGW Installer from the MinGW project website. Now, run it and choose to install the current
package. You will need the MinGW base tools, gcc and g++ compiler and MinGW Make. For
the remaining parts of the section, we will assume that MinGW got installed in C:\MinGW and
the directory C:\MinGW\bin has been added to the PATH environment variable, to be able to
easily access all MinGW tools. Note, that it is not necessary to install MSYS to build PyNIfTI,
but it might handy to have it.

In addition, PyNIfTI needs the developer version of the z/ib library, so you also need to down-
load and install it. A binary installer is available from the GnuWin32 project. It is best to
install it into the same directory as MinGW (i.e. C:\MinGW in this example), as all paths will
be automatically configured properly.

You also need to download SWIG (actually swigwin, the distribution for Windows). SWIG
does not have to be installed, just unzip the file you downloaded and add the root directory of
the extracted sources to the PATH environment variable (make sure that this directory contains
swig.exe, if not, you haven’t downloaded swigwin).

Now, we are ready to build PyNIfTI. The easiest way to do this, is to make use of the Make-
file.win that is shipped with PyNIfTI to build a binary installer package (.exe). Make sure, that
the settings at the top of Makefile.win (the file is located in the root directory of the source dis-
tribution) correspond to your Python installation — if not, first adjust them accordingly before
your proceed. When everything is set, do:

2.2. Compile from source 11

http://www.python.org
http://numpy.scipy.org
http://www.mingw.org/
http://www.mingw.org/msys.shtml
http://gnuwin32.sourceforge.net/
http://www.swig.org

PyNIfTI Manual, Release 0.20090303.1

mingw32-make —-f Makefile.win installer

Upon success you can find the installer in the dist subdirectory. Install it as described below.

2.2.4 MacOS X

Since the MacPorts system basically compiles from source there should be no need to perform
this step manually. However, if one intends to compile without MacPorts the XCode developer
tools, have to be installed first, as the operating system does not come with a compiler by
default. If you want to use or even work on the latest development code, you should also install
Git. There is a MacOS installer for Git, that make this step very easy.

Otherwise follow the general build instructions.

2.2.5 MacOS X and MacPython

When you are comiling PyNIfTI on MacOS X and want to use it with MacPython, please make
sure that the NIfTI C libraries are compiled as fat binaries (compiled for both ppc and i386).
Otherwise PyNIfTI extensions will not compile.

One can achieve this by adding both architectures to the CFLAGS definition in the toplevel
Makefile of the NIfTI C library source code or in the file 3rd/nifticlibs/Makefile if you are using
the nifticlibs copy that is shipped with the PyNIfTI sources. Like this:

CFLAGS=-Wall -02 -I. -DHAVE_ZLIB -arch ppc -arch i386

2.3 Troubleshooting

If you get an error when importing the nifti module in Python complaining about miss-
ing symbols your niftiio library contains references to some unresolved symbols. Try adding
znzlib and z1ib to the linker options the PyNIfTI setup . py, like this:

libraries = ['niftiio’, ’'znz’, 'z’ 1,

12 Chapter 2. Installation

http://www.macports.org
http://www.macports.org
http://developer.apple.com/tools/xcode/
http://developer.apple.com/tools/xcode/
http://git.or.cz
http://code.google.com/p/git-osx-installer/

CHAPTER
THREE

EXAMPLES

The next sections contains some examples showing ways to use PyNIfTI to read and write
imaging data from within Python to be able to process it with some random Python library.

All examples assume that you have imported the PyNIfTI module by invoking:

>>> from nifti import =«

3.1 Loading and saving NIfTl files

First we will open the tiny example NIfTI file that is included in the PyNIfTI source tarball. No
filename extension is necessary as libniftiio determines it automatically:

>>> nim = NiftiImage (’'exampledd’)

The filename is available via the ‘filename’ attribute:

>>> print nim.filename
exampledd.nii.gz

This indicates a compressed NIfTI image. If you want to save this image as an uncompressed
image simply do:

>>> nim.save ('’ something.nii’)

The filetype is determined from the filename. If you want to save to gzipped ANALYZE file
pairs instead the following would be an alternative to calling the save () with a new filename:

>>> nim.setFilename (’'analyze.img.gz’)
>>> nim.save ()

Please see the documentation of setFilename () to learn how the filetypes are determined
from the filenames.

13

PyNIfTI Manual, Release 0.20090303.1

3.2 NIfTI files from array data

The next code snipped demonstrates how to create a 4d NIfTI image containing gaussian noise.
First we need to import the NumPy module

>>> import numpy as N

Now we generate the noise dataset. Let’s generate noise for 100 volumes with 16 slices and a
32x32 inplane matrix.

>>> noise = N.random.randn (100,16,32,32)

Please notice the order in which the dimensions are specified: (t, z, y, X).
The datatype of the array is by default float64, which can be verified by:

>>> noise.dtype
dtype (" float64’)

Converting this dataset into a NIfTI image is done by invoking the Ni ft i Image constructor
with the noise dataset as argument:

>>> nim = NiftiImage (noise)
The relevant header information is extracted from the NumPy array. If you query the header
information about the dimensionality of the image, it returns the desired values:

>>> print nim.header[’dim’]
(4, 32, 32, 16, 100, 1, 1, 1]

First value shows the number of dimensions in the datset: 4 (good, that’s what we wanted).
The following numbers are dataset size on the X, y, z, t, u, v, w axis (NIfTI files can handle up
to 7 dimensions). Please notice, that the order of dimensions is now ‘correct’: We have 32x32
inplane resolution, 16 slices in z direction and 100 volumes.

Also the datatype was set appropriately:

>>> import nifti.clib as ncl
>>> nim.header[’datatype’] == ncl.NIFTI_TYPE_FLOATG4
True

To save the noise file to disk, we can simply call the save () method:

>>> nim.save ('noise.nii.gz’)

3.3 Select ROIs

Suppose you want to have the first ten volumes of the noise dataset we have previously created
in a separate file. First, we open the file:

14 Chapter 3. Examples

PyNIfTI Manual, Release 0.20090303.1

>>> nim = NiftiImage ('noise.nii.gz’)

Now we select the first ten volumes and store them to another file, while preserving as much
header information as possible

>>> nim2 = NiftiImage (nim.data[:10], nim.header)
>>> nim2.save ('part.hdr.gz’)

The NiftiImage constructor takes a dictionary with header information as an optional ar-
gument. Settings that are not determined by the array (e.g. size, datatype) are taken from the
dictionary and stored to the new NIfTI image.

3.4 Linear detrending of timeseries (SciPy module is re-
quired for this example)

Let’s load another 4d NIfTI file and perform a linear detrending, by fitting a straight line to
the timeseries of each voxel and substract that fit from the data. Although this might sound
complicated at first, thanks to the excellent SciPy module it is just a few lines of code. For this
example we will first create a NIfTT image with just a single voxel and 50 timepoints (basically
a linear function with some noise):

>>> nim = NiftiImage (
(N.linspace (0,100) + N.random.randn (50)) .reshape(50,1,1,1))
>>> nim.timepoints
50
>>> nim.volextent
(1, 1, 1)

Depending on the datatype of the input image the detrending process might change the datatype
from integer to float. As operations that change the (binary) size of the NIfTI image are not
supported, we need to make a copy of the data and later create a new NIfTI image. Remember
that the array has the time axis as its first dimension (in contrast to the NIfTI file where it is the
4th).

>>> from scipy import signal
>>> data_detrended = signal.detrend(nim.data, axis=0)

Finally, create a new NIfTI image using header information from the original source image.

>>> nim_detrended = NiftiImage (data_detrended, nim.header)

3.5 Make a quick plot of a voxel’s timeseries (matplotlib
module is required)

Plotting is essential to get a ‘feeling’ for the data. The Matlab-style plotting via matplotlib
make it really easy to plot something with (e.g. when running Python interactively via [Python).

3.4. Linear detrending of timeseries (SciPy module is required for this exampltj

http://matplotlib.sourceforge.net
http://ipython.scipy.org

PyNIfTI Manual, Release 0.20090303.1

Please note, that there are many other possibilities for plotting, e.g. R via RPy or Gnuplot via
the Gnuplot python bindings

However, using matplotlib is really easy. For this example we will plot the two timeseries from
the previous example, i.e. the raw and the detrended one. First we import the pylab module:

>>> import pylab as P

Now we can easly plot both timeseries of the single voxel in our artifical image:

>>> linel = P.plot(nim.datal[:, 0, 0, 01)
>>> line2 = P.plot (nim_detrended.datal:, 0, 0, 0,1)

A P.show() call would render the plot on the screen.

