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This is a guide to basic and some more advanced features of the MDP library. Besides the present tutorial,

you can learn more about MDP by using the standard Python tools. All MDP nodes have doc-strings, the public
attributes and methods have telling names: All information about a node can be obtained using the help and dir

functions within the Python interpreter. In addition to that, an automatically generated API is available.

Note
Code snippets throughout the script will be denoted by:

>>> print "Hello world!"

Hello world!

To run the following code examples don’t forget to import mdp in your Python session with:

>>> import mdp

You’ll find all the code of this tutorial within the demo directory in the MDP installation path.
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Introduction

The use of the Python programming language in computational neuroscience has been growing steadily during
the past few years. The maturation of two important open source projects, the scientific libraries NumPy and SciPy,
gives access to a large collection of scientific functions that rivals in size and speed with well known commercial
alternatives like The MathWorksTM Matlab c○. Furthermore, the flexible and dynamic nature of Python offers
the scientific programmer the opportunity to quickly develop efficient and structured software while maximizing
prototyping and reusability capabilities.

The Modular toolkit for Data Processing (MDP) package contributes to this growing community a library of
widely used data processing algorithms, and the possibility to combine them according to a pipeline analogy to
build more complex data processing software.

MDP has been designed to be used as-is and as a framework for scientific data processing development.
From the user’s perspective, MDP consists of a collection of supervised and unsupervised learning algorithms,

and other data processing units (nodes) that can be combined into data processing sequences (flows) and more
complex feed-forward network architectures. Given a set of input data, MDP takes care of successively training or
executing all nodes in the network. This allows the user to specify complex algorithms as a series of simpler data
processing steps in a natural way.

The base of available algorithms is steadily increasing and includes, to name but the most common, Principal
Component Analysis (PCA and NIPALS), several Independent Component Analysis algorithms (CuBICA, Fas-
tICA, TDSEP, JADE, and XSFA), Slow Feature Analysis, Gaussian Classifiers, Restricted Boltzmann Machine, and
Locally Linear Embedding (see the Node List section for a more exhaustive list and references).

Particular care has been taken to make computations efficient in terms of speed and memory. To reduce mem-
ory requirements, it is possible to perform learning using batches of data, and to define the internal parameters of
the nodes to be single precision, which makes the usage of very large data sets possible. Moreover, the parallel

subpackage offers a parallel implementation of the basic nodes and flows.
From the developer’s perspective, MDP is a framework that makes the implementation of new supervised and

unsupervised learning algorithms easy and straightforward. The basic class, Node, takes care of tedious tasks like
numerical type and dimensionality checking, leaving the developer free to concentrate on the implementation of
the learning and execution phases. Because of the common interface, the node then automatically integrates with
the rest of the library and can be used in a network together with other nodes. A node can have multiple training
phases and even an undetermined number of phases. This allows the implementation of algorithms that need
to collect some statistics on the whole input before proceeding with the actual training, and others that need to
iterate over a training phase until a convergence criterion is satisfied. The ability to train each phase using chunks
of input data is maintained if the chunks are given as an iterable. Moreover, crash recovery is optionally available:
in case of failure, the current state of the flow is saved for later inspection.
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MDP is distributed under the open source LGPL license. It has been written in the context of theoretical
research in neuroscience, but it has been designed to be helpful in any context where trainable data processing
algorithms are used. Its simplicity on the user’s side, the variety of readily available algorithms, and the reusability
of the implemented nodes make it also a useful educational tool.

With over 10,000 downloads since its first public release in 2004, MDP has become a widely used Python
scientific software. It has minimal dependencies, requiring only the NumPy numerical extension, is completely
platform-independent, and is available as a package in the GNU/Linux Debian distribution and the Python(x,y)
scientific Python distribution.

As the number of its users and contributors is increasing, MDP appears to be a good candidate for becoming
a community-driven common repository of user-supplied, freely available, Python implemented data processing
algorithms.

Quick Start

Using MDP is as easy as:

>>> import mdp

>>> # perform pca on some data x

...

>>> y = mdp.pca(x)

>>> # perform ica on some data x using single precision

...

>>> y = mdp.fastica(x, dtype=’float32’)

MDP requires the numerical Python extensions NumPy or SciPy. At import time MDP will select scipy if avail-
able, otherwise numpy will be loaded. You can force the use of a numerical extension by setting the environment
variable MDPNUMX=numpy or MDPNUMX=scipy.

An important remark
Input array data is typically assumed to be two-dimensional and ordered such that observations of the
same variable are stored on rows and different variables are stored on columns.

Nodes

A node is the basic building block of an MDP application. It represents a data processing element, like for example
a learning algorithm, a data filter, or a visualization step (see the Node List section for an exhaustive list and
references).

Each node can have one or more training phases, during which the internal structures are learned from training
data (e.g. the weights of a neural network are adapted or the covariance matrix is estimated) and an execution
phase, where new data can be processed forwards (by processing the data through the node) or backwards (by
applying the inverse of the transformation computed by the node if defined).

Nodes have been designed to be applied to arbitrarily long sets of data: if the underlying algorithms supports
it, the internal structures can be updated incrementally by sending multiple batches of data (this is equivalent to
online learning if the chunks consists of single observations, or to batch learning if the whole data is sent in a
single chunk). It is thus possible to perform computations on amounts of data that would not fit into memory or
to generate data on-the-fly.

A Node also defines some utility methods, like for example copy and save, that return an exact copy of a node
and save it in a file, respectively. Additional methods may be present, depending on the algorithm.

Node Instantiation

Nodes can be obtained by creating an instance of the Node class.
Each node is characterized by an input dimension (i.e., the dimensionality of the input vectors), an output

dimension, and a dtype, which determines the numerical type of the internal structures and of the output signal.
By default, these attributes are inherited from the input data if left unspecified. The constructor of each node
class can require other task-specific arguments. The full documentation is always available in the doc-string of the
node’s class.

Some examples of node instantiation:

∙ Create a node that performs Principal Component Analysis (PCA) whose input dimension and dtype are
inherited from the input data during training. Output dimensions default to input dimensions.
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>>> pcanode1 = mdp.nodes.PCANode()

>>> pcanode1

PCANode(input_dim=None, output_dim=None, dtype=None)

∙ Setting output_dim = 10 means that the node will keep only the first 10 principal components of the input.

>>> pcanode2 = mdp.nodes.PCANode(output_dim = 10)

>>> pcanode2

PCANode(input_dim=None, output_dim=10, dtype=None)

The output dimensionality can also be specified in terms of the explained variance. If we want to keep the
number of principal components which can account for 80% of the input variance, we set:

>>> pcanode3 = mdp.nodes.PCANode(output_dim = 0.8)

>>> pcanode3.desired_variance

0.80000000000000004

∙ If dtype is set to float32 (32-bit float), the input data is cast to single precision when received and the
internal structures are also stored as float32. dtype influences the memory space necessary for a node and
the precision with which the computations are performed.

>>> pcanode4 = mdp.nodes.PCANode(dtype = ’float32’)

>>> pcanode4

PCANode(input_dim=None, output_dim=None, dtype=’float32’)

You can obtain a list of the numerical types supported by a node lookng at its supported_dtypes property:

>>> pcanode4.supported_dtypes

[dtype(’float32’), dtype(’float64’)]

This attribute is a list of numpy.dtype objects.

∙ A PolynomialExpansionNode expands its input in the space of polynomials of a given degree by computing
all monomials up to the specified degree. Its constructor needs as first argument the degree of the polynomi-
als space (3 in this case).

>>> expnode = mdp.nodes.PolynomialExpansionNode(3)

Node Training

Some nodes need to be trained to perform their task. For example, the Principal Component Analysis (PCA)
algorithm requires the computation of the mean and covariance matrix of a set of training data from which the
principal eigenvectors of the data distribution are estimated.

This can be done during a training phases by calling the train method. MDP supports both supervised and
unsupervised training, and algorithms with multiple training phases.

Some examples of node training:

∙ Create some random data to train the node

>>> x = mdp.numx_rand.random((100, 25)) # 25 variables, 100 observations

∙ Analyzes the batch of data x and update the estimation of mean and covariance matrix:

>>> pcanode1.train(x)

At this point the input dimension and the dtype have been inherited from x:

>>> pcanode1

PCANode(input_dim=25, output_dim=None, dtype=’float64’)

∙ We can train our node with more than one chunk of data. This is especially useful when the input data is too
long to be stored in memory or when it has to be created on-the-fly. (See also the Iterables section):

>>> for i in range(100):

... x = mdp.numx_rand.random((100, 25))

... pcanode1.train(x)

>>>

∙ Some nodes don’t need to or cannot be trained:
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>>> expnode.is_trainable()

False

Trying to train them anyway would raise an IsNotTrainableException.

∙ The training phase ends when the stop_training, execute, inverse, and possibly some other node-specific
methods are called. For example we can finalyze the PCA algorithm by computing and selecting the principal
eigenvectors

>>> pcanode1.stop_training()

∙ If the PCANode was declared to have a number of output components dependent on the input variance to be
explained, we can check after training the number of output components and the actually explained variance:

>>> pcanode3.train(x)

>>> pcanode3.stop_training()

>>> pcanode3.output_dim

16

>>> pcanode3.explained_variance

0.85261144755506446

It is now possible to access the trained internal data. In general, a list of the interesting internal attributes can
be found in the class documentation.

>>> avg = pcanode1.avg # mean of the input data

>>> v = pcanode1.get_projmatrix() # projection matrix

∙ Some nodes, namely the one corresponding to supervised algorithms, e.g. Fisher Discriminant Analysis
(FDA), may need some labels or other supervised signals to be passed during training. Detailed information
about the signature of the train method can be read in its doc-string.

>>> fdanode = mdp.nodes.FDANode()

>>> for label in [’a’, ’b’, ’c’]:

... x = mdp.numx_rand.random((100, 25))

... fdanode.train(x, label)

>>>

∙ A node could also require multiple training phases. For example, the training of fdanode is not complete yet,
since it has two training phases: The first one computing the mean of the data conditioned on the labels, and
the second one computing the overall and within-class covariance matrices and solving the FDA problem.
The first phase must be stopped and the second one trained:

>>> fdanode.stop_training()

>>> for label in [’a’, ’b’, ’c’]:

... x = mdp.numx_rand.random((100, 25))

... fdanode.train(x, label)

>>>

The easiest way to train multiple phase nodes is using flows, which automatically handle multiple phases
(see the Flows section).

Node Execution

Once the training is finished, it is possible to execute the node:

∙ The input data is projected on the principal components learned in the training phase:

>>> x = mdp.numx_rand.random((100, 25))

>>> y_pca = pcanode1.execute(x)

∙ Calling a node instance is equivalent to executing it:

>>> y_pca = pcanode1(x)

∙ The input data is expanded in the space of polynomials of degree 3:

>>> x = mdp.numx_rand.random((100, 5))

>>> y_exp = expnode(x)
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∙ The input data is projected to the directions learned by FDA:

>>> x = mdp.numx_rand.random((100, 25))

>>> y_fda = fdanode(x)

∙ Some nodes may allow for optional arguments in the execute method. As always the complete information
can be found in the doc-string.

Node Inversion

If the operation computed by the node is invertible, the node can also be executed backwards, thus computing the
inverse transformation:

∙ In the case of PCA, for example, this corresponds to projecting a vector in the principal components space
back to the original data space:

>>> pcanode1.is_invertible()

True

>>> x = pcanode1.inverse(y_pca)

∙ The expansion node in not invertible:

>>> expnode.is_invertible()

False

Trying to compute the inverse would raise an IsNotInvertibleException.

Writing your own nodes: subclassing Node

MDP tries to make it easy to write new nodes that interface with the existing data processing elements.
The Node class is designed to make the implementation of new algorithms easy and intuitive. This base class

takes care of setting input and output dimension and casting the data to match the numerical type (e.g. float or
double) of the internal variables, and offers utility methods that can be used by the developer.

To expand the MDP library of implemented nodes with user-made nodes, it is sufficient to subclass Node, over-
riding some of the methods according to the algorithm one wants to implement, typically the _train, _stop_training,
and _execute methods.

In its namespace MDP offers references to the main modules numpy or scipy, and the subpackages linalg,
random, and fft as mdp.numx, mdp.numx_linalg, mdp.numx_rand, and mdp.numx_fft. This is done to possibly sup-
port additional numerical extensions in the future. For this reason it is recommended to refer to the numpy or scipy
numerical extensions through the MDP aliases mdp.numx, mdp.numx_linalg, mdp.numx_fft, and mdp.numx_rand

when writing Node subclasses. This shall ensure that your nodes can be used without modifications should MDP
support alternative numerical extensions in the future.