3.6 Show a slice of a 3d volume (Matplotlib module is
required)

This example demonstrates howto use the Matlab-style plotting of matplotlib to view a slice
from a 3d volume. We will actually use a 4D image as data source and limit us to the first
volume:

>>> nim = NiftiImage (' exampledd’)
>>> volume = nim.datal[0]

If everything went fine, we can now view a slice (x,y):

>>> xyplot = P.imshow(volume[1l6],
interpolation='nearest’,
cmap=P.cm.gray)

Again a call to the P.show() function would render the plot on the screen.
When you want to have a look at a yz-slice, NumPy array magic comes into play.

>>> yzplot = P.imshow(volume[::-1,:,18]7,
interpolation='nearest’,
cmap=P.cm.gray)

The : :-1 notation causes the z-axis to be flipped in the images. This makes a much nicer
view, if the used example volume has the z-axis originally oriented upsidedown.

3.7 Compute and display peristimulus signal time-
course of multiple conditions

Sometimes one wants to look at the signal timecourse of some voxel after a certain stimulation
onset. An easy way would be to have some fMRI data viewer that displays a statistical map
and one could click on some activated voxel and the peristimulus signal timecourse of some
condition in that voxel would be displayed.

16 Chapter 3. Examples

http://www.r-project.org
http://rpy.sourceforge.net
http://www.gnuplot.info
http://gnuplot-py.sourceforge.net
http://matplotlib.sourceforge.net

PyNIfTI Manual, Release 0.20090303.1

This can easily be done by using pynifti_pst and FSLView.

pynifti_pst comes with a manpage that explains all options and arguments. Basically
pynifti_pst needs a 4d image (e.g. an fMRI timeseries; possibly preprocessed/filtered)
and some stimulus onset information. This information can either be given directly on the
command line or is read from files. Additionally one can specify onsets as volume numbers or
as onset times.

pynifti_pst understands the FSL custom EV file format so one can easily use those files
as input.

An example call could look like this:

\

pynifti_pst --times --nvols 5 -p uf92.feat/filtered_func_data.nii.gz \
pst_cond_a.nii.gz uf92.feat/custom_timing_files/evl.txt \
uf92.feat/custom_timing files/ev2.txt

This computes a peristimulus timeseries using the preprocessed fMRI from a FEAT output
directory and two custom EV files that both together make up condition A. ——t imes indicates
that the EV files list onset times (not volume ids) and ——nvols requests the mean peristimulus
timecourse for 4 volumes after stimulus onset (5 including onset). —p recodes the peristimulus
timeseries into percent signalchange, where the onset is always zero and any following value is
the signal change with respect to the onset volume.

LEET
1

i H H H H H -
T | O S U S S TS, " S
| H I T T I

ke

]
¥ a1 12 | Volume o LEE &
to B [|
= 2776 Rerity L 2T raze 1
e Al

& B EE_O0f]_d i [P0 | FESE - S) P

L Tiess

Figure 3.1: FSLView with pynifti_pst example.

3.7. Compute and display peristimulus signal timecourse of multiple 17
conditions

PyNIfTI Manual, Release 0.20090303.1

This call produces a simple 4d NIfTI image that can be loaded into FSLView as any other
timeseries. The following call can be used to display an FSL zmap from the above results
path on top of some anatomy. Additionally the peristimulus timeseries of two conditions are
loaded. The figure shows how it could look like. One of the nice features of FSLView is that
its timeseries window can remember selected curves, which can be useful to compare signal
timecourses from different voxels (blue and green line in the figure).

18 Chapter 3. Examples

CHAPTER
FOUR

MODULE REFERENCE

This module provides Python bindings to the NIfTI data format.

The PyNIfTI module is a Python interface to the NIfTI I/O libraries. Using PyNIfTI, one can
easily read and write NIfTT and ANALYZE images from within Python. The NiftiTImage
class provides pythonic access to the full header information and for a maximum of interoper-
ability the image data is made available via NumPy arrays.

4.1 Module format

This modules provides a class representation of a NIfTI image header. The interface provides
pythonic access to NIfTI properties using Python datatypes.

4.1.1 NiftiFormat

class nifti.format .NiftiFormat (source, header=None, loadmeta=False)
Bases: object
NIfTT header representation.

NIfTI header can be created by loading information from an existing NIfTI file or by
creating a matching NIfTI header for a ndarray.

In addition, a number of methods to manipulate the header information are provided.
However, this class is not able to write a NIfTI header back to disk. Please refer to the
NIfTIImage class for this functionality.

Note: Handling of NIfTT header extensions is provided by the NiftiExtensions
class (see its documentation for more information). Access to an instance of this class is
available through the NiftiFormat.extensions attribute.

The constructor decides whether to load a nifti image header from file or create one from
ndarray data, depending on the datatype of source.

Parameters

19

PyNIfTI Manual, Release 0.20090303.1

esource (str | ndarray) — If source is a string, it is assumed to be a file-

name and an attempt will be made to open the corresponding NIfTI
file. Filenames might be provided as unicode strings. However, as
the underlying library does not support unicode, they must be ascii-
encodable, i.e. must not contain pure unicode characters. In case of
an ndarray the array data will be used for the to be created nifti image
and a matching nifti header is generated. If an object of a different
type is supplied as ‘source’ a ValueError exception will be thrown.

*header (dict) — Additional header data might be supplied if image
data is not loaded from a file. However, dimensionality and datatype
are determined from the ndarray and not taken from a header dictio-
nary.

asDict ()
Returns the header data of the Niftilmage in a dictionary.

Return type
dict

Returns
The dictionary contains all NIfTT header information. Additionally, it
might also contain a special ‘meta’ item that contains the meta data
currently assigned to this instance.

Note: Modifications done to the returned dictionary do not cause any modifications
in the NIfTT image itself. Please use updateFromDict () to apply changes to
the image.

See Also:
updateFromDict (), header
description

extent
Returns the shape of the dataimage.

Return type
tuple

Returns
The order of dimensions is (x,y,z,t,u,v,w). If the image has less di-
mensions than 7 the return tuple will be shortened accordingly. Please
note that the order of dimensions is different from the tuple returned
by calling Niftilmage.data.shape!

See Also:
getVolumeExtent (), getTimepoints (), extent

filename
Returns the filename.

20 Chapter 4. Module Reference

PyNIfTI Manual, Release 0.20090303.1

To distinguish ANALYZE from 2-file NIfTT images the image filename is returned
for ANALYZE images while the header filename is returned for NIfTI files.

See Also:
filename

getExtent ()
Returns the shape of the dataimage.

Return type
tuple

Returns
The order of dimensions is (x,y,z,t,u,v,w). If the image has less di-
mensions than 7 the return tuple will be shortened accordingly. Please
note that the order of dimensions is different from the tuple returned
by calling Niftilmage.data.shape!

See Also:
getVolumeExtent (), getTimepoints (), extent

getFilename ()
Returns the filename.

To distinguish ANALYZE from 2-file NIfTI images the image filename is returned
for ANALYZE images while the header filename is returned for NIfTT files.

See Also:
filename

getInverseQForm/()
Returns the inverse qform matrix.

Note: The inverse qform matrix cannot be modified in-place. One needs to set a
new qform matrix instead. The corresponding inverse matrix is then re-calculated
automatically.

See Also:
getQForm (), gform, gform_inv,

getInverseSForm ()
Returns the inverse sform matrix.

Note: The inverse sform matrix cannot be modified in-place. One needs to set a
new sform matrix instead. The corresponding inverse matrix is then re-calculated
automatically.

See Also:

getSForm (), sform, sform_inv,

4.1. Module format 21

PyNIfTI Manual, Release 0.20090303.1

getPixDims ()

Returns the pixel dimensions on all 7 dimensions.

The function is similar to getVoxDims(), but instead of the 3d spatial dimensions of

a voxel it returns the dimensions of an image pixel on all 7 dimensions supported
by the NIfTI dataformat.

See Also:

getVoxDims (), setPixDims (), pixdim

getQForm ()

Returns the qform matrix.

Note: The returned qform matrix is not bound to the object. Therefore it cannot
be successfully modified in-place. Modifications to the qform matrix can only be
done by setting a new qform matrix

See Also:

setQForm (), setQFormCode (), getQFormCode (),
getQuaternion (), getQOffset (), setQuaternion (),
setQOffset (), setQFac(), gform, gform_inv, gform_code,

quatern, goffset, gfac

getQFormCode (as_string=False)

Return the gform code.

By default NIfTI xform codes are returned, but if as_string is set to true a string
representation ala ‘talairach’ is returned instead.

See Also:

getQFormCode (), gform_code

getQOffset ()

Returns a 3-tuple containing (gx, qy, qz).
See Also:

setQOffset (), gform, goffset

getQOrientation (as_string=False)

Returns to orientation of the 1, j and k axis as stored in the gform matrix.

By default NIfTT orientation codes are returned, but if as_string is set to true a string
representation ala ‘Left-to-right’ is returned instead.

Return type
list
Returns
orientations fo the x, y and z axis respectively.

See Also:

22

Chapter 4. Module Reference

PyNIfTI Manual, Release 0.20090303.1

gform

getQuaternion ()
Returns a 3-tuple containing (gb, qc, qd).

See Also:
setQuaternion (), gform, quatern

getRepetitionTime ()
Returns the temporal distance between the volumes in a timeseries.

See Also:
setRepetitionTime (), rtime

getSForm ()
Returns the sform matrix.

Note: The returned sform matrix is not bound to the object. Therefore it cannot be
successfully modified in-place. Modifications to the sform matrix can only be done
by setting a new sform matrix

See Also:

setSForm (), setSFormCode (), getSFormCode (), sform,
sform_inv, sform_code

getSFormCode (as_string=False)
Return the sform code.

By default NIfTI xform codes are returned, but if as_string is set to true a string
representation ala ‘talairach’ is returned instead.

See Also:
getSFormCode (), sform_code

getSOrientation (as_string=False)
Returns to orientation of the 1, j and k axis as stored in the sform matrix.

By default NIfTT orientation codes are returned, but if as_string is set to true a string
representation ala ‘Left-to-right’ is returned instead.

Return type
list

Returns
orientations fo the x, y and z axis respectively.

See Also:
sform

getTimeUnit (as_string=False)
Return unit of temporal (4th) axis.

4.1.

Module format 23

PyNIfTI Manual, Release 0.20090303.1

By default NIfTI unit codes are returned, but if as_string is set to true a string
representation ala ‘s’ is returned instead.

See Also:
setTimeUnit (), time_unit

getTimepoints ()
Returns the number of timepoints in the image.

In case of a 3d (or less dimension) image this method returns 1.
See Also:
timepoints

getVolumeExtent ()
Returns the size/shape of the volume(s) in the image as a tuple.

Return type
tuple

Returns

Either a 3-tuple or 2-tuple or 1-tuple depending on the available di-
mensions in the image. The order of dimensions in the tuple is (x [, y

[Lz]]).
See Also:
getExtent (), volextent

getVoxDims ()
Returns a 3-tuple a voxel dimensions/size in (X,y,z).

See Also:
setVoxDims (), voxdim

getXYZUnit (as_string=False)
Return 3D-space unit.

By default NIfTI unit codes are returned, but if as_string is set to true a string
representation ala ‘mm’ is returned instead.

See Also:
setXYzUnit (), xyz_unit

header
Access to a dictionary version of the NIfTI header data.

Note: This property cannot be used like this:

nimg.header [’ something’] = 'new value’

Instead one has to get the header dictionary, modify and later reassign it:

24 Chapter 4. Module Reference

PyNIfTI Manual, Release 0.20090303.1

h = nimg.header
h[’”something’] = ’'new value’
nimg.header = h
See Also:
asDict (), updateFromDict ()
intercept
max
min
nvox
pixdim

Returns the pixel dimensions on all 7 dimensions.

The function is similar to getVoxDims(), but instead of the 3d spatial dimensions of
a voxel it returns the dimensions of an image pixel on all 7 dimensions supported

by the NIfTI dataformat.
See Also:
getVoxDims (), setPixDims (), pixdim
gfac
gform

Returns the qform matrix.

Note: The returned qform matrix is not bound to the object. Therefore it cannot
be successfully modified in-place. Modifications to the gform matrix can only be
done by setting a new qform matrix

See Also:

setQForm(), setQFormCode (), getQFormCode (),
getQuaternion (), getQOffset (), setQuaternion (),
setQOffset (), setQFac(), gform, gform_inv, gform_code,

quatern, goffset, gfac

gform_code
Return the gform code.

By default NIfTI xform codes are returned, but if as_string is set to true a string
representation ala ‘talairach’ is returned instead.

See Also:
getQFormCode (), gform_code

gform inv
Returns the inverse qform matrix.

4.1. Module format 25

PyNIfTI Manual, Release 0.20090303.1

Note: The inverse gform matrix cannot be modified in-place. One needs to set a
new gform matrix instead. The corresponding inverse matrix is then re-calculated
automatically.

See Also:

getQForm (), gform, gform_inv,

goffset
Returns a 3-tuple containing (gx, qy, qz).

See Also:
setQOffset (), gform, goffset

quatern
Returns a 3-tuple containing (gb, qc, qd).

See Also:
setQuaternion (), gform, quatern

raw_nimg

rtime
Returns the temporal distance between the volumes in a timeseries.
See Also:
setRepetitionTime (), rtime

setDescription (value)
Set the description element in the NIfTI header.

Parameters
value (str) — Description — must not be longer than 79 characters.

See Also:
description

setIntercept (value)
Set the intercept attribute in the NIfTI header.

The intercept is only considered for scaling in case of a non-zero slope value.
See Also:
slope, intercept

setPixDims (value)
Set the pixel dimensions.

Parameters
value (sequence) — Up to 7 values (max. number of dimensions sup-
ported by the NIfTI format) are allowed in the sequence. The supplied

26 Chapter 4. Module Reference

PyNIfTI Manual, Release 0.20090303.1

sequence can be shorter than seven elements. In this case only present
values are assigned starting with the first dimension (spatial: x).

Note: Calling setPixDims() with a length-3 sequence equals calling setVoxDims().

See Also:
setVoxDims (), getPixDims (), pixdim

setQFac (value, code="scanner’)
Set gfac (scaling factor of qform matrix).

The gform matrix and its inverse are re-computed automatically.

Besides reading it is also possible to set the qfac by assigning to the gfac property.

Parameters

evalue (float) — Scaling factor.

ecode (str | NIFTI_XFORM_CODE | int (0..4)) — The type of the co-

ordinate system the corresponding gform matrix is describing. By
default this coordinate system is assumed to be the scanner space.
Please refer to the setXFormCode () method for a full list of
possible codes and their meaning.

See Also:
gform, gfac

setQForm (m, code=’scanner’)
Sets the gform matrix.

The supplied value has to be a 4x4 matrix. The matrix will be converted to float.

The inverse qform matrix and the quaternion representation will be automatically
recalculated.

Parameters

*m (4x4 ndarray) — The qform matrix.

ecode (str | NIFTI_XFORM_CODE | int (0..4)) — The type of the
coordinate system the qform matrix is describing. By default this
coordinate system is assumed to be the scanner space. Please refer
to the set XFormCode () method for a full list of possible codes
and their meaning.

See Also:

getQForm(), setQFormCode (), getQFormCode (),
getQuaternion (), getQOffset (), setQuaternion (),
setQOffset (), setQFac(), gform, gform_inv, gform_code,

quatern, goffset, gfac

4.1.

Module format 27

PyNIfTI Manual, Release 0.20090303.1

setQFormCode (code)
Set the gform code.

Note: This is a convenience frontend for setXFormCode (). Please see its
documentation for more information.

setQOffset (value, code="scanner’)
Set QOffset from 3-tuple (gx, qy, qz).

The gform matrix and its inverse are re-computed automatically.

Besides reading it is also possible to set the qoffset by assigning to the goffset prop-

erty.
Parameters
evalue (length-3 sequence) — qx, qy and qz offsets.
ecode (str | NIFTI_XFORM_CODE | int (0..4)) — The type of the co-
ordinate system the corresponding gform matrix is describing. By
default this coordinate system is assumed to be the scanner space.
Please refer to the setXFormCode () method for a full list of
possible codes and their meaning.
See Also:

getQOffset (),gform, goffset

setQuaternion (value, code="scanner’)
Set Quaternion from 3-tuple (gb, qc, qd).

The gform matrix and it’s inverse are re-computed automatically.

Parameters

evalue (length-3 sequence) — gb, qc and qd quaternions.

ecode (str | NIFTI_XFORM_CODE | int (0..4)) — The type of the co-

ordinate system the corresponding gform matrix is describing. By
default this coordinate system is assumed to be the scanner space.
Please refer to the setXFormCode () method for a full list of
possible codes and their meaning.