We’ll illustrate all this with some toy examples.

∙ We start by defining a node that multiplies its input by 2.

Define the class as a subclass of Node:

>>> class TimesTwoNode(mdp.Node):

This node cannot be trained. To specify this, one has to overwrite the is_trainable method to return False:

... def is_trainable(self):

... return False

Execute only needs to multiply x by 2:

... def _execute(self, x):

... return 2*x

Note that the execute method, which should never be overwritten and which is inherited from the Node

parent class, will perform some tests, for example to make sure that x has the right rank, dimensionality and
casts it to have the right dtype. After that the user-supplied _execute method is called. Each subclass has to
handle the dtype defined by the user or inherited by the input data, and make sure that internal structures
are stored consistently. To help with this the Node base class has a method called _refcast(array) that casts
the input array only when its dtype is different from the Node instance’s dtype.

The inverse of the multiplication by 2 is of course the division by 2:
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... def _inverse(self, y):

... return y/2

...

>>>

Test the new node:

>>> node = TimesTwoNode(dtype = ’int32’)

>>> x = mdp.numx.array([[1.0, 2.0, 3.0]])

>>> y = node(x)

>>> print x, ’* 2 = ’, y

[ [ 1. 2. 3.]] * 2 = [ [2 4 6]]

>>> print y, ’/ 2 =’, node.inverse(y)

[ [2 4 6]] / 2 = [ [1 2 3]]

∙ We then define a node that raises the input to the power specified in the initializer:

>>> class PowerNode(mdp.Node):

We redefine the init method to take the power as first argument. In general one should always give the
possibility to set the dtype and the input dimensions. The default value is None, which means that the exact
value is going to be inherited from the input data:

... def __init__(self, power, input_dim=None, dtype=None):

Initialize the parent class:

... super(PowerNode, self).__init__(input_dim=input_dim, dtype=dtype)

Store the power:

... self.power = power

PowerNode is not trainable...

... def is_trainable(self):

... return False

... nor invertible:

... def is_invertible(self):

... return False

It is possible to overwrite the function _get_supported_dtypes to return a list of dtype supported by the
node:

... def _get_supported_dtypes(self):

... return [’float32’, ’float64’]

The supported types can be specified in any format allowed by the numpy.dtype constructor. The interface
method get_supported_dtypes converts them and sets the property supported_dtypes, which is a list of
numpy.dtype objects.

The _execute method:

... def _execute(self, x):

... return self._refcast(x**self.power)

...

>>>

Test the new node:

>>> node = PowerNode(3)

>>> x = mdp.numx.array([[1.0, 2.0, 3.0]])

>>> y = node(x)

>>> print x, ’**’, node.power, ’=’, node(x)

[ [ 1. 2. 3.]] ** 3 = [ [ 1. 8. 27.]]

∙ We now define a node that needs to be trained. The MeanFreeNode computes the mean of its training data
and subtracts it from the input during execution:
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>>> class MeanFreeNode(mdp.Node):

... def __init__(self, input_dim=None, dtype=None):

... super(MeanFreeNode, self).__init__(input_dim=input_dim,

... dtype=dtype)

We store the mean of the input data in an attribute. We initialize it to None since we still don’t know how
large is an input vector:

... self.avg = None

Same for the number of training points:

... self.tlen = 0

The subclass only needs to overwrite the _train method, which will be called by the parent train after some
testing and casting has been done:

... def _train(self, x):

... # Initialize the mean vector with the right

... # size and dtype if necessary:

... if self.avg is None:

... self.avg = mdp.numx.zeros(self.input_dim,

... dtype=self.dtype)

Update the mean with the sum of the new data:

... self.avg += mdp.numx.sum(x, axis=0)

Count the number of points processed:

... self.tlen += x.shape[0]

Note that the train method can have further arguments, which might be useful to implement algorithms
that require supervised learning. For example, if you want to define a node that performs some form of
classification you can define a _train(self, data, labels) method. The parent train checks data and
takes care to pass the labels on (cf. for example mdp.nodes.FDANode).

The _stop_training function is called by the parent stop_training method when the training phase is over.
We divide the sum of the training data by the number of training vectors to obtain the mean:

... def _stop_training(self):

... self.avg /= self.tlen

... if self.output_dim is None:

... self.output_dim = self.input_dim

Note that we input_dim are set automatically by the train method, and we want to ensure that the node has
output_dim set after training. For nodes that do not need training, the setting is performed automatically
upon execution. The _execute and _inverse methods:

... def _execute(self, x):

... return x - self.avg

... def _inverse(self, y):

... return y + self.avg

...

>>>

Test the new node:

>>> node = MeanFreeNode()

>>> x = mdp.numx_rand.random((10,4))

>>> node.train(x)

>>> y = node(x)

>>> print ’Mean of y (should be zero): ’, mdp.numx.mean(y, 0)

Mean of y (should be zero): [ 0.00000000e+00 2.22044605e-17

-2.22044605e-17 1.11022302e-17]
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∙ It is also possible to define nodes with multiple training phases. In such a case, calling the train and
stop_training functions multiple times is going to execute successive training phases (this kind of node
is much easier to train using Flows). Here we’ll define a node that returns a meanfree, unit variance signal.
We define two training phases: first we compute the mean of the signal and next we sum the squared, mean-
free input to compute the standard deviation (of course it is possible to solve this problem in one single step
- remember this is just a toy example).

>>> class UnitVarianceNode(mdp.Node):

... def __init__(self, input_dim=None, dtype=None):

... super(UnitVarianceNode, self).__init__(input_dim=input_dim,

... dtype=dtype)

... self.avg = None # average

... self.std = None # standard deviation

... self.tlen = 0

The training sequence is defined by the user-supplied method _get_train_seq, that returns a list of tuples,
one for each training phase. The tuples contain references to the training and stop-training methods of each
of them. The default output of this method is [(_train, _stop_training)], which explains the standard
behavior illustrated above. We overwrite the method to return the list of our training/stop_training methods:

... def _get_train_seq(self):

... return [(self._train_mean, self._stop_mean),

... (self._train_std, self._stop_std)]

Next we define the training methods. The first phase is identical to the one in the previous example:

... def _train_mean(self, x):

... if self.avg is None:

... self.avg = mdp.numx.zeros(self.input_dim,

... dtype=self.dtype)

... self.avg += mdp.numx.sum(x, 0)

... self.tlen += x.shape[0]

... def _stop_mean(self):

... self.avg /= self.tlen

The second one is only marginally different and does not require many explanations:

... def _train_std(self, x):

... if self.std is None:

... self.tlen = 0

... self.std = mdp.numx.zeros(self.input_dim,

... dtype=self.dtype)

... self.std += mdp.numx.sum((x - self.avg)**2., 0)

... self.tlen += x.shape[0]

... def _stop_std(self):

... # compute the standard deviation

... self.std = mdp.numx.sqrt(self.std/(self.tlen-1))

The _execute and _inverse methods are not surprising, either:

... def _execute(self, x):

... return (x - self.avg)/self.std

... def _inverse(self, y):

... return y*self.std + self.avg

>>>

Test the new node:

>>> node = UnitVarianceNode()

>>> x = mdp.numx_rand.random((10,4))

>>> # loop over phases

... for phase in range(2):

... node.train(x)

... node.stop_training()

...

...

9



>>> # execute

... y = node(x)

>>> print ’Standard deviation of y (should be one): ’, mdp.numx.std(y, axis=0)

Standard deviation of y (should be one): [ 1. 1. 1. 1.]

∙ In our last example we’ll define a node that returns two copies of its input. The output is going to have twice
as many dimensions.

>>> class TwiceNode(mdp.Node):

... def is_trainable(self): return False

... def is_invertible(self): return False

When Node inherits the input dimension, output dimension, and dtype from the input data, it calls the
methods set_input_dim, set_output_dim, and set_dtype. Those are the setters for input_dim, output_dim
and dtype, which are Python properties. If a subclass needs to change the default behavior, the internal
methods _set_input_dim, _set_output_dim and _set_dtype can be overwritten. The property setter will
call the internal method after some basic testing and internal settings. The private methods _set_input_dim,
_set_output_dim and _set_dtype are responsible for setting the private attributes _input_dim, _output_dim,
and _dtype that contain the actual value.

Here we overwrite _set_input_dim to automatically set the output dimension to be twice the input one, and
_set_output_dim to raise an exception, since the output dimension should not be set explicitly.

... def _set_input_dim(self, n):

... self._input_dim = n

... self._output_dim = 2*n

... def _set_output_dim(self, n):

... raise mdp.NodeException, "Output dim can not be set explicitly!"

The _execute method:

... def _execute(self, x):

... return mdp.numx.concatenate((x, x), 1)

...

>>>

Test the new node

>>> node = TwiceNode()

>>> x = mdp.numx.zeros((5,2))

>>> x

array([[0, 0],

[0, 0],

[0, 0],

[0, 0],

[0, 0]])

>>> node.execute(x)

array([[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0]])

Flows

A flow is a sequence of nodes that are trained and executed together to form a more complex algorithm. Input data
is sent to the first node and is successively processed by the subsequent nodes along the sequence.

Using a flow as opposed to handling manually a set of nodes has a clear advantage: The general flow imple-
mentation automatizes the training (including supervised training and multiple training phases), execution, and
inverse execution (if defined) of the whole sequence.

Crash recovery is optionally available: in case of failure the current state of the flow is saved for later inspection.
A subclass of the basic flow class (CheckpointFlow) allows user-supplied checkpoint functions to be executed at
the end of each phase, for example to save the internal structures of a node for later analysis. Flow objects are
Python containers. Most of the builtin list methods are available. A Flow can be saved or copied using the
corresponding save and copy methods.
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Flow instantiation, training and execution

For example, suppose we need to analyze a very high-dimensional input signal using Independent Component
Analysis (ICA). To reduce the computational load, we would like to reduce the input dimensionality of the data
using PCA. Moreover, we would like to find the data that produces local maxima in the output of the ICA compo-
nents on a new test set (this information could be used for instance to characterize the ICA filters).

We start by generating some input signal at random (which makes the example useless, but it’s just for illus-
tration...). Generate 1000 observations of 20 independent source signals:

>>> inp = mdp.numx_rand.random((1000, 20))

Rescale x to have zero mean and unit variance:

>>> inp = (inp - mdp.numx.mean(inp, 0))/mdp.numx.std(inp, 0)

We reduce the variance of the last 15 components, so that they are going to be eliminated by PCA:

>>> inp[:,5:] /= 10.0

Mix the input signals linearly:

>>> x = mdp.utils.mult(inp,mdp.numx_rand.random((20, 20)))

x is now the training data for our simulation. In the same way we also create a test set x_test.

>>> inp_test = mdp.numx_rand.random((1000, 20))

>>> inp_test = (inp_test - mdp.numx.mean(inp_test, 0))/mdp.numx.std(inp_test, 0)

>>> inp_test[:,5:] /= 10.0

>>> x_test = mdp.utils.mult(inp_test, mdp.numx_rand.random((20, 20)))

∙ We could now perform our analysis using only nodes, that’s the lengthy way...

1. Perform PCA:

>>> pca = mdp.nodes.PCANode(output_dim=5)

>>> pca.train(x)

>>> out1 = pca(x)

2. Perform ICA using CuBICA algorithm:

>>> ica = mdp.nodes.CuBICANode()

>>> ica.train(out1)

>>> out2 = ica(out1)

3. Find the three largest local maxima in the output of the ICA node when applied to the test data, using a
HitParadeNode:

>>> out1_test = pca(x_test)

>>> out2_test = ica(out1_test)

>>> hitnode = mdp.nodes.HitParadeNode(3)

>>> hitnode.train(out2_test)

>>> maxima, indices = hitnode.get_maxima()

∙ ... or we could use flows, which is the best way:

>>> flow = mdp.Flow([mdp.nodes.PCANode(output_dim=5), mdp.nodes.CuBICANode()])

Note that flows can be built simply by concatenating nodes:

>>> flow = mdp.nodes.PCANode(output_dim=5) + mdp.nodes.CuBICANode()

Train the resulting flow:

>>> flow.train(x)

Now the training phase of PCA and ICA are completed. Next we append a HitParadeNode which we want
to train on the test data:

>>> flow.append(mdp.nodes.HitParadeNode(3))

As before, new nodes can be appended to an existing flow by adding them ot it:
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>>> flow += mdp.nodes.HitParadeNode(3)

Train the HitParadeNode on the test data:

>>> flow.train(x_test)

>>> maxima, indices = flow[2].get_maxima()

A single call to the flow’s train method will automatically take care of training nodes with multiple training
phases, if such nodes are present.