See Also:
getQForm(), setQForm(), setQFormCode(), getQFormCode(),
getQuaternion (), getQOffset (), setQOffset (), setQFac(),

gform, gform_inv, gform_code, quatern, goffset, gfac

setRepetitionTime (value)
Set the repetition time of a NIfTI image (dt).

See Also:

28 Chapter 4. Module Reference

PyNIfTI Manual, Release 0.20090303.1

getRepetitionTime (), rtime

setSForm (m, code="mnil52’)

Sets the sform matrix.

The supplied value has to be a 4x4 matrix. The matrix elements will be converted to
floats. By definition the last row of the sform matrix has to be (0,0,0,1). However,
different values can be assigned, but will not be stored when the NIfTI image is
saved to a file.

The inverse sform matrix will be automatically recalculated.

Parameters

*m (4x4 ndarray) — The sform matrix.

ecode (str | NIFTI_XFORM_CODE | int (0..4)) — The type of the
coordinate system the sform matrix is describing. By default this
coordinate system is assumed to be the MNI152 space. Please refer
to the set XFormCode () method for a full list of possible codes
and their meaning.

See Also:

getSForm(), setSFormCode (), getSFormCode (), sform,
sform_code

setSFormCode (code)

Set the sform code.

Note: This is a convenience frontend for setXFormCode (). Please see its
documentation for more information.

setSlope (value)

Set the slope attribute in the NIfTI header.
Setting the slope to zero, will disable scaling.
See Also:

slope, intercept

setTimeUnit (value)

Set the unit of the temporal axis (4th).

Parameters
value (int | str) — The unit can either be given as a NIfTI
unit code or as any of the plain text abbrevations returned by
:meth:’ ~nifti.format.NiftiFormat.getTimeUnit

See Also:

getTimeUnit (), time_unit

4.1.

Module format 29

PyNIfTI Manual, Release 0.20090303.1

setVoxDims (value)
Set voxel dimensions/size.

The gform matrix and its inverse will be recalculated automatically.

Parameters
value (3-tuple of floats) — Have to be given in (x,y,z) order.

See Also:
getVoxDims (), voxdim

setXFormCode (xform, code)
Set the type of space described by the NIfTI transformations.

The NIfTI format defines five coordinate system types which are used to describe
the target space of a transformation (qform or sform). Please note, that the last four
transformation types are only available in the NIfTI format and not when saving
into ANALYZE.

‘unkown’, NIFTI_XFORM_UNKNOWN, 0:
Transformation is arbitrary. This is the ANALYZE compatibility
mode. In this case no sform matrix will be written, even when stored
in NIfTT and not in ANALYZE format. Additionally, only the pixdim
parts of the gform matrix will be saved (upper-left 3x3).

‘scanner’, NIFTI_ XFORM_SCANNER_ANAT, 1:
Scanner-based anatomical coordinates.

‘aligned’, NIFTI_XFORM_ALIGNED_ANAT, 2:
Coordinates are aligned to another file’s coordinate system.

‘talairach’, NIFTI XFORM_TALAIRACH, 3:
Coordinate system is shifted to have its origin (0,0,0) at the anterior
commissure, as in the Talairach-Tournoux Atlas.

‘mnil52’, NIFTI_XFORM_MNI_152, 4:
Coordinates are in MNI152 space.

Parameters

oxform (‘gform’ | ‘q’ | ‘sform’ | ‘s”) — Which of the two NIfTI trans-
formations to set.

ecode (str | NIFTI_XFORM_CODE | int (0..4)) — The Transformation
code can be specified either by a string, the NIFTI_XFORM_CODE
defined in the niftil.h header file (accessible via the nifti.clib mod-
ule, or the corresponding integer value.

See Also:

setQFormCode (), getQFormCode (), setSFormCode (),
getSFormCode (), gform_code, sform_code

30 Chapter 4. Module Reference

PyNIfTI Manual, Release 0.20090303.1

setXYZUnit (value)
Set the unit of the spatial axes.

Parameters
value (int | str) — The unit can either be given as a NIfTI
unit code or as any of the plain text abbrevations returned by
:meth:’ ~nifti.format.NiftiFormat.getXYZUnit

See Also:
getXYzZUnit (), xyz_unit

sform
Returns the sform matrix.

Note: The returned sform matrix is not bound to the object. Therefore it cannot be
successfully modified in-place. Modifications to the sform matrix can only be done
by setting a new sform matrix

See Also:

setSForm (), setSFormCode (), getSFormCode (), sform,
sform_inv, sform_code

sform code
Return the sform code.

By default NIfTT xform codes are returned, but if as_string is set to true a string
representation ala ‘talairach’ is returned instead.

See Also:
getSFormCode (), sform_code

sform_ inv
Returns the inverse sform matrix.

Note: The inverse sform matrix cannot be modified in-place. One needs to set a
new sform matrix instead. The corresponding inverse matrix is then re-calculated
automatically.

See Also:
getSForm(), sform, sform_inv,
slope

time_ unit
Return unit of temporal (4th) axis.

By default NIfTT unit codes are returned, but if as_string is set to true a string
representation ala ‘s’ is returned instead.

See Also:

4.1. Module format 31

PyNIfTI Manual, Release 0.20090303.1

setTimeUnit (), time_unit

timepoints
Returns the number of timepoints in the image.

In case of a 3d (or less dimension) image this method returns 1.
See Also:
timepoints

updateFromDict (hdrdict)
Update NIfTI header information.

Updated header data is read from the supplied dictionary. One cannot modify di-
mensionality and datatype of the image data. If such information is present in the
header dictionary it is removed before the update. If resizing or datatype casting are
required one has to convert the image data into a separate array and perform resize
and data manipulations on this array. When finished, the array can be converted into
a nifti file by calling the Niftilmage constructor with the modified array as ‘source’
and the nifti header of the original Niftilmage object as ‘header’.

Note: If the provided dictionary contains a ‘meta’ item its content is used to
overwrite any potentially existing meta data. dictionary.

The same behavior will be used for ‘extensions’. If extensions are defined in the
provided dictionary all currently existing extensions will be overwritten.

See Also:
asDict (), header

updateQFormFromQuaternion ()
Only here for backward compatibility.

volextent
Returns the size/shape of the volume(s) in the image as a tuple.

Return type
tuple

Returns
Either a 3-tuple or 2-tuple or 1-tuple depending on the available di-
mensions in the image. The order of dimensions in the tuple is (x [, y

[Lz]]).
See Also:

getExtent (), volextent

voxdim
Returns a 3-tuple a voxel dimensions/size in (X,y,z).
See Also:
setVoxDims (), voxdim

32 Chapter 4. Module Reference

PyNIfTI Manual, Release 0.20090303.1

vx2qg (coord)
Transform a voxel’s index into coordinates (qform-defined).

Parameters
coord (3-tuple) — A voxel’s index in the volume fiven as three positive
integers (1, J, k).

Return type
vector

See Also:
setQForm (), getQForm () gform

vx2s (coord)
Transform a voxel’s index into coordinates (sform-defined).

Parameters
coord (3-tuple) — A voxel’s index in the volume fiven as three positive
integers (i, j, k).

Return type
vector

See Also:
setSForm (), getSForm () sform

Xyz_unit
Return 3D-space unit.

By default NIfTI unit codes are returned, but if as_string is set to true a string
representation ala ‘mm’ is returned instead.

See Also:

setXYzUnit (), xyz_unit

4.2 Module image

This module provides two classes for accessing NIfT1 files.
* NiftiImage (traditional load-as-much-as-you-can approach)

* MemMappedNiftilImage (memory-mapped access to uncompressed NIfTT files)

4.2.1 NiftiImage

classnifti.image.NiftiImage (source, header=None, load=False, **kwargs)
Bases: nifti.format.NiftiFormat

Wrapper class for convenient access to NIfTI images.

4.2. Module image 33

PyNIfTI Manual, Release 0.20090303.1

An image can either be loaded from a file or created from a NumPy ndarray. Either way
is automatically determined by the type of the ‘source’ argument. If source is a string, it
is assumed to be a filename an ndarray is treated as such.

All NIfTT header information is conveniently exposed via Python data types. This func-
tionality is provided by the Ni ft iFormat base class. Please refer to its documentation
for the full list of its methods and properties.

See Also:

NiftiFormat, MemMappedNiftiImage

Parameters

ssource (str | ndarray) — If source is a string, it is assumed to be a file-
name and an attempt will be made to open the corresponding NIfTI
file. In case of an ndarray the array data will be used for the to be cre-
ated nifti image and a matching nifti header is generated. If an object
of a different type is supplied as ‘source’ a ValueError exception will
be thrown.

*header (dict) — Additional header data might be supplied. However,
dimensionality and datatype are determined from the ndarray and not
taken from a header dictionary.

*load (Boolean) — If set to True the image data will be loaded into
memory. This is only useful if loading a NIfTT image from file. This
flag is almost useless, as the data will be loaded automatically when-
ever it is accessed.

o**kwargs — Additional stuff is passed to Nift iFormat.

asarray (copy=True)
Convert the image data into a ndarray.

Parameters
copy (Boolean) — If set to False the array only wraps the image data,
while True will return a copy of the data array.

bbox
Get the bounding box an image.

The bounding box is the smallest box covering all non-zero elements.

Return type
tuple(2-tuples) | None

Returns
It returns as many (min, max) tuples as there are image dimensions.
The order of dimensions is identical to that in the data array. None is
returned of the images does not contain non-zero elements.

Examples:

34 Chapter 4. Module Reference

PyNIfTI Manual, Release 0.20090303.1

>>> from nifti import NiftiImage
>>> nim = NiftiImage (N.zeros ((12, 24, 32)))
>>> nim.bbox is None

True
>>> nim.data[3,10,13] = 1
>>> nim.datal[6,20,26] = 1

>>> nim.bbox
((3, 6), (10, 20), (13, 26))

>>> nim.crop ()

>>> nim.data.shape

(4, 11, 14)

>>> nim.bbox

(0, 3), (0, 10), (0, 13))

See Also:

nifti.image.NiftiImage.bbox,nifti.imgfx.crop/()

copy ()
Return a copy of the image.

crop (nim, bbox=None)
Crop an image.

Parameters
bbox (list(2-tuples) | None) — Each tuple has the (min,max) values for
a particular image dimension. If None, the images actual bounding
box is used for cropping.

See Also:
nifti.image.NiftiImage.bbox,nifti.imgfx.getBoundingBox ()

data
Return the NIfTT image data wrapped into a NumPy array.

See Also:
data

filename
Please see nifti.format.NiftiFormat.getFilename () for the docu-
mentation.

getDataArray ()
Return the NIfTI image data wrapped into a NumPy array.

See Also:
data

getFilename ()
Please see nifti.format .NiftiFormat.getFilename () for the docu-
mentation.

4.2. Module image 35

PyNIfTI Manual, Release 0.20090303.1

getScaledData ()
Returns a scaled copy of the data array.

Scaling is done by multiplying with the slope and adding the intercept that is stored
in the NIfTI header. In compliance with the NIfTI standard scaling is only per-
formed in case of a non-zero slope value. The original data array is returned other-
wise.

Return type
ndarray

load(()
Load the image data into memory, if it is not already accessible.

It is save to call this method several times successively.

save (filename=None, filetype="NIFTI’, update_minmax=True)
Save the image to a file.

If the image was created using array data (i.e., not loaded from a file) a filename
has to be specified.

If not yet done already, the image data will be loaded into memory before saving
the file.

Parameters

«filename (str | None) — The name of the target file (typically includ-
ing its extension). Filenames might be provided as unicode strings.
However, as the underlying library does not support unicode, they
must be ascii-encodable, i.e. must not contain pure unicode char-
acters. Usually setting the filename also determines the filetype
(NIfTI/ANALYZE). Please see setFilename () for some more
details. If None, an image loaded from a file will cause the original
image to be overwritten.

«filetype (str) — Provide intented filetype. Please see the documenta-
tion of the setFilename() method for some more details.

eupdate_minmax (bool) — Whether the image header’s min and max
values should be updated according to the current image data.

Warning: There will be no exception if writing fails for any reason, as the
underlying function nifti_write_hdr_img() from libniftiio does not provide any
feedback. Suggestions for improvements are appreciated.

setDataArray (data)

setFilename (filename, filetype="NIFTI’)
Set the filename for the NIfTT image.

Setting the filename also determines the filetype. If the filename ends with ‘.nii’ the
type will be set to NIfTI single file. A “hdr’ extension can be used for NIfTI file

36 Chapter 4. Module Reference

PyNIfTI Manual, Release 0.20090303.1

pairs. If the desired filetype is ANALYZE the extension should be ‘.img’. However,
one can use the ‘.hdr’ extension and force the filetype to ANALYZE by setting the
filetype argument to ANALYZE. Setting filetype if the filename extension is ‘.nii’
has no effect, the file will always be in NIFTT format.

If the filename carries an additional ‘.gz’ the resulting file(s) will be compressed.

Uncompressed NIfTI single files are the default filetype that will be used if the
filename has no valid extension. The ‘.nii’ extension is appended automatically.
The ‘filetype’ argument can be used to force a certain filetype when no extension
can be used to determine it. ‘filetype’ can be one of the nifticlibs filtetypes or any
of ‘NIFTI’, ‘NIFTI_GZ’, ‘NIFTI_PAIR’, ‘NIFTI_PAIR_GZ’, ‘ANALYZE’, ‘AN-
ALYZE_GZ’.

Setting the filename will cause the image data to be loaded into memory if not yet
done already. This has to be done, because without the filename of the original
image file there would be no access to the image data anymore. As a side-effect a
simple operation like setting a filename may take a significant amount of time (e.g.
for a large 4d dataset).

By passing an empty string or none as filename one can reset the filename and
detach the Niftilmage object from any file on disk.

Examples:

Filename Output of save()

exmpl.nii exmpl.nii (NIfTT)

exmpl.hdr exmpl.hdr, exmpl.img (NIfTT)
exmpl.img exmpl.hdr, exmpl.img (ANALYZE)

exmpl exmpl.nii (NIfTT)
exmpl.hdr.gz | exmpl.hdr.gz, exmpl.img.gz (NIfTI)
exmpl.gz exmpl.gz.nii (uncompressed NIfTT)

Setting the filename is also possible by assigning to the ‘filename’ property.
See Also:
getFilename (), filename

unload ()
Unload image data and free allocated memory.

This methods does nothing in case of memory mapped files.

updateCalMinMax ()
Update the image data maximum and minimum value in the nifti header.

updateHeader (hdrdict)
Deprecated method only here for backward compatibility.

Please refer to NiftiFormat.updateFromDict()

4.2. Module image 37

PyNIfTI Manual, Release 0.20090303.1

4.2.2 MemMappedNiftiImage

class nifti.image.MemMappedNiftiImage (source)

Bases: nifti.image.NiftilImage
Memory mapped access to uncompressed NIfTT files.

This access mode might be the prefered one whenever only a small part of the image data
has to be accessed or the memory is not sufficient to load the whole dataset.

Please note, that memory-mapping is not required when exclusively header information
shall be accessed. The NiftiFormat class and by default also the Ni £t i Tmage class
will not load any image data into memory.

Note: The class is mostly useful for read-only access to the NIfTI image data. It
currently neither supports saving changed header fields nor storing meta data.

Create a Niftilmage object.

This method decides whether to load a nifti image from file or create one from ndarray
data, depending on the datatype of source.

Parameters
source (str | ndarray) — If source is a string, it is assumed to be a filename
and an attempt will be made to open the corresponding NIfT1 file. In case
of an ndarray the array data will be used for the to be created nifti image
and a matching nifti header is generated. If an object of a different type
is supplied as ‘source’ a ValueError exception will be thrown.

data
Please see nifti.format.NiftiImage.getDataArray () for the docu-
mentation.

filename
Please see nifti.format .NiftiFormat.getFilename () for the docu-
mentation.

getDataArray ()
Please see nifti.format.NiftiImage.getDataArray () for the docu-
mentation.

getFilename ()
Please see nifti.format.NiftiFormat.getFilename () for the docu-
mentation.

load()
Does nothing for memory mapped images.

save ()
Save the image.

This methods does nothing except for syncing the file on the disk.

38

Chapter 4. Module Reference

PyNIfTI Manual, Release 0.20090303.1

Please note that the NIfTI header might not be completely up-to-date. For example,
the min and max values might be outdated, but this class does not automatically
update them, because it would require to load and search through the whole array.

setFilename (filename, filetype="NIFTI’)
Does not work for memory mapped images and therefore raises an exception.

unload ()
Does nothing for memory mapped images.

4.3 Module extensions

This module provides a container-like interface to NIfTI1 header extensions.

4.3.1 NiftiExtensions
classnifti.extensions.NiftiExtensions (raw_nimg, source=None)
Bases: object
NIfTI1 header extension handler.