Just to check that everything works properly, we can calculate covariance between the generated sources and
the output (should be approximately 1):

>>> out = flow.execute(x)

>>> cov = mdp.numx.amax(abs(mdp.utils.cov2(inp[:,:5], out)), axis=1)

>>> print cov

[ 0.98992083 0.99244511 0.99227319 0.99663185 0.9871812 ]

The HitParadeNode is an analysis node and as such does not interfere with the data flow.

Note that flows can be executed by calling the Flow instance directly:

>>> out = flow(x)

Flow inversion

Flows can be inverted by calling their inverse method. In the case where the flow contains non-invertible nodes,
trying to invert it would raise an exception. In this case, however, all nodes are invertible. We can reconstruct the
mix by inverting the flow:

>>> rec = flow.inverse(out)

Calculate covariance between input mix and reconstructed mix: (should be approximately 1)

>>> cov = mdp.numx.amax(abs(mdp.utils.cov2(x/mdp.numx.std(x,axis=0),

... rec/mdp.numx.std(rec,axis=0))))

>>> print cov

[ 0.99839606 0.99744461 0.99616208 0.99772863 0.99690947

0.99864056 0.99734378 0.98722502 0.98118101 0.99407939

0.99683096 0.99756988 0.99664384 0.99723419 0.9985529

0.99829763 0.9982712 0.99721741 0.99682906 0.98858858]

Flows are container type objects

Flow objects are defined as Python containers, and thus are endowed with most of the methods of Python lists.
You can loop through a Flow:

>>> for node in flow:

... print repr(node)

...

PCANode(input_dim=20, output_dim=5, dtype=’float64’)

CuBICANode(input_dim=5, output_dim=5, dtype=’float64’)

HitParadeNode(input_dim=5, output_dim=5, dtype=’float64’)

HitParadeNode(input_dim=5, output_dim=5, dtype=’float64’)

>>>

You can get slices, pop, insert, and append nodes:

>>> len(flow)

4

>>> print flow[::2]

[PCANode, HitParadeNode]

>>> nodetoberemoved = flow.pop(-1)

>>> nodetoberemoved

HitParadeNode(input_dim=5, output_dim=5, dtype=’float64’)

>>> len(flow)

3

Finally, you can concatenate flows:
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>>> dummyflow = flow[1:].copy()

>>> longflow = flow + dummyflow

>>> len(longflow)

4

The returned flow must always be consistent, i.e. input and output dimensions of successive nodes always
have to match. If you try to create an inconsistent flow you’ll get an exception.

Crash recovery

If a node in a flow fails, you’ll get a traceback that tells you which node has failed. You can also switch the crash
recovery capability on. If something goes wrong you’ll end up with a pickle dump of the flow, that can be later
inspected.

To see how it works let’s define a bogus node that always throws an Exception and put it into a flow:

>>> class BogusExceptNode(mdp.Node):

... def train(self,x):

... self.bogus_attr = 1

... raise Exception, "Bogus Exception"

... def execute(self,x):

... raise Exception, "Bogus Exception"

...

>>> flow = mdp.Flow([BogusExceptNode()])

Switch on crash recovery:

>>> flow.set_crash_recovery(1)

Attempt to train the flow:

>>> flow.train(x)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

[...]

mdp.linear_flows.FlowExceptionCR:

----------------------------------------

! Exception in node #0 (BogusExceptNode):

Node Traceback:

Traceback (most recent call last):

[...]

Exception: Bogus Exception

----------------------------------------

A crash dump is available on: "/tmp/MDPcrash_LmISO_.pic"

You can give a file name to tell the flow where to save the dump:

>>> flow.set_crash_recovery(’/home/myself/mydumps/MDPdump.pic’)

Iterables

Python allows user-defined classes to support iteration, as described in the Python docs. A class is a so called
iterable if it defines a method __iter__ that returns an iterator instance. An iterable is typically some kind of
container or collection (e.g. list and tuple are iterables).

The iterator instance must have a next method that returns the next element in the iteration. In Python an
iterable also has to have an __iter__ method itself that returns self instead of a new iterator. It is important to
understand that an iterator only manages a single iteration. After this iteration it is spend and cannot be used for a
second iteration (it cannot be restarted). An iterable on the other hand can create as many iterators as needed and
therefore supports multiple iterations. Even though both iterables and iterators have an __iter__ method they
are semantically very different (duck-typing can be misleading in this case).

In the context of MDP this means that an iterator can only be used for a single training phase, while iterables
also support multiple training phases. So if you use a node with multiple training phases and train it in a flow
make sure that you provide an iterable for this node (otherwise an exception will be raised). For nodes with a
single training phase you can use either an iterable or an iterator.

13

http://docs.python.org/library/stdtypes.html#iterator-types


A convenient implementation of the iterator protocol is provided by generators: see this article for an introduc-
tion, and the official PEP for a complete description.

Let us define two bogus node classes to be used as examples of nodes:

>>> class BogusNode(mdp.Node):

... """This node does nothing."""

... def _train(self, x):

... pass

...

>>> class BogusNode2(mdp.Node):

... """This node does nothing. But it’s not trainable nor invertible.

... """

... def is_trainable(self): return False

... def is_invertible(self): return False

...

>>>

This generator generates blocks input blocks to be used as training set. In this example one block is a 2-
dimensional time series. The first variable is [2,4,6,....,1000] and the second one [0,1,3,5,...,999]. All blocks are
equal, this of course would not be the case in a real-life example.

In this example we use a progress bar to get progress information.

>>> def gen_data(blocks):

... for i in mdp.utils.progressinfo(xrange(blocks)):

... block_x = mdp.numx.atleast_2d(mdp.numx.arange(2,1001,2))

... block_y = mdp.numx.atleast_2d(mdp.numx.arange(1,1001,2))

... # put variables on columns and observations on rows

... block = mdp.numx.transpose(mdp.numx.concatenate([block_x,block_y]))

... yield block

...

>>>

The progressinfo function is a fully configurable text-mode progress info box tailored to the command-line
die-hards. Have a look at its doc-string and prepare to be amazed!

Let’s define a bogus flow consisting of 2 BogusNode:

>>> flow = mdp.Flow([BogusNode(),BogusNode()], verbose=1)

Train the first node with 5000 blocks and the second node with 3000 blocks. Note that the only allowed argu-
ment to train is a sequence (list or tuple) of iterables or iterators. In case you don’t want or need to use incremental
learning and want to do a one-shot training, you can use as argument to train a single array of data:

block-mode training

>>> flow.train([gen_data(5000),gen_data(3000)])

Training node #0 (BogusNode)

[===================================100%==================================>]

Training finished

Training node #1 (BogusNode)

[===================================100%==================================>]

Training finished

Close the training phase of the last node

one-shot training using one single set of data for both nodes

>>> flow = BogusNode() + BogusNode()

>>> block_x = mdp.numx.atleast_2d(mdp.numx.arange(2,1001,2))

>>> block_y = mdp.numx.atleast_2d(mdp.numx.arange(1,1001,2))

>>> single_block = mdp.numx.transpose(mdp.numx.concatenate([block_x,block_y]))

>>> flow.train(single_block)

If your flow contains non-trainable nodes, you must specify a None for the non-trainable nodes:

>>> flow = mdp.Flow([BogusNode2(),BogusNode()], verbose=1)

>>> flow.train([None, gen_data(5000)])
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Training node #0 (BogusNode2)

Training finished

Training node #1 (BogusNode)

[===================================100%==================================>]

Training finished

Close the training phase of the last node

You can use the one-shot training:

>>> flow = mdp.Flow([BogusNode2(),BogusNode()], verbose=1)

>>> flow.train(single_block)

Training node #0 (BogusNode2)

Training finished

Training node #1 (BogusNode)

Training finished

Close the training phase of the last node

Iterators can always be safely used for execution and inversion, since only a single iteration is needed:

>>> flow = mdp.Flow([BogusNode(),BogusNode()], verbose=1)

>>> flow.train([gen_data(1), gen_data(1)])

Training node #0 (BogusNode)

Training finished

Training node #1 (BosgusNode)

[===================================100%==================================>]

Training finished

Close the training phase of the last node

>>> output = flow.execute(gen_data(1000))

[===================================100%==================================>]

>>> output = flow.inverse(gen_data(1000))

[===================================100%==================================>]

Execution and inversion can be done in one-shot mode also. Note that since training is finished you are not
going to get a warning

>>> output = flow(single_block)

>>> output = flow.inverse(single_block)

If a node requires multiple training phases (e.g., GaussianClassifierNode), Flow automatically takes care of
using the iterable multiple times. In this case generators (and iterators) are not allowed, since they are spend after
yielding the last data block.

However, it is fairly easy to wrap a generator in a simple iterable if you need to:

>>> class SimpleIterable(object):

... def __init__(self, blocks):

... self.blocks = blocks

... def __iter__(self):

... # this is a generator

... for i in range(self.blocks):

... yield generate_some_data()

>>>

Note that if you use random numbers within the generator, you usually would like to reset the random number
generator to produce the same sequence every time:

>>> class RandomIterable(object):

... def __init__(self):

... self.state = None

... def __iter__(self):

... if self.state is None:

... self.state = mdp.numx_rand.get_state()

... else:

... mdp.numx_rand.set_state(self.state)

... for i in range(2):
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... yield mdp.numx_rand.random((1,4))

>>> iterable = RandomIterable()

>>> for x in iterable:

... print x

...

[[ 0.99586495 0.53463386 0.6306412 0.09679571]]

[[ 0.51117469 0.46647448 0.95089738 0.94837122]]

>>> for x in iterable:

... print x

...

[[ 0.99586495 0.53463386 0.6306412 0.09679571]]

[[ 0.51117469 0.46647448 0.95089738 0.94837122]]

Checkpoints

It can sometimes be useful to execute arbitrary functions at the end of the training or execution phase, for example
to save the internal structures of a node for later analysis. This can easily be done by defining a CheckpointFlow.
As an example imagine the following situation: you want to perform Principal Component Analysis (PCA) on
your data to reduce the dimensionality. After this you want to expand the signals into a nonlinear space and then
perform Slow Feature Analysis to extract slowly varying signals. As the expansion will increase the number of
components, you don’t want to run out of memory, but at the same time you want to keep as much information
as possible after the dimensionality reduction. You could do that by specifying the percentage of the total input
variance that has to be conserved in the dimensionality reduction. As the number of output components of the
PCA node now can become as large as the that of the input components, you want to check, after training the PCA
node, that this number is below a certain threshold. If this is not the case you want to abort the execution and
maybe start again requesting less variance to be kept.

Let start defining a generator to be used through the whole example:

>>> def gen_data(blocks,dims):

... mat = mdp.numx_rand.random((dims,dims))-0.5

... for i in xrange(blocks):

... # put variables on columns and observations on rows

... block = mdp.utils.mult(mdp.numx_rand.random((1000,dims)), mat)

... yield block

...

>>>

Define a PCANode which reduces dimensionality of the input, a PolynomialExpansionNode to expand the sig-
nals in the space of polynomials of degree 2 and a SFANode to perform SFA:

>>> pca = mdp.nodes.PCANode(output_dim=0.9)

>>> exp = mdp.nodes.PolynomialExpansionNode(2)

>>> sfa = mdp.nodes.SFANode()

As you see we have set the output dimension of the PCANode to be 0.9. This means that we want to keep at least
90% of the variance of the original signal. We define a PCADimensionExceededException that has to be thrown
when the number of output components exceeds a certain threshold:

>>> class PCADimensionExceededException(Exception):

... """Exception base class for PCA exceeded dimensions case."""

... pass

...

>>>

Then, write a CheckpointFunction that checks the number of output dimensions of the PCANode and aborts if
this number is larger than max_dim:

>>> class CheckPCA(mdp.CheckpointFunction):

... def __init__(self,max_dim):

... self.max_dim = max_dim

... def __call__(self,node):

... node.stop_training()

... act_dim = node.get_output_dim()

... if act_dim > self.max_dim:

... errstr = ’PCA output dimensions exceeded maximum ’+\
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... ’(%d > %d)’%(act_dim,self.max_dim)

... raise PCADimensionExceededException, errstr

... else:

... print ’PCA output dimensions = %d’%(act_dim)

...

>>>

Define the CheckpointFlow:

>>> flow = mdp.CheckpointFlow([pca, exp, sfa])

To train it we have to supply 3 generators and 3 checkpoint functions:

>>> flow.train([gen_data(10, 50), None, gen_data(10, 50)],

... [CheckPCA(10), None, None])

Traceback (most recent call last):

File "<stdin>", line 2, in ?

[...]

__main__.PCADimensionExceededException: PCA output dimensions exceeded maximum (25 > 10)

The training fails with a PCADimensionExceededException. If we only had 12 input dimensions instead of 50
we would have passed the checkpoint:

>>> flow[0] = mdp.nodes.PCANode(output_dim=0.9)

>>> flow.train([gen_data(10, 12), None, gen_data(10, 12)],

... [CheckPCA(10), None, None])

PCA output dimensions = 6

We could use the built-in CheckpoinSaveFunction to save the SFANode and analyze the results later :

>>> pca = mdp.nodes.PCANode(output_dim=0.9)

>>> exp = mdp.nodes.PolynomialExpansionNode(2)

>>> sfa = mdp.nodes.SFANode()

>>> flow = mdp.CheckpointFlow([pca, exp, sfa])

>>> flow.train([gen_data(10, 12), None, gen_data(10, 12)],

... [CheckPCA(10),

... None,

... mdp.CheckpointSaveFunction(’dummy.pic’,

... stop_training = 1,

... protocol = 0)])

...

PCA output dimensions = 7

We can now reload and analyze the SFANode:

>>> fl = file(’dummy.pic’)

>>> import cPickle

>>> sfa_reloaded = cPickle.load(fl)

>>> sfa_reloaded

SFANode(input_dim=35, output_dim=35, dtype=’d’)

Don’t forget to clean the rubbish:

>>> fl.close()

>>> import os

>>> os.remove(’dummy.pic’)

Node Extensions

First note that dealing with the node extension mechanism should be considered advanced usage, so you can skip
this section.

The node extension mechanism makes it possible to dynamically add methods or class attributes for specific
features to node classes (e.g. for parallelization the nodes need a _fork and _join method). Note that methods
are just a special case of class attributes, the extension mechanism treats them like any other class attributes. It
is also possible for users to define new extensions to introduce new functionality for MDP nodes without having
to directly modify any MDP code. The node extension mechanism basically enables some form of Aspect-oriented
programming (AOP) to deal with cross-cutting concerns (i.e., you want to add a new aspect to node classes which
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are spread all over MDP and possibly your own code). In the AOP terminology any new methods you introduce
contain advice and the pointcut is effectively defined by the calling of these methods.

Without the extension mechanism the adding of new aspects to nodes would be done through inheritance,
deriving new node classes that implement the aspect for the parent node class. This is fine unless one wants to use
multiple aspects, requiring multiple inheritance for every combination of aspects one wants to use. Therefore this
approach does not scale well with the number of aspects.

The node extension mechanism does not directly depend on inheritance, instead it adds the methods or class
attributes to the node classes dynamically at runtime (like method injection). This makes it possible to activate
extensions just when they are needed, reducing the risk of interference between different extensions. One can also
use multiple extensions at the same time, as long as there is no interference, i.e., both extensions do not use any
attributes with the same name.

The node extension mechanism uses a special Metaclass, which allows it to define the node extensions as
classes derived from nodes (bascially just what one would do without the extension mechanism). This keeps the
code readable and avoids some problems when using automatic code checkers (like the background pylint checks
in the Eclipse IDE with PyDev).

In MDP the node extension mechanism is currently used by the parallel package and for the the HTML
representation in the hinet package, so the best way to learn more is to look there. We also use these packages in
the following examples.

Using Extensions

First of all you can get all the available node extensions by calling the get_extensions function, or to get just a list
of their names use get_extensions().keys(). Be careful not to modify the dict returned by get_extensions,
since this will actually modify the registered extensions. The currently activated extensions are returned by
get_active_extensions. To activate an extension use activate_extension, e.g. to activate the parallel extension
use mdp.activate_extension("parallel"). Alternatively you can use the function decorator @with_extension("parallel").
In the future we will also support the new with statement in Python. Activating an extension adds the available
extensions attributes to the supported nodes. An extension can be deactivated with deactivate_extension (if
you use the function decorator this is done automatically at the end).

Writing Extension Nodes

Suppose you have written your own nodes and would like to make them compatible with a particular extension
(e.g. add the required methods). The first way to do this is by using multiple inheritance to derive from the base
class of this extension and your custom node class. For example the parallel extension of the SFA node is defined in
a class ParallelSFANode(ParallelExtensionNode, mdp.nodes.SFANode). Here ParallelExtensionNode is the
base class of the extension. Then you define the required methods or attributes just like in a normal class. If you
want you could even use the new ParallelSFANode class like a normal class, ignoring the extension mechanism.
Note that your extension node is automatically registered in the extension mechanism (through a little metaclass
magic).

For methods you can alternatively use the extension_method function decorator. You define the extension
method like a normal function, but add the function decorator on top, for example:

>>> @mdp.extension_method("html", mdp.hinet.Rectangular2dSwitchboard)

... def _html_representation(self):

... pass

...

>>>

The first decorator argument is the name of the extension, the second is the class you want to extend. You can
also specify the method name as a third argument, then the name of the function is ignored (this allows you to get
rid of warnings about multiple functions with the same name).

Creating Extensions

To create a new node extension you just have to create a new extension base class. For example the HTML repre-
sentation extension in mdp.hinet is created with

>>> class HTMLExtensionNode(mdp.ExtensionNode, mdp.Node):

... """Extension node for HTML representations of individual nodes."""

... extension_name = "html"

... def html_representation(self):

... pass

... def _html_representation(self):
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... pass

...

>>>

Note that you must derive from ExtensionNode. If you also derive from mdp.Node then the methods (and
attributes) in this class are the default implementation for the mdp.Node class. So they will be used by all nodes
without a more specific implementation. If you do not derive from mdp.Node then there is no such default im-
plementation. You can also derive from a more specific node class if your extension only applies to these specific
nodes.

When you define a new extension then you must define the extension_name attribute. This magic attribute is
used to register the new extension and you can activate or deactivate the extension by using this name.

Note that extensions can override attributes and methods that are defined in a node class. The original at-
tributes can still be accessed by prefixing the name with _non_extension_ (the prefix string is also available as
mdp.ORIGINAL_ATTR_PREFIX). On the other hand one extension is not allowed to override attributes that were
defined by another currently active extension.

The extension mechanism uses some magic to make the behavior more intuitive with respect to inheritance.
Basically methods or attributes defined by extensions shadow those which are not defined in the extension. Here
is an example:

>>> class TestExtensionNode(mdp.ExtensionNode):

... extension_name = "test"

... def _execute(self):

... return 0

...

>>> class TestNode(mdp.Node):

... def _execute(self):

... return 1

...

>>> class ExtendedTestNode(TestExtensionNode, TestNode):

... pass

...

>>>

After this extension is activated any calls of _execute in instances of TestNode will return 0 instead of 1. The
_execute from the extension base-class shadows the method from TestNode. This makes it easier to share behavior
for different classes. Without this magic one would have to explicitly override _execute in ExtendedTestNode (or
derive the extension base-class from Node, but that would give this behavior to all node classes). Note that there is
a verbose argument in activate_extension which can help with debugging.

Hierarchical Networks

In case the desired data processing application cannot be defined as a sequence of nodes, the hinet subpackage
makes it possible to construct arbitrary feed-forward architectures, and in particular hierarchical networks.

Building blocks

The hinet package contains three basic building blocks (which are all nodes themselves) to construct hierarchical
node networks: Layer, FlowNode, Switchboard.

∙ The first building block is the Layer node, which works like a horizontal version of flow. It acts as a wrapper
for a set of nodes that are trained and executed in parallel. For example, we can combine two nodes with 100
dimensional input to construct a layer with a 200-dimensional input

>>> node1 = mdp.nodes.PCANode(input_dim=100, output_dim=10)

>>> node2 = mdp.nodes.SFANode(input_dim=100, output_dim=20)

>>> layer = mdp.hinet.Layer([node1, node2])

>>> layer

Layer(input_dim=200, output_dim=30, dtype=None)

The first half of the 200 dimensional input data is then automatically assigned to node1 and the second half
to node2. We can train and execute a Layer just like any other node. Note that the dimensions of the nodes
must be already set when the layer is constructed.

∙ In order to be able to build arbitrary feed-forward node structures, hinet provides a wrapper class for flows
(i.e., vertical stacks of nodes) called FlowNode. For example, we can replace node1 in the above example with
a FlowNode:
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>>> node1_1 = mdp.nodes.PCANode(input_dim=100, output_dim=50)

>>> node1_2 = mdp.nodes.SFANode(input_dim=50, output_dim=10)

>>> node1_flow = mdp.Flow([node1_1, node1_2])

>>> node1 = mdp.hinet.FlowNode(node1_flow)

>>> layer = mdp.hinet.Layer([node1, node2])

>>> layer

Layer(input_dim=200, output_dim=30, dtype=None)

in this example node1 has two training phases (one for each internal node). Therefore layer now has two
training phases as well and behaves like any other node with two training phases. By combining and nesting
FlowNode and Layer, it is thus possible to build complex node structures.

∙ When implementing networks one might have to route different parts of the data to different nodes in a layer
in complex ways. This is done by the Switchboard node, which can handle such the routing. A Switchboard

is initialized with a 1-D Array with one entry for each output connection, containing the corresponding index
of the input connection that it receives its input from, e.g.:

>>> switchboard = mdp.hinet.Switchboard(input_dim=6, connections=[0,1,2,3,4,3,4,5])

>>> switchboard

Switchboard(input_dim=3, output_dim=2, dtype=None)

>>> x = mdp.numx.array([[2,4,6,8,10,12]])

>>> switchboard.execute(x)

array([[ 2, 4, 6, 8, 10, 8, 10, 12]])

The switchboard can then be followed by a layer that splits the routed input to the appropriate nodes, as
illustrated in following picture:

By combining layers with switchboards one can realize any feed-forward network topology. Defining the
switchboard routing manually can be quite tedious. One way to automatize this is by defining switchboard
subclasses for special routing situations. The Rectangular2dSwitchboard class is one such example and will
be briefly described in a later example.

HTML representation

Since hierarchical networks can be quite complicated, hinet includes the class HiNetHTMLTranslator that trans-
lates an MDP flow into a graphical visualization in an HTML file. We also provide the helper function show_flow

which creates a complete HTML file with the flow visualization in it and opens it in your standard browser.

>>> mdp.hinet.show_flow(flow)

To integrate the HTML representation into your own custom HTML file you can take a look at show_flow
to learn the usage of HiNetHTMLTranslator. You can also specify custom translations for node types via the
extension mechanism (e.g to define which parameters are displayed). Note that HiNetHTMLTranslator is derived
from HiNetTranslator which is the base class for general flow translations and is for example also used in the
parallel package (to translate a flow into a parallel version).
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Example application (2-D image data)

As promised we now present a more complicated example. We define the lowest layer for some kind of image
processing system. The input data is assumed to consist of image sequences, with each image having a size of 50
by 50 pixels. We take color images, so after converting the images to one dimensional numpy arrays each pixel
corresponds to three numeric values in the array, which the values just next to each other (one for each color
channel).

The processing layer consists of many parallel units, which only see a small image region with a size of 10
by 10 pixels. These so called receptive fields cover the whole image and have an overlap of five pixels. Note
that the image data is represented as an 1-D array. Therefore we need the Rectangular2dSwitchboard class to
correctly route the data for each receptive field to the corresponding unit in the following layer. We also call the
switchboard output for a single receptive field an output channel and the three RGB values for a single pixel form
an input channel. Each processing unit is a flow consisting of an SFANode (to somewhat reduce the dimensionality)
that is followed by an SFA2Node. Since we assume that the statistics are similar in each receptive filed we actually
use the same nodes for each receptive field. Therefore we use a CloneLayer instead of the standard Layer. Here is
the actual code:

>>> switchboard = mdp.hinet.Rectangular2dSwitchboard(x_in_channels=50,

... y_in_channels=50,

... x_field_channels=10,

... y_field_channels=10,

... x_field_spacing=5,

... y_field_spacing=5,

... in_channel_dim=3)

>>> sfa_dim = 48

>>> sfa_node = mdp.nodes.SFANode(input_dim=switchboard.out_channel_dim,

... output_dim=sfa_dim)

>>> sfa2_dim = 32

>>> sfa2_node = mdp.nodes.SFA2Node(input_dim=sfa_dim,

... output_dim=sfa2_dim)

>>> flownode = mdp.hinet.FlowNode(mdp.Flow([sfa_node, sfa2_node]))

>>> sfa_layer = mdp.hinet.CloneLayer(flownode,

... n_nodes=switchboard.output_channels)

>>> flow = mdp.Flow([switchboard, sfa_layer])

The HTML representation of the the constructed flow looks like this in your browser:

Now one can train this flow for example with image sequences from a movie. After the training phase one can
compute the image pattern that produces the highest response in a given output coordinate (use mdp.utils.QuadraticForm).
One such optimal image pattern may look like this (only a grayscale version is shown):
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So the network units have developed some kind of primitive line detector. More on this topic can be found
in: Berkes, P. and Wiskott, L., Slow feature analysis yields a rich repertoire of complex cell properties. Journal of
Vision, 5(6):579-602.