This class wraps around a NIfTI1 struct and provides container-like access to NIfTI1
header extensions. It is basically a hibrid between a list and a dictionary. The reason for
this is that the NIfTT header allows for a /ist of extensions, but additionally each extension
is associated with some type (ecode or extension code). This is some form of mapping,
however, the ecodes are not necessarily unique (e.g. multiple comments).

The current list of known extensions is documented here:
http://mifti.nimh.nih.gov/nifti- 1/documentation/faq#Q21

The usage is best explained by a few examples. All examples assume a NIfTI image to
be loaded:

>>> from nifti import NiftiImage
>>> nim = NiftiImage ('exampledd.nii.gz’)

Access to the extensions is provided through the extensions attribute of the Niftilmage
class:

>>> type(nim.extensions)
<class ’'nifti.extensions.NiftiExtensions’>

How many extensions are avialable?

>>> len(nim.extensions)
2

How many comments? Any AFNI extension?

4.3. Module extensions 39

http://nifti.nimh.nih.gov/nifti-1/documentation/faq#Q21

PyNIfTI Manual, Release 0.20090303.1

>>> nim.extensions.count (/! comment’)
2

Show me all ecodes of all extensions:

>>> nim.extensions.ecodes

[6, 6]

Add an AFNI extension:

>>> nim.extensions += (‘afni’, ’<xml>Some voodoo</xml>")
>>> nim.extensions.ecodes

[6, 6, 4]

Delete superfluous comment extension:

>>> del nim.extensions[1]

Access the last extension, which should be the AFNI one:

>>> nim.extensions[-1]
"<xml>Some voodoo</xml>’

Wipe them all:

>>> nim.extensions.clear ()
>>> len(nim.extensions)

0
Parameters
eraw_nimg (nifti_image struct) — This is the raw NIfTI
image struct pointer. It 1is typically provided by

nifti.format.NiftiFormat.raw_nimg.

esource (list(2-tuple)) — This is an optional list for extension tuples
(ecode, edata). Each element of this list will be appended as a new
extension.

append (extension)
Append a new extension.

Parameters
extension (2-fuple) — An extension is given by a (ecode, edata) tuple,
where ecode can be either literal or numerical and edata is any kind
of data.

Note:
Currently, edata can only be stuff whos len(edata) matches its size in bytes,
e.g. str.

40 Chapter 4. Module Reference

PyNIfTI Manual, Release 0.20090303.1

clear ()
Remove all extensions.

count (code)
Returns the number of extensions matching a given ecode.

Parameters
code (int | str) — The ecode can be specified either literal or as numer-
ical value.

ecodes
Returns a list of ecodes for all extensions.

iteritems ()
A generator method that returns a 2-tuple (ecode, edata) on each iteration. It can be
used in the same fashion as dict.iteritems().

4.4 Useful Functions

4.4.1 Utilities from nifti.utils

Utility functions for PyNifti

nifti.utils.applyFxToVolumes (fs, vols, fx, **kwargs)

Apply a function on selected volumes of a timeseries.

‘ts’ 1s a 4d timeseries. It can be a Niftilmage or a ndarray. In case of a ndarray one has
to make sure that the time is on the first axis. ‘ts’ can actually be of any dimensionality,
but datasets aka volumes are assumed to be along the first axis.

‘vols’ is either a sequence of sequences or a 2d array indicating which volumes fx should
be applied to. Each row defines a set of volumes.

‘fx’ is a callable function to get an array of the selected volumes as argument. Additonal
arguments may be specified as keyword arguments and are passed to ‘fx’.

The output will be a 4d array with one computed volume per row in the ‘vols’ array.

nifti.utils.getPeristimulusTimeseries (fs, onsetvols, nvols=10,
fx=<function mean at
0x89bc80c>)

Returns 4d array with peristimulus timeseries.

Parameters

*ts — source 4d timeseries
eonsetvols — sequence of onsetvolumes to be averaged over

*nvols — length of the peristimulus timeseries in volumes (starting
from onsetvol)

4.4.

Useful Functions 41

PyNIfTI Manual, Release 0.20090303.1

fx — function to be applied to the list of corresponding volumes. Typ-
ically this will be mean(), so it is default, but it could also be var() or
something different. The supplied function is to be able to handle an
‘axis=0" argument similiar to NumPy’s mean(), var(), ...

nifti.utils.splitFilename (filename)

Split a NIfTT filename into basename and extension.

Parameters
filename (str) — Filename to be split.

Return type
tuple

Returns
The function returns a tuple of basename and extension. If no valid NIfTI
filename extension is found, the whole string is returned as basename and
the extension string will be empty.

nifti.utils.time2vol (¢, 1tr, lag=0.0, decimals=0)

Translates a time ‘t’ into a volume number. By default function returns the volume num-
ber that is closest in time. Volumes are assumed to be recorded exactly (and completely)
after tr/2, e.g. if ‘tr’ is 2 secs the first volume is recorded at exactly one second.

‘t’ might be a single value, a sequence or an array.

The repetition ‘tr’ might be specified directly, but can also be a Niftilmage object. In
the latter case the value of ‘tr’ is determined from the ‘rtime’ property of the Niftilmage
object.

‘t’ and ‘tr’ can be given in an arbitrary unit (but both have to be in the same unit).
The ‘lag’ argument can be used to shift the times by constant offset.

Please note that numpy.round() is used to round to interger value (rounds to even num-
bers). The ‘decimals’ argument will be passed to numpy.round().

4.4.2 Image functions in nifti.imgfx

Functions operating on images

nifti.imgfx.getBoundingBox (nim)

Get the bounding box an image.
The bounding box is the smallest box covering all non-zero elements.

Return type
tuple(2-tuples) | None

Returns
It returns as many (min, max) tuples as there are image dimensions. The
order of dimensions is identical to that in the data array. None is returned
of the images does not contain non-zero elements.

42

Chapter 4. Module Reference

PyNIfTI Manual, Release 0.20090303.1

Examples:

>>> from nifti import NiftiImage
>>> nim = NiftiImage (N.zeros ((12, 24, 32)))
>>> nim.bbox is None

True
>>> nim.data[3,10,13] = 1
>>> nim.data[6,20,26] = 1

>>> nim.bbox
((3, 6), (10, 20), (13, 26))

>>> nim.crop ()

>>> nim.data.shape

(4, 11, 14)

>>> nim.bbox

((0, 3), (0, 10), (0, 13))

See Also:
nifti.image.NiftiImage.bbox,nifti.imgfx.crop ()

nifti.imgfx.crop (nim, bbox=None)
Crop an image.

Parameters
bbox (list(2-tuples) | None) — Each tuple has the (min,max) values for a
particular image dimension. If None, the images actual bounding box is
used for cropping.

See Also:

nifti.image.NiftiImage.bbox,nifti.imgfx.getBoundingBox ()

4.4. Useful Functions 43

PyNIfTI Manual, Release 0.20090303.1

44

Chapter 4. Module Reference

CHAPTER
FIVE

PYNIFTI DEVELOPMENT
CHANGELOG

Modifications are done by Michael Hanke, if not indicated otherwise. ‘Closes’ statement IDs
refer to the Debian bug tracking system and can be queried by visiting the URL:

http://bugs.debian.org/<bug id>

The full VCS changelog is available here:
http://git.debian.org/?p=pkg-exppsy/pynifti.git;a=shortlog;h=upstream

Unreleased changes
Changes described here are not yet released, but available from VCS repository.

* Added support for COMPLEX64 datatype.

* Bugfix: Ensure consistent mapping between NIfTI and NumPy datatypes.

5.1 Releases

* 0.20090303.1 (Tue, 3 Mar 2009)
— Bugfix: Updating the NIfTT header from a dictionary was broken.
— Bugfix: Removed left-over print statement in extension code.

— Bugfix: Prevent saving of bogus ‘None.nii’ images when the filename was previ-
ously assign, before calling Niftilmage.save() (Closes: #517920).

— Bugfix: Extension length was to short for all edata whos length matches n*16-8,
for all integer n.

* 0.20090205.1 (Thu, 5 Feb 2009)

— This release is the first in a series that aims stabilize the API and finally result in
PyNIfTT 1.0 with full support of the NIfTI1 standard.

— The whole package was restructured. The included renaming
nifti.nifti(image,format,clibs) to nifti.(image,format,clibs). ~ Redirect modules

45

http://git.debian.org/?p=pkg-exppsy/pynifti.git;a=shortlog;h=upstream

PyNIfTI Manual, Release 0.20090303.1

make sure that existing user code will not break, but they will issue a Deprecation-
Warning and will be removed with the release of PyNIfTI 1.0.