One could also add more layers on top of this first layer to do more complicated stuff. Note that the in_channel_dim
in the next Rectangular2dSwitchboardwould be 32, since this is the output dimension of one unit in the CloneLayer
(instead of 3 in the first switchboard, corresponding to the three RGB colors).

Parallelization

The parallel package adds the ability to parallelize the training and execution of MPD flows. This package is
split into two decoupled parts:

∙ The first part consists of a parallel extension of the familiar MDP structures of nodes and flows. The first basic
building block is the extension class ParallelExtensionNode for nodes which can be trained in a parallelized
way. It adds the fork and join methods. When providing a parallel extension for custom node classes
you should provide _fork and _join. Secondly there is the ParallelFlow class, which internally splits the
training or execution into tasks which can then be processed in parallel.

∙ The second part consists of the schedulers. A scheduler takes tasks and processes them in a more or less
parallel way (e.g. in multiple Python processes). A scheduler deals with the more technical aspects of the
parallelization, but does not need to know anything about nodes and flows.

Basic Examples

In the following example we parallelize a simple Flow consisting of PCA and quadratic SFA, so that it makes use
of two cores on a modern CPU:

>>> node1 = mdp.nodes.PCANode(input_dim=100, output_dim=10)

>>> node2 = mdp.nodes.SFA2Node(input_dim=10, output_dim=10)

>>> parallel_flow = mdp.parallel.ParallelFlow([node1, node2])

>>> n_data_chunks = 2

>>> data_iterables = [[mdp.numx_rand.random((200, 100))

... for _ in range(n_data_chunks)]

... for _ in range(2)]

>>> scheduler = mdp.parallel.ProcessScheduler(n_processes=2)

>>> parallel_flow.train(data_iterables, scheduler=scheduler)

>>> scheduler.shutdown()

So only two additional lines were needed to parallelize the training of the flow. All one has to do is use
a ParallelFlow insttead of the normal Flow and provide a scheduler. Note that the shutdown method should be
always called at the end to make sure that the threads and processes used by the scheduler are cleaned up properly.
So one should better put the shutdown call into a safer try/finally statement:

>>> try:

... parallel_flow.train(data_iterables, scheduler=scheduler)

... finally:

... scheduler.shutdown()

...

Scheduler

A scheduler is an instance of one of the scheduler classes we provide. They are all derived from the Scheduler base
class. Apart from the base class we currently only provide the ProcessScheduler which distributes the incom-
ing tasks over multiple Python processes (circumventing the global interpreter lock). There is also experimental
support for the Parallel Python library in the mdp.parallel.pp_support package.

The first important method of the scheduler class is add_task. This method takes two arguments: data

and task_callable, which can be a function or an object with a __call__ method. The return value of the

22

http://journalofvision.org/5/6/9/
http://journalofvision.org/5/6/9/
http://www.parallelpython.com


task_callable is the result of the task. If task_callable is None then the last provided task_callable will
be used. This splitting into callable and data makes it possible to implement caching of the task_callable in
the scheduler and its workers (caching is turned on by default in the ProcessScheduler). To further influence
caching you can also derive from the TaskCallable class, which has a fork to generate new callables when the
cached callable must be preserved. For MDP training and execution there already are corresponding TaskCallable

classes which are automatically used, so normally there is no need to worry about this.
After submitting all the tasks with add_task you can then call the get_results method. This method returns

all the task results, normally in a list. If there are open tasks in the scheduler get_results will wait until all
the tasks are finished. You can also check the status of the scheduler by looking at the n_open_tasks property,
which tells you the number of open tasks. After using the scheduler you should always call the shutdown method,
otherwise you might get error messages from not properly closed processes.

Internally an instance of the base class mdp.parallel.ResultContainer is used for the storage of the results in
the scheduler. By providing your own result container to the scheduler you modify the storage. For example the
default result container is an instance of OrderedResultContainer

Parallel Nodes

If you want to parallelize your own nodes you have to provide parallel extensions for them. The ParallelExtensionNode
base class has the new template methods fork and join. fork should return a new node instance. This new in-
stance can then be trained somewhere else (e.g. in a different process) with the usual train method. Afterwards
one calls join on the original node, with the forked node as the argument. This is effectively the same as calling
train directly on the original node.

When writing your own parallel node extension you should only overwrite the _fork and _join methods,
which are automatically called by fork and join. The fork and join take care of the standard node attributes like
the dimensions. You should also look at the source code of a parallel node like ParallelPCANode to get a better
idea of how to parallelize nodes.

Currently we provide the following parallel nodes: ParallelPCANode, ParallelWhiteningNode, ParallelSFANode,
ParallelSFA2Node, ParallelFDANode, ParallelHistogramNode, ParallelAdaptiveCutoffNode, ParallelFlowNode,
ParallelLayer, ParallelCloneLayer (the last three are derived from the hinet package).

Parallel Flows

As shown earlier in the example a parallel flow implements the parallel training (and execution) using a provided
scheduler. The scheduler is simply provided as an additional argument for the train or execute method of the
parallel flow. If no scheduler is provided the parallel flow behaves just like a normal flow.

You can also do the parallel training in a customized way by manually fetching tasks and assigning them to a
scheduler. However, this should rarely be required.

Classifier nodes

New in MDP 2.6 is the ClassifierNode base class which offers a simple interface for creating classification tasks.
Usually, one does not want to use the classification output in a flow but extract this information independently.
Most classification nodes will therefore simply return the identity function on execute; all classification work is
done with the new methods label, prob and rank.

As a first example, we will use the GaussianClassifierNode.

>>> gc = mdp.nodes.GaussianClassifierNode()

>>> gc.train(mdp.numx_rand.random((50, 3)), +1)

>>> gc.train(mdp.numx_rand.random((50, 3)) - 0.8, -1)

We have trained the node and assigned the labels +1 and -1 to the sample points. Note that in this simple case
we don’t need to give a label to each individual point, when only a single label is given, it is assigned to the whole
batch of features. However, it is also possible to use the more explicit form:

>>> gc.train(mdp.numx_rand.random((50, 3)), [+1] * 50)

We can then retrieve the most probable labels for some testing data,

>>> test_data = mdp.numx.array([[0.1, 0.2, 0.1], [-0.1, -0.2, -0.1]])

>>> gc.label(test_data)

[1, -1]

and also get the probability for each label.
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>>> gc.prob(test_data)

[{-1: 0.21013407927789607, 1: 0.78986592072210393},

{-1: 0.99911458988539714, 1: 0.00088541011460285866}]

Finally, it is possible to get the ranking of the labels, starting with the likeliest.

>>> gc.rank(test_data)

[[1, -1], [-1, 1]]

New nodes should inherit from ClassifierNode and implement the _label and _prob methods. The public
rank method will be created automatically from prob.

Real life examples

Logistic maps

In this section we show a complete example of MDP usage in a machine learning application, and use non-linear
Slow Feature Analysis for processing of non-stationary time series. We consider a chaotic time series derived by a
logistic map (a demographic model of the population biomass of species in the presence of limiting factors such as
food supply or disease) that is non-stationary in the sense that the underlying parameter is not fixed but is varying
smoothly in time.

The goal is to extract the slowly varying parameter that is hidden in the observed time series. This example
reproduces some of the results reported in Laurenz Wiskott, Estimating Driving Forces of Nonstationary Time
Series with Slow Feature Analysis. arXiv.org e-Print archive.

Generate the slowly varying driving force, a combination of three sine waves (freqs: 5, 11, 13 Hz), and define a
function to generate the logistic map

>>> p2 = mdp.numx.pi*2

>>> t = mdp.numx.linspace(0,1,10000,endpoint=0) # time axis 1s, samplerate 10KHz

>>> dforce = mdp.numx.sin(p2*5*t) + mdp.numx.sin(p2*11*t) + mdp.numx.sin(p2*13*t)

>>> def logistic_map(x,r):

... return r*x*(1-x)

...

>>>

Note that we define series to be a two-dimensional array. Inputs to MDP must be two-dimensional arrays
with variables on columns and observations on rows. In this case we have only one variable:

>>> series = mdp.numx.zeros((10000,1),’d’)

Fix the initial condition:

>>> series[0] = 0.6

Generate the time series using the logistic equation. The driving force modifies the logistic equation parameter
r:

>>> for i in range(1,10000):

... series[i] = logistic_map(series[i-1],3.6+0.13*dforce[i])

...

>>>

If you have a plotting package series should look like this:
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To reconstruct the underlying parameter, we define a Flow to perform SFA in the space of polynomials of degree
3. We first use a node that embeds the 1-dimensional time series in a 10 dimensional space using a sliding temporal
window of size 10 (TimeFramesNode(10)). Second, we expand the signal in the space of polynomials of degree
3 using a PolynomialExpansionNode(3). Finally, we perform SFA on the expanded signal and keep the slowest
feature using the SFANode(output_dim=1).

In order to measure the slowness of the input time series before and after processing, we put at the beginning
and at the end of the node sequence a node that computes the $eta$-value (a measure of slowness) of its input
(EtaComputerNode()):

>>> flow = (mdp.nodes.EtaComputerNode() +

... mdp.nodes.TimeFramesNode(10) +

... mdp.nodes.PolynomialExpansionNode(3) +

... mdp.nodes.SFANode(output_dim=1) +

... mdp.nodes.EtaComputerNode() )

...

>>>

Since the time series is short enough to be kept in memory we don’t need to define generators and we can feed
the flow directly with the whole signal:

>>> flow.train(series)

Since the second and the third nodes are not trainable we are going to get two warnings (Training Interrupted).
We can safely ignore them. Execute the flow to get the slow feature

>>> slow = flow(series)

The slow feature should match the driving force up to a scaling factor, a constant offset and the sign. To allow
a comparison we rescale the driving force to have zero mean and unit variance:

>>> resc_dforce = (dforce - mdp.numx.mean(dforce,0))/mdp.numx.std(dforce,0)

Print covariance between the rescaled driving force and the slow feature. Note that embedding the time series
with 10 time frames leads to a time series with 9 observations less:

>>> mdp.utils.cov2(resc_dforce[:-9],slow)

0.99992501533859179

Print the eta-values of the chaotic time series and of the slow feature

>>> print ’Eta value (time series): ’, flow[0].get_eta(t=10000)

Eta value (time series): [ 3002.53380245]

>>> print ’Eta value (slow feature): ’, flow[-1].get_eta(t=9996)

Eta value (slow feature): [ 10.2185087]
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If you have a plotting package you could plot the real driving force is plotted together with the driving force
estimated by SFA and see that they match perfectly:

Growing neural gas

We generate uniformly distributed random data points confined on different 2-D geometrical objects. The Growing
Neural Gas Node builds a graph with the same topological structure.

Fix the random seed to obtain reproducible results:

>>> mdp.numx_rand.seed(1266090063)

Some functions to generate uniform probability distributions on different geometrical objects:

>>> def uniform(min_, max_, dims):

... """Return a random number between min_ and max_ ."""

... return mdp.numx_rand.random(dims)*(max_-min_)+min_

...

>>> def circumference_distr(center, radius, n):

... """Return n random points uniformly distributed on a circumference."""

... phi = uniform(0, 2*mdp.numx.pi, (n,1))

... x = radius*mdp.numx.cos(phi)+center[0]

... y = radius*mdp.numx.sin(phi)+center[1]

... return mdp.numx.concatenate((x,y), axis=1)

...

>>> def circle_distr(center, radius, n):

... """Return n random points uniformly distributed on a circle."""

... phi = uniform(0, 2*mdp.numx.pi, (n,1))

... sqrt_r = mdp.numx.sqrt(uniform(0, radius*radius, (n,1)))

... x = sqrt_r*mdp.numx.cos(phi)+center[0]

... y = sqrt_r*mdp.numx.sin(phi)+center[1]

... return mdp.numx.concatenate((x,y), axis=1)

...

>>> def rectangle_distr(center, w, h, n):

... """Return n random points uniformly distributed on a rectangle."""

... x = uniform(-w/2., w/2., (n,1))+center[0]

... y = uniform(-h/2., h/2., (n,1))+center[1]

... return mdp.numx.concatenate((x,y), axis=1)

...

>>> N = 2000
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Explicitly collect random points from some distributions:

∙ Circumferences:

>>> cf1 = circumference_distr([6,-0.5], 2, N)

>>> cf2 = circumference_distr([3,-2], 0.3, N)

∙ Circles:

>>> cl1 = circle_distr([-5,3], 0.5, N/2)

>>> cl2 = circle_distr([3.5,2.5], 0.7, N)

∙ Rectangles:

>>> r1 = rectangle_distr([-1.5,0], 1, 4, N)

>>> r2 = rectangle_distr([+1.5,0], 1, 4, N)

>>> r3 = rectangle_distr([0,+1.5], 2, 1, N/2)

>>> r4 = rectangle_distr([0,-1.5], 2, 1, N/2)

Shuffle the points to make the statistics stationary

>>> x = mdp.numx.concatenate([cf1, cf2, cl1, cl2, r1,r2,r3,r4], axis=0)

>>> x = mdp.numx.take(x,mdp.numx_rand.permutation(x.shape[0]), axis=0)

If you have a plotting package x should look like this:

Create a GrowingNeuralGasNode and train it:

>>> gng = mdp.nodes.GrowingNeuralGasNode(max_nodes=75)

The initial distribution of nodes is randomly chosen:
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The training is performed in small chunks in order to visualize the evolution of the graph:

>>> STEP = 500

>>> for i in range(0,x.shape[0],STEP):

... gng.train(x[i:i+STEP])

... # [...] plotting instructions

...

>>> gng.stop_training()

See here the animation of training.
Visualizing the neural gas network, we’ll see that it is adapted to the topological structure of the data distribu-

tion:

Calculate the number of connected components:

>>> n_obj = len(gng.graph.connected_components())

>>> print n_obj

5

Locally linear embedding

Locally linear embedding (LLE) approximates the input data with a low-dimensional surface and reduces its di-
mensionality by learning a mapping to the surface. Here we consider data generated randomly on an S-shaped
2D surface embedded in a 3D space:
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The surface is defined by the function

>>> def s_distr(npoints, hole=False):

... """Return a 3D S-shaped surface. If hole is True, the surface has

... a hole in the middle."""

... t = mdp.numx_rand.random(npoints)

... y = mdp.numx_rand.random(npoints)*5.

... theta = 3.*mdp.numx.pi*(t-0.5)

... x = mdp.numx.sin(theta)

... z = mdp.numx.sign(theta)*(mdp.numx.cos(theta) - 1.)

... if hole:

... indices = mdp.numx.where(((0.3>t) | (0.7<t)) | ((1.>y) | (4.<y)))

... return x[indices], y[indices], z[indices], t[indices]

... else:

... return x, y, z, t

We generate 1000 points on this surface, then define an LLENode with parameters k=15 (number of neighbors)
and output_dim=2 (the number of dimensions of the reduced representation), then train and execute the node to
obtain the projected data:

>>> n, k = 1000, 15

>>> x, y, z, t = s_distr(n, hole=False)

>>> data = mdp.numx.array([x,y,z]).T

>>> lle_projected_data = mdp.nodes.LLENode(k, output_dim=2)(data)

The projected data forms a nice parametric representation of the S-shaped surface:
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The problem becomes more difficult if the surface has a hole in the middle:

In this case, the LLE algorithm has some difficulty finding the correct representation. The lines

>>> x, y, z, t = s_distr(n, hole=True)

>>> data = mdp.numx.array([x,y,z]).T

>>> lle_projected_data = mdp.nodes.LLENode(k, output_dim=2)(data)

return a distorted mapping:
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The Hessian LLE Node takes the local curvature of the surface into account, and is able to find a better repre-
sentation:

>>> hlle_projected_data = mdp.nodes.HLLENode(k, output_dim=2)(data)

Node List

Here is the complete list of implemented nodes. Refer to the API for the full documentation and interface descrip-
tion.

∙ AdaptiveCutoffNode Works like the HistogramNode. The cutoff bounds are then chosen such that a given
fraction of the training data would have been clipped.
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∙ CuBICANode Perform Independent Component Analysis using the CuBICA algorithm.
Reference: Blaschke, T. and Wiskott, L. (2003). CuBICA: Independent Component Analysis by Simultaneous
Third- and Fourth-Order Cumulant Diagonalization. IEEE Transactions on Signal Processing, 52(5), pp.
1250-1256. More information about ICA can be found among others in Hyvarinen A., Karhunen J., Oja
E. (2001). Independent Component Analysis, Wiley.

∙ CutoffNode Clip the data at the specified upper and lower bounds.

∙ DiscreteHopfieldClassifier Learns discrete patterns and can retrieve them again even when they are slightly
distorted.

∙ EtaComputerNode Compute the eta values of the normalized training data. The delta value of a signal is a
measure of its temporal variation, and is defined as the mean of the derivative squared, i.e. delta(x) =

mean(dx/dt(t)^2). delta(x) is zero if ’x’ is a constant signal, and increases if the temporal variation of
the signal is bigger. The eta value is a more intuitive measure of temporal variation, defined as eta(x)
= T/(2*pi) * sqrt(delta(x)). If ’x’ is a signal of length ’T’ which consists of a sine function that
accomplishes exactly ’N’ oscillations, then eta(x) = N.
Reference: Wiskott, L. and Sejnowski, T.J. (2002). Slow Feature Analysis: Unsupervised Learning of Invari-
ances, Neural Computation, 14(4):715-770.

∙ FANode Perform Factor Analysis. The current implementation should be most efficient for long data sets:
the sufficient statistics are collected in the training phase, and all EM-cycles are performed at its end.
More information about Factor Analysis can be found in Max Welling’s classnotes in the chapter “Linear
Models”.

∙ FastICANode Perform Independent Component Analysis using the FastICA algorithm.
Reference: Aapo Hyvarinen (1999). Fast and Robust Fixed-Point Algorithms for Independent Component
Analysis, IEEE Transactions on Neural Networks, 10(3):626-634. More information about ICA can be
found among others in Hyvarinen A., Karhunen J., Oja E. (2001). Independent Component Analysis, Wiley.

∙ FDANode Perform a (generalized) Fisher Discriminant Analysis of its input. It is a supervised node that
implements FDA using a generalized eigenvalue approach.
More information on Fisher Discriminant Analysis can be found for example in C. Bishop, Neural Net-
works for Pattern Recognition, Oxford Press, pp. 105-112.

∙ GaussianClassifierNode Perform a supervised Gaussian classification. Given a set of labelled data, the
node fits a gaussian distribution to each class.

∙ GrowingNeuralGasNode Learn the topological structure of the input data by building a corresponding
graph approximation.
More information about the Growing Neural Gas algorithm can be found in B. Fritzke, A Growing Neural
Gas Network Learns Topologies, in G. Tesauro, D. S. Touretzky, and T. K. Leen (editors), Advances in Neural
Information Processing Systems 7, pages 625-632. MIT Press, Cambridge MA, 1995.

∙ HistogramNode Store a fraction of the incoming data during training. This data can then be used to analyse
the histogram of the data.

∙ HitParadeNode Collect the first ’n’ local maxima and minima of the training signal which are separated by
a minimum gap ’d’.

∙ HLLENode Original code contributed by Jake VanderPlas.
Perform a Hessian Locally Linear Embedding analysis on the data.
Implementation based on algorithm outlined in David L. Donoho and Carrie Grimes, Hessian Eigenmaps:
new locally linear embedding techniques for high-dimensional data, Proceedings of the National Academy of
Sciences 100(10):5591-5596 (2003).

∙ ISFANode Perform Independent Slow Feature Analysis on the input data.
More information about ISFA can be found in: Blaschke, T. , Zito, T., and Wiskott, L. Independent Slow
Feature Analysis and Nonlinear Blind Source Separation. Neural Computation 19(4):994-1021 (2007).

∙ JADENode Original code contributed by Gabriel Beckers.
Perform Independent Component Analysis using the JADE algorithm.
References: Cardoso, J.-F, and Souloumiac, A. Blind beamforming for non Gaussian signals. Radar and
Signal Processing, IEE Proceedings F, 140(6): 362-370 (1993), and Cardoso, J.-F. High-order contrasts for
independent component analysis. Neural Computation, 11(1): 157-192 (1999). More information about ICA
can be found among others in Hyvarinen A., Karhunen J., Oja E. (2001). Independent Component Analysis,
Wiley.
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∙ KMeansClassifier Employs K-Means Clustering for a given number of centroids.

∙ LibSVMClassifier The LibSVMClassifier class acts as a wrapper around the LibSVM library for support
vector machines, which needs to be installed as a python module. The software can be found here:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
Warning: Because it is a new addition to MDP, the LibSVMClassifier should be used with caution. Also,
the interface might have some flaws. Any hints or bug reports are very welcome.
See also, Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines (2001).

∙ LinearRegressionNode Compute least-square, multivariate linear regression on the input data.

∙ LLENode Original code contributed by Jake VanderPlas.
Perform a Locally Linear Embedding analysis on the data.
Based on the algorithm outlined in An Introduction to Locally Linear Embedding by L. Saul and S. Roweis,
using improvements suggested in Locally Linear Embedding for Classification by D. deRidder and R.P.W.
Duin.
References: Sam Roweis and Lawrence Saul, Nonlinear dimensionality reduction by locally linear embedding,
Science 290(5500):2323-2326, 2000.

∙ NIPALSNode Original code contributed by Michael Schmuker, Susanne Lezius, and Farzad Farkhooi.
Perform Principal Component Analysis using the NIPALS algorithm. This algorithm is particularyl
useful if you have more variable than observations, or in general when the number of variables is huge
and calculating a full covariance matrix may be unfeasable. It’s also more efficient of the standard
PCANode if you expect the number of significant principal components to be a small. In this case
setting output_dim to be a certain fraction of the total variance, say 90%, may be of some help.
Reference for NIPALS (Nonlinear Iterative Partial Least Squares): Wold, H. Nonlinear estimation by it-
erative least squares procedures. in David, F. (Editor), Research Papers in Statistics, Wiley, New York, pp
411-444 (1966).
More information about Principal Component Analysis, a.k.a. discrete Karhunen-Loeve transform can
be found among others in I.T. Jolliffe, Principal Component Analysis, Springer-Verlag (1986).

∙ NoiseNode Original code contributed by Mathias Franzius.
Inject multiplicative or additive noise into the input data.

∙ PCANode Filter the input data throug the most significatives of its principal components.
More information about Principal Component Analysis, a.k.a. discrete Karhunen-Loeve transform can
be found among others in I.T. Jolliffe, Principal Component Analysis, Springer-Verlag (1986).

∙ PerceptronClassifier Trains a single binary perceptron with multiple inputs.

∙ PolynomialExpansionNode Perform expansion in a polynomial space.

∙ QuadraticExpansionNode Perform expansion in the space formed by all linear and quadratic monomials

∙ RBMNode Implementation of a Restricted Boltzmann Machine.
For more information on RBMs, see Geoffrey E. Hinton (2007) Boltzmann machine. Scholarpedia,
2(5):1668

∙ RBMWithLabelsNode Implementation of a Restricted Boltzmann Machine with softmax labels.
For more information on RBMs, see Geoffrey E. Hinton (2007) Boltzmann machine Scholarpedia, 2(5):1668
Hinton, G. E, Osindero, S., and Teh, Y. W. A fast learning algorithm for deep belief nets, Neural Computation,
18:1527-1554 (2006).

∙ ShogunSVMClassifier The ShogunSVMClassifier class works as a wrapper class for accessing the SHOGUN
machine learning toolbox. We use the python_modular wrapper to access SHOGUN and SHOGUN
must not be older than version 0.9. Warning: Because it is a new addition to MDP, the ShogunSVM-
Classifier should be used with caution. Also, the interface might have some flaws. Any hints or bug
reports are very welcome.
Most of the kernel machines and linear classifiers of shogun should work with this class.
For exact information about data formats which SHOGUN can accept, see http://www.shogun-toolbox.org/
S. Sonnenburg, G. Raetsch, C. Schaefer and B. Schoelkopf, Large Scale Multiple Kernel Learning, Journal
of Machine Learning Research, 7:1531-1565 (2006).
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∙ SFANode Extract the slowly varying components from the input data.
More information about Slow Feature Analysis can be found in Wiskott, L. and Sejnowski, T.J., Slow
Feature Analysis: Unsupervised Learning of Invariances, Neural Computation, 14(4):715-770 (2002).