Added a special extension that can embed any serializable Python object into the
NIfTI file header. The contents of this extension is automatically expanded upon
request into the .meta attribute of each Niftilmage. When saving files to disk the
content of the dictionary is also automatically dumped into this extension. Embed-
ded meta data is not loaded automatically, since this has security implications, be-
cause code from the file header is actually executed. The documentation explicitely
mentions this risk.

Added NiftiExtensions. This is a container-like handler to access and ma-
nipulate NIfTI1 header extensions.

Exposed MemMappedNiftilImage in the root module.
Moved cropImage () into the utils module.

From now on Sphinx is used to generate the documentation. This includes a module
reference that replaces that old API reference.

Added methods vx2q () and vx2s () to convert voxel indices into coordinates
defined by gform or sform respectively.

Updating the cal_min and cal_max values in the NIfTI header when saving a file is
now conditional, but remains enabled by default.

Full set of methods to query and modify axis units. This includes expand-
ing the previous xyzt_units field in the header dictionary into editable xyz_unit
and time_unit fields. The former xyzt_units field is no longer available. See:
getXYZUnit (), setXYZUnit (), getTimeUnit (), setTimeUnit (),
Xyz_unit,time_unit

Full set of methods to query and manuipulate qform and sform codes.
See: getQFormCode (), setQFormCode (), getSFormCode (),
setSFormCode (), gform_code, sform_code

Each image instance is now able to generate a human-readable dump of its most
important header information via __str__().

NiftiTImage objects can now be pickled.

Switched to NumPy’s distutils for building the package. Cleaned and simplified the
build procedure. Added optimization flags to SWIG call.

nifti.image.NiftiImage.filename cannow also be used to assign a file-
name.

Introduced nifti.__version__ as canonical version string.

Removed updateQFormFromQuarternion() from the list of public methods of
NiftiFormat. This is an internal method that should not be used in user code.
However, a redirect to the new method will remain in-place until PyNIfTI 1.0.

— Bugfix: get ScaledData () returns a unmodified data array if slope is set to zero

(as required by the NIfTI standard). Thanks to Thomas Ross for reporting.

46

Chapter 5. PyNIfTI Development Changelog

PyNIfTI Manual, Release 0.20090303.1

— Bugfix: Unicode filenames are now handled properly, as long as they do not contain
pure-unicode characters (since the NIfTI library does not support them). Thanks to
Gaél Varoquaux for reporting this issue.

* 0.20081017.1 (Fri, 17 Oct 2008)
— Updated included minimal copy of the nifticlibs to version 1.1.0.

— Few changes to the Makefiles to enhance Posix compatibility. Thanks to Chris
Burns.

— When building on non-Debian systems, only add include and library paths point-
ing to the local nifticlibs copy, when it is actually built. On Debian system the
local copy is still not used at all, as a proper nifticlibs package is guaranteed to be
available.

— Added minimal setup_egg.py for setuptools users. Thanks to Gagl Varoquaux.

— PyNIfTI now does a proper wrapping of the image data with NumPy arrays, which
no longer leads to accidental memory leaks, when accessing array data that has
not been copied before (e.g. via the data property of Niftilmage). Thanks to Gaél
Varoquaux for mentioning this possibility.

* 0.20080710.1 (Thu, 7 Jul 2008)

— Bugfix: Pointer bug introduced by switch to new NumPy API in 0.20080624
Thanks to Christopher Burns for fixing it.

— Bugfix: Honored DeprecationWarning: sync() -> flush() for memory mapped ar-
rays. Again thanks to Christopher Burns.

— More unit tests and other improvements (e.g. fixed circular imports) done by
Christopher Burns.

* 0.20080630.1 (Tue, 30 Jun 2008)
— Bugfix: Niftilmage caused a memory leak by not calling the NiftiFormat destructor.
— Bugfix: Merged bashism-removal patch from Debian packaging.

* 0.20080624.1 (Tue, 24 Jun 2008)

— Converted all documentation (including docstrings) into the restructured text for-
mat.

— Improved Makefile.

— Included configuration and Makefile support for profiling, API doc generation (via
epydoc) and code quality checks (with PyLint).

— Consistently import NumPy as N.

— Bugfix: Proper handling of [gs]form codes, which previously have not been handled
at all. Thanks to Christopher Burns for pointing it out.

— Bugfix: Make NiftiFormat work without setFilename(). Thanks to Benjamin
Thyreau for reporting.

5.1. Releases 47

PyNIfTI Manual, Release 0.20090303.1

Bugfix: setPixDims() stored meaningless values.

Use new NumPy API and replace deprecated function calls
(PyArray_FromDimsAndData).

Initial support for memory mapped access to uncompressed NIfTI files
(MemMappedNiftilmage).

Add a proper Makefile and setup.cfg for compiling PyNIfTI under Windows with
MinGW.

Include a minimal copy of the most recent nifticlibs (just libniftiio and znzlib; ver-
sion 1.0), to lower the threshold to build PyNIfTI on systems that do not provide a
developer package for those libraries.

0.20070930.1 (Sun, 30 Sep 2007)

Relicense under the MIT license, to be compatible with SciPy license.
http://www.opensource.org/licenses/mit-license.php

Updated documentation.

0.20070917.1 (Mon, 17 Sep 2007)

Bugfix: Can now update NIfTI header data when no filename is set (Closes:
#442175).

Unloading of image data without a filename set is no checked and prevented as it
would damage data integrity and the image data could not be recovered.

Added ‘pixdim’ property (Yaroslav Halchenko).

0.20070905.1 (Wed, 5 Sep 2007)

Fixed a bug in the gqform/quaternion handling that caused changes to the gqform to
vanish when saving to file (Yaroslav Halchenko).

Added more unit tests.

‘dim’ vector in the NIfTI header is now guaranteed to only contain non-zero ele-
ments. This caused problems with some applications.

0.20070803.1 (Fri, 3 Aug 2007)

Does not depend on SciPy anymore.
Initial steps towards a unittest suite.

pynifti_pst can now print the peristimulus signal matrix for a single voxel (onsets x
time) for easier processing of this information in external applications.

utils.getPeristimulusTimeseries() can now be used to compute mean and variance
of the signal (among others).

pynifti_pst is able to compute more than just the mean peristimulus timeseries (e.g.
variance and standard deviation).

Set default image description when saving a file if none is present.

48

Chapter 5. PyNIfTI Development Changelog

http://www.opensource.org/licenses/mit-license.php

PyNIfTI Manual, Release 0.20090303.1

Improved documentation.

* 0.20070425.1 (Wed, 25 Apr 2007)

Improved documentation. Added note about the special usage of the header prop-
erty. Also added notes about the relevant properties in the docstring of the corre-
sponding accessor methods.

Added property and accessor methods to access/modify the repetition time of time-
series (dt).

Added functions to manipulate the pixdim values.
Added utils.py with some utility functions.
Added functions/property to determine the bounding box of an image.

Fixed a bug that caused a corrupted sform matrix when converting a NumPy array
and a header dictionary into a NIfTI image.

Added script to compute peristimulus timeseries (pynifti_pst).

Package now depends on python-scipy.

* 0.20070315.1 (Thu, 15 Mar 2007)

Removed functionality for “Niftilmage.save() raises an IOError exception when
writing the image file fails.” (Yaroslav Halchenko)

Added ability to force a filetype when setting the filename or saving a file.

Reverse the order of the ‘header’ and ‘load’ argument in the Niftilmage constructor.
‘header’ is now first as it seems to be used more often.

Improved the source code documentation.

Added getScaledData() method to Niftilmage that returns a copy of the data array
that is scaled with the slope and intercept stored in the NIfTI header.

* 0.20070301.2 (Thu, 1 Mar 2007)

Fixed wrong link to the source tarball in README.html.

* 0.20070301.1 (Thu, 1 Mar 2007)

Initial upload to the Debian archive. (Closes: #413049)
Niftilmage.save() raises an IOError exception when writing the image file fails.

Added extent, volextent, and timepoints properties to Niftilmage class (Yaroslav
Halchenko).

* 0.20070220.1 (Tue, 20 Feb 2007)

NiftiFile class is renamed to Niftilmage.
SWIG-wrapped libniftiio functions are no available in the nifticlib module.
Fixed broken Niftilmage from Numpy array constructor.

Added initial documentation in README.html.