∙ SFA2Node Get an input signal, expand it in the space of inhomogeneous polynomials of degree 2 and extract
its slowly varying components. The get_quadratic_form method returns the input-output function of
one of the learned unit as a mdp.utils.QuadraticForm object.
More information about Slow Feature Analysis can be found in Wiskott, L. and Sejnowski, T.J., Slow
Feature Analysis: Unsupervised Learning of Invariances, Neural Computation, 14(4):715-770 (2002).

∙ SimpleMarkovClassifier Learns the probability with which a label is assigned to a label.

∙ TDSEPNode Perform Independent Component Analysis using the TDSEP algorithm. Note that TDSEP,
as implemented in this Node, is an online algorithm, i.e. it is suited to be trained on huge data sets,
provided that the training is done sending small chunks of data for each time.
Reference: Ziehe, Andreas and Muller, Klaus-Robert (1998). TDSEP an efficient algorithm for blind sep-
aration using time structure. in Niklasson, L, Boden, M, and Ziemke, T (Editors), Proc. 8th Int. Conf.
Artificial Neural Networks (ICANN 1998).

∙ TimeFramesNode Copy delayed version of the input signal on the space dimensions.

For example, for time_frames=3 and gap=2:

[ X(1) Y(1) [ X(1) Y(1) X(3) Y(3) X(5) Y(5)

X(2) Y(2) X(2) Y(2) X(4) Y(4) X(6) Y(6)

X(3) Y(3) --> X(3) Y(3) X(5) Y(5) X(7) Y(7)

X(4) Y(4) X(4) Y(4) X(6) Y(6) X(8) Y(8)

X(5) Y(5) ... ... ... ... ... ... ]

X(6) Y(6)

X(7) Y(7)

X(8) Y(8)

... ... ]

∙ WhiteningNode ’Whiten’ the input data by filtering it through the most significatives of its principal com-
ponents. All output signals have zero mean, unit variance and are decorrelated.

∙ XSFANode Perform Non-linear Blind Source Separation using Slow Feature Analysis. This node is designed
to iteratively extract statistically independent sources from (in principle) arbitrary invertible nonlinear
mixtures. The method relies on temporal correlations in the sources and consists of a combination of
nonlinear SFA and a projection algorithm. More details can be found in the reference given below (once
it’s published).
More information about XSFA can be found in: Sprekeler, H., Zito, T., and Wiskott, L. (2009). An Exten-
sion of Slow Feature Analysis for Nonlinear Blind Source Separation. Journal of Machine Learning Research,
submitted

Didn’t you find what you were looking for?
If you want to contribute some code or a new algorithm, please do not hesitate to submit it!

Additional utilities

MDP offers some additional utilities of general interest in the mdp.utils module. Refer to the API for the full
documentation and interface description.

CovarianceMatrix This class stores an empirical covariance matrix that can be updated incrementally. A call to the
fix method returns the current state of the covariance matrix, the average and the number of observations,
and resets the internal data.

Note that the internal sum is a standard __add__ operation. We are not using any of the fancy sum algorithms
to avoid round off errors when adding many numbers. If you want to contribute a CovarianceMatrix class
that uses such algorithms we would be happy to include it in MDP. For a start see the Python recipe by
Raymond Hettinger. For a review about floating point arithmetic and its pitfalls see this interesting article.

DelayCovarianceMatrix This class stores an empirical covariance matrix between the signal and time delayed
signal that can be updated incrementally.

34

http://mdp-toolkit.sourceforge.net/docs/api/mdp.nodes.SFANode-class.html
http://mdp-toolkit.sourceforge.net/docs/api/mdp.nodes.SFA2Node-class.html
http://mdp-toolkit.sourceforge.net/docs/api/mdp.nodes.SimpleMarkovClassifier-class.html
http://mdp-toolkit.sourceforge.net/docs/api/mdp.nodes.TDSEPNode-class.html
http://mdp-toolkit.sourceforge.net/docs/api/mdp.nodes.TimeFramesNode-class.html
http://mdp-toolkit.sourceforge.net/docs/api/mdp.nodes.WhiteningNode-class.html
http://mdp-toolkit.sourceforge.net/docs/api/mdp.nodes.XSFANode-class.html
http://mdp-toolkit.sourceforge.net/docs/api/index.html
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090
http://docs.sun.com/source/806-3568/ncg_goldberg.html


MultipleCovarianceMatrices Container class for multiple covariance matrices to easily execute operations on all
matrices at the same time.

dig_node(node) Crawl recursively an MDP Node looking for arrays. Return (dictionary, string), where the dic-
tionary is: { attribute_name: (size_in_bytes, array_reference)} and string is a nice string representation of
it.

get_node_size(node) Get ’node’ total byte-size using cPickle with protocol=2. (The byte-size is related the mem-
ory needed by the node).

progressinfo(sequence, length, style, custom) A fully configurable text-mode progress info box tailored to the
command-line die-hards. To get a progress info box for your loops use it like this:

>>> for i in progressinfo(sequence):

... do_something(i)

You can also use it with generators, files or any other iterable object, but in this case you have to specify the
total length of the sequence:

>>> for line in progressinfo(open_file, nlines):

... do_something(line)

A few examples of the available layouts:

[===================================73%==============>...................]

Progress: 67%[======================================> ]

23% [02:01:28] - [00:12:37]

QuadraticForm Define an inhomogeneous quadratic form as 1/2 x’Hx + f’x + c. This class implements the
quadratic form analysis methods presented in: Berkes, P. and Wiskott, L. On the analysis and interpretation
of inhomogeneous quadratic forms as receptive fields. Neural Computation, 18(8): 1868-1895. (2006).

refcast(array, dtype) Cast the array to ’dtype’ only if necessary, otherwise return a reference.

rotate(mat, angle, columns, units) Rotate in-place a NxM data matrix in the plane defined by the ’columns’ when
observation are stored on rows. Observations are rotated counterclockwise. This corresponds to the follow-
ing matrix-multiplication for each data-point (unchanged elements omitted):

[ cos(angle) -sin(angle) [ x_i ]

sin(angle) cos(angle) ] * [ x_j ]

random_rot(dim, dtype) Return a random rotation matrix, drawn from the Haar distribution (the only uniform
distribution on SO(n)). The algorithm is described in the paper Stewart, G.W., The efficient generation of random
orthogonal matrices with an application to condition estimators, SIAM Journal on Numerical Analysis, 17(3), pp.
403-409, 1980. For more information see this Wikipedia entry.

symrand(dim_or_eigv, dtype) Return a random symmetric (Hermitian) matrix with eigenvalues uniformly dis-
tributed on (0,1].

HTML Slideshows

The mdp.utils module contains some classes and helper function to display animated results in a Webbrowser.
This works by creating an HTML file with embedded JavaScript code, which dynamically loads image files (the
images contain the content that you want to animate and can for example be created with matplotlib). MDP
internally uses the open source Templete templating libray, written by David Bau.

The easiest way to create a slideshow it to use one of these two helper function:

show_image_slideshow(filenames, image_size, filename=None, title=None, **kwargs) Write the slideshow into
a HTML file, open it in the browser and return the file name. filenames is a list of the images files that you
want to display in the slideshow. image_size is a 2-tuple containing the width and height at which the
images should be displayed. There are also a couple of additional arguments, which are documented in the
docstring.

image_slideshow(filenames, image_size, title=None, **kwargs) This function is similar to show_image_slideshow,
but it simply returns the slideshow HTML code (including the JavaScript code) which you can then embed
into your own HTML file. Note that the default slideshow CSS code is not included, but it can be accessed
in mdp.utils.IMAGE_SLIDESHOW_STYLE.

Note that there are also two demos for slideshows in the mdp\demo folder.
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Graph module

MDP contains mdp.graph, a lightweight package to handle directed graphs.

Graph Represent a directed graph. This class contains several methods to create graph structures and manipulate
them, among which

∙ add_tree: Add a tree to the graph. The tree is specified with a nested list of tuple, in a LISP-like nota-
tion. The values specified in the list become the values of the single nodes. Return an equivalent
nested list with the nodes instead of the values.
Example:

∙ topological_sort: Perform a topological sort of the nodes.

∙ dfs, undirected_dfs: Perform Depth First sort.

∙ bfs, undirected_bfs: Perform Breadth First sort.

∙ connected_components: Return a list of lists containing the nodes of all connected components of the
graph.

∙ is_weakly_connected: Return True if the graph is weakly connected.

GraphEdge Represent a graph edge and all information attached to it.

GraphNode Represent a graph node and all information attached to it.

recursive_map(func, seq) Apply a function recursively on a sequence and all subsequences.

recursive_reduce(func, seq, *argv) Apply reduce(func, seq) recursively to a sequence and all its subsequences.

BiMDP

BiMDP defines a framework for more general flow sequences, involving top-down processes (e.g. for error back-
propagation) and loops. So the bi in BiMDP primarily stands for bidirectional. It also adds a couple of other features,
like a standartized way to transport additional data, and a HTML based flow inspection utility. Because BiMDP is
a rather large addition and changes a few things compared to standard MDP it is not included in mdp but must be
imported seperately as bimdp (BiMDP is included in the standard MDP installation):

>>> import bimdp

Warning: BiMDP is a new addition to MDP, so currently it should be considered as beta-stage software. Even
though it already went through long testing and several refactoring rounds it is still not as mature and polished
as the rest of MDP. This also means that your bug findings or suggestions for improvement will be very valuable.
The API of BiMDP should be pretty stable now, we don’t expect any fundamental breakages in the future.

Here is a brief summary of the most important new features in BiMDP:

∙ Nodes can specify other nodes as jump targets, where the execution or training will be continued. It is now
possible to use loops or backpropagation, in contrast to the strictly linear execution of a normal MDP flow.
This is enabled by the new BiFlow class. The new BiNode base class adds a node_id string attribute, which
can be used to target a node.

The complexities of arbitrary data flows are evenly split up between BiNode and BiFlow: Nodes specify
their data and target using a standartized interface, which is then interpreted by the flow (somewhat like
a very primitive domain specific language). The alternative approach would have been to use specialised
flow classes or container nodes for each use case, which ultimately comes down to a design decision. Of
course you can (and should) still take that route if for some reson BiMDP is not an adequate solution for
your problem.

∙ In addition to the standard array data, nodes can transport more data in a message dictionary (these are
really just standard Python dictionaries, so they are dict instances). The new BiNode base class provides
functionality to make this as convenient as possible.

∙ An interactive HTML-based inspection for flow training and execution is available. This allows you to step
through your flow for debugging or add custom visualizations to analyse what is going on.

∙ BiMDP supports and extends the hinet and the parallel packages from MDP. BiMDP in general is com-
patible with MDP, so you can use standard MDP nodes in a BiFlow. You can also use BiNode instances in a
standard MDP flow, as long as you don’t use certain BiMDP features.
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The structure of BiMDP closely follows that of MDP, so there are submodules bimdp.nodes, bimdp.parallel,
and bimdp.hinet. The module bimdp.nodes contains BiNode versions of nearly all MDP nodes. For example
bimdp.nodes.PCABiNode is derived from both BiNode and mdp.nodes.PCANode.

There are currently two examples available in the mdp-examples repository, which demonstrate how BiMDP
can be used. The first example backpropagation is a simple multilayer perceptron, using backpropagation for
learning. The second example binetdbn is a proof-of-concept implementation of a deep belief network.

Finally note that this tutorial is intended to serve as an introduction, covering all the basic aspects of BiMDP.
For more detailed specifications have a look at the docstrings.

Targets, id’s and Messages

The return value of the execute method in a normal MDP node is restricted to a single 2d array. A BiMDP BiNode

on the other hand can optionally return a tuple containing an additional message dictionary and a target value. So
in general the return value is a tuple (x, msg, target), where x is a the usual 2d array. Alternatively a BiNode is
also allowed to return only the array x or a 2-tuple (x, msg) (specifying no target value). Unless stated otherwise
the last entry in the tuple should not be None, but all the other values are allowed to be None (so if you specify a
target then msg can be None, and even x can be None).

The msg message is a normal Python dictionary. You can use it to transport any data that does not fit into the x

2d data array. Nodes can take data from to the message and add data to it. The message is propagated along with
the x data. If a normal MDP node is contained in a BiFlow then the message is simply passed around it. A BiNode

can freely decide how to interact with the message (see the BiNode section for more information).
The target value is either a string or a number. The number is the relative position of the target node in the

flow, so a target value of 1 corresponds to the following node, while -1 is the previous node. The BiNode base class
also allows the specification of a node_id string in the __init__ method. This string can then be used as a target
value.

The node_id string is also useful to access nodes in a BiFlow instance. The standard MDP Flow class already
implements standard Python container methods, so flow[2] will return the third node in the flow. BiFlow in
addition enables you to use the node_id to index nodes in the flow, just like for a dictionary. Here is a simple
example:

>>> pca_node = bimdp.nodes.PCABiNode(node_id="pca")

>>> biflow = bimdp.BiFlow([pca_node])

>>> biflow["pca"]

PCABiNode(input_dim=None, output_dim=None, dtype=None, node_id="pca")

BiFlow

The BiFlow class mostly works in the same way as the normal Flow class. We already mentioned several of the new
features, like support for targets, messages, and retrieving nodes based on their node_id. Appart from that the only
major difference is the way in which you can provide additional arguments for nodes. For example the FDANode in
MDP requires class labels in addition to the data array (telling the node to which class each data point belongs). In
the Flow class the additional data (the class labels) is provided by the same iterable as the data. In a BiFlow this is
no longer allowed, since this functionality is provided by the more general message mechanism. In addition to the
data_iterables keyword argument there is a new msg_iterables argument, to provide iterables for the message
dictionary. The structure of the msg_iterables argument must be the same as that of data_iterables, but instead
of yielding arrays it should yield dictionaries (containing the additional data values with the corresponding keys).
Here is an example:

>>> samples = mdp.numx_rand.random((100,10))

>>> labels = mdp.numx.arange(100)

>>> flow = bimdp.BiFlow([mdp.nodes.PCANode(), bimdp.nodes.FDABiNode()])

>>> flow.train([[samples],[samples]], [None,[{"cl": labels}]])

The _train method of FDANode requires the cl argument, so this is used as the key value. Note that we have
to use the BiNode version of FDANode, called FDABiNode (alomost every MDP node has a BiNode version following
this naming scheme). The BiNode class provides the cl value from the message to the _train method.

In a normal Flow the additional arguments can only be given to the node which is currently in training. This
limitation does not apply to a BiFlow, where the message can be accessed by all nodes (more on this later). Mes-
sage iterators can also be used during execution, via the msg_iterable argument in BiFlow.execute. Of course
messages can be also returned by BiFlow.execute, so the return value has the form (y, msg). If iterables are used
then the BiFlow not only concatenates the y result arrays, but also tries to join the msg dictionaries into a single
one. Arrays in the msg will be concatenated, for all other types the plus operator is used.
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The train method of BiFlow also has an additional argument called stop_messages, which can be used to pro-
vide message iterables for stop_training. The executemethod on the other hand has an argument target_iterable,
which can be used to specify the initial target in the flow execution.

BiNode

We now want to give an overview of the BiNode API, which is mostly an extension of the Node API. First we take
a look at the possible return values of a BiNode and briefly explain their meaning:

execute x or (x, msg) or (x, msg, target). Normal execution continues, directly jumping to the target if one
is specified.

train

∙ None terminates training.

∙ x or (x, msg) or (x, msg, target). Means that execution is continued and that this node will
be reached again to terminate training. If x is None and no target is specified then the remaining
msg is dropped (so it is not required to ’clear’ the message manually in _train for custom nodes
to terminate training).

stop_training, stop_message

∙ None terminates the stop_message propagation.

∙ (msg, target). If no target is specified then the remaining msg is dropped (terminates the prop-
agation).

Of course all these methods also accept messages. Compared to Node methods they have a new msg argument.
The target part on the other hand is only used by the BiFlow.

As you can see from train, the training does not always stop when the training node is reached. Instead it
is possible to continue with the execution to come back later. For example this is used in the backpropagation
example (in the MDP examples repository). There is also a new stop_training result option. If stop_training
returns a result then the BiFlow enters a mode where it propagates the result based on the given target by calling
stop_message. This can be used to propagate results from the node training or to prepare nodes for their upcoming
training.

Some of these new options might be confusing at first. However, you can simply ignore those that you don’t
need and concentrate on the features that are useful for your current project. For example you could use messages
without ever worrying about targets.

There are also three more additions to the BiNode API:

node_id This is a read-only property, which returns the node id (which is None if it wasn’t specified).
The __init__ method of a BiNode generally accepts a node_id keyword argument to set this
value.

bi_reset This method is called by the BiFlow before and after training and execution (and the stop_training
/ stop_message propagation). It can be overriden by derived classes to reset internal state vari-
ables.

is_bi_training This method is similar to the is_training method of standard MDP nodes. It can be
used to signal that a node is doing some data gathering. A node might for example do perform
training during the normal execute (e.g., a neural network might adjust internal weights while it
is already returning results). Generally this method isn’t that important, but the ParallelBiFlow

uses it to determine if nodes can simply be copied or must be forked

Inspection

Using jumps and messages can result in complex data flows. Therefore BiMDP offers some convenient inspec-
tion capabilites to help with debugging and analyzing what is going on. This functionality is based on the static
HTML view from the mdp.hinet module. Instead of a static view of the flow you get an animated slideshow of
the flow training or execution. An example is provided in bimdp/test/demo_hinet_inspection.py. You can sim-
ply call bimdp.show_execution(flow, data) instead of the normal flow.execute(data). This will automatically
perform the inspection and open it in your webbrowser. Similar functionality is available for training. Just call
bimdp.show_execution(flow, data_iterables), which will perform training as in flow.train(data_iterables).
Have a look at the docstrings to learn about additional options.
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The BiMDP inspection is also useful to visualize the data processing that is happening inside a flow. This is
especially handy if you are trying to build or understand new algorithms and want to know what is going on.
Therefore we made it very easy to customize the HTML views in the inspection. One simple example is provided
in bimdp/test/demo_custom_inspection.py, where we use matplotlib to plot the data and present it inside the
HTML view. Note that bimdp.show_training and bimdp.show_execution are just helper functions. If you need
more flexibility you can directly access the machinery below (but this is rather messy and hardly ever needed).

Extending BiNode and Message Handling

As in the Node class any derived BiNode classes should not directly overwrite the public execute or train meth-
ods but instead the private versions with an underscore in front (for training you can of course also overwrite
_get_train_seq). In addtion to the dimensionality checks performed on x by the Node class this enables a couple
of message handling features. This also applies to the new _stop_message method. On the other hand bi_reset

and is_bi_training can be directly overwritten (like is_training in Node), there are no private methods for
these.

The automatic message handling is a major feature in BiNode and relies on the dynamic nature of Python. In
the FDABiNode and BiFlow example we have alrady seen how a value from the message is automatically passed to
the _train method, because the key of the value is also the name of a keyword argument.

Public methods like execute in BiNode accept not only a data array x, but also a message dictionary msg. When
given a message they perform introspection to determine the arguments for the corresponding private methods
(like _train). If there is a matching key for an argument in the message then the value is provided as a keyword
argument. It remains in the dictionary and can therefore be used by other nodes in the flow as well.

A private method like _train has the same return options as the public train method, so one can for example
return a tupple (x, msg). The msg in the return value from _train is then used by train to update the original msg.
Thereby _train can overwrite or add new values to the message. There are also some special features (“magic”)
to make handling messages more convenient:

∙ You can use message keys of the form node_id->argument_key to address parts of the message to a specific
node. When the node with the corresponding id is reached then the value is not only provided as an argu-
ment, but the key is also deleted from the message. If the argument_key is not an argument of the method
then the whole key is simply erased.

∙ If a private method like _train has a keyword argument called msg then the complete message is provided.
The message from the return value replaces the original message in this case. For example this makes it
possible to delete parts of the message (instead of just updating them with new values).

∙ The key "method" is treated in a special way. Instead of calling the standard private method like _train

(or _execute, depending on the called public method) the “method” value will be used as the method
name, with an underscore in front. For example the message {"method": "classify"} has the effect that
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a method _classify will be called. Note that this feature can be combined with the extension mechanism,
when methods are added at runtime.

∙ The key "target" is treated in a special way. If the called private method does not return a target value (e.g.,
if it just returned x) then the "target" value is used as target return value (e.g, instead of x the return value
of execute would then have the form x, None, target).

∙ If the key “method” has the value inverse then, as expected, the _inverse method is called. However,
additionally the checks from inverse are run on the data array. If _inverse does not return a target value
then the target -1 is returned. So with the message {"method": "inverse"} one can execute a BiFlow in
inverse node (note that one also has to provide the last node in the flow as the initial target to the flow).

∙ This is more of a BiFlow feature, but the target value specified in bimdp.EXIT_TARGET (currently set to
"exit") causes BiFlow to terminate the execution and to return the last return value.

∙ To make it possible to call execute and inverse via stop_message there is some magic going on if these
are specified via the "method" key: In addition to the normal automatic extraction of the "x" key from the
message the array output of the node is also stored back as "x" in the message (overwriting the previous
value). Additionally the target is given a default value of 1 or -1 (so setting the "method" value is sufficient
for normal execution or inverse during the stop_message phase).

Of course all these features can be combined, or can be ignored when they are not needed.

HiNet in BiMDP

BiMDP is mostly compatibel with the hierarchical networks introduced in mdp.hinet. For the full BiMDP func-
tionality it is of required to use the BiMDP versions of the the building blocks.

The bimdp.hinet module provides a BiFlowNode class, which is offers the same functionality as a FlowNode

but with the added capability of handling messages, targets, and all other BiMDP concepts.
There is also a new BiSwitchboard base class, which is able to deal with messages. Arrays present in the

message are mapped with the switchboard routing if the second axis matches the switchboard dimension (this
works for both execute and inverse).

Finally there is a CloneBiLayer class, which is the BiMDP version of the CloneLayer class in mdp.hinet. To
support all the features of BiMDP some significant functionality has been added to this class. The most important
new aspect is the use_copies property. If it is set to True then multiple deep copies are used instead of just a
reference to the same node. This makes it possible to use internal variables in a node that persist while the node is
left and later reentered. You can set this property as often as you like (note that there is of course some overhead
for the deep copying). You can also set the use_copies property via the message mechanism by simply adding
a "use_copies" key with the required boolean value. The CloneBiLayer class also looks for this key in outgoing
messages (so it can be send by nodes inside the layer).

Parallel in BiMDP

The parallelisation capabilites introduced in mdp.parallel can be used for BiMDP. The bimdp.parallel module
provides a ParallelBiFlow class which can be used like the normal ParallelFlow. No changes to schedulers are
required.

The most important difference between the parallelization in standard MDP and BiMDP is that BiNodes can
signal via the is_bi_training method wether they should be forked instead of the usual deep copy. Unlike the
is_training method there can be multiple nodes for which is_bi_training returns True. All these forked nodes
are joined after the exectuion or training.

Note that a ParallelBiFlow uses a special callable class. So if you want to use a custom callable you will have
to make a few modifications (compared to the standard callable class used by ParallFlow).

Classifiers in BiMDP

BiMDP introduces a special BiClassifier base class for the new Classifier nodes in MDP. This makes it possible
to fully use classifiers in a normal BiFlow. Just like for normal nodes the BiMDP versions of the classifier are
available in bimdp.nodes (the SVM classifiers are currently not available by default, but it is possible to manually
derive a BiClassifier version of them).

The BiClassifier class makes it possible to provide the training labels via the message mechanism (simply
store the labels with a "labels" key in the msg dict). It is also possible to transport the classification results in the
outgoing message. The _execute method of a BiClassifier has three keyword arguments called return_labels,
return_ranks, and return_probs. These can be set via the message mechanism. If for example return_labels is
set to True then execute will call the label method from the classifier node and store the result in the outgoing
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message (under the key "labels"). The return_labels argument (and the other two) can also be set to a string
value, which is then used as a prefix for the "labels" key in the outgoing message (e.g., to target this information
at a specific node in the flow).

Future Development

MDP is currently maintained by a core team of 4 developers, but it is open to user contributions. Users have
already contributed some of the nodes, and more contributions are currently being reviewed for inclusion in future
releases of the package. The package development can be followed online on the public git code repositories or
cloned with:

git clone git://mdp-toolkit.git.sourceforge.net/gitroot/mdp-toolkit/mdp-toolkit

git clone git://mdp-toolkit.git.sourceforge.net/gitroot/mdp-toolkit/docs

git clone git://mdp-toolkit.git.sourceforge.net/gitroot/mdp-toolkit/examples

git clone git://mdp-toolkit.git.sourceforge.net/gitroot/mdp-toolkit/contrib

Questions, bug reports, and feature requests are typically handled by the user mailing list
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