5.1. Releases 49

PyNIfTI Manual, Release 0.20090303.1

— Fulfilled a number of Yarik’s wishes ;)

* 0.20070214.1 (Wed, 14 Feb 2007)

Does not depend on libfslio anymore.

Up to seven-dimensional dataset are supported (as much as NIfTI can do).

The complete NIfTI header dataset is modifiable.

Most image properties are accessable via class attributes and accessor methods.

Improved documentation (but still a long way to go).
* 0.20061114 (Tue, 14 Nov 2006)

— Initial release.

50

Chapter 5. PyNIfTI Development Changelog

nifti,
nifti.
nifti.
nifti.
nifti.
nifti.

19
extensions, 39
format, 19
image, 33
imgfx, 42
utils, 41

PYTHON MODULE INDEX

51

PyNIfTI Manual, Release 0.20090303.1

52

Python Module Index

A

append() (nifti.extensions.NiftiExtensions
method), 40

applyFxToVolumes() (in module nifti.utils),
41

asarray() (nifti.image.Niftilmage method), 34

asDict() (nifti.format.NiftiFormat method), 20

B

bbox (nifti.image.Niftilmage attribute), 34

C

clear() (nifti.extensions.NiftiExtensions

method), 40

copy() (nifti.image.Niftilmage method), 35

count() (nifti.extensions.NiftiExtensions
method), 41

crop() (in module nifti.imgfx), 43

crop() (nifti.image.Niftilmage method), 35

D

data (nifti.image.MemMappedNiftilmage at-
tribute), 38
data (nifti.image.Niftilmage attribute), 35

description (nifti.format.NiftiFormat at-
tribute), 20
ecodes (nifti.extensions.NiftiExtensions at-

tribute), 41
extent (nifti.format.NiftiFormat attribute), 20

F

filename (nifti.format.NiftiFormat attribute),
20

filename (nifti.image.MemMappedNiftilmage
attribute), 38

filename (nifti.image.Niftilmage attribute), 35

INDEX

G

getBoundingBox() (in module nifti.imgfx), 42

getDataArray()
(nifti.image.MemMappedNiftilmage
method), 38

getDataArray() (nifti.image.Niftilmage
method), 35

getExtent() (nifti.format.NiftiFormat method),
21

getFilename() (nifti.format.NiftiFormat
method), 21

getFilename() (nifti.image.MemMappedNiftilmage
method), 38

getFilename() (nifti.image.Niftilmage
method), 35

getlnverseQForm() (nifti.format.NiftiFormat
method), 21

getlnverseSForm() (nifti.format.NiftiFormat

method), 21
getPeristimulusTimeseries()
nifti.utils), 41
getPixDims() (nifti.format.NiftiFormat
method), 21
getQForm()
method), 22
getQFormCode()
method), 22
getQOffset()
method), 22
getQOrientation()
method), 22
getQuaternion()
method), 23
getRepetitionTime() (nifti.format.NiftiFormat
method), 23
getScaledData()
method), 35
getSForm()

(in module
(nifti.format.NiftiFormat
(nifti.format.NiftiFormat
(nifti.format.NiftiFormat
(nifti.format.NiftiFormat

(nifti.format.NiftiFormat

(nifti.image.Niftilmage

(nifti.format.NiftiFormat

53

PyNIfTI Manual, Release 0.20090303.1

method), 23

getSFormCode() (nifti.format.NiftiFormat
method), 23

getSOrientation() (nifti.format.NiftiFormat
method), 23

getTimepoints() (nifti.format.NiftiFormat
method), 24

getTimeUnit() (nifti.format.NiftiFormat

method), 23
getVolumeExtent() (nifti.format.NiftiFormat
method), 24

getVoxDims() (nifti.format.NiftiFormat
method), 24
getXYZUnit() (nifti.format.NiftiFormat

method), 24

H

header (nifti.format.NiftiFormat attribute), 24

intercept (nifti.format.NiftiFormat attribute),
25

iteritems() (nifti.extensions.NiftiExtensions
method), 41

L

load() (nifti.image.MemMappedNiftilmage
method), 38

load() (nifti.image.Niftilmage method), 36

M

max (nifti.format.NiftiFormat attribute), 25

MemMappedNiftilmage (class in nifti.image),
38

min (nifti.format.NiftiFormat attribute), 25

N

nifti (module), 19

nifti.extensions (module), 39

nifti.format (module), 19

nifti.image (module), 33

nifti.imgfx (module), 42

nifti.utils (module), 41

NiftiExtensions (class in nifti.extensions), 39
NiftiFormat (class in nifti.format), 19
Niftilmage (class in nifti.image), 33

nvox (nifti.format.NiftiFormat attribute), 25

P

pixdim (nifti.format.NiftiFormat attribute), 25

Q

gfac (nifti.format.NiftiFormat attribute), 25

gform (nifti.format.NiftiFormat attribute), 25

gform_code (nifti.format.NiftiFormat at-
tribute), 25

gform_inv (nifti.format.NiftiFormat attribute),
25

qoffset (nifti.format.NiftiFormat attribute), 26

quatern (nifti.format.NiftiFormat attribute), 26

R

raw_nimg (nifti.format.NiftiFormat attribute),
26
rtime (nifti.format.NiftiFormat attribute), 26

S

save() (nifti.image.MemMappedNiftilmage
method), 38

save() (nifti.image.Niftilmage method), 36

setDataArray() (nifti.image.Niftilmage
method), 36
setDescription() (nifti.format.NiftiFormat

method), 26

setFilename() (nifti.image.MemMappedNiftilmage

method), 39
setFilename()
method), 36
setIntercept()
method), 26
setPixDims()
method), 26
setQFac() (nifti.format.NiftiFormat method),

(nifti.image.Niftilmage
(nifti.format.NiftiFormat

(nifti.format.NiftiFormat

27

setQForm() (nifti.format.NiftiFormat
method), 27

setQFormCode() (nifti.format.NiftiFormat
method), 27

setQO(ffset() (nifti.format.NiftiFormat
method), 28

setQuaternion() (nifti.format.NiftiFormat

method), 28

setRepetitionTime() (nifti.format.NiftiFormat
method), 28

setSForm() (nifti.format.NiftiFormat method),
29

setSFormCode()
method), 29

(nifti.format.NiftiFormat

54

Index

PyNIfTI Manual, Release 0.20090303.1

setSlope() (nifti.format.NiftiFormat method),

29

setTimeUnit() (nifti.format.NiftiFormat
method), 29

setVoxDims() (nifti.format.NiftiFormat
method), 29

setXFormCode() (nifti.format.NiftiFormat
method), 30

setXYZUnit() (nifti.format.NiftiFormat

method), 30
sform (nifti.format.NiftiFormat attribute), 31
sform_code (nifti.format.NiftiFormat at-
tribute), 31
sform_inv (nifti.format.NiftiFormat attribute),
31
slope (nifti.format.NiftiFormat attribute), 31
splitFilename() (in module nifti.utils), 42

T

time2vol() (in module nifti.utils), 42

time_unit (nifti.format.NiftiFormat attribute),
31

timepoints (nifti.format.NiftiFormat attribute),
32

U

unload() (nifti.image.MemMappedNiftilmage
method), 39

unload() (nifti.image.Niftilmage method), 37

updateCalMinMax() (nifti.image.Niftilmage
method), 37

updateFromDict() (nifti.format.NiftiFormat
method), 32
updateHeader() (nifti.image.Niftilmage

method), 37
updateQFormFromQuaternion()
(nifti.format.NiftiFormat method), 32

Vv

volextent (nifti.format.NiftiFormat attribute),
32

voxdim (nifti.format.NiftiFormat attribute), 32

vx2q() (nifti.format.NiftiFormat method), 32

vx2s() (nifti.format.NiftiFormat method), 33

X

xyz_unit (nifti.format.NiftiFormat attribute),
33

Index

55

	What is NIfTI and what do I need PyNIfTI for?
	NIfTI
	Python
	PyNIfTI
	Scripts
	Known issues
	Things to know

	Installation
	Binary packages
	Compile from source
	Troubleshooting

	Examples
	Loading and saving NIfTI files
	NIfTI files from array data
	Select ROIs
	Linear detrending of timeseries (SciPy module is required for this example)
	Make a quick plot of a voxel's timeseries (matplotlib module is required)
	Show a slice of a 3d volume (Matplotlib module is required)
	Compute and display peristimulus signal timecourse of multiple conditions

	Module Reference
	Module format
	Module image
	Module extensions
	Useful Functions

	PyNIfTI Development Changelog
	Releases

	Python Module Index
	Index

